

Title	On semi-primary PP-rings
Author(s)	Harada, Manabu
Citation	Osaka Journal of Mathematics. 1965, 2(1), p. 153-161
Version Type	VoR
URL	https://doi.org/10.18910/3566
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Harada, M.
Osaka J. Math.
2 (1965), 153-161

ON SEMI-PRIMARY PP-RINGS

MANABU HARADA

(Received March 20, 1965)

This paper is a supplement to the author [2]. Let Λ be a ring with identity. If every principal left ideal in Λ is Λ -projective, then Hattori and Nakano called Λ a left PP-ring in [3], [4]. Nakano and Chase ([1], [4]) showed that if Λ is a semi-primary left PP-ring, then Λ is a generalized triangular matrix ring. The author has defined a generalized triangular matrix ring over semi-simple rings with bi-linear mappings $\varphi_{i,k}$ in [2] and found a criterion of semi-primary hereditary ring.

In §1 we shall use the same argument and give a similar criterion of a semi-primary left PP-ring. Using this criterion we shall show that Λ is a left PP-ring if and only if Λ is a right PP-ring, provided Λ is semi-primary.

As we see in [2], some results were obtained from monomorphic mapping $\varphi_{i,k}$ in a hereditary ring. Thus, in §2, we define a partially PP-ring, which is a ring with property that $\varphi_{i,k}$ is monomorphic and show that if Λ is a semi-primary partially PP-ring with nilpotency n , then Λ is isomorphic to a generalized triangular matrix ring over semi-simple rings with degree n and each component of it is uniquely determined up to isomorphism. From this fact we note that some results in [2] are generalized in a case of partially PP-ring.

In this paper we only consider semi-primary rings and semi-simple rings with minimum conditions.

1. PP-rings

We recall the definition of a *generalized triangular matrix ring* (briefly *g.t.a.matrix ring*).

Let $\{R_1, R_2, \dots, R_n\}$ be a set of semi-simple rings and $\{M_{i,j} \text{ for } i > j\}$ a set of R_i, R_j -modules. With a bi-linear mapping $\varphi_{i,k} : M_{i,j} \otimes_{R_j} M_{j,k} \rightarrow M_{i,k}$ we define a *g.t.a.matrix ring* by the usual way. We denote it by $T_n(R_i; M_{i,j})$ and n is called the *degree* of it:

$$\Lambda = \begin{pmatrix} R_1 & 0 & \dots & \\ M_{2,1} & R_2 & 0 & \dots \\ \dots & & & \\ M_{n,n-1} M_{n,n-2} \dots R_n & & & \end{pmatrix} = T_n(R_i; M_{i,j}),$$

(see [2], § 2).

The following lemmas were given in [1] and [4]. We shall give here simple proofs, one of which is the same as in [1], Theorem 4.2 and will be used later.

Lemma 1. *Let Λ be a ring and M a left Λ -module. If Λm is Λ -projective and $em=m$ for $m \in M$ and an idempotent e in Λ , then there exists an idempotent f in Λ such that $ef=fe=f$, $\Lambda f \approx \Lambda m$ and $fm=m$. Especially, $e\Lambda em$ is $e\Lambda e$ -projective.*

Proof. Since $\Lambda e \rightarrow \Lambda m \rightarrow (0)$ splits, we obtain $\Lambda e = \Lambda f \oplus \Lambda f'$ and $\Lambda f \approx \Lambda m$, $fm=m$. Hence, $e\Lambda em = e\Lambda m \approx e\Lambda f = e\Lambda efe$ is a direct summand of $e\Lambda e$.

Lemma 2. 1) *Every semi-primary left PP-ring is a g.t.a.matrix ring.*

2) *Let $\Lambda = \begin{pmatrix} R & 0 \\ M & S \end{pmatrix}$ be a g.t.a.matrix ring, where R is semi-simple, S is a semi-primary left PP-ring and M is a S, R -module. If every principal left S -module in M is S -projective, then Λ is a left PP-ring.*

Proof. 1) Let $N=N(\Lambda)$ be the radical of Λ . We assume $N^s \neq (0)$, $N^{s+1}=(0)$. Then N^s is completely reducible and hence, N^s is Λ -projective by the assumption; $N^s \approx \sum \oplus \Lambda e_i$, where e_i is a primitive idempotent. Then $(0) = \sum \oplus Ne_i$. Let $\{e_i\}$ be a complete set of mutually orthogonal primitive idempotents such that $1 = \sum_{i=1}^n e_i$ and $Ne_t = (0)$ for $i \leq t \leq n$ and $Ne_i \neq (0)$ for $j < i$. Let $E = e_1 + \dots + e_{i-1}$. Since e_j, e_t for $j < i \leq t$, $E\Lambda(1-E) = EN(1-E) = (0)$. It is clear that $\Lambda = T_2(E\Lambda E, (1-E)\Lambda(1-E); (1-E)\Lambda E)$ and that $(1-E)\Lambda(1-E)$ is semi-simple and $E\Lambda E$ is a left PP-ring by Lemma 1. Hence, we can prove 1) by induction on number of idempotents n .

2) Let $\Lambda = T_2(R, S; M)$ and $m \in M$, $r \in R$. We put $Rr=Re$, $e^2=e$. Then $Mr + Sm = Me \oplus Sm(1-e)$. Let $x = T_2(r, s; m)$. Then $\Lambda x = T_2(Rr, Rs; Mr + Sm) = \Lambda T_2(e, 0; 0) \oplus T_2((0), (0); Sm(1-e)) \oplus T_2((0), (0); Ss)$. Since $Sm(1-e)$, Ss are S -projective, the last two modules are Λ -projective by [2] Lemma 4. Hence Λx is Λ -projective.

Proposition 1. *Λ is a semi-primary left PP-ring if and only if Λ*

$$\Gamma \otimes \begin{pmatrix} 0 \\ 0 \\ \vdots \\ C(x_{i,1}) \\ \vdots \\ 0 \end{pmatrix} \rightarrow \Gamma$$

is monomorphic. Which is equivalent to 2) and 1') $\varphi_{i,1} M_{i,j} \otimes C(x_{j,1}) \rightarrow M_{i,1}$ is monomorphic. However if we replace $\{x_{2,1}, \dots, x_{n,1}\}$ by $\{0, 0, \dots, x_{i,1}, \dots, x_{n,1}\}$, the $C(x_{i,1}) = R_i x_{i,1}$. Hence, we have 1).

REMARK 1. Let e be a sum of the set of non-isomorphic primitive idempotents in Λ . From [3], Corollary 1 we know that Λ is hereditary if and only if so is $e\Lambda e$. However, it is not true for a left PP-ring as we see in the following example. (Only if part is true by Lemma 1).

EXAMPLE. Let K be the field of real numbers. M, N and L be K -vector spaces with basis (u, v) , (a, b) and (t, s) , respectively. We define a bi-linear mapping $\varphi: M \otimes N \rightarrow L$. $M \otimes N = u \otimes (Ka + Kb) \oplus v \otimes (Ka + Kb)$. $\varphi(u(ax + by) + v(ax' + by')) = t(x + y') + s(y - x')$. Then we can easily check that φ is monomorphic on $M \otimes Kn$ for any $n \neq 0$ in N . However, $\varphi(u(a+b) + v(a-b)) = 0$ and $u(a+b) + v(a-b) \neq 0$.

$$\text{Let } \Lambda = \begin{pmatrix} K & 0 & 0 \\ \binom{N}{N} & K_2 & 0 \\ N & L & (M, M) \end{pmatrix} \text{ and } e = \begin{pmatrix} 1 & 0 \\ e_{1,1} & 1 \end{pmatrix}. \text{ Then } e\Lambda e = \begin{pmatrix} K & 0 & 0 \\ N & K & 0 \\ L & M & K \end{pmatrix}.$$

From Proposition 1 and the above observation we know that $e\Lambda e$ is a left PP-ring. Let

$$x = \begin{pmatrix} 0 & 0 & 0 \\ \binom{a}{b} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

in Λ . $(M, M) \otimes K_2 \binom{a}{b} = (M, M) \otimes \binom{N}{N}$. Since φ is not monomorphic on $M \otimes N$, $\tilde{\varphi}: (M, M) \otimes K_2 \binom{a}{b} \rightarrow L$ is not monomorphic, and hence, Λ is not a left PP-ring.

REMARK 2. The above example shows that the endomorphism ring of finitely generated projective module over a PP-ring is not, in general, a PP-ring, (cf. [2], Theorem 7). Because $\Lambda = \text{Hom}_{e\Lambda e}^r(\Lambda e, \Lambda e)$ and Λe is a finitely generated $e\Lambda e$ -projective module.

Lemma 2. *Let Λ be a g.t.a.matrix ring with property 1) and $M_{i,j} \ni y$. We assume $R_i y \approx R_i e$ by a correspondence $y \leftrightarrow e$ and $e^2 = e$. If $xy = 0$ for $x \in M_{k,i}$, then $xe = 0$.*

Proof. $M_{k,i} \otimes_{R_i} R_i y \approx M_{k,i} \otimes_{R_i} R_i e$ is a direct summand of $M_{k,i} \approx M_{k,i} \otimes_{R_i} R_i$. Hence, $x \otimes y \approx x \otimes e = xe \otimes 1 \approx xe$. Since $M_{k,i} \otimes_{R_i} R_i y \rightarrow M_{k,i}$ is monomorphic, $xe = 0$.

From the example given in [1] we know that a left PP-ring is not necessarily to be a right PP-ring. However, we have

Theorem 1. *Let Λ be semi-primary. If Λ is a left PP-ring, then Λ is a right PP-ring.*

Proof. We shall show that Λ satisfies the following conditions 1') and 2') which are replaced left by right in Proposition 1.

1') $\varphi_{i,k} : x_{i,j} R_j \otimes_{R_j} M_{j,k} \rightarrow M_{i,k}$ is monomorphic.
2') For any system $(x_{j,i}, x_{j,i+1}, \dots, x_{j,j-1})$ $D(x_{j,j-1})M_{j-1,i} + D(x_{j,j-2})M_{j-2,i} + \dots + D(x_{j,i+1})M_{i+1,i}$ is a direct sum in $M_{j,i}$, where $x_{j,k} R_k = D(x_{j,k}) \oplus (\sum_{t=k+1}^{j-1} x_{j,t} M_{t,k}) \cap x_{j,k} R_k$ as a right R_k -module.
1'): We assume $\varphi_{j,s} : x_{j,k} R_k \otimes M_{k,s} \rightarrow x_{j,k} M_{k,s}$ is not monomorphic. Then there were elements $x = x_{j,k}$ and $m \in M_{k,s}$ such that $x \otimes m \neq 0$ in $x_{j,k} R_k \otimes M_{k,s}$ and $xm = 0$. $M_{k,s} = Rm \oplus N$ and $M_{j,k} = xR_k \oplus N'$ as left and right R_k -module, respectively. Then $M_{j,k} \otimes M_{k,s} = xR_k \otimes R_k m \oplus N' \otimes R_k m \oplus xR_k \otimes N \oplus N' \otimes N$. Hence $x \otimes m \neq 0$ in $M_{j,k} \otimes R_k m$, which contradicts 1) of Proposition 1. Next, we shall show that Λ satisfies 2'). Let $\Lambda = T_n(R_i; M_{i,j})$; R_i simple ring. We prove 2') by induction on degree n . If $n=1$, then Λ is simple, and hence, it is clear. From Lemma 1 and the induction hypothesis $\Gamma_i = T_{n-1}(R_1, \dots, R_{n-1}; M_{k,j}, k \neq i, j \neq i)$ satisfies 2'). Hence it is sufficient to consider a system

$$\{x_{n,2}, x_{n,3}, \dots, x_{n,n-1}; x_{n,j} \in M_{n,j}\}.$$

We shall show a sum $x_{n,n-1} M_{n-1,1} + D(x_{n,n-2})M_{n-2,1} + \dots + D(x_{n,2})M_{2,1}$ is a direct sum. If $D(x_{n,i}) = 0$ for some i , then for $\{x_{n,2}, \dots, x_{n,n-1}\}$ in Γ_i $x_{n,n-1} M_{n-1,1} \oplus D'(x_{n,n-2})M_{n-2,1} \oplus \dots \oplus D'(x_{n,2})M_{2,1}$, where $D'(x_{n,j})$ is a direct summand in $M_{n,j}$ as in 2'). Since $D'(x_{n,j}) \supseteq D(x_{n,j})$, we obtain 2'). Hence, we assume $D(x_{n,i}) \neq 0$ for all i . If the above sum were not a direct sum then there were an element $0 = x'_{n,n-1} m_{n-1,1} + \dots + x'_{n,2} m_{2,1}$ such that some $x'_{n,j} m_{j,1} \neq 0$, where $x'_{n,j} \in D(x_{n,j})$. By the same reason as above, we may assume $x'_{n,j} m_{j,1} \neq 0$ for all j .

Let $x'_{n,i} R_i \approx e_i R_i$ by a correspondence $x'_{n,i} \leftrightarrow e_i$. Then $x'_{n,i} e_i = x'_{n,i}$. Hence, we may assume $0 \neq m_{i,1} = e_i m_{i,1}$. We have, from Lemma 1, an idempotent f_i such that $R_i m_{i,1} \approx R_i f_i$ and $f_i e_i f_i = f_i e_i$, $f_i m_{i,1} = m_{i,1}$. Since $x'_{n,i} R_i \approx e_i R_i$, $x'_{n,1} f_i R_i \approx f_i R_i$. Thus, we may assume that $0 \neq x'_{n,i} f_i = x'_{n,i}$, $f_i m_{i,1} = m_{i,1}$ and $x'_{n,i} R_i \approx f_i R_i$, $R_i m_{i,1} \approx R_i f_i$. Hence, the right annihilator

$r(x'_{n,i})$ of $x'_{n,i}$ in R_i is equal to $(1-f_i)R_i$. We consider a system $\{m_{2,1}, m_{3,1}, \dots, m_{n-1,1}\}$ as in 2). If $C(m_{i,1})=(0)$, then there exist elements $m_{i,j} \in M_{i,j}$ such that $m_{i,1}=m_{i,2}m_{2,1}+\dots+m_{i,i-1}m_{i-1,1}$ ($m_{i,j}=m_{i,j}f_j$). Hence,

$$(*) \quad 0 = x'_{n,n-1}m_{n-1,1} + \dots + x'_{n,i+1}m_{i+1,1} + (x'_{n,i}m_{i,i-1} + x'_{n,i-1})m_{i-1,1} + (x'_{n,i}m_{i,2} + x'_{n,2})m_{2,1}.$$

Again we consider a system $\{x'_{n,n-1}, \dots, x'_{n,i-1}, (x'_{n,i-1} + x'_{n,i}m_{i,i-1}), \dots, (x'_{n,2} + x'_{n,i}m_{i,2})\}$ in Γ_i . Since $x'_{n,t}R_t \cap (\sum_{k=t+1}^{n-1} x'_{n,k}M_{k,t}) \subseteq x'_{n,t}R_t \cap (\sum_{k=t+1}^{n-1} x_{n,k}M_{k,t}) = (0)$ for $t > i$, $D'(x'_{n,t}) = x'_{n,t}R_t$ for $t > i$. For $(x'_{n,t} + x'_{n,i}m_{i,t})r \in (x'_{n,t} + x'_{n,i}m_{i,t})R_t \cap ((x'_{n,t+1} + x'_{n,i}m_{i,t+1})M_{t+1,t} + \dots + (x'_{n,i-1} + x'_{n,i}m_{i,i-1})M_{i-1,t} + x'_{n,i+1}M_{i+1,t} + \dots + x'_{n,n-1}M_{n-1,t})$ ($t < i$), we have $x'_{n,t}r \in D(x_{n,t}) \cap (\sum_{k=t+1}^{n-1} x_{n,k}M_{k,t}) = (0)$. Hence, $r \in D(x'_{n,t}) = (1-f_t)R_t$. Therefore, $x'_{n,i}m_{i,t}r = 0$, which means $D'(x'_{n,t} + x'_{n,i}m_{i,t}) = (x'_{n,t} + x'_{n,i}m_{i,t})R_t$. From the induction hypothesis we know that $(*)$ is a direct sum. Hence, $x'_{n,n-1}m_{n-1,1} = 0$ or $(x'_{n,i}m_{i,2} + x'_{n,2})m_{2,1} = 0$. From the latter and Lemma 3 we obtain $0 = x'_{n,i}m_{i,2}f_2 + x'_{n,2}f_2 = x'_{n,i}m_{i,2} + x'_{n,2}$, which contradicts $D(x'_{n,2}) \neq (0)$. In either case we have a contradiction and hence, $C(m_{i,1}) \neq (0)$ for all i . Therefore, we have from 2)

$$M_{n,2}m_{2,1} + M_{n,3}C(m_{3,1}) + \dots + M_{n,n-1}C(m_{n-1,1})$$

is a direct sum. Hence,

$$\begin{aligned} 0 &= x'_{n,2}m_{2,1} + \dots + x'_{n,n-1}m_{n-1,1} \\ &= (x'_{n,2} + x'_{n,n-1}t_{n-1,2} + \dots + x'_{n,3}t_{3,2})m_{2,1} \\ &\quad + (x'_{n,3} + \dots)m'_{3,1} \\ &\quad \dots\dots\dots \\ &\quad \dots\dots\dots \\ &\quad \dots\dots\dots \\ &\quad + x'_{n,n-1}m'_{n-1,1}, \end{aligned}$$

where $m_{i,1} = m'_{i,1} + t_{i,2}m_{2,1} + \dots + t_{i,i-1}m_{i-1,1}$ and $t_{i,j}e_j = t_{i,j}$, $m'_{i,1} \in C(m_{i,1})$. Hence, $x'_{n,2} = -(x'_{n,n-1}t_{n-1,2} + \dots + x'_{n,3}t_{3,2})$, which contradicts the fact $D(x'_{n,2}) \neq (0)$. We have proved the theorem.

2. Partially PP-rings

We found a criterion of semi-primary PP-rings in Proposition 1. However, we need only the condition 1) in this section.

Let Λ be a semi-primary ring such that $\Lambda/N = \sum \bigoplus S_i$; S_i is a simple ring. Let $1 = \sum_i E_i$, $E_i^2 = E_i$ and E_i is the identity in S_i modulo N . We assume for idempotents E'_i, E'_j that $E_i \approx E'_i, E_j \approx E'_j$. Let x be in $E_i \Lambda E_j$.

Since $\Lambda E_j \approx \Lambda E'_j$, there exists y' in $E_i \Lambda E'_j$ such that $\Lambda x \approx \Lambda y'$. Furthermore, since $E_i \Lambda \approx E'_i \Lambda$, we have $t \in E'_i \Lambda E_i$, $u \in E_i \Lambda E'_j$ such that $ut = E_i$. If we put $y = ty' \in E'_i \Lambda E'_j$, then $\Lambda y = \Lambda ty' = \Lambda E_i y' = \Lambda y' \approx \Lambda x$, since $\Lambda t \supseteq \Lambda E_i \supseteq \Lambda t$. Hence, if Λx is Λ -projective for every x in $E_i \Lambda E_j$, then Λy is Λ -projective for every y in $E'_i \Lambda E'_j$.

Thus, we can define a partially PP-ring as follows:

Let Λ and E_i be as above. If Λx is Λ -projective for all $x \in E_i \Lambda E_j$ ($i, j = 1, \dots, n$), then we call Λ a *partially PP-ring*.

From Lemma 1, we obtain

Lemma 4. *Let Λ be a partially PP-ring and e an idempotent. Then $e\Lambda e$ is a partially PP-ring.*

Proposition 2. *Λ is a partially PP-ring if and only if Λ is a g.t.a. matrix ring $T_n(S_i; M_{i,j})$ over simple rings S_i with property 1) in Proposition 1).*

Proof. First we shall show that a partially PP-ring is a g.t.a. matrix ring. Let $1 = \sum_{i,j=1}^{m,p} e_{i,j}$, where $\{e_{i,j}\}$ is a complete set of primitive idempotents. Let $N^n = (0)$, $N^{n-1} \neq (0)$. Then there exist primitive idempotents e, f such that $(0) \neq eN^{n-1}f \subset E_i \Lambda E_j$, where $e \leq E_i$, $f \leq E_j$. Hence, Λx is Λ -projective for $0 \neq x \in eN^{n-1}f$. Since $\Lambda x \approx \sum \oplus \Lambda e_{k,1}$ and $Nx = (0)$, there exists a primitive idempotent $e_{k,1}$ such that $Ne_{k,1} = (0)$. Then we can prove similarly to the proof of Lemma 2 that $\Lambda \approx T(R_i; M_{i,j})$; R_i semi-simple. Hence, the proposition is an immediate consequence from the next lemma.

Lemma 5. *Let Λ be a g.t.a. matrix ring $T_k(S_i; M_{i,j})$ over simple rings S_i . Λ is a partially PP-ring if and only if $\varphi_{i,j,k} | M_{i,j} \otimes S_j x_{j,k}$ is monomorphic for every i, j, k and $x \in M_{j,k}$.*

Proof. It is clear from the proof of Proposition 1.

REMARK 3. From the first half of the proof of Theorem 1, Λ is a partially PP-ring if $x\Lambda$ is Λ -projective for every $x \in E_i \Lambda E_j$.

REMARK 4. We can show by examples that the set of semi-primary hereditary ring \subset that of PP-rings \subset that of partially PP-rings.

Let Λ be a partially PP-ring and $1 = \sum_{i,j=1}^{n,p} e_{i,j}$ as in the proof of Proposition 2. Since we can find an idempotent $e_{n,1}$ such that $Ne_{n,1} = (0)$, we may assume $Ne_{p,1} = Ne_{p+1,1} = \dots = Ne_{n,1} = (0)$ and $Ne_{i,1} \neq (0)$ for $i < p$. Then Λ is isomorphic to $\begin{pmatrix} S_1 & 0 \\ M_1 & R_1 \end{pmatrix}$ as in the proof of Lemma 2. S_1 is a

partially PP-ring by Lemma 4. After rearraging primitive idempotents $e_{p_{2,1}}, \dots, e_{p_{1-i,1}}$ such that $N(S_i)e_{p_{2,1}} = \dots = N(S_i)e_{p_{1-i,1}} = (0)$ and $N(S_i)e_{i,1} \neq (0)$ for $i < p_2$, we have

$$\Lambda = \begin{pmatrix} S_2 & & 0 \\ M_1 & R_2 & \\ M_2 & M_3 & R_1 \end{pmatrix}; \quad S_2 \text{ is a partially PP-ring and } R_1, R_2 \text{ are semi-simple.}$$

Furthermore, $M_2 f \neq (0)$ for any primitive idempotent f in R_2 . Repeating this argument we know that $\Lambda \approx T_{n'}(R_i; M_{i,j})$ over semi-simple rings R_i and $M_{i+1,i} f_i \neq (0)$ for any primitive idempotent f_i in R_i .

The following theorem and corollary are generalizations of [2], Theorem 4'' and Proposition 5.

Theorem 2. *Let Λ be a semi-primary partially PP-ring and $N^{n-1} \neq (0)$, $N^n = (0)$. Then Λ is isomorphic to a g.t.a.matrix ring $T_n(R_i, M_{i,j})$ over semi-simple rings R_i with degree n . Furthermore, $M_{i,j} \supseteq M_{i,i-1} M_{i-1,i-2} \dots M_{j+1,j} f_j \neq (0)$ for any idempotent f_j in R_j and for all i .*

Proof. From the above argument we have $\Lambda = T_m(R_i; M_{i,j})$ and $M_{i+1,i} f_i \neq (0)$ for all primitive idempotent f_i in R_i . Let $L = M_{i,i-1} \dots M_{j+1,j}$. We assume that $L f_j \neq (0)$ for any primitive idempotents f_j in R_j . There exist $m \in M_{j,j-1}$ and f_j such that $f_j m f_{j-1} \neq 0$ and $R_j f_j \approx R_j f_j m f_{j-1}$. Since $L f_j \neq (0)$, $L M_{j,j-1} \supseteq L f_j m f_{j-1} \neq (0)$ by Lemma 3. Thus, we can prove by induction $M_{i',i'-1} \dots M_{j,j-1} f_{j-1} \neq (0)$ for all i' . Therefore, $(0) \neq M_{m,m-1} \dots M_{2,1} \subseteq N^{m-1}$. Hence, $m-1 < n$. Since $N^n = (0)$, $m \geq n$. Hence, $n = m$.

Corollary. *Let Λ be as above. Then*

$$n = \text{gl.dim } (\Lambda / N^2) = l(\Lambda),$$

where $l(\Lambda)$ is the maximal length of connected sequence of primitive idempotents (see [2]).

Proof. From [2], Proposition 4 we know $n \leq l(\Lambda) = \text{gl.dim } (\Lambda / N^2)$. On the other hand $\Lambda \approx T_n(R_i; M_{i,j})$ by Theorem 2. Hence $n \geq l(\Lambda)$.

REMARK 5. We know from Theorem 2 that $n(f_i) = n - i + 1$, where $n(f)$ is an integer m such that $N^{m-1} f \neq (0)$, $N^m f = (0)$, (see [2]).

In the expression of Λ as a g.t.a.matrix ring in Theorem 2 the set of primitive idempotents in R_j consists of those f_i such that $n(f_i) = n - i + 1$. Hence, R_i , $M_{k,j}$ in $T_n(R_i, M_{k,j})$ are uniquely determined up to isomorphism.

By making use of the same argument as in the proof of [2], Proposition 8 we have

Proposition 3. *Let Λ be an indecomposable semi-primary partially PP-ring. Then the center K of Λ is a field. If $\Lambda \otimes_{\kappa} L$ is a semi-primary partially PP-ring for every extension field L of K , then Λ/N is separable over K .*

REMARK 6. The converse is not true in general. In the example after Proposition 1 we obtain Λ/N is separable over K . However if C is the field of complex numbers, then φ is not monomorphic on $(M \otimes C) \otimes_{\kappa} (a+bi)$.

REMARK 7. Proposition 10 in [2] is valid for a semi-primary PP-ring from Theorem 2. Furthermore, all results in [2], §5 are true for a semi-primary PP-ring by a slight change of proof.

OSAKA CITY UNIVERSITY

References

- [1] S. U. Chase, *A generalization of the ring of triangular matrices*, Nagoya Math. J. **18** (1961), 13–25.
- [2] M. Harada, *Semi-primary hereditary rings and triangular matrix rings*, to appear in Nagoya Math. J.
- [3] A. Hattori, *A foundation of torsion theory for modules over general rings*, Nagoya Math. J. **17** (1960) 147–158.
- [4] T. Nakano, *A nearly semi-simple ring*, Commentarii Mathematici Universitatis Sancti Pauli **7** (1959) 27–33.

