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Abstract
The first step in the fundamental Clifford Theoretic Approach to General Block

Theory of Finite Groups reduces to:H is a subgroup of the finite groupG and b
is a block of H such thatb(gb) = 0 for all g 2 G � H . We extend basic results of
several authors in this situation and place these results into current categorical and
character theoretic equivalences frameworks.

1. Introduction and statements of results

Let G be a finite group, letp be a prime integer and let (O,K,k) be a p-modular
system forG that is “large enough” for all subgroups ofG (i.e., O is a complete dis-
crete valuation ring,k = O=J(O) is an algebraically closed field of characteristicp
and the field of fractionsK of O is of characteristic zero and is a splitting field for
all subgroups ofG).

Let N be a normal subgroup ofG and let
 be a block (a primitive) idempotent
of Z(ON). Set H = StabG(
 ) so thatN � H � G. Also let Bl(OH j
 ) and Bl(OGj
 )
denote the set of blocks ofOH andOG that cover
 , resp. Then it is well-known that
if b 2 Bl(OH j
 ), then b(gb) = 0 for all g 2 G � H and the trace map fromH to G,
TrG

H , induces a bijection TrG
H : Bl(OH j
 )! Bl(OGj
 ) such that corresponding blocks

are “equivalent.” This basic analysis pioneered by P. Fong and W. Reynolds (cf. [5, V,
Theorem 2.5]) is the first step in the fundamental Clifford theoretic approach to general
block theory: the reduction to the case of a stable block of a normal subgroup.

Consider the more general situation: (P) H is a subgroup ofG and e is an idem-
potent of Z(OH ) is such thate(ge) = 0 for all g 2 G� H .

Note that if � is an idempotent ofZ(OH ) such thate� = �, then �(g�) = 0 for
all g 2 G� H .

Fundamental contributions to this context appear in [9, Theorem 1] and in [11,
Theorem 1].

The purpose of this paper is to put the significant results of [9, Theorem 1] and
[11, Theorem 1] into current categorical and character theoretic equivalences context
and to extend these basic results in this context.
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It is also well-known that ifH is a subgroup ofG and if � 2 IrrK(H ) is such
that IndG

H (�) 2 IrrK(G) and if e� = (�(1)=jH j)�Ph2H �(h�1)h
�

denotes the primitive

idempotent ofZ(KH ) associated to� , thene� (ge� ) = 0 for all g 2 G�H and TrGH (e� )
is the primitive idempotent ofZ(KG) associated to IndGH (�) (cf. Corollary 1.5).

In this article, we shall generally follow the (standard) notation and terminology
of [5] and [10].

All rings have identities and are Noetherian and all modulesover a ring are unitary
and finitely generated left modules. IfR is a ring, thenR-mod will denote the category
of left R-modules andR0 denotes the ring opposite toR.

The required proofs of the following main results will be presented in Section 3.
Section 2 contains basic results that are needed in our proofs. We shall assume that
H is a subgroup of the finite groupG in the remainder of this section and we shall
let T be a left transversal ofH in G with 1 2 T . Thus G =

S
t2T t H is disjoint.

For our first three results,O will denote a commutative Noetherian ring.
Our first two results are well-known and easy to prove (cf. [10, Sections 9 and 16]).

Lemma 1.1. Let B be a unitaryO-algebra that is an interior H-algebra(as
in [10, Section 16]).Then:
(a)

IndG
H (B) = OG
OH B
OH OG =

M
s,t2T

(s(OH )
OH B
OH (OH )t�1)

�= M
s,t2T

(s
O B

 t�1)

is a unitary interior G-algebra with1IndG
H (B) =

P
t2T (t
O 1B
O t�1) and with�: G!

IndG
H (B)� such that g7!P

t2T (gt
O1B
O t�1) for all g 2 G. Moreoverft
O1B
O

t�1 j t 2 Tg is a set of orthogonal idempotents ofIndG
H (B); and

(b) The map� : Z(B) ! Z
�
IndG

H (B)
�

such that z 7! P
t2T (t 
O z
O t�1) for all

z 2 Z(B) is an O-algebra isomorphism.

Proposition 1.2. Let e be an idempotent of Z(OH ) such that e(ge) = 0 for all
g 2 G � H and set E= TrG

H (e) =
P

t2T (te), so that E is an idempotent of Z(OG).
Then:
(a)

(OG)E = (OG)e(OG), e(OG)e = e(OG)Ee= (OH )e

and theO-linear map

f : IndG
H ((OH )e)! (OG)E
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such that x
OH b
OH y 7! xby for all x, y 2 G and all b2 (OH )e is an interior
G-algebra isomorphism. Also theO-linear map

� : Z((OH )e)! Z
�
IndG

H ((OH )e)
�

such that z 7! P
t2T (t 
O z 
O t�1) for all z 2 Z((OH )e) is an O-algebra iso-

morphism;
(b) The inclusion map� : (OH )e! (OG)E is an embedding of interior H-algebras;
(c) The functors

IndG
H (�) = (OG)e
(OH )e (�) : (OH )e-mod! (OG)E-mod

and

e � ResOG
OH (�) = e(OG)
(OG)E (�) : (OG)E-mod! (OH )e-mod

exhibit a Morita equivalence between the Abelian categories (OH )e-mod and(OG)E-
mod with associated((OH )e, (OG)E)-bimodule e(OG); and
(d) Let M be an(OH )e-module. Then

IndG
H (M) = (OG)e
(OH )e M =

M
t2T

(t 
O M)

and

�(g
(OH )e m) =

8<
:

0 if g =2 H
1
O (�g)m

if g 2 H , for all � 2 (OH )e, all m 2 M and all g2 G.

Let e be an idempotent ofZ(OH ).

REMARK 1.3. Let g 2 G. The following three conditions are equivalent:
(i) e(O(HgH))e = (0);
(ii) e(ge) = 0; and
(iii) e(O(HgH)
OH V) = (0) for any moduleV in (OH )e-mod.

Indeed, it is clear that (i) implies (ii) and (iii). Leth1, h2 2 H . Then e(h1gh2)e =
h1e(ge)gh2, so that (ii) implies (i). Also ifV = (OH )e in (iii), then

e
�
O(HgH)
OH (OH )e

� �= e(O(HgH)e)

in (OH )e-mod and so (iii) implies (i).
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Lemma 1.4 (E.C. Dade [4]). Let K be a field and let e be an idempotent in
Z(KH ). Suppose that

dim
�
HomKG

�
IndG

H (X), IndG
H (Y)

�Æ
K
�

= dim(HomKH (X, Y)=K)

for any irreducible modules X, Y in (KH )e-mod. Then e(ge) = 0 for all g 2 G� H .

An immediate implication of Lemma 1.4 is:

Corollary 1.5. Assume thatK is a splitting field for G and H and that e is
an idempotent of Z(KH ) such that IndG

H defines an injective mapIndG
H : IrrK(e) !

IrrK(G). Then e(ge) = 0 for all g 2 G� H .

For the remainder of this section, we assume that (O,K, k) is a p-modular sys-
tem that is “large enough” for all subgroups ofG. As is standard, the natural ring
epimorphism� : O ! k = O=J(O) induces an epimorphism on allO-algebras that is
also denoted by�. Similarly for O-modules.

Theorem 1.6 (cf. [5, V, Theorem 2.5], [9, Proposition 1] and [11, Theorem1]).
Assume that b2 Bl(OH ) is such that b(gb) = 0 for all g 2 G � H (as in Proposi-
tion 1.2) and let D be a defect group of b in H. Then:
(a) Proposition 1.2applies (with R = O), B = TrG

H (b) 2 Bl(OG) and D is a defect
group of B in G;
(b) The functorsIndG

H (�) = (OG)
OH (�) = (OG)b
(OH )b (�):
(OH )b-mod! (OG)B-mod and b� ResGH (�) : (OG)B-mod! (OH )b-mod

exhibit a Morita equivalence between the Abelian categories (OH )b-mod and(OG)B-
mod. On the character level, this Morita equivalence induces the bijections:

IndG
H : IrrK(b)! IrrK(B), IndG

H : Irrk(b)! Irrk(B)

and

IndG
H : Irr BrK(b)! Irr BrK(B).

Moreover, this Morita equivalence has associated bimodules:

(OG)b in (OG)B-mod-(OH )b and b(OG) in (OH )b-mod-(OG)B.

Here (OG)b when viewed as anO(G � H )-module is indecomposable with1D =f(d, d) j d 2 Dg and trivial 1D-source and a similar fact holds for b(OG);
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(c) Let M be an indecomposable(OH )b-module with vertex Q and Q-source V. Then
IndG

H (M) = OG
OH M = (OG)b
OH )b M in (OG)B-mod is an indecomposable(OG)-
module with vertex Q and Q-source V;
(d) The above conditions hold over k forb 2 Bl(kH) and B = TrG

H

�
b
� 2 Bl(kG), etc;

(e) The inclusion map i: (OH )b! (OG)B is an embedding of interior H-algebras
so that i induces injective maps([10, Proposition 15.1])

i� : PG((OH )b)! PG((OG)B) and i� : LPG((OH )b)! LPG((OG)B).

Let D
 be a defect pointed group of(OH )b as an H-algebra. Thus i�(D
 ) = Di (
 ),

where i(
 ) =
�
 ((OG)E)�	, is a defect pointed group of(OG)B as a G-algebra. Thus

if j 2 
 , then j 2 i (
 ) and j(OG)Bj = jb(OG)bj = j (OH )bj , so that these source
algebras of b and B are equal as interior D-algebras; and
(f) The Puig category of local pointed groups of b inOH and of B inOG are equiv-
alent.

The next result illuminates the hypothesis of [11, Theorem 1].

Proposition 1.7. Let b be a block idempotent of Z(OH ). The following four
conditions are equivalent:
(a) IndG

H induces an injective map ofIrrk
�
b
�! Irrk(G);

(b) IndG
H induces an injective map ofIrrK(b)! IrrK(G); and

(c) IndG
H induces an injective map ofIrr BrK(b)! Irr BrK(G); and

(d) b(gb) = 0 for all g 2 G� H .
In which case, Theorem 1.6applies so that B= TrG

H (b) 2 Bl(OG), the functor

IndG
H = (OG)b
(OH )b (�) : (OH )b-mod! (OG)B-mod

induces a (Morita) categorical equivalence, the maps of(a), (b) and (c) are bi-
jections, etc.

In our final result, (a), (b), (c) and (d) are presented in [9, Theorem 1] without
proof. For the convenience of the reader, we shall include a proof of these items.

Theorem 1.8 (cf. [9, Theorem 1]). Assume that b2 Bl(OH ) is such that b(gb) =
0 for all g 2 G�H (as in Theorem 1.6).Set� = fgb j g 2 Gg so that B=

�P!2�!� 2
Bl(OG), etc.
(a) Let

�
P, bP

�
be a b-subpair of H. ThenbP

�
xbP

�
= 0 for all x 2 CG(P)�CH (P),

Theorem 1.6 (d)applies s
�
bP
�

= TrCG(P)
CH (P)

�
bP
� 2 Bl(kCG(P)),

�
P,s

�
bP
��

is a B-subpair
of G and the k-linear map

� : IndCG(P)
CH (P)

�
kCH (P)bP

�
= kCG(P)
kCH (P) kCH (P)bP 
kCH (P) kCG(P)

! kCG(P)s
�
bP
�
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such that x
kCH (P) � 
kCH (P) y ! x�y for all x, y 2 CG(P) and all � 2 kCH (P)bP

is an interior CG(P)-algebra isomorphism. Also IndG
H : Irrk

�
bP
� ! Irrk

�
s
�
bP
��

is a
bijection;
(b) The map

�
P, bP

� 7! �
P, s

�
bP
��

from the set of b-subpairs of H into the set of
B-subpairs of G is injective;
(c) Let

�
Q, bQ

�
and

�
P, bP

�
be b-subpairs of H. Then:

(i)
�
g 2 G

�� g
�
Q, s

�
bQ
��

=
�
P, s

�
bP
��	

= CG(P)
�
h 2 H

�� h
�
Q, bQ

�
=
�
P, bP

�	
so that

�
Q, bQ

�
and

�
P, bP

�
are conjugate in H if and only if

�
Q, s

�
bQ
��

and�
P, s

�
bP
��

are conjugate in G, and

(ii)
�
Q, bQ

� � �P, bP
�

in H if and only if
�
Q, s

�
bQ
�� � �P, s

�
bP
��

in G;

(d) For any B-subpair
�
P0, BP0� of G there is an x2 G and a b-subpair

�
P, bP

�
of

H such thatx
�
P0, BP0� =

�
P, s

�
bP
��

; consequently the Brauer category of b in H is
equivalent to the Brauer category of B in G;
(e) Let

�
Q, bQ

�
be a b-subpair of H. The injective map i� : LPG((OH )b) !

LPG((OG)B) of Theorem 1.6induces a bijection

i (
Q,bQ)� :

�
Q
 2 LPG((OH )b)

�� Q
 is associated with
�
Q, bQ

�	
! �

QÆ 2 LPG((OG)B)
�� QÆ is associated with

�
Q, s

�
bQ
��	

in which Q
 7! Qi�(
 ) for all Q
 2 LPG((OH )b) such that Q
 is associated with�
Q, bQ

�
;

(f) Let
�
P, bP

�
be a b-subpair of H and let

�
P, s

�
bP
��

be the corresponding B-

subpair of G. Let bP be the unique block idempotent of Z(OCH (P)) that “ lifts ” bP.
Then bP(xbP) = 0 for all x 2 CG(P) � CH (P), s(bP) = TrCG(P)

CH (P)(bP) is a block idem-

potent ofOCG(P) that “ lifts ” s
�
bP
�

and Theorem 1.6applies to bP 2 Bl(OCH (P))
where CH (P) � CG(P); and
(g) Let (D, bD) be a maximal b-subpair of H. Let P � D and let

�
P, bP

�
be the

unique b-subpair of H such that
�
P, bP

� � �D, bD
�
. Then

IndCG(P)
CH (P)(�) : RK(CH (P), bP)! RK(CG(P), s(bP))

is a perfect isometry and consequently induces the linear map

IndCG(P)
CH (P)(�)p0 : CFp0(CH (P), bP,K)! CFp0(CG(P), s(bP),K).

Let u2 D and set P= h�i. Then

d(u,s(bP))
G Æ IndG

H (�) = IndCG(P)
CH (P)(�)p0 Æ d(u,bP)

H : CF(H , b,K)! CFp0(CG(P), s(bP), K).

Consequently the perfect isometryIndG
H (�): RK(H ,b)! RK(G, B) is part of an isotopy

between b and B with local system the family
�
IndCG(P)

CH (P)(�) �� P � D, P cyclic
	
.
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REMARK 1.9. In the situation of Theorem 1.8 and after Theorem 1.6 (a)has
been established, the more general investigations of [6] apply (cf. [6, Remark 1.3 (a)]).

2. Preliminary results

Let G be a finite group and let (O,K, k = O=J(O)) be a p-modular system that
is “large enough” for all subgroups ofG. We shall, as in [3], setCFp0(G,K) =f f 2 CF(G,K) j f (G� Gp0) = (0)g.

Let u be a p-element of G and set P = hui. Let � 2 IrrK(G) and let � 2
Irr BrK(CG(P)) � CFp0 (CG(P),K). We shall letdu(� , �) denote the generalized de-
composition number associated tou 2 Gp, � 2 IrrK(G) and � 2 Irr BrK(CG(P)),
cf. [5, IV, Section 6]. Thusdu

G(�)(�) 2 CFp0(CG(P),K) where du
G(�)(s) = �(us) =P�2Irr BrK(CG(P)) du(� , �)�(s) for all s 2 CG(P)p0 . Moreover, as in [3, Section 4A], if

b 2 Bl(OG) and bP 2 Bl(OCG(P)), thend(u,bP)
G : CF(G,b,K)! CFp0 (CG(P),bP,K) is

defined by: if� 2 CF(G,b,K) and s 2 CG(P)p0 , then
�
d(u,bP)

G (�)
�
(s) = (bP �du

G(�))(s) =�(usbP).
Since IrrK(b) is a basis ofCF(G, b,K), the K-linear mapd(u,bP)

G is characterized
by the well-known:

Lemma 2.1. Let� 2 IrrK(b). If Br P(b)bP = 0, then d(u,bP)
G (�) = 0. If Br P(b)bP =

bP, then d(u,bP)
G (�) =

P�2Irr BrK(bP) du(� , �)�
Proof. With the notation and hypotheses of this lemma, the first statement is a

consequence of Brauer’s Second Main Theorem on Blocks ([5, IV, Theorem 6.1]) and
the second statement is a consequence of [2, Theorem A2.1].

REMARK 2.2. As above, if� 2 Irr BrK(CG(P)) corresponds to
 2 LP((OG)P)
(i.e., � is the irreducible Brauer character obtained from the irreducible kCG(P)-
modulekCG(P)BrP( j )=J(kCG(P)BrP( j )) for any j 2 
 ), then, by [10, Theorem 43.4]
du(� , �) = �(u j) for any j 2 
 .

3. Proofs

As noted above, Lemma 1.1 and Proposition 1.2 are well-knownand easy to prove.

Proof of Lemma 1.4. Assume the hypotheses of Lemma 1.4. LetS be a set of
double (H , H )-coset representatives inG such that 12 S and let X, Y be irreducible
modules in (KH )e-mod. Here

HomKG
�
IndG

H (X), IndG
H (Y)

� �= HomKH

 
X,
M
s2S

(K(HsH)
KH Y)

!

�= M
s2S

HomKH (X,K(HsH)
KH Y)
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in K-mod. Thus HomKH (X, K(HsH)
KH Y) = (0) for all 1 6= s 2 S.
Fix 1 6= s 2 S and an irreducible moduleX in (KH )e-mod.
We assert: (�) HomKH (X,K(HsH)
KH V) = (0) for all V in (KH )e-mod.
Indeed, we may assume thatV is reducible in (KH )e-mod and we proceed by

induction on dim(V=K). Let V1 be a maximal submodule ofV . Then

(0)! V1! V ! V=V1! (0)

is a short exact sequence in (KH )e-mod. Thus, sinceK(HsH)j(KG) in KH -mod-KH ,

(0)! K(HsH)
KH V1! K(HsH)
KH V ! K(HsH)
KH (V=V1)! (0)

is a short exact sequence inKH -mod. Consequently

HomKH (X, K(HsH)
KH V1)

! HomKH (X, K(HsH)
KH V)

! HomKH (X, K(HsH)
KH (V=V1))

is exact inK-mod and we conclude from the induction hypothesis that

HomKH (X, K(HsH)
KH V) = (0).

This establishes (�).
SinceX can be any irreducible (KH )e-module, (�) implies that Soc(eK(HsH)
KH

V) = (0) for any moduleV in (KH )e-mod. ThuseK(HsH)e
KH V = (0) for any
module V in (KH )e-mod and we are done.

Proof of Theorem 1.6. Assume the hypotheses of Theorem 1.6. Applying
Proposition 1.2, [5, V, Lemma 1.2] and [5, III, Lemma 9.6],D is contained in a
defect group ofB 2 Bl(OG). Since IndGH : IrrK(b) ! IrrK(B) is bijective, [5, IV,
Theorem 4.5] and degree considerations complete a proof of (a). Clearly (OG)b is in-
decomposable inO(G� H )(B
O b0)-mod andD� D is a defect group ofB
O b0 2
Bl(O(G � H )). Also (OH )bjResG�H

H�H ((OG)b) in O(H � H )-mod and (OH )b is in-
decomposable inO(H � H )-mod with 1D as a vertex and trivial1D-source. Then
[5, III, Lemma 4.6 (ii) and Corollary 6.8] implies the last part of (b). Thus (b) holds,
[5, III, Corollary 4.7] yields (c) and (d) and (e) are clear. Finally (e) and [5, Theo-
rem 47.10 (b)] yield (f).

Proof of Proposition 1.7. Assume the situation of this proposition. Let V and W
be irreducible (kH)b-modules with irreducible characters�V , �W in Irrk

�
b
�

and irre-
ducible Brauer characters�V , �W in Irr BrK(b).
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Assume that (a) holds. Then IndG
H (V) is an irreduciblekG-module and IndGH (�V ) =�IndG

H (V) 2 Irr BrK(G). Similarly IndG
H (W) is an irreduciblekG-module and IndGH (�W) =�IndG

H (V) 2 Irr BrK(G). Suppose that�IndG
H (V) = �IndG

H (W). Then

�IndG
H (V) = �IndG

H (V) = �IndG
H (W) = �IndG

H (W), IndG
H (V) �= IndG

H (W) in kG-mod

and hence IndGH (�V ) = IndG
H (�W). But then�V = �W, V �= W in (kH)b-mod and�V =�W, so that (c) follows.

Assume that (c) holds. Then�V =�V 2 Irrk
�
b
�

and IndGH (�V ) =�IndG
H (V) 2 IrrBrK(G).

Thus IndGH (�V ) = �IndG
H (V) 2 IrrK(G). Similarly �IndG

H (W) 2 Irr BrK(G) and IndGH (�W) =

�IndG
H (W) 2 Irrk(G). Suppose that IndGH (�V ) = IndG

H (�W). Then �IndG
H (V) = �IndG

H (W) =

IndG
H (�V ) = IndG

H (�W), so that�V = �W, �V = �W and (a) holds. Consequently (a)
and (c) are equivalent.

That (d) implies (a), (b) and (c) is a consequence of Theorem 1.6 (b). Assume (a)
and letg 2 G�H . Then M = bO(HgH)b is anO-lattice whereM = bk(HgH)b = (0)
by Corollary 1.5. ConsequentlybO(HgH)b = (0) and (d) holds.

Assume (b) and for each� 2 IrrK(b), let e� = (�(1)=jH j)�Ph2H (�(h�1)h)
�

be
the primitive idempotent ofZ(KH ) corresponding to� . Then e� (ge� ) = 0 for all g 2
G � H by Corollary 1.5 and TrGH (e� ) = eIndG

H (�) is the primitive idempotent ofZ(KG)

corresponding to IndGH (�). Let � , 2 IrrK(b) and let g 2 G � H . Then e� (ge ) =�
e� TrG

H (e� )
��

TrG
H (e� )ge � = 0, (d) holds and our proof is complete.

Proof of Theorem 1.8. For (a), note thatBrP(b)bP = bP. Let x 2 CG(P) �
CH (P); then

bP
�

xbP
�

= bP BrP(b) BrP(xb)
�

xbP
�

= bP BrP(b(xb))
�

xbP
�

= 0.

Thus StabCG(P)
�
bP
�
= CH (P) and, sinceBrP(B)bP = bP, we conclude that

BrP(B) TrCG(P)
CH (P)

�
bP
�

= TrCG(P)
CH (P)

�
bP
�
.

Then Proposition 1.2 and Theorem 1.6 yield (a). SinceBrP(b)s
�
bP
�

= bP, (b) holds.

Let
�
Q, bQ

�
and

�
P, bP

�
be b-subpairs ofH and let S be a left transversal of

CH (Q) in CG(Q) with 1 2 S, so thatCG(Q) =
S

s2S sCH (Q) is disjoint. Let h 2 H

be such thath
�
Q, bQ

�
=
�
P, bP

�
. Then

hs
�
bQ
�

=
X
s2S

(hs)bQ =
X
s2S

(hsh�1)
�

hbQ
�

= s
�
bP
�

and hence

CG(P)
�
h 2 H

�� h
�
Q, bQ

�
=
�
P, bP

�	 � �g 2 G
�� g
�
Q, s

�
bQ
�
) =

�
P, s

�
bP
��	

.
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Conversely, letg 2 G be such thatg
�
Q, s

�
bQ
��

=
�
P, s

�
bP
��

. Then gB = B and
g� = �. Let U be a left transversal ofCH (P) in CG(P) with 1 2 U , so thatCG(P) =S

u2U uCH (P) is disjoint. Heregs
�
bQ
�

= s
�
bP
�

=
P

u2U BrP(ub)
�

ubP
�
, BrQ(b)s

�
bQ
�

=

bQ and BrP(ub)
�

ubP
�

= ubP for all u 2 U . Thus

0 6= gbQ = BrP(gb)s
�
bP
�

=
X
u2U

BrP(gb)
�

ubP
�
.

We conclude thatgb = bu for some u 2 U and sog = uh for some h 2 H . But
then g

�
Q, s

�
bQ
��

= u
�

hQ, hs
�
bQ
��

=
�
P, s

�
bP
��

and
�

hQ, hs
�
bQ
��

=
�
P, s

�
bP
��

. Since

BrQ(b)s
�
bQ
�

= bQ, we haveBrP(b)s
�
bP
�

= hbQ and thenhbQ = bP, which completes
a proof of (c) (i).

For a proof of (c) (ii), it suffices to assume thatQ E P. First suppose that�
Q, bQ

� � �
P, bP

�
. Thus bQ is P-stable andBrP(bQ)bP = bP. As P � NG(Q),

we conclude thatP stabilizess
�
bQ
�
. Let U be a left transversal ofCH (P) in CG(P)

with 1 2 U . Here

BrP
�
s
�
bQ
��

bP = BrP
�
s
�
bQ
��

BrP
�
bQ
�
bP = BrP

�
bQ
�
bP = bP

and, sinceCG(P) � CG(Q), we haveBrP
�
s
�
bQ
��u

bP = ubP for all u 2 U . Thus

BrP
�
s
�
bQ
��

s
�
bP
�

= s
�
bP
�
. Conversely, suppose that

�
Q, s

�
bQ
�� � �P, s

�
bP
��

. Then

s
�
bQ
� 2 (kCG(Q))P and BrP

�
s
�
bQ
��

s
�
bP
�

= s
�
bP
�
. Utilizing [10, Lemma 40.2],

s
�
bP
�

BrP(b) = bP = BrP
�
s
�
bQ
��

s
�
bP
�

BrP(b)

= BrP=Q(s(bQ) BrQ(b))bP = BrP=Q
�
bQ
�
bP = BrP

�
bQ
�
bP.

Sinces
�
bQ
�

BrQ(b) = bQ, bQ is P-stable and so
�
Q, bQ

� � �P, bP
�

which completes
a proof of (c) (ii).

Let
�
P0, BP0� be a B-subpair of G. Let (D, bD) be a maximalb-subpair of H ;

thus
�
D, s

�
bD
��

is a maximal B-subpair of G. Then there is anx 2 G such that
x
�
P0, BP0� � �

D, s
�
bD
��

. Thus
�

xP0, x BP0� � �
D, s

�
bD
��

and settingQ = xP0, we

have
�
Q, bQ

� � �
D, bD

�
for a uniquebQ 2 Bl(kCH (Q)). But then

�
Q, s

�
bQ
�� ��

D, s
�
bD
��

; consequentlyx BP0 = s
�
bQ
�

and x
�
P0, BP0� =

�
Q, s

�
bQ
��

, which completes
a proof of (d).

For (e), let
�
Q,bQ

�
be ab-subpair ofH . By (a), kCH (Q)bQ-mod andkCG(Q)BQ-

mod are Morita equivalent. Thus
��P�kCH (Q)bQ

��� =
��P�kCG(Q)BQ

���. Clearly

���Q
 2 LPG((OH )b)
�� Q
 is associated with

�
Q, bQ

�	�� =
��P�kCH (Q)bQ

���
and

���QÆ 2 LPG((OG)B)
�� QÆ is associated with

�
Q, s

�
bQ
��	�� =

��P�kCG(Q)s
�
bQ
����.
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Also if Q
 2 LPG((OH )b) and Q
 is associated with
�
Q, bQ

�
and j 2 
 , then

BrQ( j )bQ = BrQ( j ) = BrQ( j )bQs
�
bQ
�

= BrQ( j )s
�
bQ
�
.

Thus ��(Q
 ) 2 LPG((OG)B) and i�(Q
 ) is associated with
�
Q, s

�
bQ
��

. The desired
conclusion now follows from Theorem 1.6 (e).

Let
�
P,bP

�
,
�
P,s

�
bP
��

andbP be as in (f). Note that IndGH : Irrk
�
bP
�! Irrk

�
s
�
bP
��

is a bijection by (a). Then Proposition 1.2 and Theorem 1.6 yield (f).
Let

�
D, bD

�
and (P, bP) be as in (g). Then Theorem 1.6 (b) and [3, Proposi-

tion 1.2] imply that IndCG(P)
CH (P)(�) : RK(CH (P), bP) ! RK(CG(P), s(bP)) is a perfect

isometry that induces the linear map

IndCG(P)
CH (P)(�)p0 : CFp0 (CH (P), bP, K)! CFp0(CG(P), s(bP),K).

Let u 2 D, set P = hui and let 2 IrrK(b). Then, by Lemma 2.1,

IndCG(P)
CH (P)(d

H (u, bP)( )) =
X

�2Irr BrK(bP)

du( , �)
�
IndCG(P)

CH (P)(�)
�

and

d(u,s(bP))
G

�
IndG

H ( )
�

=
X

�2Irr BrK(bP)

�
du
�

IndG
H ( ), IndCG(P)

CH (P)(�)
�

IndCG(P)
CH (P)(�)

�
.

The desired conclusion now follows from [11, Theorem 1 (iv)]. An alternate proof
can be obtained from [10, Theorem 43.4]. Indeed, let� 2 Irr BrK(bP) and let 
 2
LP(((OH )b)P) correspond as in Remark 2.2. It is easy to see that IndCG(P)

CH (P)(�) 2
Irr BrK(s(bP)) correspondsi (
 ) 2 LP((OG)B)P). Let j 2 
 . Here Proposition 1.2 (d)
implies that IndGH ( )(u j) =  (u j) and the desired conclusion follows from Remark 2.2.

References

[1] J. Alperin and M. Broué:Local methods in block theory, Ann. of Math. (2)110 (1979), 143–
157.

[2] M. Broué: Radical, hauteursp-sections et blocs, Ann. of Math. (2)107 (1978), 89–107.
[3] M. Broué: Isometries parfaites, types de blocs, categories derivees, Asterisques181–182

(1990), 61–91.
[4] E.C. Dade: Private Communication.
[5] W. Feit: The Representation Theory of Finite Groups, North-Holland, Amsterdam-New York-

Oxford, 1982.
[6] M.E. Harris: Splendid derived equivalences for Blocks of finite groups, J. London Math. Soc.

(2) 60 (1999), 71–82.



158 M.E. HARRIS

[7] K. Iizuka, F. Ohmori and A. Watanabe:A remark on the representations of finite groupsVI,
Mem. Fac. Gen. Ed. Kumamoto Univ.18 (1983), 1–8, (in Japanese).

[8] L. Puig: On the Local Structure of Morita and Rickard Equivalences between Brauer Blocks,
Birkhäuser Verlag, 1999.

[9] L. Puig: Local block theory in p-solvable groups, Proc. Sympos. Pure Math.37 (1980),
385–388.

[10] J. Théavenaz: G-Algebras and Modular Representation Theory, Oxford University Press,
New York, 1995.

[11] A. Watanabe:On generalized decomposition numbers and Fong’s reductions, Osaka J. Math.
22 (1985), 393–400.

Department of Mathematics
Statistics and Computer Science (M/C 249)
University of Illinois at Chicago
851 South Morgan Street
Chicago, IL 60607–7045
USA
e-mail: harris@math.uic.edu


