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Abstract
The first step in the fundamental Clifford Theoretic Appriodo General Block
Theory of Finite Groups reduces tdd is a subgroup of the finite grou@ andb
is a block of H such thatb(%b) = 0 for all g € G — H. We extend basic results of
several authors in this situation and place these resuitsdarrent categorical and
character theoretic equivalences frameworks.

1. Introduction and statements of results

Let G be a finite group, lefp be a prime integer and let) I, k) be a p-modular
system forG that is “large enough” for all subgroups & (i.e., O is a complete dis-
crete valuation ringk = O/J(0O) is an algebraically closed field of characteristic
and the field of fractionsC of O is of characteristic zero and is a splitting field for
all subgroups ofG).

Let N be a normal subgroup d& and lety be a block (a primitive) idempotent
of Z(ON). SetH = Stalks(y) so thatN < H < G. Also let BI(OH |y) and BI(OG|y)
denote the set of blocks @@H and OG that covery, resp. Then it is well-known that
if b e BI(OH]y), thenb(®b) =0 for all g € G — H and the trace map fromd to G,
Tr{, induces a bijection f: BI(OH|y) — BI(OG|y) such that corresponding blocks
are “equivalent.” This basic analysis pioneered by P. Fami \&. Reynolds (cf. [5, V,
Theorem 2.5]) is the first step in the fundamental Clifforddtetic approach to general
block theory: the reduction to the case of a stable block obamal subgroup.

Consider the more general situatiorP)(H is a subgroup ofs ande is an idem-
potent of Z(OH) is such thate(®e) =0 for all g € G — H.

Note that if 8 is an idempotent oZ(OH) such thateg = g, then (98) = 0 for
allge G—H.

Fundamental contributions to this context appear in [9,0F&m 1] and in [11,
Theorem 1].

The purpose of this paper is to put the significant results9ofTheorem 1] and
[11, Theorem 1] into current categorical and character ritéo equivalences context
and to extend these basic results in this context.

2000 Mathematics Subject Classification. 20C20.



148 M.E. HARRIS

It is also well-known that ifH is a subgroup ofG and if x € Irri(H) is such
that Indfj(x) € Irrc(G) and if e, = (x(1)/IH)(Xhen x(hHh) denotes the primitive
idempotent ofZ(K'H) associated tg, thene,(%e,) =0 for allg e G—H and T (e,)
is the primitive idempotent o (KXG) associated to Irfél(x) (cf. Corollary 1.5).

In this article, we shall generally follow the (standard)tatmn and terminology
of [5] and [10].

All rings have identities and are Noetherian and all modoles a ring are unitary
and finitely generated left modules. K is a ring, thenR-mod will denote the category
of left R-modules andR® denotes the ring opposite tR.

The required proofs of the following main results will be geated in Section 3.
Section 2 contains basic results that are needed in our prodke shall assume that
H is a subgroup of the finite grou@ in the remainder of this section and we shall
let T be a left transversal oH in G with 1€ T. ThusG =, tH is disjoint.

For our first three results) will denote a commutative Noetherian ring.

Our first two results are well-known and easy to prove (cf, [@6ctions 9 and 16]).

Lemma 1.1. Let B be a unitaryQ-algebra that is an interior H-algebrgas
in [10, Section 16]).Then

(@)

Ind§ (B) = OG ®on B ®on OG = D (S(OH) ®on B ®on (OH)t )

steT

¥ P(s®0 BRs ™

steT

is a unitary interior G-algebra withl,qc gy = 1 (t®0 18 ®et1) and withg: G —
Indﬁ(B)X such that g— Y, 1 (9t®o 1l ®et 1) for all g € G. Moreover{t®e 1lg @0
t1|teT)is a set of orthogonal idempotents loid? (B); and

(b) The mape: Z(B) — Z(Ind5(B)) such that z— Y, 1 (t ®0 z®0 t™2) for all
z € Z(B) is an 0-algebra isomorphism

Proposition 1.2. Let e be an idempotent of (2H) such that €e) = 0 for all
g€ G—H and set E= Trﬁ (e) = Y 1.1(‘e), so that E is an idempotent of (2G).
Then

(a)
(OG)E = (0G)e(OG), e(0OG)e=e(OG)Ee=(OH)e
and the O-linear map

f: IndS((OH)e) - (OG)E
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such that x®on b ®en y + xby for all x,y € G and all be (OH)e is an interior
G-algebra isomorphismAlso the O-linear map

¢: Z((OH)e) — Z(Ind§ ((OH)e))

such that z—> Y, ;(t ® z®p t™1) for all z € Z((OH)e) is an O-algebra iso-
morphism

(b) The inclusion map: (OH)e — (OG)E is an embedding of interior H-algebras
(c) The functors

IndG (x) = (OG)e ®on)e (¥): (OH)e-mod— (OG)E-mod
and
e-Reg% (x) = &(OG) ®0c)e (*) : (OG)E-mod— (OH)e-mod

exhibit a Morita equivalence between the Abelian categofi2H)e-mod and(OG)E-
mod with associated(OH)e, (OG)E)-bimodule €¢0G); and
(d) Let M be an(OH)e-module Then

IndS} (M) = (0G)e ®ome M = Pt ®o M)
teT

and

0 ifgé¢H
(g ®©H)em) = {1®0 (@g)m
if geH, for all « e (OH)e, allme M and all ge G.

Let e be an idempotent oZ(OH).

REMARK 1.3. Letg e G. The following three conditions are equivalent:
() eO(HgH))e=(0);
(i) e(%e)=0; and
(i) &(O(HgH) ®on V) = (0) for any moduleV in (OH)e-mod.

Indeed, it is clear that (i) implies (ii) and (iii). Lét;,h, € H. Thene(highy)e =
h,e(%e)gh,, so that (ii) implies (i). Also ifV = (OH)e in (iii), then

e(O(HgH) ®on (OH)e) = e(O(HgH)e)

in (OH)e-mod and so (iii) implies (i).
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Lemma 1.4 (E.C. Dade [4]). Let £ be a field and let e be an idempotent in
Z(KH). Suppose that

dim(Homyg (Ind§; (X), Ind$ (Y)) /K) = dim(Homew (X, Y)/K)
for any irreducible modules XY in (XH)e-mod Then ¢%) =0 for all g € G — H.
An immediate implication of Lemma 1.4 is:

Corollary 1.5. Assume that is a splitting field for G and H and that e is
an idempotent of @CH) such thatindf defines an injective mamdS: Irrc(e) —
Irrc(G). Then €%) =0 for all g € G — H.

For the remainder of this section, we assume tlati(, k) is a p-modular sys-
tem that is “large enough” for all subgroups &. As is standard, the natural ring
epimorphism—: O — k = 0/J(0) induces an epimorphism on all-algebras that is
also denoted by-. Similarly for ©-modules.

Theorem 1.6 (cf. [5, V, Theorem 2.5], [9, Proposition 1] and [11, Theordi.
Assume that ke BI(OH) is such that ¥’b) = 0 for all g € G — H (as in Proposi-
tion 1.2) and let D be a defect group of b in .HThen
(@) Proposition 1.2applies (with R = 0), B = Tr§(b) € BI(OG) and D is a defect
group of B in G
(b) The functorsind§; (x) = (OG) ®on () = (OG)b @H)b (*):

(OH)b-mod— (OG)B-mod and b Reﬁ (*): (OG)B-mod— (OH)b-mod

exhibit a Morita equivalence between the Abelian categof@H )b-mod and(OG)B-
mod On the character levelthis Morita equivalence induces the bijections

Ind : Irre(b) — Irre(B),  IndS: Irr(b) — Irrg(B)
and
IndS : Irr Bric(b) — Irr Bre(B).
Moreover this Morita equivalence has associated bimodules
(OG)b in (OG)B-mod{OH)b and HOG) in (OH)b-mod{OG)B.

Here (OG)b when viewed as a®(G x H)-module is indecomposable withD =
{(d,d) | d € D} and trivial AD-source and a similar fact holds for(®G);
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(c) Let M be an indecomposab{©®H )b-module with vertex Q and Q-source \hen
Ind& (M) = OG®pn M = (OG)bR®pH)KM in (OG)B-mod is an indecomposab{&®G)-
module with vertex Q and Q-source; V

(d) The above conditions hold over k fore Bl(kH) and B = Tr; (b) € BI(kG), etc
(e) The inclusion map i (OH)b — (OG)B is an embedding of interior H-algebras
so that i induces injective mafd$10, Proposition 15.1])

ix: PG((OH)b) - PG((OG)B) and i.: LPG((OH)b) - LPG((OG)B).

Let D, be a defect pointed group ¢®OH)b as an H-algebra Thus i(D,) = Di(),
where iy) = {y(©®B)"} is a defect pointed group dfiOG)B as a G-algebra Thus
if j €y,then jei(y) and j(OG)Bj = jb(OG)bj = j(OH)bj, so that these source
algebras of b and B are equal as interior D-algebrasd

(f) The Puig category of local pointed groups of bdH and of B inOG are equiv-
alent

The next result illuminates the hypothesis of [11, Theordm 1

Proposition 1.7. Let b be a block idempotent of (2H). The following four
conditions are equivalent
(@) Ind induces an injective map dfry(b) — Irr(G);
(b) IndGH induces an injective map ofr(b) — Irrc(G); and
(c) IndGH induces an injective map dfr Bri(b) — Irr Bri(G); and
(d) b(®b) =0 for all g e G — H.
In which case Theorem 1.6applies so that B= Tr§(b) € BI(OG), the functor

Ind5 = (OG)b ®Hy (*): (OH)b-mod— (OG)B-mod

induces a(Morita) categorical equivalengethe maps of(a), (b) and (c) are bi-
jections etc

In our final result, (a), (b), (c) and (d) are presented in [Bedrem 1] without
proof. For the convenience of the reader, we shall includeocafpof these items.

Theorem 1.8 (cf. [9, Theorem 1]). Assume that k& BI(OH) is such that £°b) =
Oforallg € G—H (as inTheorem 1.6).SetQ = {% | g € G} so that B= (}_, o) €
BI(OG), etc
(a) Let (P,bp) be a b-subpair of H Thenbp(*bp) =0 for all x € Cg(P) — CH(P),
Theorem 1.6 (dppplies {bp) = TrS(E) (bp) € BIKCa(P)), (P.s(bp)) is a B-subpair
of G and the k-linear map

I Indg‘j((?)(kCH(P)Ep) = kCs(P) ®«kc,(py KCh (P)bp ®kc, () kCa(P)
— kCs(P)s(bp)
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such that X®xc,(p) @ ®kcy(p) Y — Xay for all X,y € Cs(P) and all @ € kCy(P)bp
is an interior Cg(P)-algebra isomorphism Also Indf; : Irr(bp) — Irr(s(bp)) is a
bijection;
(b) The map(P,bp) — (P,s(bp)) from the set of b-subpairs of H into the set of
B-subpairs of G is injective
(c) Let(Q,bg) and (P,bp) be b-subpairs of H Then
) {96 ]9Q s(bg)) = (P.s(be))} = Ce(P)fh € H | "(Q,bg) = (P,
so that (Q, bg ) and (P,bp) are conjugate in H if and only i{Q,s(bg)) an
(P,s(bp)) are conjugate in Gand
(i) (Q.bg) < (P,bp) in H if and only if (Q,s(bg)) = (P, s(bp)) in G;
(d) For any B-subpair(P’, Bp/) of G there is an xe G and a b-subpair(P, bp) of
H such that*(P’, Bp:) = (P,s(bp)); consequently the Brauer category of b in H is
equivalent to the Brauer category of B in;G
(e) Let (Q,bg) be a b-subpair of H The injective map .ii LPG(OH)b) —
LPG((OG)B) of Theorem 1.6induces a bijection

)}

(Q o). :{Q, € LPG((OH)b) | Q, is associated withQ, bg)}
— {Qs € LPG((OG)B) | Qs is associated with( Q, s(bq))}

in which Q, = Qi () for all Q, € LPG((OH)b) such that Q is associated with
(Q.bo);

() Let (P,bp) be a b-subpair of H and le(P,s(bp)) be the corresponding B-
subpair of G Let bo be the unique block idempotent o{@Cy (P)) that “lifts” bp.
Then tp(*bp) = 0 for all x € Cg(P) — Cu(P), s(bp) = TresR)(be) is a block idem-
potent of OCg(P) that “lifts” s(bp) and Theorem 1.6applies to p € BI(OC (P))
where G4 (P) < Cg(P); and

(9) Let (D,bp) be a maximal b-subpair of HLet P < D and let (P,bp) be the
unique b-subpair of H such thgtP, bp) < (D, bp). Then

IndG5 (2 (9): Rc(Cu(P), be) — Rc(Ca(P), s(be))
is a perfect isometry and consequently induces the linegg ma
INACE) () - CFy(Ch(P), bp, K) = CFy(Ca(P), s(bp), K).
Let ue D and set P= (). Then
d&*C o Ind§ (+) = IndZS () (+)p 0 df™: CF(H, b, K) — CFy(Ca(P), s(bp), K).

Consequently the perfect isometr;dﬁ (*): Re(H,b) = Rk (G,B) is part of an isotopy
between b and B with local system the fan{iladc{E)(+) | P < D, P cyclig}.
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REMARK 1.9. In the situation of Theorem 1.8 and after Theorem 1.6h@&g
been established, the more general investigations of [plyafef. [6, Remark 1.3 (a)]).

2. Preliminary results

Let G be a finite group and let®, I, k = O/J(O)) be a p-modular system that
is “large enough” for all subgroups o&. We shall, as in [3], seCFy(G,K) =
{f e CF(G,K)| f(G—Gy)=(0).

Let u be a p-element of G and setP = (u). Let x € Irr(G) and let¢ €
Irr Bric(Co(P)) € CFy(Cs(P), K). We shall letd,(x, ¢) denote the generalized de-
composition number associated ibe Gy, x € Irre(G) and ¢ € Irr Bri(Cs(P)),
cf. [5, IV, Section 6]. Thusdg(x)(x) € CFp(Cs(P), K) where dg(x)(s) = x(us) =
Y peinr BreCo(p) dux, @)#(s) for all s € Co(P)y. Moreover, as in [3, Section 4A], if
b € BI(OG) andbp € BI(OCg(P)), thend$""™: CF(G,b,K) — CFy(Cs(P),bp,K) is
defined by: ife € CF(G,b,K) ands € Cg(P)y, then (d"*?(@))(s) = (be - d&(a))(s) =
a(ushp).

Since Iric(b) is a basis ofCF(G, b, K), the K-linear mapdé”’bp) is characterized
by the well-known:

Lemma 2.1. Lety e Irri(b). If Brp(b)bp = 0, then &*°?(x) = 0. If Brp(b)bp =
bp, then ¢§"*?(x) = D et e (op) dulxs @)

Proof. With the notation and hypotheses of this lemma, th& ftatement is a
consequence of Brauer's Second Main Theorem on Blocks ([5Théorem 6.1]) and
the second statement is a consequence of [2, Theorem A2.1]. Ul

REMARK 2.2. As above, ifp € Irr Bri(Cg(P)) corresponds tgr € LP((OG)P)
(i.e., ¢ is the irreducible Brauer character obtained from the uodllle kCg(P)-
modulekCg(P)Brp(j)/J(kCs(P)Brp(j)) for any j € y), then, by [10, Theorem 43.4]

du(x, ®) = x(uj) for any j € y.
3. Proofs

As noted above, Lemma 1.1 and Proposition 1.2 are well-knamcheasy to prove.

Proof of Lemma 1.4. Assume the hypotheses of Lemma 1.4. S bé a set of
double H, H)-coset representatives i@ such that 1 S and let X, Y be irreducible
modules in £H)e-mod. Here

Homgg (Ind§ (X), IndS (Y)) = Homycy (x, PK(HsH) @xr Y))

seS

= @ Homcn (X, K(HsH) ®xcn Y)

seS



154 M.E. HARRIS

in K-mod. Thus Homp (X, K(HSH) ®xn Y)=(0) forall 1#se S.
Fix 1 #s € S and an irreducible modulX in (H)e-mod.
We assert: %) Homicy (X, K(HSH) ®xcn V) = (0) for all V in ({H)e-mod.
Indeed, we may assume th¥t is reducible in LH)e-mod and we proceed by
induction on dimy /K). Let V; be a maximal submodule of. Then

0 —>Vi—>V —>V/Vi - (0)
is a short exact sequence iKK)e-mod. Thus, sincéC(HsH)|(XG) in XH-mod+H,
(0) > K(HsH) ®xn Vi — K(HsH) ®xn V — K(HsH) ®xn (V/V1) — (0)
is a short exact sequence foH-mod. Consequently

Homich (X, K(HsH) ®xcH V1)
— Hom;gH(X, K(HSH) RicH V)
— Hom;CH(X, IC(HSH) QicH (V/Vl))

is exact inX-mod and we conclude from the induction hypothesis that
Hom,CH(X, IC(HS H) RicH V) = (0)

This establishesx].

Since X can be any irreducible{H )e-module, §) implies that So&C(HSH) ®xn
V) = (0) for any moduleV in (H)e-mod. Thusell(HsH)e ®xcn V = (0) for any
moduleV in (KH)e-mod and we are done. L]

Proof of Theorem 1.6. Assume the hypotheses of Theorem 1.6pplyikg
Proposition 1.2, [5, V, Lemma 1.2] and [5, lll, Lemma 9.d), is contained in a
defect group ofB € BI(OG). Since Intﬁ: Irric(b) — Irre(B) is bijective, [5, 1V,
Theorem 4.5] and degree considerations complete a prodad)ofClearly (OG)b is in-
decomposable i(G x H)(B ®o b%-mod andD x D is a defect group oB ® b° €
BI(O(G x H)). Also (OH)b|ResH ((OG)b) in O(H x H)-mod and OH)b is in-
decomposable iO(H x H)-mod with AD as a vertex and triviah D-source. Then
[5, lll, Lemma 4.6 (ii) and Corollary 6.8] implies the lastnppaf (b). Thus (b) holds,
[5, I, Corollary 4.7] yields (c) and (d) and (e) are clearin&ly (e) and [5, Theo-
rem 47.10 (b)] yield (f). ]

Proof of Proposition 1.7. Assume the situation of this psofon. LetV and W
be irreducible kH)b-modules with irreducible characteds,, ¢w in Irri(b) and irre-
ducible Brauer characteis,, fw in Irr Bric(b).
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Assume that (a) holds. Then Iﬁd\/) is an irreduciblekG-module and Inﬁ (Bv) =
Binae vy € 11T Bric(G). Similarly Ind3 (W) is an irreduciblekG-module and Infj (Bw) =
Binas vy € 11T Brie(G). Suppose thap,qe vy = Binagw)- Then

Pinde (v) = s (v) = Binagwy = Pinacwy:  INAG (V) = Ind3(W) in - kG-mod

and hence Ingl(¢v) = IndS (pw). But thengy = dw, V = W in (kH)b-mod andpy =
Bw, so that (c) follows.

Assume that (c) holds. The, =gy € Irr(b) and Ind; (Bv) = Bjnas v) € I Bric(G).
Thus Ind (4v) = dinas(v) € IMc(G). Similarly Byogew) € I Bric(G) and Ind (pw) =
Pinagwy € IMk(G). Suppose that Ifi(py) = Indg(¢w). Then Biugs vy = Binasw) =
IndS (Bv) = IndS(Bw), so thatfy = Bw, ¢v = ¢w and (a) holds. Consequently (a)
and (c) are equivalent.

That (d) implies (a), (b) and (c) is a consequence of Theorénld). Assume (a)
and letg e G—H. ThenM =bO(HgH)b is an O-lattice whereM = bk(HgH)b = (0)
by Corollary 1.5. ConsequentlyO(HgH)b = (0) and (d) holds.

Assume (b) and for each € Irric(b), let e, = (x(1)/IHN(X pen(x(h™Hh)) be
the primitive idempotent oZ(}CH) corresponding tox. Thene,(%e,) =0 for all g €
G — H by Corollary 1.5 and 'Iﬁ(ex) = €ngs(y) IS the primitive idempotent oZ(KG)
corresponding to Ingl(x). Let x, ¥ € Irrc(b) and letg € G — H. Then e (%) =
(e, TrE(e))(TrE(e,)%y) = 0, (d) holds and our proof is complete. O

Proof of Theorem 1.8. For (a), note thBrp(b)bp = bp. Let x € Cg(P) —
Ch(P); then

Bp (XEP) = Bp Brp(b) Bl'p(xb)(XEp) = Bp Brp(b(xb))(XEp) =0.
Thus Stab,p)(bp)= Cx(P) and, sinceBrp(B)bp = bp, we conclude that
Brp(B) Tres(R) (bp) = Tree(E) ().

Then Proposition 1.2 and Theorem 1.6 yield (a). SiBeg(b)s(bp) =bp, (b) holds.

Let (Q,bg) and (P,bp) be b-subpairs ofH and letS be a left transversal of
Cu(Q) in Cs(Q) with 1 € S, so thatCs(Q) = [JssSCH(Q) is disjoint. Leth € H
be such that'(Q,bg) = (P,bp). Then

"s(Bo) = 3. "o = 3 O ("hq) = s(b)

seS seS

and hence

Co(P){h € H ["(Q.bq) = (P.be)} = {g € G [ 9(Q. 5(bq)) = (P, s(be))}.



156 M.E. HARRIS

Conversely, letg € G be such tha#(Q, s(bg)) = (P,s(bp)). Then9B = B and
9Q = Q. LetU be a left transversal oEy (P) in Cg(P) with 1 € U, so thatCg(P) =
Uueu UCH(P) is disjoint. Here9s(bg) = s(bp) = ",y Bre(“b)(“bp), Bro(b)s(bg) =
b and Brp(“b)(Ybp) = Ubp for all u € U. Thus

0 # 9bq = Brp(®b)s(bp) = Y _ Brp(%b)(“bp).

ueU

We conclude thafb = Pu for someu € U and sog = uh for someh € H. But

then9(Q, s(bg)) ="("Q, "s(bg)) = (P, s(bp)) and ("Q,"s(bg)) = (P, s(bp)). Since
Bro(b)s(bg) = bg, we haveBrp(b)s(bp) = "bg and then"bg = bp, which completes
a proof of (c) (i).

For a proof of (c) (ii), it suffices to assume th&® < P. First suppose that
(Q,bg) < (P,bp). Thusbg is P-stable andBrp(bg)bp = bp. As P < Ng(Q),
we conclude thaP stabilizess(bg). Let U be a left transversal of(P) in Cg(P)
with 1 € U. Here

Bre (s(Bo))Be = Brp(s(Bo)) Bre (Bo)Be = Bre (Bo)bp = be

and, sinceCg(P) < Cg(Q), we haveBrp(s(bg))'bp = “bp for all u € U. Thus
Brp(s(bg))s(bp) = s(bp). Conversely, suppose théQ, s(bg)) < (P,s(bp)). Then
s(bq) € (kCs(Q))P andBrp(s(bg))s(bp) = s(bp). Utilizing [10, Lemma 40.2],

S(Bp) Brp(b) = Bp = Brp(S(BQ))S(BP) Brp(b)
= Brp/Q(S(bQ) BrQ(b))Bp = BI’p/Q(BQ)Ep = BTP(BQ)BP.

Sinces(bg) Bro(b) = bg, bg is P-stable and sqQ, bg) < (P, bp) which completes
a proof of (c) (ii).

Let (P, Bp/) be aB-subpair ofG. Let (D,bp) be a maximalb-subpair of H;
thus (D, s(bp)) is a maximal B-subpair of G. Then there is arx € G such that
X(P',Bp) = (D,s(bp)). Thus (*P’,*Bp/) < (D,s(bp)) and settingQ = *P’, we
have (Q,bg) = (D,bp) for a uniquebg € BI(kCH(Q)). But then (Q,s(bg)) <
(D, s(bp)); consequentlyBp = s(bg) and*(P’, Bp/) = (Q,s(bg)), which completes
a proof of (d).

For (e), let(Q,bg) be ab-subpair ofH. By (a), kCx(Q)bg-mod andkCs(Q)Bo-
mod are Morita equivalent. Thus(kCy(Q)bg)| = |P(kCs(Q)Bg)|. Clearly

I{Q, € LPG((OH)b) | Q, is associated witf{Q, bg)}| = |P(kCh(Q)bg)|
and

[{Qs € LPG((OG)B) | Qs is associated witfQ, s(bg))}| = |P(kCs(Q)s(bg))|.
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Also if Q, € LPG((OH)b) and Q, is associated wit{Q, bg) and j € y, then
Bro(i)bg = Bro(j) = Bro(j)bgs(bg) = Brq(j)s(bg).

Thus 1.(Q,) € LPG((OG)B) andi.(Q,) is associated wit{Q, s(bg)). The desired
conclusion now follows from Theorem 1.6 (e).

Let (P,bp), (P,s(bp)) andbp be as in (f). Note that Irfgt Irri(bp) — Irr(s(bp))
is a bijection by (a). Then Proposition 1.2 and Theorem 1e8dy(f).

Let (D,bp) and (P,bp) be as in (g). Then Theorem 1.6 (b) and [3, Proposi-
tion 1.2] imply that In@®{2)(): Rc(Ch(P),bp) — Rx(Ca(P),s(bp)) is a perfect
isometry that induces the linear map

INdES (2 (4)p - CFy(Cu(P), be, K) = CFp(Ca(P), slbe), K).

Letu e D, setP = (u) and lety € Irr(b). Then, by Lemma 2.1,

IndS R @ ubp)) = > du(v, #)(INdEE(E(9))

¢elrr Bric(bp)

and

d* M (indg () = Y (du(Ind§ W), INcEEE) (@) IdEE ) 9)-

¢elrr Bric(bp)

The desired conclusion now follows from [11, Theorem 1 (iVAn alternate proof
can be obtained from [10, Theorem 43.4]. Indeed,det Irr Br(bp) and lety
LP(((OH)b)P) correspond as in Remark 2.2. It is easy to see tha@ﬁ@w) €
Irr Bric(s(bp)) corresponds(y) € LP((OG)B)P). Let j € y. Here Proposition 1.2 (d)
implies that Ing (¥)(uj) = v(uj) and the desired conclusion follows from Remark 2.2.

]
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