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                                 Preface 

   Nowadays research in the field of biochemistry depends heavily 

on separation techniques. Among them, polyacrylamide gel elecro-

phoresis is the most favorite of biochemists. In 1965, Summers 

et  al. introduced the use of sodium dodecyl sulfate (SDS) as an 

additive to the buffer solution in polyacrylamide gel 

electrophoresis. The modification introduced primarily following 

merits : 1) SDS binds to a protein in a level of gram-to-gram, 

and thus the interchain interaction is totally abolished ; and 2) 

all protein polypeptides acquire negative charge and thus can be 

analyzed in a single electrophoretic run to positive electrode. 

Shapiro et al. (1967) further noticed that the lower is the 

molecular weight of a protein  polypeptide the higher is its 

electrophoretic mobility. They proposed  that polyacrylamide gel 

electrophoresis in the presence of SDS (SDS-PAGE) can be used to 

estimate molecular weights of proteins. Weber and Osborn (1969) 

assessed reliability of the technique and established a standard 

procedure. 

   Entity being electrophoresed in SDS-PAGE is a complex formed 

between SDS and protein polypeptide. Its nature has been studied 

by several groups, and each of them proposed a model for the 

complex (Reynolds & Tanford, 1970; Shirahama et al., 1974;  Wright 

et al., 1975; Mattice et al., 1980). Among the models proposed, 

the present author is in favor of the model proposed by Shirahama 

et al. (1974). This is because various phenomena observed in 
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      the present study could be best interpreted based on the above 

       model. 

         SDS-PAGE has been and is being applied to various objects. In 

      every phase of application, new phenomena are observed. Behind 

      each of such a phenomenon, interesting facts are concealed and 

     are mostly worthy of investigation. Outcome of such an 

      investigation will be not only interesting of itself but also 

      contribute to the understanding of the basis of SDS-PAGE and 

      further to develop the technique. 

         The present author has carried  out a series of studies on 

      SDS-PAGE from the viewpoint of "Learn from phenomena, and make 

      clear facts behind them". Recently I have also carried out a 

      study on the effect of substitution of sodium ion in SDS for 

      another cation. The results obtained indicates that new frotiers 

      can be opened for polyacrylamide gel electrophoresis by the 

      manipulation mentioned above. In this thesis, I have compiled 

      the results of the studies described above. 
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    1.  Electrophporetic Properties of Sodium Dodecyl Sulfate and 

        Related Changes in Its Concentration in SDS-polyacrylamide 

        Gel  Electrophoresis 

   I. SUMMARY 

       Sodium dodecyl sulfate (SDS) contained in a protein sample 

    solution migrates in SDS-polyacrylamide gel electrophoresis as a 

    band with a mobility higher than those of protein bands. Behind 

    this band, which  is mostly composed of SDS micelles, SDS 

    concentration is raised uniformly in a gel column as a result of 

    the retardation effect of the gel matrix on SDS micelles. 

    Electrophoretic patterns of SDS were obtained when SDS was 

     omitted from various portions of the gel  electrophoretic system. 

           INTRODUCTION 

        Sodium dodecyl sulfate (SDS) undoubtedly plays a key role in 

     SDS-polyacrylamide gel electrophoresis (Weber & Osborn, 1969) 

     which is now extensively used for analytical and preparative pur-

     poses. Nevertheless, the behavior of SDS in the electrophoresis 

     is not well understood. In a study by Tsujii and Takagi (1975a) 

     an anionic aromatic surfactant was used in place of SDS in 

     polyacrylamide gel electrophoresis, and its distribution in a gel 

     column was examined by UV-scanning. It was found that micelles 
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derived from excess surfactant in a sample solution migrate as a 

distinct band, and the concentration of  surfactant behind this 

band maintains a higher level than the initial value. 

   This chapter describes the finding of similar phenomena in 

SDS-polyacrylamide gel electrophoresis. All the observed 

phenomena could be interpreted in termes of the electrophoretic 

properties of SDS in polyacrylamide gel. 

III. EXPERIMENTAL PROCEDURE 

   Sodiuum dodecyl sulfate (SDS) designated as SPS-4 was obtained 

from Nakarai Chemicals, and used without further purification. 

The critical micelle concentration was determined to be 8.1 mM in 

water and 0.95 mM in 0.12 M sodium phosphate buffer, pH 7.2, at 

 25°C by the conductance and drop weight methods respectively. 

The former value is in good agreement with those reported for SDS 

preparations of high purity (Mukerjee & Mysels, 1971). The above 

buffer was used exclusively in the present study. 

    Electrophoresis was carried out at room temperature (near 

 25°C) in a gel (0.5 X 7.5 cm) containing 10 % acrylamide and 0.27 

 %  N,N1-methylenebisacrYlamide. Polymerization was initiated by 

 ammonium persulfate and  N,N,N',NI-tetramethylethylenediamine. In 

 preliminary experiments, the distribution of SDS in a gel column 

 after electrophoresis was visualized by storage of the gel 

 column after electrophoresis in a refrigerator overnight, as 

 illustrated in Fig.1. 
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   The concentration of SDS in a gel column was determined as 

follows. The gel column was cut into small discs each with a 

length of 2 mm using a scalpel. Each disc was put into a test 

tube containing 5 ml of distilled water, and kept for 4-6 hr at 

room temperature. Extraction for this period was confirmed to 

give a correct value with a gel containing SDS of known 

concentration. Crushing the gels did not give better results. A 

1 ml aliquot of the extract was added to a test tube containing 1 

ml of 0.007 % methylene blue in 1 % sodium sulfate and 5 ml of 

chloroform. The test tube was shaken vigorously for 1  min with a 

flash mixer. The chloroform layer containing extracted 

SDS-methylene blue complex was transferred into an absorption 

cuvette after filtration through an absorbent cotton plug in a 

small funnel to remove water droplets.  The absorbancy at 650 nm 

was measured. The concentration of SDS was read from a 

calibration curve. 

IV. RESULTS 

   Figure 1 shows the distribution of sodium dodecyl sulfate 

(SDS) in polyacrylamide columns, visualized by chilling after 

electrophoresis. Except for the absence of proteins in the 1 % 

SDS solution layered on the gel, the electrophoretic runs were 

carried out according to the standard procedure for 

SDS-polyacrylamide gel electrophoresis (Weber & osborn, 1969). 
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Fig.1. Visualization of the distribution of SDS by chilling gel 

columns after electrophoresis. The gel and electrode buffer 

contained 0.1 % SDS. A current of 8 mA per tube was applied for 

3 hr. a) 20  pl of  1.0 % SDS in 0.01 M sodium phosphate buffer, 

pH 7.2, was layered on the gel. For b) and c), malachite green 

(0.0025 %) and bromophenol blue (0.01 %) were added to the 1 % 

SDS solution, respectively. Arrows indicate the positions of 

the bands of SDS micelles (a), malachite green (b), and bromo-

phenol blue (c).
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  The degree of whitening due to crystallization of SDS may be 

  taken to reflect the concentration of SDS in the columns. The 

  column (a) can be divided into three parts with respect to SDS 

  concentration. The degree of whitening near the posiyive 

  electrode tray was the same as that observed with a gel column 

  not subjected to electrophoresis. At the position indicated was 

  observed. In other parts of the gel column, the degree of 

  whitening was found to be uniformly raised as a result of 

  electrophoresis. 

     Malachite green and bromophenol blue were added to the sample 

  solutions in columns (b) and (c), respectively. It is well-known 

  that these dyes are electrophoresed in advance of protein bands 

  in SDS-polyacrylamide gel electrophoresis, and they are generally 

  used as marker dyes. It was found  that malachite green was 

  electrophoresed with the same mobility as the white band, and 

  bromophenol blue was behind the white band. These results 

  clearly indicate that the white band has a higher electrophoretic 

  mobility than any SDS-protein polypeptide complexes. 

     To determine  the distribution of SDS quantitatively, SDS 

  content in the gel column was analyzed after electrophoresis. 

  Figure 2 illustrates the results obtained. The starting 

  conditions were variously modified with respect to SDS. Figure 

  2a shows the results obtained  for an electrophoretic run 

  identical to that of column (a) in Fig.1. Clearly the photograph 

   (Fig.1) faithfully reflects the distribution of SDS in the  gel. 

  We have found that all the features in the distribution of SDS 

   shown in Fig.2 could also be detected qualitatively by means of 
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Fig.2. Distribution of SDS

in polyacrylamide gel after 

electrophoresis under vari-

ous initial conditions. 

Gel, 10 %; 8 mA/tube, 3 hr. 

The sample solution (20 ul 

 of 1 % SDS in 0.01 M, 

pH 7.2, sodium phosphate 

buffer) was layered on a 

gel for a), c), e-1), and 

f). The buffer solution in 

the negative electrode tray 

contained 0.1 % SDS for a), 

b), c) and d-1); 0.01 % SDS 

for d-2); and none for e) 

and f). The polyacrylamide 

gel contained 0.1 % SDS

for a), b) and e); and none for c), d) and f). The positive 

electrode tray was always filled with the buffer used for the 

negative electrode tray. The presence or absence of SDS in the 

positive electrode buffer, however, was found to have no effect 

on the final distribution in a gel in any of the electrophoretic 

runs shown in Fig.2. Figure 2a includes all data points to 

illustrate the extent of scattering of the measured values. 
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     visualization by chilling. 

         Fgure 2b shows that the increase of SDS concentration occurs 

     even in the absence of added 1 % SDS solution. As is clear from 

     Figure 2c and d (curve  1), the absence of SDS in the gel at the 

      start of electrophoresis has no major effect on  the migration of 

     the white band and the uniform increase of SDS concentration. 

     Figure 2d (curve 2) shows that the increase of SDS concentration 

     does not occur when the initial concentration is 0.01 %. Figure 

     2e shows the results obtained when SDS was omitted from the 

     buffer solution used to fill the trays. Figure  2.f shows the 

     electrophoretic pattern of SDS when it was added only in the 

      sample solution. It should be noted that SDS is electrophoresed 

     as a sharp band with only slight tailing. 

         A series of experiments similar to those shown in Fig. 2d was 

      carried out. The amount of SDS added to the electrode trays was 

     varied. Figure 3 shows plots of SDS concentration, in the 

      portion of the gel column where the increase of SDS concentration 

     was  observed,  versus  that  in  the buffer solution used to fill the 

      electrode trays in the electrophoretic run. 

     V. DISCUSSION 

        Micelle Band In SDS-polyacrylamide gel electrophoresis, 

     proteins are generally dissolved in 1 % (35 mM) sodium dodecyl 

      sulfate (SDS). SDS present in the sample solution in excess of 

      the critical micelle concentration (0.95 mM under the condition 
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Fig.3. Plots of SDS concentration in the portion of the gels 

near the negative electrode tray versus that in the buffer 

solution used to fill the trays. The gels contained no SDS at 

the start of electrophoresis. 

• 
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     used in the present experiments) naturally exists as micelles. 

    As shown by Stigter and Mysels (1955), an SDS micelle is 

     electrophoresed to the positive electrode as an entity. Tsujii & 

     Takagi (1975a) showed that the presence of a micelle band was 

     observed in polyacrylamide gel electrophoresis in which SDS had 

     been replaced by an aromatic surfactant. Based on experimental 

     data obtained with SDS micelles and SDS-protein polypeptide 

     complexes, the presence of a micelle band with a mobility higher 

     than any of the complexes was predicted for SDS-polyacrylamide 

     gel electrophoresis (Tsujii & Takagi, 1975a; Shirahama et al., 

     1974). This band, observed as a white band in Fig.1 and as a 

     sharp peak in Fig.2, has the expected properties, and can be 

     assigned unambiguously as the micelle band. 

         The presence of the micelle band has attracted the attention 

     of only a few groups (Wallace et al., 1974;  Stoklosa and Latz, 

     1974), and has been treated only as a  "surplus" band. We 

     believe,  however, that the micelle band plays an important role, 

     and should be utilized  in ,SDS-polyacrylamide gel electrophoresis. 

     When the method was applied to biomembranes, lipids and 

     glucosamine were found to be electrophoresed in advance of 

     bromophenol blue, used as a marker dye (Lopes & Siekevitz, 1973; 

     Gamberg, 1971). As pointed out by Tanford (1973), it seems that 

      these compounds are actually electrophoresed not as an isolated 

     entity but in a state solubilized or adsorbed on SDS micelles. 

    Presumably the micelle band plays a role in removing 

      contaminating compounds, which might otherwise interfere with the 

      normal behavior of protein bands, from a sample solution. 
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   As is clear from Figs.1(a) and 2a, SDS micelles migrate as a 

sharp band. The micelle band is, therefore, expected to be an 

excellent marker. Actually the band acts as a marker when 

cationic dyes, such as malachite green, are used. The dye was 

found to be bound to the micelles, and electrophoresed en bloc, 

as shown in Fig.1(b). Acridine orange, a cationic dye, has been 

shown to be bound to micelles of SDS and  to become strongly 

fluorescent (Flanagan & Ainsworth, 1968). Our preliminary 

experiments showed that the band in Fig.1 became strongly 

fluorescent following the addition of a trace amount of the dye 

to the 1 % SDS solution layered on the gel, and could be used as 

an excellent marker in SDS-polyacrylamide gel electrophoresis. 

  An anionic dye, bromophenol blue, frequently used in 

SDS-polyacrylamide  gel' electrophoresis was found to be electro-

phoresed independently behind the micelle band, as shown in 

Fig.1(c). It has been found that protein bands with relatively 

high electrophoretic mobility may overlap the band of bromophenol 

blue. Use of a cationic dye as a marker is therefore recommended, 

because no protein band is expected to be electrophoresed with 

mobility comparable to that of SDS micelles, as mentioned by 

Tsujii & Takagi (1975a), and the SDS micelles form a sharper band 

than bromophenol blue, as is clear from Fig.1. 

   As shown in Fig.2a, c, e (curve 1), and f, the SDS micelle 

band was found to be electrophoresed as a sharp peak under 

various conditions. When the micelle band migrates through a 

medium with an SDS concentration above the critical micelle 

concentration, the micelles do not dissociate and the presence of 
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     a sharp band (Fig.2a) is expected. SDS micelles are expected to 

     be dissociated, when they are put into a medium containing SDS in 

     a concentration below the critical micelle concentration. 

     Observation of a sharp micelle band in each of the present 

     experiments shown in Fig.2c, e (curve 1), and f seems to be a 

     consequence of the peculiar situation that the micelles and 

     single SDS ions have almost the same electrophoretic mobility in 

     the present experimental condition, as can be seen from the two 

     curves in Fig.2d. The micelle band in Fig.2f is slightly tailed. 

     This indicate that the micelle has a mobility slightly higher 

     than that of the single ion. However, the situation will be 

     different when a gel has acrylamide concentration other than 10 %. 

        Why Does the Concentration of SDS Increase ? The increase 

     in the SDS concentration in the region behind the micelle band 

     (Fig.2a and c) can be interpreted as follows. Following the 

    micelle band, SDS in the buffer solution of the negative 

     electrode tray intrudes into the gel. As shown in Fig.3, no 

     increase in'the SDS concentration was observed when its concent-

     ration was less than 0.8 mM, roughly equal to the critical 

     micelle concentration of SDS (0.95 mM). This clearly indicates 

     that single SDS ions are not involved in the increase in the SDS 

     concentration. Under the conditions of the present experiments , 

     an SDS micelle is spherical and has a Stokes' radius of about 24 

     A (Stigter & Mysels, 1955). This is comparable to the size of a 

     globular protein with a molecular weight of about 32,000 (Rodbard 

     & Chrambach, 1970; Hedrick & Smith, 1968) . The SDS micelles, 
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therefore, must be retarded as soon as they intrude into the gel. 

The electrophoretic mobility in a gel, Ug, can be correlated with 

the free electrophoretic mobility, U0, according to the following 

equation (Rodbard & Chrambach, 1970). 

 logUg.logUo-KRT (1) 

The retardation coefficient, KR, for a micelle with the above 

size is estimated to be 0.053 from plots of the value of KR 

versus the Stokes' radii of various proteins (illustrated in Ref. 

of Rodbard & Chrambach, 1970). In the 10 % acrylamide gel used 

in the present experiments, the SDS micelles, thus, are expected 

to be retarded and to have an electrophoretic mobility of 30 % of 

that in the absence of the gel matrix, according to Eq.1. In the 

case of the electrophoretic run shown in Fig.2a (total concent-

ration,  ca.3 mM) it is expected that only SDS micelles (2.0 mM) 

will be retarded in the gel, and the total concentration of SDS 

in the gel will increase from the initial value of 3.0 to 7.7 mM. 

The expected increase (2.6 times) of the SDS concentration agrees 

fairly well with the observed 2.3-fold increase. Because the 

uniform increase of SDS concentration is caused by SDS micelles 

initially present in the buffer of the upper trough, the same 

phenomenon can be observed when the preceeding micelle band is 

absent, as in Fig.2b and d. 

• 
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VI. CONCLUSION 

   Surprisingly, only one report has been previously concerning 

the distribution of SDS in polyacrylamide gel using S35-labeled 

SDS (Shapiro & Mizel, 1969), despite the widespread use of 

SDS-polyacrylamide gel electrophoresis. The results obtained in 

the present study clearly indicate that the distribution of SDS 

in the gel is significantly influenced by the electrophoretic and 

hydrodynamic properties of SDS micelles. It is believed that the 

data obtained here will be valuable whenever SDS-polyacrylamide 

gel electrophoresis is applies. 
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       2. Electrophoretic Behavior of Micellar and Monomeric Sodium 

           Dodecyl Sulfate in Polyacrylamide Gel Electrophoresis with 

            Reference to Those of SDS-Protein Complexes 

      I. SUMMARY 

          Electrophoretic behavior of sodium dodecyl sulfate (SDS) in 

       polyacrylamide gels has been examined at various gel concentra-

       tions. Micellar  SDS  is subject to significant molecular sieving 

       from the gels while monomeric SDS is virtually free from the 

       effect. The two forms are in a rapid equilibrium with each other. 

       The gel concentration, therefore, has a significant effect on the 

       electrophoresis of SDS added in SDS-polyacrylamide gel electro-

       phoresis. The simplified procedure of  Stoklosa and Latz (1974), 

      in which SDS is added only in sample solutions, has been 

       criticized based on the results obtained. 

       II. INTRODUDTION 

           Sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophore-

       sis (Weber & Osborn, 1969) is now extensively used, and various 

      modified procedures have been described. Among them, the 

       simplified procedure proposed by  Stoklosa and Latz (1974) 

       attracted our attention, since it indicated that it is necessary 

       to add SDS only to sample solutions. In the previous study by 
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     Kubo et al. (1975), it was demonstrated that the SDS in 

      equilibrium with SDS-protein complexes during electrophoresis is 

      supplied from the upper buffer compartment alone. Elimination of 

      SDS from gels and the lower buffer compartment, therefore, will 

      not affect the electrophoresis. However,it appeared that elimi-

     nation of SDS from the upper buffer compartment would have 

      serious consequences. 

         SDS-protein complexes, which are the electrophoresing entities 

     in the protein bands, are probably in a rapid equilibrium with 

      free SDS in the surrounding medium by analogy to the detection of 

      such behavior in the complex between a polypeptide derived from 

      bovine serum albumin and a surfactant analogous to SDS, using NMR 

     spectroscopy (Tsujii & Takagi, 1975b). Such an SDS-protein 

     complex must dissociate when it is  removed from free SDS as the 

     result of electrophoresis. There is reason to believe that 

     anomalous results may be obtained with the procedure of  Stoklosa 

     and Latz (1974). Nelles and Bamburg (1976) reported that the 

     presence of a small amount of SDS in the upper buffer compatment 

      is necessary to obtain decent results using SDS-polyacrylamide 

     gel electrophoresis.  Stoklosa and Latz (1975) later reported 

     that the amount of SDS added to a sample solution has a crucial 

     effect on the electrophoretic behavior of protein bands in their 

      procedure. Since information on the electrophoretic behavior of 

     micelles and monomers of SDS in polyacrylamide gels is lacking, 

     the present study was initiated. 
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III. EXPERIMENTAL PROCEDURE 

   Sodium dodecyl sulfate designated as SPS-4 was obtained from 

Nakarai Chemicals. It was analyzed by gas chromatography after 

hydrolysis. The result showed that 96.9 % was dodecyl sulfate. 

The major contaminant was tetradecyl sulfate. A cationic surfac-

tant, alkylbenzyldimethylammonium chloride (alkyl,  C8H17  -C18H37) 

was obtained from Kao-Atlas Company Ltd. as a 50 % aqueous 

solution known as Sanisol C and used without further purifica-

tion. Hen's egg white lysozyme which had been reduced and 

carboxamidomethylated (RCAM) was used (Shirahama et al., 1974). 

   Polyacrylamide gel electrophoresis was carried out essentially 

according to the procedure of Weber and Osborn (1969), except 

that the amount of SDS added to the upper buffer compartment was 

changedas indicated and SDS was notpresent in either the lower 

buffer compartment or the gels. Electrophoresis was carried out 

at  250C using a thermostated apparatus. Sodium phosphate buffer, 

0.1 M, pH 7.0, was used to prepare the gels and to fill the upper 

and lower compartments. In the preparation of the gels of 

various acrylamide concentrations, the weight ratio of acrylamide 

to  N,N'-methylenebisacrylamide was kept constant (100 : 2 .7). 

Gel concentrations will be expressed in terms of the total 

acrylamide concentration (w/v). 

   Gels were stained for proteins with 0.025 % Coomassie 

brilliant blue R in  a mixture of isopropanol-acetic acid-water 

(volume ratio, 25 :  10 :  65). Distribution of SDS in a gel was 

visible as a white zone by the method of Takagi et al.  (1977). 
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It utilizes the insoluble complex formation between SDS in a gel 

and the cationic surfactant, alkylbenzyldimethylammonium chloride, 

diffused into the gel. Gels, in which the location of protein or 

SDS had been visible, were also scanned with a Toyo Model DMU-33C 

densitometer. Most of the results were, however, illustrated as 

photographs, because they can directly demonstrate what occurred 

in a gel. All photographs of the gels except the left one in 

Fig.5 were taken with gels immersed in test tubes filled with 

water, and, thus, laterally expanded. The left photograph of 

Fig.5 shows the usual form of the gels. 

IV. RESULTS 

   The electrophoretic behavior of monomers and micelles of 

sodium dodecyl sulfate was examined in the absence of protein 

samples. Their distribution in the polyacrylamide gel can be 

clearly detected by the  visualization technique (Takagi et al., 

1977). Relative electrophoretic mobilities of SDS monomers and 

micelles were measured by the distance of SDS which had 

penetrated into the gels when SDS was added only to the upper 

buffer compartment. Fig.1 shows typical examples of the results 

obtained. In Fig.1A, the SDS  concentration was 0.35 mM, which 

was below the critical micelle concentration (1.1 mM in the 

buffer used). The boundary, therefore, is the front of SDS 

monomers electrophoresed in the 5  % gel. When the SDS concent-

ration was increased to 3.5 mM above the critical micelle 
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Fig.1. Electrophoresis of SDS from the upper buffer compartment 

into polyacrylamide gels. Gel concentration, 5 % for (A) and (B) 

and 12.5 % for (C). Electrophoresis was carried out at 6 mA/tube 

for 130  min for (A) and (B) and 225  min for (C). SDS concentra-

tion in the upper buffer was 0.35 mM for (A) and 3.5 mM for (B) 

and (C).
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  Fig.2. Ferguson plot of the relative mobilities of  SDS micelles 

  against gel concentration. The mobility of SDS monomers which are 

  free from the molecular-sieving effect was used as a referenc 

 (----). Experiments were carried out in the same manner as in 

 Fig.1. 
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concentration (Fig.1B), the front of SDS with a clear boundary 

was found to migrate in the 5 % gel with a mobility higher than 

that in Fig.1A. The difference in the mobility can only be 

explaned assuming that SDS micelles with higher mobility than SDS 

monomers form the front in this case. When the gel concentration 

was increased up to 12.5 %, the situation was reversed, and the 

electrophoresis of SDS monomers could be clearly observed in 

front of the boundary assigned to SDS micelles as shown in Fig.1C. 

   Figure 2 shows the relative electrophoretic mobilities of SDS 

micelles as a function of gel concentration. Because the mobili-

ties of SDS monomers were independent of gel concentration, they 

were used as the standard to calculate relative mobilities. 

Electrophoresis of SDS micelles in polyacrylamide gels was 

markedly influenced by the molecular-sieving effet of the gel. 

At 10 % gel concentration, SDS micelles and SDS  monomers had the 

same mobility. 

   Figure 3 shows the results of electrophoresis of SDS when it 

was added only to the tops of the gels in small volumes as 

samples. SDS was present only in the sample solution. Figure 4 

shows densitometric traces of the gels shown in Fig.3. The 

observed electrophoretic behavior of SDS can be clearly under-

stood when compared with the results shown in Fig.2. When the 

gel concentration  is  5 % (Fig.3A and Fig.4A), SDS micelles 

migrate ahead of SDS monomers and, therefore, are dissociated in 

the back to cause tailing. At 10 % gel concentration, SDS 

migrated as a sharp band (Fig.3B and Fig.4B). Under these 

conditions, SDS micelles are electrophoresed together with SDS 
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Fig.3. Electrophoresis of SDS in polyacrylamide gels of various 

concentrations. Gel concentrations : (A) 5 %, (B) 10 %, and (C) 

15 %. Twenty microliters of the sample solutions were applied on 

the top of each gel and contained 1 % SDS and 10 % glycerine in 

0.01 M sodium phosphate buffer, pH 7.0. Electrophoresis : 2 hr, 

6 mA/tube.
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Fig.4. Densitometric scan of the gels shown in Fig.3. Designa-

tions are the same as in Fig.3. 
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  monomers, which they are in equilibrium with as seen in Fig.2. 

  Net dissociation of SDS micelles is, therefore, not expected. In 

  15  % gel, SDS monomers have higher mobility than SDS micelles 

   (Fig.2), and, therefore, dissociation of micelles is observed in 

  the frontal boundary (Fig.3C and Fig.4C). Under the conditions 

  of Fig.3A and C, the dense SDS bands mainly composed of micelles 

  gradually faded out during migration, since they were  continuous-

- ly deprived of SDS . 

      In Fig.5, reduced and carboxamidomethylated lysozyme was 

   subjected to electrophoresis with SDS. SDS was again added only 

   to the sample solutions. Figures 5A, B and C show distribution 

  of  RCAM-lysozyme  visible by staining after electrophoresis in 10 

  % gels. Figure 5A', B' and C' show the distribution of SDS 

   visible because of the insoluble complex formation. In Fig.5C', 

   the  SDS-protein complex is also visible as a white band at the 

   top, as well as the micelle band electrophoresing in the front. 

   As seen in Fig.5C and C', the SDS-protein complex migrates  just 

   behind the free SDS. 

      SDS monomers in equilibrium with  the SDS-RCAM-lysozyme complex 

 have higher mobility than the complex. The protein band is, 

   therefore, continuously deprived of SDS. The SDS which lies 

   between the protein band and the SDS micelle band in Fig. 5C' is 

   the product of such dissociation, although it looks like a tail 

   of the micelle band. However, the micelle band should be free 

   from tailing, since SDS micelles and SDS monomers have the same 

   mobility in 10 % gel as is clear from Figs.2 and 3. As SDS is 

   depleted from the SDS-protein complex, RCAM-lysozyme precipitates 
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Complex 

Dissociated SDS 

Micelle

Fig.5. Electrophoresis of RCAM-lysozyme in 10 % gel. Twenty 

microliters of the sample solutions were applied on the top of 

each gel and contained 1 % SDS and 10 % glycerine in 0.01 M 

sodium phosphate buffer, pH 7.0. RCAM-lysozyme added : (A) and 

(A') 5  pg, (B) and  (B') 10 pg, and (C) and  (C') 20  pg. 

Electrophoresis: 4 hr, 6 mA/tube. (A), (B) and (C) RCAM-lysozyme 

was stained by Coomassie brilliant blue R;  (A'),  (B') and  (C1) 

SDS was visible due to the complex formation with the cationic 

surfactant.
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     as is shown in the gels of Fig.5A, B and C, which were stained 

     for protein. The protein band disappears completely when the 

     amount of RCAM-lysozyme is low, as in Fig.5A and B. 

     V. DISCUSSION 

        The results presented have shown that the electrophoretic 

     behavior of SDS micelles and monomers in a polyacrylamide gel 

     vary with the concentration of SDS and the concentration of the 

     gels. The presence and absence of the molecular-sieving effect 

     for SDS micelles and monomers, respectively, are the most 

     important factors in the determination of the electrophoretic 

     behavior of these two species in polyacrylamide gels, and should 

     be  taken , into consideration when one intends to modify the 

     standard conditions of SDS-polyacrylamide gel electrophoresis 

      (Weber and Osborn, 1969). 

        The present study  was  prompted by the modified procedure of 

     SDS-polyacrylamide gel electrophoresis proposed by Stoklosa and 

     Latz (1974). The proposed procedure was based on the assumption 

     that the complexes formed between SDS and proteins are stable 

     even in the absence of SDS in equilibrium. As is clear from Fig. 

      5, this assumption is incorrect. Five percent gels were used in 

     their study, and this is probably the reason for their apparent 

      success. Under the condition, SDS-protein complexes are electro-

     phoresed in the tailing region shown in Fig.4A, where the SDS 

     concentration is maintained at the level of the critical micelle 
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concentration which prevents the dissociation of the complexes. 

In a later study it was pointed out that enough SDS must be added 

to sample solutions  (Stoklosa and Latz, 1975). This is necessary 

to maintain SDS above the critical micelle concentration in the 

tailing region during electrophoresis. Since SDS micelles are 

electrophoresed at their characteristic mobilities, the range of 

SDS monomers at the level of the critical micelle concentration 

in the tailing region is limited. Complexes formed between SDS 

and proteins with relatively high molecular weights would be 

expected to dissociate gradually  to,cause precipitation of the 

proteins in the same manner as shown in Fig.5 (left). 

   To perform SDS-polyacrylamide gel electrophoresis without 

anomalous behavior, it is strongly recommended to  add. SDS to the 

 upper tray buffer up to at least the critical micelle concentra-

tion and maintain the SDS concentration in gels by SDS supplied 

from the upper buffer compartment (Kubo et al., 1975). In 

opinion, the amount of SDS saved by eliminating it from the upper 

buffer compartment is not worth the difficulties that might be 

encountered. 
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     3. Retarding Effect of Dodecyl Alcohol on Polyacrylamide Gel 

          Electrophoresis of SDS Micelles and SDS-protein Polypeptide 

          Complexes 

    I. SUMMARY 

       Micelles of sodium dodecyl sulfate (SDS) are significantly 

     retarded by the addition of a small amount of dodecyl alcohol to 

     a sample solution in SDS-polyacrylamide gel electrophoresis. The 

     phenomenon can be ascribed to the decrease in charge density due 

     to the incorporation of dodecyl alcohol into SDS micelles. The 

     effect is extended to SDS-protein polypeptide complexes when the 

     amount of SDS micelles is insufficient to accommodate the dodecyl 

     alcohol. A similar effect is likely to occur when SDS-polyacryl-

     amide gel electrophoresis is applied to a sample containing 

     lipophilic materials. 

     II. INTRODUCTION 

       In SDS-polyacrylamide gel electrophoresis (Weber & Osborn, 

     1969), micelles of SDS as well as complexes formed between SDS 

     and protein polypeptide are the main electrophoresing entities 

     (Tsujii & Takagi, 1975a; Kubo et al., 1975). It has been 

    suggested that SDS binds to protein polypeptide to form 

     micelle-like clusters (Shirahama et al., 1974; Tsujii & Takagi, 
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1975b; Takagi et al., 1975a). Therefore, the bound SDS is 

expected to have properties similar to those of SDS micelles. 

Steinhardt et al. (1974) showed that the bound SDS could 

solubilize oil-soluble dye to an extent comparable to that of 

micellar SDS. Since SDS-polyacrylamide gel electrophoresis is 

often applied to samples containing lipophilic materials, it is 

necessary to know the effect of solubilization of such materials 

on the electrophoretic behavior of SDS micelles and SDS-protein 

polypeptide complexes. This chapter describes the effect of the 

addition of dodecyl alcohol, which  is known to be incoporated 

into SDS micelles (Sinoda et al., 1963), to sample solutions in 

SDS-polyacrylamide  gel'electrophoresis. 

III. EXPERIMENTAL PROCEDURE 

   Sodium dodecyl sulfate (SDS) and dodecyl alcohol were obtained 

from Nakarai Chemicals and Kao Soap Co., respectively. They were 

96.9 and 99.8  % pure as determined by gas chromatography. 

SDS-polyacrylamide gel electrophoresis was carried out essential-

ly according to the procedure of Weber and Osborn (1969) using a 

temperature-controlled gel electrophoresis apparatus at 30°C. In 

the preparation of gels of various acrylamide concentrations, the 

weight ratio of acrylamide to N,N'-methylenebis(acrylamide) was 

kept constant (100:2.7). In most experiments, protein bands as 

well as the SDS band were visualized as white bands by storage of 

the polyacrylamide gel tube in a refrigerator for several hours 
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after electrophoresis (Kubo et al., 1975; Wallace et al., 1974). 

IV. RESULTS AND DISCUSSION 

   Dodecyl alcohol, virtually insoluble in aqueous solutions, 

could be dissolved in 0.01 M sodium phosphate buffer in the 

presence of 1 % SDS. As shown in Fig.1, the electrophoretic 

mobility of the band chiefly composed of SDS micelles (Tsujii & 

 Takagi,  1975a; Kubo  et  al., 1975) (hereafter called the SDS band) 

is significantly reduced by the addition of a small amount of 

dodecyl alcohol to sample solutions (to 88 % in the presence of 5 

% dodecyl alcohol; w/w SDS). The experiments shown in Fig.1 were 

carried out in the absence of SDS in the gels to ensure that the 

SDS bands could be clearly seen. Tailing of the SDS band became 

more significant as the amount of dodecyl alcohol added was 

increased, probably due to dissociation of the retarded SDS 

micelles, which are  left in a medium devoid of monomeric SDS 

ions. 

   With proteins it is common practice to carry out electrophore-

sis at various gel concentrations to estimate molecular size 

(Rodbard & Chrambach, 1970). We have applied the technique to 

SDS micelles to estimate roughly the effect of solubilization of 

dodecyl alcohol  on the size of SDS micelles. Figure 2 shows a 

Ferguson plot (Ferguson, 1964) of the results obtained. The 

mobilities were calculated from the distance covered by the front 

of the plateau region formed by SDS micelles which intruded into 
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Fig.1. Effect of the addition of dodecyl alcohol on the 

electrophoresis of the SDS  band. Sample solutions (20  p1) of SDS 

(1 %) in 0.01 M sodium phosphate buffer, pH 7.2, containg 10 % 

glycerine were layered on 7.5 % acrylamide gel. The gel 

contained 0.1 M sodium phosphate buffer, pH 7.2, which was also 

used to fill the  upper  and lower trays. The amounts of dodecyl 

alcohol added to the sample solutions were as follows (w/w SDS); 

controls (a, b), 1 % (c), 2 % (d), 3 % (e), 4 % (f), and 5 % (g): 

Malachite green (0.0025 %) was added to the sample solution only 

for (a). Electrophoresis; 8 mA/tube, 2.7 hr.
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Fig.2. Ferguson plots of the electrophoretic mobilities  of SDS 

micelles. The gels and trays contained  0.1  M sodium phosphate 

buffer, pH 7.2. SDS was added up to 0.1 % to  the buffer of the 

upper (cathode) tray. Ten  ill of 0.1 M sodium phosphate  buffer 

containing 0.01 % bromophenol blue, 0.1 % SDS, and 10 % glycerine 

was layered on gels of various acrylamide concentrations. 

Dodecyl alcohol was added to both the buffer and the marker dye 

solutions up to 0.003 % for the plots designed by filled points. 

Electrophoresis was carried out for 3.5-7 hr, depending on the 

gel concentration, at  30°C at a constant current of 8 mA/tube. 

The tubes were stored for 6 hr in a refrigerator, and the 

mobilities were measured in terms of the distance of the front of 

the white region from the end of the gel (cathode side) using the 

bromophenol blue band as a reference. 
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      the gel column from the tray buffer and which could be visualized 

      by chilling the gel after electrophoresis. It should be noted 

      that the line obtained with the experiments in the presence of 

      dodecyl alcohol is parallel to that for SDS micelles in the 

       absence of dodecyl alcohol. The slope of the line in such plots 

      is expected to be determined solely by the size of the micelles 

      just as in the case of spherical globular proteins (Rodbard 

       & Chrambach, 1970). The size of SDS micelles is therefore, 

       suggested to be almost constant despite the solubilization of 

       dodecyl alcohol. The change of electrophoretic mobility,there-

       fore, suggests that the effective charge density of SDS micelles 

       is decreased as a result of the solubilization. The solubilized 

       dodecyl alcohol probably displaces SDS, decreasing the charge 

       density, while the size of the micelles is kept constant. 

          If SDS ions bound to a protein polypeptide really behave like 

      SDS micelles as regards solubilization, as discussed by 

 Steinhardt et al. (1974), SDS-protein polypeptide complexes are 

       expected to solubilize dodecyl alcohol, and thus their electro-

       phoretic behavior should change depending on the presence or 

       absence of dodecyl alcohol. Addition of dodecyl alcohol up to 

       5 % (w/w SDS) to sample solutions, however, showed no appreciable 

       effect on the mobilities of the complexes. Clearly SDS micelles 

       are superior to SDS clusters on a SDS-protein polypeptide complex 

       in the solubilization of dodecyl alcohol. If this preferential 

       solubilization by SDS micelles is general, this phenomenon might 

      well be valuable in connection with SDS-polyacrylamide gel 

        electrophoresis. 
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Fig.3. Normalization of the electrophoresis of protein bands 

retarded by the addition of dodecyl alcohol when SDS present in 

the sample solution in an amount. The gels and trays contained 

0.1 M sodium phosphate buffer, pH 7.2. SDS (0.04 %) was added 

only to the cathode tray. The concentration of SDS was reduced 

so that the protein bands could be visualized as distinct bands. 

The sample solutions (20  pl) contained various amounts of SDS 

(a, 64 pg; b, 64  pg; c, 613  pg; d, 170  pg) and dodecyl alcohol 

(a, none; b, 4.6 pg; c, 4.6  pg; d, none). Proteins added to each 

sample solution were 16 pg of immunoglobulin G, 8 pg of 

myoglobin, and 8 pg of cytochrome  c. Acrylamide concentration, 

10 %; 8 mA/tube, 4.5 hr.
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   Subsequent experiments showed, however, that SDS-protein poly-

peptide complexes do have solubilizing power. Figure 3d shows an 

electrophoretic run comparable to an ordinary SDS-polyacrylamide 

gel electorophoresis (Weber & Osborn, 1969). Decrease in the 

amount of SDS added to the sample solution down to one-third had 

no  appeciable effect on the electrophoretic patterns of SDS 

micelles and the  complexes, as shown in Fig.3a. Under these 

conditions, however, the addition of dodecyl alcohol has a 

significant retarding effect on the electrophoretic behavior of 

the complexes as shown in  Fig.3b., Further addition of SDS 

normalized the electrophoretic behavior of both SDS micelles and 

the complexes, as shown in Fig.3c. In this case, the SDS band is 

broad, and the retardation is not appreciable due to the presence 

of a large excess of SDS. 

   It is well-known that SDS can solubilize lipids of biomembrane 

origin (Helenius & Simons, 1975). When SDS-polyacrylamide gel 

electrophoresis was applied to biomembranes dissolved in SDS, the 

resulting electrophoretic patterns suggested that the lipids were 

solubilized in SDS micelles and electrophoresed en blok (Gahmberg, 

 1971; Lopez & Siekevitz, 1973). Carraway et al. (1972) reported 

that the electrophoretic mobility of phosphatidylcholine is 

dependent on the amount of SDS added to the sample solution. 

Their results suggest that lipids contained in biomembranes can 

affect the electrophoretic behavior of SDS micelles and 

SDS-protein polypeptide complexes. The present results indicate, 

however, that the effect on the complexes can be eliminated by 

the addition of sufficient SDS to the sample solution. 
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   In conclusion, it should be stressed that both SDS micelles 

and SDS-protein polypeptide complexes can solubilize lipophilic 

materials and their behavior in polyacrylamide gel electrophore-

sis may be consequently affected. Such phenomena should, 

therefore, be taken into cosideration in the design of SDS-poly-

acrylamide gel electrophoresis experiments and interpretation of 

the results obtained, especially when the sample being investi-

gated contains materials which can be solubilized in SDS 

micelles. 
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    4. Simple Visualization of Protein Bands in SDS-Polyacrylamide 

        Gel Electrophoresis by the Insoluble Complex Formation 

         between SDS and a Cationic Surfactant 

    I. SUMMARY 

        Protein bands in SDS-polyacrylamide gel electrophoresis can be 

    visualized as white bands by the mere immersion of a gel, after 

    electrophoresis, into a dilute aqueous solution of cationic 

    surfactant with which SDS forms an  insoluble complex. Because 

     the time-consuming and laborious step of staining is eliminated, 

    this procedure is particularly suited for quick detection of 

     protein bands after electrophoresis. 

    II. INTRODUCTION 

        In SDS-polyacrylamide gel electrophoresis, protein bands are 

    generally visualized by staining. Since the procedure is 

    laborious and takes a whole day, several alternatives have been 

    proposed to simplify the detection of the bands. These include 

    fluorescent labeling of proteins (Shelton, 1971), uv-scanning of 

    a gel (Tsujii & Takagi, 1975a), and chilling of a gel to 

    crystallize SDS as white bands (Wallace et al., 1974; Takagi et 

    al., 1975b). We have developed a unique procedure to visualize 

    protein bands, which is very simple and particularly suited to 
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    locating protein bands quickly. It depends on the insoluble 

    complex formation between SDS and a cationic surfactant. 

    III. EXPERIMENTAL PROCEDURE 

       Alkylbenzyldimethylammonium chloride (alkyl,  C81117  -C181137) was 

    found to be most satisfactory for present purpose out of several 

    cationic surfactants tested. It was obtained from Kao-Atlas Co. 

    Ltd., (Tokyo, Japan) as a 50 % aqueous solution named Sanisol C, 

    and was used without further purification. This is one of the 

    most popular germicidal cationic  • surfactants. The critical 

    micelle concentration in water was found to be 0.23  % as measured 

    by an electric conductance method (Goddard & Benson, 1957). 

        Other reagents were those routinely used in SDS-polyacrylamide 

    gel electrophoresis (Weber & Osborn, 1969). Proteins used had 

    been reduced and carboxamidomethylated (RCAM) by the method 

    described Shirahama et al., (1974). The present procedure can, 

    however, be applied to ordinary SDS-polyacrylamide gel electro-

    phoresis in which proteins are reduced with 2-mercaptoethanol in 

    a sample solution. 

        SDS-polyacrylamide gel electrophoresis was performed according 

    to the procedure described by Weber and Osborn (1969). The only 

    modification necessary was a reduction of the SDS concentration 

    from 0.1 to 0.035-0.05 %, which caused no effect on molecular 

    weight estimation. This modification was required to reduced the 

    whitening all over the gel due to the complex formation between 

    the SDS prevalent in the gel and the cationic surfactant. 
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   After electrophoresis, gels were withdrawn from the tubes and 

immersed in a dilute solution of alkylbenzyldimethylammonium 

chloride prepared by the 50-fold dilution of Sanisol C with water 

(final concentration, ca. 1  %) at room temperature. Protein 

bands as well as SDS-micelle band (Kubo et al., 1975) were 

visualized as white bands which could be  located easily by the 

naked eye with illumination from the rear. After 10-20  min, gels 

were transferred into a further diluted surfactant solution 

prepared by a 1000-fold dilution of Sanisol C with water and were 

incubated in it for  at  least 1.5 hr to complete the development 

of white bands. It is preferable to maintain the temperature of 

the solutions around  20°C for the development of white bands. 

Otherwise, the appearance of the white bands was incomplete. 

Once the white bands have been developed, the gels may be stored 

indefinitely at room temperature. 

   Gels in test tubes, filled with the second surfactant solution 

used to develop white bands, were put before a black screen, and 

a photograph was taken by the use of illumination from the upper 

rear. Electrophoretic patterns were obtained using a densitome-

ter (Toyo, Model DMU-33C). 

   The amount of SDS bound to a protein was measured by the 

equilibrium dialysis technique (Takagi et al., 1975a). 

IV. RESULTS AND DISCUSSION 

   It  is well-known that an anionic surfactant forms a 
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  water-insoluble complex (1:1 molar ratio) with a cationic surfac-

   tant. However, the complex is stable only when the equilibrium 

   concentration of one of the constituent surfactants, present in 

  excess, is below its critical micelle concentration. In the 

  present method, a gel containing protein bands to be developed is 

   first immersed in the cationic surfactant (alkylbenzyldimethyl-

   ammonium chloride) solution at a concentration above its critical 

  micelle concentration, to make the surfactant rapidly diffuse 

  into the gel. To avoid solubilization of the white complexes 

  once formed, the gel is transferred into the cationic surfactant 

  solution with a concentration below its critical micelle concent-

   ration. 

     Figure la shows a typical example of a gel in which protein 

  bands, containing 5  pg each of RCAM-bovine serum albumin and 

  RCAM-lysozyme (top and middle), as well as the micelle band are 

  visualized by the present method. The micelle band (Kubo et al., 

  1975) may be used as a substitute for a band of marker dye. 

  Figure 1 also includes  two  blank runs. Figure lb shows that only 

  the micelle band could have been observed when two protein 

  samples were eliminated from the sample solution. Figure  lc 

  shows a gel to which no sample solution was added; a boundary can 

  be observed. This is the result of the retardation of the SDS 

  micelles supplied by the upper electrode trough (Kubo et al., 

 1975). 

  Figure 2 shows that the protein bands could have been 

  visualized even when the amount of each sample protein was 

  decreased to more than one-tenth of that in Figure la. 

• 
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Fig.1. Photograph of the protein and SDS-micelle bands in 10 % 

polyacrylamide gels, visualized by the water-insoluble complex 

formation between SDS and alkylbenzyldimethylammonium chloride. 

(a) The sample solution contained 5  pg each of RCAM-bovine serum 

albumin and  RCAM-hen's egg white lysozyme in 20  pl of 0.01 M 

sodium phosphate buffer, pH 7.0, containing 1 % SDS. (b) Same as 

(a) except that the sample solution was devoid of protein and 

contained only 1 % SDS in the buffer. (c) Same as (a) except that 

no sample solution was applied to the gel. The gels and the 

trays contained 0.1 M sodium phosphate buffer, pH 7.0, to which 

SDS was added up to 0.035 %. Electrophoresis was carried out at 

8 mA/tube for 2.5 hr at  25°C from top to bottom. White bands are 

SDS-micelle (i); RCAM-lysozyme (ii); and RCAM-bovine serum albu-

min (iii). Only a concentration boundary (iv) with respect to 

SDS is observed with the right gel (c).
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Fig.2. Photograph of the white protein and micelle bands 

visualized by the present method when the amounts of the sample 

proteins were varied. From left to right, 5, 2, 1, and 0.4  ig 

each of RCAM-lysozyme and RCAM-bovine serum albumin were applied 

to the gel. All other conditions were as described in the legend 

to  Fig.1.
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           As shown in Figure 3a, the white protein bands as well as the 

        micelle band can also be located by photometric scanning using a 

       densitometer. The area under each peak was found to be 

        proportional to the amount of protein polypeptide in a range 

        between 2 and 13 pg of the sample applied, as measured with the 

        two protein polypeptides shown in Figure 3a. The slope of the 

       plot of the area versus the amount of sample applied was, 

        however, markedly dependent on the kind of protein polypeptide. 

       Namely, the slope for RCAM-lysozyme was twice that for 

       RCAM-bovine serum albumin. Such  a, difference would not be 

        expected, if the whitening were only due to the complex formation 

        between SDS and the cationic surfactant, because no significant 

        difference was observed in the amount of SDS bound to these 

       protein polypeptides in the buffer solution used for the 

         SDS-polyacrylamide gel electrophoresis (1.5 and 1.6 g/g for 

         RCAM-bovine serum albumin and RCAM-lysozyme, respectively). The 

        difference in the slopes might be due to the difference in the 

         state of a protein polypeptide which has been deprived of SDS by 

       the complex formation. The more insoluble the protein 

        polypeptide is, the more significantly it will contribute 

         additionally to the development of the corresponding white band. 

           During the first immersion in the cationic surfactant 

        solution, the gel seems to be supplied with enough of the 

         cationic surfactant to complex with the SDS contained in it. 

         Use of a more concentrated solution of the cationic surfactant 

         caused solubilization of the white bands once formed, and use of 

          a  more- dilute solution caused no development of the white band, 
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Fig.3. Electrophoretic patterns obtained with a gel in which 

protein bands and the SDS-micelle band were visualized by the 

present method (a) as well as another gel stained with Coomassie 

brilliant blue R (b). Electrophoretic conditions were the same 

as in Fig.la except that the electrophoresis was continued for 

3.8 hr. Gels were scanned either at 440 (a) or 565 nm (b) using 

an aperture of 0.2 X2.0 mm. Bars on the left side indicate the 

absorbance  scale. Electrophoresis was from right to left. 
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due to the diffusion of SDS into the solution without forming the 

complex in the gel. The visualization was virtually completed 

during the first immersion. If only the measurements of 

mobilities of major protein bands are necessary, one may finish 

all experiments within 20  min after terminating electrophoresis. 

The rate of development  of the protein bands was somewhat 

dependent on the kind of protein polypeptide. The first immer-

sion should not be prolonged beyond 20  min, because the complex 

is slowly solubilized by the micelles of the cationic  surfactant. 

   The white bands thus developed became further clarified during 

the second immersion in the more dilute solution of the cationic 

surfactant with a concentration below its critical micelle 

concentration. The bands were so stable that no significant 

change was observed up to 7 months after the visualization. Gels 

may be kept in test tubes filled with the second surfactant 

solution or water. 

   The present method has the following advantages.  (i) The 

protein bands as well as the micelle band can be promptly and 

easily visualized after electrophoresis. (ii) The gel is not 

deformed by the immersion into surfactant solutions, contrary to 

the marked shrinkage in the aqueous methanol- or isopropanol-

acetic acid mixture in the ordinary staining procedures. (iii) 

The protein polypeptide in a visualized band can be easily 

extracted from a sliced section of the gel by the addition of 

excess SDS. 

   On the other hand, the present method has the following 

disadvantages. (i) The visualization as white bands is not as 
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distinct as in the ordinary staining procedures. (ii) The present 

method actually measures the distribution of SDS in the gel. 

Sometimes, a noisy or inclined baseline was observed due to 

uneven distribution of SDS in the background as a result of, as 

yet, unknown reasons. 

   The present method has been applied successfully to the 

visualization of various protein polypeptides. It is also 

particularly suited to gain knowledge about the distribution of 

SDS in a gel which is pertinent to understanding the basis of 

SDS-polyacrylamide gel electrophoresis, as has been pointed out 

by the author (Kubo et al., 1975) and Takagi et al., (1975b). 

• 
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5.  Solubilization of Oil-Soluble Dyes by Sodium Dodecyl Sulfate-

    Protein Polypeptide Complexes with Reference to SDS-Poly-

    acrylamide Gel  Electrophoresis 

I. SUMMARY 

   Sodium dodecyl sulfate binds to the linear polypeptide derived 

from a protein to form micelle-like clusters (Takagi et al., 

1975a) which are expected to solubilize lipophilic materials. 

Such clusters were found to afford the complexes strong 

solubilizing power against oil-soluble dyes, comparable or 

 slightly superior to SDS micelles, by conventional  solubilizing 

 technique (equilibration with solid dye) and by gel chromatogra-

 phy technique first applied to measure solubilization by such 

 complexes.  Solubilization behavior of the bound SDS was insensi-

 tive to the kind of protein polypeptide, in contrast to the 

 variety found in the pioneering study on the complexes between 

 SDS and initially native proteins (Steinhardt et al., 1977). The 

 knowledge of the solubilizing power of  SDS-protein polypeptide 

 complexes seems to be valuable in design of experiments and 

 interpretation of the results obtained in application of SDS-

 polyacrylamide gel electrophoresis to samples containing lipo-

 philic materials. 

• 
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    II. INTRODUCTION 

        Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

     (Weber and Osborn, 1969) is now extensively used to analyze 

     protein and to estimate their molecular weights. We have been 

     studying the complexes  formed between sodium dodecyl sulfate 

     (SDS) and linear polypeptides derived from proteins (SDS-protein 

     polypeptide complexes) which are the major electrophoresing 

     entities in the technique. In a recent study, Takagi et al. 

     (1975a) have proposed a model of such complexes in which SDS 

     binds to a polypeptide chain to form clusters similar to SDS 

     micelles along its length. If SDS is really bound in such a 

     manner, the bound SDS is  expected to make lipophilic materials 

     apparently soluble in an aqueous solution by the incorporation of 

     the materials in the micellar cluster with an efficiency 

     comparable to that of SDS micelle. 

        SDS-polyacrylamide gel  electrophoresis is frequently applied 

     to membrane proteins which are often contaminated by lipophilic 

     materials. Dodecyl alcohol, which is easily incorporated into a 

     SDS micelle, has been found to have a profound effect on the 

     electrophoretic behavior of SDS-protein polypeptide complexes in 

     a polyacrylamide gel (Takagi et al., 1975b). It is therefore 

     necessary to understand the solubilizing power of SDS bound to a 

     protein polypeptide. 

        The solubilization of oil-soluble dyes by SDS protein 

     complexes was first reported by Blei (1960), and has been 

     extensively studied by Steinhardt and his colleagues (1974; 1977; 
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Birdi & Steinhardt, 1978). They found that the bound SDS has 

strong solubilizing power comparable to that of SDS micelles. 

Their studies are, however, mostly concerned with complexes 

formed between SDS and initially native proteins. Most of the 

proteins they studied necessarily retain disulfide cross-linkage, 

even after denaturation by SDS. No detailed study has been made 

on complexes formed between SDS and linear polypeptides lacking 

the cross-linkages. It is such complexes, however, that are 

actually electrophoresed in SDS-polyacrylamide gel electrophore-

sis. The study described in this chapter was planned specifical-

ly to make clear the solubilizing power of such complexes with 

references to SDS-polyacrylamide gel electrophoresis. The 

results obtained clearly show that SDS bound to protein polypep-

tide has a strong solubilizing power to oil-soluble dyes, such as 

Yellow OB, Orange OT, and Butter Yellow, comparable to that of 

SDS micelle. Yellow OB, however, behaved somewhat exceptionally. 

III. EXPERIMENTAL PROCEDURE 

   Sodium dodecyl sulfate designated as SPS-4 was obtained from 

Nakarai Chemicals as specially prepared reagent. It was 97  % pure 

as determined by gas chromatography, and contained decyl and 

tetradecyl sulfates as the major contaminants. The critical 

micelle concentration of the SDS preparation in 50 mM sodium 

phosphate buffer, pH 7.0, was determined to be 1.85 mM at 25.0 ± 

 0.2°C  by the drop number method. Proteins were the best 
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available products and have been reduced and caboxymethylated or 

carboxamidomethylated, as has been described (Shirahama et al ., 

1974). Protein concentrations were determind spectrophotometri-

cally using values of El
1cm%at 280  nm(6.7 and 26.9 for bovine 

serum albumin and egg white lysozyme, respectively). No correc-

tion was made for the effect of chemical modification and the 

presence of SDS. A 50 mM sodium  phOsphate buffer, pH 7.0, 

prepared by mixing 50 mM  Na2HPO4 and 50 mM  NaH2PO4 and adding 

sodium azide to a final concentration of 0.02  %, was routinely 

used. The dyes, Butter Yellow, Yellow OB, and Orange OT, were 

obtained from Daiwa Chemicals (lot No. 28-46-2), Daiwa Chemicals 

(lot No. 75-5), and Tokyo Chemicals Industry (lot No. CI 12100), 

respectively. They were recrystallized from 80 % aqueous 

ethanol, and futher purified by partition chromatography using a 

mixture of petroleum ether and ethyl ether (9  : 1, v/v) as an 

eluent, and a silica gel column (5 X 20 cm; Waco Gel c-100). 

Melting points of the final products were  114-116°C (Merck Index, 

 114-117°C),  124-125°C. (Merck Index,  125-126°C) and  130°C (no 

reference data available) for Butter Yellow, Yellow OB, and 

Orange OT, respectively. The molar extinction coefficients of 

the dyes in 50 mM  sodium phosphate buffer, pH 7.0, containing 1  % 

SDS, was determined with solutions prepared by the addition of a 

small amount of an acetone solution of known concentration of 

each of the dyes to the above SDS solution from a micrometer 

syringe. The molar extiction coefficients of Butter Yellow , 

Yellow OB, and Orange OT were determined to be 2 .35 X  104 at 415 

nm, 1.3  x  104 at 445 nm, and 1.9 X  104 at 496 nm, respectively. 
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   The maximum solubilization of a dye by SDS-protein polypeptide 

complexes or SDS micelles were determined as follows: 5 ml of a 

50 mM sodium phosphate buffer, pH 7.0, containing an SDS-protein 

polypeptide complex and/or SDS micelles were added to a brown 

ampoule, together with an excess of a solid dye to be 

solubilized. The SDS concentration was various, while the 

protein concentration was kept at about 0.5  mg/ml. The  ampoules 

were sealed and shaken in a water bath, kept at 25 ±  0.2°C with 

the aid of a thermostat for 40 hr, which had been shown to be 

long enough for the system to attain, equilibrium. The superna-

tants were filtered through a glass filter (No. 4) which was 

kept at 25 ±  0.2°C by a thermostat. The amount of solubilized 

dye was estimated by the measurement of absorbancy after 

appropriate dilution with 50 mM sodium phosphate buffer, pH 7.0, 

containing 1 % SDS, using the values of molar extinction 

coefficients given above. 

   The partition of a dye between an SDS-protein polypeptide 

complex and the pure SDS micelle in conditions before the attain-

ment of saturation was estimated as follows: 5 mg of a protein 

polypeptide and 7.5 mg of SDS were dissolved in 10 ml of 50 mM 

sodium phosphate buffer, pH 7.0, containing 0.1 % SDS and 1 % 

glycerine. The solution was dialyzed against 1000 ml of the 

buffer solution. The dialyzate in  an amount of 1.5 ml was 

applied to a Sephadex G-100 column (2 x 60 cm) which had been 

equilibrated with 50 mM sodium phosphate buffer, pH 7.0, 

containing 0.1 % SDS and the desired amount of a solubilized dye. 

Elution was carried out with the same buffer used for the 
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equilibration, at a flow rate of 16  ml/hr. Aliquots of 1.8 ml 

were collected. Absorbance for each fraction was measured at 280 

nm and at the wavelength of maximum absorption of the dye being 

used. The protein concentration was estimated after correction 

for the contribution of the solubilized dye at 280 nm. The 

concentration of a dye and the equilibrium concentration of SDS 

in the baseline region in a chromatogram allowed the estimation 

of solubilization of a particular dye by SDS micelles. Solubili-

zation of a dye by SDS-protein polypeptide complex was estimated 

from the concentration of the dye and that of SDS in the peak 

region. The concentration of SDS bound to protein polypeptide 

was estimated from the protein concentration determined from the 

absorbance curve shown in Fig.5b and from the corresponding 

binding isotherm (Takagi et al., 1975a). 

IV. RESULTS AND DISCUSSION 

Solubilization in the presence of solid dye  

   In the present experiments, crystalline oil-soluble dyes were 

suspended in 50 mM sodium phosphate buffer, pH 7.0, containing 

SDS alone or an SDS-protein polypeptide complex in equilibrium 

with various concentration of SDS. The absorbance  of the solu-

tions, measured at the maximum absorption wavelength of the dye, 

plotted as a function of the total concentration of SDS, is the 

most direct presentation of the experimental data obtained. 
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 Fig.1. Solubilization of Butter Yellow by SDS in the presence 

 (o  o) and in the absence ( ) of reduced carboxymethylated 

bovine.serum albumin (0.52  mg/ml). 
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Fig.1 shows a typical example of such plots.In the absence of 

protein polypeptide, the solubilization of Butter Yellow began to 

be significant only above the critical micelle concentration of 

SDS (1.85 mM), as shown by a dotted line. In the presence of 

protein polypeptide the solubilization of Butter Yellow proceeded 

quite differenly from that shown by the dotted line. One gram of 

reduced and carboxymethylated bovine serum albumin binds maximal-

ly 1.25 g of SDS before attainment of the critical micelle 

concentration (Takagi et al., 1975a). SDS micelles, therefore, 

begin to appear only at the total concentration of 4.1 mM. 

Clearly, the complex formed between SDS and reduced and carboxy-

methylated bovine serum albumin can solubilize the dye. The two 

curves in Fig.1 eventually cross, and finally become parallel to 

each other at higher concentration of  SDS.' This means that the 

formation of SDS-bovine serum albumin (reduced and carboxymethyl-

ated) complex is completed, and futher solubilization is due to 

newly formed SDS micelles. Now slightly less of the dye was 

solubilized in the presence of reduced and carboxymethylated 

bovine serum albumin. 

   The same solubilization experiments were carried out three 

modified protein polypeptides derived from bovine serum albumin 

and egg white lysozyme; the data obtained are shown collectively 

in Fig.2. The eight curves in Figs.1 and 2 representing 

solubilization data in the presence of protein polypeptides, 

shown by the solid lines, can be classified according to their 

correlation with the corresponding curves for SDS micelles shown 

by the dotted lines in the figure. In Fig.2e, f, and g, the 
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Fig.2. Data similar to those of Fig.1 in the presence (  

and in the absence ( ) of protein polypeptides. Protein 

polypeptides and dyes are (a) reduced and carboxamidomethylated 

bovine serum albumin and Butter Yellow, (b) reduced and 

carboxamidomethylated bovine serum albumin and Orange OT, (c) 

reduced and carboxymethylated bovine serum albumin and Orange OT, 

(d) reduced and carboxamidomethylated lysozyme and Orange OT, (e) 

reduced and carboxamidomethylated bovine serum albumin and 

Yellow OB, (f) reduced and carboxymethylated bovine serum albumin 

and Yellow OB, and (g) reduced and carboxamidomethylated lysozyme 

and Yellow OB. 
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curves in the presence of polypeptide are always significantly 

above the solubilization curves for the SDS micelles. It should 

be noted that all of these cases were observed when the dye used 

was Yellow OB. The curve in Fig.2a for reduced and carboxamido-

methylated bovine serum albumin and Butter Yellow virtually 

overlaps the "SDS curve". Other curves in Fig.2b, c, and d have 

a cross-over with the corresponding SDS curve like those in 

• 

 Fig.1. 

Solubilization isotherms  

   We wanted to correlate the solubilization curves with the 

binding isotherms of SDS to protein polypeptides previously 

reported (Takagi et al., 1975a). To  make comparison easy, we 

have replotted the ordinates of the solubilization curves in 

Figs.1 and 2 against the equilibrium concentrations of SDS 

(concentration of SDS not engaged in the formation of  complexes) 

to give "solubilization isotherms". The equilibrium concentra-

tion was obtained by subtraction of the concentration of SDS 

bound to a protein polypeptide from the total concentration of 

SDS. The concentration of SDS bound was obtained from the 

binding isotherms (Takagi et al., 1975a). A typical example of 

the isotherms obtained is shown in Fig.3. The lysozyme deriva-

tives gave insoluble complexes below the equilibrium concentra-

tion of SDS of 1 mM. The presentation of data is, therefore, 

limited to the derivatives of bovine serum albumin. Correspond-

ing binding isotherms are also included in Fig.4. Each of the 
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Fig.3. Solubilization of Butter Yellow. Replot of the data of 

Fig.1 vs. equilibrium concentration of SDS. 

• 
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Fig.4. Replotted data similar to those of  Fig.3 in the region 

below the critical micelle concentration of SDS. Corresponding 

binding isotherm (----) was cited from the data of Takagi et al., 

(1975a). Points (s) indicate solubilization data in the presence 

of protein polypeptide and broken lines near the ordinates 

 (----) those in the absence of protein  pOlypeptide. (a) reduced 

and carboxamidomethylated bovine serum  albumin and Butter Yellow, 

(b) reduced and carboxymethylated bovine serum albumin and Butter 

Yellow, (c) reduced and carboxamidomethylated bovine serum 

albumin and Orange OT, (d) reduced and carboxymethylated bovine 

serum albumin and Orange  OT, (e) reduced and carboxamidomethyl-

ated bovine serum albumin and Yellow OB, and (f) reduced and 

carboxymethylated bovine serum albumin and Yellow OB. 
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abscissa scale of the two curves was adjusted so that their spans 

coincide at the points where binding of SDS and the solubiliza-

tion by SDS-protein polypeptide complex are completed,  respec-

tively. 

   It is to be noted that the data points measured in solubiliza-

tion experiments fall on, or very close to, the corresponding 

isotherms. This indicates that SDS bound to the protein 

polypeptides has solubilizing power comparable to that after 

saturation of the binding throughout the region where the binding 

isotherms were measured. 

Direct measurements of dye partition between complex and micelle  

   Solubilization has been studied under the condition where a 

solubilized dye is in equilibrium with its crystal. Such a 

saturation condition is rarely met in actual operation of 

SDS-polyacrylamide gel electrophoresis. We wanted to compare 

SDS-protein polypeptide complexes and SDS micelles with respect 

to their solubilizing power in conditions where their solubili-

zing capacity is not yet filled. For this purpose, the partition 

coefficient of a dye between SDS-protein polypeptide complex and 

SDS micelle should be directly estimated. It was tried to 

estimate the coefficients by making SDS-protein polypeptide 

complexes in equilibrium with SDS micelles solubilize an oil-solu-

ble dye by gel chromatography. Amounts of the dye solubilized 

could be varied. Fig.5 shows a typical example of elution data 

obtained by monitoring at 445 and 280 nm. The  presence of 
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Fig.5. Gel chromatography of reduced and carboxymethylated 

bovine serum albumin through a Sephadex column (2 x 60 cm) 

equilibrated with 50 mM sodium phosphate buffer, pH 7.0, 

containing 0.1 % SDS in which Yellow OB had been solubilized to 

36 % of the saturation level. Elution was monitored at 445 nm 

(a) and at 280 nm (b). For details, see Experimental Procedure. 
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 TABLE  I 

DISTRIBUTION OF SOLUBILIZED OIL-SOLUBLE DYES BETWEEN SDS BOUND TO PROTEIN POLYPEPTIDE AND MICELLAR SDS 

The amounts of dye  solubilized shown in the last line for each dye was obtained with micellar and bound SDS by separate experiments of equilibrium with solid 
dye. Distribution coefficients in these cases were evaluated assuming that the two groups of  solubilized dyes are in equilibrium through solid dye. Other data were 
obtained by gel chromatography experiments. RCAM, reduced and  .  carbox  amidomethylated; RCM, reduced and carboxymethylated; BSA, bovine serum albumin. 

Dye Dye  solubilized  (mol/100 mol SDS) Distribution coefficients between SDS bound to protein 

                                                                                      polypeptide and micellar SDS 
            Micellar Bound to Bound to Bound to 

                 RCAM BSA RCM BSA RCAM RCAM BSA RCM BSA RCAM 
                     lysozyme lysozyme 

Butter Yellow 0.25 0.23 0.92 
    0.59 0.76 1.29 

                                                                                                                                                                                           . 

    0.64 0.681.06 

     1.21 1.22 1.17 1.01 0.97 

Yellow OB 0.28 0.48 1.71 

   0.28 0.47 1.68 

    0.28 0.55 1.96 

 0.43- 0.89 2.07. 

   0.43 0.79 1.84 

   0.57 1.23 2.16 

    0.57 0.94  1.65 

   0.57 1.17 2.05 

      1.12 2.27 2.22 1.67 2.03 1.98 1.49 

Orange OT 0.24 0.22 0.92 

 0.24 0.20 0.83 . 

    0.46 0.42 0.91 

    0.46 0.46 1.00 

    0.49 0.52 1.06 

    0.55 0.64 1.16 

    0.83 1.00 1.20 

    0.94 1.06 1.13 

      0.97 0.96 0.95 0.84 0.99 0.98 0.87 .



baseline region between the peak and the trough indicates that 

the partition equilibrium of the dye between SDS-reduced carboxy-

methylated bovine serum albumin complex and SDS micelle has been 

established. Details have been described in Experimental proce-

dure. 

   Table I shows amounts of dye solubilized in SDS micelles and 

SDS-protein polypeptide complexes which are in equilibrium with 

each other. The amounts are expressed in moles of each of the 

dye solubilized per  100 moles of SDS. Distribution coefficients 

for the dyes partitioned between the complex and the micelle are 

also included in Table I. In the last line for each of the dye, 

the data obtained in the experiments of equilibrium with solid 

dye are included. The coefficients observed for Butter Yellow 

and Orange OT were nearly unity, and indicate that these dyes are 

almost equally partitioned between SDS bound to protein polypep-

tide and micellar SDS. The above data support the previous view 

that SDS bound to protein polypeptides forms clusters similar to 

micellar SDS, and that the clusters began to be formed below the 

critical micelle concentration (Takagi et al., 1975a). Twice as 

much Yellow OB was apparently solubilized by SDS bound to protein 

polypeptides than by micellar SDS. This can be explained if the 

dye has affinity not only to micellar clusters of SDS but also to 

the protein polypeptide. It is interesting that the only 

difference between Yellow OB and Orange OT is that the former has 

an amino group, whilst the latter has a hydroxyl group. It is 

not clear how such a minor difference leads to the significant 

difference in the solubilization. The interpretation of this 
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   phenomenon must await futher study. 

      The solubilization of oil-soluble dyes by complexes formed 

   between SDS and initially native proteins has been extensively 

  studied by Steinhardt and his colleagues (1974; 1977; Birdi & 

   Steinhardt, 1978). The majority of such complexes were shown to 

  be quite different in their solubilization behavior from the 

   complexes which were the objects of the present study. As shown 

   in Figs.3 and 4, the solubilization of oil-soluble dye proceeded 

   essentially in parallel with the binding. Although the solubili-

  zation curve went somewhat above  the corresponding binding 

   isotherm when Yellow OB was the solubilizate, the solubilization 

  efficient of the bound SDS was not sensitive to the kind of 

   modification of bovine serum albumin used here. On the other 

  hand, the experiments with the initially native proteins 

   (Steinhardt et al., 1974; Birdi & Steinhardt, 1978) showed that 

   "the proteins differed greatly in the extent to which they form 

   solubilizing complexes with SDS, and the effectiveness of such 

   complexes could also vary" (Steinhardt et al., 1977). The above 

 difference in solubilizing behavior is easily understood if it is 

   taken into consideration that the native proteins vary widely in 

   their stability against denaturation by SDS and that the protein 

   polypeptides are devoid of rigid structure from the beginning. 

      The implication of the results of the present study on  the 

   complexes formed between SDS and protein polypeptides, which are 

   major electrophoresing entities in SDS-polyacrylamide gel electro-

   phoresis, is as follows: (1) lipophilic materials present in a 

   sample. solution in SDS-polyacrylamide gel electrophoresis, as 
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     well as gel chromatography, in the presence of SDS may be almost 

     equally partitioned between SDS clusters on the complexes and the 

     SDS  micelles;  (2) the degree of contamination of the complexes 

     may decrease with the increase of the amount of SDS added to the 

     sample solution, since this leads to the increase of miceller SDS 

     concentration; (3) in either SDS-polyacrylamide gel electrophore-

     sis or SDS-gel chromatography, SDS-protein polypeptide complexes 

     differ in their velocity from miceller SDS. The complexes always 

     encounter new unloaded SDS micelles, which are supplied from the 

    buffer of the upper reservoir and pass the complexes, in 

     SDS-polyacrylamide gel electrophoresis. In SDS-gel chromatogra-

    phy, the complexes pass new unloaded SDS micelles which are 

     present in a gel column. Re-establishment of the partition of 

     solubilized materials may occur between SDS micelles and SDS-

     protein polypeptide complexes. Continuous re-establishment of 

     solubilization equilibrium has been verified in model experiments 

     of SDS-polyacrylamide gel electrophoresis using Yellow OB as the 

    substance solubilized (Kubo et al., 1980). The partition 

     experiments (Fig.5) actually utilized the above phenomenon in 

     SDS-gel chromatography and the successful application is the 

     strong supporting evidence of the  reality of the phenomenon. 
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     6. Model Study on the Fate of Lipophilic Materials Incorporated 

          into Sodium Dodecyl Sulfate-Protein Polypeptide Complexes 

          in Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis 

    I. SUMMARY 

        Complexes formed between sodium dodecyl sulfate (SDS) and 

     polypeptides, derived from proteins by reductive cleavage of 

     disulfide crosslinkages and denaturation, are the electrophore-

     sing entities in sodium dodecyl sulfate (SDS)-polyacrylamide gel 

     electrophoresis. SDS bound to the polypeptides has something in 

     common with SDS constituting micelles, and can incorporate 

     lipophilic materials (Takagi et al., 1980). Lipophilic materials 

     often contaminating samples of SDS-polyacrylamide gel electropho-

     resis are thus presumed to be incorporated into the complexes. 

      Model experiments using an oil-soluble dye, 1-o-tolylazo-2-naph-

      thylamine, were carried out to confirm the above assumption, and 

     to follow  the fate of such materials during the electrophoresis. 

     The dye incorporated into the complexes was found to be turned 

     over to SDS micelles migrating from the upper buffer reservoir 

      through the gel and overtaking the complexes. The complexes are 

      thus continuously deprived of the dye. A larger-sized complex is 

     freed of the dye more promptly than a smaller-sized complex, 

     because the former is electrophoresed more slowly and is 

     overtaken by more SDS micelles than the latter. The dye is 

      retained in the complexes only when the overtaking micelles have 
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  been also saturated with the dye. 

  II. INTRODUCTION 

      Sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophore-

  sis is frequently applied to biomembrane proteins. Samples 

  prepared from biomembranes are often contaminated with lipophilic 

  materials. When such a sample is treated with SDS prior to 

  electrophoresis, the lipophilic materials, otherwise insoluble in 

 an aqueous solution, are incorporated into the nonpolar environ-

  ment afforded by clustered long alkyl hydrocarbon chains of SDS. 

  Such a cluster can be found not only in a SDS micelle but also in 

  a complex formed between SDS and protein polypeptide (Sirahama et 

  al., 1974).  Steinhardt and his colleagues have shown  that. SDS 

  involved in such a complex has a strong ability to incorporate 

  lipophilic materials comparable to SDS forming a micelle 

   (Steinhardt et al.,  1977). Takagi et al. (1980) have further 

   studied the ability of SDS-protein polypeptide complexes bearing 

   SDS-polyacrylamide gel electrophoresis in mind, and arrived at 

   the same conclusion. Takagi et al. (1975a) have shown that the 

   incorporation of a lipophilic material perturbs electrophoretic 

   properties of both SDS micelles and SDS-protein polypeptide 

   complexes using dodecyl alcohol as a model of lipophilic 

   material. Lopez and Siekevitz (1973) suggested that natural 

   lipids also have an effect similar to that of dodecyl alcohol. 

      In the present chapter, the fate of such lipophilic materials 
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in SDS-polyacrylamide gel electrophoresis was followed using an 

oil-soluble dye as a model substance. The terms, "incorporation" 

and "incorporate" are often used. They are equivalent to the 

terms, "solubilization" and "solubilize", respectively, which are 

used in the field of physical chemistry of surfactants. 

III. EXPERIMENTAL PROCEDURE 

   Sodium dodecyl sulfate (SDS) was obtained from Nakarai 

Chemicals. It was 97 % pure by the criteria of gas chromatogra-

phy, and contained decyl and tetradecyl sulfate as the major 

contaminants. Bovine serum albumin and hen's egg white lysozyme 

were of the best commercially available quality, and were reduced 

and carboxamidomethylated  (RCAM) by the method described else-

where (Shirahama et al., 1974). Yellow OB was obtained from 

Daiwa Chemicals, recrystallized three times from 80 % aqueous 

ethanol, and finally purified by silica gel partition chromato-

graphy (Wako Gel c-100, 5 X 20 cm) using a mixture of petroleum 

ether and ethyl ether (9:1 ( v/v )) as an eluant (mp. 124-1250C, 

Merck Index  125-1260C). 

 SDS-polyacrylamide gel electrophoresis was carried out 

essentially according to the procedure of Weber and Osborn 

(1969), except that the concentration of SDS in the upper tray 

buffer was reduced to half and that SDS was added neither to the 

lower tray buffer nor the gels. Elimination of SDS from the gels 

and the lower tray buffer causes no trouble, since protein 
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 samples are electrophoresed surrounded by SDS supplied from upper 

 tray buffers (Kubo et al., 1979). Gel tubes were immersed in a 

 bath maintained at 25 ±  0.20C by circulation of water in the 

 jacket during electrophoresis. 

    Electrophoretic patterns were obtained by scanning gels using 

 a Toyo densitometer Model DMU-33C  (Fig.1a) and a Shimadzu 

 dual-wavelength scanner Model CS-900  (Figs.lb and c). 

 IV. RESULTS AND DISCUSSION 

    In chapter 3, it had been appeared that the addition of 

 dodecyl alcohol to a sample solution of SDS-polyacrylamide gel 

 variously retarded  electrophoresis of SDS micelles and SDS-

 protein polypeptide complexes. The phenomenon was ascribed to 

 the effect of incorporation of dodecyl alcohol by SDS micelles 

 and the complexes. SDS micelles were retarded most markedly. 

 The retardation of a complex became less significant as the 

 molecular weight of its protein moiety became higher. The 

 observation apparently conflicts with the result described by 

 Takagi et al. (1980) that the SDS involved in the complex 

 formation is as effective as the SDS forming micelle in 

 incorporation of lipophilic materials and that the efficiency is 

 independent of the size of the polypeptide moiety. it is 

 presumed that the observed perplexing phenomenon must be related 

 to transport of micelles and complexes during electrophoresis, 

 and the following working hypothesis is assumed. 
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   SDS micelles have mobility higher than that of any SDS-protein 

polypeptide complex in SDS-polyacrylamide gel electrophoresis 

(Kubo et al., 1975). SDS micelles electrophorese into a gel 

column from the upper tray buffer, and overtake and go ahead of 

the SDS-protein polypeptide complexes. SDS micelles surrounding 

a complex are, therefore, always replaced by the "newcomers". In 

such a situation, the lipophilic materials incorporated into the 

complex are rapidly partitioned between complexes and micelles. 

The complexes are thus deprived of the lipophilic materials. 

This phenomenon may be called a "washing effect by micelles". 

The larger the difference in velocity between micelles and 

SDS-protein polypeptide complexes, the more promptly the materi-

als will be removed from the complexes. The phenomenon described 

in the beginning of this section can be clearly interpreted by 

the above hypothesis. 

   Experiments using a "visible lipophilic compound" were carried 

out to testify the above hypothesis. Protein polypeptides, 

derived from bovine serum albumin and lysozyme by reductive 

cleavage of disulfide bonds and subsequent carboxamidomethylation, 

were used as samples and will be called RCAM-bovine serum albumin 

and RCAM-lysozyme, respectively. These polypeptides were treated 

with excess SDS. The resultant sample solution contained the two 

kinds of SDS-protein polypeptide complexes and SDS micelles. The 

solution was contacted with finely dispersed crystals of an 

oil-soluble dye, Yellow OB, under stirring, and was colored 

orange due to incorporation of the dye into the complexes and SDS 

micelles. 
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Fig.1. Patterns of SDS-polyacryl-

amide gel electrophoresis revealed 

by staining with Coomassie brilliant 

blue and subsequent scanning at 

565  nm  (a) and by direct scanning at 

445 nm (b, c) to localize proteins 

and Yellow OB, respectively. Gel 

concentration: T = 10 % and C = 2.7 

%; upper tray buffer: 0.1 M sodium 

phosphate buffer, pH 7.0, containing 

0.05 % SDS ; sample buffer: 0.01 M 

sodium phosphate buffer, pH 7.0, con-

taining 1 %  SDS'and 5 % glycerine; 

samples, 2.0  ug of RCAM-bovine serum 

albumin  and 2.0  ug of RCAM-lysozyme 

dissolved in 20  ul of the sample 

buffer (a), 30  ug each of the above 

two protein derivatives in 30  ul of 

the sample buffer (b, c); temper-

ature: 25 ±  0.2°C. The sample

solutions for each run and the upper tray buffer for (c) had been 

equilibrated with solid Yellow OB by shaking with it 40 hr at 

25°C. Arrows in (a) and (b) indicate 1.0 and 0.1 absorbance 

scales, respectively. The latter is common to (c). The three 

gel columns were prepared at the same time using the same 

acrylamide solution. 
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   The colored solution was used as a sample in SDS-polyacryl-

amide gel electrophoresis. Protein bands were located by 

staining with Coomassie brilliant blue as shown in Fig.la. The 

fast-moving band (left) and the slow-moving band (right) were 

assigned to RCAM-lysozyme and RCAM-bovine serum albumin,  respec-

tively,  with reference to the patterns obtained in the control 

runs for each of them. In the electrophoretic run shown in Fig. 

la, the concentrations of the protein polypeptides were too low 

to be revealed by visual or photometric inspection of Yellow OB 

incorporated into the complexes between SDS and either of the 

polypeptides. 

   Fifteen times the amount of the two protein polypeptides was 

then applied to SDS-polyacrylamide gel electrophoresis otherwise 

under the same condition. Now two orange-colored bands could be 

observed in the frontal region and the scanning at 445 nm for 

Yellow  OB of the gel column in the glass tube just after the 

electrophoretic run gave the pattern shown in Fig.lb. The second 

peak (from left) was identical in position to the band of 

RCAM-lysozyme in Fig.la. Staining of the gel with Coomassie 

brilliant blue revealed two bands. 

   They appeared at positions identical to those of RCAM-lysozyme 

 and RCAM-bovine serum albumin in Fig.la, and could be assigned 

to each of them, respectively. The first peak (from left) in 

Fig.lb electrophoresed in the  top of the frontal region, and 

failed to be stained by Coomassie brilliant blue. These 

properties are just those expected for the micelle band formed by 

the excess SDS added to the sample solution (for details of the 
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behavior of the band, see chapter 2). According to the results 

obtained for the solubilization of oil-soluble dye by SDS-protein 

polypeptide complexes (Takagi et al., 1980), the Yellow OB 

molecules must have been equally distributed among the three 

species, namely, the two kinds of complexes and the SDS micelle. 

Seemingly the Yellow OB molecules incorporated into the complex 

between SDS and  ROAM-bovine serum albumin with the lowest 

mobility among the three are "washed away" by the overtaking 

micelles most effectively and thus failed to be visualized. 

   The "washing effect by micelles" was no more expected if the 

SDS micelles overtaking the SDS-protein complex with lower 

mobility had been saturated with Yellow OB. Figure lc shows the 

electrophoretic pattern obtained by scanning a gel column at 445 

nm after an electrophoretic run in which the upper reservoir 

buffer had been saturated with Yellow OB but other conditions 

were the same as in Fig.lb.  The  rise of the baseline region 

indicated that micelles electrophoresing into the gel from the 

reservoir were actually loaded with the dye as expected. Now a 

band was observed near the starting point at a position identical 

to that of RCAM-bovine serum albumin (Fig.la) other than the two 

bands appeared at the positions identical to those in Fig.lb. 

Clearly the dye incorporated into the complex between SDS and 

 ROAM-bovine serum albumin was not "washed away" in this case. 

   The above results are those expected from the hypothesis of 

"washing of SDS -protein polypeptide complex by SDS micelles"
, 

and strongly support the reality of the above hypothesis. 

Knowledge of the above phenomenon seems helpful in designing 
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experiments and in interpreting the results obtained in the 

application of SDS-polyacrylamide gel electrophoresis to samples 

containing lipophilic materials. 

   It is to be noted that acrylamide gel concentration (T %) must 

be equal to or higher than 10 % to reproduce the results 

described in this chapter. This is because SDS micelles are 

electrophoresed in advance of SDS monomers in equilibrium with 

them in a gel of concentration below 10 % as described in 

chapter 2, and are dissociated gradually to "dump" the dye 

molecules to cause anomalies in the  ,frontal region. Presence of 

a shoulder in front of the micelle peak in both Figs.  lb and c 

seems to suggest that some less serious anomalies are inevitable 

even in a 10 % gel. 
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7. Sodium Dodecyl Sulfate-Protein Polypeptide Complexes in 8 M 

    Urea with Special Reference to Sodium Dodecyl Sulfate-Poly-

    acrylamide Gel Electrophoresis 

I. SUMMARY 

   The effect of 8 M urea on the complexes formed between sodium 

dodecyl sulfate and protein polypeptide were found to be as 

follows: (1) The maximum amount of SDS bound is reduced by almost 

half, and the minimum equilibrium concentration of SDS necessary 

to reach saturation of the binding was nearly doubled; (2) The 

apparent content of a-helical structure deduced from CD measure-

ment is only reduced to the level of 50-70 % of that in the 

presence of sodium dodecyl sulfate alone; (3) The effective size 

of the sodium dodecyl sulfate-protein polypeptide complex deduced 

from viscosity measurements is increased, but is still smaller 

than the effective size of the protein in 8 M urea alone. 

II. INTRODUCTION 

  Both sodium dodecyl sulfate (SDS) and urea have been 

extensively used as strong protein denaturants. Polacrylamide 

gel electrophoresis of proteins is often carried out in the 

presence of both of the two denaturants. Swank and Munkres 

(1971) recommended the addition of 8 M urea to the buffer used in 
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SDS-polyacrylamide gel electrophoresis, since the presence of 

both 8 M urea and SDS improves the resolution of the system for 

proteins of molecular weight less than  10,000 and facilitates 

dissociation of protein aggregates (Swank & Munkres, 1971; 

Bachrach & Hess, 1973; Abraham & Cooper, 1976; Downer et al., 

 1976). 

   To evaluate data obtained from SDS-polyacrylamide gel 

electrophoresis in the presence of 8 M urea, it is necessary to 

understand the effect of urea on the complexes formed between SDS 

and a protein polypeptide. The complexes formed in the absence 

of urea have been extensively studied (Reynolds & Tanford, 1970; 

Shirahama et al., 1974; Takagi et al., 1975a; Wright et al., 1975; 

Mattice et al., 1976; Rowe & Steinhardt, 1976; Dunker & Kenyon, 

 1976). No study has been made, however, on the complexes in the 

presence of urea. This chapter describes the result of 

comparative experiments on the states of protein polypeptides in 

aqueous solutions containing either SDS or urea or both. 

III. EXPERIMENTAL PROCEDURE 

   Sodium dodecyl sulfate (SDS) designated as SPS-4 was obtained 

from Nakarai Chemicals as a specially prepared reagent.  .It was 

97 % pure by gas chromatography, the major contaminants being the 

decyl and  tetradecyl  sulfates. Dodecyltrimethylammonium chloride 

(special grade) was obtained from Tokyo Kasei Chemicals. Urea 

(special grade) was obtained from Wako Chemicals, and used 
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     without further purification. Other reagents  including  proteins 

     were special grade or those routinely used in polyacrylamide gel 

     electrophoresis. Proteins with disulfide groups were reduced and 

     carboxamidomethylated (RCAM) according to the method described 

      elsewhere (Shirahama et al., 1974). 

         Protein concentration was determined spectrophotometrically 

                                                   19,      using authentic values of E
1cm0at 280 nm (6.7, 7.4, 9.1, and 26.9 

     for bovine serum albumin, ovalbumin,  13-lactoglobulin,  'and 

     lysozyme, respectively) or at 410 nm (90.7 for cytochrome c). 

     The concentration of hemoglobin was determined by the method of 

     Van  Kampen-Zijlstra (1961) as ferrihemoglobin cyanide, assuming 

     the molar extinction coefficient for the heme group to be 7290 at 

     503 nm; the absorption was not affected by the presence of SDS at 

      this wavelength. 

        Sodium phosphate buffer of pH 7.0 was prepared by mixing 

     0.05 M  NaH2PO4 and 0.05 M  Na2HPO4 and adding sodium azide to a 

     final concentration of 0.02  %; hereafter, this buffer will be 

     referred to as 0.05 M sodium phosphate buffer, pH 7.0. When urea 

     was added to this buffer to a final concentration of 8 M, the pH 

      value increased to 7.6. 

         The critical micelle concentration of SDS in the presence or 

     absence of  8'M urea was determined by a method utilizing the 

     marked change of electrophoretic mobility of SDS on micelle 

     formation in a polyacrylamide gel. SDS was added only to the 

      upper reservoir of the electrophoretic apparatus and several runs 

     were carried out at various SDS concentration  around that 

      expected to be the critical mucelle concentration. The mobility 
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of SDS was estimated by measurement of the position of a white 

band formed when the zonal front of the dodecyl sulfate ion ran 

counter to that of the dodecyltrimethylammonium ion which had 

been added to the lower reservoir. The concentration of the 

cationic surfactant was kept constant just below its critical 

micelle concentrations throughout the runs. 

   The binding of SDS to a protein polypeptide was measured by 

the equilibrium dialysis technique, essentially according to the 

method described by Takagi et al., (1975a). Dialysis was con-

tinued for 14 days at 25.0 ±  0.2°C.  When the final equilibrium 

concentration of SDS was above the critical micelle concentration, 

the starting condition of equilibrium dialysis was brought close 

to the expected final condition. SDS was analyzed by colorimetry 

of the Methylene  Blue-SDS complex extracted  with chloroform 

(Takagi et al., 1975a). 

   CD spectra were measured with a JASCO J-20 CD spectrophoto-

meter. The temperature of the sample solution was controlled at 

25 ±  0.1°C using a brass muffle obtained from JASCO. CD data are 

reported as mean residue ellipticity. Mean residue weight was 

assumed to be 112 for all proteins used. Sample solutions 

containing SDS were prepared in  the  same manner as in viscosity 

measurements. 

    Viscosity was measured with an  Ubbelohde type viscometer with 

flow time for water of 200 sec. Protein samples were dissolved 

to a final concentration of between 2 and 4  mg/ml in 0.05 M 

sodium phosphate buffer, pH 7.0 containing 3.5 mM SDS and/or 8 M 

urea.  .Enough SDS was further added to the solutions to supply 
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sufficient SDS for binding to the proteins; the required amounts 

of SDS were calculated from corresponding binding isothrms. 

A sample solution thus prepared was dialysed against a hundred 

volumes of an appropriate buffer. Dialysis was  carried out for 

14 days for the buffer containing SDS and several days for that 

lacking it. For dilution of a sample solution in the viscometer, 

the outer solution was used as the solvent. Both the inner and 

the outer solutions were filtered through a Millipore Filter 

before pouring into the  viscometer. Cytochrome c and hemoglobin 

were dissolved in the same manner as described above, and heated 

at  1000C in boiling water for 3  min before starting dialysis. 

Other proteins had been reduced and carboxamidomethylated to make 

the above denaturation procedure unnecessary. 

IV. RESULTS 

Protein polypeptides  

   Sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophore-

sis is usually carried out with proteins in which the intra- and 

inter-chain disulfide groups have been reductively cleaved . In 

the present study, sample proteins having disulfide groups were 

reduced and carboxamidomethylated to prevent reformation of 

disulfide groups during preparation and measurements. Cytochrome 

 c and hemoglobin, which lack disulfide group, were simply heated 

at  100DC in the presence of necessary amounts of SDS and/or 8 M 
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urea to complete denaturation. 

Binding isotherms  

   Fig.1 shows binding isotherms of SDS to RCAM-lysozyme and 

RCAM-bovine serum albumin in the presence and the absence of 8 M 

urea. The presence of 8 M urea had the following major effects 

on the binding isotherms: (1) The maximum amount of SDS bound was 

reduced by almost half; (2) The maximum equilibrium concentration 

of SDS necessary to attain maximum binding was nearly doubled. 

These effects have also been observed with two kinds of plant 

virus coat proteins by Sano et al., (1978). The above effects of 

urea, therefore, may be taken to be common to binding isotherms 

of SDS to various kinds of protein polypeptides. RCAM-lysozyme 

was precipitated when the equilibrium concentration was below 

half of the critical micelle concentration either in the presence 

(curve 2) or in the absence (curve 1) of 8 M urea. Presumably 

the complex formed between SDS and the highly basic RCAM-lysozyme 

at  low binding ratio is highly aggregated, making it insoluble 

even in 8 M urea. 

   As has been described in the paper on the binding isotherms 

(Takagi et al., 1975a), the binding of SDS to a protein 

polypeptide proceeds in two or three steps, as shown by curve 3 

in Fig.1. As shown by curve 4 in Fig.1, in the presence of 8 M 

urea the first step disappeared and the amount of bound SDS 

increased monotonously over a wide concentration range of SDS. 

The same effect has been observed with the virus coat proteins 
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Fig.1. Binding isotherms of SDS to protein polypeptides in the 

presence (curve 2 and 4) and in the absence (curve 1 and 3) of 

8 M urea in 0.05 M sodium phosphate buffer, pH 7.0, at  25.00C. 

a, RCAM-lysozyme; b, RCAM-bovine serum albumin. Arrows indicate 

the critical micelle concentrations of SDS in the presence 

(right) and in the absence (left) of 8 M urea. Curve 3 is cited 

from the report by Takagi et al. (1975a). Due to the formation 

of insoluble material in the region indicated as "ppt" in  Fig.1a, 

measurement at lower concentrations was impossible. 
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(Sano et al., 1978). The present study was initiated with 

special reference to SDS-polyacrylamide gel electrophoresis, 

which is carried out in the presence of SDS in a concentration 

above its critical micelle concentration. The binding process 

before attainment of the saturation value was, therefore, not 

further investigated in the present study. 

CD spectra  

   Fig.2 shows CD spectra of RCAM-bovine serum albumin, 

 RCAM-lysozyme, and RCAM-ovalbumin in the presence of 3.5 mM SDS 

and/or 8 M urea. In 3.5 mM SDS (curves labeled 1), CD spectra 

for the three protein polypeptides showed patterns anticipated 

for a mixture of a-helix and random coil with the amount of 

a-helix present  ca. 50 %, according to Greenfield and Fasman 

(1969). In 8 M urea (curves labeled 3), CD spectra for the three 

polypeptides showed patterns anticipated for a random coil 

(Greenfield & Fasman, 1969). In the presence of both 3.5 mM SDS 

and 8 M urea, CD spectra showed patterns intermediate between the 

above two cases. The presence of 8 M urea made measurements 

below 205 nm impossible. It is to be noted that the CD patterns 

observed for the three polypeptides derived from different 

proteins are similar in each of the three different conditions. 

Such a convergence to a common CD pattern has been reported for 

many SDS-protein polypeptide complexes by Mattice et al. (1976). 
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Fig.2. CD spectra of protein polypeptides in 3.5 mM SDS (curve 

1), in 3.5 mM SDS plus 8 M urea (curve 2), and in 8 M urea (curve 

3) at  25.00C. a, RCAM-bovine serum albumin; b, RCAM-lysozyme; c, 

RCAM-ovalbumin. The buffer solution was the same as in Fig.1. 
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 Fig.3.. Plots of reduced viscosity versus concentration for 

RCAM-lysozyme (a) and RCAM-bovine serum albumin (b) at  25.000C in 

the presence of 3.5 mM SDS  (0---0), 3.5 mM SDS plus 8 M urea 

 (x  x), and 8 M urea  (4,---o), respectively. The buffer was the 

same as in  Fig.1. 
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     Viscosity  

        Fig.3 shows plots of reduced viscosity of SDS-protein  poly-

     peptide complex versus concentration for RCAM-lysozyme and 

     RCAM-bovine serum albumin. Such viscosity measurements were 

     carried out with six other kinds of protein polypeptides. The 

     reduced viscosity was almost independent of the concentration of 

     each protein polypeptide. Intrinsic viscosities obtained are 

     plotted in Fig.4 versus molecular weights of the protein 

     polypeptides. 

    V. DISCUSSION 

• 

        The proposal by Swank and Munkres (1971) of the addition of 

     8 M urea to the medium of SDS-polyacrylamide gel electrophoresis 

     was followed by the widespread use of this modified technique. 

     The improvement gained by  the modification may be ascribed to two 

     major factors: the first  is the change of the nature of the 

     aqueous SDS solution by the addition of 8 M urea. The second is 

     that the presence of 8 M urea makes it possible to prepare a 

     transparent and highly cross-linked polyacrylamide gel with an 

     improved performance for small-sized protein polypeptides. The 

     present study concerns the first factor. SDS-polyacrylamide gel 

     electrophoresis in the presence of 8 M urea has been carried out 

     in various buffer solutions. In the present study, 0.05 M sodium 

     phosphate buffer, pH 7.0, was the sole buffer solution used. 
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Similar conclusions will be obtained with other buffers as far as 

the comparision with behavior of a protein polypeptide in the 

three denaturing media (3.5 mM SDS, 3.5 mM SDS plus 8 M urea, and 

8 M urea) is concerned. 

SDS binding  

   The major premises of SDS-polyacrylamide gel electrophoresis 

concerning SDS binding are as follows (Reynolds & Tanford, 1970; 

Takagi et al., 1975a): (1) SDS binding is saturated; (2) The 

intrinsic charge of a protein polypeptide is smeared out to give 

a constant surface charge density, as the result of the high and 

nonspecific affinity of SDS, to give a nearly constant binding 

ratio of near 1.5 (weight to weight basis).  SDS-polyacrylamide, 

gel electrophoresis in the presence of 8 M urea is generally 

carried out in an SDS concentration of 3.5 mM (0.1 %) or above. 

Though a significant lateral shift of the binding isotherm is 

observed for RCAM-lysozyme and RCAM-bovine serum albumin (Fig.1), 

the SDS binding is saturated in this concentration range. The 

first premise is still satisfied even in the presence of 8 M urea. 

   Reduction of the maximum amount of SDS bound almost by half 

was observed with both RCAM-lysozyme and RCAM-bovine serum 

albumin in the present study, and with two virus coat proteins by 

Sano et al. (1978), and clearly jeopardizes the second premise. 

Tung and Knight (1971) have demonstrated using a model system 

(maleylated and unmaleylated virus coat proteins) that SDS-poly-

acrylamide gel electrophoresis gives incorrect molecular weight 
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     for proteins with relatively high net charge. The presence of 

     8 M urea evidently promotes such a tendency to give an incorrect 

     estimation, due to insufficient smearing out of the intrinsic 

      charge. 

     Conformation  

        To understand the effect of urea on the conformation of an 

     SDS-protein polypeptide complex, it is  prerequisite to have 

     a knowledge about its conformation in the absence of 8 M urea. 

    Several models have been proposed for this kind of complex 

     (Reynolds & Tanford, 1970; Shirahama et al., 1974; Takagi et al., 

     1975a; Wright et al., 1975;  Mattice et al., 1976; Rowe & 

     Steinhardt, 1976; Dunker & Kenyon, 1976). The popular "rod-like" 

     model of Reynolds and Tanford (1970) was introduced to interpret 

     the deviation of intrinsic viscosities of the complexes from 

     those expected for compact globules assuming them to be rigid 

     ellipsoids from the beginning, and, therefore, is not realistic. 

     Models proposed thereafter (Shirahama et al, 1974; Takagi et al., 

     1975; Wright et al, 1975; Mattice et al, 1976) laid emphasis on 

     the flexible nature of the complexes. In this chapter, the 

     results obtained will be discussed in the light of the "necklace 

     model" proposed by Shirahama et al. (1974) and  Takagi et al. 

     (1975a). In summary, the necklace model is characterized as 

     follows: (1) The polypeptide chain of a complex is essentially 

     flexible; (2) dodecyl sulfate ions bind to a protein polypeptide 

     to form a micelle-like cluster; (3) the polypeptide chain  locally 
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assumes a-helical structure. According to the result of CD 

measurements by Mattice et al. (1976), a-helical content ranges 

from 30 to 50 % for many kinds of protein polypeptides. 

   CD spectra in Fig.2 indicate that most (50-70 %) of the 

a-helical structure present in 3.5 mM SDS still persists in 

solution containing both 8 M urea and 3.5 mM SDS. This was 

judged from the CD intensity  at. 220 nm which is generally 

regarded as a measure of a-helical content, assuming that no 

a-helical structure  was present in 8 M urea (Sano et al., 1978). 

It is surprising that the a-helical structure still persists to 

such an extent in 8 M urea which forces most protein polypeptides 

to expand to a randomly coiled state (Tanford, 1968). Presumably 

the hydrocarbon moieties of SDS molecules associate around a 

protein polypeptide to afford an environment sequestered from the 

concentrated urea solution and favor formation of hydrogen bonds 

to maintain the a-helical structure. Such an effect is expected 

only if SDS is bound to a protein polypeptide in groups to afford 

an extended hydrophobic environment which allows formation of 

a-helical structure. This is precisely the situation assumed in 

the necklace model (Shirahama et al., 1974). 

   The fact that urea and SDS act in opposite way on the  bo value 

of ovalbumin even in each other's presence was pointed out by 

Meyer and Kauzmann (1962). The ORD parameter,  bo, suggested the 

same situation concerning the a-helical content for ovalbumin as 

that suggested from the CD data of Fig.2 for the three protein 

polypeptides. At that time, urea as well as SDS was assumed to 

rupture hydrophobic interactions (Meyer & Kauzmann, 1962). 
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Fig.4. Logarithmic plots of intrinsic viscosity,  [n], versus 

molecular weight for various protein polypeptides in the presence 

of 3.5 mM SDS  (0---0), 3.5 mM SDS plus 8 M urea  (x  x), and 8 M 

urea  (411---4,), respectively. Proteins are, from left to right, 

bovine heart cytochrome c, bovine pancreatic ribonuclease A, 

 hen's egg white lysozyme, human hemoglobin, bovine  13-lactoglobu-

lin, rabbit muscle lactic dehydrogenase, ovalbumin, Bacillus 

subtillis  a-amylase, and bovine serum albumin. 
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The interpretation of the observed phenomena was, therefore, 

quite confusing (Meyer & Kauzmann, 1962). Similar experimental 

results were subsequently obtained by Jirgensons (1963). 

   The intrinsic viscosity, a measure of hydrodynamically 

effective size of a complex, decreased with the change of medium 

in the following order: 8 M urea, 3.5 mM SDS plus 8 M urea, and 

3.5 mM SDS (Fig.4). This suggests that the increase in the 

effective size of a protein polypeptide by the binding of SDS is 

superseded by the decrease due to formation of  a-helical 

structure. The  a-helical  structure  ,is presumed to be local, 

short-range, and intermitted to allow flexibility of the complex. 

A similar decrease of intrinsic viscosity has been observed when 

amylose in an alkaline aqueous solution assumes a helical 

structure on the formation of a complex with SDS (Takagi & 

Isemura, 1960; Rao & Foster, 1963). 

   All three logarithmic plots of intrinsic viscosity versus 

molecular weight of the polypeptide moiety of the  complexes 

(Fig.4) are almost parallel, having inclination around 0.7. The 

value indicates that the polypeptide chains of the complexes 

behave as flexible coils from macroscopic point of view (Tanford, 

1961) in each of the three denaturing media. Intrinsic 

viscosities of the complexes in the absence of urea have been 

measured, and plots equivalent to the bottom one in Fig.4 have 

been reported by Reynolds and Tanford  (1970) and Hamauzu et al. 

(1975). The two reported plots and ours, however, differ from 

each other. The inclination obtained by the other two groups 

(Reynolds & Tanford, 1970; Hamauzu et al, 1975) were in 
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     agreement, and were around 1.2, apparently indicating  that the 

     complexes are asymmetric in support of the rod-like  model*of 

     Reynolds and Tanford (1970). The present author can offer no 

     explanation for the difference between the previously reported 

     results and the present results, except to point out that the 

     previous measurements were made in media of salt concentrations 

     significantly lower than that of the buffer solution  used in the 

     present study. The viscosity of an SDS-protein polypeptide 

     complex is quite sensitive to salt concentration (Takagi et al., 

     1981). 

        It is to be noted in Fig.4 that the intrinsic viscosity of the 

     complexes in 3.5 mM SDS alone levels off as the molecular weight 

     becomes less than 15,000. This phenomenon must be closely 

     related to the lowering of the resolution of SDS-polyacrylamide 

     gel electrophoresis for proteins in the regions of molecular 

     weight less than 15,000 (Williams & Gratzer, 1971).  In the 

      presence of 8 M urea, no leveling off was observed, and the value 

     of intrinsic viscosity was still variable in this region. This 

     might be a major factor improving the resolution of SDS-poly-

     acrylamide gel electrophoresis in the presence of 8 M urea. The 

      plot was, however, less monotonous and points were scattered more 

     than either of other two plots in Fig.4. This will lead to 

     erroneous estimates of molecular weight. The auther wanted to 

     investigate the correlation between the effective sizes of 

      complexes in 8 M urea and their molecular weights for small-sized 

     protein polypeptides in more detail. Preparation of a sample 

      solution of SDS-protein polypeptide complex for a protein with 
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molecular weight less than 10,000 is quite difficult due to the 

lack of appropriate dialysis membrane. The present auther, 

therefore, used gel chromatography to investigate the problem, 

but found that all conventional gels for molecular sieving 

deteriorated in aqueous solutions containing both of 3.5 mM SDS 

and 8 M urea, making gel chromatography impracticable. The 

solution of this problem requires further work. 
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      8. Interaction Between the  al Chain of Rat Tail Collagen and 

          Sodium Dodecyl Sulfate with Reference to Its Behavior in 

          SDS-polyacrylamide Gel Electrophoresis 

     I. SUMMARY 

         The interaction between the  al.chain of rat tail collagen and 

      sodium dodecyl sulfate (SDS) was studied to provide knowledge 

      necessary to understand the behavior of the complex between them 

      in a molecular sieving technique such as SDS-polyacrylamide gel 

      electrophoresis. Measured properties include binding isotherm, 

      CD spectrum, viscosity and behavior in the free boundary electro-

      phoresis, the gel electrophoresis and the high performance silica 

      gel chromatography. The complex differed in most respects from 

      the complexes between SDS and polypeptides derived from water-

      soluble globular proteins, reflecting its peculiar amino acid 

      composition. The hydrodynamically effective volume of the SDS-al 

     chain complex was the most significantly deviated among the 

      properties studied. The complex of the al chain consisted of 

      1052 amino acid residues was found to have the same effective 

      volume as that of a standard polypeptide consisting of about 800 

      residues. The abnormal behavior of the SDS-al chain complex was 

      interpreted on the basis of these result. 
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II. INTRODUCTION 

   Sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophore-

sis (Shapiro et al., 1967; Weber & Osborn, 1969) is based on the 

assumption that sample proteins as well as proteins used as 

molecular weight standards (standard proteins) form complexes 

with SDS which are homologous with one another (Reynolds & 

Tanford, 1970; Shirahama et al., 1974). It is, however, being 

applied to proteins, such as those of the collagen family, which 

are hardly expected to fulfill the  premise.. 

   Collagens are unique with respect to their amino acid 

composition and sequence. Glycine residues appear every three 

residues, and proline and hydroxyproline residues frequently 

appear at the positions of X and Y, respectively, in the 

repeating sequence of Gly-X-Y (Piez, 1976). Collagen polypep-

tides thus lack the ability to form the  a-helical structures 

predominant in the complexes formed between SDS and polypeptides 

derived from standard proteins (standerd complexes) (Mattice et 

al., 1976). Due to the unusual amino acid composition, the mean 

residue weight of the  al chain, 91.8 (Piez et al., 1963), is 

significantly lower than those of the standard proteins, which 

are around 115 (Freytag et al., 1979). It is quite natural to 

expect that the nature of the complexes formed between SDS and 

the polypeptides derived from collagen is significantly different 

from that shared by the standard complexes. 

   Furthmayr and  Timpi (1971) found that the  al chain of collagen 

 shows. electrophoretic mobility expected for a protein with 
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molecular weight 40 % higher than the true value (96000) in 

SDS-polyacrylamide gel electrophoresis. Several studies have 

since been carried out on the applicability of the 

SDS-polyacrylamide gel electrophoretic technique to estimate 

molecular weights of polypeptides derived from collagen (Freytag 

et al., 1979; Furthmayr &  Timpl, 1971; Hayashi & Nagai, 1980). 

However, no definite conclution has been reached concerning the 

point. It thus seemed desirable to make clear how 

collagen polypeptide chains differ from those derived from 

standard proteins in the mode of interaction with SDS. 

   The present study specifically on the  al chain of rat tail 

tendon collagen was therefore initiated. The  study followed the 

pattern of the previous studies on the interaction of SDS with 

polypeptides derived from standard proteins (Shirahama et al., 

1974; Takagi et al., 1975) and from a membrane protein (Miyake et 

al., 1978). The binding isotherm of SDS to the  al chain was 

measured in parallel with measurement of CD spectra. In the 

condition of SDS-polyacrylamide gel electrophoresis where the 

binding had been saturated, measurements of free boundary 

electrophoresis and viscosity of the complex between SDS and 

the  al chain were carried out to estimate its intrinsic 

electrophoretic and hydrodynamic properties in the absence of the 

polyacrylamide gel matrix. 
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III. EXPERIMENTAL PROCEDURE 

   Acid-soluble collagen was prepared from tail tendons of Wistar 

rats. The  al chain was isolated essentially according to the 

procedure of Chung and Miller (1974). The preparation exhibited 

a major and a minor band in SDS-polyacrylamide gel electrophore-

sis. The latter accounted for only 0.5 % and was assigned to the 

 811 chain. Concentration of the  al chain was determined spectro-

photometrically. The value of Allnat 230 nm was determined to be 
22.5 by the dry weight method. 

   SDS was prepared by sulfation of n-dodecyl alcohol (99.8 % 

with respect to the chain length distribution) (Dreger et al., 

1944). Critical micelle concentration of the SDS preparation was 

found to be 1.66 mM at  25°C in 50 mM sodium phosphate buffer, pH 

7.0, by measurement of the solubilization of Yellow OB (Takagi et 

al., 1980). In SDS-polyacrylamide gel electrophoresis and 

high performance silica gel chromatography, SDS obtained from 

Nakarai Chemicals (SPS-4, 97 %) was used. Sodium phosphate 

buffer of pH 7.0 was prepared by mixing 50 mM  NaH2PO4 and 50 mM 

 Na2HPO4 and adding sodium azide to a final concentration of 0.02%. 

   Binding of SDS was measured by the equilibration of a solution 

of the  al chain and the buffer solution with respect to SDS by 

dialysis (Takagi et al., 1975) or by gel chromatography. In the 

chromatography technique, 1 mg of the al chain was dissolved in 1 

ml of 50 mM sodium phosphate buffer, pH 7.0, containing 10 mM SDS 

and 1.5 % glycerol. The solution was applied to a Sephadex G-100 

column. (1.6 X 65 cm; thermostatically maintained at  25°C) 
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   equilibrated with 50 mM sodium phosphate buffer, pH 7.0, 

   containing SDS at the desired concentration, and eluted with the 

   same buffer at a flow rate of 20  ml/h. Aliquots of 2 ml each 

   were collected. SDS was analyzed colorimetrically (Takagi et 

   al., 1975a). 

       CD spectra were measured with a JASCO J-500 CD spectropolari-

   meter. The data obtained were expressed as mean residue molar 

   ellipticity. The mean residue weight of the al chain was assumed 

   to be 91.8 (Piez et al., 1963). Sample solutions for the CD 

   measurements were prepared as follows. One mg of the al chain 

   was dissolved in 2 ml of 50 mM sodium phosphate buffer, pH 7.0, 

   containing the desired amount of SDS.  The'solution was heated 

   for 2  min in boiling water. Measurements of CD spectra as well 

   as absorbance at 230 nm were made after standing for  20-30hr at 

   room temperature near 25°C. The concentration of free  SDS was 

   calculated from the amount of SDS added using the binding 

    isotherm. 

       Free boundary electrophoresis was carried out at 25.0 ±  0.1°C 

   using a Tiselius-type apparatus, Hitachi model HTB-2A. The 

   sample solutions were prepared in the same manner as in the 

    viscosity measurements. 

      SDS-polyacrylamide gel electrophoresis was carried out 

   according to the standard procedure (Weber & Osborn, 1969). 

   After pre-electrophoresis (1 hr, 8 mA/tube), the samples were 

   electrophoresed at various gel concentrations at 6 mA per tube 

    (thermostatically maintained at  25°C). Reduced-carboxamidometh-

   ylated (RCAM) bovine serum albumin used as a marker was prepared 
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as described elsewhere (Shirahama et al., 1974). 

   Viscosity was measured with an Ubbelohde type viscometer (flow 

time of 200 sec for water). The  al chain was dissolved in 50 mM 

sodium phosphate buffer, pH 7.0, containing 2.0 mM SDS. SDS was 

added further to the solution to supply SDS to be bound to the al 

chain. The amount of SDS required was calculated using the 

binding isotherm. A sample solution thus prepared was heated in 

a boiling water bath for 3  min, and dialyzed against 100 vol. of 

the solvent for 14 days. The outer solution was used as the 

solvent for the dilution of a sample solution. The solution and 

the solvent were filtered through a membrane filter (pore size, 

2.0  um). 

   Analytical high performance silica gel chromatography was 

carried out using  two'TSK-GEL G-4000SW columns (Toyo Soda Co., 

each 60 cm X 7.5 mm i.d.). A TSK RI-8 differential refractometer 

(Toyo Soda Co.) was used to monitor elution. 

IV. RESULTS 

 Binding isotherm  

    Fig.1 shows the progress of binding of SDS to the al chain as 

a binding isotherm. The isotherm for RCAM-bovine serum albumin 

is included as a reference. Below 1.3 mM free SDS, the  al chain 

formed precipitates. 
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 Fig.1. Binding isotherm of SDS to the al chain of rat tail 

collagen ( ) in 50  mM sodium phosphate buffer, pH 7.0, at 

25.0 ±  0.20C. Data designated by filled and open squares were 

obtained by the equilibrium dialysis (14 days) and the gel 

chromatography techniques, respectively. Height and width of 

each square indicate mean deviation. The arrow on the abscissa 

indicates the critical micelle concentration of SDS. The 

isotherm of RCAM-bovine serum albumin ( ) is cited from a 

report by Takagi et al.(1975a). 
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Circular dichroism  

   Fig.2 shows typical examples of CD spectra of the  al chain. 

In the absence of SDS, the CD spectrum of the  al chain was 

similar to curve 3 at the beginning, and changed with time 

finally to have a pattern like curve 1 after 20 h at  25°C. A 

maximum at 222 nm is characteristic of native collagen. The 

collagen preparation  used in this study showed molar residue 

ellipticity of 4900  deg•cm2•  dmo1-1 in 0.05 M acetic acid, pH 3, 

at the wavelength. Curve 2 shows the CD spectrum of the  al chain 

in the presence of 0.5 mM free SDS. Further  addition of SDS 

destroyed the maximum to give curve 3 in the presence of 2.3 mM 

free SDS. Curve 3 coincided with the spectrum of the  al chain at 

 50°C in the  absence  of SDS (not shown). 

   The CD intensity of the  al chain at 222 nm is plotted against 

the concentration of free SDS in Fig.3. The intensity first 

increased progressively to become flat above 1.7 mM free  SDS, 

which is critical micelle concentration of SDS in the buffer 

used. 

   SDS-polyacrylamide gel electrophoresis is usually carried out 

in the presence of 0.1  % (3.5 mM) SDS using a sodium phosphate 

buffer with concentration between 0.05 and 0.1 M. The binding of 

SDS, as well as the consequent conformational change, has been 

completed in such conditions. Since the present study was 

planned with reference to the technique, further experiments were 

carried out with the al chain to which SDS had been maximally 

 bound; 
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Fig.2. CD spectra of the  al chain in the absence (curve 1) and 

the presence (curve 2, 0.5 mM; curve 3, 2.3 mM) of free SDS at 

25.0 ±  0.20C. The three curves coincided at 212 nm as shown on 

the left side and continued so at least down to 208 nm (not 

shown). 
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Fig 3. Variation in the mean residue molar ellipticity of the 

al chain with concentration of free SDS. 
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Fig.4. CD spectra of the complex between the al chain and SDS 

in equilibrium with 2.3 mM SDS in 50 mM sodium phosphate buffer, 

pH 7.0 (curve 1) and the al chain dissolved in 6 M guanidine 

hydrochloride, pH 4.6 (curve 2) in comparison with that between 

RCAM-bovine serum albumin and SDS in the same buffer containing 

3.5 mM SDS. Curve 2 coincides with curve 1 above 235 nm, and 

could not be extended below 210 nm due to the high absorbance of 

the medium. Temperature, 25.0  ±  0.20C. 
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   Fig.4 shows the CD spectrum of the  al chain in 50 mM sodium 

phosphate buffer, pH 7.0, containing 2.3 mM free SDS at  25°C 

(curve 1) in comparison with that in 6 M guanidine hydrochloride 

(curve 2). These spectra are significantly different from those 

of the complexes between SDS and  polypeptides' derived from 

standard proteins (Mattice et al., 1976; Takagi et al., 1975a). 

A corresponding CD spectrum of RCAM-bovine serum albumin is cited 

as a reference (curve 3). 

Free boundary electrophoresis  

   Free boundary electrophoretic mobilities of the complex 

between the  al chain and SDS are plotted against concentration of 

the chain in Fig.5. The ascending and the descending boundaries 

showed positive and negative dependence on the concentration, 

respectively, and converged on the ordinate. Such a concentra-

tion dependence of electrophoretic mobility has been observed 

with the standard complexes (Shirahama et al., 1974). 

Gel electrophoresis  

   The complex between the al chain and SDS and several standard 

coplexes were electrophoresed in polyacrylamide gels of various 

concentrations. The results obtained are plotted in Fig.6. The 

values of the relative mobilities called "free electrophoretic 

mobilities" (Banker & Cotman, 1972) obtained by the extrapolation 

to zero gel concentration showed no systematic relation. 
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Fig.5. Free boundary electrophoresis of the complex between the 

al chain and SDS in 50 mM sodium phosphate buffer ,  pH 7.0, 

containing 2.0 mM SDS, at 25.0 ±  0.1°C. Variation in the 

electrophoretic mobility with concentration of the chain calcu-

lated for the descending  (o---o) and the ascending  (•----•) 

boundaries, respectively. 
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Fig.6. Change  in.  the electrophoretic mobilities of the complex 

between the  al chain and SDS and several standard complexes with 

concentration of polyacrylamide gel having a constant weight 

ratio of acrylamide to N,N'-methylenebisacrylamide, 100:2.7. 

 Protein  polypeptides are, from the top to the bottom; carbonic 

anhydrase, ovalbumin, immunoglobulin G heavy chain, RCAM-bovine 

serum albumin (marker), phosphorylase b, and the  al chain. To 

/*/avoid confusion, data points are omitted for the two proteins. 

• 
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Fig.7. The retardation coefficients, KR, obtained from SDS-poly-

acrylamide gel electrophoresis for several standard proteins 

 (0---0) and the  al chain  (o) plotted against residue numbers. 
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   The slope of each of the plots in Fig.6 gives the retardation 

   coefficient, KR, of the respective protein polypeptide, which is 

   a measure of its hydrodynamic effective size (Banker & Cotman, 

   1972). The  coefficients thus obtained are plotted in Fig.7 

   against residue numbers of the proteins. The point for the  al 

   chain deviated from the straight line for the standard complexes. 

   Viscosity  

      Fig.8 shows the plot of reduced viscosity of the complex 

   between the  al chain and SDS against concentration for  the 

   polypeptide moiety. The intrinsic viscosity was not affected by 

   the change of shear rate brought about by alteration of the 

   holding angle of the viscometer. 

   Gel chromatography  

      Fig.9 shows the elution profiles in the high performance 

   silica gel chromatography of the  al chain and the five standard 

   protein polypeptides.  , When the  al chain was applied to the same 

   column, it was eluted at a retention time just ahead of the peak 

. of phosphorylase b with molecular weight of 97000, as is shown in 

 Fig.9. 

• 
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Fig.8. Plot of the reduced viscosity at 25 .00 +  0.020C against 

concentration of the  al chain for the complex between the chain 

and SDS in 50 mM sodium phosphate buffer, pH 7.0, containing 2 .0 

mM SDS. 
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Fig.9. Elution patterns in the high performance silica gel 

chromatography of the  al chain ( ) and five standard protein 

polypeptides ( ), phosphorylase b, bovine serum albumin, 

ovalbumin, carbonic anhydrase and soybean trypsin inhibitor, from 

the left to the right). The  al chain preparation in an amount of 

213  pg was dissolved in 500  pl of the buffer solution containing 

10 mg of SDS and heated at 1000C for 5  min. One hundred pl of 

the sample solution were applied to the column equilibrated with 

0.1 M sodium phosphate buffer, pH 7.0, containing 3.5 mM SDS. 

The elution was made with the same buffer solution with a flow 

rate of 2.8  ml/min. The sample solution of the standard proteins 

was prepared  iri the same manner as above, except for the addition 

of dithiothreitol to the reaction mixture (for details, see 

Takagi, 1981). The standing up of the elution curve of standard 

proteins is the elution of SDS micelles. 

• 
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    V. DISCUSSION 

 Binding of SDS and consequent conformational changes  

      The mode of binding of SDS to various kinds of protein 

    polypeptide is not unique but diverse within a certain range 

    (Takagi et al., 1975a). The diversity can be taken to reflect 

    the composition and the sequence of amino acid residues of the 

    protein polypeptides. 

        The  al chain of collagen with a well-known unique composition 

    and sequence of amino acid residues was revealed to show a 

    characteristic binding isotherm as shown in  Fig.1. The corre-

    sponding isotherm of RCAM-bovine serum albumin may be taken as a 

     standard one for polypeptides derived from water-soluble globular 

    proteins. The  al chain binds a small amount of SDS below 1.0 mM 

    of free SDS. The isotherm thus lacks the "first plateau region" 

    observed with most polypeptides derived  from standard proteins. 

    In this  region; the addition of SDS induced precipitation of the 

    al chain during the dialysis. CD spectra which could be measured 

    at lower concentration without formation of precipitates revealed 

    the appearance of a maximum at 222 nm which seemed to be 

     characteristic of the collagen fold, as  shown. in Fig.2. Hayashi 

    and Nagai  (1972) have shown that the addition of a small amount 

     of SDS promotes the fibril formation of collagen in vitro. The 

     phenomenon seems to have its origin in the level of the collagen 

     molecule. 

        Above 1.0 mM of free SDS, the binding proceeded progressively 
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and finally attained the maximum of 1.4  g/g at 2.0 mM free SDS, 

which is above the critical micelle concentration of 1.7 mM. The 

behavior is in contrast with that observed with most polypeptides 

derived from water-soluble globular proteins. They show binding 

isotherms with a steep increase in the amount of binding above 

1.0 mM and the levelling-off at a free SDS concentration below 

the critical micelle concentration. Concomitant with the begin-

ning of appreciable binding, a drastic change was observed in the 

CD spectrum, as shown in Fig.3. Above 1.7 mM, the spectrum 

attained a final form which agreed well with  that seen in 6 M 

guanidine hydrochloride, except for a slight difference at around 

220 nm, as shown in Fig.4. The CD spectrum of  the  al chain 

finally attained is naturally quite different from corresponding 

ones observed with standard protein polypeptides for which 

binding of SDS induced the formation of  a-helix. 

Electrophoretic behavior  

   Limiting free boundary electrophoretic mobility (Shirahama et 

al., 1974) of al chain with maximally bound SDS was estimated by 

the extrapolation of the observed electrophoretic mobilities to 

zero concentration to be -2.48 X  10-4  cm2•s-1•v-1, as shown in 

Fig.5. The value is only slightly smaller than the value, -2.8 X 

 10-4  cm2•s-1•V-1, expected for a standard complex with an 

equivalent molecular size (see Fig.7 in Takagi et al., 1975a). 

   Extrapolation to zero concentration in the Ferguson plots 

shown ih Fig.6 was expected to give the mobility of the  al chain 
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     in the absence of gel matrix relative to those of  the standard 

     complexes. The plots, however, showed a fuzzy focal point at the 

    concentration around 1 %. It has been shown that that the free 

    boundary electrophoretic mobilities of the complexes between SDS 

     and standard protein polypeptides are virtually independent of 

    molecular weight of the latter (Takagi et al., 1975a). The 

     electrophoretic mobility extrapolated to zero gel concentration, 

    thus, showed no exact correlation with the corresponding free 

     boundary electrophoretic mobility. 

        Estimation of molecular weight in the conventional way (Weber 

    & Osborn, 1969) at each of the five gel concentrations gave 

    values of molecular weight ranging between 110000 and 120000 for 

    the  al chain with molecular weight of 96000. This is at variance 

    with the overestimation which was reported to be as high as 40 % 

     (Freytag et al., 1979; Furthmayr & Timpl, 1971). In the experi-

     ments of Furthmayr and  Timpl (1971), the  al chain was electropho-

     resed less than 2 cm in distance. Electrophoresis in the top 

     region of a gel is  liable  ,to be affected by various factors. In 

     the present experiments, the al chain was electrophoresed over a 

     long distance using RCAM-bovine serum albumin as a marker. We 

     have no immediate explanation concerning the failure to reproduce 

     the well-known overestimation. Hayashi and Nagai (1980) carried 

     out a careful run of SDS-polyacrylamide gel electrophoresis in a 

     Tris-glycine buffer, and concluded that the free electrophoretic 

     mobility of the  al chain was 10 % lower than the monochromatic 

     value observed with standard protein polypeptides. 
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Behavior related to hydrodynamically effective size  

   As shown in Fig.7, the retardation coefficients estimated from 

the Ferguson plots for the complexes between SDS and the standard 

protein polypeptides are  linearly correlated with their residue 

numbers. The point for the  al chain with residue number of 1052 

is not on the line for the complexes, and its retardation 

coefficient is equivalent to that of a standard complex with 

residue number of 840. 

   Intrinsic viscosity of the  al chain complexed with SDS was 

41.9  ml/g, as shown in Fig.8. When the plots of intrinsic 

viscosities against molecular weights (see Fig.4 in Takagi & 

Kubo, 1979) are used as a calibration curve, the intrinsic 

viscosity of the al chain complexed with SDS is that expected for 

a complex between SDS and  a . standard protein polypeptide with 

residue number of 780. 

   Elution of the  al chain at the retention time almost the same 

as that of phosphorylase b in the high performance silica gel 

chromatography (Fig.9) has the same implication as above. 

VI. CONCLUTION 

   The mode of interaction of the collagen  al chain with SDS has 

been examined. The process of the binding of SDS to the chain 

was unique reflecting the characteristic amino acid composition 

and sequence. The final product with maximally bound SDS differed 
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     from standard complexes, namely those between SDS and polypep-

     tides derived from typical water-soluble globular proteins in the 

    following points: (1) the amount of SDS bound is similar on a 

     weight basis, but 25 % less on a residue molar basis than that 

     monochromatically observed with standard protein polypeptides; 

     (2) the hydrodynamically effective size of the complex of the  al 

    chain with residue number of 1052 is equivalent to that of a 

     standard complex with a chain length 75 % of the former. Such a 

     standard protein polypeptide has a molecular weight near 91000, 

    which is close to that of the  al chain (96000). An empirical 

     technique of molecular weight estimation based on the molecular 

     sieving effect usually relies on the use of standard proteins. 

     Such a technique, therefore, may give a fairly correct estimate 

    for the al chain. It must be noted, however, that this is a 

     fortuitous situation. The compactness of the complex between the 

 al chain and SDS may be ascribed to the  abundance.of glycine, 

     proline and hydroxyproline, all of which have been shown to have 

     an effect to minimize the expansion of a polypeptide chain 

     (Flory, 1969). 

        A complex between SDS and protein polypeptide in the condition 

     of SDS-polyacrylamide gel electrophoresis behaves like a heavily 

     charged polyelectrolyte through which solvent molecules as well 

     as ions are freely permeable (Shirahama et al., 1974; Takagi et 

     al., 1975a). The electrophoretic behavior of such a polyelectro-

     lytic chain can be interpreted based on a model in which many 

     identical segments with equal charge are tied in a row with a 

     frictionless string (Shirahama et al., 1974). 
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The electrophoretic mobility of the chain is expected to be 

proportional to the charge on the individual segment and is 

inversely proportional to the frictional coefficient of the 

segment. The electrophoretic mobility of the complex between SDS 

snd the  al chain was not significantly different from that 

expected for a standard complex with a size comparable to the 

former. The low charge density as the result of the low capacity 

of binding to SDS (on residue molar basis) and the possible small 

effetive size of the segment have a counterbalancing effect on 

the electrophoretic mobility of the complex. The latter may be 

ascribed to either of the small number of bound SDS per segment 

and the abundance of amino acid residues of small size (the 

closed loop of proline and hydroxyproline may not be bulky) or 

both of these factors. 
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     9. The  al and  a2 Chains of Collagen Separate in Sodium Dodecyl 

         Sulfate-Polyacrylamide Gel Electrophoresis Due to Differences 

         in Sodium Dodecyl Sulfate Binding Capacities 

    I. SUMMARY 

        The al(I) and  a2(I) chains of rat tail collagen,  indistiguish-

, 

     able with respect  to their chain lengths, are well separated in 

     polyacrylamide gel electrophoresis in the presence of sodium 

     dodecyl sulfate (SDS). In the present chapter the results 

     demonstrated: 1) the  a2 chain maximally binds SDS in an amount of 

     1.6 g/g which is significantly larger than 1.4 g/g found for the 

 al chain; 2) the  a2 chain acquires electrophoretic mobility in a 

     free solution 14 % higher than that of the  al chain as the result 

     of the larger amount of SDS bound; 3) although both of the chains 

     have virtually the same hydrodynamically effective size, the 

     above difference in mobility persists in a gel, and brings about 

     the separation in a high resolution. It was also found that the 

 a2 chain binds appreciable amounts of SDS in the initial phase of 

     the binding where the  al chain hardly binds SDS. 

     II. INTRODUCTION 

         Polyacrylamide gel electrophoresis in the presence  of sodium 

     dodecyl sulfate (SDS-PAGE) (Shapiro et al., 1967; Weber & Osborn, 
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1969) is now indispensable in the field of collagen research. 

This is mostly attributable to the high performance of the 

technique in the separation of the al and  a2 chains to make the 

type analysis of collagen possible (Hayashi & Nagai, 1979). The 

two chains have been reported to be virtually identical with 

respect to their chain lengths according to the sedimentation 

equilibrium analysis (Lewis & Piez, 1964). This seems to be 

quite natural as judged from the mechanism of the formation of 

the collagen molecule by the post-translational scission of the 

triple-stranded precursor (Bornstein & Traub, 1979). It is quite 

interesting that the two chains can be separated by SDS-PAGE 

generally taken to separate protein polypeptides according to 

their chain lengths, regardless of the above situation. In this 

chapter, The interaction of SDS with the  a2 chain of rat tail 

tendon collagen has been studied, and their results were compared 

with that of the al chain described in chapter 8 to make clear 

the reason for the favorable separation. 

III. EXPERIMENTAL PROCEDURE 

   The  al,  a2,  811 and  812 chains were isolated from tail tendon 

type I acid-soluble collagen of Wistar rat by CM-cellulose 

(Whatman CM 52) chromatography (Chung & Miller, 1974) and 

subsequent Sepharose 4B gel chromatography (Piez, 1968). Each of 

the chains thus prepared was confirmed to be free from any 

contaminant polypeptide by SDS-PAGE. Concentration of the 
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collagen polypeptides was determined spectrophotometrically 

assuming A1% at 230 nm to be 22.5 (Kubo et al., 1982). Reduced-           l
cm 

carboxamidomethylated (RCAM) bovine serum albumin (BSA) and 

reduced-carboxymethylated (RCM) BSA were prepared as described 

by Shirahama et al.(1974). 

   Sodium dodecyl sulfate (SDS) was prepared by sulfation of 

n-dodecyl alcohol (99.8 % with respest to chain length 

distribution). A commercially available SDS preparation (Nakarai 

Chemicals, SPS-4: nominally 97 % pure) was used only for 

SDS-PAGE. All measurements except SDS-PAGE were carried out 

using sodium phosphate buffer of pH 7.0 prepared by mixing 50 mM 

 NaH2PO4 and 50 mM  Na2HPO4. Sodium azide was added to the 

solution to a final concentration of 0.02 % (w/v). 

   Binding of SDS to the collagen polypeptides was measured by 

the equilibrium dialysis technique  (Takagi et al., 1975a) or by 

the gel chromatography technique (Takagi et al., 1980; Kubo et 

al., 1982). SDS was analyzed colorimetrically (Takagi et al ., 

 1975a). 

   CD spectra were measured with a JASCO J-500 Spectropolarime-

ter. Sample solutions  for the CD measurements were prepared by 

the equilibrium dialysis against the buffer solution containing 

required amount of SDS in the same manner as described (Kubo et 

al., 1982). The data obtained are expressed as residue molar 

ellipticities. The mean residue weights were assumed to be 91 .8, 

91.3, 91.8 and 91.6 (Piez et  al.,  1963) for the  al ,  a2,  1311 and 

 1312 chains, respectively. 

  Free-boundary electrophoresis was carried out using a 
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Tiselius-type apparatus (Hitachi model HTB-2A) with a schlieren 

optics. 

   Polyacrylamide gel electrophoresis in the presence of SDS was 

carried out according to the standard procedure (Weber & Osborn, 

1969) with a slight modification (Kubo et al., 1979). 

   Viscosity was measured in an Ubbelohde type viscometer with a 

flow-time of 200 sec for water. Sample solutions for viscosity 

measurements were prepared in the same manner as for the CD 

measurements. 

IV. RESULTS AND DISCUSSION 

   Figure la illustrates the separation of the al and  a2 chains 

as well as that of the  (311 and  (312 chains in SDS-PAGE. Each of 

these two pairs of the collagen polypeptides has virtually 

identical chain length (Lewis & Piez, 1964). The present study 

was planned to make clear why such separation is realized. The 

separation has been  observed in the wide varieties of buffer 

solutions in salt concentrations and pH's. The following 

experiments were carried out using 50 mM sodium phosphate buffer 

solution. This is only because the critical micelle 

concentration of SDS increases with the decrease in buffer 

concentration so that measurements can be carried out over a wide 

range of  .SDS concentration. Figure lb shows another example of 

separation of two polypeptides with identical chain length, 

 namely-  polypeptides derived from BSA by reductive cleavage of 
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disulfide bonds and subsequent alkylation of resultant sulfhydryl 

groups. 

   SDS-PAGE is generally considered to separate protein 

polypeptides according to their chain lengths. This is, however , 

not always the case (Swank & Munkers, 1971; Tung & Knight
, 1972). 

According to Rodbard and Chrambach (1970) , the electrophoretic 

mobility of a protein in a gel matrix can be expressed as 

follows, 

                         Ug  =  U0exp(-KRT) (1) 

where Ug is mobility in the gel matrix;  U0 , mobility in a solvent 

in the absence of a gel matrix; KR , retardation coefficient 

roughly proportional to the square of hydrodynamically effective 

radius; and T, concentration of the gel matrix . The difference 

in the electrophoretic mobilities observed in an electrophoretic 

 run can be ascribed to both or either of the two factors: 

1) difference in intrinsic electrophoretic mobility
,  U0; and 

2) difference in hydrodynamically effective size reflected in K
R. 

   We first examined the second factor , the size. Intrinsic 

viscosity is a reliable measure of the hydrodynamically effective 

volume. Figure 2 shows the plots of reduced viscosities of the 

 al, a2,  (311 and  12 chains against concentration for the 

polypeptide concentrations. No significant difference in intrin-

sic viscosity obtained by extrapolation to zero concentration was 

observed either between the a chains or between the  (3 chains . 

The difference in the observed mobilities in SDS -PAGE ,  therefore, 
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 Fig.1. SDS-PAGE of the collagen chains in comparison with that 

of derivatives of BSA. Electrophoresis was performed in 0.1 M 

sodium phosphate buffer, pH 7.0, containing 0.1 % SDS on 5 % gel 

at 25.0 ±  0.2°C (negative electrode in the right side). Bands 

are assignable, from right to left, to the  1311,  1312,  al and a2 

chains of the collagen for a) and RCM-BSA and RCAM-BSA for b), 

respectively. Samples: a) 7.1 pg of the collagen, and b) 0.65 pg 

of each of the derivatives of BSA.
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Fig.2. Plots of reduced viscosities against concentration of the 

collagen chains. x,  812; o,  811;  D,  a2. Solution of the chains 

had been equilibrated with 50 mM sodium phosphate buffer, pH 7.0, 

containing 2 mM SDS. The buffer in the outer solution was used 

as the solvent. Viscosities were measured at 25.00  ±  0.020C. 

Plots for the  al chain ( )  is cited from the  authors/ paper 

(Kubo et al., 1982). 
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cannot be ascribed to the difference in size. 

   CD spectra were measured to detect any possible difference in 

coformation (not shown). No significant difference was observed 

between the spectra observed for the collagen chains, except in 

the amplitude of the depression at 222 nm. The amplitudes at the 

wavelength are included in Table 1. It is to be noted that the 

amplitudes observed for the  1311 and  (312 chains coincide with the 

averages  of  the amplitudes observed for the respective constitu-

ents. It is presumed that the al and  a2 chains assume 

conformations slightly different with each other in the presence 

of SDS. The difference is, however, too small to be  reflected  in 

the viscosity behavior. 

  Now, the al and  a2 chains  must differ in U0 value. The U0 

value is electrophoretic mobility in the absence of gel matrices. 

The value of U0 can be evaluated in principle by extrapolation of 

mobilities obtained in PAGE to zero gel concentration. The 

extrapolation is hardly reliable to obtain the values suitable 

for quantitative discussion. For the purpose, one must resort to 

mobilities measured by the free-boundary electrophoretic tech-

nique using a Tiselius type apparatus. In Figure 3, the electro-

phoretic mobilities are plotted against chain concentration for 

each of the complexes between SDS and the collagen chains. The 

ascending and the descending boundaries differed in the inclina-

tion in the concentration dependence, and the plots for the 

boundaries coverged on the ordinate. The plots for the  IS chains 

were somewhat irregular, and the lines were drawn by the force. 

The above  concentration dependence is not confined to the 
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Fig.3. Mobilities of the collagen chains in free-boundary 

electrophoresis at 25.0 ±  0.10C in the presence of 2.1 mM free 

SDS as function of the concentrations of the chains. The filled 

and open marks represent the data for the ascending and 

descending boundaries, respectively.  0,  m;  a2: o,  •;  al:  0,4; 

 (312:  A, A;  11. Data of  then 1 chain is cited from the  authors/ 

paper (Kubo et al., 1982).  The buffer solution used is the same 

as in Fig.2. 
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Table 1. Summary of several properties of the collagen chains in 

the presence of SDS. All measurements were performed in 50 mM 

sodium phosphate buffer, pH 7.0, containing 0.02 % sodium azide, 

at 25°C. Data of the  al  chain was cited from the  authors' 

paper (Kubo et al., 1982). 

Collagen Intrinsic Residue molar Electrophoretic Bound 

 chain viscosity ellipticity at 222 nm mobility X  104 SDS 

 (ml/g)  (deg•cm2•dmo1-1)  (cm2-s-1-v-1) (g/g) 

 al 41.9 -900 -2.48 1.36 ± 0.08 

 a2 41.2 -1250 -2.88 1.57 ± 0.09 

 1311 60.0 -900 -2.71 1.36 ± 0.05 

 1312 60.1 -1100 -2.90 1.44 ± 0.04 
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Fig.4. Binding isotherm of SDS to the  a2 chain ( ) in 50 mM 

sodium phosphate buffer containing 0.02  % sodium azide, pH 7.0, 

at 25.0 ±  0.20C. Data designated by filled and open squares were 

obtained by the equilibrium dialysis (14 days) and the gel 

chromatography techniques, respectively. Height and width of 

each square indicate mean deviations. The arrow on the abscissa 

indicates the critical micelle concentration of SDS. The 

isotherm of the  al chain ( ) is cited from the authors' 

paper (Kubo et al., 1982). 
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         collagen chains that has been observed for the complexes between 

        SDS and protein polypeptide derived from various globular 

         proteins (Shirahama et al., 1974). A significant difference was 

        observed in the electrophoretic mobility between al and a2 

        chains. For the  011 and  012 chains, a smaller difference was 

        observed and was consistent with that expected from their 

          compositions. 

            To interpret the above observation, the complex between SDS 

        and  a2 chains must have a higher negative charge than that 

         betweem SDS and al chains. Since the effective charge of such a 

        complex is dominated by the bound dodecyl sulfate  ions ,  .the 

         amount of bound SDS was compared between the  al and  a2 chains by 

         measurement of binding isotherms of SDS. 

            As shown in Figure  4, a significant difference was observed 

         between the  al and  a2 chains. The latter maximally bound 1 .57 g 

        SDS per g which is significantly higher than the corresponding 

        value of 1.36 g SDS per g reported for the former (Kubo et al ., 

        1982). It is interesting to note that the complex between SDS 

        and RCAM-BSA shows significantly higher mobility in the gel than 

        that between SDS and RCM-BSA (Fig.1). The former has been 

        reported to be more abundant in SDS bound than the latter (Takagi 

         et al., 1975a). 

            When the results obtained are taken into consideration
, the 

        reason of separation of the  al and  a2 chains can be interpreted 

        as follows: 1) the  a2 chain differs from the  al chain in the mode 

        of the interaction with SDS and maximally binds SDS in an amount 

        15 % larger than the  al chain; 2) this higher capacity of SDS has 
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Fig.5.  Change in the electrophoretic mobilities of complexes 

between protein polypeptide chains and SDS with concentration of 

polyacrylamide gel having a constant weight ratio of acrylamide 

to  N,N'-methylene-bis-(acrylamide), 100 : 2.7. Protein polypep-

tide chains are from the top to the bottom; RCAM-BSA used as the 

reference, RCM-BSA, a2 chain,  al chain,  (312 chain and  (311 chain, 

respectively. 
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no significant effect on the hydrodynamically effective size of 

the a2 chain-SDS complex but increase the charge density of the 

complex to give the complex with an electrophoretic mobility 

higher than that of the al chain-SDS complex. The higher 

affinity of the a2 chain to SDS may be ascribed to the abundance 

of hydrophobic amino acid residues in the chain compared with the 

 al chain (Piez et al., 1963; Hayashi & Nagai, 1980). To obtain 

supplementary data, effort was also made to evaluate the  U0 and 

KR values directly by polyacrylamide gel electrophoresis carried 

out at various gel concentrations. 

   Figure 5 shows the results thus obtained, in the  form  of 

Ferguson plot. For the  al and  a2 chains, difference was observed 

not in KR but in  U0 in agreement with the above discussion. 

However when the plots for the  1311 and  (312 chains are taken into 

consideration, the validity of extrapolation to zero gel 

concentration to obtain  U0 becomes questionable. The same 

question has been raised by Frank and Rodbard (1975). They 

showed that Ferguson plots of their results gave a focal point at 

1.3 % gel concentration. 

   Hayashi and Nagai (1980) has reached conclution similar to 

 the  above conclusion concerning the difference between the  al and 

a2 chains in their behavior in SDS-PAGE using the Ferguson plots. 

Due to the above mentioned ambiguity inherent in the approach 

using Ferguson plot, the above conclusion based on more sound 

experimental data has been here reported. 
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     10. Separation of Cross-linked Products of Rat Tail Tendon 

           Collagen from Monomeric Components by Gel Chromatography in 

          the Presence of Tris Dodecyl Sulfate at 4°C 

    I. SUMMARY 

        Rat tail tendon collagen can be solubilized by a neutral 

     aqueous  solutibn containing 2 % Tris dodecyl sulfate at  4°C 

     without being unfolded to its constituent polypeptides. The 

     solvent at this temperature is particularly suited for gel 

     chromatographic separation of native collagen. Thus Sepharose 

     CL-2B gel chromatography was found to separate the monomeric 

    collagen molecule from the products of intermolecular 

     cross-linking. The procedure can be effectively used to follow 

     progress of intermolecular cross-linking with aging. The 

     monomeric collagen can be subsequently applied to polyacrylamide 

     gel electrophoresis in the  presence of sodium dodecyl sulfate to 

      evaluate the mode of intramolecular cross-linking. 

     II. INTRODUCTION 

         Collagen fibrils are strengthened by the formation of covalent 

 cross-linkages, between constituent polypeptides. Some of the 

      linkages are intra- and others are intermolecular. Formation of 

     cross-linkages between collagen polypeptides can be detected 
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efficiently by polyacrylamide gel electrophoresis in the presence 

of sodium dodecyl sulfate (SDS). To study formation of intermo-

lecular cross-links, collagen molecules must be separated 

depending on the degree of oligomerization without being unfolded. 

Subsequent analysis of each component will give insight into the 

mode of intramolecular cross-linking. Previously, the separation 

has been attempted using techniques such as fractional salt 

precipitation (Chandrakasam et al., 1976), membrane filtration 

(Silver and  Trelstad,. 1980), and gel chromatography. None of 

these techniques, however, brought  ‘about satisfactory results. 

Although gel chromatography was most promising, the monomeric 

collagen molecule could be only partially separated from the 

oligomers or gelatinous by-products because of the lack of 

solvent suitable for making collagen molecules soluble without 

causing denaturation. Use of an ionic surfactant can eliminate 

unfavorable intermolecular noncovalent interaction by the  intro-

duction of charges just as in polyacrylamide gel electrophoresis 

in the presence  of. SDS. SDS cannot be used because of its 

denaturing action against the collagen molecule at normal 

temperatures. However, use of SDS at low temperature might make 

the collagen molecule soluble without causing denaturation. This 

idea is unrealistic, since the surfactant reduces its solubility 

in water remarkably at temperature below  10°C. 

   In contrast, lithium dodecyl sulfate (LDS) is highly soluble 

in water even at  0°C (Noll and Stutz, 1968). It has been 

reported that this analog of sodium dodecyl sulfate can be 

effectively used for solubilization of some functional protein 
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     units of photosynthesis without destruction of their oligomeric 

     structures (Delepelaire and Chua, 1979). LDS was found, however, 

     to have denaturing action against the collagen molecule even at 

     4°C. It was assessed, then, to use Tris dodecyl sulfate which is 

     highly soluble even at  00C like LDS. As will be described below , 

     gel chromatography in the presence of Tris dodecyl sulfate was 

     found highly promising as a way to analyze a collagen preparation 

     according to their sizes which reflect difference in the degree 

     of formation of intermolecular cross-linking. 

     III. EXPERIMENTAL PROCEDURE 

        Tris dodecyl sulfate  

       Sodium dodecyl sulfate (SDS) was obtained from Nakarai 

    Chemicals (SPS-4), and converted to  Tris (tris(hydroxymethyl) 

 thethylammonium) dodecyl sulfate by passage through a column (2 .5 

    X 23 cm) of Dowex 50W-X8 (Tris form) essentially according to the 

    method of Noll and Stutz (1968) originally designed for 

     preparation of lithium dodecyl sulfate (LDS). Conversion to Tris 

     form was confirmed to be quantitative by analysis of sodium using 

    a UHF Plasma Spectra Scan-300 (Hitachi, Ltd.). Only a trace 

     amount of sodium was detected in the preparation of Tris dodecyl 

     sulfate. LDS was obtained as "lauryl sulfate lithium salt" from 

     Sigma Chemical Co.. 
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 Lathyritic rats  

 Four-week-old Wister rats were purchased and bred on foods 

supplemented with  .-aminopropionitrile fumarate for 2-3 weeks 

before slaughter. 

 Collagen  

   Samples for solubility and CD measurements were obtained by 

extraction of Wister rat tail tendon with 0.5 M acetic acid. The 

extracted collagen was lyophilized and stored in a  refrigerator: 

The lyophilized collagen was solubilized as follows: 1) the 

collagen preparation was soaked at  40C in 0-100 mM Tris-HC1, pH 

7.2, containing 1-4 % Tris dodecyl sulfate in an amount of 2 

 mg/ml; 2) after storage for 24 h small amounts of insoluble 

materials were removed by centrifugation (130,000 X g) for 60  min. 

   Collagen samples for gel chromatography were prepared as 

follows. Tail tendon of a 30-week-old rat was extracted with 10 

mM Tris-HC1, pH 7.2, containing 0.4 % Tris dodecyl sulfate, and 

the insoluble materials were collected by centrifugation (60,000 

X g) for  30  min. Proteins other than collagen are left in the 

supernatant. The pellet was solubilized in the same buffer as 

above containing 6 % Tris dodecyl sulfate. After three days, a 

slight amount of insoluble materials was removed by . 

centrifugation (130,000 X g) for 60  min. A collagen stock 

solution of a final concentration of 1-2 mg/ml was obtained as 

the supernatant. Tendons from 5-week-old rats were extracted with 
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    0.5 M acetic acid. Tendons from lathyritic rats were extracted 

    with 50 mM Tris-HC1, pH 7.2, containing 1 M NaCl. The extracted 

    lathyritic collagen was dialyzed against 0.1 M acetic acid. The 

    collagen preparation in aqueous acetic acid were lyophilized. 

    For solubilization, they were treated with buffer solutions 

    containing 4 % and 2 % Tris  dodecyl'sulfate for 5-week-old and 

    lathyritic  rats, respectively, for 2 days. Collagen stock 

    solutions were prepared in the same manner as described above. 

    All the procedures described above were carried out at 4°C. 

        Concentration of collagen was determined spectrophotometrical-

    ly assuming absorbance at 230 nm (1 % solution, 1 cm light path) 

    to be 23.5. The value was determind based on the dry weight 

    method. The absorbance was measured with the  collagen polypep-

    tides denatured by dodecyl sulfate at room temperature. 

        CD spectra  

        A JASCO J-500 CD spectrophotometer was used. Temperature of 

    the sample solution was controlled by circulation of thermostated 

    ethanol through a brass muffle obtained from JASCO.  CD data are 

    reported as mean residue ellipticity. Mean residue weight of 

     collagen was assumed to be 91.6. 

        Gel  chromatography  

       Sepharose CL-4B or Sepharose CL-2B was used. A Pharmacia 

    column, K 16/100, was used, and temperature was controlled by 
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passing water at  4°C through the envelope. Bed size was 1.6 x 95 

cm in both cases. Elution was monitored by an LDC  Spectromonitor 

model III at 230 nm using a cell of 1 cm light path. 

   Gel electrophoresis  

   Polyacrylamide gel electrophoresis in the presence of 0.1 % 

SDS was carried out essentially according to the method of Weber 

and Osborn (1969) using 0.1 M sodium phosphate buffer, pH 7.0, at 

 20°C. Gels were stained with 0.02  %  ,Coomassie Brilliant Blue R 

in a mixture of isopropanol-acetic acid-water (volume ratio, 

25:10:65). 

III. RESULTS 

   Solubility  

   A lyophilized preparation of the collagen from rat tail tendon 

(15-week-old) was suspended at a concentration of 2  mg/ml in 

Tris-HC1 buffer solution, pH 7.2, of various concentrations 

between 0 and 100 mM each containing 2 % Tris dodecyl sulfate for 

24 hr at  4°C. Concentration range of Tris-HC1 between 10 and 50 

mM was optimum, and about 90 % of the collagen could be 

 solubilized as shown in  Fig.1a. The maximum  solubilization could 

be attained when the concentration of Tris dodecyl sulfate was 

about % as shown in  Fig.1b. 
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Fig.1. Solubility of rat tail tendon collagen extracted with 

acetic acid as a function of concentration of Tris-HC1 buffer, pH 

7.2 (a) and of Tris dodecyl sulfate  (b). Concentrations of Tris 

dodecyl sulfate and Tris-HC1 buffer were kept at 2 % and 50 mM at 

 40C. 
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   CD spectra  

   Fig.2 shows CD spectra of the collagen in the presence of 2 % 

Tris dodecyl sulfate at various temperatures. At lower tempera-

tures, the collagen showed a positive CD band with an intensity 

of  6200  deg•cm2•dmo1-1 at 222 nm. The CD band is characteristic 

of collagen in the native state. The above intensity is 

comparable to that of the collagen in 5 mM acetic acid at pH 3.6 

and  4°C as also included in Fig.2. Clearly collagen retains its 

native structure in 2 % Tris  dodecyl' sulfate at lower tempera-

tures like in 5 mM acetic acid which is known to preserve 

the native state of collagen. CD spectrum at the lower 

tempera-ture range and in the presence of LDS is included in 

Fig.2. Amplitude of the CD band is half of that in the presence 

of Tris dodecyl sulfate indicating that the lithium salt is not 

as effective as the Tris salt to maintain the native structure of 

collagen. With increase of temperature, the CD peak of the 

collagen in 2 % Tris dodecyl sulfate became attenuated, and 

disappeared at  22°C finally to give a negative CD spectrum 

monotonously increasing its nagative amplitude with decrease in 

wavelength. The change reflects denaturation of the collagen in 

the presence of Tris dodecyl sulfate with increase of temperature. 

   Gel chromatography  

   The finding of the stability of the collagen molecule in the 

presence of Tris dodecyl sulfate at  4°C prompted  one  to examine 
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Fig.2. CD spectra of the collagen at various temperatures. 

Solvent, 50 mM Tris-HC1 buffer, pH 7.2, containing 2 % Tris 

dodecyl sulfate. Full lines from top to bottom,  4-100, 15°, 17°, 

19°,  200, 22° and 25°C, respectively. Dotted line: upper, 5 mM 

acetic acid, pH 3.6 at 4°C; lower, 50 mM lithium chloride-5 mM 

lithium citrate buffer, pH 6.4, containing 2 % LDS at  4-7°C. 
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     the possibility of fractionation of the collagen by gel 

     chromatography in the above condition. Fig.3 shows typical 

     examples of elution patterns of the collagen from a Sepharose 

     CL-4B column in the above condition. The collagen eluted as a 

     peak near the void volume as shown by the curve a in Fig.3. 

    Presence of at least two components is suggested from 

     double-headed feature of the peak. Heat-treatment for 3  min at 

 500C drastically changed elution pattern obtained in the identi-

     cal condition as shown by curve b in Fig.3. The collagen 

     molecule is dissociated into constituent polypeptides with 

     heating. The main peak and the shoulder in front of it  can  be 

     assigned to the a and  13 chains, respectively. Comparison of the 

     two elution curves in Fig.3 indicates that the collagen molecule 

     in the presence of 2 % Tris dodecyl sulfate retains its native 

     structure at  40C and is denatured irreversibly by the  heat-treat-

      ment. 

         Further to fractionate the components which eluted near the 

     void volume (curve a in Fig.3), the collagen was chromatographed 

     by Sepharose CL-2B instead of CL-4B under the same condition. 

     The collagen from a 30-week old rat showed an elution curve with 

     two major peaks as shown in Fig.4a. The first peak eluted 

    between 50 and 80 ml had a notched appearance suggesting 

     heterogeneity. The other peak eluted between 80 and 120 ml 

     showed a symmetrical shape. The collagen from a younger rat 

     (5-week-old) contained less amount of the higher molecular weight 

     components when compared to the former as shown in Fig.4b. The 

     collagen from a lathyritic rat contained only a single major 
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Fig.3. Elution patterns from a Sepharose CL-4B  column  (1.6  X  95 

cm) of the collagen before (a) and after (b) heat-treatment 

(500C, 3  min). Sample, 0.4 ml of the collagen  (1.3 mg/ml) 

extracted from rat tail tendon. Solvent, 50 mM Tris-HC1, pH 

7.2,containing  2% Tris dodecyl sulfate. Flow rate, 17.4  ml/.hr. 

Temperature,  40C. Double-headed arrow, 0.05 absorbance scale at 

230 nm. 
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Fig.4. Elution patterns from a Sepharose CL-2B column (1.6 X 95 

cm) of the collagen. Each 0.4 ml of sample solutions contained 

following amounts of the collagen obtained from rats of age 

indicated: a) 1.2 mg, 30 weeks; b) 1.3 mg, 5 weeks and c) 0.7 mg, 

6-7 weeks (lathyritic). Elution conditions, the same as in Fig.3 

except flow rate (10  ml/h). 
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component as shown by curve c in Fig.4. As far as the separation 

of  a-chains and  13-chains of the collagen is concerned, the 

Sepharose CL-2B column is inferior to the Sepharose CL-4B column . 

Both components were eluted at elution volume of 140 ml in Fig .4 

without being separated. Therefore Sepharose CL-2B gel chromato-

graphy in the presence of 2 % Tris1dodecyl sulfate at  40C can 

separate a collagen preparation into cross-linked products and 

into collagen molecules without intermolecular cross-links . 

    Polyacrylamide  gel electrophoresis  

   The collagen from the 5-week-old rat eluted from the 

Sepharose CL-2B column was separated into five fractions as shown 

by curve b in Fig.4. The fractions were analyzed by polyacryl-

amide gel electrophoresis in the presence of SDS to evaluate the 

degree of separation of collagen by the Sepharose CL-2B gel 

chromatography. Electrophoretic patterns obtained are shown in 

Fig.5. 

   It is to be noted that the fraction V revealed only two  a , two 

   and one y component. This indicates that the particular 

fraction contained only the monomeric collagen molecule without 

intermolecular cross-linking. In comparison, the fraction IV 

showed an electrophoretic pattern similar to that for the 

fraction V except the presence of a very small amount of 

polymeric cross-linked products consisted of four or more 

collagen polypeptides. Fractions II and III showed almost  the 

same electrophoretic patterns and were found to contain a larger 
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Fig.5. Polyacrylamide gel electrophoresis in the presence of 

 SDS  of fractions of the collagen from a 5-week-old rat (curve b 

in Fig.4) at 20°C. The pattern for Fraction III  is omitted, 

because it is virtually identical to that for Fraction II. Gel, 

5 % (w/v). Electrophoresis, left to right. Double-headed arrow, 

0.5 absorbance scale at 565 nm. Major peaks are 1) a2, 2)  al, 3) 

 (22, 4)  (312, 5)  (11, 6) y and 7) polymeric component, 

respectively. 
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amount of  y and higher polymeric components. In  the  8 region, a 

band assignable to  822 chain (Bornstein et al., 1964) appeared in 

addition to the  811 and  812 chains. The y component increased 

not only its content but also the number of peaks called collec-

tively under this grouping. The above results indicate that the 

fractions II and III contain  intermolecularly cross-linked 

polypeptides. The fraction I was found to contain larger amount 

of polymeric components than the fractions II and III. 

V. DISCUSSION 

   Fractionation of collagen by gel chromatography has been 

attempted using various non-denaturing solvents indicated in 

parentheses. Dancewicz (1975) and co-worker (Majeska and • 

Dancewicz, 1977) applied rat skin tropocollagen to a Sepharose 6B 

column (solvent, 0.05 M acetic acid) after irradiation of various 

doses of X-ray and found that cross-linked components eluted in 

advance of intact molecules giving two distinct peaks. Meredith 

and Kezdy (1981) applied calf and rat skin collagens to a 

Sepharose CL-6B column (solvent, 0.16 M sodium phosphate,  pH 7.4, 

containing 0.3 M sucrose) and found that the collagens eluted as 

a single peak being preceded by unfolded collagen polypeptides. 

It is to be noted that collagen was eluted near the total column 

volume in the above experiments. Fujimori and Shambaugh (1983) 

applied rat tendon collagen to a Sephacryl S-300 column (solvent, 

0.1 M acetate buffer, pH 4). The collagen eluted earlier with 
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 the increase of the age of rat used as the source. Noelken and 

 Bettin (1983) found that calf-skin collagen eluted from a 

 Fractogel TSK HW-65F colmn (solvent, 0.1 M Tris-HC1, pH 7.3, 

 containg 0.5 M urea) as  a single peak. They found that the 

 collagen eluted in advance of the unfolded collagen polypeptides 

  if present. 

    From the results of the studies cited above, it can be 

  concluded that: 1) the gels used as supporting materials were not 

 porous enough to separate collagen molecules according to the 

  degree of intermolecular cross-linking; 2) the collagen molecule 

  is retarded due to protein-gel interaction when Sepharose 6B, 

 Sepharose CL-6B or Fractogel HW-65F was used; and 3) gel 

  chromatographic separation of collagen purely on the basis of 

  molecular sieving effect has not yet been successful. 

     A breakthrough was made in the gel chromatographic separation 

  of collagen taking the advantage of the following situations: 1) 

  presence of 2 % Tris dodecyl sulfate made the collagen molecule 

  soluble in a neutral buffer solution; and 2) charges introduced 

  by the bound surfactants into both the collagen molecule and its 

  cross-linked products excluded the protein-protein interaction as 

  well as protein-gel interaction which led to decrease of 

  resolution. 

     It is proposed to apply to gel chromatography of collagen in 

  the presence of 2 % Tris dodecyl sulfate at  40C for the following 

  purposes: 1) separation of collagen from unfolded collagen 

  polypeptides and other contaminating protein polypeptides using 

  Sepharose CL-4B; and 2) separation of monomeric collagen molecule 
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    from intermolecularly cross-linked collagen molecules using 

    Sepharose  CL-2B. The latter is particularly suited for following 

    the formation of intermolecular  cross-linking with aging. It 

    seems possible further to fractionate  the cross-linked products 

    according to the degree of oligomerization, if a gel chromatogra-

    phic supporting material with higher resolution for the 

     cross-linked products become available. 

       It is not yet clear why the concentration of Tris dodecyl 

    sulfate as high as 2  % is required for the solubilization of the 

    collagen and its cross-linked products. Critical micelle 

    concentration of Tris dodecyl sulfate in the buffer solution used 

    in this study is 0.09  %. It is suggested that there is a mode of 

    interaction between Tris dodecyl sulfate and collagen which 

    becomes effective at a concentration far exceeding the critical 

    micelle concentration and has not yet been made clear. 

• 
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11. Binding of Lithium Dodecyl Sulfate to Polyacrylamide Gel at 

 4°C Perturbs Electrophoresis of Proteins 

I. SUMMARY 

   Although polyacrylamide gel has no affinity to lithium dodecyl 

sulfate (LDS) at  25°C, the gel maximally binds 17 mg of LDS per 

gram dry weight at 4°C. When polyacrylamide gel electrophoresis 

is carried out at  4°C in the presence of LDS instead of sodium 

dodecyl sulfate (SDS) using a continuous buffer system, migration 

of proteins with lower molecular weight is accelerated as a 

result of the deficiency of LDS in the frontal region of the gel. 

When the gel is saturated with LDS, electrophoresis in the 

presence of LDS and at  4°C shows a resolution higher than that of 

SDS-polyacrylamide gel electrophoresis at  25°C. 

II. INTRODUCTION 

   Sodium dodecyl sulfate-polyacrylamide gel electrophoresis 

(SDS-PAGE) is now widely used in the field of  biochemistry. 

Electrophoretic runs of SDS-PAGE at temperatures near  0°C are 

impeded by crystal formation of SDS. The difficulty was overcome 

by the use of lithium dodecyl sulfate (LDS) instead of SDS. 

Polyacrylamide gel electrophoresis in the presence of LDS 

(LDS-PAGE) was first applied to the analysis of thylakoid 
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     membrane proteins of Chlamydomonas reinhardtii by Delepelaire and 

    Chua (1979). Visualization of the gel after the electrophoresis 

     showed the presence of several colored  barids assignable to chloro-

    phyll-containing proteins. In SDS-PAGE at room temperature, 

     chlorophyll proteins were mostly denatured to release  chloro-

     phylls and give a major colored band assignable to SDS micelles 

    in which chlorophylls were incorporated. Only one or two 

     chlorophyll-containing protein bands were observed. Since then, 

    LDS-PAGE at temperatures near  00C has been utilized in the 

    research field of photosynthesis as an analytical method of 

     molecular assembly of chlorophyll-containing proteins without 

     cleavage of intermolecular interactions. In the original recipe 

     of LDS-PAGE that has been followed since (Delepelaire & Chua, 

     1979), LDS is added only to the sample solution and the upper 

    electrode trough. We noticed that proteins complexed with 

     dodecyl sulfate ions become free from lithium ions as soon as the 

     electrophoresis is started. It turned out that the stabilization 

     of the molecular assemblies could be ascribed to the extremely 

 slow  denaturation of the chlorophyll-containing proteins at  40C 

     in the presence of Tris dodecyl sulfate (TrisDS). This procedure, 

     called "LDS-PAGE", is actually "TrisDS-PAGE". We have found that 

     polyacrylamide gel electrophoresis in the presence of TrisDS or 

     an analogous alkanolammonium dodecyl sulfate is very efficient in 

     the analysis of the molecular assemblies of spinach thylakoid 

     membrane proteins and possibly other such assemblies as will be 

     reported in an another paper (Kubo & Takagi, 1986). 

        We have modified the conventional procedure for LDS-PAGE so 
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that it is true to its name. Buffer components were designed so 

that lithium ion exists as the sole cation. LDS was found to be 

comparable to or stronger than SDS in its denaturing power even 

at temperatures near 0°C. As is shown by an example in this 

chapter (Fig.6), LDS-PAGE at  0-4°C is superior to SDS-PAGE at 

room temperature. This real  "LDS-PAGE" will be welcomed as an 

improved version of SDS-PAGE. Special care is required, however, 

to carry out LDS-PAGE at  0-4°C, because LDS interacts with the 

polyacrylamide gel matrices in this temperature range. This 

chapter is written first to point out this phenomenon, and second 

to show what kind of care  is required to be free from anomalies 

caused by the interaction. We have reviewed the result of 

the assessment of LDS-PAGE elsewhere (Kubo & Takagi, 1985). 

III. EXPERIMENTAL PROCEDURE 

   Lithium dodecyl sulfate (LDS) was prepared from SDS obtained 

from Nakarai Chemicals (SPS-4), essentially according to the 

procedure of Noll and Stutz (1968). An ion-exchange column of 

Dowex 50W-X8 (2.5 X 23 cm, 100-200 mesh) was converted from H to 

 Li form by passage of 500 ml of 2 M lithium chloride, and washed 

with distilled water. SDS was converted  to  LDS by passage of 500 

ml of 10 % (w/v) aqueous solution of the former through the 

column. The column was washed with 60 ml of distilled water. 

Eluates were combined and lyophilized to obtain solid LDS. The 

yield of the conversion was nearly 100 %. LDS is also available 
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 commercially. We preferred conversion from SDS, since identical 

 purity can be expected with respect to the alkyl chain for both 

 preparations of the dodecyl sulfates thus obtained. A stock 

 solution of lithium azide was prepared by passage of 2 % sodium 

 azide through the Li-form ion-exchange column. Lithium citrate 

 was obtained from Wako Pure Chemicals (grade for amino acid 

 analysis). 

    A buffer solution with the following composition was used 

 throughout the present study: 0.1 M lithium citrate, pH 6.0, 

 containing 0.02 % lithium azide. Hereafter  it'is called "lithium 

 citrate buffer, pH 6.0". The critical micelle concentration of 

 LDS in this buffer solution was determined to be  1.1 mM at  40C 

 and 0.9 mM at  250C by measurement of the solubilization of 

 Yellow OB as described  previously. (Takagi et al., 1980). Poly-

 acrylamide gel electrophoresis in the presence of LDS was carried 

 out essentially according to the method described by Weber and 

 Osborn (1969), with the following modifications: (i) SDS was 

 replaced by LDS; (ii) lithium citrate buffer, pH 6.0, was used 

 instead of 0.1 M sodium phosphate buffer, pH 7.0. Distribution 

 of LDS in the gel was visualized immediately after  electrophore-

 sis by formation of the insoluble complex with a cationic surfac-

 tant according to the procedure described previously (Takagi et 

 al., 1977). White zones thus revealed were scanned at 440 nm by 

 a densitometer. 

     Binding of LDS to Bio-Gel P-60 (100-200 mesh; control No. 

 163572; polyacrylamide beads) was measured as follows.  Bio-Gel 

 P-60 beads were immersed in water, washed repeatedly by 
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decantation, immersed in ethanol, and finally dried under vacuum 

over phosphorous pentaoxide. To each  4 ml of lithium citrate 

buffer, pH 6.0, in a vial containing a known amount of LDS in the 

range between 0.14 and 50 mM, 200 mg of the dried Bio-Gel P-60 

beads was added. The vials were kept overnight at room 

temperature and shaken in a water bath at 4, 15, or  25°C for 2 to 

3 hr to attain equilibrium. The beads were separated by 

centrifugation at the same temperature as in the equilibration, 

and the supernatants were analyzed for LDS by colorimetry of the 

methylene blue-dodecyl sulfate complex extracted with chloroform 

according to the method described by Takagi et al. (1975). The 

amount of LDS bound was determined by subtraction of the amount 

of free  LDS from the total amount of LDS added. 

   A mixture of proteins designated as "low molecular weight 

calibration kit" (Pharmacia Fine Chemicals) and  8-lactoglobulin 

were fully reduced and carboxamidomethylated according to the 

procedure described by Shirahama et al. (1974) and used as 

molecular weight standards. Broken spinach  chloroplasts were 

prepared according to the method described previously (Kubo & 

Takagi, 1986). 

IV. RESULTS AND DISCUSSION 

Electrophoresis of lithium dodecyl sulfate  

  Anomalous behavior of LDS in polyacrylamide gel electrophoresis 
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Fig.1. Polyacrylamide gel electrophoresis of LDS is markedly 

dependent on temperature. Twenty  pl of 40 mM LDS in 0.01 M 

lithium citrate containing 5 % glycerine was layered on each of 

the gels prepared using 0.1 M lithium citrate, pH 6.0. The upper 

and lower troughs were filled with 0.1 M lithium citrate, pH 6.0. 

Experimental conditions, namely, gel concentration, temperature, 

electric current per tube (applied voltage), and duration of run 

were as follows: a) 5 %,  25°C, 6 mA (32 V), 2.5 hr; b) 10 %, 

 25°C, 6mA (38 V), 3 hr; c) 5 %,  4°C, 6 mA (50  V), 2.5 hr; d) 10 

%,  4°C, 6 mA (60  V), 3 hr. The white arrows indicate the top of 

the gels. Electrophoresis from top to bottom.
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is exemplified when LDS alone is analyzed. Here, LDS had been 

added neither to the electrode buffer nor to the gel. When the 

corresponding electrophoretic patterns observed for SDS (Kubo et 

al,. 1979) are taken into account, the patterns in Fig.1 can be 

explained as follows. At  25°C and in 5 % gel, LDS micelles were 

electrophoresed ahead of monomeric  LDS  (Fig.1a). At  25°C and in 

10 % gel, LDS micelles were retarded and had the same mobility as 

monomeric  LDS  (Fig.1b). Thus LDS, upon electrophoresis formed a 

narrow band in which  micelles and monomers were in equilibrium. 

When temperature was  lOwered to  4°C,  IDS showed quite different 

electrophoretic behavior  (Figs.lc and d).  LDS was markedly 

retarded, and mostly concentrated at the rear edge. At  4°C, gel 

concentration had no marked effect on the electrophoretic 

behavior. 

   We compared the electrophoresis of LDS in agarose gel at 4 and 

 25°C, and observed no marked difference (data not shown). Since 

the agarose gel is devoid of molecular sieving effect on LDS 

micelles, this  indicates  that there is no significant change with 

temperature in the electrophoretic behavior of LDS in free 

solution whether it is micellar or monomeric. The observed 

difference can be interpreted, if it is assumed that LDS acquired 

high affinity to polyacrylamide gel at  4°C. 

 Binding of lithium dodecyl sulfate  

   Binding of  LDS  to polyacrylamide gel was, therefore, measured 

at 25,  -15, and  4°C as shown in Fig.2. Commercially available 
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Fig.2. Binding of LDS to polyacrylamide gel (Bio-Gel P-60) with 

increase in concentration of free LDS. Temperature ,  40C (o, o), 

 150C (A), and  250C (x). For the filled circles , refer to the 

upper and right scales. Solvent, 0.1 M lithium citrate containing 

0.02 % LiN3, pH 6.0. 

                                  - 153 -



polyacrylamide gel beads, Bio-Gel P-60, were used since homemade 

gel is inconvenient for such a purpose. Although binding was not 

appreciable at  25°C, the polyacrylamide gel bound a small amount 

of LDS  at  150C, and much more LDS at 4°C. Above 20 mM free LDS, 

about 17 mg of LDS was bound per gram dry weight of polyacryl-

amide gel. This amount of binding might seem trivial. It is to 

be noted, however, that 10 % polyacrylamide gel binds about 0.7 

mg LDS per ml of gel in the presence of 0.1 % (3.7 mM) free LDS. 

The concentration of LDS in the buffer solution in the upper 

electrode trough is usually 0.1 %. 

   Seemingly the anomaly in the electrophoresis of LDS at  4°C is 

due to the binding of LDS to polyacrylamide gel matrices. LDS in 

the sample solution is mostly bound to the gel matrices and 

consequently markedly retarded. Presumably unbound LDS present 

in equilibrium was electrophoresed in advance of the "densely 

stained" band, and formed the less dense region in front of the 

band  (Figs.lc and d). 

Behavior of lithium  dodecyl sulfate in an actual electrophoretic  

run 

   In a practical LDS-PAGE run, LDS is added not only to the 

sample solution but also to the buffer  of the upper electrode 

trough. If the conditions were similar to those for SDS-PAGE, 

addition of LDS to the gel buffer would not be required. Figure 

3 shows the electrophoretic behavior of LDS in LDS-PAGE carried 

out in such a situation without application of a sample solution. 
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Fig.3. Profiles of the distribution of LDS in electrophoresis 

from the upper electrode  trough into 7.5  % polyacrylamide  gel at 

 250C (a) and  40C (b). The lithium citrate buffer used to fill 

the upper trough was 0.1 % LDS, pH 6.0. Electrophoresis was 

carried out at 5 mA for 3.5 hr (a) and 5.0 hr (b). The arrows in 

the right ends indicate the tops of the gels. Vertical 

 double-headed arrow, 1.0 absorbance scale at 440 nm. Horizontal 

 double-headed arrow, 2 cm. 
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At  25°C, LDS was  electrophoresed, giving a single plateau region. 

The behavior is the same as that observed with SDS at  25°C (Kubo 

et al,. 1979). At  4°C, the distribution of LDS was depressed at 

the frontal region of electrophoresing LDS. This can be 

interpreted as a result of the binding of LDS to polyacrylamide 

gel. The plateau seems to appear only after LDS is bound to the 

level where bound LDS is in equilibrium with free LDS at a con-

centration of  0.1  %. 

   Figure 4 shows electrophoretic patterns similar to those in 

Fig.3 except that the sample solution contained two proteins. 

The major peaks appeared in the front and the middle in  Figs.4a 

and b respectively and can be assigned to LDS. The minor two 

peaks appearing in both can be assigned to soybean trypsin 

inhibitor and bovine serum albumin (left to right). It is to be 

noted that LDS added in excess to the sample solution was 

electrophoresed at  4°C between the two protein bands (Fig.4b). 

This is not expected for  SDS-PAGE or LDS-PAGE at  25°C (Fig.4a) 

where excess SDS or  LDS.in a sample solution is always electro-

phoresed in advance of all protein bands. 

   Comparison of Fig.3b and Fig.4b indicates that the concentra-

tion of LDS is variable in most of the frontal region of 

the polyacrylamide gel. The expected profile of the distribution 

of LDS not bound to protein is illustrated in Fig.4b by shading. 

We have measured electrophoretic mobilities of six standard 

 proteins (available from Pharmacia as "low molecular weight 

calibration kit") and of  pc-lactoglobulin. The conditions were 

the  same as those in Fig.3 except for the addition of proteins to 
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Fig.4. Profiles of the distribution of LDS in 7.5 %  polyacryl--

amide gel at  25°C (a) and  4°C (b). Each twenty  pl of sample 

solution containing 37 mM LDS, 4 pg bovine serum albumin, and 4 

pg soybean trypsin inhibitor was layered on top of polyacryl-

amide gel. The concentration of LDS in the upper electrode buffer 

was decreased to 1.2 mM (0.03 %) just above the critical micelle 

concentration so that the protein bands could be easily localized . 

Both proteins had been  S-carboxamidomethylated  according to the 

procedure described by Shirahama et al. (1974). Electrophoresis 

was carried out at 6 mA for 4 hr (a) and 4 .5 hr (b). Arrows at 

both ends indicate bottoms (left) and tops (right) of the gels . 

Double-headed arrow, 1.0 absorbance scale at 440 nm . 
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Fig.5. Semilogarithmic plot of electrophoretic mobility versus 

 molecular weight in different concentrations of LDS at 4°C. 

Mobilities are expressed relative to that of bovine serum 

albumin. Concentration of LDS in polyacrylamide gel (7.5 %) and 

in the upper electrode buffer were as  follows: x, 0.1 and 0.1 %; 

o, 1.0 and 0.4 %, respectively. The solvent was 0.1 M lithium 

citrate buffer, pH 6.0. Proteins had been S-carboxamidomethyl-

ated, and are, from the right to left, phosphorylase b, bovine 

serum albumin, ovalbumin, carbonic anhydrase, soybean trypsin 

inhibitor,  8-lactoglobulin and a-lactalbumin. 
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the sample solution and of 0.1 % LDS to the gel. At  25°C, plots 

of the logarithms of the observed relative mobility versus 

molecular weight were linear for all of the proteins. At  4°C, 

the plot was linear in most of the region, but curved upward for 

proteins with molecular weights less than 30,000 as shown in 

Fig.5. The anomaly seems  to be related to the deficiency of LDS 

at  4°C in the frontal region of the electrophoresing LDS (see 

Fig.3b). On the other hand, the presence of retarded LDS derived 

from the excess amount in the sample solution seems to have no 

appreciable influence on the electrophoretic behavior of the 

proteins. When Malachite Green was used as a marker dye it 

stained the "excess LDS band". It is likely, therefore, that 

this band will incorporate lipophilic materials if present, and 

they will be stained mistaken for a protein band. 

High resolution in LDS-PAGE at  4°C  

   The abnormal distribution of LDS in polyacrylamide gel must be 

eliminated to make the LDS-PAGE technique reliable. This was 

expected to be attained if binding sites for LDS had been 

saturated. Addition of 0.1 % LDS not only to the upper electrode 

buffer but also to the buffer for gel preparation was found to be 

insufficient as shown in Fig.5.  Addition  of 0.4 and 1.0 % LDS to 

the buffer solution in the upper electrode trough and to the 

buffer for the gel preparation, respectively, was found to  total-

ly eliminate the anomaly. Thus, in an electrophoretic run 

carried out under the above conditions, the "excess LDS band" was 
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Fig.6. Resolution of spinach 

thylakoid membrane proteins 

in polyacrylamide gel elec-

trophoresis was markedly im-

proved when SDS was replaced 

by LDS and temperature was 

lowered from 25 to  4°C. 

Thylakoid membrane proteins 

(1.5  ug per tube as  chloro-

phylls) solubilized using LDS 

(a) or SDS (b) at the same 

temperature used in the elec-

trophoresis were layered on the tops of polyacrylamide gels (7.5 

 %). (a) LDS-PAGE  (1.0-0.4 %) at  4°C, 4 mA/tube, 6 hr; (b) SDS-

PAGE  (0.1-0.4 %) at  25°C, 5mA/tube, 4 hr (the concentration  (%) 

of  LDS or SDS in the polyacrylamide gel (before dash) and in the 

upper electrode buffer (after dash) is shown in parentheses). 

The solvents were 0.1 M lithium citrate buffer, pH 6.0  (a), and 

0.1 M sodium phosphate buffer, pH 7.0 (b). Vertical arrows to 

the right indicate the position of the free pigment band. 

Double-headed arrow, 0.4 absorbance scale at 565 nm. 
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     electrophoresed in advance of all proteins, and the semilogarith-

     mic plot of  relative  mobility versus the molecular weight was 

     linear throughout the entire region as also shown in Fig.5. When 

     care (conditions described above) is taken to avoid the anomaly, 

     the performance of LDS-PAGE is far superior to that of conven-

     tional SDS-PAGE especially with respect to resolution. As an 

     example, Fig.6 shows the electrophoretic pattern of LDS-PAGE at 

 4°C of spinach thylakoid membrane  proteins in comparison with 

     that of SDS-PAGE at 25°C. 

        In this study, we paid attention only to the affinity of LDS 

     to polyacrylamide and related phenomena. The mechanism of the 

    binding of LDS to polyacrylamide is not clear and is under 

     investigation. 
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12. Marked Effect of Cations on the Separation of Spinach 

     Thylakoid Chlorophyll-proteins on Polyacrylamide Gel Electro-

     phoresis at 0°C in the Presence of Alkanolammonium Dodecyl 

     Sulfates. 

I. SUMMARY 

  The separation of spinach thylakoid chlorophyll-proteins on 

polyacrylamide gel electrophoresis at  00C in the presence of 

dodecyl sulfate is markedly influenced by the kind of surfactant 

cation in the media used for solubilization and electrophoresis. 

The mode of separation can thus be modulated through the  cation. 

selection. Three kinds of alkanolammonium dodecyl sulfates were 

tested and their abilities as to the dissociation of the 

molecular assemblies of chlorophyll-proteins were found to 

decrease in the following order: tris(hydroxymethyl)methyl-

ammonium, triethanolammonium and triisopropanolammonium. Compar-

ison of the electrophoretic patterns obtained with different 

kinds of cation may help clarify the hierarchy of the molecular 

assemblies of chlorophyll-proteins. 

II. INTRODUCTION 

   The chlorophyll-protein complexes of chloroplast thylakoid 

membranes of higher plants and green algae can be resolved by 
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    polyacrylamide gel electrophoresis carried out at around  0°C in 

    the presence of dodecyl sulfate into three to several chlorophyll-

    containing bands (see, Anderson et al., 1978). The retention of 

    non-covalently bound  chlorophylls in the protein bands has been 

    ascribed to prevention of denaturation of the chlorophyll-contain-

    ing proteins due to the low temperature during solubilization and 

    electrophoresis. On surveying the reported procedures, we 

    noticed that the cation in the media for solubilization and 

    electrophoresis plays a major role in determination of the mode 

    of separation, as well as the temperature. The present chapter 

    was written to show that the use of one of certain ions, 

    tris(hydroxymethyl)methylammonium (Tris) or one of its analogues, 

    namely alkanolammonium ions, as the sole cation in the media 

    opens the way to new variations of polyacrylamide gel electropho-

    resis in the presence of  dodecyl  sulfate for studies on protein 

    molecular assemblies related to photosynthesis. We chose the 

    above family of cations, because Tris was found to be the major 

    cation component in the recipes for the buffer solutions used for 

    electrophoreses in which chlorophyll-proteins were reported to be 

     at least partly free from denaturation. 

    III. EXPERIMENTAL PROCEDURE 

        Polyacrylamide gel electrophoresis in the presence of dodecyl 

    sulfate was carried out according to  the method of Weber and 

    Osborn (1969). The acrylamide concentration was 5 % (T, w/v) and 

                                         - 163 -



     Table I. Conditions for Electrophoreses shown in Fig.1. 

Tube DS1 Ch12/DS Buffer Concentration Current Duration 

 (g/g) (0.1 M) of DS (%) (mA/tube) (hr)3 

                                Gel Upper 

                                             electrode 

a Lithium 1:40 Lithium  1.04 0.4 5 4 

    (LDS) citrate, 

 pH  6.0 

b Tris 1:40 Tris-HC1 0 0.1 3 3(1) 

   (TrisDS) pH 7.2 

c Triethanol- 1:40 Triethanol- 0 0.1 3.5 3(1) 

   ammonium amine-HC1 

    (Tri-eDS) pH 7.0 

d Triisoprooanol- Triisopropanol-

   ammonium 1:60 amine-HC1 0 0.1 3.5  3.5(1) 

   (Tri-ipDS) pH 7.2 

1Dodecyl sulfate. 2Chlorophyll. 

3Numbers in the parentheses denote duration of preruns. 

 4Poltacrylamide gel has appreciable affinity sites for LDS at  00C 

 but not at room temperature. Addition of LDS to the gel buffer 

 is  required for freedom from the anomaly caused by the affinity. 
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    bis-acrylamide added accounted for 2.7 % (w/v) of the total 

    acrylamide. The buffers used are shown in Table I. Sodium 

    dodecyl sulfate (SDS) was replaced by lithium dodecyl sulfate 

    (LDS),  tris(hydroxymethyl)methylammonium dodecyl sulfate (TrisDS), 

    triethanolammonium dodecyl sulfate (Tri-eDS) or triisopropanol-

    ammonium dodecyl sulfate (Tri-ipDS). Each buffer solution 

    contained only a single cation, which was the same as that of the 

    dodecyl sulfate used. The alkanolammonium ions in the buffer 

     solutions accelerated the polymerization of acrylamide. Compared 

    to the procedure of Weber and Osborn (1969), the amount of 

 N,N,N',W-tetramethylethylenediamine was reduced by half in the 

     cases of Tris and Tri-ip and by one-fourth in the case of Tri-e, 

    and that of ammonium persulfate was reduced by half in the case 

    of Tri-e. Both reagents were added just before initiation of the 

    polymerization. Tubes (5 X 70 mm) were immersed in the buffer 

     solution in a positive electrode trough maintained at 00C. 

        SDS was obtained from Nakarai Chemicals (SPS-4). Triethanol-

    amine and triisopropanolamine were obtained from Wako Pure 

     Chemicals and Kanto Chemicals, respectively. Dodecyl sulfates, 

     each with a cation other than sodium, were prepared from SDS by 

     means of ion-exchange essentially according to Noll and Stutz 

     (1968). (LDS and TrisDS are available commercially.) Dowex 

     50W-X8 cation exchanger of 100-200 mesh in particle size was 

     pretreated to obtain the  1-14- form and then packed into a glass 

     column to obtain a 2.5 X 25 cm bed size. Then the lithium, Tris, 

     triethanolammonium and triisopropanolammonium forms were obtained 

     by passage of the following aqueous solutions, respectively: 2 M 
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lithium chloride, 500 ml; 2 M tris(hydroxymethyl)aminomethane 

adjusted to pH 3.7 with hydrochloric acid, 500 ml; 1.5 M 

triethanolamine hydrochloride adjusted to pH 3.9 in the same way 

as above, 670 ml; and 1.5 M triisopropanolamine hydrochloride 

(pH 3.9), 670 ml. The triisopropanolamine hydrochloride had been 

prepared by the addition of concentrated hydrochloric acid to 3 M 

triisopropanolamine to pH 3.5. The solution was dried in a 

rotary evaporator, and the residue was dissolved in ethanol at 

 60°C for crystallization. The column was washed with 350 ml of 

distilled water. SDS was converted to the respective derivative 

by the passage of 500 ml of a 10 % solution through the column. 

The residual product was washed out with 60 ml of distilled 

water. The eluted solutions were combined and used as the stock 

solution. The exchange was so quantitative that estimation of 

the concentration of dodecyl sulfate after correction for 

dilution was possible. 

    Broken spinach chloroplasts were prepared as follows according 

to the method described by Strotmann et al. (1973) and Henriques 

and Park (1976). Forty grams of spinach leaves were homogenized 

in 200 ml of 50 mM sodium phosphate buffer, pH 7.8, containing 

0.4 M sucrose, 10 mM sodium chloride, 0.1 mM phenylmethylsulfonyl 

fluoride, for 10 sec in a blender. The homogenate was filtered 

through four layers of gauze, and the filtrate was centrifuged at 

3000 x g for 8  min at  4°C. The precipitate was suspended in 100 

ml of the above buffer. The suspension was centrifuged at 500 x 

g for 5  min at 4°C. The supernatant was centrifuged at 3000 x g 

for  8.  min at  4°C to obtain the thylakoid membrane as a 
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    precipitate. The precipitate was washed by centrifugation at 

    3000 x g for 8  min at  4°C with 50 mM sodium phosphate buffer, pH 

     7.8, containing 0.15 M sodium chloride, with 10 mM sodium  pyro-

    phosphate, pH 7.4, and finally with 0.3 M sucrose, twice, three-

     times and twice, respectively. The final product obtained as a 

    pellet was suspended in 0.3 M sucrose containing 0.1 mM phenyl-

     methylsulfonyl fluoride, and then frozen at  -30°C until use. 

       Spinach thylakoid was solubilized at  0°C with one of the 

    following dodecyl sulfates:  lithium, tris(hydroxymethyl)methyl-

     ammonium (Tris), triethanolammonium (Tri-e) and triisopropanol-

     ammonium (Tri-ip) dodecyl sulfates, with the respective dodecyl 

     sulfate at the ratio and in the buffer solution given in Table I. 

     Each solution obtained was analyzed by polyacrylamide gel elect-

    rophoresis in the presence of respective dodecyl sulfate under - 

    the conditions given in Table I. Special care was taken that 

    there was only a single kind of cation, identical to the 

     counter-ion of the particular dodecyl sulfate, in the medium for 

     solubilization and electrophoresis. 

        Samples for spectral measurements were prepared as follows. 

 Chloroplast preparation, equivalent in amount to 300  pg of 

     chlorophylls, was solubilized with Tri-ipDS by means of the same 

    procedure as that described in Table I (d). The solubilized 

     sample was layered on the top of each of two polyacrylamide slab 

     gels without sample slots (same composition as in  Fig.1d; 80 X 80 

     X 2.7 mm). Electrophoresis was carried out at 40 mA/slab for 3.5 

     hr using a Pharmacia gel electrophoresis apparatus (GE-2/4). 

     Each of the major bands corresponding to those in  Fig.1d was cut 
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out, and homogenized after addition of a small amount of 0.1 % 

Tri-ipDS-0.1 M triisopropanolamine-HC1 buffer, pH 7.2, in a 

Teflon homogenizer. The homogenized sample was centrifuged at 

3000 rpm for 5  min, and the supernatant was filtered through a 

Pasteur pipet outlet of which was filled with glass wool. All 

the above procedures were carried out in a cold room at  40C. 

Absorption spectra were measured promptly at room temperature 

 (200C) using a Hitachi model 557 dual wavelength double beam 

spectrophotometer. 

IV. RESULTS AND DISCUSSION 

   Fig.1 shows photographs of the gels taken immediately after 

the end of the electrophoretic runs. For each of the sets of 

electrophoretic conditions, three parallel runs were made in 

which the weight ratios of chlorophyll to dodecyl sulfate were 

1:80, 1:40 and 1:20, respectively, except in the case of Tri-ipDS 

where the ratios were 1:120 and 1:60. No appreciable difference 

was observed among the groups. This indicates that such 

electrophoretic runs are not significantly affected by differ-

ences in the ratio of sample to dodecyl sulfate. 

   Comparison of the electrophoretic patterns in Fig.1 clearly 

indicates that the mode of separation is heavily dependent on the 

kinds of cation used. In the experiments with LDS, all 

chlorophylls migrated to the frontal region as a single band, 

usually termed the "free pigment band (FP)". This band is 
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Fig.1. Distribution of pigments in 5 % polyacrylamide gels 

just after electrophoreses at  0°C in the presence of the 

following dodecyl sulfates: a, LDS; b, TrisDS; c, Tri-eDS; d, 

Tri-ipDS. Sample, 5 pg per tube as  chlorophylls. The visible 

bands in gel b are numbered i,i',  ii, iii, iv and v. The 

corresponding bands in different gels are linked by dotted lines. 

Bands i' and ii seem to be overlapped in gels c and d. Minor 

bands in gel "d" were too faint to be seen in the photograph. 

For the experimental conditions, see Table I.
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 ascribed to micelles of dodecyl sulfate in which all liberated 

 pigments from chlorophyll-proteins are incorporated. This result 

 indicates that polyacrylamide gel electrophoresis in the presence 

 of LDS cannot be used to separate the proteins retaining 

 chlorophylls. Inspection of the procedures for so-called "LDS-

 polyacrylamide gel electrophoresis" showed that the chlorophyll-

 containing protein bands were actually electrophoresed with media 

 rich in the Tris cation. For example, Delepelaire and Chua 

  (1979) added LDS only to the upper-trough buffer and the sample 

 solution. This indicates that protein bands are electrophoresed 

 with a medium totally lacking the lithium ion. In the present 

 experiments, the number of heavily or moderately chlorophyll-con-

 taining protein bands  decreased in the following order without 

 intensification of the FP band: TrisDS, Tri-eDS and Tri-ipDS. We 

 investigated by means of re-electrophoresis as to whether the 

 chlorophyll-containing proteins are stable entities or not, under 

 the electrophoretic conditions. For TrisDS  (Fig.1b) and Tri-eDS 

 (Fig.1c), electrophoresis of samples recovered from each section 

 of the chlorophyll-containing protein bands, using the same 

 medium as used for the electrophoresis, showed that parts of 

 particular components had been transformed to others: i  4- and 

 iv, iii v, iv v and FP, and v  4- FP (TrisDS); and i ii and 

 iv, iii v, iv v and FP, and v FP  (Tri-eDS); respectively. 

• In the case of Tri-ipDS (Fig.  1d), only a minor fraction of i was 

 transformed to ii. Tri-ipDS seems to be the mildest surfactant 

 among the three alkanolammonium dodecyl sulfates. 

     Fig.2 shows the absorption spectra of the samples recovered 
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Fig.2. Absorption spectra of extracts from the major colored 

bands on polyacrylamide gel electrophoresis in the presence of 

Tri-ipDS under the same conditions as in  Fig.1d. Each of  the 

spectra is numbered in the same way as in Fig.1. The bars on 

the right indicate an absorbance scale of 0.1.                               
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from the four chlorophyll-containing protein bands shown in 

 Fig.1d. Bands i and ii are rich in chlorophyll a, and bands iii 

and v contain both chlorophyll a and b. It is a common practice 

to assign each of the bands to a particular functional unit of 

photosynthesis according to their spectra (Anderson et al., 

1978). The present results, however, show that the mode of 

separation of the bands is very variable, depending  on the 

composition of the electrophoretic medium. Thus comparison of 

the present results with the previous ones is so difficult that 

we cannot make assignments at  present  time. 

   Since the pioneering work of Ogawa et al. (1966), chlorophyll-

containing protein assemblies have been frequently analyzed by 

polyacrylamide gel electrophoresis at temperatures around  0°C in 

the presence of dodecyl sulfate. The present results, however, 

emphasize the necessity for careful revision of the experimental 

conditions, especially the cation composition of the media used 

for solubilization and electrophoresis. This chapter is written 

to point out the above problem which has been overlooked by the 

people in the field of photosynthesis. On the other hand, 

electrophoreses in the presence of the alkanolammonium dodecyl 

sulfates are promising as a means to clarify the hierarchy of the 

molecular assemblies of thylakoid proteins. 
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