ORDINARY INDUCTION FROM A SUBGROUP
AND FINITE GROUP BLOCK THEORY

MORTON E. HARRIS

(Received January 16, 2006, revised April 21, 2006)

Abstract

The first step in the fundamental Clifford Theoretic Approach to General Block Theory of Finite Groups reduces to: H is a subgroup of the finite group G and b is a block of H such that $b^{(g)b} = 0$ for all $g \in G - H$. We extend basic results of several authors in this situation and place these results into current categorical and character theoretic equivalences frameworks.

1. Introduction and statements of results

Let G be a finite group, let p be a prime integer and let (O, K, k) be a p-modular system for G that is “large enough” for all subgroups of G (i.e., O is a complete discrete valuation ring, $k = O/J(O)$ is an algebraically closed field of characteristic p and the field of fractions K of O is of characteristic zero and is a splitting field for all subgroups of G).

Let N be a normal subgroup of G and let γ be a block (a primitive) idempotent of $Z(O N)$. Set $H = \text{Stab}_G(\gamma)$ so that $N \leq H \leq G$. Also let $\text{Bl}(OH|\gamma)$ and $\text{Bl}(OG|\gamma)$ denote the set of blocks of OH and OG that cover γ, resp. Then it is well-known that if $b \in \text{Bl}(OH|\gamma)$, then $b^{(g)b} = 0$ for all $g \in G - H$ and the trace map from H to G, Tr_H^G, induces a bijection $\text{Tr}_H^G : \text{Bl}(OH|\gamma) \to \text{Bl}(OG|\gamma)$ such that corresponding blocks are “equivalent.” This basic analysis pioneered by P. Fong and W. Reynolds (cf. [5, V, Theorem 2.5]) is the first step in the fundamental Clifford theoretic approach to general block theory: the reduction to the case of a stable block of a normal subgroup.

Consider the more general situation: (P) H is a subgroup of G and e is an idempotent of $Z(OH)$ such that $e^{(g)e} = 0$ for all $g \in G - H$.

Note that if β is an idempotent of $Z(OH)$ such that $e\beta = \beta$, then $\beta^{(g)\beta} = 0$ for all $g \in G - H$.

Fundamental contributions to this context appear in [9, Theorem 1] and in [11, Theorem 1].

The purpose of this paper is to put the significant results of [9, Theorem 1] and [11, Theorem 1] into current categorical and character theoretic equivalences context and to extend these basic results in this context.

2000 Mathematics Subject Classification. 20C20.
It is also well-known that if H is a subgroup of G and if $\chi \in \text{Irr}_K(H)$ is such that $\text{Ind}_H^K(\chi) \in \text{Irr}_K(G)$ and if $e_\chi = (\chi(1)/|H|)(\sum_{h \in H} \chi(h^{-1})h)$ denotes the primitive idempotent of $Z(KH)$ associated to χ, then $e_\chi^2 = e_\chi$ and $\text{Tr}_H^G(e_\chi)$ is the primitive idempotent of $Z(KG)$ associated to $\text{Ind}_H^K(\chi)$ (cf. Corollary 1.5).

In this article, we shall generally follow the (standard) notation and terminology of [5] and [10].

All rings have identities and are Noetherian and all modules over a ring are unitary and finitely generated left modules. If R is a ring, then $R\text{-mod}$ will denote the category of left R-modules and R^0 denotes the ring opposite to R.

The required proofs of the following main results will be presented in Section 3. Section 2 contains basic results that are needed in our proofs. We shall assume that H is a subgroup of the finite group G in the remainder of this section and we shall let T be a left transversal of H in G with $1 \in T$. Thus $G = \bigcup_{t \in T} tH$ is disjoint.

For our first three results, \mathcal{O} will denote a commutative Noetherian ring.

Our first two results are well-known and easy to prove (cf. [10, Sections 9 and 16]).

Lemma 1.1. Let B be a unitary \mathcal{O}-algebra that is an interior H-algebra (as in [10, Section 16]). Then:

(a) $$\text{Ind}_H^K(B) = \mathcal{O}G \otimes_{\mathcal{O}H} B \otimes_{\mathcal{O}H} \mathcal{O}G = \bigoplus_{s,t \in T}(s(\mathcal{O}H) \otimes_{\mathcal{O}H} B \otimes_{\mathcal{O}H} (\mathcal{O}H)t^{-1})$$

\[\cong \bigoplus_{s,t \in T}(s \otimes_{\mathcal{O}} B \otimes_{\mathcal{O}} t^{-1}) \]

is a unitary interior G-algebra with $1_{\text{Ind}_H^K(B)} = \sum_{t \in T}(t \otimes_{\mathcal{O}} 1_B \otimes_{\mathcal{O}} t^{-1})$ and with $\phi: G \rightarrow \text{Ind}_H^K(B)^\times$ such that $g \mapsto \sum_{t \in T}(gt \otimes_{\mathcal{O}} 1_B \otimes_{\mathcal{O}} t^{-1})$ for all $g \in G$. Moreover $\{t \otimes_{\mathcal{O}} 1_B \otimes_{\mathcal{O}} t^{-1} \mid t \in T\}$ is a set of orthogonal idempotents of $\text{Ind}_H^K(B)$; and

(b) The map $\alpha: Z(B) \rightarrow Z(\text{Ind}_H^K(B))$ such that $z \mapsto \sum_{t \in T}(t \otimes_{\mathcal{O}} z \otimes_{\mathcal{O}} t^{-1})$ for all $z \in Z(B)$ is an \mathcal{O}-algebra isomorphism.

Proposition 1.2. Let e be an idempotent of $Z(\mathcal{O}H)$ such that $e(e^*e) = 0$ for all $g \in G - H$ and set $E = \text{Tr}_H^G(e) = \sum_{t \in T}(t^*e)$, so that E is an idempotent of $Z(\mathcal{O}G)$. Then:

(a) $$\mathcal{O}GE = (\mathcal{O}G)e(\mathcal{O}G), \quad e(\mathcal{O}G)e = e(\mathcal{O}G)Ee = (\mathcal{O}H)e$$

and the \mathcal{O}-linear map

$$f: \text{Ind}_H^K((\mathcal{O}H)e) \rightarrow (\mathcal{O}G)E$$
such that $x \otimes_{OH} b \otimes_{OH} y \mapsto xby$ for all $x, y \in G$ and all $b \in (OH)e$ is an interior G-algebra isomorphism. Also the O-linear map

$$\phi: Z((OH)e) \to Z(\text{Ind}^G_H((OH)e))$$

such that $z \mapsto \sum_{t \in T} (t \otimes_O z \otimes_O t^{-1})$ for all $z \in Z((OH)e)$ is an O-algebra isomorphism;

(b) The inclusion map $i: (OH)e \to (OG)E$ is an embedding of interior H-algebras;

(c) The functors

$$\text{Ind}^G_H(\ast) = (OG)e \otimes_{(OH)e} \ast: (OH)e\text{-mod} \to (OG)E\text{-mod}$$

and

$$e \cdot \text{Res}^{OG}_{OH}(\ast) = e(OG) \otimes_{(OG)E} \ast: (OG)E\text{-mod} \to (OH)e\text{-mod}$$

exhibit a Morita equivalence between the Abelian categories $(OH)e\text{-mod}$ and $(OG)E\text{-mod}$ with associated $((OH)e, (OG)E)$-bimodule $e(OG)$; and

(d) Let M be an $(OH)e$-module. Then

$$\text{Ind}^G_H(M) = (OG)e \otimes_{(OH)e} M = \bigoplus_{t \in T}(t \otimes_O M)$$

and

$$\alpha(g \otimes_{(OH)e} m) = \begin{cases} 0 & \text{if } g \notin H \\ 1 \otimes_O (\alpha g)m & \text{if } g \in H, \text{ for all } \alpha \in (OH)e, \text{ all } m \in M \text{ and all } g \in G. \end{cases}$$

Let e be an idempotent of $Z(OH)$.

Remark 1.3. Let $g \in G$. The following three conditions are equivalent:

(i) $e(O(HgH))e = (0)$;

(ii) $e(\mathcal{E}) = 0$; and

(iii) $e(O(HgH) \otimes_{OH} V) = (0)$ for any module V in $(OH)e$-mod.

Indeed, it is clear that (i) implies (ii) and (iii). Let $h_1, h_2 \in H$. Then $e(h_1gh_2)e = h_1e(\mathcal{E})gh_2$, so that (ii) implies (i). Also if $V = (OH)e$ in (iii), then

$$e(O(HgH) \otimes_{OH} (OH)e) \cong e(O(HgH)e)$$

in $(OH)e$-mod and so (iii) implies (i).
Lemma 1.4 (E.C. Dade [4]). Let \(K \) be a field and let \(e \) be an idempotent in \(Z(KH) \). Suppose that

\[
\dim(\text{Hom}_K(\text{Ind}_H^G(X), \text{Ind}_H^G(Y))/K) = \dim(\text{Hom}_{KH}(X, Y)/K)
\]

for any irreducible modules \(X, Y \) in \((KH)e\mod\). Then \(e(\ {}^g e) = 0 \) for all \(g \in G - H \).

An immediate implication of Lemma 1.4 is:

Corollary 1.5. Assume that \(K \) is a splitting field for \(G \) and \(H \) and that \(e \) is an idempotent of \(Z(KH) \) such that \(\text{Ind}_H^G \) defines an injective map \(\text{Ind}_H^G : \text{Irr}_K(e) \rightarrow \text{Irr}_K(G) \). Then \(e(\ {}^g e) = 0 \) for all \(g \in G - H \).

For the remainder of this section, we assume that \((O, \mathcal{K}, k)\) is a \(p \)-modular system that is “large enough” for all subgroups of \(G \). As is standard, the natural ring epimorphism \(- : O \rightarrow k = O/J(O)\) induces an epimorphism on all \(O\)-algebras that is also denoted by \(- \). Similarly for \(O\)-modules.

Theorem 1.6 (cf. [5, V, Theorem 2.5], [9, Proposition 1] and [11, Theorem 1]). Assume that \(b \in \text{Bl}(OH) \) is such that \(b(\ {}^g b) = 0 \) for all \(g \in G - H \) (as in Proposition 1.2) and let \(D \) be a defect group of \(b \) in \(H \). Then:

(a) Proposition 1.2 applies (with \(R = O \), \(B = \text{Tr}_H^G(b) \in \text{Bl}(OG) \) and \(D \) is a defect group of \(B \) in \(G \);

(b) The functors \(\text{Ind}_H^G(\ {}^* b) = (OG) \otimes_O H(\ {}^* b) = (OG) b \otimes (O_H b) (\ {}^* b) : (OG)b\mod \rightarrow (OG)B\mod \) and \(b \cdot \text{Res}_H^G(\ {}^* b) : (OG)B\mod \rightarrow (OG)b\mod \)

exhibit a Morita equivalence between the Abelian categories \((OG)b\mod\) and \((OG)B\mod\). On the character level, this Morita equivalence induces the bijections:

\[
\text{Ind}_H^G : \text{Irr}_K(b) \rightarrow \text{Irr}_K(B), \quad \text{Ind}_H^G : \text{Irr}_k(b) \rightarrow \text{Irr}_k(B)
\]

and

\[
\text{Ind}_H^G : \text{Irr}_K(b) \rightarrow \text{Irr}_K(B), \quad \text{Ind}_H^G : \text{Irr}_k(b) \rightarrow \text{Irr}_k(B).
\]

Moreover, this Morita equivalence has associated bimodules:

\[
(OG)b \text{ in } (OG)B\mod-(OH)b \text{ and } b(OG) \text{ in } (OH)b\mod-(OG)B.
\]

Here \((OG)b\) when viewed as an \(O(G \times H)\)-module is indecomposable with \(\Delta D = \{ (d, d) \mid d \in D \} \) and trivial \(\Delta D\)-source and a similar fact holds for \(b(OG) \);
Let M be an indecomposable $(\mathcal{O}H)b$-module with vertex Q and Q-source V. Then $\text{Ind}^G_H(M) = \mathcal{O}G \otimes_{\mathcal{O}H} M = (\mathcal{O}G)b \otimes_{\mathcal{O}H} M$ in $(\mathcal{O}G)B$-mod is an indecomposable $(\mathcal{O}G)$-module with vertex Q and Q-source V.

(d) The above conditions hold over k for $B \in \text{Bl}(kH)$ and $\overline{B} = \text{Tr}^G_H(\overline{b}) \in \text{Bl}(kG)$, etc.

(e) The inclusion map $i : (\mathcal{O}H)b \rightarrow (\mathcal{O}G)B$ is an embedding of interior H-algebras so that i induces injective maps ([10, Proposition 15.1])

$$i_* : \mathcal{P}\mathcal{G}((\mathcal{O}H)b) \rightarrow \mathcal{P}\mathcal{G}((\mathcal{O}G)B) \quad \text{and} \quad i_* : \mathcal{L}\mathcal{P}\mathcal{G}((\mathcal{O}H)b) \rightarrow \mathcal{L}\mathcal{P}\mathcal{G}((\mathcal{O}G)B).$$

Let D_γ be a defect pointed group of $(\mathcal{O}H)b$ as an H-algebra. Thus $i_*(D_\gamma) = D_{i(\gamma)}$, where $i(\gamma) = \{\gamma(\mathcal{O}G)^{\gamma}\}$, is a defect pointed group of $(\mathcal{O}G)B$ as a G-algebra. Thus if $j \in \gamma$, then $j \in i(\gamma)$ and $j(\mathcal{O}G)B_j = jb(\mathcal{O}G)bj = j(\mathcal{O}H)bj$, so that these source algebras of b and B are equal as interior D-algebras; and

(f) The Puig category of local pointed groups of b in $\mathcal{O}H$ and of B in $\mathcal{O}G$ are equivalent.

The next result illuminates the hypothesis of [11, Theorem 1].

Proposition 1.7. Let b be a block idempotent of $Z(\mathcal{O}H)$. The following four conditions are equivalent:

(a) Ind^G_H induces an injective map of $\text{Irr}_K(\overline{b}) \rightarrow \text{Irr}_K(G)$;

(b) Ind^G_H induces an injective map of $\text{Irr}_K(b) \rightarrow \text{Irr}_K(G)$; and

(c) Ind^G_H induces an injective map of $\text{Irr} \text{Br}_K(b) \rightarrow \text{Irr} \text{Br}_K(G)$; and

(d) $b(xb) = 0$ for all $g \in G - H$.

In which case, Theorem 1.6 applies so that $B = \text{Tr}^G_H(b) \in \text{Bl}(\mathcal{O}G)$, the functor

$$\text{Ind}^G_H = (\mathcal{O}G)b \otimes_{(\mathcal{O}H)b} (\mathcal{O}H)b \rightarrow (\mathcal{O}G)B$$

induces a (Morita) categorical equivalence, the maps of (a), (b) and (c) are bijections, etc.

In our final result, (a), (b), (c) and (d) are presented in [9, Theorem 1] without proof. For the convenience of the reader, we shall include a proof of these items.

Theorem 1.8 (cf. [9, Theorem 1]). Assume that $b \in \text{Bl}(\mathcal{O}H)$ is such that $b(xb) = 0$ for all $g \in G - H$ (as in Theorem 1.6). Set $\Omega = \{xb \mid g \in G\}$ so that $B = (\sum_{o \in \Omega} o) \in \text{Bl}(\mathcal{O}G)$, etc.

(a) Let (P, \overline{b}) be a b-subpair of H. Then $\overline{b}P(\overline{b}) = 0$ for all $x \in C_G(P) - C_H(P)$. Theorem 1.6 (d) applies $s(\overline{b}) = \text{Tr}_{C_H(P)}^G(\overline{b}) \in \text{Bl}(kC_G(P))$, $(P, s(\overline{b}))$ is a B-subpair of G and the k-linear map

$$\mu : \text{Ind}_{C_H(P)}^G(\overline{b})_{C_H(P)} = kC_G(P) \otimes_{kC_H(P)} kC_H(P) \overline{b} \otimes_{kC_H(P)} kC_G(P) \rightarrow kC_G(P)s(\overline{b})$$
such that \(x \otimes_{kC_H(P)} \alpha \otimes_{kC_H(P)} y \to x\alpha y \) for all \(x, y \in C_G(P) \) and all \(\alpha \in kC_H(P)\bar{b}_P \) is an interior \(C_G(P) \)-algebra isomorphism. Also \(\text{Ind}^G_H \colon \text{Irr}_k(\bar{b}_P) \to \text{Irr}_k(s(\bar{b}_P)) \) is a bijection;
(b) The map \((P, \bar{b}_P) \mapsto (P, s(\bar{b}_P))\) from the set of \(b \)-subpairs of \(H \) into the set of \(\text{B-subpairs of } G \) is injective;
(c) Let \((Q, \bar{b}_Q)\) and \((P, \bar{b}_P)\) be \(b \)-subpairs of \(H \). Then:
(i) \(\{ g \in G \mid s(Q, s(\bar{b}_Q)) = (P, s(\bar{b}_P)) \} = C_G(P)\{ h \in H \mid h(Q, \bar{b}_Q) = (P, \bar{b}_P) \} \) so that \((Q, \bar{b}_Q)\) and \((P, \bar{b}_P)\) are conjugate in \(H \) if and only if \((Q, s(\bar{b}_Q))\) and \((P, s(\bar{b}_P))\) are conjugate in \(G \), and
(ii) \((Q, \bar{b}_Q) \leq (P, \bar{b}_P)\) in \(H \) if and only if \((Q, s(\bar{b}_Q)) \leq (P, s(\bar{b}_P))\) in \(G \);
(d) For any \(B \)-subpair \((P', \bar{b}'_P)\) of \(G \) there is an \(x \in G \) and a \(b \)-subpair \((P, \bar{b}_P)\) of \(H \) such that \(s(P', \bar{b}'_P) = (P, \bar{b}_P) \); consequently the Brauer category of \(b \) in \(H \) is equivalent to the Brauer category of \(B \) in \(G \);
(e) Let \((Q, \bar{b}_Q)\) be a \(b \)-subpair of \(H \). The injective map \(i_s \colon \mathcal{LPG}(\langle \mathcal{O}H \rangle b) \to \mathcal{LPG}(\langle \mathcal{O}G \rangle B) \) of Theorem 1.6 induces a bijection

\[
i_s(Q, \bar{b}_Q) : \{ Q_\gamma \in \mathcal{LPG}(\langle \mathcal{O}H \rangle b) \mid Q_\gamma \text{ is associated with } (Q, \bar{b}_Q) \} \]

\[\to \{ Q_\delta \in \mathcal{LPG}(\langle \mathcal{O}G \rangle B) \mid Q_\delta \text{ is associated with } (Q, s(\bar{b}_Q)) \} \]

in which \(Q_\gamma \mapsto Q_{i_s(\gamma)} \) for all \(Q_\gamma \in \mathcal{LPG}(\langle \mathcal{O}H \rangle b) \) such that \(Q_\gamma \) is associated with \((Q, \bar{b}_Q)\);
(f) Let \((P, \bar{b}_P)\) be a \(b \)-subpair of \(H \) and let \((P, s(\bar{b}_P))\) be the corresponding \(\text{B-subpair of } G \). Let \(b_P \) be the unique block idempotent of \(Z(\text{OC}_H(P)) \) that “lifts” \(\bar{b}_P \). Then \(b_P (s b_P) = 0 \) for all \(x \in C_G(P) - C_H(P), s(b_P) = \text{Tr}^{\text{C}_G(P)}_{\text{C}_H(P)}(b_P) \) is a block idempotent of \(C_G(P) \) that “lifts” \(s(\bar{b}_P) \) and Theorem 1.6 applies to \(b_P \in \text{Bl}(OC_H(P)) \) where \(C_H(P) \leq C_G(P) \), and
(g) Let \((D, b_D)\) be a maximal \(b \)-subpair of \(H \). Let \(P \leq D \) and let \((P, \bar{b}_P)\) be the unique \(b \)-subpair of \(H \) such that \((P, \bar{b}_P) \leq (D, \bar{b}_D)\). Then

\[
\text{Ind}^{\text{C}_G(P)}_{\text{C}_H(P)}(\ast) : R_K(C_H(P), b_P) \to R_K(C_G(P), s(b_P))
\]

is a perfect isometry and consequently induces the linear map

\[
\text{Ind}^{\text{C}_G(P)}_{\text{C}_H(P)}(\ast)_{\mathfrak{p}'} : \mathcal{C}_{\mathfrak{p}'}(C_H(P), b_P, K) \to \mathcal{C}_{\mathfrak{p}'}(C_G(P), s(b_P), K).
\]

Let \(u \in D \) and set \(P = \langle \mu \rangle \). Then

\[
\Phi_G^{(\mu, s(b_P))} \circ \text{Ind}_H^G(\ast) = \text{Ind}^{\text{C}_G(P)}_{\text{C}_H(P)}(\ast)_{\mathfrak{p}'} \circ \Phi_H^{(\mu, b_P)} : \mathcal{C}(H, b, K) \to \mathcal{C}_{\mathfrak{p}'}(C_G(P), s(b_P), K).
\]

Consequently the perfect isometry \(\text{Ind}^G_H(\ast) : R_K(H, b) \to R_K(G, B) \) is part of an isotopy between \(b \) and \(B \) with local system the family \(\{ \text{Ind}^{\text{C}_G(P)}_{\text{C}_H(P)}(\ast) \mid P \leq D, P \text{ cyclic} \} \).
Remark 1.9. In the situation of Theorem 1.8 and after Theorem 1.6 (a) has been established, the more general investigations of [6] apply (cf. [6, Remark 1.3 (a)]).

2. Preliminary results

Let G be a finite group and let $(\mathcal{O}, K, k = \mathcal{O}/J(\mathcal{O}))$ be a p-modular system that is "large enough" for all subgroups of G. We shall, as in [3], set $CF_p(G, K) = \{ f \in CF(G, K) \mid f(G - G_p') = (0) \}$.

Let u be a p-element of G and set $P = \langle u \rangle$. Let $\chi \in \text{Irr}_K(G)$ and let $\phi \in \text{Irr} Br_K(C_G(P)) \subseteq CF_{p'}(C_G(P), K)$. We shall let $d_u(\chi, \phi)$ denote the generalized decomposition number associated to $u \in G_p$, $\chi \in \text{Irr}_K(G)$ and $\phi \in \text{Irr} Br_K(C_G(P))$, cf. [5, IV, Section 6]. Thus $d_u^G(\chi)(\ast) \in CF_{p'}(C_G(P), K)$ where $d_u^G(\chi)(s) = \chi(u s) = \sum_{\phi \in \text{Irr} Br_K(C_G(P))} d_u(\chi, \phi) \phi(s)$ for all $s \in C_G(P)_{p'}$. Moreover, as in [3, Section 4A], if $b \in Bl(\mathcal{O}G)$ and $b_p \in Bl(\mathcal{O}C_G(P))$, then $d_{G}^{(u, b_p)}: CF(G, b, K) \rightarrow CF_{p'}(C_G(P), b_p, K)$ is defined by: if $\alpha \in CF(G, b, K)$ and $s \in C_G(P)_{p'}$, then $(d_{G}^{(u, b_p)}(\alpha))(s) = (b_p \cdot d_u^G(\alpha))(s) = \alpha(u s b_p)$.

Since $\text{Irr}_K(b)$ is a basis of $CF(G, b, K)$, the K-linear map $d_{G}^{(u, b_p)}$ is characterized by the well-known:

Lemma 2.1. Let $\chi \in \text{Irr}_K(b)$. If $Br_p(b)b_p = 0$, then $d_{G}^{(u, b_p)}(\chi) = 0$. If $Br_p(b)b_p = b_p$, then $d_{G}^{(u, b_p)}(\chi) = \sum_{\phi \in \text{Irr} Br_K(b_p)} d_u(\chi, \phi) \phi$

Proof. With the notation and hypotheses of this lemma, the first statement is a consequence of Brauer’s Second Main Theorem on Blocks ([5, IV, Theorem 6.1]) and the second statement is a consequence of [2, Theorem A2.1].

Remark 2.2. As above, if $\phi \in \text{Irr} Br_K(C_G(P))$ corresponds to $\gamma \in \mathcal{L}P(\mathcal{O}G^P)$ (i.e., ϕ is the irreducible Brauer character obtained from the irreducible $kC_G(P)$-module $kC_G(P)Br_p(j)/J(kC_G(P)Br_p(j))$ for any $j \in \gamma$), then, by [10, Theorem 43.4] $d_u(\chi, \phi) = \chi(u j)$ for any $j \in \gamma$.

3. Proofs

As noted above, Lemma 1.1 and Proposition 1.2 are well-known and easy to prove.

Proof of Lemma 1.4. Assume the hypotheses of Lemma 1.4. Let S be a set of double (H, H)-coset representatives in G such that $1 \in S$ and let X, Y be irreducible modules in $(\mathcal{K}H)e$-mod. Here

$$\text{Hom}_{\mathcal{K}G}(\text{Ind}_G^H(X), \text{Ind}_G^H(Y)) \cong \text{Hom}_{\mathcal{K}H}(X, \bigoplus_{s \in S} (\mathcal{K}(Hs H) \otimes_{\mathcal{K}H} Y))$$

$$\cong \bigoplus_{s \in S} \text{Hom}_{\mathcal{K}H}(X, \mathcal{K}(Hs H) \otimes_{\mathcal{K}H} Y)$$
in \mathcal{K}-mod. Thus $\text{Hom}_{\mathcal{K}}(X, \mathcal{K}(HsH) \otimes_{\mathcal{K}} Y) = (0)$ for all $1 \neq s \in S$.

Fix $1 \neq s \in S$ and an irreducible module X in $(\mathcal{K}e)$-mod.

We assert: (*) $\text{Hom}_{\mathcal{K}}(X, \mathcal{K}(HsH) \otimes_{\mathcal{K}} V) = (0)$ for all V in $(\mathcal{K}e)$-mod.

Indeed, we may assume that V is reducible in $(\mathcal{K}e)$-mod and we proceed by induction on $\dim(V / \mathcal{K})$. Let V_1 be a maximal submodule of V. Then

$$(0) \to V_1 \to V \to V / V_1 \to (0)$$

is a short exact sequence in $(\mathcal{K}e)$-mod. Thus, since $\mathcal{K}(HsH) \otimes_{\mathcal{K}} V$ is irreducible, a short exact sequence in $(\mathcal{K}e)$-mod. Consequently

$$\text{Hom}_{\mathcal{K}}(X, \mathcal{K}(HsH) \otimes_{\mathcal{K}} V_1) \to \text{Hom}_{\mathcal{K}}(X, \mathcal{K}(HsH) \otimes_{\mathcal{K}} V) \to \text{Hom}_{\mathcal{K}}(X, \mathcal{K}(HsH) \otimes_{\mathcal{K}} (V / V_1))$$

is exact in \mathcal{K}-mod and we conclude from the induction hypothesis that

$$\text{Hom}_{\mathcal{K}}(X, \mathcal{K}(HsH) \otimes_{\mathcal{K}} V) = (0).$$

This establishes (*).

Since X can be any irreducible $(\mathcal{K}e)$-module, (*) implies that $\text{Soc}(e \mathcal{K}(HsH) \otimes_{\mathcal{K}} V) = (0)$ for any module V in $(\mathcal{K}e)$-mod. Thus $e \mathcal{K}(HsH)e \otimes_{\mathcal{K}} V = (0)$ for any module V in $(\mathcal{K}e)$-mod and we are done.

Proof of Theorem 1.6. Assume the hypotheses of Theorem 1.6. Applying Proposition 1.2, [5, V, Lemma 1.2] and [5, III, Lemma 9.6], D is contained in a defect group of $B \in Bl(\mathcal{O}G)$. Since $\text{Ind}^G_H: \text{Irr}_K(b) \to \text{Irr}_K(B)$ is bijective, [5, IV, Theorem 4.5] and degree considerations complete a proof of (a). Clearly $(\mathcal{O}G)b$ is indecomposable in $\mathcal{O}(\tilde{G} \times H)(B \otimes_{\mathcal{O}} b^0)$-mod and $D \times D$ is a defect group of $B \otimes_{\mathcal{O}} b^0 \in \mathcal{O}(\tilde{G} \times H)$. Also $(\mathcal{O}H)b \mid \text{Res}^G_{H \times H}(\mathcal{O}G)b$ in $\mathcal{O}(H \times H)$-mod and $(\mathcal{O}H)b$ is indecomposable in $\mathcal{O}(H \times H)$-mod with D as a vertex and trivial D-source. Then [5, III, Lemma 4.6 (ii) and Corollary 6.8] implies the last part of (b). Thus (b) holds, [5, III, Corollary 4.7] yields (c) and (d) and (e) are clear. Finally (e) and [5, Theorem 47.10 (b)] yield (f).

Proof of Proposition 1.7. Assume the situation of this proposition. Let V and W be irreducible $(k\tilde{H})\tilde{b}$-modules with irreducible characters ϕ_V, ϕ_W in $\text{Irr}_K(\tilde{b})$ and irreducible Brauer characters β_V, β_W in $\text{Irr} Br_K(b)$.
Assume that (a) holds. Then $\text{Ind}_H^G(V)$ is an irreducible kG-module and $\text{Ind}_H^G(\beta_V) = \beta_{\text{Ind}_H^G(V)} \in \text{Irr} \, B_k(G)$. Similarly $\text{Ind}_H^G(W)$ is an irreducible kG-module and $\text{Ind}_H^G(\beta_W) = \beta_{\text{Ind}_H^G(W)} \in \text{Irr} \, B_k(G)$. Suppose that $\beta_{\text{Ind}_H^G(V)} = \beta_{\text{Ind}_H^G(W)}$. Then

$$\phi_{\text{Ind}_H^G(V)} = \beta_{\text{Ind}_H^G(V)} = \beta_{\text{Ind}_H^G(W)} = \phi_{\text{Ind}_H^G(W)}, \quad \text{Ind}_H^G(V) \cong \text{Ind}_H^G(W) \quad \text{in} \quad kG$$

and hence $\text{Ind}_H^G(\phi_V) = \text{Ind}_H^G(\phi_W)$. But then $\phi_V = \phi_W$, $V \cong W$ in $(kH)\overline{b}$-mod and $\beta_V = \beta_W$, so that (c) follows.

Assume that (c) holds. Then $\overline{b} \beta = \phi_V \in \text{Irr}_k(\overline{b})$ and $\text{Ind}_H^G(\beta_V) = \beta_{\text{Ind}_H^G(V)} \in \text{Irr} \, B_k(G)$. Thus $\text{Ind}_H^G(\phi_V) = \phi_{\text{Ind}_H^G(V)} \in \text{Irr}_k(G)$. Similarly $\beta_{\text{Ind}_H^G(W)} \in \text{Irr} \, B_k(G)$ and $\text{Ind}_H^G(\phi_W) = \phi_{\text{Ind}_H^G(W)} \in \text{Irr}_k(G)$. Suppose that $\text{Ind}_H^G(\phi_V) = \text{Ind}_H^G(\phi_W)$. Then $\beta_{\text{Ind}_H^G(V)} = \beta_{\text{Ind}_H^G(W)} = \text{Ind}_H^G(\beta_V) = \text{Ind}_H^G(\beta_W)$, so that $\beta_V = \beta_W$, $\phi_V = \phi_W$ and (a) holds. Consequently (a) and (c) are equivalent.

That (d) implies (a), (b) and (c) is a consequence of Theorem 1.6 (b). Assume (a) and let $g \in G - H$. Then $M = bO(HgH)b$ is an O-lattice where $\overline{M} = \overline{b}k(HgH)\overline{b} = (0)$ by Corollary 1.5. Consequently $bO(HgH)b = (0)$ and (d) holds.

Assume (b) and for each $\chi \in \text{Irr}_k(b)$, let $e_{\chi} = (\chi(1)/|H|)(\sum_{h \in H}(\chi(h^{-1})h))$ be the primitive idempotent of $Z(KH)$ corresponding to χ. Then $e_{\chi}(\overline{s} e_{\chi}) = 0$ for all $g \in G - H$ by Corollary 1.5 and $\text{Tr}_H^G(e_{\chi}) = e_{\text{Ind}_H^G(\chi)}$ is the primitive idempotent of $Z(KG)$ corresponding to $\text{Ind}_H^G(\chi)$. Let $\chi, \psi \in \text{Irr}_k(b)$ and let $g \in G - H$. Then $e_{\chi}(\overline{s} e_{\psi}) = (e_{\chi} \text{Tr}_H^G(e_{\chi}))(\text{Tr}_H^G(e_{\chi}))^{s} e_{\psi} = 0$, (d) holds and our proof is complete.

Proof of Theorem 1.8. For (a), note that $Br_P(b)\overline{b}_P = \overline{b}_P$. Let $x \in C_G(P) - C_H(P)$; then

$$\overline{b}_P(x \overline{b}_P) = \overline{b}_P Br_P(b) Br_P(x \overline{b}_P) = \overline{b}_P Br_P(b \overline{b}_P) = 0.$$

Thus $\text{Stab}_{C_G(P)}(\overline{b}_P) = C_H(P)$ and, since $Br_P(B)\overline{b}_P = \overline{b}_P$, we conclude that

$$Br_P(B) \text{Tr}_{C_G(P)}(\overline{b}_P) = \text{Tr}_{C_G(P)}(\overline{b}_P).$$

Then Proposition 1.2 and Theorem 1.6 yield (a). Since $Br_P(b)\overline{b}_P = \overline{b}_P$, (b) holds.

Let (Q, \overline{b}_Q) and (P, \overline{b}_P) be b-subpairs of H and let S be a left transversal of $C_H(Q)$ in $C_G(Q)$ with $1 \in S$, so that $C_G(Q) = \bigcup_{S} sC_H(Q)$ is disjoint. Let $h \in H$ be such that $h \in (Q, \overline{b}_Q) = (P, \overline{b}_P)$. Then

$$\overline{h}_s(\overline{b}_Q) = \sum_{s \in S} (hs) \overline{b}_Q = \sum_{s \in S} (\overline{b}_Q) = s(\overline{b}_Q)$$

and hence

$$C_G(P) \{ h \in H \mid \overline{h}_s(\overline{b}_Q) = (P, \overline{b}_P) \} \leq \{ g \in G \mid \overline{s}(Q, s(\overline{b}_Q)) = (P, \overline{s}(\overline{b}_P)) \}.$$
Conversely, let \(g \in G \) be such that \(\tilde{s}(Q, s(\bar{b}_Q)) = (P, s(\bar{b}_P)) \). Then \(\tilde{s}B = B \) and \(\tilde{s}\Omega = \Omega \). Let \(U \) be a left transversal of \(C_H(P) \) in \(C_G(P) \) with \(1 \in U \), so that \(C_G(P) = \bigcup_{u \in U} uC_H(P) \) is disjoint. Here \(\tilde{s}(\bar{b}_Q) = s(\bar{b}_P) = \sum_{u \in U} Br_P(\tilde{s}(\bar{b}_P)) \), \(Br_Q(b)(\bar{b}_P) = \bar{b}_Q \) and \(Br_P(\tilde{s}(\bar{b}_P)) = \tilde{b}_P \) for all \(u \in U \). Thus

\[
0 \neq \tilde{s}(\bar{b}_Q) = Br_P(\tilde{s}(\bar{b}_P)) = \sum_{u \in U} Br_P(\tilde{s}(\bar{b}_P)).
\]

We conclude that \(\tilde{s}b = \tilde{b}u \) for some \(u \in U \) and so \(g = uh \) for some \(h \in H \). But then \(\tilde{s}(Q, s(\bar{b}_Q)) = \tilde{s}(hQ, h\bar{b}_Q) = (P, s(\bar{b}_P)) \) and \(\tilde{s}(hQ, h\bar{b}_Q) = (P, s(\bar{b}_P)) \). Since \(Br_Q(b)(\bar{b}_Q) = \bar{b}_Q \), we have \(Br_P(b)(\bar{b}_P) = \bar{b}_Q \), and then \(\bar{b}_Q = \tilde{b}_P \), which completes a proof of (c) (i).

For a proof of (c) (ii), it suffices to assume that \(Q \leq P \). First suppose that \((Q, \bar{b}_Q) \leq (P, \bar{b}_P) \). Thus \(\bar{b}_Q \) is \(P \)-stable and \(Br_P(b)(\bar{b}_P) = \tilde{b}_P \). As \(P \leq N_G(Q) \), we conclude that \(P \) stabilizes \(s(\bar{b}_Q) \). Let \(U \) be a left transversal of \(C_H(P) \) in \(C_G(P) \) with \(1 \in U \). Here

\[
Br_P(s(\bar{b}_Q))(\bar{b}_P) = Br_P(s(\bar{b}_Q))Br_P(\bar{b}_Q)\bar{b}_P = Br_P(\bar{b}_Q)\bar{b}_P = \tilde{b}_P
\]

and, since \(C_G(P) \leq C_G(Q) \), we have \(Br_P(s(\bar{b}_Q)) = \tilde{b}_P \) for all \(u \in U \). Thus \(Br_P(s(\bar{b}_Q)) = \tilde{b}_P \). Conversely, suppose that \((Q, s(\bar{b}_Q)) \leq (P, s(\bar{b}_P)) \). Then \(s(\bar{b}_Q) \in (kC_G(Q))^P \) and \(Br_P(s(\bar{b}_Q)) = s(\bar{b}_P) \). Utilizing [10, Lemma 40.2],

\[
s(\bar{b}_P)Br_P(b) = \tilde{b}_P = Br_P(s(\bar{b}_Q))s(\bar{b}_P)Br_P(b)
\]

\[
= Br_{P/Q}(s(b_Q)Br_Q(b))\tilde{b}_P = Br_{P/Q}(\bar{b}_Q)\tilde{b}_P = Br_P(\bar{b}_Q)\tilde{b}_P.
\]

Since \(s(\bar{b}_Q)Q(\bar{b}_Q) = \bar{b}_Q \), and \(\bar{b}_Q \) is \(P \)-stable and so \((Q, \bar{b}_Q) \leq (P, \bar{b}_P) \) which completes a proof of (c) (ii).

Let \((P', \bar{b}_{P'}) \) be a \(B \)-subpair of \(G \). Let \((D, b_D) \) be a maximal \(b \)-subpair of \(H \); thus \((D, s(\bar{b}_D)) \) is a maximal \(B \)-subpair of \(G \). Then there is an \(x \in G \) such that \(\tilde{s}(P', \bar{b}_{P'}) \leq (D, s(\bar{b}_D)) \). Thus \(\tilde{s}P = (D, s(\bar{b}_D)) \) and setting \(Q = \tilde{s}P' \), we have \((Q, \bar{b}_Q) \leq (D, \bar{b}_D) \) for a unique \(\bar{b}_Q \in Bl(kC_H(Q)) \). But then \((Q, s(\bar{b}_Q)) \) (d) \(\tilde{s}P = (D, s(\bar{b}_D)) \); consequently \(\tilde{s}\bar{b}_P = s(\bar{b}_Q) \) and \(\tilde{s}(P', \bar{b}_{P'}) = (Q, s(\bar{b}_Q)) \), which completes a proof of (d).

For (e), let \((Q, \bar{b}_Q) \) be a \(b \)-subpair of \(H \). By (a), \(kC_H(Q)\bar{b}_Q \)-mod and \(kC_G(Q)\bar{b}_Q \)-mod are Morita equivalent. Thus \(|\mathcal{P}(kC_H(Q)\bar{b}_Q)| = |\mathcal{P}(kC_G(Q)\bar{b}_Q)| \).

\[
|\{Q_\gamma \in \mathcal{L}_P\mathcal{G}(\mathcal{O}H)B \mid Q_\gamma \text{ is associated with } (Q, \bar{b}_Q)\}| = |\mathcal{P}(kC_H(Q)\bar{b}_Q)|
\]

and

\[
|\{Q_\delta \in \mathcal{L}_P\mathcal{G}(\mathcal{O}G)B \mid Q_\delta \text{ is associated with } (Q, s(\bar{b}_Q))\}| = |\mathcal{P}(kC_G(Q)s(\bar{b}_Q))|.\]
Also if \(Q_\gamma \in \mathcal{L} \mathcal{P} \mathcal{G}((\mathcal{O} \mathcal{H})b) \) and \(Q_\gamma \) is associated with \((Q, \overline{b}_Q)\) and \(j \in \gamma \), then

\[
Br_Q(j) \overline{b}_Q = Br_Q(j) = Br_Q(j) \overline{b}_Q s(\overline{b}_Q) = Br_Q(j) s(\overline{b}_Q).
\]

Thus \(i_*(Q_\gamma) \in \mathcal{L} \mathcal{P} \mathcal{G}((\mathcal{O} \mathcal{G})B) \) and \(i_*(Q_\gamma) \) is associated with \((Q, s(\overline{b}_Q))\). The desired conclusion now follows from Theorem 1.6 (e).

Let \((P, \overline{b}_P), (P, s(\overline{b}_P)) \) and \(b_P \) be as in (f). Note that \(\text{Ind}^G_E : \text{Irr}_K(\overline{b}_P) \to \text{Irr}_K(s(\overline{b}_P)) \) is a bijection by (a). Then Proposition 1.2 and Theorem 1.6 yield (f).

Let \((D, \overline{b}_D) \) and \((P, b_P) \) be as in (g). Then Theorem 1.6 (b) and [3, Proposition 1.2] imply that \(\text{Ind}^{C_G(P)}_{C_H(P)}(\ast) : \mathcal{R}_K(C_H(P), b_P) \to \mathcal{R}_K(C_G(P), s(b_P)) \) is a perfect isometry that induces the linear map

\[
\text{Ind}^{C_G(P)}_{C_H(P)}(\ast)_p : \mathcal{C} F_{\mathcal{F}'}(C_H(P), b_P, K) \to \mathcal{C} F_{\mathcal{F}'}(C_G(P), s(b_P), K).
\]

Let \(u \in D \), set \(P = \langle u \rangle \) and let \(\psi \in \text{Irr}_K(b) \). Then, by Lemma 2.1,

\[
\text{Ind}^{C_G(P)}_{C_H(P)}(d^H(u, b_P)(\psi)) = \sum_{\phi \in \text{Irr}_K(b_P)} d_u(\psi, \phi)(\text{Ind}^{C_G(P)}_{C_H(P)}(\phi))
\]

and

\[
d_G^{(d, s(b_P))}(\text{Ind}_H^G(\psi)) = \sum_{\phi \in \text{Irr}_K(b_P)} (d_u(\text{Ind}_H^G(\psi), \text{Ind}^{C_G(P)}_{C_H(P)}(\phi))) \text{Ind}^{C_G(P)}_{C_H(P)}(\phi).
\]

The desired conclusion now follows from [11, Theorem 1 (iv)]. An alternate proof can be obtained from [10, Theorem 43.4]. Indeed, let \(\phi \in \text{Irr}_K(b_P) \) and let \(\gamma \in \mathcal{L} \mathcal{P}((\mathcal{O} \mathcal{H})b)^\mathcal{F} \) correspond as in Remark 2.2. It is easy to see that \(\text{Ind}^{C_G(P)}_{C_H(P)}(\phi) \in \text{Irr}_K(s(b_P)) \) corresponds \(i(\gamma) \in \mathcal{L} \mathcal{P}((\mathcal{O} \mathcal{G})B)^\mathcal{F} \). Let \(j \in \gamma \). Here Proposition 1.2 (d) implies that \(\text{Ind}_H^G(\psi)(u j) = \psi(u j) \) and the desired conclusion follows from Remark 2.2.

\[\square\]

References

Department of Mathematics
Statistics and Computer Science (M/C 249)
University of Illinois at Chicago
851 South Morgan Street
Chicago, IL 60607–7045
USA
e-mail: harris@math.uic.edu