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0. Introduction

In [19] the τz-th codegree (number) cdg(X,ή)^Z and its stable version
5cdg(X, n)^Z were defined for every pair of a path-connected space X and a
positive integer n. In [18], scdgp(G, 3), the exponent of a prime p in scdg(G, 3),
was determined for some simply connected simple Lie groups G. The purpose
of this paper is to continue computing (s)cdg(G, n) for some (G,n). We use
notations in [19] and [18]. Our results are the following.

Theorem 1. Ifr^3,then

r ^scdg2(Spin(n), 3) ^ r + 1 for 2r^n^2r+6,
scdg2(Spin(n), 3) = r + 1 far 2r+7^n^ 2r+ι-1 .

Theorem 2. *cdg3(£ 6, 3)-5cdg3(F4, 3)=2.

Theorem 3. (1) cdg(5C7(3), 3)-2 2 and cdg(S£/(3), 5)-5cdg(5C/(3), n)
=2 for n=3, 5; [5C7(3), 5 3 ] - Z 0 Z 2 ; {517(3), S 3 } = Z ; [5£7(3), 5 5 ]=

(2) scdg(5[/(4), 3) = 22.3|cdg(5C/(4), 3)|25 32; cdg(St7(4), 5) = s

(4), 5)=2; cdg(5C7(4), 7)='cdg(SC7(4), 7)=2 3.
(3) cdg(G2, ΠH scdg(G2, ll)= scdg(G2,3)=2?.3.5
(4) cdg(Spin(n), ll)=cdg(SΌ(n), l l)=2 3 .3 5/or n=7, 8;

(5),11)=23.
(5) 25.3rcdg(5ί(3),7)|cdg(5ϊ)(3),7)|28.3.

Proposition 4.

23 32 5 |cdg(%«(9),7),

24 32 5|cdg(Spm(9), 11),

22 32 5 7|cdg(%n(9), 15),

23 3|cdg(,Sί7(5),5),

22.3|cdg(5C7(5),7),

27 3 5 7|cdg(.F4)w) for » = 1 1 , 1 5 ,

27 32 5 7.11|cdg(JF4,23).
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1. Proof of Theorem 1

: F2ll_1=5O(2ιι+l)/ιSO(2)XιSO(2Λ-l)-*ΩSpin(2if+l) be the gener-
ating map for Spin(2n+1) (»^3) (see [2]). Let gf\ ΣΩSpin(2rc+l)->Spin
(2n+l) be the canonical map. Then (g'°Σg)*: π3(ΣtV2n-1)^π3(Siρin(2n+l)),
hence

(1.1) scdg(V2n_v 2)|fcdg(Spin(2if+l), 3),

), 3).

We will calculate the 2-components of these numbers.
The inclusions U(n)dSO(2n)=SO(2n)xIιc:SO(2n+\), SO(2n+\)=SO

(2ra+l)x/2cSΌ(2κ+3), and t/(n)=ί/(«)x/1Ct/(»+l) induce maps:

σn: P{C) = U{n)IU(ί)x U(n-1) - V2n^ ,

rn'' *2n-\ ~~* V2n+l >

such that τnoσn=(τnoτ/

n. Let Ln be the canonical complex line bundle over the
complex projective (n— l)-sρace P(Cn)y and let an<=H2(P(Cn); Z) be the first
Chern class of Ln. Then

τ^*(αn+1) = an .

As is easily seen (e.g., [2]), we have

H*{V2n.λ; Z) = Z[xκ,yn]l(x:-2yn,yl),

dim (,*,,) = 2 , dim(jB) = 2n ,

σ*(xn) = an ,

T«(*»+l) = = xn

Hence

(1.2) <rϊ:Hι(VtΛ-1;Z)cχHl{P(Cy,Z) for i^2n-2,

τ?: ί f ' (F 2 . + 1 ;Z)αίr '(F 2 ._ 1 ;Z) for i^2n-2,

(1.3) τ*:ff i(F 2,+ ι;Q)«H'(F ϊ._ 1;β) for i ^ 4 n - 2 .

Recall from Clarke [4] that

(1.4) KiV^) = Z[Xn, YH]j(X:~2Yn-XnYn, Yl).

Hence

= Q[Xn]l(Xl').
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By the construction of Xn ([4]), we have

σ*(Xn) = L.-l ,

r*(Xx+ι) = Xn .

The Chern character of Xn is given by

Lemma 1.5. ch(Xn) = exp(xn)—l.

Proof. We have

= ch(σtn(X2n))

= ch(L2n—l) == exp(α2n)—1 = <r&(exp(x2n)— 1).

Hence ch(X2n) = exp(x2n)-l mod x\l by (1.2), thus ch(Xn)=txp(xn)-l by (1.3).
This proves 1.5.

Proposition 1.6. (1) scdgκ

2(V2n.ly 2) = r if 2r'ι<n^2r.

(2) scdg2(V2n^2) = r if 2^<n<2\

if 72 = 2'.

Proof. Put D=scdg(V2n_v 2). Let /: V^^-^S2 be a stable map such that
the induced homomorphism /*: sπ2(V2n_ι)=Z-+sπ2(S2)=Z is multiplication by
D. Let β^lζ(S2) = Z be a generator. For simplicity, we set X=Xn, Y=Yn

and x—xn. Set

f*(β) = ΣISK,, a, X'+ y Σ « κ . h X' = Sis,<* «, ̂ '

in ^(F j^ ! )®©, where α, e Z ( l ^ ί < « ) , ό,eZ(0^ί<re), and a,
Then

= D-x=f*ck(β) = ch(f*(β)) = Σ,» β^-1)'

Hence α, = D (—I)1""1/*' (1 ̂ i<2n). We then have

Thus

(1.7) I>A" ( l ^ ί < » ) , 2D/«, and Dji-lDHi+l) (n^i^2n-2) are in Z.
Let r ^ 1 be an integer such that 2 r " x <«^2 r . Then the relation Dj2r—2Dj

( 2 ' + l ) e Z implies that 2r\D. Conversely, if 2r|D, then (1.7) with Z replaced
by its 2-localized ring Z ( 2 ) holds. Therefore scdg jr

2(F2B_ι, 2)=r. This proves (1).
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A map V2Λ-r*K(Z, 2) which represents xn factorizes as V2n-\-^P(C2n)c:
K(Z, 2). Hence ' c d g ^ ^ , 2) 15cdg(P(^% 2) so that r=scάgκ

2{V2n_x, 2)^ scdg2

(V2n_v 2)^scdg2(P(C2»), 2). By [18], we have scdg2(P(C2«), 2)=scάg2(SU(2n)y 3)
which is r + 1 or r according as τz=2r or 2r~1<n<2r. Hence we have (2).

Corollary 1.8. scdgκ

2(Sρin(2n+ί), 3)^r if2r~1<n^2r.

Proof. This follows from 1.1 and 1.6.

Proof of Theorem 1. The complexification induces isomorphisms of re-
presentation rings:

PO(Spin(m)) « R(Spin(m)) if m = 0,1,7 mod 8

(see [7, p. 193]). By the proof of [18, 4.4], we then have

scdgK0(Spin(nι),3)=:2-scdgκ(Spin(m), 3) if m = 0,1,7 mod 8.

Thus, by 1.8, we have

scdg2(Spin(2n+l), 3 ) ^ r + l if ^ = 0,3 mod 4 and 2r~1<n^2r.

On the other hand, if n^.2y then the canonical homomorphism

Z = π3(Spin(2n+l)) -> πz{SO(2n+\)) -* 7r3(5
fC/(2w+l)) = Z

is multipliaction by 2, so that

scdg2{Spin(2n+\), 3)^l+'cdg 2(5l7(2n+l), 3).

The latter number is r+2 or r + 1 according as n=2r or 2r~1<n<2r, by [18].
Hence

scdg2(5>m(2^+l), 3) — r + 1 if n = 0, 3 mod 4 and 2 r - 1 <rc<2 r .

In particular, if r ^ 3 , then scdg?(5^m(2 r-l), 3)=r and scdg2(5^m(2Γ+7), 3)=
scdg2(5^m(2 r + 1-l), 3 ) = r + l . Hence, if r ^ 3 , then

l for
scdg2(Spin(n)y 3) = r + 1 for 2

This proves Theorem 1.

2. Proof of Theorem 2

The relations "cdgg^, 3)=scdg3(F4, 3)^2 were proved in [18]. We will
prove scdg3(F4, 3)^2. By [6] and [12], there exist a mod 3 ίΓ-space X of di-
mension 26 and a mod 3 homotopy equivalence
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where B5(3) is the total space of an ^-bundle over S15 [15]. It follows from [3]
that the top cell of the localized space X{3) splits off stably, that is, -3f—3 X

(2Z) V
S26 (stably), where Xm is the 23-skeleton of X, and it follows from [5] that
-5Γ(23\3) is stably homotopy equivalent to X1\/X2 where X2 is 17-connected and
H*{XX\ Z3)=Z3{\, x3y xΊ, Λ?8, # ι 8, x19y x23} such that dim(#,.)=£, ££*• x3=x7, βx7=

Lemma 2.1. Xt=S 3

( 3 ) U e7

(3) U e8

(3) U Λa) U eι\
3)

In the rest of this section we work in the stable homotopy category of mod
3 local spaces. For simplicity we omit the notation "(3)".

Proof of 2.1. Let

sz -* xx -> YX -> τs3 -> SXΊ

be a cofibre sequence such that Yλ is 6-connected. Then X1=SZ\JCΣ~1 Yv

Inductively we have cofibre sequences

57-y,-y2-
C8 _ ^ V _ ^ V

O *• J. o ' * JL 3 ~"

518 _^ y 3 _^ y 4 _* 2518.

019 _ ^ v —^ V __̂  V O19

and

where the last equality follows from the fact that Y5=S23. Therefore we have

Xλ = S 3UC(S 6UC(S 6UC(S 1 5UC(5 1 5Ue 1 9)))).

This proves 2.1.

Proof of Theorem 2. Put Y= S3 U e7 U e* U ^18 U e19 U ^23. Then scdg3(F4, 3)
=scdg3(X, 3)=5cdg3(Y, 3). Let a^'π^S0) (1 ̂ i ^ 5 ) be the element of order
3 defined in [20, p. 178]. Let a\\ S^'U.e^S0 and αί 7 : S4->S°{J3e

ι be an
extension of af and a coextension of aλ respectively. The 8-skeleton Y(8) of Y
is equivalent to the mapping cone C(Σ3 α ί)=S 3 U C(S 6U 3 e

7) and Y/y<8> is
equivalent to C(Σ15 α ί 7 ) ^ ^ 1 8 U 3 e19 U β23. Hence we have a cofibre sequence
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C(Σ3 aί) — Y -> C(Σ15 αί') -> C(Σ4 a{) — Σ F .

Let £: C(Σ4 α ί ) " * ^ 4 be an extension of 3: AS4->54. AS is easily seen, we have
an exact sequence

— V(S 1 8 U 3 *
19 U e23) -> V(S 1 8 U 3 e

19) = Z3->0.

Since αί ' *(αί) e <«o 3, Λi>=α5, it follows that V ( 5 1 8 U 3 e 1 9 U ^ 3 ) = Z 3 and 3̂ oA
= 0 . Hence there exists a map r: ΣY-+S4 such that rok=3g> so that r has
degree 9 on the bottom sphere SA and scdg3( Y)^2. Hence scdg(F4, 3)—2 as
desired.

3 Proof of Theorem 3

Lemma 3.1. Given an integer n ^ 2 and a connected finite CW-complex X
such that

X and its {n—\)-skeleton Y are simply connected'

= rank(τrΛ(Z)) = 1,
then we have Cdg(X, ή)C.m llom(πn(X), πn(Sn)). If moreover Cdg is surjective
for (X/Y, n), then Cdg(X, n)=m-ΐίom(πn(X)9 πn{Sn)).

Proof. By a theorem of Blakers-Massey, the collapsing map induces an
isomorphism c*: πn(X, Y)^πn(X/Y). From the assumptions and the homotopy
exact sequence of the pair (X, F), it follows that c*: πn(X)/Ύov=Z-^πn(XIY)=
Z is multiplication by m. Hence the assertion follows from the commutative
diagram

[X/Y, S'] - Hom{πn{XIY), πn{Sn)) = Z
c* I I c** = m

[X, Sn] - Hom(w.(X), πn(Sn)) = Z

since c* is surjective.

Proof of Theorem 3(1). We shall use notations and results in [20]. The
group SU(3) has a cell structure: SU(3)=S3\JV3^li fe

%. As noticed in [14,
p. 475], we have Ί,f=j*(vAoη7) from [9, 3.1], where j : S4dS4\Je6. Let h: S3Ue5

->S3 be a map having degree 2 on S3. We have

2c4op4 = 2z;4+[ί4, ΛJ, by [22, XI],

= 4*4-ΣiΛ by [20, p. 43].

Hence Σ ( W ) = 2t4oV^oη7^ — Έlv
foη7='Σ(vfoη6)y so hof=vΌη6i since 2 is injec-
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tive on π7(S3)—Z2{vΌη6}. It follows that 2c3oh can be extended to SU(3) and
that cdg(Sί/(3), 3)=22. By the same method as [18, 4.3(1)], we can prove that
cdg(S£/(3), 5)=scdg(SU(3), n)=2 for n=3, 5. By applying the functor [ , S3] to
the cofibre sequence S7->S3 (J <?(ZSU(3)y we have [S£/(3), S3]=Z®Z2. Other
assertions of (1) can be proved easily.

Proof of Theorem 3(2). By [13] there is a stable homotopy equivalence
S£/(4)—ΣP(C4) V y, where y is a 7-connected finite CW-complex. Hence, for
n = 3 , 5, 7, we have scdg(5t/(4), n)=scdg(P(C4), w—1) which can be easily de-
termined by using the cell structure of P(C4) (see [17, 1.15]).

By using a cell structure of SU(4) and known structures of π*(S*) and
5TΓ14(AS3) (see [20]), we can construct a map SU(4)->S3 which has degree 25 32

on S3, hence cdg(S£/(4), 3)|25 32. On the other hand we have 22 3= scdg
(SU{4), 3)|cdg(SE/(4), 3) by [18, 3.3] and [19, 3.4(3)].

Taking (X, n)=(SE/(4), 5) in 3.1, we have Cdg(S[/(4), 5)c2Z. By the
homotopy exact sequence of the principal Sp(2)-bundle q: SU(4)-+S5

y we have
Cdg(<z) = 2, so cdg(SE/(4), 5) = 2. By [19, 4.2(1)], cdg(Stf(4), 7 ) - 6 . This
completes the proof of (2).

Proof of Theorem 3(3). Using a stable duality map S14->G2+ Λ G2+ (see [3]),
we can prove scdg(G2, ll)=*cdg(G2, 3) which is 23 3 5 as proved in [18]. The
group G2 has a cell structure: G2=S3 U e5 U e6 U e* U e9 U e11 U eu. Hence GJ Y=
SnVSu, where Y is the 9-skeleton of G2, so Cdg is surjective for (G2jY, 11).
Consider the exact sequence:

πn(G2) = Z@Z2 - τrn(G2, Y) = Z -> πlo(Y) - τrlo(G2) = 0 .

By [16, 4.2], πlo(Y)=Zm. Taking (X,n)=(G2, 11) in 3.1, we have m=2 3 .3 5
and cdg(G2,11)=23.3 5. Since Sq2 is trivial on H%G2; Z2) by [1], the attaching
map of the 8-dimensional cell of G2 factorizes as S7-+S3 U e5 C S3 U e5 U e6. Using
this fact and the additive structures of π*(S3) and s7r13(S3) (see [20]), we can con-
struct a map G 2 ^ 5 3 which has degree 25 32 5 on S3, hence cdg(G2, 3)|25 32 5.
This proves (3).

Proof of Theorem 3(4). Applying π*( ) to the following commutative

diagram

SO (5) c SO(6)

I 1
SO (7) = 50(7)

p\ 1

S5 c V7t2 - SO(7)1 SO (5) -> 5 6

we have i # = 15: τr11(ιSO(7))/Tor=Z->Λrlι(F7f2)/Tor=Z. Hence
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cdg(5O(7),ll) |3.5.cdg(F 7, 2,ll).

The space V7>2 has a cell structure: F 7 ( 2 = 5 5 U ^ 6 U Λ Let q: V7t2-+Sn be the
collapsing map. By [8, 2.8 and 2.9], we have an exact sequence π9(S5)=2Γ2->
^io(^5U^6, S5)->π5(S5Ue6)=Z2->0, hence the order of πlo(S5[Je6, S5) is at most
4, so that the order of τr ι 0(55 U e6) is at most 8 because πι0(S6)=Z2 by [20]. Since
πlo(V7t?)=O, it then follows from the homotopy exact sequence of the pair
(V7,2, S5Ue6) that Cokerfc*: πn(V7t2)-*πn(Sn)]^π10(S5lJe6), so that the last
group is cyclic. Hence by the commutative diagram

[S1 1, S11] - Hom(πn(S»)9 πn(S*)) = Z

<7* \ \ q**

cdg(F7 > ?, 11) is the order of πι0(S5 U e6), since 5* is surjective. Thus cdg(F7 f2, 11)
|2 3 . On the other hand, cdg(G2, ll)|cdg(S/>m(7), 11) by use of the principal
G2-bundle Spin{7)->S7. Hence 2 3 .3 .5=cdg(G 2 , 11)\cdg(Spin(7), l l ) | c d g ( 5 0
(7), l l ) | 3 5 cdg(Γ7>2, 11)|23 3 5, therefore these numbers are equal and cdg
(F 7 f 2 > 11)=2 3 . Then [19, 3.7(2) and 4.4] complete the proof of (4).

Proof of Theorem 3(5). The groups Sp(2) and Sρ(3) have cell structures:
Sp(2)=S3Uge

7\J e10 and Sρ(3)=S3 U g e7 U e10 U e11 U eu U eu U β21. They contain

quasi-projective spaces Q2=S3\Jge
7 and Q3=S3 lige

7{Jeu respectively. The
inclusions induce isomorphisms π7(Q2)^π7(Q3)^π7(Sp(3)). In Q3t2—Q3lS3=
S7 U he

n, h has order 8 (see [10, p. 38]). Hence the homomorphisms {Q3t2y S7}
= Z - > { 5 7 , S7}=Z and {Q3, S7}=Z-*{Q2, S7}=Z induced by the inclusions
are multiplications by 8. Let t be the order of the cokernel of the stabilization
π7(Sp(3))=Z->sπ7(Sp (Z))—Z. Consider the following commutative diagram.

[Sp(S), S7] - Hom(π7(Sp(3)), π7(&)) = Z

I U

iSp(3), &} - Hom(V7(5/»(3)), V7

{Q3, S7} = Z - Hom(V7(Q3). V 7

By the proof of [19, 4.3(1)], the bottom homomorphism is multiplication by
22 3. Hence

ί 2».3|ί.'cdg(Sj>(3), 7)\cdg(Sp(3), 7 ) .

: Sp(3)-*X3i2=Sp(3)ISp(l) be the canonical fibration. Since Cokeΐ[p*:
π7(X^)]^π6(S3) = Z12, we have cάg(Sp(3), 7) |2 2 .3 cdg(X3>2) 7).

The space X3>2 has a cell structure: X3Λ=S7U * e11 U„ ί18. Since the order of h
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is 8, there is a map u: Q3t2-+S7 which has degree 8 on S7. Since u<>v^π17(S7)=
Z24(BZ2 (see [20]), 23 3w can be extended to a map X3ι2-*S7 which has degree
26 3 on S7. Therefore cdg(X3,2, 7)|26 3 and so cdg(Sp(3)y 7)|28 32. On the
other hand, cdg3(Sp(3), 7)=cdg3(Spin(7), 7)=1 by [19,4.2(2) and 4.3(2)].
Hence cdg(Sρ(3), 7)|28 3. This proves (5) and completes the proof of Theo-
rem 3.

4. Proof of Proposition 4

By [19, 2.4], we have

Proposition 4.1 (cf., [19, 3.15(2)]). // n is odd, πn(X)=Z{s}®Ύov and
Hn(X\ Z)=Z{xn} ®Tor, then there exists a mapf: X-+Sn such that cdg(X, n)=
deg(f*s) = \AB\3 where integers A and B are defined by s*(xn) = A[Sn] and
f*[Sn]=Bxn mod Tor respectively. (Here [Sn] is a generator of Hn(Sn\ Z).)
Stable version also holds.

Hence the next result proves Proposition 4.

Lemma 4.2. In4A,(\A\, \B\) is equal to

(3,23.3.5.Λ) for (Sfm(9),7),

(23 3 5,2.3-Λ) for (Spin(9)fll),

(22.32.5.7,^3) for (Spin(% 15),

(2,22 3.j;4) for (5C7(5),5),

(2-3, 2-y.) for (5C/(5), 7),

(23.5,24.3.7.^6) for (F4y 11),

(23.3-7,24.5.j;7) for (F4, 15),

(27.32.5.7 ll,3/8) for (F4,23)

for some integers y r In these cases, B/y^l 5cdg(G, ή).

Proof. We prove the assertion only for (F4, 11), because others can be
proved similarly. Assertion about A has been known (for example, see [11]).
Recall that the type of F4 is (3, 11, 15, 23). Let xn(ΞHn(FA; Z) be a generator
of the free part for n^ {3, 11, 15, 23} (see [1]). Consider the commutative
diagram:

K\Sn) °ί Hll(Sn Z) c ff *(SU Q)

/*J if*
K\F4) > H*(FΛ; Q)

As is well-known, K^(F^) is an exterior algebra generated by some elements
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βly •••, β4^K\F4) whose Chern characters were determined in [21]. Let g be a

generator of K\Sn). Let *Dec and *Dec be the groups of decomposable ele-

ments with respect to {βly •••, β4} and {x3y xn, xι5, x^, respectively. Express

f*(g)ΞΞ'Σai βi mod *Dec and ΣΛ, ch(β,)=P3 x3+Pn xn+P15 x15+P23 * 2 3 , where P,

i s a p o l y n o m i a l o f av -- ,a4 w i t h r a t i o n a l c o e f i i i e n t s . T h e n ch(f*[g)) = ^ΣPi,x{

mod *Dec. On the other hand, ch{f*(g))=f*ch(g)=±f*[S1']eίHlι(F4'y Z).
Hence Pn=±B and Pz=Pι5=PΆ=0, t h e n B = \Pn\ = 2 4 . 3 7. \a3\ by elementary

calculation. This argument can also be applied to stable case. By setting

y6= I α31, we have the desired result.
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