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This paper is a supplement to the author [2]. Let Λ be a ring
with identity. If every principal left ideal in Λ is Λ-projective, then
Hattori and Nakano called Λ a left PP-ring in [3], [4]. Nakano and
Chase ([1], [4]) showed that if Λ is a semi-primary left PP-ring, then
Λ is a generalized triangular matrix ring. The author has defined a
generalized triangular matrix ring over semi-simple rings with bi-linear
mappings φ^ in [2] and found a criterion of semi-primary hereditary
ring.

In § 1 we shall use the same argument and give a similar criterion
of a semi-primary left PP-ring. Using this criterion we shall show that
Λ is a left PP-ring if and only if Λ is a right PP-ring, provided Λ is
semi-primary.

As we see in [2], some results were obtained from monomorphic
mapping <pt

3

tk in a hereditary ring. Thus, in §2, we define a partially
PP-ring, which is a ring with property that φ^k is monomorphic and show
that if Λ is a semi-primary partially PP-ring with nilpotency n, then Λ
is isomorphic to a generalized triangular matrix ring over semi-simple
rings with degree n and each component of it is uniquely determined
up to isomorphism. From this fact we note that some results in [2]
are generalized in a case of partially PP-ring.

In this paper we only consider semi-primary rings and semi-simple
rings with minimum conditions.

1. PP-rings

We recall the definition of a generalized taiangular matrix ring
(briefly g.t. a.matrix ring).

Let {RlfR2j -~>Rn} be a set of semi-simple rings and {M, j for i>j}
a set of Ri, i?,-modules. With a bi-linear mapping φ^k: MitJ®MJyk^Mi}k

we define a g.t.a. matrix ring by the usual way. We denote it by
Tn(Ri Mij) and n is called the degree of it :
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(see [2], §2).
The following lemmas were given in [1] and [4]. We shall give

here simple proofs, one of which is the same as in [1], Theorem 4.2
and will be used later.

Lemma 1. Let A be a ring and M a left A-module. If Am is Λ-
projective and em = m for m^M and an idempotent e in A, then there
exists an idempotent f in A such that ef=fe=f, Af^Am and fm = m.
Especially, eAem is eAe-projective.

Proof. Since Ae-+Am^>(0) splits, we obtain Ae = Af®Af and Λ/«
Am, fm = m. Hence, eAem = eAm^eAf=eAefe is a direct summand of
eAe.

Lemma 2 1) Every semi-primary left PP-ring is a g.t.a.matrix
ring.

2) Let Λ = =(Λ/Γ g) be a g.t.a.matrix ring, where R is semi-simple, S is

a semi-primary left PP-ring and M is a S, R-module. If every principal
left S-module in M is S-projective, then A is a left PP-ring.

Proof. 1) Let N=N(A) be the radical of Λ. We assume iVsφ(0),
Ns+1 = (0). Then Ns is completely reducible and hence, Ns is Λ-projective
by the assumption; i V ^ Σ θ Λ ^ , where e{ is a primitive idempotent.
Then (O) = Σ Θ ^ . Let {#,•} be a complete set of mutually orthogonal

n

primitive idempotents such that 1 = Σ ^ and Net = (0) for i<t<n and
i = l

Λte# Φ(0) for j<i. Let £=β 1 + +β ί_1. Since eά , et for j<i<t, EA(1-E)
= EN(1 -E) = (0). It is clear that Λ - T2(EAE, (1 -E)A(1 -E);(l~E)AE))
and that (l-E)A(l-E) is semi-simple and EAE is a left PP-ring by
Lemma 1. Hence, we can prove 1) by induction on number of idem-
potents n.
2) Let A=T2(R, S M) and wίeM, re/?. We put Rr=Re, e* = e. Then
Mr + Sm = Me®Sm(l-e). Let x = T2(r,s\m). Then Ax = T2(Rr,Rs;
Mr + Sm) = Λ T2 (e, 0 0) 0 T2 ((0), (0) Sm (1 - e)) 0 T2 ((0), (0) Ss). Since
Sm(l — e), Ss are S-projective, the last two modules are Λ-projective by
[2] Lemma 4. Hence Ax is Λ-projective.

Proposition 1. Λ is a semi-primary left PP-ring if and only if A
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is a g.t.a.matrix ring Tn{Ri\ Mitj) over semi-simple rings R{ with the
following conditions

1) ψi5

)k: Mi j0RjXj k-*Mi jXj k is monomorphic for all i>j>k and

2) For any system {xj+lj -, xu; xkJ^MkJf i>j} MU+1C(J+1J) +
+ M ί f , _1C(j»:f _lιy) is a direct sum in M, y , where RkXkj = C(xkj)0

-l

j a s a left Rk-module.
k l

( Σ Mk sxs

Proof. We use the same argument as in the proof of [2], Theorem 1.
By induction argument and Lemma 2 it is sufficient to show that every
principal submodule of

0

is Γ (=
Let

Then

2y - , Rn Mu, ;>l))-projective.

x =

R2x2,i

Vx =

0
0

M3t2x2>1

and

i C(x2Λ)'

ΛrΓ/iV'Λ; = ! M

C(xMwl)\,

where N' = N(T), C(x21) = R2x21. Hence, Γx is Γ-projective if and only if

o' 1

»ό

Θ Γ

fO 1
C(*3,l)

0

ό

- ΘΓ

0 \
0

and
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(0
0

.0

is monomorphic. Which is equivalent to 2) and 10
MiΛ is monomorphic. However if we replace {x21, •••, xnl} by {0, 0, •••,
Xi.if ••*> χn,i}> the C(xil) = Rixil. Hence, we have 1).

REMARK 1. Let e be a sum of the set of non-isomorphic primitive
idempotents in Λ. From [3], Corollary 1 we know that Λ is hereditary
if and only if so is eAe. However, it is not true for a left PP-ring as
we see in the following example. (Only if part is true by Lemma 1).

EXAMPLE. Let K be the field of real numbers. M, TV and L be K-
vector spaces with basis (u, v), (a, b) and (t> s)y respectively. We define
a bi-linear mapping φ:M®N->L. M®N=u®(Ka + Kb)®v®(Ka + Kb).
φ(u(ax + by) + v(ax/jrby')) = t(x-\-y') + s(y—x'). Then we can easily check
that φ is monomorphic on M®Kn for any wφO in N. However,

) = 0 and

/K 0 0

Then eAe= INK 0
\L M Kj

0 0\ ί1 °
K2 0 and e=l e1Λ

L (M, M) Kl \0 1/

From Proposition 1 and the above observation we know that eAe is a
left PP-ring. Let

/ 0 0 0

«- ( )o o
\ 0 0 0,

in Λ. (My M)®K2(
cϊ) = (My M)®( ΛT). Since φ is not monomorphic on

κ* (a\
M®N, φ: (M, M)®K2[j)\-^L is not monomorphic, and hence, Λ is not
a left PP-ring.

REMARK 2. The above example shows that the endomorphism ring
of finitely generated projective module over a PP-ring is not, in general,
a PP-ring, (cf. [2], Theorem 7). Because Λ = Hom£Λe(Λ£, Ae) and Ae is
a finitely generated ^Λ^-projective module.

Lemma 2. Let A be a gJ.a.matrix ring with property 1) and
Mij^y. We assume Riy^Riβ by a correspondence y<^>e and e2 = e. If
xy=0 for x^Mk>i7 then xe=0.
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Proof. Mk i®Riy^Mk i®R{e is a direct summand of Mk i^Mk i®Ri.

Hence, x®y^x®e=xe®l^xe. Since Mki®Riy^Mk j is monomorphic,

xe=0.
From the example given in [1] we know that a left PP-ring is not

necessarily to be a right PP-ring. However, we have

Theorem 1. Let A be semi-primary. If Λ is a left PP-ring, then
Λ is a right PP-ring.

Proof. We shall show that Λ satisfies the following conditions Γ)
and 20 which are replaced left by right in Proposition 1.

10 (PiJ

k: Xi jRj®Mj k->Mi k is monomorphic.

20 For any system (xJJy xJJ+iy —, XJJ^)
D(xjj_1)Mj_1j + D(xjj_2)Mj_2fi + '''+D(xJ>i+1)Mi+1j is a direct sum in MjJy

where Xj kRk=D(xJ k)®( Σ χj Mt *) Π x j Ά as a right i?fe-module.

Γ ) : We assume φ3

k

s: XjtkRk®MhtS-+xJtkMktS is not monomorphic. Then
there were elements x = x5 k and m G MΛ 5 such that # (g) m Φ 0 in
xjykRk®MKs and Jtm = 0. Mk,s = Rm®N and Mj>k=xRk@Nf as left and
right i?£-module, respectively. Then MJik®Mk>s = xRk®Rkm(BN'®RkM@
xRk®N(BN'®N. Hence #<g)mφθ in MJ>k®Rkmy which contradicts 1)
of Proposition 1. Next, we shall show that Λ satisfies 20- Let
Λ= Tn{Ri Λfίfy) i?t simple ring. We prove 20 by induction on degree n.
If Λ = 1, then Λ is simple, and hence, it is clear. From Lemma 1 and
the induction hypothesis Γ£=Tn_1(R1, - iy Rn; Mk jy kφiy j=ti) satisfies
20- Hence it is sufficient to consider a system

χXn2y %n,s> '"> Xn,n-i J %n

We shall show a sum xnyn_lMn_1A

JrD{xn>n_2)Mn_2y +D(xnf2)M2>1 is a direct
sum. If D(xni) = 0 for some iy then for {xn2y '~t-~,Xn,n-i} in Γ, xn,n-iMn-1Λ

ΘD'(xHtM-2)MH-2tl(B-~i—®D'(xMt2)M2tl9 where D\xnJ) is a direct summand
in MnJ as in 2'). Since D\xnJ)^D{xnJ)y we obtain 20- Hence, we
assume D(xni)Φ(0) for all /. If the above sum were not a direct sum
then there were an element 0 = x/

nn_1mn_11-\ Yx?n%<ι!M2Λ such that some
x/

HjtnJtlΦθ, where X'HJ^D(XMJ). By the same reason as above, we may
assume x'njtnj^O for all j.

Let x'niR^eiRi by a correspondence •#'„,*<->£*. Then x'Htiei = x'Hti.
Hence, we may assume 0^mil = eimil. We have, from Lemma 1, an
idempotent /,- such that R{mifl«i?f /ί and fieifi=fiei9 fitniΛ = miΛ. Since
xr

niRi^eRiy x'nJiRi^fiRi. Thus, we may assume that Oφx'Mtifi = x'Mj,
fimix = mix and xf

niRi^fiRiy R?m£ ^Rift. Hence, the right annihilator
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r{xf

ni) of x'ni in i?f is equal to (1—/, )7?, . We consider a system
{wι2iym31,

 t-jinn_11} as in 2). If C(miyl) = (0), then there exist elements
ij such that mix = mi2m2ΛΛ \-miti_1mi_1Λ {tnij = mijfj). Hence,

0 = X\n-i^n-iA+'''+^nJ+i^i+iJ + (^\^iJ

Again we consider a system {xf

MtH.19 ••, #'M-i> ( A ί - i + A * m M - i ) » "•>

(^,2 + ̂ , ^ . 2 ) } in Γ,. Since *'M,i?, n ( Σ ^ « ^ M Λ > , ) c ^ ^ n ( Σ ^ M * , , )

= (0) for t>i, D\x'nJ) = x'nJRt for t>i. For ( ^ ) f + ̂ , ^ > E

l i i + - +^,«-1M«-1 ) i) (/<i), we have ^ / E ΰ ( ^ M ) n ( Σ x»,kMktt)

= (0). Hence, r<=r(x'ntt) = (l—ft)Rt. Therefore, x'nimitr=0, which means
D/(x'nt + x'nimijt) = (x'nt + x/

niτni t)Rt. From the induction hypothesis we
know that (*) is a direct sum. Hence, x/

n>n-1mn_11 = 0 or (x'Htiini%2-\-
x'n,?)τn2λ = 0. From the latter and Lemma 3 we obtain 0 = Jtr/

Λf, wί>2/2 +
#/ιι,2./2=:*/fiiί

w|i\2 + */fi,2> which contradicts D^^^ΦCO). In either case we
have a contradiction and hence, C(m t l)Φ(0) for all 1. Therefore, we
have from 2)

is a direct sum. Hence,

0 = x'Λtjn2tl + M ι n 1 u l t l

1 •* nn-\πι «-ifi >

where w ί f l = m'iΛ-\-ti2m2Λ+ ••• +tij_1rni_hl and /, y ^ = /,- y , m^

Hence, x'n2 = — (x'nn-Jn-i2 + ••• + x'nztz2)y which contradicts the fact
). We have proved the theorem.

2. Partially PP-rings

We found a criterion of semi-primary PP-rings in Proposition 1.
However, we need only the condition 1) in this section.

Let Λ be a semi-primary ring such that Λ/iV=Σ©S, Sf is a simple
ring. Let l = ̂ Ei>E

2

i = Ei and E{ is the identity is S, modulo N. We

assume for idempotents E'iy E] that E^E[y E^E')m Let x be in
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Since AEj^AE'jy there exists / in EiAEj such that Ax^Ay'. Further-
more, since EiAf**E'tA, we have t^EiAEif u^EiAEi such that ut = Ei.
If we put y = t/eE'tAE'j9 then Ay=Aty/ = AEiy

/ = Ay/^AxJ since AtΏ
AEi^At. Hence, if Ax is Λ-projective for every x in EiAEj, then Λjy
is Λ-projective for every y in ElAEj.

Thus, we can define a partially PP-ring as follows:
Let Λ and E{ be as above. If Ax is Λ-projective for all x^E{AEj

(ijj = l, ~,ή)y then we call Λ a partially PP-ring.
From Lemma 1, we obtain

Lemma 4. Let A be a partially PP-ring and e an idernpotent. Then
eAe is a partilaly PP-ring.

Proposition 2. Λ is a partially PP-ring if and only if A is a g.t.a.
matrix ring Tn(Si Mf 3) over simple rings S, with property 1) in Pro-
position 1).

Proof. First we shall show that a partially PP-ring is a g.t.a.

matrix ring. Let 1= Σ^y> where {e{ j} is a complete set of primitive

idempotents. Let Nn = (0), ΛΓ^ΦίO). Then there exist primitive idem-
potents e, f such that (O)φeNn~1fc:EiAEj, where e<Eiy f<Ej. Hence,
Ax is Λ-projective for Oφjt edV""1/. Since ΛΛΓ«ΣθΛeKfl and Nx = (0),
there exists a primitive idempotent ^^ such that Neκl = (O). Then we
can prove similarly to the proof of Lemma 2 that Λ«T(2?, ; M, , ) i?t

semi-simple. Hence, the proposition is an immediate consequence from
the next lemma.

Lemma 5. Let A be a g.t.a.matrix ring. Tk(βi\ M, j) over simple
rings Si. A is a partially PP-ring if and only if φ^k\MitJ®SjXStk is
monomorphic for every i,j, k and

Proof. It is clear from the proof of Proposition 1.

REMARK 3. From the first half of the proof of Theorem 1, Λ is a
partially PP-ring if xA is Λ-projective for every

REMARK 4. We can show by examples that the set of semi-primary
hereditary ring c that of PP-rings c that of partially PP-rings.

n,f>i

Let Λ be a partially PP-ring and 1 = Σ et * as in the proof of

Proposition 2. Since we can find an idempotent enl such that Nenl = (0)y

we may assume NePl/L = Nei,l+11=-"=Nen/L = (0) and Nei/LΦ(0) for i<p.

Then Λ is isomorphic to ί A p ) as in the proof of Lemma 2. Sα is a
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partially PP-ring by Lemma 4. After rearraging primitive idempotents
^ 2 , 1 > - > ^ 1 - M such that N(S1)ep2tl= ..=N(S1)et.1_ltl = (0) and JV(S>ΰΦ(0)
for i<p2, we have

fS2 0\
Λ = \M1 R2 S2 is a partially PP-ring and Rλ,

\M2 M3 RJ R2 are semi-simple.

Furthermore, M?/Φ(0) for any primitive idempotent / in R2. Repeating
this argument we know that A ̂  7V (!?,-; Mi j) over semi-simple rings i?,
and Mi+lιifiΦ(0) for any primitive idempotent /,- in Rim

The following theorem and corollary are generalizations of [2],
Theorem 4'" and Proposition 5.

Theorem 2. Let A be a semi-primary partially PP-ring and N"'1

Φ(0), Nn = (0). Then A is isomorphic to a g.t.a.matrix ring Tn(RifMi j)
over semi-simple rings i?f with degree n. Furthermore, M, jΏ.Mii_1Mi_1j^2

" Mj+1 y/yΦ(0) for any idempotent f5 in R5 and for all i.

Proof. From the above argument we have Λ=Tw(i? ί ; M{j) and
Mi+1jfi^(0) for all primitive idempotent f{ in i?, . Let L=M ί f ί_1

 :

MJ+1 j . We assume that L/}Φ(0) for any primitive idempotents f5 in RJm

There exist m<=M, J_1 and /y such that /yW/^ΦO and Rjfj^Rjfjmfj_1.
Since L/yφ(0), LMJjJ_1^Lfjmfj_1Φ(0) by Lemma 3. Thus, we can
prove by induction Mf /ϊf /_1 Myty_1/y_1Φ(0) for all zv. Therefore, (0)Φ
M ^ ^ j M^cJV""1. Hence, m — l<n. Since Nn = (0)y m>n. Hence, n = m.

Corollary. Let A be as above. Then

n = gl.dim(A/N2) = /(A),

where /(A) is the maximal length of connected sequence of primitive
idempotents {see [2]).

Proof. From [2], Proposition 4 we know n<l(A) = gl.dim(A/N2).
On the other hand A**TH(Rg; Mu) by Theorem 2. Hence «>/(Λ).

REMARK 5. We know from Theorem 2 that n{f{) = n — i + 1, where
«(/) is an integer m such that A^ w "^(0), Nmf=(0), (see [2]).

In the expression of A as a g.t. a. matrix ring in Theorem 2 the
set of primitive idempotents in R3 consists of those /,- such than n(fι)
= n — i-{-l. Hence, Riy Mk j in Tn(Ri9 Mk /) are uniquely determined up
to isomorphism.

By making use of the same argument as in the proof of [2],
Proposition 8 we haye
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Proposition 3. Let A be an indecomposable semi-primary partially
PP-ring. Then the center K of A is a field. If Λ(g)L is a semi-primary

K

partially PP-ring for every extension field L of K, then A/N is separable
over K.

REMARK 6. The converse is not true in general. In the example
after Proposition 1 we obtain A/N is separable over K. However if
C is the field of complex numbers, then φ is not monomorphic on

REMARK 7. Proposition 10 in [2] is valid for a semi-primary PP-
ring from Theorem 2. Furthermore, all results in [2], § 5 are true for
a semi-primary PP-ring by a slight change of proof.
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