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This paper is a supplement to the author [2]. Let A be a ring
with identity. If every principal left ideal in A is A-projective, then
Hattori and Nakano called A a left PP-ring in [3], [4]. Nakano and
Chase ([1], [4]) showed that if A is a semi-primary left PP-ring, then
A is a generalized triangular matrix ring. The author has defined a
generalized triangular matrix ring over semi-simple rings with bi-linear
mappings ¢;’, in [2] and found a criterion of semi-primary hereditary
ring.

In §1 we shall use the same argument and give a similar criterion
of a semi-primary left PP-ring. Using this criterion we shall show that
A is a left PP-ring if and only if A is a right PP-ring, provided A is
semi-primary.

As we see in [2], some results were obtained from monomorphic
mapping ¢,’, in a hereditary ring. Thus, in §2, we define a partially
PP-ring, which is a ring with property that ¢,’, is monomorphic and show
that if A is a semi-primary partially PP-ring with nilpotency #, then A
is isomorphic to a generalized triangular matrix ring over semi-simple
rings with degree » and each component of it is uniquely determined
up to isomorphism. From this fact we note that some results in [2]
are generalized in a case of partially PP-ring.

In this paper we only consider semi-primary rings and semi-simple
rings with minimum conditions.

1. PP-rings

We recall the definition of a generalized taiangular matrix ring
(briefly g.t.a.matrix ring).
Let {R,,R,, -, R,} be a set of semi-simple rings and {M; ; for i >j}
a set of R;, R;-modules. With a bi-linear mapping @’ : M; ,-?M,v,keM,-,,,
J

we define a g.f.e.matrix ring by the usual way. We denote it by
T.(Ri; M; ;) and n is called the degree of it:
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A — Mz,l R, 0-- = T,R;; Mi,j) ’

.........

Mn,n—an,n—z ot Rn
(see [2], §2).
The following lemmas were given in [1] and [4]. We shall give
here simple proofs, one of which is the same as in [1], Theorem 4.2
and will be used later.

Lemma 1. Let A be a ring and M a left A-module. If Am is A-
projective and em=m for meM and an idempotent e in A, then there
exists an idempotent f in A such that ef=fe=f, Af~Am and fm=m.
Especially, eAem is eAe-projective.

Proof. Since Ae—Am—(0) splits, we obtain Ae=AfPAf’ and Af~
Am, fm=m. Hence, eAem=c¢Am~eAf=eAefe is a direct summand of
ele.

Lemma 2. 1) FEvery semi-primary left PP-ving is a g.t.a.matrix
ring.
2) Let Az(ﬁ g) be a g.t.a.matrix ring, where R is semi-simple, S is

a semi-primary left PP-ring and M is a S, R-module. If every principal
left S-module in M is S-projective, then A is a left PP-ring.

Proof. 1) Let N=N(A) be the radical of A. We assume N°=(0),
s+1=(0). Then N° is completely reducible and hence, N° is A-projective
by the assumption; N°~> PAe¢;, where ¢; is a primitive idempotent.
Then (0)=>1PNe;. Let {¢;} be a complete set of mutually orthogonal
primitive idempotents such that 1=ﬁle,- and Ne,=(0) for i<f{<» and
Ne;+(0) for j<i. Let E=e,+--+e¢;_,. Since e; ¢, for j<i<t¢, EA(1-E)
=EN(1—E)=(0). Itis clear that A=T,FEAE, (1—E)A(1—E); (1—E)AE))
and that (1—E)A(1—E) is semi-simple and EAE is a left PP-ring by
Lemma 1. Hence, we can prove 1) by induction on number of idem-
potents #.
2) Let A=T,R,S; M) and meM, r=R. We put Rr=Re, =e. Then
Mr+Sm=MePHSm(1l—e). Let x=T,(r,s;m). Then Ax=T,(Rr, Rs;
Mr + Sm) = AT,(e, 0; 0)DT,((0), (0); Sm(1l—e)) DT,((0), (0); Ss). Since
Sm(1—e), Ss are S-projective, the last two modules are A-projective by
[2] Lemma 4. Hence Ax is A-projective.

Proposition 1. A is a semi-primary left PP-ring if and only if A
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is a g.t.a.matrix ring T.R;; M; ;) over semi-simple rings R; with the
following conditions ;

1) @ M,-,j§R,.xj,,,—»M,-,,-x,-,,, is monomorphic for all i>j>k and
xj’kEMj’ko ’

2) For any system {x;.,;-, %i;; % ;€M ;, i>5} M; ;1,C(in )+
v +M; ;i C(x;, ;) is a divect sum in M;;, where Ryx,;=C(x, ;) D

( _kE_l M, %, ;) N Ryxy ; as a left Ry~module.
Proof. We use the same argument as in the proof of [2], Theorem 1.

By induction argument and Lemma 2 it is sufficient to show that every
principal submodule of

0
M,,
is T (=T,(R,, -+, Ry; M; ;, j=+1))-projective.
Let
X2,
X = ( : )
KXy
Then
Ry, , 0
0
Ma,zx2,1+R3x3,1 M3,2x2,1
Tax =] cocoee ONx = | «eeeer
Mn,zxz,1 + e +Rnxn,1 Mn,2x2,1+ +Mn,n—1xn—1,1
and
C(x,,)
O, )
xU/N'x=| ¢
C(xa1))»

where N'=N(T"), C(x,,)=R,x,,. Hence, I'x is I'-projective if and only if

X2, 0 0

0 C(x,,) 0
rx~T|: |®T|0 - QT

0 0 C(%n,)

and
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0
0
F® :C(xi,l) =T
0
is monomorphic. Which is equivalent to 2) and 1) @, M;;QC(x;,)—
M; , is monomorphic. However if we replace {x,,,:, £,,} by {0,0, -,
Xiyr s %Xn,}, the C(x,)=R;x;,. Hence, we have 1).

REMARK 1. Let ¢ be a sum of the set of non-isomorphic primitive
idempotents in A. From [3], Corollary 1 we know that A is hereditary
if and only if so is eAe. However, it is not true for a left PP-ring as
we see in the following example. (Only if part is true by Lemma 1).

ExaMpLE. Let K be the field of real numbers. M, N and L be K-
vector spaces with basis (%, v), (@, b) and (¢, s), respectively. We define
a bi-linear mapping ¢: MQN—-L. MQN=uQ(Ka+ Kb)PvR (Ka+ KD).
o (u(ax +by)+v(ax’+by))=tx+y)+s(y—«'). Then we can easily check
that ¢ is monomorphic on M® Kn for any »+0 in N. However,
o u(a+b)+v(@a—0b))=0 and u(a+b)+v(a—>b)=+0.

K 0 0 1 0 K 00
Let A= (%) K, O |and e=[ e, ) Then eAe=|N K O\).
L (M,M) K 0 1 L M K|

From Proposition 1 and the above observation we know that eAe is a
left PP-ring. Let

00 0
| (a
x—<b>00

00 0

in A. (M, M)(?Kz(‘bl):(M, M)®<%>. Since @ is not monomorphic on
MQ®N, &: (M, M);@IQ(Z)%L is not monomorphic, and hence, A is not
a left PP-ring. ’

ReEMARk 2. The above example shows that the endomorphism ring
of finitely generated projective module over a PP-ring is not, in general,

a PP-ring, (cf.[2], Theorem 7). Because A=Hom’,,(Ae¢, Ae) and Ae is
a finitely generated eAe-projective module.

Lemma 2. Let A be a g.t.a.matrix ring with property 1) and
M; ;2y. We assume R;y~R,e by a correspondence y—e and ¢=e. If
xy=0 for x&M,;, then xe=0.
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Proof. M,,,i@R;y%M,,,;?R,-e is a direct summand of Mk,,-z:M,,,,-?R,-.

Hence, x®y~x®'e=xe®1~x,e. Since M, ;QR;y—M, ; is monomorl;hic,
xe=0. R‘

From the example given in [1] we know that a left PP-ring is not
necessarily to be a right PP-ring. However, we have

Theorem 1. Let A be semi-primary. If A is a left PP-ring, then
A is a right PP-ring.

Proof. We shall show that A satisfies the following conditions 1’)
and 2’) which are replaced left by right in Proposition 1.

) @ 2 ;R;QM; ,—M; ,, is monomorphic.
Rj

2') For any system (x;;, Xj ;1) =5 Xj.j-1)
D(x; ;-0)M;_, ;+D(x; ; )M, _, i+ +D(x; ;4,)M;., ; is a direct sum in M; ;,

where x; ,R,=D(x; 1)B( ji %; M, ) Nx; R, as a right R,~module.
t=p+1

1): We assume @, : x; Re®@M, ,—x; zM, , is not monomorphic. Then
there were elements x=ux;, and me M,, such that *®m=+0 in
%; 1 Re@M,, and xm=0. M, ,=RmPN and M;,=xR, DN as left and
right R,-module, respectively. Then M; ,QM,; ,=xR.QRmPN QRmD
YR, QNPN'QN. Hence x®m=+0 in M;,QRsm, which contradicts 1)
of Proposition 1. Next, we shall show that A satisfies 2’). Let
A=Tu(R;; M; ;); R; simple ring. We prove 2’) by induction on degree 7.
If n=1, then A is simple, and hence, it is clear. From Lemma 1 and
the induction hypothesis I';=7T, ,(R,, ---%, R,; M ;, k=i, j+1i) satisfies
2’). Hence it is sufficient to consider a system

{xn,zs xn,a) T xn,n—l; xn,jEMn,j} .

We shall show a sum x,, ,M,_,,+D(%, ,_,)M,_,, -+ D(x,,)M,, is a direct
sum. If D(x,;)=0 for some ¢, then for {x,,, ¢+, Xy uy} ID T XMy,
DD (Xpp )M, ,P+-d-- DD’ (%, ,)M,,, where D’(x, ;) is a direct summand
in M,; as in 2’). Since D’(x,;2D(x,;), we obtain 2’). Hence, we
assume D(x,;)=+(0) for all i. If the above sum were not a direct sum
then there were an element 0=«',, m,_,,+ - +',,m,, such that some
x' m;,+0, where ', ;€D(x, ;). By the same reason as above, we may
assume x’, ;m;,+0 for all j.

Let «,;R;~e;R; by a correspondence ‘%', ;<>e;. Then x/,.e;=x',;.
Hence, we may assume O=+m;,=¢m;,. We have, from Lemma 1, an
idempotent f; such that Rm; ,~R;f; and fie; f;= fie;, fim; ,=m;,. Since
X iRi~eR;, x',,fiRi~f;R;. Thus, we may assume that O+x',;f;=x",,,
fim;,=m;, and ¥, ;R;~f;R;, Rom; ,~R,f;. Hence, the right annihilator
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r(x',;) of x/,; in R; is equal to (1—f;)R;. We consider a system
{m,,,my,, -,m,_,} as in 2). If C(m,,)=(0), then there exist elements
m; ;€ M; ; such that m; ,=m; m, ,+ - +m; ;_m;_,, (m; ;=m; ;f;). Hence,

( * ) 0= x/n,n—lmn—l,l + e +x/n,i+1m£+1,1\; + (x/n,imi,i—l +x,n,i~1)m:‘—1,1
(& i+ X )M

Again we consider a system {x', ..., ', X piorr (X i+ 20 51 -+
n-1 n—-1

(X s+ 2, Mm; )} inT;. Since ¥ RN ( le’n,kMk_t) cx, RN (’z len,kMk,t)
E=t+ =t+

=(0) for t>i, D'(x',,)=%",,R, for t>i. For (,,+x',,m;)rE
(x,nt+x/n,imi,t)Rt N ((x/n,t—H+x,n,imi,t+1)Mt+1,t + et (x,n,i—1+x/n,imi,i—x)Mi~1,t+
n—-1
x,n,z‘+1Mi+1,t+ +x/n,n»1Mn-1,t) (t<i)’ we have x’n,trED(xn,t) ﬂ( Elxn,kMk,t)
r=t+
=(0). Hence, rer(x’,,)=(1—f,)R,. Therefore, x’, ;m; »=0, which means
D%y, + 2 g m; )= (& s+ 2" im; J)R,. From the induction hypothesis we
know that (*) is a direct sum. Hence, #’,, m, ,,=0 or («, m;,+
x'nz)m,,=0. From the latter and Lemma 3 we obtain O=x', ;m;,f,+
X o fo=2"yim;,+ %, ,, Which contradicts D(x’,,)+(0). In either case we
have a contradiction and hence, C(m; )+ (0) for all i. Therefore, we
have from 2)
Mn,zng + M,,,3C(m3,1) +eee Mn,n—lc(mn—l,l)

is a direct sum. Hence,

0= x/n,2m2_1 +oeee +x/n,n—1mnﬂ_1
= (x/n.2+x,n,n~1tnf1,2+ tee +x,n,3t3,2)m2,1
+(x/n,3+ "')m,3,1

+x/n,n—1m/n—1,1 ’
where m;,l = m’,-,1+t,-'2m2’1+ v +t;,,'_1m,'_1’1 and t,-’,-e,- = ti,]" m’;,IEC(m,-,l).
Hence, %'y, = —(¥'pn-1fn-r2+ =+ +2's,t,,), which contradicts the fact
D(x’,.)#(0). We have proved the theorem.

2. Partially PP-rings

We found a criterion of semi-primary PP-rings in Proposition 1.
However, we need only the condition 1) in this section.

Let A be a semi-primary ring such that A/N=>PS;; S; is a simple
ring. Let 1=3>1E;, EI=E; and E; is the identity is S; modulo N. We

assume for idempotents E7, Ej that E;~E{, E;~Ej. Let x be in E;AE;.
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Since AE;~AEj, there exists ¥ in E;AE} such that Ax~Ajy’. Further-
more, since E;A=~FE}A, we have teE/AE;, ucE;AE! such that ut=E;.
If we put y=ty'=E/AE}, then Ay=Aty'=AE;y=Ay~Ax, since AfD
AE;DAt. Hence, if Ax is A-projective for every x in E;AE;, then Ay
is A-projective for every y in E;AE].

Thus, we can define a partially PP-ring as follows :

Let A and E; be as above. If Ax is A-projective for all x€E;AE;
(#,j=1, ---,n), then we call A a partially PP-ring.

From Lemma 1, we obtain

Lemma 4. Let A be a partially PP-ring and e an idempotent. Then
eAe is a partilaly PP-ring.

Proposition 2. A is a partially PP-ring if and only if A is a g.t.a.
matrix ring T.S;; M; ;) over simple rings S; with property 1) in Pro-
position 1).

Proof. First we shall show that a partially PP-ring is a g.t.a.

matrix ring. Let 1= Ze, ;> where {e; ;} is a complete set of primitive

i,j=1

idempotents. Let N”*=(0), N*'+(0). Then there exist primitive idem-
potents e, f such that (0)+eN"'fCE;AE;, where e<E;, f<E;. Hence,
Ax is A-projective for OfxceN""'f. Since Ax~3 PAe,, and Nx=(0),
there exists a primitive idempotent e, such that Ne,,=(0). Then we
can prove similarly to the proof of Lemma 2 that A~T(R;; M;;); R;
semi-simple. Hence, the proposition is an immediate consequence from
the next lemma.

Lemma 5. Let A be a g.t.a.matrix ring. TWS:; M; ;) over Simple
rings S;. A is a partially PP-rving if and only if @ |M; ;QS;x;, is
monomorphic for every i,j, k and xEM; .

Proof. It is clear from the proof of Proposition 1.

REMARK 3. From the first half of the proof of Theorem 1, A is a
partially PP-ring if xA is A-projective for every x=EAE;.

REMARK 4. We can show by examples that the set of semi-primary
hereditary ring C that of PP-rings C that of partially PP-rings.

Let A be a partially PP-ring and 1= Ze, ; as in the proof of

i,j=1
Proposition 2. Since we can find an idempotent e, , such that Ne,,=(0),
we may assume Ne, ,=Ne, ., ,=-+=Ne,,=(0) and Ne,;,+(0) for i<p.

Then A is isomorphic to <ﬁ14 Ig) as in the proof of Lemma 2. S, is a
1 1
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partially PP-ring by Lemma 4. After rearraging primitive idempotents
€,y 15 "ty €, 1, SUCh that N(S))es, =+ =N(S,)e._,,=(0) and N(S,)e;,+(0)
for i<p,, we have

S, 0
A = (M1 R, ); S, is a partially PP-ring and R,,
M, M, R, R, are semi-simple.

Furthermore, M, f=+(0) for any primitive idempotent in R,. Repeating
this argument we know that A=~T7T, (R;; M; ;) over semi-simple rings R;
and M;,;f;+(0) for any primitive idempotent f; in R;.

The following theorem and corollary are generalizations of [2],
Theorem 4’ and Proposition 5.

Theorem 2. Let A be a semi-primary partially PP-ring and N"'
+(0), N"=(0). Then A is isomorphic to a g.t.a.matrix ring T R;, M; ;)
over semi-simple rings R; with degree n. Furthermove, M; ;2 M; ;_M;_, ;_,
My, ;£;%+0) for any idempotent f; in R; and for all i.

Proof. From the above argument we have A=T,(R;; M;;) and
M;.,:f:#(0) for all primitive idempotent f; in R;. Let L=M;,; -
M;,, ;. We assume that Lf;+(0) for any primitive idempotents f; in R;.
There exist me M, ;_, and f; such that fmf,; ,+0 and R;f,~R;fmf;_,.
Since Lf;+(0), LM;; ,2Lf;mf; ,#+(0) by Lemma 3. Thus, we can
prove by induction My ;_,---M; ;_, f;_,#(0) for all . Therefore, (0)=+
M, - M, , S N™'. Hence, m—1<n. Since N"=(0), m>n. Hence, n=m.

m

Corollary. Let A be as above. Then
n = gl.dim (A/N?) = I(A),

where I(A) is the maximal length of connected sequence of primitive
idempotents (see [2]).

Proof. From [27], Proposition 4 we know n</(A)=gl.dim (A/N?).
On the other hand A~T,(R;; M; ;) by Theorem 2. Hence n=>I(A).

ReMArRk 5. We know from Theorem 2 that n(f;)=n—i+1, where
n(f) is an integer m such that N7 'f+(0), N”f=(0), (see [2]).

In the expression of A as a g.t.a.matrix ring in Theorem 2 the
set of primitive idempotents in R; consists of those f; such than #n(f;)
=n—i+1. Hence, R;, M, ; in T(R;, M, ; are uniquely determined up
to isomorphism.

By making use of the same argument as in the proof of [2],
Proposition 8 we have
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Proposition 3. Let A be an indecomposable semi-primary partially
PP-ring. Then the center K of A is a field. If AQL is a semi-primary
K

partially PP-ring for every extension field L of K, then A|N is separable
over K.

REMARK 6. The converse is not true in general. In the example
after Proposition 1 we obtain A/N is separable over K. However if
C is the field of complex numbers, then @ is not monomorphic on
(M®C)<§C§(a+bi).

REMARK 7. Proposition 10 in [2] is valid for a semi-primary PP-
ring from Theorem 2. Furthermore, all results in [2], §5 are true for
a semi-primary PP-ring by a slight change of proof.

Osaka City UNIVERSITY

References

[1] S. U. Chase, A generalization of the ring of triangular matrices, Nagoya
Math. J. 18 (1961), 13-25.

[2] M. Harada, Semi-primary hereditary rings and triangular matrix rings, to
appear in Nagoya Math. J.

[3] A. Hattori, A foundation of torsion theory for modules over gemeral rings,
Nagoya Math. J. 17 (1960) 147-158.

[47] T.Nakano, A nearly semi-simple ring, Commentarii Mathematici Univer-
sitatis Sancti Pauli 7 (1959) 27-33.








