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0. Introduction

In [19] the m-th codegree (number) cdg(X,n)=Z and its stable version
‘cdg(X, n)e Z were defined for every pair of a path-connected space X and a
positive integer #. In [18], *cdg,(G, 3), the exponent of a prime p in ‘cdg(G, 3),
was determined for some simply connected simple Lie groups G. The purpose
of this paper is to continue computing ©cdg(G, n) for some (G,n). We use
notations in [19] and [18]. Our results are the following.

Theorem 1. Ifr=3, then
r <’cdgy(Spin(n),3)<r+1 for 22=<n<2'+6,
‘cdg,(Spin(n), 3) =r+1 for 274+7<n<2"1—1.

Theorem 2. ‘cdgy(E, 3)="cdgs(F,, 3)=2.

Theorem 3. (1) cdg(SU(3),3)=2* and cdg(SU(3), 5)="cdg(SU(3), n)
=2 for n=3, 5; [SU(3), S*|=ZDZ,; {SU(3), S} =2Z; [SU(3), S¥]={SU(3),
S =2Z.

(2) ‘cdg(SU4), 3)=2%-3|cdg(SU4), 3)|2°-3%; cdg(SU4), 5)="cdg(SU
(4), 5)=2; cdg(SU4), 7)="cdg(SU4), 7)=2-3.

(3) cdg(G,, 11)="cdg(G,, 11)="cdg(G,, 3)=2%-3.5|cdg(G,, 3)|25-32.5.

(4) cdg(Spin(n), 11)=cdg(SO(n), 11)=23-3.5 for n=7, 8; cdg(SO(7)/SO
(5), 11)=2%

(5) 2°-3]°cdg(Sp(3), 7)|cdg(Sp(3), 7)[2°-3.

Proposition 4.

23.32.5|cdg(Spin(9), 7) ,

24.32.5| cdg(Spin(9), 11),
22.32.5.7|cdg(Spin(9), 15),
23.3|cdg(SU(5),5),

2.3]cdg(SU(S), 7),
27.3.5.7|cdg(F,,n) for n=11,15,
27.32.5.7.11| cdg(F,, 23) .
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1. Proof of Theorem 1

Let g: V,,.,=S0(2n+1)/SO(2) x SO(2n—1)—QSpin(2n+1) be the gener-
ating map for Spin(2rn+1) (n=3) (see [2]). Let g’: ZQSpin(2n+1)—Spin
(2n+1) be the canonical map. Then (g'0Zg)s: ms(ZV2,-;)=my(Spin(2n-1)),
hence

(L.1) “edg(Vin-1, 2)|cdg(Spin(2n-+1), 3),
“cdg (V- 2)|“edgi(Spin(2n+1), 3)

We will calculate the 2-components of these numbers.
The inclusions U(n)C.SO(2n)=S0(2n)x I, cSO(2n+1), SO(2n+1)=S0
(2n4-1)x I, SO(2n+-3), and U(n)=U(n)x I,C U(n+1) induce maps:

o, P(C") =Um)/U)xUm—1)—>V,,,,
Tut Vawet = Vona

h: P(C") — P(C™*)

such that 7,00,=a,07;. Let L, be the canonical complex line bundle over the
complex projective (n—1)-space P(C"), and let a,e HXP(C"); Z) be the first
Chern class of L,. Then

i ¥(Aysy) = Gy -
As is easily seen (e.g., [2]), we have

H*(VZn—l; Z) = Z[xmyn]/(x::"‘zym y:) )
dim(x,) =2, dim(y,) = 2n,

oi(x,) = a,,

Tz‘(xn+l) = Xy .
Hence
(1.2) ot H(Vy,_; Z) = H(P(C"); Z) for i<2n—-2,

T8 H (Vs Z) = H(V,,_1; Z) for i<2n—2,
H*( V2n—1; Q) - Q[xn]/(xle”) )

(1.3) T H (Vs @) = H (Vy,_,; Q) for i<4n—2.
Recall from Clarke [4] that
(1'4) K(VZn-l) = Z[Xm Yn]/(X:_ZYn_Xn Ym Yfzi) .

Hence

K(V;)®@Q = Q[X,]/(X?).
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By the construction of X, ([4]), we have
O'z‘(Xn) = Ln_l ’
T:F(Xn-l»l) = Xn .
The Chern character of X, is given by
Lemma 1.5. ci(X,) = exp(x,)—1.
Proof. We have
o1 (ch(Xan)) = ch(oF(Xom) _
= ch(L,,—1) = exp(ay,)—1 = oFi(exp (xz,)—1) .

Hence ch(X,,)=exp(x,,)—1 mod x5, by (1.2), thus ch(X,)=exp(x,)—1 by (1.3).
This proves 1.5.

Proposition 1.6. (1) ‘cdg®,(Vy-1,2) =7 if 27'<n=<2".
(2) scdgz(Vzn_l, 2) =7 l_f Z'_l<n<2' ,
r<°cdg,(Vop-, 2)<r+1 if n=2".

Proof. Put D=°cdg(V,,_,,2). Let f: V,,_,—S? be a stable map such that
the induced homomorphism fy: ‘7y(Vy,_1)=2Z—"my(S?)=Z is multiplication by
D. Let B€K(S?)=Z be a generator. For simplicity, we set X=X,, Y=Y,
and x=x,. Set

f*(ﬁ) = Dlisi<n & X4 Y'EOS{<# b; X = 2hisi<on X’
in K(V,,_,)®Q, where a,€ Z(1<i<n), b, Z(0<i<n), and a;,EQ(n<i<2nm).
Then
D-Fiz((—1)"7i) (6'—1) = D-log(e'—1+1)
— Dex = fAch(8) = ch(f¥(B)) = Shsm aile’—1)' .
Hence a,=D-(—1)""'/i (1<i<2n). We then have
F*(B) = Digicn & X' +QRY+XY) Sgicon a; X7
= Di<ica(D(— 1)) X'+ Y-2D(—1)""/n
+ Y- Scison—2 {D(—1) i 2D (—1)i /(14 1)} X i+,
Thus
(1.7) Dfi (1=i<n), 2D|n, and D[i—2D[(i41) (n<i<2n—2) are in Z.
Let r=1 be an integer such that 27'<n<2". Then the relation D/2"—2D/

(2’+1)e Z implies that 2| D. Conversely, if 2| D, then (1.7) with Z replaced
by its 2-localized ring Z, holds. Therefore ‘cdg¥,(V,,-,, 2)=r. This proves (1).
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A map V,,_;—>K(Z,2) which represents x, factorizes as V,,_,—P(C*")C
K(Z,2). Hence ‘cdg(V,,_,, 2)|‘cdg(P(C*), 2) so that r="cdgX(V,—;, 2)<°cdg,
(Van—1, 2)=°cdg,(P(C™), 2). By [18], we have ‘cdg,(P(C*), 2)="cdg,(SU(2n), 3)
which is 71 or 7 according as n=2" or 2"'<n<<2". Hence we have (2).

Corollary 1.8. ‘cdgX,(Spin(2n+1),3)=r if 277 '<n=2".
Proof. This follows from 1.1 and 1.6.

Proof of Theorem 1. The complexification induces isomorphisms of re-
presentation rings:

RO(Spin(m)) == R(Spin(m)) if m=0,1,7 mod 8

(see [7, p. 193]). By the proof of [18, 4.4], we then have

‘cdgko(Spin(m), 3) = 2-°cdgk(Spin(m), 3) if m=0,1,7 mod 8.
Thus, by 1.8, we have

‘cdg,(Spin 2n+-1), 3)=r+1 if 7#=0,3 mod 4 and 2" '<n=<2".
On the other hand, if n=2, then the canonical homomorphism

Z = ny(Spin(2n+1)) = (SO (2n+1)) = ny(SU(2n+1)) = Z
is multipliaction by 2, so that
‘cdg,(Spin(2n+1), 3)<1+°cdg,(SU(2n+1), 3) .

The latter number is 742 or r+1 according as n=2" or 2" '<n<<2’, by [18].
Hence

‘cdgy(Spin(2n+1),3) =r+1 if n=0,3 mod 4and 27'<n<2".

In particular, if =3, then ‘cdg,(Spin(2"—1), 3)=r and ‘cdg,(Spin(2'+7), 3)=
‘cdgy(Spin(27t*—1), 3)=r+1. Hence, if r=3, then

r<°cdg,(Spin(n), 3)<r+1 for 2'=n=<2"+6,

‘cdgy(Spin(n), 3) =r+1 for 2747=n=2"—1.

This proves Theorem 1.

2. Proof of Theorem 2

The relations ‘cdg,(Eg, 3)="cdgy(F,, 3)=2 were proved in [18]. We will
prove ‘cdgy(F,, 3)=<2. By [6] and [12], there exist a mod 3 H-space X of di-
mension 26 and a mod 3 homotopy equivalence
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F,=; XX By3)

where Bg(3) is the total space of an S*-bundle over S* [15]. It follows from [3]
that the top cell of the localized space X splits off stably, that is, X =, X®V
S% (stably), where X® is the 23-skeleton of X, and it follows from [5] that
X® ., is stably homotopy equivalent to X;V X, where X, is 17-connected and
H*(X,; Z))=2Z,{1, x;, x;, X5, X5, %19, o3} such that dim(x;)=i, P* x3=x,, Bx,=
Xy Bx1g=1y, and P x19=1p5.

Lemma 2.1. X,=S8%3, Ué' Ul Uedy Ue s Ue .

In the rest of this section we work in the stable homotopy category of mod
3 local spaces. For simplicity we omit the notation ““(3)”.

Proof of 2.1. Let
Sa-—>Xl-—> Yl—>283———)2X1

be a cofibre sequence such that Y, is 6-connected. Then X;=S*UCZ'Y,.
Inductively we have cofibre sequences

ST Y, > Y, 38> 3Y,,
S8 Y, Y, >35> 3Y,,
Sls—->Y3—>Y4—>2Sl8—>EY,
S® > Y, > Y, > 389 > SV,

and

Y,=STUC3Y,,
Y,= SPUCSY,,
Y,=S*UC3Y,,
Y,= SPUCS™ Y, = S¥UeB

where the last equality follows from the fact that Y;=S%. Therefore we have
X, = S*UC(SSUC(S*UC(S®UC(S®Ue9)))) .
This proves 2.1.

Proof of Theorem 2. Put Y=S8*UeUelUe®Ue®?Ue®. Then ‘cdgy(F,, 3)
="cdgy(X, 3)="cdgy(Y, 3). Let a;E"n,;_,(S°) (1=i=<5) be the element of order
3 defined in [20, p. 178]. Let af: S**U;e*—S° and af’: S*—>S°U;se' be an
extension of a; and a coextension of a, respectively. The 8-skeleton Y® of YV
is equivalent to the mapping cone C(Z*af)=S*UC(S°U;¢’) and Y/Y® is
equivalent to C(Z% al’)=S"U;e®Ue®. Hence we have a cofibre sequence
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h k
C(Zal)—» V> CE*al)> C(Stal) > Y.

Let g: C(Z* ai)—S* be an extension of 3: S*—>S* As is easily seen, we have
an exact sequence

11%

a
Z(SBU 4 e%) = Zy{al} —> ‘7(S?) = Zy{o}
—> 371'4(SISU3 819 U 823) - 57[4(S18 U3 819) = Z3 b d 0 .

Since ai’*(aj)e<ay, 3, ap=as, it follows that ‘z*(S™®U; e U e?®)=Z; and 3gok
=0. Hence there exists a map r: 3Y—S* such that rok=3g, so that  has
degree 9 on the bottom sphere S* and ‘cdgy(Y)=<2. Hence ‘cdg(F,, 3)=2 as
desired.

3. Proof of Theorem 3

Lemma 3.1. Given an integer n=2 and a connected finite CW-complex X
such that

X and its (n—1)-skeleton Y are simply connected;

Tar(X) = 03

r,(Y)=Z, ;

rank (7,(X/Y)) = rank(z,(X)) = 1,
then we have Cdg(X, n)Cm-Hom(z,(X), ,(S")). If moreover Cdg is surjective
for (X|Y, n), then Cdg(X, n)=m-Hom(z,(X), 7,(S")).

Proof. By a theorem of Blakers-Massey, the collapsing map induces an
isomorphism ¢y : 7, (X, ¥Y)=~,(X/Y). From the assumptions and the homotopy
exact sequence of the pair (X, Y), it follows that cy: z,(X)/Tor=Z—z,(X|Y)=
Z is multiplication by m. Hence the assertion follows from the commutative
diagram

[X]Y, §"] - Hom(z,(X|Y), z,(S")) = Z
c* Vex* =m
[X,8"] — Hom(z,(X),7z,(S")=2Z

since c* is surjective.

Proof of Theorem 3(1). We shall use notations and results in [20]. The
group SU(3) has a cell structure: SU(3)=S8°U,, €U ,* As noticed in [14,
p- 475], we have 3, f=j4(v,0n,) from [9, 3.1], where j: S*CS*Uéf. Let h: S3Ué°
—S? be a map having degree 2 on S®. We have

200, = 2v,+[ey, ¢0), by [22, XI],
= 4y,—3v’, by [20, p. 43].

Hence = (hof) = 2¢,0v,0m,=—Zv 0o, =3 (v o), 80 hof=1"ox, since X is injec-



CODEGREE OF SIMPLE L1E GRouUPS 135

tive on 7,(S*)=2Z,{v"one}. It follows that 2¢50/ can be extended to SU(3) and
that cdg(SU(3), 3)=2% By the same method as [18, 4.3(1)], we can prove that
cdg(SU(3), 5)="cdg(SU(3), n)=2 for n=3, 5. By applying the functor [ , S%] to
the cofibre sequence S”— S*U & SU(3), we have [SU(3), S*|=ZPZ, Other

assertions of (1) can be proved easily.

Proof of Theorem 3(2). By [13] there is a stable homotopy equivalence
SU(4)=3ZP(C")V Y, where Y is a 7-connected finite CW-complex. Hence, for
n=3, 5, 7, we have ’cdg(SU(4), n)="cdg(P(C*), n—1) which can be easily de-
termined by using the cell structure of P(C*) (see [17, 1.15]).

By using a cell structure of SU(4) and known structures of z4(S*) and
‘14(S®) (see [20]), we can construct a map SU(4)—S* which has degree 2°.3?
on 83 hence cdg(SU(4),3)|2°-3%. On the other hand we have 2%.3=‘cdg
(SU(4), 3)|cdg(SU(4), 3) by [18, 3.3] and [19, 3.4(3)].

Taking (X, n)=(SU(4), 5) in 3.1, we have Cdg(SU(4),5)C2Z. By the
homotopy exact sequence of the principal Sp(2)-bundle ¢: SU(4)— S5, we have
Cdg(q)=2, so cdg(SU#4), 5)=2. By [19, 4.2(1)], cdg(SU(4), 7)=6. This
completes the proof of (2).

Proof of Theorem 3(3). Using a stable duality map S*—G,; A G, (see [3]),
we can prove ‘cdg(G,, 11)="cdg(G,, 3) which is 23.3.5 as proved in [18]. The
group G, has a cell structure: G,=S3Ue&UefUefUe®Ue"Ue". Hence G,/Y=
S™V 8™ where Y is the 9-skeleton of G,, so Cdg is surjective for (G,/Y, 11).
Consider the exact sequence:

71'11(G2) =ZDZ,—~ 7’11(G2, Y) =Z— 7[10( Y) - 7"10(G2) =0.

By [16, 4.2], 7,o(Y)=Z 5. Taking (X, #)=(G,, 11) in 3.1, we have m=2%.3.5
and cdg(G,, 11)=2°-3-5. Since Sq?is trivial on H%G,; Z,) by [1], the attaching
map of the 8-dimensional cell of G, factorizes as S"™=>S*UfcS*UfUef. Using
this fact and the additive structures of z4(S®) and “z4(S®) (see [20]), we can con-
struct a map G,—S® which has degree 2°-3%-5 on S3, hence cdg(G,, 3)|25-32-5.
This proves (3).

Proof of Theorem 3(4). Applying z4( ) to the following commutative
diagram

SO(5)  SO(6)

| !
SO(7) = SO(7)
P !

S5 C V,, = SO(7)/SO(5) > S°

we have py=15: 7,(SO(7))/Tor=Z —r,(V,,)/Tor=Z. Hence
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cdg(SO(7), 11)|3-5-cdg(Vy,, 11) .

The space V,, has a cell structure: V,,=S°UeéfUe", Let g: V,,—>S" be the
collapsing map. By [8, 2.8 and 2.9], we have an exact sequence zy(S%)=2Z,—
710(SPU €8, S%)—75(S° U €°)=Z,—0, hence the order of 7,,(S°U ¢f, S°) is at most
4, so that the order of 7,4(S® U €°) is at most 8 because 7,o(S%) =2, by [20]. Since
710(V7,,)=0, it then follows from the homotopy exact sequence of the pair
(V320 SPU€®) that Coker[gy: 7y (Vy,0)—=7n(S™)] == mo(S*U ), so that the last
group is cyclic. Hence by the commutative diagram

[S™, S*] — Hom (z,,(S™), 7y,(S™)) = Z

q* | Vax*
[Vy,20 S*] = Hom (my(Vyz), y(SY)) = Z

cdg(V,,,, 11) is the order of 7,(:S® U €°), since ¢* is surjective. Thus cdg(V;,,, 11)
|2, On the other hand, cdg(G,, 11)|cdg(Spin(7), 11) by use of the principal
G,-bundle Spin(7)—S”. Hence 23-3-5=cdg(G,, 11)|cdg(Spin(7), 11)|cdg(SO
(7), 11)|3-5-cdg(V,,, 11)]2%:3-5, therefore these numbers are equal and cdg
(V3.0 11)=2% Then [19, 3.7(2) and 4.4] complete the proof of (4).

Proof of Theorem 3(5). The groups Sp(2) and Sp(3) have cell structures:
Sp(2)=83U, e Ue" and Sp(3)=S8U,e’Ue’Ue*Ue*Ue®Ue®. They contain
quasi-projective spaces @,=S°U,¢" and Q;=S°U,e"Ue" respectively. The
inclusions induce isomorphisms 7,(Q;)==7,(Qs)=m,(Sp(3)). In Q3,=@Q,/S’=
S7U , €", h has order 8 (see [10, p. 38]). Hence the homomorphisms {Q;,, S7}
=Z—{S", S}t =Z and {Q,, S} =Z— {Q,, S} =Z induced by the inclusions
are multiplications by 8. Let ¢ be the order of the cokernel of the stabilization
7 (Sp(3))=Z—"r,(Sp (3))=Z. Consider the following commutative diagram.

[Sp(3), 8T] = Hom(7,(Sp(3)), 74(S)) = Z

! te
{Sp(3), St — Hom (' (Sp(3)), "z S") = Z
/ |~
@, St = Z - Hom(‘m(Qy), ‘m(S7) = Z
2 | =

{@Q,, S} = Z — Hom (‘ny(Q,), ‘my(S7)) = Z
By the proof of [19, 4.3(1)], the bottom homomorphism is multiplication by
22.3. Hence
£.25.3]1-edg(Sp(3), 7) | cdg(Sp(3), 7) -
Let p: Sp(3)—X,,,=Sp(3)/Sp(1) be the canonical fibration. Since Coker[py:

w(Sp(3)) = mw( Xy )] = me(S%) = Z},, we have cdg(Sp(3),7)|2%-3-cdg(X;,, 7).
The space X, has a cell structure: X;,=S7U, e U,e®. Since the order of A
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is 8, there is a map u: @,,—S” which has degree 8 on S7. Since uovEm,(S7)=
Z,PZ, (see [20]), 2°-3u can be extended to a map X, ,—S? which has degree
2%.3 on S7. Therefore cdg(Xj;, 7)|2%-3 and so cdg(Sp(3), 7)[2%-3% On the
other hand, cdgy(Sp(3), 7)=cdg,(Spin(7), 7)=1 by [19, 42(2) and 4.3(2)].
Hence cdg(Sp(3), 7)|28-3. This proves (5) and completes the proof of Theo-
rem 3.

4. Proof of Proposition 4

By [19, 2.4], we have

Proposition 4.1 (cf., [19, 3.15(2)]). If n is odd, n,(X)=Z {s} ®Tor and
H'(X; Z)=Z{x,} ®Tor, then there exists a map f: X—S" such that cdg(X, n)=
deg(f«s)=|AB|, where integers A and B are defined by s*(x,)= A[S"] and
f*[S"|=Bx, mod Tor respectively. (Here [S"] is a generator of H'(S"; Z).)

Stable version also holds.
Hence the next result proves Proposition 4.

Lemma 4.2. In4.1, (|A|, |B]) is equal to

(3,2°:3-5-yy) for (Spin(9),7),
(23.345,2:3-3,)  for (Spin(9),11),
(223257, yy) for (Spin(9), 15),
(2, 243+, for (SU(5),5),
(2:3,2-3) for (SUG),7),

(28.5, 2437 y,) for (F,11),
(28:3:7,2%5-y,) for (F,15),
(27-3%.5.7-11,y,)  for (F, 23)

for some integers y;. In these cases, Bly;|*cdg(G, n).

Proof. We prove the assertion only for (F,, 11), because others can be
proved similarly. Assertion about A has been known (for example, see [11]).
Recall that the type of F, is (3, 11, 15, 23). Let x,=H"(F,; Z) be a generator
of the free part for ne {3, 11, 15, 23} (see [1]). Consider the commutative
diagram:

KY(S™) g_i,l, HY(S"; Z) C H¥(S™; Q)
KY(F,) 7 H*(Fy; Q)

As is well-known, K*(F,) is an exterior algebra generated by some elements
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By -+, By KX (F,) whose Chern characters were determined in [21]. Let g be a
generator of K'(S"). Let ¥Dec and #Dec be the groups of decomposable ele-
ments with respect to {8, -, B and {x;, ¥, %5, ¥}, respectively. Express
f*(g)==a; B; mod XDec and Sa; ch(B;)=P; x5+ Py, %,,+ Pi5 %15+ Py, x5, where P;
is a polynomial of a,, -+, @, with rational coeffiients. Then ch(f*(g))==P; x;
mod #Dec. On the other hand, ch(f*(g))=f*ch(g)=+f*[S"|eHNF,; Z).
Hence P,,=+ B and P;=P;;=P,,=0, then B=|P,;| =2*-3.7- | a;| by elementary
calculation. This argument can also be applied to stable case. By setting
6= | as|, we have the desired result.
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