

Title	On semi-primary PP-rings
Author(s)	Harada, Manabu
Citation	Osaka Journal of Mathematics. 1965, 2(1), p. 153-161
Version Type	VoR
URL	https://doi.org/10.18910/3566
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

ON SEMI-PRIMARY PP-RINGS

MANABU HARADA

(Received March 20, 1965)

This paper is a supplement to the author [2]. Let Λ be a ring with identity. If every principal left ideal in Λ is Λ -projective, then Hattori and Nakano called Λ a left PP-ring in [3], [4]. Nakano and Chase ([1], [4]) showed that if Λ is a semi-primary left PP-ring, then Λ is a generalized triangular matrix ring. The author has defined a generalized triangular matrix ring over semi-simple rings with bi-linear mappings $\varphi_{i,k}$ in [2] and found a criterion of semi-primary hereditary ring.

In §1 we shall use the same argument and give a similar criterion of a semi-primary left PP-ring. Using this criterion we shall show that Λ is a left PP-ring if and only if Λ is a right PP-ring, provided Λ is semi-primary.

As we see in [2], some results were obtained from monomorphic mapping $\varphi_{i,k}$ in a hereditary ring. Thus, in §2, we define a partially PP-ring, which is a ring with property that $\varphi_{i,k}$ is monomorphic and show that if Λ is a semi-primary partially PP-ring with nilpotency n, then Λ is isomorphic to a generalized triangular matrix ring over semi-simple rings with degree n and each component of it is uniquely determined up to isomorphism. From this fact we note that some results in [2] are generalized in a case of partially PP-ring.

In this paper we only consider semi-primary rings and semi-simple rings with minimum conditions.

1. PP-rings

We recall the definition of a generalized taiangular matrix ring (briefly g.t.a.matrix ring).

Let $\{R_1, R_2, \dots, R_n\}$ be a set of semi-simple rings and $\{M_{i,j} \text{ for } i > j\}$ a set of R_i, R_j -modules. With a bi-linear mapping $\varphi_{i,k}^{\ j} \colon M_{i,j} \underset{R_j}{\otimes} M_{j,k} \to M_{i,k}$ we define a g.t.a. matrix ring by the usual way. We denote it by $T_n(R_i; M_{i,j})$ and n is called the degree of it:

$$\Lambda = \begin{pmatrix} R_1 & 0 & \cdots & \\ M_{2,1} & R_2 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ M_{n,n-1} & M_{n,n-2} & \cdots & R_n \end{pmatrix} = T_n(R_i; M_{i,j}),$$

(see [2], §2).

The following lemmas were given in [1] and [4]. We shall give here simple proofs, one of which is the same as in [1], Theorem 4.2 and will be used later.

Lemma 1. Let Λ be a ring and M a left Λ -module. If Λm is Λ -projective and em=m for $m\in M$ and an idempotent e in Λ , then there exists an idempotent f in Λ such that ef=fe=f, $\Lambda f\approx \Lambda m$ and fm=m. Especially, $e\Lambda em$ is $e\Lambda e$ -projective.

Proof. Since $\Lambda e \rightarrow \Lambda m \rightarrow (0)$ splits, we obtain $\Lambda e = \Lambda f \oplus \Lambda f'$ and $\Lambda f \approx \Lambda m$, fm = m. Hence, $e\Lambda em = e\Lambda m \approx e\Lambda f = e\Lambda efe$ is a direct summand of $e\Lambda e$.

Lemma 2. 1) Every semi-primary left PP-ring is a g.t.a.matrix ring.

2) Let $\Lambda = \begin{pmatrix} R & 0 \\ M & S \end{pmatrix}$ be a g.t.a.matrix ring, where R is semi-simple, S is a semi-primary left PP-ring and M is a S, R-module. If every principal left S-module in M is S-projective, then Λ is a left PP-ring.

Proof. 1) Let $N=N(\Lambda)$ be the radical of Λ . We assume $N^s \neq (0)$, $N^{s+1} = (0)$. Then N^s is completely reducible and hence, N^s is Λ -projective by the assumption; $N^s \approx \sum \oplus \Lambda e_i$, where e_i is a primitive idempotent. Then $(0) = \sum \oplus Ne_i$. Let $\{e_i\}$ be a complete set of mutually orthogonal primitive idempotents such that $1 = \sum_{i=1}^n e_i$ and $Ne_i = (0)$ for $i \leq t \leq n$ and $Ne_i = (0)$ for j < i. Let $E = e_1 + \dots + e_{i-1}$. Since $e_j = e_i$ for $j < i \leq t$, $E\Lambda(1-E) = EN(1-E) = (0)$. It is clear that $\Lambda = T_2(E\Lambda E, (1-E)\Lambda(1-E); (1-E)\Lambda E)$) and that $(1-E)\Lambda(1-E)$ is semi-simple and $E\Lambda E$ is a left PP-ring by Lemma 1. Hence, we can prove 1) by induction on number of idempotents n.

2) Let $\Lambda = T_2(R, S; M)$ and $m \in M$, $r \in R$. We put Rr = Re, $e^2 = e$. Then $Mr + Sm = Me \oplus Sm(1-e)$. Let $x = T_2(r, s; m)$. Then $\Lambda x = T_2(Rr, Rs; Mr + Sm) = \Lambda T_2(e, 0; 0) \oplus T_2((0), (0); Sm(1-e)) \oplus T_2((0), (0); Ss)$. Since Sm(1-e), Ss are S-projective, the last two modules are Λ -projective by [2] Lemma 4. Hence Λx is Λ -projective.

Proposition 1. Λ is a semi-primary left PP-ring if and only if Λ

is a g.t.a.matrix ring $T_n(R_i; M_{i,j})$ over semi-simple rings R_i with the following conditions;

- 1) $\varphi_{i,k}^{j}: M_{i,j} \underset{R_{j}}{\otimes} R_{j} x_{j,k} \rightarrow M_{i,j} x_{j,k}$ is monomorphic for all i>j>k and $x_{j,k} \in M_{j,k}$.
- 2) For any system $\{x_{j+1,j}\cdots, x_{i,j}; x_{k,j}\in M_{k,j}, i>j\}$ $M_{i,j+1}C(_{j+1,j})+\cdots+M_{i,i-1}C(x_{i-1,j})$ is a direct sum in $M_{i,j}$, where $R_kx_{k,j}=C(x_{k,j})\oplus (\sum_{s=j+1}^{k-1}M_{k,s}x_{s,j})\cap R_kx_{k,j}$ as a left R_k -module.

Proof. We use the same argument as in the proof of [2], Theorem 1. By induction argument and Lemma 2 it is sufficient to show that every principal submodule of

$$\begin{pmatrix} 0 \\ M_{2,1} \\ \vdots \\ M_{n,1} \end{pmatrix}$$

is $\Gamma (=T_{n-1}(R_2, \dots, R_n; M_{i,j}, j \pm 1))$ -projective. Let

$$x = \begin{pmatrix} x_{2,1} \\ \vdots \\ x_{n,1} \end{pmatrix}.$$

Then

$$\Gamma x = \begin{pmatrix} R_2 x_{2,1} \\ M_{3,2} x_{2,1} + R_3 x_{3,1} \\ \cdots \\ M_{n,2} x_{2,1} + \cdots + R_n x_{n,1} \end{pmatrix} \supset N' x = \begin{pmatrix} 0 \\ 0 \\ M_{3,2} x_{2,1} \\ \cdots \\ M_{n,2} x_{2,1} + \cdots + M_{n,n-1} x_{n-1,1} \end{pmatrix}$$

and

$$x\Gamma/N'x = egin{pmatrix} C(x_{2,1}) \ C(x_{3,1}) \ dots \ C(x_{n,1}) \end{pmatrix},$$

where $N' = N(\Gamma)$, $C(x_{2,1}) = R_2 x_{2,1}$. Hence, Γx is Γ -projective if and only if

$$\Gamma x \approx \Gamma \begin{pmatrix} x_{2,1} \\ 0 \\ \vdots \\ 0 \end{pmatrix} \oplus \Gamma \begin{pmatrix} 0 \\ C(x_{3,1}) \\ 0 \\ \vdots \\ 0 \end{pmatrix} \cdots \oplus \Gamma \begin{pmatrix} 0 \\ 0 \\ \vdots \\ C(x_{n,1}) \end{pmatrix}$$

and

$$\Gamma \otimes \begin{pmatrix} 0 \\ 0 \\ \vdots \\ C(x_{i,1}) \\ \vdots \\ 0 \end{pmatrix} \to \Gamma$$

is monomorphic. Which is equivalent to 2) and 1') $\varphi_{i,1}^{j}M_{i,j}\otimes C(x_{j,1})\rightarrow M_{i,1}$ is monomorphic. However if we replace $\{x_{2,1},\dots,x_{n,1}\}$ by $\{0,0,\dots,x_{i,1},\dots,x_{n,1}\}$, the $C(x_{i,1})=R_{i}x_{i,1}$. Hence, we have 1).

REMARK 1. Let e be a sum of the set of non-isomorphic primitive idempotents in Λ . From [3], Corollary 1 we know that Λ is hereditary if and only if so is $e\Lambda e$. However, it is not true for a left PP-ring as we see in the following example. (Only if part is true by Lemma 1).

EXAMPLE. Let K be the field of real numbers. M, N and L be K-vector spaces with basis (u,v), (a,b) and (t,s), respectively. We define a bi-linear mapping $\varphi: M \otimes N \to L$. $M \otimes N = u \otimes (Ka + Kb) \oplus v \otimes (Ka + Kb)$. $\varphi(u(ax+by)+v(ax'+by'))=t(x+y')+s(y-x')$. Then we can easily check that φ is monomorphic on $M \otimes Kn$ for any $n \neq 0$ in N. However, $\varphi(u(a+b)+v(a-b))=0$ and $u(a+b)+v(a-b) \neq 0$.

Let
$$\Lambda = \begin{pmatrix} K & 0 & 0 \\ \binom{N}{N} & K_2 & 0 \\ L & (M, M) & K \end{pmatrix}$$
 and $e = \begin{pmatrix} 1 & 0 \\ e_{1,1} \\ 0 & 1 \end{pmatrix}$. Then $e\Lambda e = \begin{pmatrix} K & 0 & 0 \\ N & K & 0 \\ L & M & K \end{pmatrix}$.

From Proposition 1 and the above observation we know that $e\Lambda e$ is a left PP-ring. Let

$$x = \begin{pmatrix} 0 & 0 & 0 \\ \begin{pmatrix} a \\ b \end{pmatrix} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

in Λ . $(M,M) \underset{\kappa_2}{\otimes} K_2 \binom{a}{b} = (M,M) \otimes \binom{N}{N}$. Since φ is not monomorphic on $M \otimes N$, $\tilde{\varphi}: (M,M) \underset{\kappa_2}{\otimes} K_2 \binom{a}{b} \rightarrow L$ is not monomorphic, and hence, Λ is not a left PP-ring.

REMARK 2. The above example shows that the endomorphism ring of finitely generated projective module over a PP-ring is not, in general, a PP-ring, (cf. [2], Theorem 7). Because $\Lambda = \operatorname{Hom}_{e\Lambda e}^r(\Lambda e, \Lambda e)$ and Λe is a finitely generated $e\Lambda e$ -projective module.

Lemma 2. Let Λ be a g.t.a.matrix ring with property 1) and $M_{i,j} \ni y$. We assume $R_i y \approx R_i e$ by a correspondence $y \leftrightarrow e$ and $e^2 = e$. If xy = 0 for $x \in M_{k,i}$, then xe = 0.

Proof. $M_{k,i} \underset{R_i}{\otimes} R_i y \approx M_{k,i} \underset{R_i}{\otimes} R_i e$ is a direct summand of $M_{k,i} \approx M_{k,i} \underset{R_i}{\otimes} R_i$. Hence, $x \otimes y \approx x \otimes e = xe \otimes 1 \approx xe$. Since $M_{k,i} \underset{R_i}{\otimes} R_i y \rightarrow M_{k,j}$ is monomorphic, xe = 0.

From the example given in [1] we know that a left PP-ring is not necessarily to be a right PP-ring. However, we have

Theorem 1. Let Λ be semi-primary. If Λ is a left PP-ring, then Λ is a right PP-ring.

Proof. We shall show that Λ satisfies the following conditions 1') and 2') which are replaced left by right in Proposition 1.

- 1') $\varphi_{i,k}^{j}$: $x_{i,j}R_{j}\underset{R_{i}}{\otimes}M_{j,k} \rightarrow M_{i,k}$ is monomorphic.
- 2') For any system $(x_{j,i}, x_{j,i+1}, \cdots, x_{j,j-1})$ $D(x_{j,j-1})M_{j-1,i} + D(x_{j,j-2})M_{j-2,i} + \cdots + D(x_{j,i+1})M_{i+1,i}$ is a direct sum in $M_{j,i}$, where $x_{j,k}R_k = D(x_{j,k}) \oplus (\sum_{i=k+1}^{j-1} x_{j,i}M_{i,k}) \cap x_{j,k}R_k$ as a right R_k -module.
- 1'): We assume $\varphi_{j,s}: x_{j,k}R_k\otimes M_{k,s}\to x_{j,k}M_{k,s}$ is not monomorphic. Then there were elements $x=x_{j,k}$ and $m\in M_{k,s}$ such that $x\otimes m \neq 0$ in $x_{j,k}R_k\otimes M_{k,s}$ and xm=0. $M_{k,s}=Rm\oplus N$ and $M_{j,k}=xR_k\oplus N'$ as left and right R_k -module, respectively. Then $M_{j,k}\otimes M_{k,s}=xR_k\otimes R_km\oplus N'\otimes R_km\oplus xR_k\otimes N\oplus N'\otimes N$. Hence $x\otimes m\neq 0$ in $M_{j,k}\otimes R_km$, which contradicts 1) of Proposition 1. Next, we shall show that Λ satisfies 2'). Let $\Lambda=T_n(R_i;M_{i,j})$; R_i simple ring. We prove 2') by induction on degree n. If n=1, then Λ is simple, and hence, it is clear. From Lemma 1 and the induction hypothesis $\Gamma_i=T_{n-1}(R_1,\cdots,R_n;M_{k,j},k\neq i,j\neq i)$ satisfies 2'). Hence it is sufficient to consider a system

$$\{x_{n,2}, x_{n,3}, \dots, x_{n,n-1}; x_{n,j} \in M_{n,j}\}$$
.

We shall show a sum $x_{n,n-1}M_{n-1,1}+D(x_{n,n-2})M_{n-2,1}\cdots+D(x_{n,2})M_{2,1}$ is a direct sum. If $D(x_{n,i})=0$ for some i, then for $\{x_{n,2},\cdots,\cdots,x_{n,n-1}\}$ in Γ_i $x_{n,n-1}M_{n-1,1}\oplus D'(x_{n,n-2})M_{n-2,1}\oplus \cdots \oplus D'(x_{n,2})M_{2,1}$, where $D'(x_{n,j})$ is a direct summand in $M_{n,j}$ as in 2'). Since $D'(x_{n,j})\supseteq D(x_{n,j})$, we obtain 2'). Hence, we assume $D(x_{n,i}) \neq (0)$ for all i. If the above sum were not a direct sum then there were an element $0=x'_{n,n-1}m_{n-1,1}+\cdots+x'_{n,2}m_{2,1}$ such that some $x'_{n,j}m_{j,1} \neq 0$, where $x'_{n,j} \in D(x_{n,j})$. By the same reason as above, we may assume $x'_{n,j}m_{j,1} \neq 0$ for all j.

Let $x'_{n,i}R_i \approx e_iR_i$ by a correspondence $x'_{n,i} \leftrightarrow e_i$. Then $x'_{n,i}e_i = x'_{n,i}$. Hence, we may assume $0 + m_{i,1} = e_im_{i,1}$. We have, from Lemma 1, an idempotent f_i such that $R_im_{i,1} \approx R_if_i$ and $f_ie_if_i = f_ie_i$, $f_im_{i,1} = m_{i,1}$. Since $x'_{n,i}R_i \approx e_iR_i$, $x'_{n,1}f_iR_i \approx f_iR_i$. Thus, we may assume that $0 + x'_{n,i}f_i = x'_{n,i}$, $f_im_{i,1} = m_{i,1}$ and $x'_{n,i}R_i \approx f_iR_i$, $R_im_{i,1} \approx R_if_i$. Hence, the right annihilator

158 M. HARADA

 $r(x'_{n,i})$ of $x'_{n,i}$ in R_i is equal to $(1-f_i)R_i$. We consider a system $\{m_{2,1}, m_{3,1}, \dots, m_{n-1,1}\}$ as in 2). If $C(m_{i,1}) = (0)$, then there exist elements $m_{i,j} \in M_{i,j}$ such that $m_{i,1} = m_{i,2}m_{2,1} + \dots + m_{i,i-1}m_{i-1,1}$ $(m_{i,j} = m_{i,j}f_j)$. Hence,

$$(*) 0 = x'_{n,n-1}m_{n-1,1} + \dots + x'_{n,i+1}m_{i+1,1} + (x'_{n,i}m_{i,i-1} + x'_{n,i-1})m_{i-1,1} + (x'_{n,i}m_{i,2} + x'_{n,2})m_{2,1}.$$

Again we consider a system $\{x'_{n,n-1},\cdots,x'_{n,i-1},(x'_{n,i-1}+x'_{n,i}m_{i,i-1}),\cdots,(x'_{n,2}+x'_{n,i}m_{i,2})\}$ in Γ_i . Since $x'_{n,i}R_t\cap(\sum\limits_{k=t+1}^{n-1}x'_{n,k}M_{k,t})\subseteq x'_{n,t}R_t\cap(\sum\limits_{k=t+1}^{n-1}x_{n,k}M_{k,t})$ =(0) for t>i, $D'(x'_{n,t})=x'_{n,t}R_t$ for t>i. For $(x'_{n,t}+x'_{n,i}m_{i,t})r\in(x'_{n,t}+x'_{n,i}m_{i,t})R_t\cap((x'_{n,t+1}+x'_{n,i}m_{i,t+1})M_{t+1,t}+\cdots+(x'_{n,i-1}+x'_{n,i}m_{i,i-1})M_{i-1,t}+x'_{n,i}m_{i,t+1}M_{i+1,t}+\cdots+x'_{n,n-1}M_{n-1,t})$ (t<i), we have $x'_{n,i}r\in D(x_{n,t})\cap(\sum\limits_{k=t+1}^{n-1}x_{n,k}M_{k,t})$ =(0). Hence, $x\in r(x'_{n,t})=(1-f_t)R_t$. Therefore, $x'_{n,i}m_{i,t}r=0$, which means $D'(x'_{n,t}+x'_{n,i}m_{i,t})=(x'_{n,t}+x'_{n,i}m_{i,t})R_t$. From the induction hypothesis we know that (*) is a direct sum. Hence, $x'_{n,n-1}m_{n-1,1}=0$ or $(x'_{n,i}m_{i,2}+x'_{n,2})m_{2,1}=0$. From the latter and Lemma 3 we obtain $0=x'_{n,i}m_{i,2}f_2+x'_{n,2}f_2=x'_{n,i}m_{i,2}+x'_{n,2}$, which contradicts $D(x'_{n,2})=(0)$. In either case we have a contradiction and hence, $C(m_{i,1})=(0)$ for all i. Therefore, we have from 2)

$$M_{n_2}m_{2_1}+M_{n_3}C(m_{3_1})+\cdots+M_{n_{n-1}}C(m_{n-1_1})$$

is a direct sum. Hence,

$$0 = x'_{n,2}m_{2,1} + \dots + x'_{n,n-1}m_{n-1,1}$$

$$= (x'_{n,2} + x'_{n,n-1}t_{n-1,2} + \dots + x'_{n,3}t_{3,2})m_{2,1}$$

$$+ (x'_{n,3} + \dots)m'_{3,1}$$

$$\dots$$

$$+ x'_{n,n-1}m'_{n-1,1}$$

where $m_{i,1} = m'_{i,1} + t_{i,2} m_{2,1} + \cdots + t_{i,i-1} m_{i-1,1}$ and $t_{i,j} e_j = t_{i,j}, m'_{i,1} \in C(m_{i,1})$. Hence, $x'_{n,2} = -(x'_{n,n-1} t_{n-1,2} + \cdots + x'_{n,3} t_{3,2})$, which contradicts the fact $D(x'_{n,2}) \neq (0)$. We have proved the theorem.

2. Partially PP-rings

We found a criterion of semi-primary PP-rings in Proposition 1. However, we need only the condition 1) in this section.

Let Λ be a semi-primary ring such that $\Lambda/N = \sum \bigoplus S_i$; S_i is a simple ring. Let $1 = \sum_i E_i$, $E_i^2 = E_i$ and E_i is the identity is S_i modulo N. We assume for idempotents E_i' , E_j' that $E_i \approx E_i'$, $E_j \approx E_j'$. Let x be in $E_i \Lambda E_j$.

Since $\Lambda E_j \approx \Lambda E_j'$, there exists y' in $E_i \Lambda E_j'$ such that $\Lambda x \approx \Lambda y'$. Furthermore, since $E_i \Lambda \approx E_i' \Lambda$, we have $t \in E_i' \Lambda E_i$, $u \in E_i \Lambda E_i'$ such that $ut = E_i$. If we put $y = ty' \in E_i' \Lambda E_j'$, then $\Lambda y = \Lambda ty' = \Lambda E_i y' = \Lambda y' \approx \Lambda x$, since $\Lambda t \supseteq \Lambda E_i \supseteq \Lambda t$. Hence, if Λx is Λ -projective for every x in $E_i \Lambda E_j$, then Λy is Λ -projective for every y in $E_i' \Lambda E_j'$.

Thus, we can define a partially PP-ring as follows:

Let Λ and E_i be as above. If Λx is Λ -projective for all $x \in E_i \Lambda E_j$ $(i, j = 1, \dots, n)$, then we call Λ a partially PP-ring.

From Lemma 1, we obtain

Lemma 4. Let Λ be a partially PP-ring and e an idempotent. Then $e\Lambda e$ is a partially PP-ring.

Proposition 2. Λ is a partially PP-ring if and only if Λ is a g.t.a. matrix ring $T_n(S_i; M_{i,j})$ over simple rings S_i with property 1) in Proposition 1).

Proof. First we shall show that a partially PP-ring is a g.t.a. matrix ring. Let $1=\sum\limits_{i,j=1}^{m,\rho_i}e_{i,j}$, where $\{e_{i,j}\}$ is a complete set of primitive idempotents. Let $N^n=(0)$, $N^{n-1}\pm(0)$. Then there exist primitive idempotents e, f such that $(0)\pm eN^{n-1}f\subset E_i\Lambda E_j$, where $e\leqslant E_i$, $f\leqslant E_j$. Hence, Λx is Λ -projective for $0\pm x\in eN^{n-1}f$. Since $\Lambda x\approx \sum\oplus\Lambda e_{\kappa,1}$ and Nx=(0), there exists a primitive idempotent $e_{\kappa,1}$ such that $Ne_{\kappa,1}=(0)$. Then we can prove similarly to the proof of Lemma 2 that $\Lambda\approx T(R_i;M_{i,j})$; R_i semi-simple. Hence, the proposition is an immediate consequence from the next lemma.

Lemma 5. Let Λ be a g.t.a.matrix ring. $T_k(S_i; M_{i,j})$ over simple rings S_i . Λ is a partially PP-ring if and only if $\varphi_{i,k}^{j}|M_{i,j}\otimes S_{j}x_{j,k}$ is monomorphic for every i, j, k and $x \in M_{j,k}$.

Proof. It is clear from the proof of Proposition 1.

REMARK 3. From the first half of the proof of Theorem 1, Λ is a partially PP-ring if $x\Lambda$ is Λ -projective for every $x \in E_i \Lambda E_j$.

Remark 4. We can show by examples that the set of semi-primary hereditary ring \subset that of PP-rings \subset that of partially PP-rings.

Let Λ be a partially PP-ring and $1 = \sum_{i,j=1}^{n,\rho_i} e_{i,j}$ as in the proof of Proposition 2. Since we can find an idempotent $e_{n,1}$ such that $Ne_{n,1} = (0)$, we may assume $Ne_{\rho_{1,1}} = Ne_{\rho_{1}+1,1} = \cdots = Ne_{n,1} = (0)$ and $Ne_{i,1} \neq (0)$ for i < p. Then Λ is isomorphic to $\begin{pmatrix} S_1 & 0 \\ M_1 & R_1 \end{pmatrix}$ as in the proof of Lemma 2. S_1 is a

160 M. HARADA

partially PP-ring by Lemma 4. After rearraging primitive idempotents $e_{p_2,1}, \dots, e_{p_1-1,1}$ such that $N(S_1)e_{r_2,1} = \dots = N(S_1)e_{r_1-1,1} = (0)$ and $N(S_1)e_{i,1} \neq (0)$ for $i < p_2$, we have

$$\Lambda = \begin{pmatrix} S_2 & 0 \\ M_1 & R_2 \\ M_2 & M_3 & R_1 \end{pmatrix}$$
; S_2 is a partially PP-ring and R_1 ,

Furthermore, $M_{i}f_{\pm}(0)$ for any primitive idempotent f in R_{i} . Repeating this argument we know that $\Lambda \approx T_{n'}(R_{i}; M_{i,j})$ over semi-simple rings R_{i} and M_{i+1} , $f_{i} = 0$ for any primitive idempotent f_{i} in R_{i} .

The following theorem and corollary are generalizations of [2], Theorem 4''' and Proposition 5.

Theorem 2. Let Λ be a semi-primary partially PP-ring and $N^{n-1} \neq (0)$, $N^n = (0)$. Then Λ is isomorphic to a g.t.a.matrix ring $T_n(R_i, M_{i,j})$ over semi-simple rings R_i with degree n. Furthermore, $M_{i,j} \supseteq M_{i,i-1} M_{i-1,i-2} \cdots M_{j+1,j} f_j \neq (0)$ for any idempotent f_j in R_j and for all i.

Proof. From the above argument we have $\Lambda = T_m(R_i; M_{i,j})$ and $M_{i+1,i}f_i \neq (0)$ for all primitive idempotent f_i in R_i . Let $L = M_{i,i-1} \cdots M_{j+1,j}$. We assume that $Lf_j \neq (0)$ for any primitive idempotents f_j in R_j . There exist $m \in M_{i,j-1}$ and f_j such that $f_j m f_{j-1} \neq 0$ and $R_j f_j \approx R_j f_j m f_{j-1}$. Since $Lf_j \neq (0)$, $LM_{j,j-1} \supseteq Lf_j m f_{j-1} \neq (0)$ by Lemma 3. Thus, we can prove by induction $M_{i',i'-1} \cdots M_{j,j-1} f_{j-1} \neq (0)$ for all i'. Therefore, $(0) \neq M_{m,m-1} \cdots M_{2,1} \subseteq N^{m-1}$. Hence, m-1 < n. Since $N^n = (0)$, $m \ge n$. Hence, n = m.

Corollary. Let Λ be as above. Then

$$n = \text{gl.dim} (\Lambda/N^2) = l(\Lambda)$$

where $l(\Lambda)$ is the maximal length of connected sequence of primitive idempotents (see [2]).

Proof. From [2], Proposition 4 we know $n \le l(\Lambda) = \text{gl.dim}(\Lambda/N^2)$. On the other hand $\Lambda \approx T_n(R_i; M_{i,j})$ by Theorem 2. Hence $n \ge l(\Lambda)$.

REMARK 5. We know from Theorem 2 that $n(f_i) = n - i + 1$, where n(f) is an integer m such that $N^{m-1}f = (0)$, $N^m f = (0)$, (see [2]).

In the expression of Λ as a g.t.a.matrix ring in Theorem 2 the set of primitive idempotents in R_j consists of those f_i such than $n(f_i) = n - i + 1$. Hence, R_i , $M_{k,j}$ in $T_n(R_i, M_{k,j})$ are uniquely determined up to isomorphism.

By making use of the same argument as in the proof of [2], Proposition 8 we have

Proposition 3. Let Λ be an indecomposable semi-primary partially PP-ring. Then the center K of Λ is a field. If $\Lambda \underset{\kappa}{\otimes} L$ is a semi-primary partially PP-ring for every extension field L of K, then Λ/N is separable over K.

REMARK 6. The converse is not true in general. In the example after Proposition 1 we obtain Λ/N is separable over K. However if C is the field of complex numbers, then φ is not monomorphic on $(M \otimes C) \otimes (a+bi)$.

REMARK 7. Proposition 10 in [2] is valid for a semi-primary PP-ring from Theorem 2. Furthermore, all results in [2], §5 are true for a semi-primary PP-ring by a slight change of proof.

OSAKA CITY UNIVERSITY

References

- [1] S. U. Chase, A generalization of the ring of triangular matrices, Nagoya Math. J. 18 (1961), 13-25.
- [2] M. Harada, Semi-primary hereditary rings and triangular matrix rings, to appear in Nagoya Math. J.
- [3] A. Hattori, A foundation of torsion theory for modules over general rings, Nagoya Math. J. 17 (1960) 147-158.
- [4] T. Nakano, A nearly semi-simple ring, Commentarii Mathematici Universitatis Sancti Pauli 7 (1959) 27-33.