|

) <

The University of Osaka
Institutional Knowledge Archive

. A note on the theory of degree of mapping in
Title .
Euclidean spaces

Author(s) |Nagumo, Mitio

Citation |Osaka Mathematical Journal. 1952, 4(1), p. 1-9

Version Type|VoR

URL https://doi.org/10.18910/3549

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



Osaka Matematical Journal
Vol 4, No. 1, May, 1952

A Note on the Theory of Degree of Mapping
in Euclidean Spaces

By Mitio NacuMo

1. Introduction

In a Japanese brochure we have established a theory of degree of
mapping, at first for mappings in finite dimensional Euclidean spaces,
which is based on the theory of infinitesimal analysis, and then extended
it for a kind of mappings in Banach spaces®.

But an essential difficulty lies in the proof of the continuity of the
degree of mapping for differentiable mapping in Euclidean spaces.
Recently M. Kneser has given an interesting theorem on the dependence
of functions [2], to which the theorem of Sard on the critical values
lies very close [5]. A special case of the theorem of Sard and Kneser
concerning mapping of (m+1)-dimensional Euclidean open set into
m-dimensional Euclidean space, combined with an idea of Birkhoff and
Kellozg used for the theory of invariant points [1], affords us another
way of the proof of the continuity of the degree of mapping, which we
want to give in this note.

In § 2 we shall give a proof of the above mentioned special case of
the theorem of Sard and Kneser. In §3 we give the definition of the
degree of mapping for differentiable mappings of class C? and prove its
continuity. In § 4 will be given its extension to continuous mapping of
bounded open sets in Euclidean spaces.

Let 2=(,,---,2,) be a point of an m-dimensional Euclidean space
E™. A function f(z) defined on an open set in E™ is called of class C?,
if every p-th partial derivatives of f exists and is continuous. We use
the notation 9, f or o,f for the partial derivatives of/ox, and o}4f for
o /ox,02;. Mapping means always a continuous mapping and a mapping
f is called of class C*, if every component of f(x) is a function of
class C”.

2. Auxiliary theorem

Theorem 1. Let D™*! be an open set in E™*, and f be a mapping
of D™ into E™ of class C2. Let B be the point set in E™ defined by

1) Essentially the same treatise is also published in Am. Jour. Math. 73 (1951), (3, (4].
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(1) B;":{y: y= f(x), € D™, Rank (3,f) < 75
Then ; measure of B;"(m E"")=0’ if r<m.

To prove this we use the following

Lemma. Let f be o mapping of D™ into E™ of class C2.
Then,

(2) measure of B:,”<in Em) =0.

Proof : First we assume that m>2. Let A be the subset of D™+!
defined by A=f{2: 0,/=0}, and @ = {2: a, <&, < B(i=1,..,m+1)}
(B;—a;=1) be any (m +1)-dimensional cube in D™+!. Then || f(z")— ()|
M| x'—x|%,,? for any 2€A A Q and 2' € Q, where M is a definite
constant. Divide @ into »™*! equal small cubes Qi = {a: af’ <u;
<B =1, .., m+1)}(B—a” = 1/n). Then,

measure of f(Q{™) < M™(I/n)2™, if QWNA 1§ }¥.
Therefore
measure of f(AA Q) < n"  M™(l/n)p" < (ME)"/n .

Thus for n— co we get: measure of f(A~Q)=0. As f(4)=B can be
covered by an enumerable number of such f(4 ~ @), we obtain: measure
of Br=0.

Now let it be m =1 and let A, be the subset of D? defined by

(3) A1=§x: 9f=0 for all i, 9%f--0 for some H}
Then
(4) measure of f(4,);, g1y =0.

Because: Let 2° be any point of A, and i, be such indices that

9¢3f(x®)=4=0. Putting 9,f(2)=g¢(x) we have O,p(x°)==0. Let us suppose

i=2. Then there exists a neighborhood U of z° such that for any point

x = (x,,2,) € U, which satisfies ¢(2)=0, holds the relation x, = (,),

where (2,) is a function of class C'. Then for x€ A, AU we have
f@) = f(@,, P(@1)) = f4@,) ,

where f*(2;) is a function of class C'. Hence

NI s y=fr@), @, W@)el, o =0].

2) I1flm= Max |fil, lxilms1= Max [a].
1=i<m 1=i=m+1

3) { } means the empty set.
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But we can easily prove

measure of {y : y=f*,), o ffr= 0} 0.

(in EV)
Thus

(5) measure of f(4,~,U)=0.

As f(4,) can be covered by an enumerable number of such f(4,nU),
we obtain (4).
Now let 4, be the subset of D? defined by

(6) A0={x: of =0, 9%f =0 foraui,j}.
Then
(7 measure of f(Ao)(l-n en=0.

Because: Let Q@ =f{x: « <, <B4, }(B,—a,=1) be an arbitrary
quadrate in D? and divide Q into %2 small quadrates Q™ as in the first
part of the proof. Then for any given & >0 there exists a natural
number 7z such that the inequality
[ f@h—f@)|< ella'—2 ||3
holds for any « € QA A4,, &' € Q. Therefore
measure of f(Q5)<&(l/n)?, if QPAA,==1{}.

Hence; measure of f(QA,)< n?&(l/n)*=¢&l%. But, as & is arbitrarily
small and f(4,) can be covered by an enumerable number of such
f(RAA,), we obtain (7). From (3), (4), (6) and (7) we get (2), since
By = f(A4,)V f(4,).

Proof of Theorem 1. Let A, be the subset of D™*! defined by

A, = {x: Rank (9,f) — r} :

Then by Lemma we have; measure of f(4,)=0. We shall prove by
mathematical induction that

measure of f(4,)=0 for r<m.

We assume that Theorem 1 holds for 0<r<k—1. Let 2° be any point
of A, , then 9,f(a°) ==0 for some i, 4§, and without loss of generality we
can assume that i=m+1, j=m. Then by the theory of implicit functions,
there exists a neighborhood U of 2° such that through the relation

Y= fm(xlv coe lxm+1)' re U'

Z,., can be expressed in the form
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xm+1 == ‘[’\(xly cee mm: y) ’
where (2, ) is a function of class C2. Thus for 2 €U

fi(x) = fi(a"ll cee y xm’ '\[’(xli vee m’ 'I/)) — f,; (3/1) oo m’ J) ’

where fi(z,y) is a function of class C2. But

(8)  Ranke (9, J=loim ) =Ranks (n7, Ouff i)
= Rank <8xjfg<, 0, f¥ ,:::l,...,m~1>+]_,
=1 ...,m
. aXJf;K, yfi l’—'],...,ﬂl—l
since <ax]f;k , ayf;.’: 1:=1, ,m> — ( j=1,....m ) .
j=1,...,m 0 1
Now let B¥™ (%) (Fgl;,‘) be defined (for each fixed ¥) by

Bf"(y)={a': & = f¥(s,9), (2,4)€U, Rank (a,f*)Zr}.
Then by our hypothesis
(9) measure of Bf"'(y)=0 for 0<r<k-1.
But by (8)

measure of f(A, ~U) :S measure of BE"'(y)dy .

Hence by (9); measure of f(A,~U)=0. As f(A,) can be covered by
an enumerable number of such f(4,~U), we get

measure of f(A4,)=0.
This completes our proof.
Corollary 1. If f is o mapping of an m-dimensional open set D™
into E™ of class C?, then
measure of {y: y = f(x), det (o.f)= 0% =0".

Proof : Let us define a mapping f* of D"*!= D"xE" into E™ by
f*(xltﬂ a’ a’m,+l)— (a’ll -'O’xm)' Then

Rank (9, {1 ) = Ranke (0t i)

Thus Corollary 1 holds by Theorem 1.

4) Corollary 1 remains valid even when f is of class Ci. Cf. Nagumo [3].
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2, Degree of mapping for mapping of class C?

Let D be a bounded open set in E™ and f be a mapping of D (the
closure of D) into E™ of class C*. The set of all critical values of f on
D, i.e., the set

{y: y=f(x), €D, det(azf)zo}

is called the crease of f. Let @ be a point of E™, which lies neither on
f(D—D) nor on the crease of f. Then, by a theorem on implicit functions,
the equation f(2)=a has only isolated solutions. As a¢ f(D—D), the
set {x: f(¥) = a} has no accumulation point on D—D. Therefore there
are only a finite number of points 2 € D such that f(z) =a. Let » be
the number of points 2 for which f(¢)=a« and det(o,f) >0 hold, and
q be the number of those x for which f(x)=a and det(5,f)< 0 hold.
Then we call the integer p—q the degree of mapping of D at a by f,
and denote it by
Alae, D, f] (=»—q).
As 1is easily seen, we have
Ale,D,f]=A[0,D, f—a]

Theorem 2. For each t(0 <t <1) let f, be a mapping of D into E™
such that f(x) is a function of class C? in (t, ) for 0<t<1, z€D.
Let a be a point of E™ such that

(1) af f(D-D) for 0<t<1,
and a is neither on the crease of f, nor on that of f,, then we have
(*) Ale, D, f,]=A4[ea, D, f,].

Proof: Let K be the set in E™ defined by
(2) K={y: y=1(s), 0=t=1, v€D, Rank (3.f,, )< m.
Then by Theorém 1,

(3) measure of K=0.

At first let us suppose that e« ¢ K. Then by (1) and (2) there are
at most a finite number of curves €,: & = X(s), ¢ = v(s) (for the para-
meter s is taken the arc length of €,) in E7'}, defined by the equation

(4) fc(x):a,

which are smooth and without multiple point because of
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(5) Rank (o,f,, 9,f.)=m along €, .

We determine the orientation of €, in such a way that

Oxsft Oft i=1 ..., m
(6) det (

j=1, ... ,m) >0,
le ’T,
The values of X'(s) and +/(s) at each point of €, will be determined by
(6) and

(7) {2’;’11 Oxsft* Xj+0,fier’ =0, (i=1,...,m),
S X? + 2 =129 '

Then

(8) sign of +/(s) = sign of det (2,f;) along €, .

Because :

det <axjf5 a,fé>.,rf; det <axjf§ SV Du,fle X, + 3, f2-7'>

X/ o X/ S X

a 13
— det ( ;j ‘ (1)> — det (a, f,) . (by (7).
Hence by (6) we get (8). Thus, for t=0 or t=1, A[a,D,f,] equals
just the algebraic sum of the numbers of intersections of the hyperplane
t=0 or t=1 by the curves €,, taken positive or negative after the
sense of intersection (the sign of +/). Each € is simply closed or runs
from‘ one of the two hyperplanes t=0 and {=1 to the same or another

one of them without touching D—D (by (1)). Namely we have 4
possible cases for each €, :

i) €, is a simply closed curve.

ii) €, runs from one of the two hyperplanes {=0 and {=1 to the

same one.

iii) €, runs from the hyperplane ¢ = 0 to the hyperplane ¢ = 1.

iv) €, runs from the hyperplane ¢ = 1 to the hyperplane ¢ = 0.
In the first two cases, i) and ii), €, has no effect on A[a, D, f,] for
t=0 and ¢=1. Let p be the number of €, of the case iii), and ¢ be
the number of €, of the case iv). Then we have

A[a,D’fo:I:A[a’Drfl]:p“Q-

5) fﬂ=(f%n'-- 7?1)
6) The values of x’ and 7/ are as follows: ay/ == Ax/|Al, T/ ==A;/A|, where

i =1,..., i=1,..,
Ap = (-1m-re1 det (3, Bfecft T ™) A= det (3, £f TZ ) and [a] =

/ 1
(S A3+ A%)’-‘. The determinant on the left side of (6) is equal to |A|(>>0).
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Thus the theorem is proved for the case a £ K.

Now we consider the case a€K. Since a ¢ f(D—D), a is not a
critical value of f, for ¢=0,1 and the critical sets of f, and f, are
closed in D, there exists a neighborhood U of a such that U is free from
the critical values of f, and f,, and

(9) UnfD=D)={ | ¢=01).

As the measure of K is 0, there exists a point ¢’ in U—K. Put
(10) a(s)=(1—8)a+sa’ for 0<s<1.

Then

(11) ATds), D, £.1=A[0, D, f,—us)] (=0,1) .

For such 2 that f,(2)=a(s) (0<s<1) (v=0,1), we have
Rank <8a,(fv—a,(s)), ay f,,—a(s))) — Rank <8xf,,, a/(s)) =m (=0,1).
Therefore, by the first part of the proof, taking f,—a(s). instead of f,,
we have by (10)
A[0,D, f,—a]=A[0,D, f,—a'] ¢—0,1),
hence by (11)
(12) Ala,D,f 1=A[d, D, f,] (+=0,1).
But as o' ¢ K, by the first part of the proof, we have
Ald,D,f1=A[o,D,f,].
Then by (12) we obtain (*). The proof is thus complete.

Corollary 2. Let f be a mapping of D into E™ of class C? and «
be a point of E™ such that a ¢ f(D—D). Let a,, a, be any two points
of E™, which are not critical values of f and such that

|ai—a|< dist (a, f(D—D)) (v=1,2) .
Then
Alay,,D,f]1=ATla,, D, f].
Proof : Put a(t)=(1—t)a, +ta,(0 <t <1), then

and 0¢ f(D—D)—a(t) for 0<t<1. Thus Corollary 2 follows from
Theorem 1.

7) |a’ —a| is the distance between @ and a’.
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Remark : By virtue of Corollary 2 we can define A[aq, D, f] even

when a is a critical valve of f, provided that a ¢ f(D—D). Indced we
have only to define
Ale.D,f1=A4ld, D, f],

where ¢' is any point of E™ not on the crease of f and such that
|a’—a|< dist (a, f(D—D)).

The existence of such @' is assured by the fact that the measure of the
crease of f is 0 (by Corollary 1).
Ala, D, ] being thus defined we have :

Theorem 3. Theorem 2 holds even if a is a critical value of
f o=01.

4. Degree of mapping for general case

Now let F' be a continuous mapping of D (D is a bounded open set
in E™) into E™ and « be a point of E™ such that a ¢ F(D—D).
Definition. Let f be any mapping of D into E™ of class C? such that

| f(@)—F(x)|< dist (a, F(D—D)) for x€D.
Then we define the degree of mapping of D at o ty F by
Ala,D,F|=Ala,D,f].

To legitimize this definition we use the following:
Theorem 4. Let f, (v=0,1) be mappings of D into E™ of class C?
such that
|f (@)—F(x)|< dist (¢, F(D—D)) (v=0,1) .
Then :

() A[a,D,f0]=A[a,D,f1].

Proof : Put f(x)=1—b)f,(2)+tfy(x) (0<t<1). Then for each
t€<0,1>, f, is a mapping of D into E™ such that f(2) is a function
of class C? in (2,t) for 0<t<1, 2 €D and

| f(a)—F(x)|< dist (o, F(D—D)) for 0<t<1.

Hence a ¢ f(D—D) for 0<t<1. Thus by Theorem 2 we get (x).
Theorem 5. For each t(0<t<1) let f, be a mapping of D into E™

such that fd(x) is continuous for 0<t<1, xcD. Let a(t) be a point of
E™ such that a(t) is a continuous function of & for 0 <t <1 and

a g f(D—D). Then A[a(t), D, f.] is constant for 0 <t<1.
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Proof: Let + be any fixed value of ¢ from 0<t¢<1. Then there

exists @ § =8(+)>>0 and a mapping F of D into E™ of class C? such
that

(1) | F()—fa)|< dist (a(t), f{D—D)) for |t—7|<5,
and

(2) ja(t)—a(r)|< dist (a(+), F(D—D)) for |t—r|< 5.
Then by the definition of A[a, D, f;] and (1)

(3) Ala(t), D, f1= Ala(t), D, F]= A[0, D, F—a(t)] .

But by (2) 0 ¢ F(D—-D)—a(t) for |t—7|< 6. Then by Theorem 3 and (3)
A[0,D, F—a(t)] = Al[a(t), D, f,] is constant for |t—=|< 8. Applying
the Borel’s covering theorem to the closed interval 0 <#<1 we obtain
the constancy of A[a(t), D, f,] for 0 <t <1.

(Received October 25, 1951)
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