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ABSTRACT

The primary emphasis of this thesis is on recognition of three-dimensional
structure of objects in a scene from a monocular picture by exploiting knowledge
about perspective projection. We \;vill introduce vanishing points for spatial
information determination in the case of objects which have parallel lines or
edges on planar surfaces.

We make clear the role that the location of the vanishing point or vanish-
ing line plays in the three-dimensional measurements, and present two methods
for the extraction of vanishing points. We also derive the constraints on the
three-dimensional shape of vertices imposed by vanishing points in perspec-
tive drawings. Then, as a practical application of the shape reconstruction,
we present a process that reconstructs the frontal view of a building from its
perspective image.

The other area of research, the display of the three-dimensional in-
formation, is also attacked by constructing a system that produces a three-
dimensional image of the heart from two-dimensional representations and allows

us to view the heart from any orientation at any location.
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CHAPTER 1

INTRODUCTION

When a scene analysis is done by computer, for example if a robot needs
to manipulate an object, the analysis of only the two-dimensional sﬁape, size
or location of the object in the image is not sufficient. Information such as
shape and location in three-dimensional space is necessary. However, much of
the previous work concerning scene analysis concentrated on two-dimensional

interpretation of objects on the basis of region segmentations [1,2].

It is not easy for a computer to derive three dimensions from the sensory
data directly. Because the picture-taking process is not a one-to-one trans-
formation, the distance of an object cannot be determined uniquely from its
image. The shape and disposition of objects are also distorted due to the per-
spective effects, especially in those pictures which have distant objects. The real
size and shape might be quite different from those in the image, though such
image features give us important cues when we identify objects and recognize

three-dimensional structure of the physical world.

When a person sees a picture, however, he perceives objects in it as three-
dimensional objects in three-dimensional space, inferring spatial relationships

of the objects from depth cues depicted in the picture.

Investigators interested in monocular scene analysis have been concerned
with the use of pictorial depth cues and constraints based on real world knowl-
edge. When some knowledge such as the nature of the scene, lighting and the

camera geometry is given in advance, various pictorial cues are used to infer



surface orientation, for example the intensity of a pixel [3], texture gradients [4],
etc. In general vision systems, for example see [5], the depth information thus
obtained, as well as other visual features, is intended to provide a higher-level
process with useful visual knowledge that can facilitate interpretation of the

scene.

The primary emphasis of this thesis is on recognition of three-dimensional
structure of objects in a scene from a monocular picture by exploiting knowledge
about perspective projection. To determine the shape of objects, we will exploit
perspective effects, which ha..ve been disregarded in most scene analysis. We will
introduce vanishing points for spatial information determination in the case of

objects which have parallel lines or edges on planar surfaces.

First, in Chapter 2, we make clear the role that the location of the
vanishing point or vanishing line plays in the three-dimensional measurements.
Then we present two methods for the extraction of vanishing points and show

that some spatial information about camera motion can be extracted.

Chapter 3 derives the constraints on the three-dimensional shape of ver-
tices imposed by vanishing points in perspective drawings and describes the
feasibility of shape-understanding of scenes and/or objects from partial or im-
perfect line drawings. It is assumed that objects are made of mutually orthog-
onal trihedral vertices and that rough positions of vanishing points are a priors

given in the perspective drawing.

Chapter 4 presents a process that reconstructs the frontal view of a
building from its perspective image as a practical application of the three-

dimensional shape reconstruction discussed in Chapter 2. We use the location



of the vanishing point as a cue in calculating the distance and shape of the
object. Additionally, by using the constraints imposed by vanishing points
discussed in Chapter 3, we show how we can recognize the three-dimensional
shape of vertices and partially analyze spatial structure of the object in an
outdoor scene.

The other area of research, the display of the three-dimensional infor-
mation, is attacked by constructing a system that produces stereograms and
reconstructs cross-sectional images of a human heart. The display of spatial
information is as crucial as its analysis. Spatial features should be shown to a
human in a three-dimensional fashion. For example, in the field of cardiology
the understanding of the shapes of cardiac chambers and the spatial relations of
neighboring echoes from a number of tomograms requires much practical expe-
rience, and a method which can provide an objective three-dimensional display
has long been hoped for.

In Chapter 5, we treat a three-dimensional cardiographic imaging system
based on the principle of binocular stereoscopy. The system produces a three-
dimensional image of the heart chamber from two-dimensional representations
of ultrasono-tomograms. We also present a method that allows us to view the
heart from any orientation at any location.

Finally, Chapter 6 concludes the thesis with a discussion of its contribu-

tions and possible future improvements.



CHAPTER 2

DETERMINATION OF THE VANISHING POINT
IN OUTDOOR SCENES

2.1 Introduction

This chapter shows that spatial information about objects can be ex-
tracted from visual observations with only one sensor by exploiting knowledge
about perspective projection. First we introduce the concept of vanishing points
for the purpose of determining three-dimensional measurements. We derive the
equations for the three-dimensional information as a function of vanishing point

and vanishing line location.

Orientation of computer-simulated surfaces has been determined by us-
ing vanishing points [6,7]. Here, we present two methods for the extraction of
vanishing points in natural outdoor scenes [8,9]: one is based on the Hough

Transform; the other is an iterative method.

2.2 Spatial Information Determination Based On

Perspective Transformation

Vanishing points and vanishing lines can provide three-dimensional in-
formation in the case of objects which have parallel lines or edges on planar
surfaces. Parallel lines in three-dimensional space are projected onto the im-
age plane to lines which radiate from a single common point. This is called a

vanishing point. ‘Once the location of the vanishing point is detected, we can



use it as a cue in calculating the distance and shape of the object to which
the parallel lines belong. We will make clear the role that the location of the

vanishing point or vanishing line plays in the three-dimensional measurements.

2.2.1 Vanishing Points

We will describe the relation between an object point and its image point
(Figure 1). In what follows, each point will be represented as a vector from the
view point. We take z-y axis to be parallel to the image plane and z axis in
the direction from the view point to the image center. Letting 7y =< 0,0,1 >
be the normal unit vector and f the distance of the image plane from the view

point, then for each image point p,

prag=1. @)
B
. : u
object point
Po
L 2
\ ;' /7 vanishing point
‘\ i
\ '
Vo
\‘ d -
Po |
view point

Figure 1. Vanishing point.



When a point Py in three-dimensional space is projected to a point po in

the image plane, Py and pg are related as
By=aopo , (2)

where ap is a constant depending on the distance of the point. Imagine a line
going through the point Py with a direction %@ ( ||Z]| =1 ). A point P; on this

line at a distance d from Py is represented as

Py=aofo+di 3)
d=|P;— Py . (4)

Let p; be the image point of P;. Then we can represent it as
By =a;7, (ag : constant). (5)

From (1),(3) and (5), we can calculate the location of the image point p;:

+du-n
o= 2T (6)

. flaoPo + di)
A= == - (7)
aof +du-niy
Now we can determine the location of the image of P; when the distance
d becomes infinite on any such line where i - % #0, namely, not parallel to the

image plane. From equation (7),

f

iy -

Boo = lim Fy= —— i . (8)
d—oo

1

This shows that the location of py, in the image is independent of the
distance ag and can be calculated from f, @y and #. That is, all the receding

parallel lines in three-dimensional space vanish at a unique image point —



independently of their distances. The point py, is the vanishing point. Every
line with a direction @ which satisfies iy - @ #0, i.e., receding from the view
point, has a vanishing point.

Conversely, if we know the location of the vanishing point in the image,

we can calculate the line direction # in three-dimensional space:

‘m

-
u=

It

T (9)

|Poo
2.2.2 Calculating the Distance of a Point Based on the Vanishing

Point
Now we can calculate the distance d in three-dimensional space between
the two points P; and P, based on the locations of those image points and the

vanishing point. From (6),

4 9 fllFa = ol
72— ;- @) al
R A
[7o0 — 7l

(10)

That is, when P (the location of the vanishing point), f (the focal
length), and ao (distance to a standard point) are given, we can calculate the
direction # and distance d of a point on the line using (9) and (10), respectively.

Though we assumed that iy - & # 0 in equation (8), when 7y -@ =0, i.e.

the line Py P; is parallel to image, equation (10) becomes

d = ao |17 - Foll - (11)



2.2.3 Calculating Surface Orientation Based on the Vanishing Line

We will show that we can determine a surface orientation from the van-
ishing line in the image. We assume that the vanishing points p}, and p%, on
a plane are given in the image (Figure 2). The line pLpZ, is called the van-
ishing line of this plane. All the vanishing points of the lines on the plane are
located on this line. All the surfaces parallel to the plane, i.e. with the same
unit normal, have the same vanishing line in the image. To know the surface
orientation is to calculate the unit normal vector perpendicular to the surface.
Let us calculate the unit normal vector from the location of the vanishing line
in the image. Let N denote the unit normal vector of an object surface, 7} the
unit normal vector of the vanishing line in the image, and [ the distance of the
vanishing line from the image center f7i;. Then N can be calculated from # 1

7y, f and I:
Iiiy — fiiy

oy (t2)

N=

Figure 2. Vanishing line.



2.3 Determining a Vanishing Point Using the Hough Transformation

In the previous section we discussed the role of a vanishing point as a
depth cue. Let us now present a technique for extracting a vanishing point from
a real outdoor scene. As we discussed above, all the receding parallel lines in
the environment are projected onto the image plane to lines radiating from a
vanishing point. Many edges of man-made objects such as buildings and roads
are mutually parallel. If we can extract edge segments of a straight line from a
picture, we can obtain a vanishing point as the intersection of the extensions of
those parallel edges.

However, there are two main difficulties in this approach in addition to
unsatisfactory performance of line finders: (1) necessity of a line finder which
provides the same result on a line composed of plural line segments as on a single
contiguous line having the same number of edge elements, and (2) possibility
of many intersections due to the combinations of lines, and difficulty in judging
which intersection gives the vanishing point.

To overcome those difficulties, we will adopt the Hough Transformation
which has usually been used to detect lines[10], and will extract a vanishing

point from images of a natural scene.

2.3.1 The Hough Transformation [10]
The Hough transformation maps a point in the z-y plane into a sine

curve in the 6-p plane, or Hough plane by the following formula:
p=zcosf+ysinf . (13)

A straight line is mapped onto a point in the Hough plane; A point
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can be thought to be an intersection of lines passing through it and is mapped
into a sine curve as a map of those lines. Every edge element in a picture is
interpreted to be a line segment with a unit length and is mapped onto a point
in the Hough plane, whose information is deposited as a two-dimensional array
or histogram H (4, p).

All the collinear edge elements are mapped onto the same point in the
Hough plane and the number of such elements is accumulated in the histogram.
Whether a picture contains a single long line or plural short lines, the resulting
histogram H (6, p) will be the same as long as the number of the edge elements
is the same. This is an important feature of this transformation. A vanishing
point in a picture is represented by a sine curve in the Hough plane on which a
large number is accumulated because it is derived from an intersection of several

lines.

2.3.2 An Algorithm

We deal with pictures which have a single significant vanishing point.

The process is as follows.

Step 1 Edge detection: Using the Sobel edge detector [11], we generate a
gradient picture, where the magnitude and the direction at a point (z,y) are
given by mzy and 0zy. If the magnitude mzy is above a threshold mo, an edge
element is declared at the point. The threshold should be chosen so that only
strong straight-line edge segments, in this experiment 20% of the pixels, are

retained.



Step 2 Hough Transformation — Mapping the image plane into the Hough
plane: We use a two-dimensional array (60 x 60) as a two-dimensional his-
togram H(6,p); 0° < 8 < 180°, |p| < (zl.x + yﬁ,ax)llz, where Zmax and ymax
a.revthe picture width and height, respectively. For each edge element (z,y),
corresponding pair of (0zy,pzy) is calculated by equation (13) and the value

H(0zy, pzy) is incremented by one.

Step 3 Elimination of vertical and horizontal lines: The vertical and horizontal
edges should be neglected in the determination of the vanishing point, for they
contribute toward forming the corners of buildings rather than vanishing points.
To eliminate them, H(6, p) is fixed to zero for < e, 180°—a < 8, or 90° — & <

9 < 90° + a, where the parameter « is 3° on account of noise.

Step 4 Mapping the Hough plane into the image plane: Mutually converging
line segments are mapped into a sine curve in the Hough plane. We should
search for a sine curve that is the transform of a vanishing point. Numerical
analysis offers no effective method other than the following brute force way. A
two-dimensional histogram V (z, y) on the image plane is computed by summing

the values of H(0,p) for a set of (8, p) pairs which satisfy (13).

Step 5 Determination of vanishing point location: The vanishing point is

defined by the point (z,,y,) where the value V(z,,y,) is the maximum.

Figure 3 shows the result of the application of the method to an outdoor
scene. The significant lines passing through the vanishing point are drawn and

edges are represented by dots.

11
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(a) (b)
Figure 8. Extraction of vanishing point.
(a) scene (128X190), and (b)vanishing point.

] )2
PR | IR

(a) (b)
Figure 4. Improvement of method.
(2) candidate vanishing point, and (b) final vanishing point.




2.3.3 Improving the Method

The method fails in finding correct vanishing points in some pictures,
which often have misleading strong edges such as vivid boundaries between the
sky and the scenery. To improve the method we assume the first result (z,, Yo)
to be a candidate for the real vanishing point and take the convergent point in

the following procedure as the real vanishing point.
Step 6 Remove from the given picture the circular area which satisfies the
following inequality.

. 1/2
(z—2o)? + (¥ —w)? <% 7 =03(zt + 2" (14)

The term ~ is chosen so that edges of the scene in the distance may be removed.

Step 7 We calculate mzy and 0y in the same manner as in step 1. Here edge

elements are limited to points (z,y) which satisfy the following conditions:

(i) (z—2z)+@w-w)>+ | (15)
(iii) [|tan™? 22| < g,
Y=Y

where 8o = 20° in this experiment.

Step 8 We iterate the steps 6,7 and 2-5 until the two consecutive resulting

coordinates come to be equal. Figure 4 shows an example.

2.3.4 Deriving the Camera Motion Parameters

We can know the state of the camera from the position of the vanishing
point in a picture. The pan and tilt angle of the camera can also be calculated

from the shift of the vanishing points in a pair of successive pictures on condition

13
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that the camera does not rotate. Suppose we have two pictures taken in different
directions and they have a common vanishing point V', whose coordinates in each

picture are (Zy,,¥v,) and (Zv,,Yv;). Then the pan and tilt angle are calculated

as follows:
horizontal direction : 6, = tan™! Zva | _tan™! Zu
k kf
, (16)
vertical direction: 6y = tan™! (?;_2) —tan™! <%>

where f: the focal distance,

k: the ratio of the size of a processed picture to that of the film.

An experimental result is shown in Figure 5. The pan angle is calculated
to be 8.0 degrees by the computer, while the angle is calculated to be 9.2 degrees
by hand-calculation from the original pictures. The error occurs mainly by
the incorrect value of the ratio k which is due to the inaccurate framing of
the pictures that happens when we store them in the computer. An error in
measurement of 1 mm in a picture would lead to an error of 0.5 degrees in the

result.
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2.4 Iterative Method for Determining a Vanishing Point

This section proposes another method for determining a vanishing point.
Even if edge direction has been detected with some error, the following iterative
process will make the directions of such edges converge to the direction of a
vanishing point if they are parallel in the real world.

Iterative approaches have been used for such image processing as label-
ing, segmentation, noise compression [12,13,14]. We will present an iterative
method in which some estimates, such as the probability that an edge produces

a vanishing point and the direction of an edge, will be iteratively improved.
2.4.1 The Data

We will deal with a picture which can be considered to be one-point
perspective. We generate a gradient picture by the Sobel operator [11] and
detect those edges whose gré.dient is within the upper 10%. Let 8, be the

direction of an edge e = (2, Ye)-
2.4.2 A Candidate Vanishing Point

A line associated with an edge e is given by
Y —Ye = tanf.(z — ZTe) . (17)

The position of its intersection with a line of another edge €' = (:ier,y,r) is
calculated, and the corresponding position L(w) in a one-dimensional array L
is incremented by one (Figure 6). We compute all the intersections of every edge
except for vertical and horizontal lines because they do not produce a vanishing

point on the assumption of one-point perspective.



Figure 6. Candidate vanishing point.

Figure 7. New location of a vanishing point.

17
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The maximum point of the resulting L(w) makes a candidate vanishing
point V, = (z,,,yv,) for edge e. And the probability that V, is a vanishing point
of e is calculated by

_ maxy L(w)

W= ——rt (18)

X Llw)

These values are used as the initial estimates for the following iteration.

2.4.3 Iterative Update

We first define the degree of consistency, R,.:, between two edges e and
¢'. The role of R, is to estimate the possibility that those two edges have the
same vanishing point. A candidate vanishing point will have a big R,.; when
there is another candidate at a short distance and its W, is big.

R = { Weo(l—6eer/8)  (6eer < 6) (19)
0 (beer > 8)
where 6, is the distance between e and €/, and § is a constant.

We now use the following rule to update the location of a candidate
vanishing point V, of edge e using R,,.

o _TepRe g ) T Re sV

z e — ’ yﬂe - ’ (20
* Ze'%e Ree’ Zc':fg Ree' )

where (k — 1) denotes an old value and (k) denotes a new value. Figure 7

illustrates a scheme of updating the location of a vanishing point, where "o"
represents an edge, "X" a candidate vanishing point, and a line width is pro-
portional to the value of W. The direction of edge e = (z.,y.) is also updated
by the new vanishing point location,

k
8. = tan™! vee —ve . (21)
¢ (k)

Zy, - $¢



Using these refined values, we repeat the procedure from 2.4.2. After
several iterations R, becomes 0 or close to 0 and W, also becomes smaller at
the place where a vanishing point hardly exists. We determine the vanishing
‘point V, at the location that gives the maximum W, after a certain number of
iterations. The direction of those edges, which are parallel in three-dimensional
space and produce a vanishing point, will be refined by this iterative process

and will all be in the direction of the vanishing point.

2.4.4 Test Results

Figure 8 shows an experimental result of the iterative process, where an
edge and its candidate vanishing point are represented by connecting them by
a line. In this experiment the size of the outdoor picture is 110 x 85 points and
the parameter § is set to 5 in equation (19). |

Relationships between edges and their vanishing point in the initial state
and after 3 iterations are shown in Figure 9. The windows on the second floor of
the right side building are not detected because vertical and horizontal edges are
eliminated in the process. As this result shows, since edge directions are refined,

‘we can easily detect edges that produce a vanishing point and are parallel in

real world.
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Figure 8. Example. (a)scene, (b)edge, (c)initial, (d)iteration 1, (e)2, (f)s.



(a) (b)

Figure 9. Detection of parallel lines.
(a)initial estimate, and (b)on iteration 3.

2.5 Conclusion

Perspective transformation is one of many cues to three-dimensional spa-
tial information about objects in a two-dimensional image. We have presented
two algorithms for detecting a vanishing point in an outdoor scene. The role of
a vanishing point is as follows:

(1) A cue for reconstructing spatial structure from a two-dimensional
image — We have considered the computation of length of line segments and
surface orientation, and derived the equations for the three-dimensional in-
formation as a function of vanishing point and vanishing line location. The

application to the shape reconstruction is discussed later in Chapter 4.
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(2) A standard point for registering images — We have shown that we
can calculate motion parameters of a camera by using the coordinates of the
vanishing point in each picture. Extraction of spatial information from a human

observer in a hallway is experimented with in [8].



CHAPTER 3

INFERRING THREE-DIMENSIONAL SHAPE FROM

LINE DRAWINGS USING VANISHING POINTS

3.1 Introduction

In this chapter, we discuss how to determine three-dimensional structure
of scenes and/or objects in line drawings especially from the view point of
the possibility of labeling of partial or imperfect line drawings by the use of
vanishing points[15].

A variety of papers have been published on labeling line drawings for
the determination of the shape of polyhedra [16,17]. Each line in the drawing
is interpreted as a concave edge, convex edge, or a boundary and is identified
as such on the drawing by some label. By labeling all the lines consistently,
one can understand the physical situation of individual objects and the spatial

relations between objects.

We introduce vanishing points for understanding line drawings. We often
have to tackle scene analysis within a domain of imperfect and partial line
drawings because of the difficulty of extracting line drawings from an image.
By previous line labeling techniques we cannot determine a vertex shape if we do
not have a perfect line drawing. This chapter shows that the labeling technique

using vanishing points is useful in such situations.

Constraints imposed by vanishing points make three-dimensional shape

determination of vertices possible from the drawing of the vertex of interest



24

alone without the necessity of comparing adjacent junctions. For some vertices
we can produce a unique labeling and for others we can limit the set of allowable

labels, all using vanishing points.

3.2 Labeling Trihedral Vertices

3.2.1 Trihedral World

First we will define terms and give the assumptions used in this chapter.
A vertex and an edge of an object in three-dimensional space are referred to as
a junction and a line in the two-dimensional line drawings, respectively.

The line drawings of a polyhedron are assumed to meet the following
conditions: (1) trihedral vertex - all vertices are the intersection of exactly
three plane surfaces which are mutually orthogonal. (2) general position - a

small movement of the viewpoints results in an essentially similar picture.

3.2.2 Conventional Approaches [11,16,17]

Huffman [16] and Clowes [17] worked with the trihedral assumption that
three planes divide space into eight parts. Thus, the types of trihedral vertex can
be characterized by the octants of space around the vertex which are filled by
solid material. Out of these, four geometries determine the essential trihedral
vertices of the form 1, 3, 5, and 7 as shown in Figure 10, where the names

originated from the number of the filled octants.



Figure 10. Vertices of trihedral solids.
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Figure 11. All possible representations of trihedral vertices.
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When one looks at essential forms of vertices from each unfilled octant,
one can also assign line labels to every form of a drawing junction. The line
labels identify the line types: Convex edges are labeled with "+", concave
edges with "—", and boundaries with ">" or "<". The direction of the arrow

is chosen such that the unoccluded plane lies to the right of it.

In addition to those junctions derived from real trihedral vertices, there
are junctions from partial occlusion, i.e., T—junctions as described later. One
can divide all junctions into four classes according to the number of lines and
the angle between the lines ; Y-, W—, V-, and T-junctions. The resulting

catalog of all possible representations of the junctions is shown in Figure 11.

A consistent labeling should satisfy the following two conditions: (1) the
labeling assigned to a junction should be one of the physically possible config-
urations in Figure 11. (2) At the adjacent junctions, the two labels assigned to

the common line should be coherent.

Consequently, in order to decide a three-dimensional shape of a vertex
as well as the labeling of the junction, it is necessary to find appropriate line
labels from all possible labels, "+", "—" ">n or "<" by comparing adjacent

junctions.

3.3 Constraints by Vanishing Points

The following terms will be used in describing three-dimensional shapes
of vertices, though there may be some arguments about types 3 and 5: "Concave
vertices" means vertices of type 1 or 5, and "Convex vertices" means vertices

of type 3 or 7.



In general, one cannot determine three-dimensional shapes of vertices
solely by inspecting the vertex of interest. Even if one knows the type of a
junction, Y-junctions for instance, one cannot determine whether the vertex is
concave or convex because its type could be 1, 3, or 7.

Besides the trihedral and the general position assumptions, some addi-
tional clues or assumptions influence the three-dimensional shape determina-
tion. The analysis of line drawing with shadows [18], with hidden lines [19],
and of origami world [20] has been discussed. The mathematical formulation of
the problem has also been considered [21,22].

We study the case in which vanishing points are introduced to the anal-
ysis of perspective drawings. Since every picture is a perspective projection of
a real world view and the liﬁe drawings obtained from it also are perspectively

deformed, analysis of perspective line-drawings should be considered.

3.3.1 Edges and Vanishing Points

We will show that at most three vanishing points are generated by a
trihedral vertex. Let p be the image of an object point P on an edge E (Fig-
ure 12). The image point py, which is the limit of the image point P as P
recedes to infinite along E, is the vanishing point of the image of the edge E.
This is determined uniquely by the intersection of the image plane with the line
which goes through the viewpoint and is parallel to E. Therefore, any receding
edge in three-dimensional space has a vanishing point in the image plane, and

a trihedral vertex has at most three vanishing points.
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Figure 12. Edges and vanishing points.

3.3.2 Constraints on the Three-Dimensional Shape of a Vertex by
Vanishing Points

The constraint added by vanishing points to the three-dimensional shape
of vertices can be analyzed by Figure 13. A T-junction is not constrained by
vanishing points because it does not correspond to any physical vertex. T-
junctions are excluded from consideration hereafter.

Figure 13 shows the catalog of all possible jurnction labels and vanishing
points for every type of vertex. There are generally three vanishing points
generated by the three edges. The direction of the vanishing point of an edge

is determined, and is marked with the arrow "{".
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Figure 13. All possible labels and vanishing points.
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By inspecting Figure 13, one can see that vanishing points add con-
straints on the three-dimensional shape determination and on vertex labeling.
For example, when the three lines of a Y-junction are in the direction of vanish-
ing points from the junction, the junction can be interpreted as a convex vertex
of type 1, and all the lines of the junction are forced to be labeled uniquely with
+ labels.

Similarly, whether a vertex is concave or convex can be determined ac-
cording to the number of lines in the direction of vanishing point. Denote the
number of those lines by J. The three-dimensional shape of a vertex is deter-
mined by J: (1) Y-junctions: concave if J=0; convex if J=3, (2) W-—junctions:.
concave if J=1; convex if J=2, and (3) V-junctions: convex if J=0; concave if
J=1 or J=2.

The difference between V-junctions and Y-, W—junctions is explained as
follows. A vertex of V—junction type has a hidden edge in addition to two visible
edges. Imagine that the hidden edge becomes visible; then such vertex would
become a Y- or W—junction. Concave vertices of V—junctions would correspond
to convex ones of Y- or W—junctions; convex vertices would correspond to

concave ones.

3.3.3 Constraints on Line Labeling

Vanishing points are useful in determining the three-dimensional shape
of a vertex as mentioned above. It is important to note that they are also

useful in determining three-dimensional properties of an edge, e.g. whether it

. is concave, convex or boundary, and they limit the set of allowable line labels.

Figure 14 shows possible junction labels based on the type of a junc-



tion and the number of lines in the direction of the vanishing point. One can
unambiguously determine the edge geometry and give a unique label to lines
marked with circles in Figures 13 and 14 by using the junction type and vanish-
ing points. For labeling V—junctions of type 3 vertices uniquely, the placement
of the lines can be used as a constraint. The remaining lines are not marked
with circles; even so, it is possible to determine that the edge is either concave
or a boundary. Therefore, the number of possible labels can be reduced.

More ambiguity, however, is left in some cases in determining three-
dimensional shape of vertices even when we use vanishing points. These are the
vertices which cannot be labeled uniquely only by using the junction type and
vanishing points. The ambiguity concerning vertex type appears: one cannot
determine whether a concave vertex is type 3 or 7, or whether a convex one
is type 1 or 5. Concerning an edge, there is also ambiguity in distinguishing

boundary lines from interior lines, i.e. a concave edge from a boundary.

The number of lines
oward vanishing

Junction type points: 0 1 2

3

x

/- +e g+

Y-junction \(— - +
v

ED L AR 2

W-junction +W+ W _W—
Ly A

V-janction ANV LV ¥

Figure 14. Labeling with vanishing points.
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The ambiguity arises from the following two situations: One is that a
cube rests on a material of the background and the other is that a cube is
suspended in isolation. These situations cannot be distinguished by inspecting

only the vicinity of the vertices.

Consider, for example, type 1 and type 5 vertices of W—junction in Fig-
ure 13. A vertex is of type 1 if the hidden surfaces behind the remaining two
visible surfaces are apart from a background; and it is type 5 if the hidden
surface sticks to another surface. Evidently it is impossible to determine if this

surface sticks to another or not, solely by inspecting the vertex of interest.

3.4 Three Perspectives of Trihedral Vertices

Introduction of vanishing points to three-dimensional shape determina-
tion of trihedral vertices has been discussed in the preceding section, where the
drawing has been assumed to be three-point perspective, i.e. each junction has

exactly three vanishing points.

Perspective drawing is classified into one-point, two-point, and three-
point perspective, where the number of vanishing points is one, two, and three,
respectively. No edge generates a vanishing point when it is parallel to the
image plane. According to the number of such parallel edges out of three, a

drawing can be thus classified.

In this section, we will show that vanishing points add constraints on
determining three-dimensional shape of vertices and limit the possible labels in
the case of one-point and two-point perspective in the same manner as three-

point perspective discussed in Section 3.3.



3.4.1 Junction Type in One—Point Perspective

When two edges of a trihedral vertex are parallel to the image plane, the
remaining edge, which is not parallel, generates a vanishing point. In this case
the junction is of one-point perspective.

First it is necessary to list all the possible placements of junctions and
vanishing points in the case of one-point perspective. A view makes a junction
in one-point perspective when two of the three edges are parallel to the image
plane. Three junctions in one-point perspective correspond to each junction
in three-point perspective according to which vanishing point out of three is
chosen to remain. At this time, junctions looking like any other by rotation are
made into one.

The correspondence between junctions in one-point perspective and in
three-point perspective is shown in Figure 15. Junction types appearing in one-
point perspective are classified to Y-, W;—, Wy—, V;—, V2—, and Vz—junctions.
A limitation can be placed on labeling Y-, W;—, W3—, and V;-junctions by
the number of lines in the direction of the vanishing point, and Vs— and V3—
junctions by the placement of lines and a vanishing point. Moreover, a unique

labeling can be provided to lines marked with circles in Figure 15.
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