

Title	Codegree of simple Lie groups-II			
Author(s)	Ōshima, Hideaki; Kono, Akira			
Citation	Osaka Journal of Mathematics. 1991, 28(1), p. 129-139			
Version Type	VoR			
URL	https://doi.org/10.18910/3562			
rights				
Note				

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

CODEGREE OF SIMPLE LIE GROUPS-II

AKIRA KONO AND HIDEAKI ÖSHIMA

(Received December 19, 1989)

0. Introduction

In [19] the *n*-th codegree (number) $\operatorname{cdg}(X, n) \in \mathbb{Z}$ and its stable version ${}^{s}\operatorname{cdg}(X, n) \in \mathbb{Z}$ were defined for every pair of a path-connected space X and a positive integer n. In [18], ${}^{s}\operatorname{cdg}_{p}(G, 3)$, the exponent of a prime p in ${}^{s}\operatorname{cdg}(G, 3)$, was determined for some simply connected simple Lie groups G. The purpose of this paper is to continue computing ${}^{(s)}\operatorname{cdg}(G, n)$ for some (G, n). We use notations in [19] and [18]. Our results are the following.

Theorem 1. If $r \ge 3$, then

$$r \leq {}^{s}\operatorname{cdg}_{2}(Spin(n), 3) \leq r+1 \quad for \quad 2^{r} \leq n \leq 2^{r}+6,$$

 ${}^{s}\operatorname{cdg}_{2}(Spin(n), 3) = r+1 \quad for \quad 2^{r}+7 \leq n \leq 2^{r+1}-1.$

Theorem 2. ${}^{s}\operatorname{cdg}_{3}(E_{6}, 3) = {}^{s}\operatorname{cdg}_{3}(F_{4}, 3) = 2.$

Theorem 3. (1) $\operatorname{cdg}(SU(3), 3) = 2^{2}$ and $\operatorname{cdg}(SU(3), 5) = {}^{s}\operatorname{cdg}(SU(3), n) = 2$ for n = 3, 5; $[SU(3), S^{3}] = \mathbb{Z} \oplus \mathbb{Z}_{2}$; $\{SU(3), S^{3}\} = \mathbb{Z}$; $[SU(3), S^{5}] = \{SU(3), S^{5}\} = \mathbb{Z}$.

- (2) ${}^{s}cdg(SU(4), 3) = 2^{2} \cdot 3 | cdg(SU(4), 3) | 2^{5} \cdot 3^{2}; cdg(SU(4), 5) = {}^{s}cdg(SU(4), 5) = {}^{s}cdg(SU(4), 7) = {$
 - (3) $\operatorname{cdg}(G_2, 11) = {}^{s}\operatorname{cdg}(G_2, 11) = {}^{s}\operatorname{cdg}(G_2, 3) = 2^{3} \cdot 3 \cdot 5 |\operatorname{cdg}(G_2, 3)| 2^{5} \cdot 3^{2} \cdot 5.$
- (4) $\operatorname{cdg}(Spin(n), 11) = \operatorname{cdg}(SO(n), 11) = 2^3 \cdot 3 \cdot 5$ for n = 7, 8; $\operatorname{cdg}(SO(7)/SO(5), 11) = 2^3$.
 - (5) $2^5 \cdot 3 \mid {}^s \operatorname{cdg}(Sp(3), 7) \mid \operatorname{cdg}(Sp(3), 7) \mid 2^8 \cdot 3$.

Proposition 4.

$$2^{3} \cdot 3^{2} \cdot 5 | \operatorname{cdg}(Spin(9), 7),$$
 $2^{4} \cdot 3^{2} \cdot 5 | \operatorname{cdg}(Spin(9), 11),$
 $2^{2} \cdot 3^{2} \cdot 5 \cdot 7 | \operatorname{cdg}(Spin(9), 15),$
 $2^{3} \cdot 3 | \operatorname{cdg}(SU(5), 5),$
 $2^{2} \cdot 3 | \operatorname{cdg}(SU(5), 7),$
 $2^{7} \cdot 3 \cdot 5 \cdot 7 | \operatorname{cdg}(F_{4}, n) \quad for \quad n = 11, 15,$
 $2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 | \operatorname{cdg}(F_{4}, 23).$

1. Proof of Theorem 1

Let $g: V_{2n-1} = SO(2n+1)/SO(2) \times SO(2n-1) \rightarrow \Omega \operatorname{Spin}(2n+1)$ be the generating map for $\operatorname{Spin}(2n+1)$ $(n \ge 3)$ (see [2]). Let $g': \Sigma \Omega \operatorname{Spin}(2n+1) \rightarrow \operatorname{Spin}(2n+1)$ be the canonical map. Then $(g' \circ \Sigma g)_*: \pi_3(\Sigma V_{2n-1}) \cong \pi_3(\operatorname{Spin}(2n+1))$, hence

(1.1)
$${}^{s}\operatorname{cdg}(V_{2n-1}, 2) | {}^{s}\operatorname{cdg}(\operatorname{Spin}(2n+1), 3),$$

$${}^{s}\operatorname{cdg}^{K}(V_{2n-1}, 2) | {}^{s}\operatorname{cdg}^{K}(\operatorname{Spin}(2n+1), 3).$$

We will calculate the 2-components of these numbers.

The inclusions $U(n) \subset SO(2n) = SO(2n) \times I_1 \subset SO(2n+1)$, $SO(2n+1) = SO(2n+1) \times I_2 \subset SO(2n+3)$, and $U(n) = U(n) \times I_1 \subset U(n+1)$ induce maps:

$$\sigma_n: P(\mathbf{C}^n) = U(n)/U(1) \times U(n-1) \to V_{2n-1},$$

$$\tau_n: V_{2n-1} \to V_{2n+1},$$

$$\tau_n': P(\mathbf{C}^n) \to P(\mathbf{C}^{n+1})$$

such that $\tau_n \circ \sigma_n = \sigma_n \circ \tau'_n$. Let L_n be the canonical complex line bundle over the complex projective (n-1)-space $P(\mathbf{C}^n)$, and let $a_n \in H^2(P(\mathbf{C}^n); \mathbf{Z})$ be the first Chern class of L_n . Then

$$\tau_n^{\prime *}(a_{n+1}) = a_n$$
.

As is easily seen (e.g., [2]), we have

$$H^*(V_{2n-1}; \mathbf{Z}) = \mathbf{Z}[x_n, y_n]/(x_n^n - 2y_n, y_n^2),$$

$$\dim(x_n) = 2, \quad \dim(y_n) = 2n,$$

$$\sigma_n^*(x_n) = a_n,$$

$$\tau_n^*(x_{n+1}) = x_n.$$

Hence

(1.2)
$$\sigma_n^* \colon H^i(V_{2n-1}; \mathbf{Z}) \cong H^i(P(\mathbf{C}^n); \mathbf{Z}) \quad \text{for} \quad i \leq 2n-2,$$
$$\tau_n^* \colon H^i(V_{2n+1}; \mathbf{Z}) \cong H^i(V_{2n-1}; \mathbf{Z}) \quad \text{for} \quad i \leq 2n-2,$$
$$H^*(V_{2n-1}; \mathbf{Q}) = \mathbf{Q}[x_n]/(x_n^{2n}),$$

(1.3)
$$\tau_n^* : H^i(V_{2n+1}; \mathbf{Q}) \simeq H^i(V_{2n-1}; \mathbf{Q}) \quad \text{for } i \leq 4n-2.$$

Recall from Clarke [4] that

(1.4)
$$K(V_{2n-1}) = \mathbf{Z}[X_n, Y_n]/(X_n^n - 2Y_n - X_n Y_n, Y_n^2).$$

Hence

$$K(V_{2n-1}) \otimes \mathbf{Q} = \mathbf{Q}[X_n]/(X_n^{2n})$$
.

By the construction of X_n ([4]), we have

$$\sigma_n^*(X_n) = L_n - 1$$
, $\tau_n^*(X_{n+1}) = X_n$.

The Chern character of X_n is given by

Lemma 1.5. $ch(X_n) = \exp(x_n) - 1$.

Proof. We have

$$\sigma_{2n}^*(ch(X_{2n})) = ch(\sigma_{2n}^*(X_{2n}))$$

$$= ch(L_{2n}-1) = \exp(a_{2n})-1 = \sigma_{2n}^*(\exp(x_{2n})-1).$$

Hence $ch(X_{2n}) \equiv \exp(x_{2n}) - 1 \mod x_{2n}^{2n}$ by (1.2), thus $ch(X_n) = \exp(x_n) - 1$ by (1.3). This proves 1.5.

Proposition 1.6. (1) ${}^{s}\operatorname{cdg}_{2}(V_{2n-1}, 2) = r \quad if \quad 2^{r-1} < n \leq 2^{r}$.

(2)
$${}^{s}\operatorname{cdg}_{2}(V_{2n-1}, 2) = r \quad if \quad 2^{r-1} < n < 2^{r},$$

 $r \leq {}^{s}\operatorname{cdg}_{2}(V_{2n-1}, 2) \leq r+1 \quad if \quad n = 2^{r}.$

Proof. Put $D={}^s\mathrm{cdg}(V_{2n-1},2)$. Let $f\colon V_{2n-1}\to S^2$ be a stable map such that the induced homomorphism $f_*\colon {}^s\pi_2(V_{2n-1})=\mathbf{Z}\to {}^s\pi_2(S^2)=\mathbf{Z}$ is multiplication by D. Let $\beta\in\tilde{K}(S^2)=\mathbf{Z}$ be a generator. For simplicity, we set $X=X_n$, $Y=Y_n$ and $x=x_n$. Set

$$f^*(\beta) = \sum_{1 \leq i \leq n} a_i X^i + Y \cdot \sum_{0 \leq i \leq n} b_i X^i = \sum_{1 \leq i \leq 2n} a_i X^i$$

in $K(V_{2n-1}) \otimes \mathbf{Q}$, where $a_i \in \mathbf{Z}(1 \leq i < n)$, $b_i \in \mathbf{Z}(0 \leq i < n)$, and $a_i \in \mathbf{Q}(n \leq i < 2n)$. Then

$$D \cdot \sum_{i \ge 1} ((-1)^{i-1}/i) (e^x - 1)^i = D \cdot \log(e^x - 1 + 1)$$

= $D \cdot x = f^* ch(\beta) = ch(f^*(\beta)) = \sum_{i \ge 1} a_i (e^x - 1)^i$.

Hence $a_i = D \cdot (-1)^{i-1}/i$ $(1 \le i < 2n)$. We then have

$$\begin{split} f^*(\beta) &= \sum_{1 \leq i < n} a_i \, X^i + (2Y + XY) \sum_{n \leq i < 2n} a_i \, X^{i-n} \\ &= \sum_{1 \leq i < n} (D(-1)^{i-1}/i) \, X^i + Y \cdot 2D(-1)^{n-1}/n \\ &+ Y \cdot \sum_{n \leq i \leq 2n-2} \{D(-1)^{i-1}/i + 2D(-1)^i/(i+1)\} \, X^{i-n+1} \, . \end{split}$$

Thus

(1.7) D/i ($1 \le i < n$), 2D/n, and D/i - 2D/(i+1) ($n \le i \le 2n-2$) are in \mathbb{Z} .

Let $r \ge 1$ be an integer such that $2^{r-1} < n \le 2^r$. Then the relation $D/2^r - 2D/(2^r + 1) \in \mathbb{Z}$ implies that $2^r \mid D$. Conversely, if $2^r \mid D$, then (1.7) with \mathbb{Z} replaced by its 2-localized ring $\mathbb{Z}_{(2)}$ holds. Therefore ${}^s \operatorname{cdg}^{\mathbb{Z}}_{2}(V_{2n-1}, 2) = r$. This proves (1).

A map $V_{2n-1} \to K(\mathbf{Z}, 2)$ which represents x_n factorizes as $V_{2n-1} \to P(\mathbf{C}^{2n}) \subset K(\mathbf{Z}, 2)$. Hence ${}^s \operatorname{cdg}(V_{2n-1}, 2) | {}^s \operatorname{cdg}(P(\mathbf{C}^{2n}), 2)$ so that $r = {}^s \operatorname{cdg}^K_2(V_{2n-1}, 2) \leq {}^s \operatorname{cdg}_2(V_{2n-1}, 2) \leq {}^s \operatorname{cdg}_2(P(\mathbf{C}^{2n}), 2)$. By [18], we have ${}^s \operatorname{cdg}_2(P(\mathbf{C}^{2n}), 2) = {}^s \operatorname{cdg}_2(SU(2n), 3)$ which is r+1 or r according as $n=2^r$ or $2^{r-1} < n < 2^r$. Hence we have (2).

Corollary 1.8. ${}^{s}cdg^{\kappa}_{2}(Spin(2n+1), 3) \ge r \text{ if } 2^{r-1} < n \le 2^{r}.$

Proof. This follows from 1.1 and 1.6.

Proof of Theorem 1. The complexification induces isomorphisms of representation rings:

$$RO(Spin(m)) \cong R(Spin(m))$$
 if $m \equiv 0,1,7 \mod 8$

(see [7, p. 193]). By the proof of [18, 4.4], we then have

$${}^{s}\operatorname{cdg}^{KO}(Spin(m), 3) = 2 \cdot {}^{s}\operatorname{cdg}^{K}(Spin(m), 3) \quad \text{if} \quad m \equiv 0, 1, 7 \mod 8.$$

Thus, by 1.8, we have

$${}^{s}\operatorname{cdg}_{2}(Spin(2n+1), 3) \ge r+1$$
 if $n \equiv 0, 3 \mod 4$ and $2^{r-1} < n \le 2^{r}$.

On the other hand, if $n \ge 2$, then the canonical homomorphism

$$Z = \pi_3(Spin(2n+1)) \to \pi_3(SO(2n+1)) \to \pi_3(SU(2n+1)) = Z$$

is multipliaction by 2, so that

s
cdg₂($Spin(2n+1), 3$) $\leq 1 + ^{s}$ cdg₂($SU(2n+1), 3$).

The latter number is r+2 or r+1 according as $n=2^r$ or $2^{r-1} < n < 2^r$, by [18]. Hence

s
cdg₂($Spin(2n+1)$, 3) = $r+1$ if $n \equiv 0$, 3 mod 4 and $2^{r-1} < n < 2^{r}$.

In particular, if $r \ge 3$, then ${}^s \operatorname{cdg}_2(Spin(2^r-1), 3) = r$ and ${}^s \operatorname{cdg}_2(Spin(2^r+7), 3) = {}^s \operatorname{cdg}_2(Spin(2^{r+1}-1), 3) = r+1$. Hence, if $r \ge 3$, then

$$r \leq {}^{s} \operatorname{cdg}_{2}(Spin(n), 3) \leq r+1 \text{ for } 2^{r} \leq n \leq 2^{r}+6,$$

 ${}^{s} \operatorname{cdg}_{2}(Spin(n), 3) = r+1 \text{ for } 2^{r}+7 \leq n \leq 2^{r+1}-1.$

This proves Theorem 1.

2. Proof of Theorem 2

The relations ${}^s \operatorname{cdg}_3(E_6, 3) = {}^s \operatorname{cdg}_3(F_4, 3) \ge 2$ were proved in [18]. We will prove ${}^s \operatorname{cdg}_3(F_4, 3) \le 2$. By [6] and [12], there exist a mod 3 H-space X of dimension 26 and a mod 3 homotopy equivalence

$$F_4 \simeq_3 X \times B_5(3)$$

where $B_5(3)$ is the total space of an S^{11} -bundle over S^{15} [15]. It follows from [3] that the top cell of the localized space $X_{(3)}$ splits off stably, that is, $X =_3 X^{(23)} \lor S^{26}$ (stably), where $X^{(23)}$ is the 23-skeleton of X, and it follows from [5] that $X^{(23)}_{(3)}$ is stably homotopy equivalent to $X_1 \lor X_2$ where X_2 is 17-connected and $H^*(X_1; \mathbf{Z_3}) = \mathbf{Z_3} \{1, x_3, x_7, x_8, x_{18}, x_{19}, x_{23}\}$ such that $\dim(x_i) = i$, $\mathcal{L}^1 x_3 = x_7$, $\beta x_7 = x_8$, $\beta x_{18} = x_{19}$, and $\mathcal{L}^1 x_{19} = x_{23}$.

Lemma 2.1.
$$X_1 = S^3_{(3)} \cup e^7_{(3)} \cup e^8_{(3)} \cup e^{18}_{(3)} \cup e^{19}_{(3)} \cup e^{23}_{(3)}$$
.

In the rest of this section we work in the stable homotopy category of mod 3 local spaces. For simplicity we omit the notation "(3)".

Proof of 2.1. Let

$$S^3 \to X_1 \to Y_1 \to \Sigma S^3 \to \Sigma X_1$$

be a cofibre sequence such that Y_1 is 6-connected. Then $X_1 = S^3 \cup C\Sigma^{-1} Y_1$. Inductively we have cofibre sequences

$$\begin{split} S^7 &\rightarrow Y_1 \rightarrow Y_2 \rightarrow \Sigma S^7 \rightarrow \Sigma Y_1 \,, \\ S^8 &\rightarrow Y_2 \rightarrow Y_3 \rightarrow \Sigma S^8 \rightarrow \Sigma Y_2 \,, \\ S^{18} &\rightarrow Y_3 \rightarrow Y_4 \rightarrow \Sigma S^{18} \rightarrow \Sigma Y_3 \,, \\ S^{19} &\rightarrow Y_4 \rightarrow Y_5 \rightarrow \Sigma S^{19} \rightarrow \Sigma Y_4 \end{split}$$

and

$$egin{aligned} Y_1 &= S^7 \cup C \, \Sigma^{-1} \, \, Y_2 \,, \ Y_2 &= S^8 \cup C \, \Sigma^{-1} \, \, Y_3 \,, \ Y_3 &= S^{18} \cup C \, \Sigma^{-1} \, \, Y_4 \,, \ Y_4 &= S^{19} \cup C \, \Sigma^{-1} \, \, Y_5 = S^{19} \cup e^{23} \end{aligned}$$

where the last equality follows from the fact that $Y_5 = S^{23}$. Therefore we have

$$X_{\mathbf{1}} = S^{\mathbf{3}} \cup C(S^{\mathbf{6}} \cup C(S^{\mathbf{6}} \cup C(S^{\mathbf{15}} \cup C(S^{\mathbf{15}} \cup e^{\mathbf{19}}))))$$
 .

This proves 2.1.

Proof of Theorem 2. Put $Y=S^3 \cup e^7 \cup e^8 \cup e^{18} \cup e^{19} \cup e^{23}$. Then ${}^s \operatorname{cdg}_3(F_4, 3) = {}^s \operatorname{cdg}_3(X, 3) = {}^s \operatorname{cdg}_3(Y, 3)$. Let $\alpha_i \in {}^s \pi_{4i-1}(S^0)$ $(1 \le i \le 5)$ be the element of order 3 defined in [20, p. 178]. Let $\alpha_i' : S^{4i-1} \cup_3 e^{4i} \to S^0$ and $\alpha_1'' : S^4 \to S^0 \cup_3 e^1$ be an extension of α_i and a coextension of α_1 respectively. The 8-skeleton $Y^{(8)}$ of Y is equivalent to the mapping cone $C(\Sigma^3 \alpha_1') = S^3 \cup C(S^6 \cup_3 e^7)$ and $Y/Y^{(8)}$ is equivalent to $C(\Sigma^{15} \alpha_1'') = S^{18} \cup_3 e^{19} \cup e^{23}$. Hence we have a cofibre sequence

$$C(\Sigma^3 \alpha_1') \to Y \to C(\Sigma^{15} \alpha_1'') \xrightarrow{h} C(\Sigma^4 \alpha_1') \xrightarrow{k} \Sigma Y$$
.

Let $g: C(\Sigma^4 \alpha_1) \to S^4$ be an extension of 3: $S^4 \to S^4$. As is easily seen, we have an exact sequence

$$egin{align*} {}^s\pi^3(S^{18} \cup_3 e^{19}) &= m{Z_3}\{lpha_1'\} &\stackrel{s}{\longrightarrow} {}^s\pi^3(S^{22}) &= m{Z_3}\{lpha_5\} \ &
ightarrow {}^s\pi^4(S^{18} \cup_3 e^{19} \cup e^{23})
ightarrow {}^s\pi^4(S^{18} \cup_3 e^{19}) &= m{Z_3}
ightarrow 0 \;. \end{split}$$

Since $\alpha_1''^*(\alpha_4') \in \langle \alpha_4, 3, \alpha_1 \rangle = \alpha_5$, it follows that ${}^s\pi^4(S^{18} \cup_3 e^{19} \cup e^{23}) = \mathbb{Z}_3$ and $3g \circ h = 0$. Hence there exists a map $r: \Sigma Y \to S^4$ such that $r \circ k = 3g$, so that r has degree 9 on the bottom sphere S^4 and ${}^s\mathrm{cdg}_3(Y) \leq 2$. Hence ${}^s\mathrm{cdg}(F_4, 3) = 2$ as desired.

3. Proof of Theorem 3

Lemma 3.1. Given an integer $n \ge 2$ and a connected finite CW-complex X such that

X and its (n-1)-skeleton Y are simply connected;

$$\pi_{n-1}(X)=0;$$

$$\pi_{n-1}(Y) = \boldsymbol{Z}_m$$
;

$$\operatorname{rank}(\pi_n(X/Y)) = \operatorname{rank}(\pi_n(X)) = 1,$$

then we have $\operatorname{Cdg}(X, n) \subset m \cdot \operatorname{Hom}(\pi_n(X), \pi_n(S^n))$. If moreover Cdg is surjective for (X/Y, n), then $\operatorname{Cdg}(X, n) = m \cdot \operatorname{Hom}(\pi_n(X), \pi_n(S^n))$.

Proof. By a theorem of Blakers-Massey, the collapsing map induces an isomorphism c_* : $\pi_n(X, Y) \cong \pi_n(X/Y)$. From the assumptions and the homotopy exact sequence of the pair (X, Y), it follows that c_* : $\pi_n(X)/\text{Tor} = \mathbb{Z} \to \pi_n(X/Y) = \mathbb{Z}$ is multiplication by m. Hence the assertion follows from the commutative diagram

$$[X/Y, S^n] \to \operatorname{Hom}(\pi_n(X/Y), \pi_n(S^n)) = \mathbf{Z}$$

$$c^* \downarrow \qquad \qquad \downarrow c_*^* = m$$

$$[X, S^n] \to \operatorname{Hom}(\pi_n(X), \pi_n(S^n)) = \mathbf{Z}$$

since c^* is surjective.

Proof of Theorem 3(1). We shall use notations and results in [20]. The group SU(3) has a cell structure: $SU(3)=S^3\cup_{\eta_3}e^5\cup_f e^8$. As noticed in [14, p. 475], we have $\Sigma f=j_*(\nu_4\circ\eta_7)$ from [9, 3.1], where $j:S^4\subset S^4\cup e^6$. Let $h:S^3\cup e^5\to S^3$ be a map having degree 2 on S^3 . We have

$$2\iota_4 \circ \nu_4 = 2\nu_4 + [\iota_4, \iota_4], \text{ by [22, XI]},$$

= $4\nu_4 - \Sigma \nu', \text{ by [20, p. 43]}.$

Hence $\Sigma(h \circ f) = 2\iota_4 \circ \nu_4 \circ \eta_7 = -\Sigma \nu' \circ \eta_7 = \Sigma(\nu' \circ \eta_6)$, so $h \circ f = \nu' \circ \eta_6$, since Σ is injective.

tive on $\pi_7(S^3) = \mathbb{Z}_2\{\nu' \circ \eta_6\}$. It follows that $2\iota_3 \circ h$ can be extended to SU(3) and that $\operatorname{cdg}(SU(3), 3) = 2^2$. By the same method as [18, 4.3(1)], we can prove that $\operatorname{cdg}(SU(3), 5) = {}^s\operatorname{cdg}(SU(3), n) = 2$ for n = 3, 5. By applying the functor $[, S^3]$ to the cofibre sequence $S^7 \to S^3 \cup e^5 \subset SU(3)$, we have $[SU(3), S^3] = \mathbb{Z} \oplus \mathbb{Z}_2$. Other assertions of (1) can be proved easily.

Proof of Theorem 3(2). By [13] there is a stable homotopy equivalence $SU(4) \simeq \Sigma P(C^4) \vee Y$, where Y is a 7-connected finite CW-complex. Hence, for n=3, 5, 7, we have ${}^s \operatorname{cdg}(SU(4), n) = {}^s \operatorname{cdg}(P(C^4), n-1)$ which can be easily determined by using the cell structure of $P(C^4)$ (see [17, 1.15]).

By using a cell structure of SU(4) and known structures of $\pi_*(S^3)$ and ${}^s\pi_{14}(S^3)$ (see [20]), we can construct a map $SU(4) \rightarrow S^3$ which has degree $2^5 \cdot 3^2$ on S^3 , hence $\operatorname{cdg}(SU(4), 3) | 2^5 \cdot 3^2$. On the other hand we have $2^2 \cdot 3 = {}^s\operatorname{cdg}(SU(4), 3) | \operatorname{cdg}(SU(4), 3)$ by [18, 3.3] and [19, 3.4(3)].

Taking (X, n) = (SU(4), 5) in 3.1, we have $\operatorname{Cdg}(SU(4), 5) \subset 2\mathbb{Z}$. By the homotopy exact sequence of the principal $\operatorname{Sp}(2)$ -bundle $q \colon SU(4) \to S^5$, we have $\operatorname{Cdg}(q) = 2$, so $\operatorname{cdg}(SU(4), 5) = 2$. By [19, 4.2(1)], $\operatorname{cdg}(SU(4), 7) = 6$. This completes the proof of (2).

Proof of Theorem 3(3). Using a stable duality map $S^{14} \rightarrow G_{2+} \wedge G_{2+}$ (see [3]), we can prove ${}^s \operatorname{cdg}(G_2, 11) = {}^s \operatorname{cdg}(G_2, 3)$ which is $2^3 \cdot 3 \cdot 5$ as proved in [18]. The group G_2 has a cell structure: $G_2 = S^3 \cup e^5 \cup e^6 \cup e^8 \cup e^9 \cup e^{11} \cup e^{14}$. Hence $G_2/Y = S^{11} \vee S^{14}$, where Y is the 9-skeleton of G_2 , so Cdg is surjective for $(G_2/Y, 11)$. Consider the exact sequence:

$$\pi_{11}(G_2) = \mathbf{Z} \oplus \mathbf{Z}_2 \rightarrow \pi_{11}(G_2, Y) = \mathbf{Z} \rightarrow \pi_{10}(Y) \rightarrow \pi_{10}(G_2) = 0.$$

By [16, 4.2], $\pi_{10}(Y) = \mathbb{Z}_{120}$. Taking $(X, n) = (G_2, 11)$ in 3.1, we have $m = 2^3 \cdot 3 \cdot 5$ and $\operatorname{cdg}(G_2, 11) = 2^3 \cdot 3 \cdot 5$. Since Sq^2 is trivial on $H^6(G_2; \mathbb{Z}_2)$ by [1], the attaching map of the 8-dimensional cell of G_2 factorizes as $S^7 \to S^3 \cup e^5 \subset S^3 \cup e^5 \cup e^6$. Using this fact and the additive structures of $\pi_*(S^3)$ and ${}^s\pi_{13}(S^3)$ (see [20]), we can construct a map $G_2 \to S^3$ which has degree $2^5 \cdot 3^2 \cdot 5$ on S^3 , hence $\operatorname{cdg}(G_2, 3) \mid 2^5 \cdot 3^2 \cdot 5$. This proves (3).

Proof of Theorem 3(4). Applying $\pi_*(\)$ to the following commutative diagram

$$SO(5) \subset SO(6)$$

$$\downarrow \qquad \downarrow$$

$$SO(7) = SO(7)$$

$$p \downarrow \qquad \downarrow$$

$$S^5 \subset V_{7,2} = SO(7)/SO(5) \rightarrow S^6$$

we have $p_*=15: \pi_{11}(SO(7))/\text{Tor}=\mathbf{Z} \to \pi_{11}(V_{7,2})/\text{Tor}=\mathbf{Z}$. Hence

$$cdg(SO(7), 11) | 3 \cdot 5 \cdot cdg(V_{7,2}, 11)$$
.

The space $V_{7,2}$ has a cell structure: $V_{7,2} = S^5 \cup e^6 \cup e^{11}$, Let $q: V_{7,2} \to S^{11}$ be the collapsing map. By [8, 2.8 and 2.9], we have an exact sequence $\pi_9(S^5) = \mathbb{Z}_2 \to \pi_{10}(S^5 \cup e^6, S^5) \to \pi_5(S^5 \cup e^6) = \mathbb{Z}_2 \to 0$, hence the order of $\pi_{10}(S^5 \cup e^6, S^5)$ is at most 4, so that the order of $\pi_{10}(S^5 \cup e^6)$ is at most 8 because $\pi_{10}(S^6) = \mathbb{Z}_2$ by [20]. Since $\pi_{10}(V_{7,2}) = 0$, it then follows from the homotopy exact sequence of the pair $(V_{7,2}, S^5 \cup e^6)$ that Coker $[q_*: \pi_{11}(V_{7,2}) \to \pi_{11}(S^{11})] \cong \pi_{10}(S^5 \cup e^6)$, so that the last group is cyclic. Hence by the commutative diagram

$$egin{aligned} [S^{11},\,S^{11}] &
ightarrow & \operatorname{Hom}(\pi_{11}(S^{11}),\,\pi_{11}(S^{11})) = \mathbf{Z} \ q^* &\downarrow & &\downarrow q_*^* \ [V_{7,2},\,S^{11}] &
ightarrow & \operatorname{Hom}(\pi_{11}(V_{7,2}),\,\pi_{11}(S^{11})) = \mathbf{Z} \end{aligned}$$

 $\operatorname{cdg}(V_{7,2}, 11)$ is the order of $\pi_{10}(S^5 \cup e^6)$, since q^* is surjective. Thus $\operatorname{cdg}(V_{7,2}, 11)$ | 2^3 . On the other hand, $\operatorname{cdg}(G_2, 11) | \operatorname{cdg}(Spin(7), 11)$ by use of the principal G_2 -bundle $Spin(7) \rightarrow S^7$. Hence $2^3 \cdot 3 \cdot 5 = \operatorname{cdg}(G_2, 11) | \operatorname{cdg}(Spin(7), 11) | \operatorname{cdg}(SO(7), 11) | 3 \cdot 5 \cdot \operatorname{cdg}(V_{7,2}, 11) | 2^3 \cdot 3 \cdot 5$, therefore these numbers are equal and $\operatorname{cdg}(V_{7,2}, 11) = 2^3$. Then [19, 3.7(2) and 4.4] complete the proof of (4).

Proof of Theorem 3(5). The groups Sp(2) and Sp(3) have cell structures: $Sp(2) = S^3 \cup_g e^7 \cup e^{10}$ and $Sp(3) = S^3 \cup_g e^7 \cup e^{10} \cup e^{11} \cup e^{14} \cup e^{18} \cup e^{21}$. They contain quasi-projective spaces $Q_2 = S^3 \cup_g e^7$ and $Q_3 = S^3 \cup_g e^7 \cup e^{11}$ respectively. The inclusions induce isomorphisms $\pi_7(Q_2) \cong \pi_7(Q_3) \cong \pi_7(Sp(3))$. In $Q_{3,2} = Q_3/S^3 = S^7 \cup_h e^{11}$, h has order 8 (see [10, p. 38]). Hence the homomorphisms $\{Q_{3,2}, S^7\} = Z \to \{S^7, S^7\} = Z$ and $\{Q_3, S^7\} = Z \to \{Q_2, S^7\} = Z$ induced by the inclusions are multiplications by 8. Let t be the order of the cokernel of the stabilization $\pi_7(Sp(3)) = Z \to {}^s\pi_7(Sp(3)) = Z$. Consider the following commutative diagram.

$$\begin{split} [Sp(3),S^{7}] &\rightarrow \operatorname{Hom}(\pi_{7}(Sp(3)),\pi_{7}(S^{7})) = \mathbf{Z} \\ \downarrow & \uparrow t \\ \{Sp(3),S^{7}\} &\rightarrow \operatorname{Hom}({}^{s}\pi_{7}(Sp(3)),{}^{s}\pi_{7}(S^{7})) = \mathbf{Z} \\ \downarrow & \downarrow \cong \\ \{Q_{3},S^{7}\} &= \mathbf{Z} \rightarrow \operatorname{Hom}({}^{s}\pi_{7}(Q_{3}),{}^{s}\pi_{7}(S^{7})) = \mathbf{Z} \\ 2^{3} \downarrow & \downarrow \cong \\ \{Q_{2},S^{7}\} &= \mathbf{Z} \rightarrow \operatorname{Hom}({}^{s}\pi_{7}(Q_{2}),{}^{s}\pi_{7}(S^{7})) = \mathbf{Z} \end{split}$$

By the proof of [19, 4.3(1)], the bottom homomorphism is multiplication by $2^2 \cdot 3$. Hence

$$t \cdot 2^5 \cdot 3 \mid t \cdot {}^s \operatorname{cdg}(Sp(3), 7) \mid \operatorname{cdg}(Sp(3), 7)$$
.

Let $p: Sp(3) \rightarrow X_{3,2} = Sp(3)/Sp(1)$ be the canonical fibration. Since Coker $[p_*: \pi_7(Sp(3)) \rightarrow \pi_7(X_{3,2})] \cong \pi_6(S^3) = \mathbb{Z}_{12}$, we have $\operatorname{cdg}(Sp(3), 7) \mid 2^2 \cdot 3 \cdot \operatorname{cdg}(X_{3,2}, 7)$. The space $X_{3,2}$ has a cell structure: $X_{3,2} = S^7 \cup_h e^{11} \cup_v e^{18}$. Since the order of h

is 8, there is a map $u: Q_{3,2} \rightarrow S^7$ which has degree 8 on S^7 . Since $u \circ v \in \pi_{17}(S^7) = \mathbb{Z}_{24} \oplus \mathbb{Z}_2$ (see [20]), $2^3 \cdot 3u$ can be extended to a map $X_{3,2} \rightarrow S^7$ which has degree $2^6 \cdot 3$ on S^7 . Therefore $\operatorname{cdg}(X_{3,2},7) | 2^6 \cdot 3$ and so $\operatorname{cdg}(Sp(3),7) | 2^8 \cdot 3^2$. On the other hand, $\operatorname{cdg}_3(Sp(3),7) = \operatorname{cdg}_3(Spin(7),7) = 1$ by [19, 4.2(2) and 4.3(2)]. Hence $\operatorname{cdg}(Sp(3),7) | 2^8 \cdot 3$. This proves (5) and completes the proof of Theorem 3.

4. Proof of Proposition 4

By [19, 2.4], we have

Proposition 4.1 (cf., [19, 3.15(2)]). If n is odd, $\pi_n(X) = \mathbb{Z}\{s\} \oplus \text{Tor}$ and $H^n(X; \mathbb{Z}) = \mathbb{Z}\{x_n\} \oplus \text{Tor}$, then there exists a map $f: X \to S^n$ such that $\operatorname{cdg}(X, n) = \operatorname{deg}(f_*s) = |AB|$, where integers A and B are defined by $s^*(x_n) = A[S^n]$ and $f^*[S^n] \equiv Bx_n \mod \text{Tor}$ respectively. (Here $[S^n]$ is a generator of $H^n(S^n; \mathbb{Z})$.) Stable version also holds.

Hence the next result proves Proposition 4.

Lemma 4.2. In 4.1, (|A|, |B|) is equal to

$$\begin{array}{llll} (3,2^3\cdot 3\cdot 5\cdot y_1) & & for & (Spin(9),7)\,\,,\\ (2^3\cdot 3\cdot 5,2\cdot 3\cdot y_2) & & for & (Spin(9),11)\,\,,\\ (2^2\cdot 3^2\cdot 5\cdot 7,y_3) & & for & (Spin(9),15)\,\,,\\ (2,2^2\cdot 3\cdot y_4) & & for & (SU(5),5)\,\,,\\ (2\cdot 3,2\cdot y_5) & & for & (SU(5),7)\,\,,\\ (2^3\cdot 5,2^4\cdot 3\cdot 7\cdot y_6) & & for & (F_4,11)\,\,,\\ (2^3\cdot 3\cdot 7,2^4\cdot 5\cdot y_7) & & for & (F_4,15)\,\,,\\ (2^7\cdot 3^2\cdot 5\cdot 7\cdot 11,y_8) & & for & (F_4,23) \end{array}$$

for some integers y_i . In these cases, $B|y_i|^s \operatorname{cdg}(G, n)$.

Proof. We prove the assertion only for $(F_4, 11)$, because others can be proved similarly. Assertion about A has been known (for example, see [11]). Recall that the type of F_4 is (3, 11, 15, 23). Let $x_n \in H^n(F_4; \mathbb{Z})$ be a generator of the free part for $n \in \{3, 11, 15, 23\}$ (see [1]). Consider the commutative diagram:

$$K^{1}(S^{11}) \stackrel{ch}{\cong} H^{11}(S^{11}; \mathbf{Z}) \subset H^{*}(S^{11}; \mathbf{Q})$$
 $f^{*} \downarrow \qquad \qquad \downarrow f^{*}$
 $K^{1}(F_{4}) \xrightarrow{ch} H^{*}(F_{4}; \mathbf{Q})$

As is well-known, $K^*(F_4)$ is an exterior algebra generated by some elements

 $\beta_1, \dots, \beta_4 \in K^1(F_4)$ whose Chern characters were determined in [21]. Let g be a generator of $K^1(S^{11})$. Let ^KDec and ^HDec be the groups of decomposable elements with respect to $\{\beta_1, \dots, \beta_4\}$ and $\{x_3, x_{11}, x_{15}, x_{22}\}$, respectively. Express $f^*(g) \equiv \sum a_i \beta_i \mod^K \text{Dec}$ and $\sum a_i ch(\beta_i) = P_3 x_3 + P_{11} x_{11} + P_{15} x_{15} + P_{23} x_{23}$, where P_i is a polynomial of a_1, \dots, a_4 with rational coefficients. Then $ch(f^*(g)) \equiv \sum P_i x_i \mod^H \text{Dec}$. On the other hand, $ch(f^*(g)) = f^*ch(g) = \pm f^*[S^{11}] \in H^{11}(F_4; \mathbb{Z})$. Hence $P_{11} = \pm B$ and $P_3 = P_{15} = P_{23} = 0$, then $B = |P_{11}| = 2^4 \cdot 3 \cdot 7 \cdot |a_3|$ by elementary calculation. This argument can also be applied to stable case. By setting $y_6 = |a_3|$, we have the desired result.

References

- [1] A. Borel: Sur l'homologie et la cohomologie des groupes de Lie compacts connexes, Amer. J. Math. 76 (1954), 273-342.
- [2] R. Bott: The space of loops on a Lie group, Michigan Math. J. 5 (1958), 35-61.
- [3] W. Browder and E.H. Spanier: H-spaces and duality, Pacific. J. Math. 12 (1962), 411-414.
- [4] F. Clarke: On the K-theory of the loop space of a Lei group, Proc. Cambridge Philos. Soc. 76 (1974), 1-20.
- [5] G.E. Cook and L. Smith: Mod p decomposition of co H-spaces and applications, Math. Z. 157 (1977), 155-177.
- [6] J. Harper: The mod 3 homotopy type of F₄, Lecture Notes in Mathematics 418, 58-67, Springer-Verlag, New York, 1974.
- [7] D. Husemoller: Fibre bundles, Springer-Verlag, New York, 1975.
- [8] I.M. James: On the homotopy groups of certain pairs and triads, Quart. J. Math. Oxford Ser. (2) 5 (1954), 260-270.
- [9] I.M. James: On sphere-bundles over spheres, Comment. Math. Helv. 35 (1961), 126-135.
- [10] I.M. James: The topology of Stiefel manifolds, London Math. Soc. Lecture Notes Series 24, Cambridge University Press, Cambridge, 1976.
- [11] R. Kane and G. Moreno: Spherical homology classes in the bordism of Lie groups, Canad. J. Math. 40 (1988), 1331-1374.
- [12] A. Kono: On Harper's mod p H-spaces of rank 2 (in preparation).
- [13] H. Miller: Stable splittings of Stiefel manifolds, Topology 24 (1985), 411-419.
- [14] M. Mimura: On the number of multiplications on SU(3) and Sp(2), Trans. Amer. Math. Soc. 146 (1969), 473-492.
- [15] M. Mimura and H. Toda: Cohomology operations and the homotopy of compact Lie groups-I, Topology 9 (1970), 317-336.
- [16] M. Mimura, G. Nishida and H. Toda: On the classification of H-spaces rank 2,J. Math. Kyoto Univ. 13 (1973), 611-627.
- [17] H. Ōshima: On stable James numbers of stunted complex or quaternionic projective spaces, Osaka J. Math. 16 (1979), 479-504.
- [18] H. Ōshima: Codegree of simple Lie groups, Osaka J. Math. 26 (1989), 759-773.
- [19] H. Oshima and K. Takahara: Codegrees and Lie groups, preprint.

- [20] H. Toda: Composition methods in homotopy groups of spheres, Ann. of Math. Stud. 49, Princeton University Press, Princeton, 1962.
- [21] T. Watanabe: Chern characters on compact Lie groups of low rank, Osaka J. Math. 22 (1985), 463-488.
- [22] G.W. Whitehead: Elements of homotopy theory, Springer-Verlag, New York, 1978.

Akira Kono
Department of Mathematics
Kyoto University
Kitashirakawa, Sakyo-ku
Kyoto 606, Japan

and

Department of Mathematics University of Aberdeen The Edward Wright Building Dunbar Street Aberdeen AB9 2TY, U.K.

Hideaki Ōshima Department of Mathematics Osaka City University Sugimito, Sumiyoshi-ku Osaka 558, Japan