Title	Classifications and Basis Enumerations in Many－ Valued Logic Algebras
Author（s）	Miyakawa，Masahiro
Citation	大阪大学，1988，博士論文
Version Type	VoR
URL	https：／／hdl．handle．net／11094／35794
rights	
Note	

Osaka University Knowledge Archive ：OUKA
https：／／ir．Library．osaka－u．ac．jp／

Osaka University

Classifications and Basis Enumerations in Many-Valued Logic Algebras

January 1988

Masahiro MIYAKAWA

Classifications and Basis Enumerations in Many-Valued Logic Algebras

Dissertation
for the Doctor of Engineering

Submitted to
The Faculty of Engineering Science
Osaka University

January 1988

Masahiro MIYAKAWA

Electrotechnical Laboratory
Tsukuba, Japan 305

Abstract

Let P_{k} be the set of k-valued logical functions. The functions in a closed subset F of P_{k} may be classified by their membership in the maximal subsets of F. This also divides all its bases into finite equivalence classes. This thesis presents classifications and basis enumerations in the following cases: various functional constructions in P_{2}, the set P_{3} and its several maximal sets, the set $P_{k 2}$ of functions which map cartesian power of k-element set $\{0,1, \ldots, k-1\}$ into the two values $\{0,1\}$, and its 4 out of all 5 families of maximal sets.

The formulas for the numbers of n-ary Sheffer functions, functions Sheffer with constants, symmetric Sheffer functions, and symmetric functions Sheffer with constants, in various functional constructions of P_{2}, are given. The formulas for the number of bases consisting solely of n-ary symmetric functions in each of the constructions are also given.

Applications of a subset generating algorithm to efficient base enumeration, knapsack and minimal covering problems are also described.

Contents

Abstract i
Introduction 1

1. Definitions and Preliminaries 5
1.1. Functional completeness problem and classification in P_{k} 5
1.2. Functions preserving a relation 12
1.3. Operations over the relations 13
1.4. Homomorphism and similarity 14
2. Functional Constructions and their Bases in P_{2} 17
2.1. Introduction 17
2.2. Preliminaries on subsets of Boolean functions 18
2.3. Bases under ordinary composition 20
2.4. Bases under r-line coding 21
2.5. Bases under 2 -line fixed coding 23
2.6. Bases under compositions with delayed functions 24
2.7. Bases under sequential circuit composition 27
2.8. Concluding remarks 30
3. Bases Consisting of Symmetric Functions 31
3.1. Introduction 31
3.2. Preliminaries on subsets of symmetric Boolean functions 32
3.3. S-bases under the ordinary composition 35
3.4. S-bases under r-line coding 36
3.5. S-bases under 2-line fixed coding 37
3.6. S-bases under the uniform composition and its variations 39
3.7. S-bases under sequential circuit composition 41
3.8. Concluding remarks 43
4. Sheffer and Symmetric Sheffer functions in P_{2} 45
4.1. Introduction 45
4.2. Sheffer functions under ordinary composition 46
4.3. Sheffer functions under r-line coding 47
4.4. Sheffer functions under 2 -line fixed coding 48
4.5. Sheffer functions under uniform delay composition 49
4.6. Sheffer functions under Ibuki construction 49
4.7. Sheffer functions under Inagaki construction 50
4.8. Sheffer functions under sequential circuit construction 52
4.9. Concluding remarks 53
5. Classification of P_{3} 56
5.1. Basic structure of P_{3} 56
5.2. Strategy of the classification 63
5.3. Classification of T 64
5.4. Classification of $L \cup S$ 68
5.5. Classification of M 73
5.5.1. Classification of M^{1} 73
5.5.2. Classification of M^{2} 75
5.6. Classification of U 81
5.6.1. Classification of U^{1} 81
5.6.2. Classification of U^{2}. 82
5.7. Classification of B 87
5.8. Classification of $\overline{T L S M U B}$ 88
5.9. The result of the classification of P_{3} 90
5.10. Enumerations of bases of P_{3} 91
5.10.1. Examples of bases and pivotals 93
5.10.2. Conclusive discussions 95
5.11. Classifications and base enumeration results for P_{3} and its all maximal sets 96
6. Classifications of maximal sets of P_{3} 98
6.1. $\quad T$ (Slupecki functions or semi-degenerate functions) 98
6.2. L (Linear functions) 102
6.3. S (Self-dual functions) 104
6.4. Classification of B_{1} 105
Table 6.1: Classes of B_{1} 112
Table 6.2: Representatives of classes of B_{1} 113
6.5. Classification of T_{0} 115
6.6. Concluding remarks 120
Table 6.4: Classes of T_{0} 122
Table 6.5: Representatives of classes of T_{0} 125
7. Applications of a Subset Generating Algorithm to Base Enumeration, Knapsack and Minimal Covering Problems 128
7.1. Generating all subsets of $\{1, \ldots, n\}$ in lexicographic order 128
7.2. Functional completeness and enumeration of bases 130
7.3. The lexicographic enumeration of bases and classes of bases 131
7.4. Redundancy checks 134
7.5. Application of the base enumeration algorithm 135
7.6. Minimal covering problem 137
7.7. Knapsack problem 139
7.8. Concluding remarks 140
8. Classification of $P_{k 2}$ 141
8.1. Introduction 141
8.2. Definitions and notations 142
8.3. Classification of $P_{k 2}$ 143
8.4. Maximal rank of a base of $P_{k 2}$ 147
8.5. Concluding remarks 149
9. Classifications of Maximal Sets of $P_{k 2}$ 152
9.1. Classification of $Z_{i t}$ 152
9.2. Classification of the maximal sets T_{0}^{\prime} : the functions preserving 0 156
9.3. Classification of L^{\prime} : the set of functions from $P_{k 2}$ that are linear on $\{0,1\}$ 160
9.4. Classification of S^{\prime} 163
9.5. Classifications of the Symmetric Functions of $P_{k, 2}$ 168
9.5.1. Classification of symmetric functions of $P_{k 2}$ 168
9.5.2. Symmetric functions of $Z_{i, t}$ 169
9.5.3. Symmetric functions of T_{0} in $P_{k 2}$ 170
9.5.4. Symmetric functions of L^{\prime} 170
9.5.5. Symmetric functions of S^{\prime} 170
9.6. Concluding remarks 171
10. Concluding discussions, an overview and some open problems 175
Acknowledgements 180
Bibliography 181
Appendix 1. Classes of P_{3} 187
Appendix 2. Representatives of classes of P_{3} 196
Appendix 3. List of basic inclusions in P_{3} 198

Introduction

In the synthesis of large and complicated electronic instruments such as computers, a small number of basic primitives are used to compose logic networks in the instruments. These basic primitives should be, in general, able to compose an arbitrary network. For example, the NAND primitive is commonly used as one of such primitives. Let us see an example. A network $f(g(x, y, z), y, h(y, z))$ is composed of three-primitives f, g and h and has three inputs x, y and z. Note that neither delay nor synchronization is considered in this example, and no feed-back connection is allowed (a circuit with this restriction is called a combinatorial circuit). A set of basic primitives which can compose any logical network is called a complete set (or a base) of logical functions. There is a variety of compositions depending on the methods of constructing a network from gates, or on restrictions imposed by real circuit requirements. Accordingly, there are many notions for complete sets.

Recently, the concept of many-valued logic has been found to be useful in many areas, such as diagnosis of multiprocessor systems [But86], software (e.g. decision tables [Miy85b]), pattern recognition [Mic77], signal processing [LiR77], and optoelectronics [Hur86].

Main expectation in practice for many-valued logic in contrast to two-valued logic exists in its information density achievable without increasing the size or complexity of devices. It is well-known that one of the crucial problems in increasing information density in VLSI is the "pin" and "line" limitations associated with it (i.e. too large numbers of pins and lines to be arranged in a limited area). Many-valued logic allows each input pin to accept and each output pin to deliver more information, thereby making the total number of pins required in an integrated circuit chip much less than the case of binary elements. This eventually extends the line limitation, because the line density can be kept less in VLSI. A serious effort is being done for developing optical three-valued devices [WIS86a]. Optical devices are advantageous since they can avoid "interconnection delay" limitation; as the lines become very thin, their resistance increases and the propagation of voltage becomes delayed, so that this eventually limits the speed of VLSI [GLK84].

The synthesis problem of network can be divided into three major problems. The
first one is to find an efficient criterion, completeness criterion, to determine whether a given set of functions is complete or not. The second one is to enumerate all bases. Finally, the third one is to investigate an optimum construction of a network from a given base. This thesis is mainly devoted to the second problem, and especially, we are interested in many-valued cases. To be precise, we treat two-valued, three-valued, and some of general k-valued cases. The enumeration of bases is useful when one needs to select an appropriate base. Such a situation often arises when by a specific device some logical functions are difficult to implement while others are easy. The selection of a simple, reliable and economic base implementable by physical devices is a fundamental problem in the construction of networks.

Historically, the completeness problem about Boolean functions was first studied. Although several complete systems were known earlier, a general and most natural criterion is expressed in terms of so-called precomplete or maximal sets. Such completeness criterion was given first by Post in [Pos21], which has been rediscovered many times, cf. [Jab52,INN63]. As the first step toward many-valued logic, Jablonskij gave the completeness criterion for 3 -valued logic in [Jab58]. For general k-valued logic, it was given by Rosenberg [Ros65]. The criterion consists of a list of all maximal sets. Let P_{k} be the set of all k-valued logical functions. There are 5 and 18 maximal sets in P_{2} and P_{3}, respectively, and 6 families of them in P_{k}. Some other studies of the completeness problem can be seen in [Mal76,Ros77,Pok79,Lau84b].

Further in [Jab52] Jablonskij showed a straightforward method for classifying the whole functions of P_{2} into nonempty equivalence classes in order to determine all its bases (nonredundant complete sets): one has to investigate the intersections of the partitions by H_{i} and $P_{2} \backslash H_{i}$, where $H_{i}(1 \leq i \leq m)$ are P_{2}-maximal sets. This also divides all its bases into finite equivalence classes. This was done independently in [INN63] and [Krn65]. It is shown that P_{2} is divided into 15 classes [Jab52], and there are 42 classes of bases in P_{2} [INN63]. It is also shown that the maximal number of elements of a base of P_{2} is 4 [Jab52]. The above classification is valid provided the considered set has a finite base.

Thus the classification and the basis enumeration became the second step of the functional completeness theory following the completeness criterion. However, this is
often not so simple because of three reasons. Firstly, the number m of the maximal sets is usually rather large. The possible classes are only $2^{5}=32$ for $m=5$ (P_{2} case), while for $m=18$ (P_{3} case) it is $2^{18}=262144$, and the number m grows very rapidly when k increases. The second reason is that the descriptions of maximal sets are usually not easy to handle. Owing to the development of many-valued logic algebras we can now describe most maximal sets in terms of relations which the functions in the maximal sets "preserve". However, the relations are often complex. Lastly, the enumeration of bases is equivalent to the minimum cover problem, a famous NP-complete problem, which makes the enumeration extremely difficult in some cases. One has to invent an efficient algorithm to make the enumeration feasible. We have developed an efficient algorithm, but even with it, the enumeration of bases which involves about 600 classes required about 17 hours by FACOM M380 computer (about 16 MIPS).

The first step for the classification and base enumeration of P_{3} was done by the author in [Miy71] and [Miy79], respectively. There are 406 classes of functions and $6,239,721$ classes of bases of P_{3} (the original classification counted some classes twice; this was corrected in [Sto84a]). The author showed in [Miy79] that the maximal number of elements of a base of P_{3} is 6 , which answered the long-standing problem posed early in [Jab58] about the bases of P_{3}. Since there exists an incomplete nonredundant set with 7 elements, the maximal number of elements of a base of P_{3} had been conjectured to be greater than or equal to 7 . The above answer disproved the conjecture (this result is confirmed later by another method, not through enumeration, in [Vuk84]).

Recently, Machida [Mac79], Lau [Lau82b] and others determined all submaximal sets of P_{3}. The author [Miy82,Miy83,Miy84] and Stojmenović [Sto86a,Sto86b] determined their classes and bases (this was jointly reported in [MiS87a]). There are few classification results about closed sets in P_{k}. The set L of linear functions for the case k prime number is classified in [Sto86c]. The set of functions $P_{k 2}$ which maps k-values $\{0,1, \ldots, k-1\}^{n}$ to the two values $\{0,1\}$ and its maximal sets were classified jointly by the author and Stojmenović.

The present thesis describes the classifications and basis enumerations done by the author. We now give a detailed description for each chapter (we also indicate the papers where the given results were reported).

In Chapter 1 we give basic definitions. From Chapter 2 through Chapter 4 we treat Boolean cases. We consider 7 different kinds of functional constructions in P_{2} : ordinary composition, 2-line fixed coding construction, r-line coding construction, uniform composition, its Ibuki variation, its Inagaki variation, and sequential circuit construction.

In Chapter 2 we give classes of functions and classes of bases of Boolean functions under each of these functional constructions [MIS85]. In Chapter 3 we give the formulas for the numbers of bases consisting solely of symmetric n-ary functions (so called s-bases) for each construction. And in Chapter 3 we give formulas for the numbers of Sheffer, symmetric Sheffer, "Sheffer with constants", and "symmetric Sheffer with constants" functions of n-ary functions [MSH87].

In Chapter 5 we show that the set P_{3} of three-valued logical functions is divided into 406 classes and that the number of its classes of bases is $6,239,721$. We also show that, despite the existence of noncomplete independent sets with 7 elements, the maximal number of functions of a base of P_{3} is 6 . We also give some example of bases and nonredundant incomplete sets [Miy71,Miy79].

In Chapter 6 we present classes and bases for several maximal sets of $P_{3}: T, L, S$ [Miy83], B [Miy82], and T_{0} [Miy84] (also cf. [MiS87a]).

In Chapter 7 we show that the problem of base enumeration is equivalent to the minimal cover problem (an NP-complete problem). We give an algorithm which enumerates all bases in lexicographic order. We demonstrate its efficiency on some examples of real data. We also show that our base enumeration algorithm is applicable with slight modifications to minimal covering and knapsack problems [Miy85a,StM86a,StM87].

In Chapter 8 we present classifications of $P_{k, 2}$. We show that the number of classes is $13 A_{k}-11 A_{k-1}$, where A_{k} is the number of equivalence relations on the set of k elements. The maximal rank of $P_{k, 2}$ is proved to be $k+2$ [MiS87b].

In Chapter 9 we present classifications of 4 families of maximal sets out of all its 5 families, namely $Z_{i t}, T_{0}^{\prime}, L^{\prime}$ and S^{\prime}. We also prove that their maximal ranks are $2 k-$ $2, k+1, k+1$ and less than $2 k$, respectively [MSL87]. We also give the numerical data of the numbers of bases and s-bases for $2 \leq k \leq 10$.

In Chapter 10 we state several open problems. All the above mentioned results about classifications and basis enumerations are also included in the survey paper [MSLR87].

Chapter 1

Definitions and Preliminaries

1.1. Functional completeness problem and classification in P_{k}

As a motivation we shall consider the following situation arising in the synthesis of switching functions. We have certain basic elements called gates. Each gate has one or several inputs and a single output. The gate receives signals on the inputs and transform them into the output signal. For simplicity's sake we assume that all the input and output signals belong to the same finite set (called alphabet) whose elements (called letters) are denoted by $0,1, \ldots, k-1$. Note that it does not matter how the letters are denoted; the first k natural numbers are as convenient as any other symbols. We are to describe synthesis of networks constructed from gates by connecting outputs of certain gates to inputs of other gates. Variable x_{i} is used to denote the signals feeded in the input of a gate (or network).

Let k be a fixed positive integer $(k>1)$, and $E_{k}:=\{0,1, \ldots, k-1\}$ be the set of k integers. An ordered n-tuple of elements from E_{k} (an element of cartesian product E_{k}^{n}) is called a vector and denoted by $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$. We may delete the commas between the coordinates as well as parenthesis of the vector when there is no confusion, i.e. a vector may be represented by $a=a_{1} \ldots a_{n} \in E_{k}^{n}$. An n-ary k-valued function f is a map from E_{k}^{n} to E_{k}, i.e. f is a function of n variables ranging in E_{k} with values in E_{k}. The functioning of a gate can be described by assigning an output letter $f a_{1} \ldots a_{n}$ to every vector $a=a_{1} \ldots a_{n}$. Thus the gate realizes a function f. The number n of inputs corresponds to the arity of the function f. For our purposes the function f completely describes the functioning of the gate. A function f can be represented by a table shown in Table 1.1.

Definition 1.1.1. The set of k-valued logical function of n variables is denoted by $P_{k}^{(n)}$, i.e.

$$
P_{k}^{(n)}:=\left\{f\left(x_{1}, \ldots, x_{n}\right) \mid f: E_{k}^{n} \rightarrow E_{k}\right\}
$$

Put $P_{k}:=\bigcup_{n=1}^{\infty} P_{k}^{(n)}$, the set of k-valued logical functions.
The elements of P_{2} (a special case $k=2$) is called Boolean functions.
Two functions f and $g\left(f, g \in P_{k}\right)$ is equal, in symbol $f=g$, if the arities of both functions are equal (n) and $f\left(a_{1}, \ldots, a_{n}\right)=g\left(a_{1}, \ldots, a_{n}\right)$ for all $\left(a_{1}, \ldots, a_{n}\right) \in E_{k}^{n}$.

Definition 1.1.2. $f(\boldsymbol{x})$ depends on x_{i} iff there exist $a_{1}, a_{2}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{n}, b, c \in$ $E_{k}, b \neq c$, such that

$$
f\left(a_{1}, a_{2}, \ldots, a_{i-1}, b, a_{i+1}, \ldots, a_{n}\right) \neq f\left(a_{1}, a_{2}, \ldots, a_{i-1}, c, a_{i+1}, \ldots, a_{n}\right)
$$

If f depends on x_{i} then x_{i} is said to be an essential variable of f. Otherwise it is a nonessential (fictitious or dummy) variable.

Table 1.1.

x_{1}	x_{2}	\ldots	x_{n-1}	x_{n}	$f\left(x_{1}\right.$	x_{2}	\ldots	x_{n-1}	$\left.x_{n}\right)$
0	0	\ldots	0	0	$f(0$	0	\ldots	0	$0)$
0	0	\ldots	0	1	$f(0$	0	\ldots	0	$1)$
0	0	\ldots	0	$k-1$	$f(0$	0	\ldots	0	$k-1)$
0	0	\ldots	1	0	$f(0$	0	\ldots	1	$0)$
		\ldots					\ldots		
a_{1}	a_{2}	\ldots	a_{n-1}	a_{n}	$f\left(a_{1}\right.$	a_{2}	\ldots	a_{n-1}	$\left.a_{n}\right)$
		\ldots					\ldots		
$k-1$	$k-1$	\ldots	$k-1$	$k-1$	$f(k-1$	$k-1$	\ldots	$k-1$	$k-1)$

Suppose that we have a collection of gates $\left\{G_{i}\right\}$ realizing functions $f_{i} \in P_{k}$. These gates can be combined into combinatorial switching network by attaching outputs of certain gates to inputs of certain gates so that the resulting network has a single output and no feedback is created. This means that the single output of the network defines a unique $f \in P_{k}$ of inputs of the network which is nothing else than a "composition" of the f_{i} 's. Note that we automatically assume that we are allowed to reorder or identify the inputs. Thus, having a gate $f \in P_{k}^{(2)}$ we have at our disposal the gates realizing both $g \in P_{k}^{(2)}$ and $h \in P_{k}^{(1)}$ defined by $g a_{1} a_{2}:=f a_{2} a_{1}$ and $h a_{1}:=f a_{1} a_{1}$ for every $a_{1}, a_{2} \in E_{k}$.

The above composition of functions needs a more precisely definition. Operations over P_{k} means (1) renaming variables of a function (especially, this includes permuting variables and equating variables) and (2) substituting a function into an argument (variable) of a function. This can be defined more formally by introducing the following elementary operations over P_{k} (represented in basic universal algebra terminology after Mal'cev [Mal76]).

Definition 1.1.3. The three unary operations $\zeta, \tau, \triangle, \nabla$ and a binary operation * we define by the following equations. Let $f \in P_{k}^{(n)}$ and $g \in P_{k}^{(m)}$. Then $\zeta f \in P_{k}^{(n)}, \tau f \in$ $P_{k}^{(n)}, \triangle f \in P_{k}^{(\max (n-1,1))}, \nabla f \in P_{k}^{(n+1)}$ and $f * g \in P_{k}^{(n+m-1)}$:

$$
\begin{aligned}
\tau f=\zeta f & =\Delta f=f \text { for } n=1 \\
(\zeta f)\left(x_{1} \ldots x_{n}\right) & :=f\left(x_{2} \ldots x_{n} x_{1}\right), \\
(\tau f)\left(x_{1} \ldots x_{n}\right) & :=f\left(x_{2} x_{1} \ldots x_{n}\right), \\
(\triangle f)\left(x_{1} \ldots x_{n-1}\right) & :=f\left(x_{1} x_{1} \ldots x_{n-1}\right) \\
(\nabla f)\left(x_{1} \ldots x_{n+1}\right) & :=f\left(x_{2} x_{3} \ldots x_{n+1}\right), \\
(f * g)\left(x_{1} \ldots x_{n+m-1}\right) & :=f\left(g\left(x_{1} \ldots x_{m}\right) x_{m+1} \ldots x_{n+m-1}\right)
\end{aligned}
$$

for every $x_{1}, \ldots, x_{n+m-1} \in E_{k}$.

The algebra $<P_{k} ; \tau, \zeta, \Delta, \nabla, *>$ is called iterative algebra. A function h is called a superposition over a set F of functions if it is obtained from the elements of F by applying the above operations $\zeta, \tau, \triangle, \nabla$ and $*$ finite times. Note that the operation ∇ serves to introduce new variables as well as to identify two functions which are different only in fictitious (nonessential) variables.

Example 1.1.1. A composition $h\left(x_{1}, x_{2}\right):=f\left(x_{1}, g\left(x_{1}, x_{2}\right)\right)$ can be represented by the following elementary operations to $f\left(x_{1}, x_{2}\right)$ and $g\left(x_{1}, x_{2}\right) ; h\left(x_{1}, x_{2}\right)=\Delta(\zeta(((\tau f) *$ $\left.g)\left(x_{1}, x_{2}, x_{3}\right)\right)$. Indeed, $f_{1}\left(x_{1}, x_{2}\right):=\tau f\left(x_{1}, x_{2}\right)=f\left(x_{2}, x_{1}\right) ; h_{1}\left(x_{1}, x_{2}, x_{3}\right):=\left(f_{1} *\right.$ $g)\left(x_{1}, x_{2}, x_{3}\right)=f_{1}\left(g\left(x_{1}, x_{2}\right), x_{3}\right)=f\left(x_{3}, g\left(x_{1}, x_{2}\right)\right) ; h_{2}\left(x_{1}, x_{2}, x_{3}\right):=\tau h_{1}\left(x_{1}, x_{2}, x_{3}\right):=$ $h_{1}\left(x_{2}, x_{3}, x_{1}\right)=f\left(x_{1}, g\left(x_{2}, x_{3}\right)\right)$. Finally, $h\left(x_{1}, x_{2}\right):=\triangle h_{2}\left(x_{1}, x_{1}, x_{2}\right)=f\left(x_{1}, g\left(x_{1}, x_{2}\right)\right)$.

Definition 1.1.4. A subset of P_{k} is said to be closed if it contains all superpositions of its members. For $F \subseteq P_{k}$ we define its closure $[F]$ as the least set which is generated by superpositions from F.

Thus $F \subseteq P_{k}$ is closed if $F=[F]$.
Additionally, we introduce the following simple n-ary operation $e_{i}^{n}(1 \leq i \leq n)$ called projections which are defined by $e_{i}^{n}\left(x_{1}, \ldots, x_{n}\right)=x_{i}\left(i\right.$-th coordinate) for every $\boldsymbol{x} \in E_{k}^{n}$. Thus e_{1}^{1} is the identity map on E_{k}. Let $E:=\left\{e_{i}^{n} \mid 1 \leq i \leq n, n=1,2, \ldots\right\}$ be the set of all projections. Usually all the projections are also allowed as a basic operation of "composition" since projection functions are directly obtained from the inputs of network in practice. A closed set containing the set of projection is called clone in the terminology of universal algebra. Most of the closed sets treated in this thesis are clones.
Definition 1.1.5. For closed sets F and H such that $F \subset H$ (proper inclusion), F is H-maximal if there is no closed set G such that $F \subset G \subset H$.

Equivalently, a subset F is H-maximal if and only if $[F \cup\{f\}]=H$ for every $f \in H \backslash F$.
Definition 1.1.6. A subset $F \subseteq H$ is complete in H if H is the least closed set containing F.

Again, equivalently, a subset F is H-complete if and only if $[F]=H$.
In the sequel we always assume that H has the following property: each proper closed subset of H extends to an H-maximal set, i.e. for each proper closed subset there is an H-maximal set containing it (this property need not hold in general, in fact there is an example of such P_{8}-maximal set [Mik86,Tar86]). Then, it is known that then there are finitely many H-maximal sets, say H_{1}, \ldots, H_{m}. The following theorem due to Kuznecov is well-known [Jab58].

Theorem 1.1.1. (Completeness theorem in a general form) [Jab58] Suppose the number m of H-maximal sets is finite. Then a subset of functions in H is complete in H if and only if it is contained in no H-maximal set.

This theorem reduces the completeness problem to giving all maximal sets. Investigations of completeness and related topics, usually called the functional completeness
problems, are mathematically important, and have a wide range of applications including their direct relationship to logical circuit design.

Example 1.1.2. Let T_{i} be the set of functions such that $f(i)=i$ for $i=0,1, S$ be the set of self-dual functions, L be the set of linear functions and M be the set of monotone functions in P_{2} (see Example 2.1 below for a more detailed description). The five sets T_{0}, T_{1}, L, S, M are all the P_{2}-maximal sets: a subset F is P_{2}-complete if and only if F is not contained in each of the five sets.

Definition 1.1.7. An H-complete set F is a base of H if no proper subset of F is complete in H.

Note that F is a base of H if and only if 1) F is H-complete, i.e. [$F]=H$ and 2) F is not redundant, i.e. $[F \backslash f] \neq H$ for every $f \in F$. The rank of a base is the number of its elements.

Example 1.1.3. In view of the disjunctive normal form expansion of Boolean functions, the set $\{A N D, O R, N O T\}$ is P_{2}-complete but is not a base. It is well-known that $\{A N D, N O T\}$ and $\{O R, N O T\}$ are bases.

Definition 1.1.8. A function f is Sheffer for H if $\{f\}$ is a base (of rank 1) of H.
A function f is Sheffer for H if and only if every $g \in H$ is a composition of a finite number of copies of f. Clearly f is Sheffer for H if and only if it belongs to no H maximal sets. Typical examples of Boolean two-variable functions that are Sheffer for P_{2} are the Sheffer (or better Nicode's) strokes NAND and NOR of the algebra of logic. A Sheffer stroke describes the "operation" of a two-input one-output gate (or element) G such that every Boolean function $f\left(x_{1}, \ldots, x_{n}\right)$ may be represented by the output of a combinatorial (i.e. feedback-free) network with inputs x_{1}, \ldots, x_{n} and built solely from copies of G (however, the number of the gates needed for the representation may be large).

A comprehensive survey on Sheffer functions can be found in [Ros77]. A variation of the definition of completeness is the concept of "complete with constants", abbreviated c-complete, which assumes that for composition besides f one can freely utilize constantvalued functions. More precisely, let Q denote the set of unary constant functions from
H. A subset F of H is c-complete in H if $F \cup Q$ is complete in H. This makes sense in real combinatorial circuits, since the constant-valued functions (i.e. constant signals) are usually obtained with no extra cost. In particular, f is c-Sheffer for H means $\{f\}$ is c-complete in H.

Classification of P_{k} [Jab52,INN63,Krn64,Miy71]

There is a straightforward method for enumerating all H-bases. The functions from H may be classified by their membership in the H-maximal sets. Let H_{1}, \ldots, H_{m} be the H-maximal sets. As mentioned above, a subset F of H is complete in H if and only if for each $1 \leq i \leq m$ there is $f_{i} \in F \cap\left(H \backslash H_{i}\right)$ (the f_{i} 's need not be distinct). This leads to the following:

Definition 1.1.9. Define the map $\varphi: H \rightarrow\{0,1\}^{m}$ by setting $\varphi(f):=a_{1} \ldots a_{m}$ where $a_{i}=0$ if $f \in H_{i}$ and $a_{i}=1$ if $f \notin H_{i}$ (here $a_{1} \ldots a_{m}$ stands for the more customary $\left(a_{1}, \ldots, a_{m}\right)$ or $\left.<a_{1}, \ldots, a_{m}>\right)$. We call $\varphi(f)$ the characteristic vector of f. We put $f \equiv g$ if $f, g \in H$ have the same characteristic vector, i.e. if $\varphi(f)=\varphi(g)$.

Clearly \equiv is an equivalence relation on H (it is the standard kernel of φ) and so it partitions H into pairwise disjoint nonempty sets called (equivalence) classes. Note that for $f \equiv g$ we have either $f, g \in H_{i}$ or $f, g \notin H_{i}$ for all $i=1, \ldots, m$. We write $A B$ for $A \cap B, A^{1}$ for A and A^{0} for $H \backslash A(A, B$ subsets of $H)$. Clearly each class is of the form $H_{1}^{a_{1}} \ldots H_{m}^{a_{m}}$ where $\left(1-a_{1}\right) \ldots\left(1-a_{m}\right)$ is a characteristic vector (i.e. it is a non-empty set of the form $H_{1}^{a_{1}} \ldots H_{m}^{a_{m}}$ with $\left.a_{1} \ldots a_{m} \in\{0,1\}^{m}\right)$.

Example 1.1.4. The set $T_{0} \bar{T}_{1} L \bar{S} M$ is a P_{2}-class, which consists only of the n-ary constant functions c_{0}^{n} for $n=1,2, \ldots$.

If $f \in F \subseteq H$ and $f \equiv g$, then clearly F is complete (base) in H if and only if $(X \backslash\{f\}) \cup\{g\}$ is complete (base) in H. Thus it suffices to study the completeness in H up to the equivalence \equiv. In other words, we can discuss the completeness in H in terms of these classes instead of individual functions. If there are m maximal sets, then the number of possible classes of functions is 2^{m}, each of which being associated with a unique characteristic vector. However, as we will see throughout this thesis, most of the classes are empty depending on the structure of the set H.

If to $a_{1} \ldots a_{m} \in\{0,1\}^{m}$ we associate $A=\left\{i: a_{i}=1\right\}$ and if A_{1}, \ldots, A_{l} are the subsets of $\{1, \ldots, m\}$ corresponding to the characteristic vectors, the completeness problem is reduced to the listing of subsets of $\left\{A_{1}, \ldots, A_{l}\right\}$ covering $\{1, \ldots, m\}$ and the basis problem to the listing of such coverings which are irredundant (no proper subset covers $\{1, \ldots, m\}$).

As we have already seen, a set $F=\left\{f_{1}, \ldots, f_{r}\right\} \subseteq H$ is a base of H if and only if it is complete and nonredundant. It is easy to see that these conditions, respectively, can be represented in terms of characteristic vectors as follows (from Theorem 1.1.1 and Definition 1.1.7):

$$
\begin{align*}
\sum_{f \in F} \varphi(f) & =1 \cdots 1 \text { (i.e. has all coordinates }=1 \text {) } \tag{1.1}\\
\sum_{f \in F \backslash f_{i}} \varphi(f) & \neq \sum_{f \in F} \varphi(f) \text { for all } i=1, \ldots, r \tag{1.2}
\end{align*}
$$

where sum is the component-wise logical OR of Boolean m-vectors.
Definition 1.1.10. A set F of functions is pivotal if it satisfies the condition (1.2).
A pivotal incomplete set is simply called pivotal in case of no confusion.
Once we know all the characteristic vectors of a set, we can find all complete sets, pivotal sets and all bases by a direct combinatorial check (which may be done by a simple computer program, provided m is not large).

For a given set $F \subseteq H$ the classes of F is the set of classes of functions belonging to F. All bases and pivotals consisting of the same classes of functions form a class of bases (or aggregate) and classes of pivotals. The enumeration algorithm of all classes of bases and pivotals for moderately large m (the number of all maximal sets for H) and for large number of classes by efficiently checking the above conditions of completeness and nonredundancy (pivotalness) for all combinations of the characteristic vectors will be discussed in chapter 7 .

The study of classes also provides information on the closed sets which are the intersections of families of H-maximal sets, which is of independent interest (e.g. for $H=P_{3}$ with one exception the least nontrivial intersections are all minimal clones [Ros87: private communication]). The characteristic vectors can also be applied to seek the set of classes of functions which makes a given incomplete set complete.

1.2. Functions preserving a relation

For the description of closed sets containing all projections (i.e. clones), we need the following essential concept of "functions preserving a relation" (cf. [Ros77]).

Let $h \geq 1$. An h-ary relation ρ on E_{k} is a subset of E_{k}^{h} (i.e. a set of h-tuples over E_{k}) whose elements are written as column vectors. Given h row n-vectors $\boldsymbol{a}_{i}=\left(a_{i 1}, \ldots, a_{i n}\right)$ $(i=1, \ldots, h)$ we write $\left(a_{1}, \ldots, a_{h}\right)^{T} \in \rho^{n}$ to indicate that $\left(a_{1 j}, \ldots, a_{h j}\right)^{T} \in \rho$ for all $j=1, \ldots, n$, where T denotes the transpose (this means that the $h \times n$ matrix with rows $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{h}$ has all columns in ρ). We say that an n-ary $f \in P_{k}$ preserves ρ if

$$
\left(f\left(\boldsymbol{a}_{1}\right), \ldots, f\left(\boldsymbol{a}_{h}\right)\right)^{T} \in \rho \text { whenever }\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{h}\right)^{T} \in \rho^{n}
$$

The set of functions preserving ρ is denoted by $\operatorname{Pol} \rho$.
For a special case $h=2$, we write $\boldsymbol{a} \rho \boldsymbol{b} \Leftrightarrow\left(a_{i}, b_{i}\right) \in \rho$ for all $1 \leq i \leq n$. Several examples are given below in Theorem 2.1. It is known that each Pol ρ is a clone, and conversely that to each clone C there are relations $\rho_{1}, \rho_{2}, \ldots$ such that Pol $\rho_{1} \supseteq$ Pol $\rho_{2} \supseteq \ldots \supseteq C$ and $C=\cap_{i=1}^{\infty}$ Pol ρ_{i}. In particular, if H is a clone, then all H-maximal sets are of the form Pol ρ for some relation ρ.

Throughout this chapter by $x+y$ and $x y$ we mean $x+y(\bmod k)$ and $x y(\bmod k)$, respectively. Intersection of sets X_{1}, \ldots, X_{r} will be denoted by $X_{1} \ldots X_{r}$. Finally, let x^{r} denote $x \ldots x$ (r times) whenever x is a component of a vector.

Example 1.2.1. The P_{2}-maximal sets can be represented as follows.

$$
\begin{aligned}
T_{0}= & \operatorname{Pol}(0)=\{f \mid f(0, \ldots, 0)=0\}(\text { set of functions preserving } 0) \\
T_{1}= & \operatorname{Pol}(1)=\{f \mid f(1, \ldots, 1)=1\}(\text { set of functions preserving } 1), \\
S= & \operatorname{Pol}\binom{01}{10}=\left\{f \mid f\left(x_{1}+1, \ldots, x_{n}+1\right) \neq f\left(x_{1}, \ldots, x_{n}\right) \text { for each } x_{i} \in\{0,1\}, 1 \leq i \leq n\right\} \\
& \text { (set of selfdual functions), } \\
L= & \operatorname{Pol}\left(\left\{(a, b, c, d)^{T} \in E_{2}^{4} \mid a+b=c+d\right\}\right) \\
= & \left\{f \mid f\left(x_{1}, \ldots, x_{n}\right)=a_{0}+a_{1} x_{1}+\ldots+a_{n} x_{n} \text { for some } a_{i} \in E_{2}, 0 \leq i \leq n\right\} \\
& (\text { set of linear functions). } \\
M= & \operatorname{Pol}\binom{010}{011}=\left\{f \mid x_{1} \leq y_{1} \wedge \ldots \wedge x_{n} \leq y_{n} \Rightarrow f\left(x_{1}, \ldots, x_{n}\right) \leq f\left(y_{1}, \ldots, y_{n}\right)\right\} \\
& \text { (set of monotone non-decreasing functions), }
\end{aligned}
$$

1.3. Operations over relations

In the classification we have to use many inclusion relations between functions preserving relations, such as $T_{01} T_{12} \subseteq T_{1}$ (see $\S 5.1$, Chapter 5). The following binary operations over relations provide methods to prove such inclusions by showing directly that the relation on the right may be built from the relations on the left by applying them finite times.

We define the unary relation ζ, τ and binary relations \circ (relational product), \times (cartesian product) and \cap (inclusion) as follows.

$$
\begin{gathered}
\rho \circ \rho^{\prime}=\left\{\left(a_{1}, \ldots, a_{h-1}, a_{h}, \ldots, a_{h+h^{\prime}-2} \mid \exists u:\left(a_{1}, \ldots, a_{h-1}, u\right) \in \rho \wedge\left(u, a_{h}, \ldots, a_{h+h^{\prime}-2}\right) \in \rho^{\prime}\right\}\right. \\
\rho \times \rho^{\prime}=\left\{\left(a_{1}, \ldots, a_{h+h^{\prime}}\right) \mid\left(a_{1}, \ldots, a_{h}\right) \in \rho \wedge\left(a_{h+1}, \ldots, a_{h+h^{\prime}}\right) \in \rho^{\prime}\right\} \\
\rho \cap \rho^{\prime}=\left\{\left(a_{1}, \ldots, a_{h}\right) \mid\left(a_{1}, \ldots, a_{h}\right) \in \rho \wedge\left(a_{1}, \ldots, a_{h}\right) \in \rho^{\prime}\right\}, \\
\zeta \rho:=\left\{\left(a_{1}, \ldots, a_{h}\right) \mid\left(a_{2}, \ldots, a_{h}, a_{1}\right) \in \rho\right\}, \\
\tau \rho:=\left\{\left(a_{1}, \ldots, a_{h}\right) \mid\left(a_{2}, a_{1}, \ldots, a_{h}\right) \in \rho\right\}
\end{gathered}
$$

The following lemma holds [Pok79].

Lemma 1.3.1.

$$
\text { Pol } \rho \text { Pol } \rho^{\prime} \subseteq \text { Pol } \rho * \rho^{\prime}
$$

where ${ }^{*}$ is any of \circ, \times and \cap operations.
Lemma 1.3.2. Let the inverse relation of ρ be $\rho^{-1}=\left\{\left(a_{h}, \ldots, a_{1}\right) \mid\left(a_{1}, \ldots, a_{h}\right) \in \rho\right\}$. Then Pol $\rho=$ Pol ρ^{-1}.

We also note that permuting and duplicating columns of a relation does not change the set of functions preserving it, i.e. Pol $\rho=$ Pol ρ^{\prime}, where ρ^{\prime} is a permuted columns of the relation ρ.

In addition to these operations, we also use a more general operation, which produce a relation from a given set of relations.

Definition 1.3.1. [Ros70] Let $\mathbf{C}=\left[c_{i j}\right]$ be an $m \times h$ matrix with elements from $E_{m h}$ ($h, m, p \geq 1$). An m-ary operation over relations $O_{\mathrm{C}}^{p}\left(\rho_{0}, \ldots, \rho_{m-1}\right)$ is a map, which associate any h-ary $\rho_{0}, \ldots, \rho_{m-1}$ on E_{k} the following p-ary relation σ on E_{k} :

$$
\left(a_{0}, \ldots, a_{p-1}\right) \in \sigma \Leftrightarrow \exists a_{p}, a_{p+1}, \ldots, a_{m h-1}
$$

such that, for all $i=0, \ldots, m-1,\left(a_{c_{i 0}}, \ldots, a_{c_{i, h-1}}\right) \in \rho_{i}$.
Example 1.3.1. Let $h=m=p=2$ and

$$
\mathbf{C}=\left[\begin{array}{ll}
0 & 2 \\
2 & 1
\end{array}\right]
$$

Then $\sigma=O_{\mathbf{C}}^{2}\left(\rho_{0}, \rho_{1}\right)$ is a binary relation σ on $E_{k}:\left(a_{0}, a_{1}\right) \in \sigma \Leftrightarrow \exists a_{2}$ such that $\left(a_{0}, a_{2}\right) \in \rho_{0},\left(a_{2}, a_{1}\right) \in \rho_{1}$. Thus $O_{\mathbf{C}}^{2}\left(\rho_{0}, \rho_{1}\right)=\rho_{0} \circ \rho_{1}$ (a relational product). An intersection of relations can be expressed as an operation over the relations.

Theorem 1.3.1. $[\operatorname{Ros} 70]$ Let $\rho_{0}, \ldots, \rho_{m-1}$ be h-ary relations on $E_{k}, \sigma=O_{\mathbf{C}}^{p}\left(\rho_{0}, \ldots, \rho_{m-1}\right)$ be an operation over the relations. Then

$$
\bigcap_{i=0}^{h-1} \operatorname{Pol}_{i} \subseteq \operatorname{Pol} \sigma
$$

1.4. Homomorphism and similarity

Definition 1.4.1. Let $A, B \subset P_{k}$ be closed sets. A and B is homomorphic if there exists a mapping $\alpha: A \rightarrow B\left(f \rightarrow f^{\alpha}\right)$ satisfying

$$
\begin{gathered}
(\zeta f)^{\alpha}=\zeta f^{\alpha}, \quad(\tau f)^{\alpha}=\tau f^{\alpha}, \\
(\triangle f)^{\alpha}=\triangle f^{\alpha}, \quad(\nabla f)^{\alpha}=\nabla f^{\alpha} \quad \text { and } \\
\\
(f * g)^{\alpha}=f^{\alpha} * g^{\alpha} .
\end{gathered}
$$

If the mapping α is one to one, then A and B is isomorphic (in symbol $A \cong B$).
Definition 1.4.2. Let S_{k} be the permutation group (symmetric group) over E_{k} and let $\sigma=\binom{0 \ldots k-1}{a_{1} \ldots a_{k-1}} \in S_{k}$. Let ϵ be the identity permutation. We write permuted value by σ as $a_{i}=\sigma i$. Define the product of permutations by $\alpha \beta(x):=\alpha(\beta(x))$ for each $\alpha, \beta \in S_{k}$. For $f \in P_{k}$ and $\sigma \in P_{k}$ we define a similar function of f by $f^{\sigma}:=g\left(a_{1} \ldots a_{n}\right):=\sigma^{(-1)} f\left(\sigma a_{1} \ldots a_{n}\right)$ for any $a \in E_{k}^{n}$. For a set A, its σ-similar is defined by

$$
A^{\sigma}:=\left\{f^{\sigma} \mid f \in A\right\}
$$

The mapping σ-similar is one-to-one mapping, since S_{k} is a group. An iteration of σ-similar transformations is represented by a product of permutations as follows.

$$
\left(f^{\sigma_{1}}\right)^{\sigma_{2}}(\boldsymbol{a})=f^{\sigma_{1} \sigma_{2}}(\boldsymbol{a})=\left(\sigma_{1} \sigma_{2}\right)^{-1} f\left(\sigma_{1}\left(\sigma_{2} \boldsymbol{a}\right)\right)
$$

The set of σ-transformations for $\sigma \in S_{k}$ with the iteration operations is a group which is isomorphic to S_{k} over P_{k}. Hence, properties of permutation group S_{k} are preserved by σ-similar transformations. In general, $f^{\alpha \beta} \neq f^{\beta \alpha}$ since the symmetric group is not commutative when $k>3$.

Lemma 1.4.1. [Jab58]

$$
F \cong F^{\sigma} \text { for } \sigma \in S_{k}
$$

Corollary 1.4.1.

$$
\begin{gathered}
A \subseteq B \Rightarrow A^{\sigma} \subseteq B^{\sigma}, \quad(A \cup B)^{\sigma}=A^{\sigma} \cup B^{\sigma} \\
(A B)^{\sigma}=A^{\sigma} B^{\sigma}, \quad(A \backslash B)^{\sigma}=A^{\sigma} \backslash B^{\sigma} \\
(\bar{A})^{\sigma}=\overline{A^{\sigma}} \text { where } \bar{A}:=P_{k} \backslash A .
\end{gathered}
$$

Thus, when an inclusion relation holds, for example, $A B \subseteq C$, then its dual $A^{\sigma} B^{\sigma} \subseteq$ C^{σ} holds for each $\sigma \in S_{k}$. The latter inclusion relation is a σ-similar of the former. The notion of σ-similar is used also for proof procedures. It is an extension of the notion of "dual" in the usual Boolean logic.

Corollary 1.4.2. The following properties of sets of P_{k} are preserved by σ-similar:

1) closed, 2) maximal, 3) complete and 4) base.

Corollary 1.4.3.

$$
f \in M_{i_{1}} \ldots M_{i_{j}} \bar{M}_{i_{j+1}} \ldots \bar{M}_{i_{m}} \Leftrightarrow f^{\sigma} \in M_{i_{1}}^{\sigma} \ldots M_{i_{j}}^{\sigma} \bar{M}_{i_{j+1}}^{\sigma} \ldots \bar{M}_{i_{m}}^{\sigma}
$$

where $M_{i_{j}}, 1 \leq j \leq m$ are maximal sets of P_{k} and $\bar{M}_{i_{j}}$ is the complement of $M_{i_{j}}$.
Thus σ-transformation induces an automorphism of the sets of all classes. This means that if the class χ_{i} exists then the class χ_{i}^{σ} exists for each $\sigma \in S_{k}$. However, χ_{i} and χ_{i}^{σ} coincide when χ_{i} is invariant under σ-similar. Corollary 1.4 .3 greatly reduces the search of possible classes.

The next lemma provides a method to find a corresponding σ-similar set when a given set is characterized by a relation.

Lemma 1.4.2. [Miy71] $(\text { Pol } \rho)^{\sigma}=$ Pol $^{-1} \rho$, where $\sigma^{-1} \rho=\left\{\left(\sigma^{-1} a_{1}, \ldots, \sigma^{-1} a_{h}\right) \mid\left(a_{1}, \ldots, a_{h}\right) \in\right.$ $\rho\}$.

Corollary 1.4.4. Let $\rho=R_{\sigma}=\{(0, \sigma 0), \ldots,(k-1, \sigma(k-1)\}$ be an induced binary relation by a permutation $\sigma \in S_{k}$. Then $\left(\text { Pol }_{\sigma}\right)^{\sigma}=\operatorname{Pol}_{\sigma^{-1}}$. Hence, if $\sigma^{2}=\varepsilon$, i.e $\sigma=\sigma^{-1}$, Pol $_{\sigma}$ is σ-invariant.

Especially, we note that for $k=3, \sigma_{0}=(12), \sigma_{1}=(02)$ and $\sigma_{2}=(01)$ are idempotent, where $(i j)$ denote the transposition of i and j.
Example 1.4.1. Assume $k=3$ and $\sigma_{3}=\binom{012}{120}, \sigma_{4}=\binom{012}{201}$. Let $\rho:=R_{\sigma_{3}}=$ $\{(0,1),(1,2),(2,0)\}$. The set of functions $S=$ Pol ρ is a maximal set of P_{3}. We have $\sigma_{3}^{-1} \rho=\rho, \sigma_{4}^{-1} \rho=\rho$, and $\sigma_{i}^{-1}=\sigma_{i}$ for $i=0,1,2$. Hence from Lemma 1.4.2 and Corollary 1.4.4 S is σ-invariant for any $\sigma \in S_{3}$.

Example 1.4.2. Let $\rho:=\{0,1\}$ be a unary relation and $T_{01}=\operatorname{Pol}(01)$. Since $\sigma_{2}^{-1} \rho=\rho$, $T_{01}^{\sigma_{2}}=T_{01}$, i.e. T_{01} is σ_{2}-invariant. While $\sigma_{1} \rho=\{2,1\}$. Hence $T_{01}^{\sigma_{1}}=T_{12}$, where T_{12} is the set of functions preserving a unary relation $\{1,2\}$.

Chapter 2

Functional Constructions and their Bases in P_{2}

The notion of completeness of a set of logical functions depends on the construction method of a network from a given set of logical primitives. The delay caused by functioning of gates which we ignored in the previous definitions also poses restrictions on the composition of functions and on the logical function the network is intended to realize. Besides ordinary composition, we consider six ways of various functional constructions in this chapter. Our purpose is to present classes of functions and classes of bases (aggregates) for each of these constructions. Throughout Chapters 2 through 4 we consider in the set of all Boolean functions P_{2}.

2.1. Introduction

We are given certain basic elements (primitives) called gates which are realizations of certain logical functions. These gates can be combined into a switching circuit called network. For each network we distinguish inputs and an output (if necessary, primary inputs and primary output will be used to distinguish from those of the gates). Thus the network can be represented by $f\left(x_{1}, \ldots, x_{n}\right)$, which defines output $y=f\left(x_{1}, \ldots, x_{n}\right)$ as a function of the primary input x_{1}, \ldots, x_{n}.

We briefly describe seven different ways of the construction of networks arising in practical switching circuit designs, giving classes of bases for each of them.

In the next section we give short preliminaries for some subsets of Boolean functions P_{2} to be used in the completeness criteria described in the later sections. In Section 2.3 we summarize classical Post completeness. In Section 2.4 we treat completeness
under r-line coding, in Section 2.5 completeness under 2-line fixed coding (both with primitives without delay), in Section 2.6 three completeness under composition with unit delay primitives (uniform composition and its 2 modifications), and in Section 2.7 sequential circuit completeness (with unit delay primitives).

2.2. Preliminaries on subsets of Boolean functions

For a set F we denote the number of its elements by $|F| .|F(n)|$ denotes the number of n-ary functions contained in F. We denote the complement set of F by \bar{F}, i.e. $\bar{F}=P_{2} \backslash F$. Let c_{0}^{n} and c_{1}^{n} be the constant-valued functions of n-variables assuming the values 0 and 1 , respectively. The set of constant functions which takes 0 (1) for arities $n=1,2, \ldots$ we denote simply by 0 (1).

We give definitions of several subsets of P_{2} which we use for the classifications of P_{2} [MSH87].

1) Functions preserving zero.

$$
\begin{aligned}
& T_{0}=\{f \mid f(0, \ldots, 0)=0\} \\
& \left|T_{0}(n)\right|=2^{2^{n}-1}
\end{aligned}
$$

2) Functions preserving one.

$$
\begin{aligned}
& T_{1}=\{f \mid f(1, \ldots, 1)=1\} \\
& \left|T_{1}(n)\right|=2^{2^{n}-1}
\end{aligned}
$$

3) Monotone increasing functions.

$$
\begin{aligned}
& M=\left\{f \mid f\left(x_{1}, \ldots, x_{n}\right) \leq f\left(y_{1}, \ldots, y_{n}\right) \text { if } x_{i} \leq y_{i} \text { for all } i\right\} . \\
& |M(n)|=\Psi(n)
\end{aligned}
$$

4) Selfdual functions.

$$
\begin{aligned}
& S=\left\{f \mid \overline{f\left(x_{1}, \ldots, x_{n}\right)}=f\left(\overline{x_{1}}, \ldots, \overline{x_{n}}\right)\right\} \\
& |S(n)|=2^{2^{n-1}}
\end{aligned}
$$

5) Linear functions.

$$
\begin{aligned}
& L=\left\{f \mid f\left(x_{1}, \ldots, x_{n}\right)=a_{0}+a_{1} x_{1}+\ldots+a_{n} x_{n} \text { for some } a_{i} \in E\right\} \\
& |L(n)|=2^{n+1}
\end{aligned}
$$

6) Conjunctions.

$$
C=\{0,1\} \cup\left\{x_{i_{1}} \ldots x_{i_{l}}\right\}
$$

$$
|C(n)|=2^{n}+1 .
$$

7) Disjunctions.

$$
\begin{aligned}
& D=\{0,1\} \cup\left\{x_{i_{1}} \vee \ldots \vee x_{i \mathfrak{i}}\right\}, \\
& |D(n)|=2^{n}+1 .
\end{aligned}
$$

8) Notbut-like functions.

$$
\begin{aligned}
& N_{0}=\left\{f \mid \text { if } f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)=1 \text { then } x_{i}=y_{i}=1 \text { for some } i\right\} . \\
& \left|N_{0}(n)\right|=\Theta(n) .
\end{aligned}
$$

9) If-like functions.

$$
\begin{aligned}
& N_{1}=\left\{f \mid \text { if } f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)=0 \text { then } x_{i}=y_{i}=0 \text { for some } i\right\} . \\
& \left|N_{1}(n)\right|=\Theta(n) .
\end{aligned}
$$

10) Functions exchanging zero and one.

$$
\begin{aligned}
& X=\{f \mid f(x, \ldots, x)=\bar{x}\}, \\
& |X(n)|=2^{2^{n}-2} .
\end{aligned}
$$

11) Monotone decreasing functions.

$$
\begin{aligned}
& M^{\prime}=\left\{f \mid f\left(x_{1}, \ldots, x_{n}\right) \geq f\left(y_{1}, \ldots, y_{n}\right) \text { if } x_{i} \leq y_{i} \text { for all } i\right\} . \\
& \left|M^{\prime}(n)\right|=\Psi(n) .
\end{aligned}
$$

12) Functions uniting zero and one.

$$
\begin{aligned}
& K=\{f \mid f(0, \ldots, 0)=f(1, \ldots, 1)\} . \\
& |K(n)|=2^{2^{n}-1} .
\end{aligned}
$$

Note 2.2.1. We give a representation of the sets by relations. $T_{0}=\operatorname{Pol}(0), T_{1}=$ $\operatorname{Pol}(1), M=\operatorname{Pol}\binom{010}{011}, S=\operatorname{Pol}\binom{01}{10}, L=\operatorname{Pol}\{(a, b, c, d) \mid a+b=c+d(\bmod 2)\}$, $N_{0}=\operatorname{Pol}\binom{001}{010}, N_{1}=\operatorname{Pol}\binom{101}{110}$. The functions $\Psi(n)$ and $\Theta(n)$ we explain in
Section 4.1.
We list several useful inclusion relations for the classification. We omit the proofs.
Lemma 2.2.1. $M(n) \cap L(n)=L(n) \cap C(n)=L(n) \cap D(n)=C(n) \cap D(n)$
$=L(n) \cap C(n) \cap D(n)=\left\{c_{0}^{n}, c_{1}^{n}, p_{i}^{n}\right\}$.

$$
L(n) \cap M^{\prime}(n)=\left\{c_{0}^{n}, c_{1}^{n}, \bar{p}_{i}^{n}\right\}, M(n) \cap M^{\prime}(n)=\left\{c_{0}^{n}, c_{1}^{n}\right\} .
$$

Lemma 2.2.2. $S \subseteq N_{0} N_{1} \cup \bar{N}_{0} \bar{N}_{1}, N_{0} N_{1} \subseteq S$.

Lemma 2.2.3. $S L=\left\{x+1\right.$ (only for $n=1$) $, a+x_{1}+\ldots+x_{2 m+1}, a \in\{0,1\}$, $m=1,2, \ldots$,$\} ,$
$L N_{0}=\left\{0, x_{i}\right\}, L N_{1}=\left\{1, x_{i}\right\}, S N_{0} \subseteq M$ and $S M \subseteq N_{0}$.
Lemma 2.2.4. $L(1) M(1)=\left\{0,1, x_{1}\right\}, L(1) M^{\prime}(1)=\left\{0,1, x_{1}+1\right\}$.
Also we note that
n-ary linear functions (except constants) are selfdual for n odd (no selfdual function exists for n even).

2.3. Bases under ordinary composition

The first completeness is one under ordinary composition which we defined in Chapter 1. The composition is defined as an operation of either renaming variables of a function (permuting variables and equating variables) or substituting a function into an argument of a function. One can construct a new function from a given set of primitives applying the composition any finite times. Additionally one is allowed to use any projection functions p_{i}^{n} in the construction.

The following Post's theorem on the P_{2}-completeness under this composition and the classification of Boolean functions are most fundamental facts. This is well-known.

Theorem 2.3.1. [Pos21] P_{2} has exactly the following 5 maximal sets: T_{0}, T_{1}, L, S, M.
Theorem 2.3.2. [Jab52] There are 15 classes of functions of P_{2}.
We presents them by their characteristic vectors in Table 2.1. Components of characteristic vectors are given in the order T_{0}, T_{1}, S, L, M of P_{2}-maximal sets. For instance, class 6 represents the set $\bar{T}_{0} T_{1} \bar{S} L \bar{M}$, where \bar{X} denotes $P_{2} \backslash X$. The class 9 (10) consists only of the constant functions $1(0)$, and the class 15 only of the set of all projection functions $p_{i}^{n}\left(x_{1}, \ldots, x_{n}\right)=x_{i}, i=1,2, \ldots, n, n=1,2, \ldots$, which is often denoted simply by x.

Theorem 2.3.3. [INN63] There are 42 classes of bases of P_{2}.

Table 2.1: P_{2}-classes under ordinary composition.

1. 11111
2. 11011
3. 01111
4. 10111
5. 11001
6. 10101
7. 01101
8. 00111
9. 10100
10. 01100
11. 00110
12. 00011
13. 00010
14. 00001
15. 00000

1 class of rank 1: (1),
17 classes of rank 2: $2 \times\{3,4,6,7,8,9,10,11\}$,
$3 \times\{4,5,6,9\}, 4 \times\{5,7,10\}, 5 \times\{8,11\}$,
22 classes of rank 3: $5 \times\{6,7,9,10\} \times\{12,13\},\{6 \times\{7,10\},(9,7)\} \times\{8,11,12,13\}$, $(9,10) \times\{8,12\}$,
2 classes of rank 4: $(9,10,14) \times\{11,13\}$.
Note that there are only four classes of bases containing constant functions: $(8,9,10)$, $(9,10,12),(9,10,11,13)$ and $(9,10,13,14)$.

The number of n-ary functions included in each of the 15 class are given in [Krn65] (for some classes it is given in terms of $\Psi(n)$: the number of monotone Boolean functions). There are 51 pivotals (13,31 and 7 with ranks 1,2 and 3 , respectively).

2.4. Bases under r-line coding

Freivalds [Fre68] introduced the notion of completeness under r-line coding (which he called up to coding completeness). In this construction every input and output of the outermost network consists of " r-lines" and signals 0 or 1 are feeded to each input or taken out from the output as a length r binary code. While internally these input lines are treated as usual binary input. So in the internal networks every composition is done according to ordinary composition. In Fig. 2.1 we show examples of networks of AND and NAND constructed with $A N D$ and $O R$ primitives with the coding $0 \rightarrow 01$ and $1 \rightarrow 10$. Note that in this coding negation of the outermost network is realized simply by exchanging the output lines, so if f is realizable then its negation is also realizable in this composition.

Assume a coding

Figure 2.1: AND and NAND in double-line logic

$$
\begin{aligned}
0 & \rightarrow \alpha_{01} \ldots \alpha_{0 r} \\
1 & \rightarrow \alpha_{11} \ldots \alpha_{1 r}
\end{aligned}
$$

where $\alpha_{i j} \in\{0,1\}, 0 \leq i \leq 1,1 \leq j \leq r$.
We shall say that a network compute $f\left(x_{1}, \ldots, x_{n}\right)$ with the coding, if, to each argument x_{i} there is associated the r inputs $a_{i j}(j=1, \ldots, r)$, the network has r output $b_{l}(l=1, \ldots, r)$ and operates as follows: for the computation of $f\left(m_{1}, \ldots, m_{n}\right)$ one feed in signals $\alpha_{m_{i} j}$ (0 or 1) at input line $a_{i j}, 1 \leq i \leq n, 1 \leq j \leq n$ and the network produces as output b_{l} the results $\beta_{l}=\alpha_{f\left(m_{1}, \ldots, m_{n}\right) l}, 1 \leq l \leq r$. We shall say that $F \subseteq P_{2}$ is complete under a fixed coding if every $f \in P_{2}$ is computable with the coding by a network on F. We say that a set of function is complete under fixed r-line coding if every function is computable by some network of r-lines under this coding using the functions in the set. A set of functions is complete under r-line coding (in original term, complete up to coding) if for every function there exists an r-line coding of 0 and 1 (depending on the function) under which the function is realizable by the functions in the sets.

Theorem 2.4.1. [Fre68] A set of function is complete under r-line coding if and only if it is not included in each of the three sets: L, C and D.

We note that the original presentation of the above theorem is not quite correct (the sets C and D are correct to include the constant functions, while in the original description they are excluded from the sets C and D, cf. [MSH87]).

Theorem 2.4.2. There exists exactly 5 classes of functions under r-line coding completeness.

Proof. We have $L D \subseteq C, L C \subseteq D$ and $C D \subseteq L$, i.e. $L C D(n)=\left\{0,1, x_{i}, 1 \leq i \leq n\right\}$ (Lemma 2.2.1). The classes are shown in Table 2.2.

Table 2.2: Classes of functions under r-line coding completeness

class	L C D	representatives (symmetric)
1.	000	$0,1, x$
2.	011	$a+x_{1}+\ldots+x_{n}, a=0$ or 1, for $n>1 ; 1+x$ for $n=1$
3.	101	$x_{1} \ldots x_{n}, n>1$
4.	110	$x_{1} \vee x_{2} \ldots \vee x_{n}, n>1$
5.	111	all remaining symmetric functions, e.g. $\bar{x}_{1} \bar{x}_{2}$

Theorem 2.4.3. There are 4 classes of bases: rank 1: (5); rank 2: (2, 3), (2,4), (3,4). There are 3 classes of pivotals: rank 1: (2),(3) and (4).

Example 2.4.1. We give all bases for 2 -ary functions under r-line coding:

$$
\{x+y(+1), x y\},\{x+y(+1), x \vee y\},\{x y, x \vee y\},\{N A N D(x, y)\},\{N O R(x, y)\}
$$

The following bases include a unary function $\bar{x}:\{\bar{x}, x y\},\{\bar{x}, x \vee y\}$. As we show in Fig. 2.1, $A N D(x, y)$ can be composed of $\{x \vee y, x y\}$ under the coding $0 \rightarrow 01,1 \rightarrow 10$.

2.5. Bases under 2-line fixed coding

The completeness problem under a fixed coding $0 \rightarrow 01$ and $1 \rightarrow 10$ (this is so called double rail logic [Neu56]) was solved by Ibuki [Ibu68]. Karunanithi and Friedman [KaF78] also considered this completeness independently, and gave the condition which are stated in somewhat complex terms but equivalent to the following. This notion coincides with SP-algebra described in [Gin85]. The classification is done by Ibuki [Ibu68].

Theorem 2.5.1. A set of functions is complete under 2-line fixed coding if and only if it is not contained in each of the following 6 sets: N_{0}, N_{1}, S, L, C and D.

Theorem 2.5.2. [Ibu68] There are 12 classes of functions, 28 classes of bases (1 for rank 1, 22 for rank 2 and 5 for rank 3) and 20 classes of pivotals (10 classes for each of ranks 1,2).

The characteristic vectors of these classes are given in Section 3.5.

Figure 2.2: uniform composition

2.6. Bases under compositions with delayed functions

Usually a gate needs some duration of time to give an output. So it is natural to assume that each primitive function has certain delay time. In this section we assume that all primitives have uniform delay (a unit time). Taking the delay time into consideration various compositions have been proposed. We consider three constructions proposed by Kudrjavcev, Ibuki and Inagaki, respectively. These are closely related each other.

Uniform composition

The theory of uniform delay composition was initiated by Kudrjavcev [Kud60]. In this construction every composition is to be done so that for each gate the delays along all paths from the primary inputs to the inputs of the gate are equal. This means that the composition should be synchronized. This is imposed even on primitives of constantvalued functions. Projections can be used freely (which can be used in the first layer of the composition as primitives with delay zero). Furthermore in this composition it is assumed that (1) all initial input signals are given only once and simultaneously and (2) no feedback connections are allowed in compositions.

A set $F \subseteq P_{2}$ is complete under uniform composition if one can realize every function in some delay (which depends on the realized function) by a network on F using uniform composition.

For example, the network in Fig. 2.6 is synchronized, but one in Fig. 2.7 is not synchronized and have a feedback connection.

The following theorem is proved in [Kud60], but explicit statement in this form is due to Nozaki [Noz78].

Theorem 2.6.1. [Kud60] A set of functions is complete under uniform composition if and only if it is not contained in each of the 8 sets: $T_{0}, T_{1}, S, L, M, M^{\prime}, X$ and K.

Table 2.3: Classes of functions under uniform delay compositions.

	$T_{0} T_{1} S L M M^{\prime} X K$	representative
1.	11111101	$x_{1} \bar{x}_{2} x_{3} \vee \bar{x}_{1} \bar{x}_{2} \bar{x}_{3}$
2.	11111001	$\bar{x}_{1} \bar{x}_{2}$
3.	11011101	$x_{1} \bar{x}_{2} \vee \bar{x}_{2} \bar{x}_{3} \vee \bar{x}_{3} x_{1}$
4.	11011001	$\bar{x}_{1} \bar{x}_{2} \vee \bar{x}_{2} \bar{x}_{3} \vee \bar{x}_{3} \bar{x}_{1}$
5.	01111110	$x_{1} \bar{x}_{2}$
6.	10111110	$x_{1} \vee \bar{x}_{2}$
7.	11001101	$x_{1}+x_{2}+\bar{x}_{3}$
8.	11001001	\bar{x}_{1}
9.	10101110	$x_{1}+\bar{x}_{2}$
10.	01101110	$x_{1}+x_{2}$
11.	00111111	$x_{1} x_{2} x_{3}+x_{1} \bar{x}_{2} \bar{x}_{3}$
12.	10100010	1
13.	01100010	0
14.	00110111	$x_{1} x_{2}$
15.	00011111	$x_{1} x_{2} \vee x_{2} \bar{x}_{3} \vee \bar{x}_{3} x_{1}$
16.	00010111	$x_{1} x_{2} \vee x_{2} x_{3} \vee x_{3} x_{1}$
17.	00001111	$x_{1}+x_{2}+x_{3}$
18.	00000111	x_{1}

Theorem 2.6.2. There are 18 classes under uniform delay composition and they coincide with those under Ibuki's (Inagaki's) composition.

Proof. Characteristic vector for these classes has 8 coordinates, which is constructed by adding K coordinate to Ibuki's coordinates. We have $K=T_{0} \bar{T}_{1} \cup \bar{T}_{0} T_{1}$ (disjoint), because $f \in K \Leftrightarrow$ either $f(0)=f(1)=0$ or $f(0)=f(1)=1$. Therefore the values for the coordinate K is determined by those for T_{0} and T_{1}.

In Table 2.3 we give the classes and their representatives. Symmetric representatives for the classes $1,3,5,6,11$ and 15 we mention in Section 3.6.

Theorem 2.6.3. There are exactly 118 classes of bases and 115 classes of pivotals under uniform delay compositions. They are given below.

Note that no Sheffer class exists in our case as well as in Ibuki's one.

Ibuki composition

Ibuki [Ibu68] defined a slightly different composition independently, and gave all 7 maximal set, which coincide with above sets except K. The only difference of this

Table 2.4: Classes of bases under uniform delay compositions.
rank 1 (0): none;
$\operatorname{rank} 2(44):\{1,2,3,4\} \times\{5,6,9,10,11\},\{1,2\} \times\{15,16,17,18\},\{1,3\} \times\{12,13\}$, $\{1,2,3,4\} \times 14,\{5,6,11,14\} \times\{7,8\}$,
rank $3(72):(2,7) \times\{12,13\}, 4 \times\{12,13\} \times\{7,15,16,17,18\}$, $\{5 \times\{6,9,12\},(6,10)\} \times\{11,14,15,16,17,18\}$, $(6,11) \times\{13,14,15,16,17,18\},\{7,8\} \times\{9,10,12,13\} \times\{15,16\}$, $\{9 \times\{10,13\},(10,12)\} \times\{11,14,15,16\},(12,13) \times\{11,15\}$,
rank $4(2): \quad(12,13,17) \times\{14,16\}$.

Table 2.5: Classes of pivotals under uniform delay compositions.

```
rank 1 (18): (1) - (18);
rank 2(79): (2,3),{2,4} }\times{7,12,13},{3,4,5,6,7,8,9,10,12,13} \times {15,16,17,18}
    {5,6}\times{11,14},{6,9,12}\times{5,10,13},{7,8,11,14} }\times{9,10,12,13}
    14\times{15,17},(16,17)
rank 3(18): {8\times{12,13},{9,12}\times{10,13}}\times{17,18},{{12,13}\times17,(12,13)}\times{14,16}.
```

construction from the uniform composition consists in that the constant valued function with delay zero can be freely used. Thus, for example, a composition $f\left(x, c_{0}^{1}(y)\right)$ is allowed.

Inagaki composition

Yet another modification was done by Inagaki, who gave 6 maximal sets which coincides with above sets except X and K. He weakened Ibuki's construction in the following points: the input paths of the constant valued functions may have non-uniform delays. He showed an example of such a realization of a constant valued function using NAND primitives. Feedback loops are still prohibited. However, it is necessary to feed input signals in some span of time in order to obtain stable output; thus, for example, feeding oscillating signals like $0101 \ldots$ to inputs are prohibited.

It turns out that the uniform construction is the most restrictive construction among the three constructions. That is, if f is complete under uniform composition, then it is complete in the other constructions. Their classifications are closely related to ours.

Classes and bases of Ibuki and Inagaki compositions

Classes of functions in these cases are the same 18 classes as in the former case

Figure 2.3: Sequential circuit composition
[Ibu68,Ina82]. The last component and the last two components must be eliminated (K and X, K are not maximal sets respectively in these cases).

Although the classes of uniform delay case coincides with those under Ibuki's and Inagaki's case, the bases and pivotals are different due to the extra coordinate. There are 93 classes of bases (49,42 and 2 with ranks 2,3 and 4 respectively) [Ibu68], and 88 pivotals (18,58 and 12 with ranks 1,2 and 3 respectively). There are 82 classes of bases in Inagaki case (1, 39, 40, and 2 with ranks 1, 2, 3 and 4) [Ina82], and 77 pivotals (17, 48 and 12 with ranks 1,2 and 3 respectively). Only in Inagaki case there exist Sheffer class.

2.7. Bases under sequential circuit composition

A composition allowing loops by using unit delay primitives is considered by Nozaki [Noz82]. He introduced the notion of s-completeness (s for sequential circuit). In Fig. 2.7 we show an example of the network. Note that we don't require uniform delay any more. We briefly explain the construction. Assume that in our network there are m primitives whose output is denoted by $u_{i}(1 \leq i \leq m)$ and n primary inputs denoted by x_{1}, \ldots, x_{n}. The output of the first primitive u_{1} is assumed to be the primary output of the network. Now output of a primitive is determined by the previous states (outputs) of all the primitives as well as primary inputs. Thus the output of the primitive u_{i} after unit delay (denoted by u_{i}^{*}) is expressed by

$$
\begin{aligned}
u_{1}^{*} & =D_{1}\left(u_{1}, \ldots, u_{m}, x_{1}, \ldots, x_{n}\right) \\
& \ldots \\
u_{m}^{*} & =D_{m}\left(u_{1}, \ldots, u_{m}, x_{1}, \ldots, x_{n}\right) .
\end{aligned}
$$

For example, in Fig. 2.7 we have $u_{1}^{*}=a d d\left(x_{1}, x_{2}, u_{2}\right)$ and $u_{2}^{*}=o r\left(x_{2}, u_{2}\right)$. Let $q=\{0,1\}^{m}$ and $y=\{0,1\}^{n}$ correspond to the sets of states of the primitives and inputs of the network respectively. Then the network is described by a function

$$
\begin{equation*}
D: Q \times Y \rightarrow Q \tag{2.1}
\end{equation*}
$$

and the first element of Q is the output of the network. For example, in Fig. 2.7 $D((1,0),(1,0))=(1,0)$. The state transition of D under feeding $\boldsymbol{x}(1) \ldots \boldsymbol{x}(t)$ to an initial state $s(1)$ is determined successively by $s(2)=D(s(1), x(1)), s(3)=D(s(2)$, $\boldsymbol{x}(2)), \ldots, \boldsymbol{s}(t+1)=D(\boldsymbol{s}(t), \boldsymbol{x}(t))$. The last state $\boldsymbol{s}(t+1)$ is denoted by $D^{*}(\boldsymbol{s}(1), \alpha)$ and called final state corresponding to the input sequence $\alpha=\boldsymbol{x}(1) \ldots \boldsymbol{x}(t)$, and the first component of $s(t+1)$ is final output denoted by $D^{f i n a l}(s(1), \alpha)$. The notion of realization of function f by a network D is defied as follows.
(1) There exists an initial state $\mathbf{s}(1)$ called good state such that there exist some delay D such that the output $y(t)$ of the network at time t is the function value corresponding to the inputs at time $t-d$, i.e. $y(t)=f(\boldsymbol{x}(t-d))$.
(2) For any state s there is an input sequence α called an initialize sequence such that $D^{*}(s, \alpha)$ is a good state.

In Fig. 2.7 D realizes $x+y+1$ with initialize sequence $(0,1)$ or $(1,0)$ with delay 1 .
We denote the set of all functions realizable with some delay by a network on F by $[F]_{s}$. Now F is called s-complete if $[F]_{s}=P_{2}$.

Theorem 2.7.1. [Noz82] There are exactly 6 maximal sets under s-completeness. They are N_{0}, N_{1}, S, L, M and M^{\prime}.

From this and the completeness criteria for Ibuki composition, we have that if F is complete under Ibuki construction, then it is s-complete.

Theorem 2.7.2. There are exactly 16 classes of functions under s-completeness. They are indicated in Table 2.6.

Proof. To have these classifications we use classes with respect to T_{0}, T_{1}, S, L, M and M^{\prime} given in Table 2.3. Since $N_{0} \subset T_{0}$ and $N_{1} \subset T_{1}$, for example, the case $T_{0} T_{1}$ splits into

Table 2.6: Classes of functions under s-completeness.

	$N_{0} N_{1} S L M M^{\prime}$	symmetric functions
1.	111111	$x_{1} \bar{x}_{2} \vee \bar{x}_{1} x_{2} \vee \bar{x}_{3}$,
2.	111110	$\bar{x}_{1} \bar{x}_{2}$,
3.	111011	$x_{1}+x_{2}$,
4.	110111	$x_{1} \bar{x}_{2} \vee \bar{x}_{1} \bar{x}_{3} \vee \bar{x}_{3} x_{1}$,
5.	101111	$x_{1} \vee \bar{x}_{2}$,
6.	011111	$x_{1} \bar{x}_{2}$,
7.	110110	$\bar{x}_{1} \bar{x}_{2} \vee \bar{x}_{2} \bar{x}_{3} \vee \bar{x}_{3} \bar{x}_{1}$,
8.	110011	$x_{1}+x_{2}+x_{3}$,
9.	101101	$x_{1} \vee x_{2}$,
10.	011101	$x_{1} x_{2}$,
11.	110010	$1+x$
12.	101000	1
13.	011000	0
14.	000101	$x_{1} x_{2} \vee x_{2} x_{3} \vee x_{3} x_{1}$
15.	000001	x_{1}
16.	111101	$x_{1} x_{1} \vee x_{3} x_{4}$

the four cases: $\bar{N}_{0} \bar{N}_{1}, \bar{N}_{0} N_{1}, N_{0} \bar{N}_{1}$ and $N_{0} N_{1}$ (the other three cases are similar). Thus it suffices to check each of these classes for each class in Table 2.3. We briefly give how the above classes are derived from Table 2.3, Chapter 2. Let the class number in Table 2.3 be denoted by prefixing \# before the number, e.g. \#15 is the class 000111 in the order of $T_{0} T_{1} S L M M^{\prime}$ coordinates. The classes $1,2,4,5,6,7,8,11,12$ and 13 were derived from $\# 1, \# 2, \# 3, \# 5, \# 6, \# 4, \# 7, \# 8, \# 12$ and $\# 13$, respectively. The class 3 comes from $\# 9, \# 10$ and \#11 jointly. Class \#17 give also the class 8 (we have two possibility: $\bar{N}_{0} \bar{N}_{1}$ and $N_{0} N_{1}$ from Lemma 2.2.2 but the first case gives the class 8 and the second does not occur from $N_{0} N_{1} \subseteq S$ of the same Lemma). The class $\# 15$ gives also only the class 4 (the other cases do not occur from Lemma 2.2.2). Finally the class \#14 gives three classes 9,10 and 16 because $N_{0} N_{1} \subseteq S$ prohibit $N_{0} N_{1} \bar{S}$ case.

Only the class 16 has no symmetric representative (this will be discussed in detail in Chapter 3).

Theorem 2.7.3. There are exactly 58 classes of bases and 39 classes of pivotals under s-completeness. They are indicated in Table 2.7 and 2.8 respectively.

Table 2.7: Classes of bases under s-completeness.
rank 1 (1): (1);
rank $2(47):\{2,3\} \times\{4,5,6,9,10,14\}, 2 \times\{3,8,15\},(3,7)$, $\{4,5\} \times\{8,10,13\},(4,5),\{4,6\} \times\{9,12\}$, $5 \times\{6,7,11\},\{6,9,10\} \times\{7,8,11\}$, $\{2,3,4,5,6,7,8,11\} \times 16$,
rank $3(10): \quad\{7 \times\{8+\{14,15\}\} \times\{12,13\},\{8,11\} \times\{12,13\} \times 14$.

Table 2.8: Classes of pivotals under s-completeness.
rank 1 (15): 2-16;
$\operatorname{rank} 2(20):(7) \times\{8,12,13,14,15\},(8) \times\{12,13,14\},(9) \times\{10,13\},(10,12)$, $(11) \times\{12,13,14,15\},(12) \times\{13,14,15\},(13) \times\{14,15\}$;
rank $3(4):(11,15) \times\{12,13\},(12,13) \times\{14,15\}$.

2.8. Concluding remarks

We have described several functional constructions and presented classes of bases for each of them, using the corresponding classification of P_{2}. They are summarized in Table 2.9. Another modification of the composition can be found in algebra Φ° proposed by Cejtlin [Cej70]. Classifications and base consideration was done for this case by Tosić [Tos81]. Several other modifications of propositional algebras are considered in [Gin85].

Table 2.9: Maximal sets, classes and bases for the 7 constructions in this chapter.

	maximal sets	classes	bases	min rank	max rank	pivotals
ordinary composition	5	15	42	1	4	51
r-line	3	5	4	1	2	3
2-line fix	6	12	28	1	3	10
uniform composition	8	18	118	2	4	115
Ibuki composition	7	18	93	2	4	88
Inagaki composition	6	18	82	1	4	77
sequential	6	16	58	1	3	39

Chapter 3

Bases Consisting of Symmetric Functions

As an application of the enumeration of classes of bases we give formulas N^{n} for the number of bases of P_{2} consisting solely of n-ary symmetric functions for each functional construction described in Chapter 2.

3.1. Introduction

Usually primitives are selected from symmetric functions in practice; nonsymmetry of the input variables complicates the situation, for example, by involving nonsymmetry of delays. Indeed, almost all bases are symmetric functions in practice. The symmetry of functions simplifies the synthesis of switching functions. Connecting an output of a gate to any input of another gate gives shorter length of geometrical connections and avoids extra intersection of the lines. Both are important issues in VLSI design. Moreover, symmetric functions have algebraic properties which make it desirable to treat them as a separate class. Thus we call bases (pivotals) consisting only of symmetric functions s-bases (s-pivotals). We show that there exists a symmetric representative in each class under the 7 constructions described in Chapter 2, except one class in sequential completeness. This gives the following theorem.

Theorem 3.1.1. Classes of bases and classes of s-bases coincide under each of the 6 out of all 7 constructions described in Chapter 2 (the only exception is the sequential circuit construction). In other words there is a base consisting only of symmetric functions for each class of bases under each construction.

It is worth mentioning that there are several classes having no symmetric representative in P_{3}. We are going to give formulas for the exact numbers of n-ary and up to n-ary symmetric functions included in each of the classes. By this we can calculate the formula for N^{n} and $N^{\leq n}$ (the number of bases consisting solely of up to n-ary symmetric functions). Indeed the number of bases consisting solely of n-ary symmetric functions in a class of bases can be calculated as a product of the numbers of corresponding functions in each class of functions belonging to the class of base. Summing these numbers for all classes of bases for rank i we obtain corresponding data N_{i}^{n} for bases of rank i and finally summing them for all ranks we have N^{n}. Similarly we can calculate $N^{\leq n}$. Our results in this chapter are the number N^{n} for each construction.

3.2. Preliminaries on subsets of symmetric Boolean functions

A function $f\left(x_{1}, \ldots, x_{n}\right)$ is said to be symmetric if

$$
f\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)
$$

holds for all $x_{1}, \ldots, x_{n} \in E_{k}$ and every permutation π on $\{1, \ldots, n\}$.
A fundamental symmetric function s_{r}^{n} is determined by the number of its variables n and the number r such that s_{r}^{n} takes the value 1 if and only if r of its arguments assume the value 1 .

For given n, there exist exactly $n+1$ fundamental symmetric functions: $s_{0}^{n}, s_{1}^{n}, \ldots, s_{n}^{n}$. Each symmetric function can be uniquely represented as a disjunction of the fundamental symmetric functions [Sha49]. Hence the number of n-ary symmetric functions in P_{2} is 2^{n+1}. The above property provides a suitable notation for symmetric functions, setting

$$
s_{r_{1}, \ldots, r_{l}}^{n}:=s_{r_{1}}^{n} \vee \ldots \vee s_{r_{l}}^{n}(n \geq 1)
$$

The constants 0 and 1 are symmetric functions which correspond to s_{ϕ}^{n} and $s_{0,1, \ldots, n}^{n}$, respectively. Assume that $0 \leq r_{1}<\ldots<r_{l} \leq n$. Let $R:=\left\{r_{1}, \ldots, r_{l}\right\}$ and $s_{R}^{n}:=s_{r_{1}, \ldots, r_{l}}^{n}$. Thus $s_{R}^{n}\left(x_{1}, \ldots, x_{n}\right)=1 \Leftrightarrow x_{1}+\ldots+x_{n} \in R$, where $x_{1}+x_{2}+\ldots+x_{n}$ denote the number of 1 's in the vector $\left(x_{1}, \ldots, x_{n}\right)$.

We give representation of symmetric functions for each of the subsets described in Section 2, Chapter 2. The indicated number of symmetric functions is easily obtained
from this. The set of symmetric functions from F we denote by F^{s}. Let c_{0}^{n} and c_{1}^{n} be the constant-valued functions of n-variables assuming the values 0 and 1 , respectively. Let $p_{i}^{n}\left(x_{1}, \ldots, x_{n}\right)=x_{i}$ be the projection function of n variables that returns the value of the i-th argument; also let \bar{p}_{i}^{n} be the function that returns the dual value of the i-th argument.

1) $T_{0}^{s}=\left\{s_{R}^{n} \mid 0 \notin R\right\}$.
$\left|T_{0}^{s}(n)\right|=2^{n}$.
2) $T_{1}^{s}=\left\{s_{R}^{n} \mid n \in R\right\}$.
$\left|T_{1}^{s}(n)\right|=2^{n}$.
3) $M^{s}=\left\{s_{\phi}^{n}, s_{n}^{n}, s_{n-1, n}^{n}, \ldots, s_{1,2, \ldots, n}^{n}, s_{0,1, \ldots, n}^{n}\right\}$.
$\left|M^{s}(n)\right|=n+2$.
4) $S^{s}=\left\{s_{R}^{n} \mid i \in R\right.$ if and only if $n-i \notin R$ for all $i=0, \ldots,(n-1) / 2, n$ odd $\}$.
$\left|S^{s}(n)\right|=2^{(n+1) / 2}$ for n odd and 0 for n even [ArH63].
5) $L^{s}=\left\{c_{0}^{n}, c_{1}^{n}, x_{1}+\ldots+x_{n}\left(=s_{\{1,3, \ldots, n\}}^{n}\right.\right.$ for n odd and $=s_{\{1,3, \ldots, n-1\}}^{n}$ for n even $)$, $1+x_{1}+\ldots+x_{n}\left(=s_{\{0,2, \ldots, n-1\}}^{n}\right.$ for n odd and $=s_{\{0,2, \ldots, n\}}^{n}$ for n even $\left.)\right\}$, $\left|L^{s}(n)\right|=4$.
6) $C^{s}=\left\{c_{0}^{n}, c_{1}^{n}, s_{\{n\}}^{n}\left(=x_{1} \ldots x_{n}\right)\right\}$.
$\left|C^{s}(n)\right|=3$.
7) $D^{s}=\left\{c_{0}^{n}, c_{1}^{n}, s_{1,2, \ldots, n\}}^{n}\left(=x_{1} \vee \ldots \vee x_{n}\right)\right\}$.
$\left|D^{s}(n)\right|=3$.
8) $N_{0}^{s}=\left\{s_{R}^{n} \mid 2 r_{1}>n\right.$, where r_{1} is the smallest in $\left.R\right\}$.
$\left|N_{0}^{s}(n)\right|=2^{n / 2}$ for n even and $2^{(n+1) / 2}$ for n odd.
9) $N_{1}^{s}=\left\{s_{R}^{n} \mid 2 r<n\right.$ where r is the greatest in $\left.\{0,1, \ldots, n\} \backslash R\right\}$.
$\left|N_{1}^{s}(n)\right|=2^{n / 2}$ for n even and $2^{(n+1) / 2}$ for n odd.
10) $X^{s}=\left\{s_{R}^{n} \mid 0 \in R, n \notin R\right\}$.
$\left|X^{s}(n)\right|=2^{n-1}$.
11) $M^{\prime s}=\left\{0, s_{0}^{n}, \ldots, s_{0,1, \ldots, n-1}^{n}, 1\right\}$.
$\left|M^{\prime s}(n)\right|=n+2$.
12) $K^{s}=\left\{s_{R}^{n} \mid 0, n \in R\right.$ or $\left.0, n \notin R\right\}$.
$\left|K^{s}(n)\right|=2^{n}$.

Example 3.2.1.

$$
\begin{aligned}
& S^{s}(3)=\left\{s_{\{0,1\}}^{3}, s_{\{0,2\}}^{3}, s_{\{1,3\}}^{3}, s_{\{2,3\}}^{3}\right\}, \\
& N_{0}^{s}(3)=\left\{s_{\phi}^{3}, s_{\{2\}}^{3}, s_{\{3\}}^{3} \stackrel{\left.\wedge_{i=1}^{n} x_{i}, s_{\{2,3\}}^{3}\right\},}{ }\right. \\
& N_{1}^{s}(3)=\left\{s_{\{2,3\}}^{3}, s_{\{0,2,3\}}^{3}, s_{\{1,2,3\}}^{3}=\vee_{i=1}^{n} x_{i}, s_{\{0,1,2,3\}}^{3}\right\} .
\end{aligned}
$$

Table 3.1: Intersections of the subsets of symmetric functions.

	N_{1}	S	L	M	M^{\prime}
N_{0}	$\{x(n=1)\}$	$\left.\begin{array}{c} \{x(n=1), \\ \left.s_{(n+1) / 2, \ldots, n}^{n}\right\} \\ (n \text { odd }) \end{array}\right\}$	$\{x(n=1), 0\}$	$\begin{gathered} \{x(n=1), 0 \\ \left.s_{(n+1) / 2, \ldots, n}^{n}\right\} \\ (n \text { odd }) \end{gathered}$	\{0\}
N_{1}		$\begin{gathered} \{x(n=1), \\ \left.s_{0, \ldots, n / 2}^{n}\right\} \\ (n \text { odd }) \end{gathered}$	$\begin{gathered} \{x(n=1), \\ 1\} \end{gathered}$	$\begin{gathered} \{x(n=1), \\ 1\} \end{gathered}$	$\{1$, $\left.s_{0, \ldots, n / 2}^{n}\right\}$ (n odd)
S			$\begin{gathered} \left\{s_{1,3, \ldots, n}^{n}, s_{0,2, \ldots, n-1}^{n}\right\} \\ (n \text { odd }) \\ \hline \end{gathered}$	$\begin{gathered} \left\{s_{(n+1) / 2, \ldots, n}^{n}\right\} \\ (n \text { odd }) \end{gathered}$	$\begin{gathered} \left\{s_{0, \ldots,(n-1) / 2}^{n}\right\} \\ (n \text { odd }) \end{gathered}$
L				$\begin{gathered} \{x(n=1), \\ 0,1\} \end{gathered}$	$\begin{gathered} \{x+1(n=1) \\ 0,1\} \end{gathered}$
\bar{M}					$\{0,1\}$

In the next lemmas we summarize without proofs several results on the sets of symmetric functions expressed as intersections of the subsets defined previously. These results will be used in the argument in the succeeding sections.

Lemma 3.2.1. $M^{s}(n) \subseteq N_{0}^{s} \cup N_{1}^{s}$.
For $n \geq 2$,

$$
\begin{aligned}
& M^{s}(n) \cap L^{s}(n)=L^{s}(n) \cap C^{s}(n)=L^{s}(n) \cap D^{s}(n)=C^{s}(n) \cap D^{s}(n)=M^{s}(n) \cap M^{\prime s}(n)= \\
& =L^{s}(n) \cap M^{\prime s}(n)=\left\{c_{0}^{n}, c_{1}^{n}\right\}
\end{aligned}
$$

And

$$
\begin{aligned}
& M^{\prime s}(n) \cap N_{0}^{s}(n)=L^{s}(n) \cap N_{0}^{s}(n)=c_{0}^{n} \\
& M^{\prime s}(n) \cap N_{1}^{s}(n)=L^{s}(n) \cap N_{1}^{s}(n)=c_{1}^{n}
\end{aligned}
$$

Lemma 3.2.2. For n even $S^{s}(n)=\phi$. For n odd,

$$
\begin{aligned}
& S^{s}(n) \cap L^{s}(n)=\left\{a+x_{1}+\ldots+x_{n} \mid a=0,1\right\}, \\
& S^{s}(n) \cap M^{s}(n)=S^{s}(n) \cap N_{0}^{s}(n)=S^{s}(n) \cap N_{1}^{s}(n)=N_{0}^{s}(n) \cap N_{1}^{s}(n)=N_{0}^{s}(n) \cap M^{s}(n) \\
& =N_{1}^{s}(n) \cap M^{s}(n)=S^{s}(n) \cap M^{s}(n) \cap N_{0}^{s}(n) \cap N_{1}^{s}(n) \\
& =\left\{s_{(n+1) / 2, \ldots, n}^{n}\right\}
\end{aligned}
$$

and

$$
S^{s}(n) \cap M^{\prime s}(n)=\left\{s_{0,1, \ldots,(n-1) / 2}^{n}\right\}
$$

Lemma 3.2.3. $N_{0}^{s}(n) \cap C^{s}(n)=\left\{0, x_{1} \wedge \cdots \wedge x_{n}\right\}, N_{1}^{s}(n) \cap C^{s}(n)=\left\{1, x_{1} \vee \cdots \vee x_{n}\right\}$ In Table 3.1 we summarize the intersections of the sets.

3.3. S-bases under the ordinary composition

In [Tos72] Tosic characterized the n-ary symmetric functions contained in each of the 15 classes under ordinary composition.

Theorem 3.3.1. [Tos72] The number of n-ary symmetric functions in each class under ordinary composition is given in Table 3.2.

Table 3.2: Number of n-ary symmetric functions in each class under ordinary composition.

$T_{0} T_{1} S L M$	$n=1$	n even	$n>1$ odd
1.11111	0	2^{n-1}	$2^{n-1}-2^{(n-1) / 2}$
2. 11011	0	0	$2^{(n-1) / 2}-1$
3. $01111(4.10111)$	0	$2^{n-1}-2$	$2^{n-1}-1$
5. 11001	1	0	1
$6.10101(7.01101)$	0	1	0
8. 00111	0	$2^{n-1}-n$	$2^{n-1}-2^{(n-1) / 2}-n+1$
$9.10100(10.01100)$	1	1	1
11.00110	0	n	$n-1$
12.00011	0	0	$2^{(n-1) / 2}-2$
13.00010	0	0	1
14.00001	0	0	1
15.00000	1	0	0

We briefly summarize it because our classification uses this. In all expression below we assume $\left\{r_{1}, \ldots, r_{l}\right\} \subseteq\{1, \ldots, n-1\}$ and $1 \leq l \leq n-1$.

1. (Sheffer class) $s_{0, r_{1}, \ldots, r_{l}}^{n}, n>1$, except the case n odd, $l=(n-1) / 2$ and $r_{i} \in\{i, n-i\}$ for all $i, 1 \leq i \leq(n-1) / 2$; NOR function $s_{0}^{2}=\overline{x y}$ and NAND function $s_{0,1}^{2}=\bar{x} \vee \bar{y}$.
2. (linear class) $s_{0, r_{1}, \ldots, r_{l}}^{n}$ for n odd, $n>1$ and $r_{i} \in\{i, n-i\}$ for all $i, 1 \leq i \leq(n-1) / 2$, except the function $x_{1}+\ldots+x_{n}+1=s_{0,2,4, \ldots, n-1}^{n} ; s_{0,1}^{3}=\overline{x y} \vee \overline{y z} \vee \overline{z x}$.
3. (preserving 0 class) $s_{r_{1}, \ldots, r_{l}}^{n}, n>2$, except the constant function 0 . For n even the function $x_{1}+\ldots+x_{n}+1=s_{0,2, \ldots, n}$ is also excluded; $s_{1,2}^{3}=\neg(x y z \vee \overline{x y z})$.
4. (preserving 1 class) $s_{0, r_{1}, \ldots, r_{l}, n}^{n}, n>2$, except the constant function 1 . For n even also the function $1+x_{1}+\ldots+x_{n}=s_{0,2, \ldots, n}$ is also excluded; $s_{0,3}^{3}=(x y z \vee \overline{x y z})$.
5. (linear selfdual class) Only $1+x_{1}+\ldots+x_{n}=s_{0,2,4, \ldots, n-1}^{n}$ for $n>1$ odd.
6. (linear preserving 1 class) $1+x_{1}+\ldots+x_{n} s_{0,2,4, \ldots, n}^{n}$ for n even, $n>1 ; s_{0,2}^{2}=x+y+1$.
7. (linear preserving 0 class) $x_{1}+\ldots+x_{n}=s_{1,3, \ldots, n-1}^{n}$ for n even, $n>1 ; s_{1}^{2}=x+y$.
8. (preserving constants class) $s_{r_{1}, \ldots, r_{l}, n}^{n}, n>3$, except the functions $s_{j, j+1, \ldots, n}^{n}$ for $1 \leq$ $j \leq n$. For n odd, $n>1$, the functions $s_{r_{1}, \ldots, r_{l}, n}^{n}$ are also excluded if they satisfy the selfdual condition $r_{i} \in\{i, n-i\}$ for all $i, 1 \leq i \leq(n-1) / 2 ; s_{1,4}^{4}$.
9. (constant 1 class) Only the constant function 1.
10. (constant 0 class) Only the constant function 0 .
11. (monotone preserving constants class) $s_{j, j+1, \ldots, n}^{n}$ for $n>1,1 \leq j \leq n$ and $j \neq$ $(n+1) / 2$ if n is odd; $s_{2}^{2}=x y$.
12. (selfdual preserving constants class) $s_{r_{1}, \ldots, r_{l}, n}^{n}$ for $r_{i} \in\{i, n-i\}, 1 \leq i \leq(n-1) / 2$ and n odd, $n>4$. The functions $s_{(n+1) / 2, \ldots, n}^{n}$ and $x_{1}+\ldots+x_{n}=s_{1,3, \ldots, n}$ are excluded; $s_{1,5}^{5}$.
13. (monotone selfdual class) $s_{(n+1) / 2, \ldots, n}^{n}$ for n odd, $n>1 ; s_{2,3}^{3}=x y \vee y z \vee z x$.
14. (linear selfdual class) $x_{1}+\ldots+x_{n}=s_{1,3, \ldots, n}$ for n odd, $n>1 ; s_{1,3}^{3}=x+y+z$.
15. (identity class) Only the function $f(x)=x=s_{1}^{1}$.

The number of s-bases of P_{2} consisting of n-ary $(n>1)$ functions is $N(n)=2^{n}+$ $4^{n-1}-n-4$ if n is even and $N(n)=2^{(n-1) / 2}+4^{n-1}+3 \cdot 8^{(n-1) / 2}+2^{n-1}-6$ otherwise [Tos72]. The formulas for $N(\leq)$ are also given there.

3.4. S-bases under r-line coding

Theorem 3.4.1. The numbers of n-ary and up to n-ary symmetric functions in each class under 2-line fixed coding are given in Table 3.3.

The proof is obvious from Table 2.2, Chapter 2.
Theorem 3.4.2 S-bases consisting of n-ary functions ($n \geq 2$) is: rank 1: $N_{1}^{n}=2^{n+1}-6$ (Sheffer symmetric functions), rank 2: $N_{2}^{n}=2 \cdot 1+2 \cdot 1+1 \cdot 1=5$. Thus there are

$$
N^{n}=2^{n+1}-1
$$

Table 3.3: Number of symmetric functions in each class under r-line coding.
Number of n-ary functions \quad Number of up to n-ary functions

class	$L C D$	$\mathrm{n}=1$	$n>1$
1.	000	3	2
2.	011	1	2
3.	101	0	1
4.	110	0	1
5.	111	0	$2^{n+1}-6$
sum		4	2^{n+1}

class	
1.	$2 n+1$
2.	$2 n-1$
3.	$n-1$
4.	$n-1$
5.	$2^{n+2}-6 n-2$
sum	$2^{n+2}-4$

s-bases under r-line coding. Similarly we have the number of s-bases consisting of up to n-ary functions

$$
N^{\leq n}=2^{n+2}+5 n^{2}-14 n+1
$$

3.5. S-bases under 2-line fixed coding

We give the classes [Ibu68], where the components are in the order of $L D C S N_{1}$ and N_{0}.

Table 3.4: Classes under 2-line fixed coding

1. 000110
2. 000101
3. 011011
4. 011111
5. 101101
6. 110110
7. 111000
8. 111011
9. 111101
10. 111110
11. 111111
12. 000000

Theorem 3.5.1. [Sto85] The number of symmetric functins in the classes under 2-line fixed coding are given in Table 3.5.

Symmetric representatives in each of the above classes are given in [Sto85]. We explain it briefly, because the original counting is slightly incorrect. It is easy to see that only $0,1, a+\sum_{i=0}^{n} x_{i}(n=2 m+1, m \geq 1, a=0,1 ; a=1$ for $n=1), a+\sum_{i=0}^{n} x_{i}(n=$ $2 m, m>0, a=0,1), \vee_{i=1}^{n} x_{i}, \wedge_{i=1}^{n} x_{i}$ belong to the first 6 classes, respectively. From Lemma 3.2 .2 only $s_{(n+1) / 2, \ldots, n}^{n}$ for n odd and $n \geq 2$ is in the class 7 . The class 8 contains the selfdual functions except the intersection with each of the other sets. From Lemma 3.2.2 only the three functions belong to these intersections: $s_{(n+1) / 2, \ldots, n}^{n} \in S M N_{0} N_{1}$ and $s_{1,3, \ldots, n}=\sum_{i=1}^{n} x_{i}$ and $s_{1,3, \ldots, n}=1+\sum_{i=1}^{n} x_{i}$ belong to $S L$ for n odd. The classes 9 and 10 consist of N_{1} and N_{0}, respectively, except the intersection with each of the

Table 3.5: Numbers of n-ary symmetric functions under 2-line fixed coding.

class	$n=1$	$n=2 m>1$	$n=2 m+1$
1,2	1	1	1
3	1	0	2
4	0	2	0
5,6	0	1	1
7	0	0	1
8	0	0	$2^{(n+1) / 2}-3$
9,10	0	$2^{n / 2}-2$	$2^{(n+1) / 2}-3$
11	0	$2^{n+1}-2^{n / 2+1}-2$	$2^{n+1}-3 \cdot 2^{(n+1) / 2}+2$
12	1	0	0
sum	4	2^{n+1}	2^{n+1}

Table 3.6: Numbers of up to n-ary symmetric functions under 2-line fixed coding.

class	$n=1$	$n>1$
1,2	1	n
3	1	$2[(n-1) / 2]+1$
4	0	$2[n / 2]$
5,6	0	$n-1$
7	0	$[(n-1) / 2]$
8	0	$2^{[(n+3) / 2]}-3[(n-1) / 2]-4$
9,10	0	$\left(3+\left(1+(-1)^{n}\right) / 2\right) 2^{[(n+1) / 2]}-2 n-[(n-1) / 2]-4$
11	0	$2^{n+2}-2^{2}\left(2^{[n / 2]}+3 \cdot 2^{[(n-1) / 2])}+8-\left(1+(-1)^{n}\right)\right.$
12	1	1
sum	4	$2^{n+2}-4$

other sets. From Lemma 3.2.3 only the following functions belong to these intersections: $s_{0,1, \ldots, n}=1, s_{1,2, \ldots, n}^{n}=V_{i=1}^{n} x_{i} \in N_{1} D$; further $s_{(n+1) / 2, \ldots, n}^{n} \in N_{1} N_{0} M S$ when n odd. The class 10 is similar; $s_{\phi}^{n}=0, s_{n}^{n}=\wedge_{i=1}^{n} x_{i} \in N_{0} C$ and further $s_{(n+1) / 2, \ldots, n}^{n} \in N_{0} N_{1} M S$ when $n>1$ odd. The class 11 contains all the remaining functions (the Sheffer class to be considered in the next Chapter 4). The class 12 contains only the identity function.

We show the numbers of up to n-ary symmetric functions in each class in Table 3.6 (note that Table 3.5 and 3.6 are corrected slightly: classes $8,9,10$ case n odd).

Theorem 3.5.2. The number of s-bases consisting solely of n-ary functions under 2line fixed coding is given in Table 3.7.

Table 3.7: Number of s-bases consisting of n-ary functions under 2 -line fixed coding.

	n even	n odd
N^{n}	$3 \cdot 2^{n}+2 \cdot 2^{n / 2}-9$	$2^{n+3}-9 \cdot 2^{(n+1) / 2}+5$
N_{1}^{n}	$2^{n+1}-2 \cdot 2^{n / 2}-2$	$2^{n+1}-3 \cdot 2^{(n+1) / 2}+2$
N_{2}^{n}	$2^{n}+4 \cdot 2^{n / 2}-7$	$3 \cdot 2^{n+1}+6 \cdot 2^{(n+1) / 2}-4$
N_{3}^{n}	0	7

Table 3.8: Number of symmetric functions in each class under uniform compositions.

	$n=1$	n even	n odd
1,11	0	$2^{n-1}-n$	$2^{n-1}-2^{(n-1) / 2}-n+1$
2,14	0	n	$n-1$
3,15	0	0	$2^{(n-1) / 2}-2$
$4,7,16,17$	0	0	1
5,6	0	$2^{n-1}-2$	$2^{n-1}-1$
8,18	1	0	0
9,10	0	1	0
12,13	1	1	1
sum	4	2^{n+1}	2^{n+1}

3.6. S-bases under the uniform composition and its variations

Theorem 3.6.1. The number of symmetric functions in each class under uniform composition are given in Table 3.8

Proof. Our classification is a subclassification of P_{2}-classes under ordinary composition (cf. Table 2.1) described in Section 3, Chapter 2 since 5 sets T_{0}, T_{1}, S, L and M are common to both cases. The only difference between the two classifications consists in dividing the classes 1,2 and 5 in Table 3.2 into the classes 1,$2 ; 3,4 ; 7,8$ respectively, so that functions of the set M^{\prime} belongs to the classes 2,4,8 and functions from \bar{M}^{\prime} to the classes $1,3,7$. Let us use a prefix \# to denote the classes in Table 3.2 (also in Section 3, Chapter 2). We divide the classes \#1, \#2 and \#5 by M^{\prime}.

1. Classification of \#1. Case n even. Only the n functions: $s_{0,1, \ldots, n-1}^{n}, s_{0,1, \ldots, n-2}^{n}, \ldots, s_{0}^{n}$ belong to M^{\prime}; the remaining belong to \bar{M}. Case n odd. Among the functions described in the case n even, only one $s_{0,1, \ldots,(n-1) / 2}^{n} \in S M^{\prime}$ should be deleted from Lemma 3.2.2. Thus we have $n-1$ functions for $f \in M^{\prime}$; the other $2^{(n-1) / 2}-n+1$ functions belong to \bar{M}^{\prime}.

Table 3.9: The number of up to n-ary functions in each class under uniform delay composition.

Class	Number of up to n-ary symmetric functions
1,11	$2^{n}-2^{[(n+1) / 2]}-\left[n^{2} / 2\right]$
2,14	$\left[n^{2} / 2\right]$
3,15	$2^{[(n+1) / 2]}-2[(n-1) / 2]-2$
$4,7,16,17$	$[(n-1) / 2]$
5,6	$2^{n}-n-1-[n / 2]$
8,18	1
9,10	$[n / 2]$
12,13	n
sum	$2^{n+2}-4$

Table 3.10: Number of s-bases consisting of n-ary functions under uniform composition.

	n even	n odd
N^{n}	$2^{3(n-1)}+(n+3) 2^{2 n-2}$	$2^{3(n-1)}+2^{5(n-1) / 2}+(n+1) 2^{2 n-2}-n \cdot 2^{(3 n-1) / 2}$
	$-n(n+3) 2^{n-1}+2 n^{2}-n$	$+\left(1-n^{2}\right) 2^{n-1}+(2 n+3) 2^{(n-1) / 2}+n^{2}-n-5$
N_{1}^{n}	0	0
N_{2}^{n}	$3 \cdot 2^{2 n-2}-2 n$	$3 \cdot 2^{2 n-2}-2^{n-1}-2 n-2$
N_{3}^{n}	$2^{3(n-1)}+n \cdot 2^{2 n-2}$	$2^{3(n-1)}+2^{5(n-1) / 2}+(n-2) 2^{2 n-2}-n \cdot 2^{(3 n-1) / 2}$
	$-n(n+3) 2^{n-1}+2 n^{2}+n$	$+\left(2-n^{2}\right) 2^{n-1}+(2 n+3) 2^{(n-1) / 2}+n^{2}-3$
N_{4}^{n}	0	n

2. Classification of \#2. Only one function $s_{0,1, \ldots,(n-1) / 2}^{n}$ belongs to $S M^{\prime}$ from Lemma 3.2.2; the other belong to \bar{M}^{\prime}.
3. Classification of \#5. For n even no function exists. Consider n odd. Only one function $s_{0}^{1}=x_{1}+1$ belongs to M^{\prime} for $n=1$. For n odd >1 only one function $s_{0,2,4, \ldots, n-1}^{n}=1+x_{1}+\cdots x_{n}$ belongs to \bar{M}^{\prime}.

In Table 3.9 the number of up to n-ary functions is given for each class which is easily verified from the result in [Tos72] and Table 3.8.

Theorem 3.6.2. The number of symmetric functions consisitng solely of n-ary function is given in Table 3.10.

Ibuki and Inagaki constructions

We give the formula for the number of s-bases consisting of solely n-ary symmetric functions for each case in Tables 3.11 and 3.12.

Table 3.11: Number of s-bases consisting of n-ary functions (Ibuki construction).

	n even	n odd
N^{n}	$2^{2 n}+2^{n+1}-3 n-4$	$2^{2 n}+2 \cdot 2^{(n+1) / 2}-6$
N_{1}^{n}	0	0
N_{2}^{n}	$2^{2 n}-2 n-4$	$2^{2 n}-2^{n-1}-2 n-3$
N_{3}^{n}	$2^{n+1}-n$	$2^{n-1}+2 \cdot 2^{(n+1) / 2}+n-3$
N_{4}^{n}	0	n

Table 3.12: Number of s-bases consisting of n-ary functions (Inagaki construction).

	n even	n odd
N^{n}	$2^{2 n-2}+(3 n+5) 2^{n-1}-4 n-4$	$2^{2 n-2}+3 \cdot 2^{3(n-1) / 2}+(3 n-2) 2^{n-1}$
		$+(n+2) 2^{(n-1) / 2}-4 n-2$
N_{1}^{n}	$2^{n-1}-n$	$2^{n-1}-2^{(n-1) / 2}-n+1$
N_{2}^{n}	$2^{2 n-2}+3 n \cdot 2^{n-1}-2 n-4$	$2^{2 n-2}+3 \cdot 2^{3(n-1) / 2}+(3 n-2) 2^{n-1}$
		$+(n+2) 2^{(n-1) / 2}-4 n-2$
N_{3}^{n}	$2^{n+1}-n$	$2^{n-1}-2 \cdot 2^{(n+1) / 2}-n-1$
N_{4}^{n}	0	n

3.7. S-bases under sequential circuit composition

In Table 3.13 we show symmetric functions included in each class of s-completeness.
Lemma 3.7.1. There is no symmetric representative in the class 16.
Proof. Assume $f \in M$, i.e. $f=s_{m, m+1, \ldots, n}^{n}, 0 \leq m \leq n$ (we exclude the constant $s_{\phi}^{n}=0$ from the consideration). From $f \notin N_{0}$ we have $2 m \leq n$ and from $f \notin N_{1}$ we have $2(m-1) \geq n$. That is, $m \leq n / 2$ and $m \geq n / 2+1$, a contradiction.

This give the following.
Theorem 3.7.1. There are exactly 50 classes of s-bases and 38 classes of s-pivotals under s-completeness.

They are given by deleting the classes of bases and pivotals including the class 16 from those indicated in Tables 2.7 and 2.8, Chapter 2 respectively (we simply delete the last line of rank 2 bases and one pivotal consisting solely of the class 16).

Theorem 3.7.2. The number of n-ary symmetric functions in each of the 16 classes under sequential completeness are given in Table 3.14.

Table 3.13: Symmetric functions in the classes of functions under s-completeness.
$N_{0} N_{1} S L M M^{\prime} \quad$ symmetric functions

1.	111111	the remaining symmetric functions
2.	111110	$s_{0,1, \ldots, m}^{n}, m \neq n$. Exclude $m \neq(n-1) / 2$ for n odd
3.	111011	$a+x_{1}+\ldots+x_{2 m}(m \geq 1, a \in\{0,1\})$
4.	110111	$s_{r_{0}, \ldots r_{m}}^{n}$ for n odd $>1: m=(n-1) / 2, r_{i} \in\{i, n-i\}$ except $a+x_{1} \ldots+x_{2 m+1} ; s_{(n+1) / 2, \ldots, n}^{n} ; s_{0,1, \ldots,(n-1) / 2}^{n}$
5.	101111	$s_{R}^{n}, 2 r<n$ and $s_{R}^{n} \notin M$
6.	011111	$s_{R}^{n}, 2 r_{1}>n$ and $s_{R}^{n} \notin M$
7.	110110	$s_{0,1, \ldots,(n-1) / 2}^{n}: n$ odd
8.	110011	$a+x_{1}+\ldots+x_{2 m+1}(m \geq 1, a \in\{0,1\})$
9.	101101	$s_{m, m+1, \ldots, n}^{n} ; m \leq n / 2, m>0$
10.	011101	$s_{m, m+1, \ldots, n}^{n} ; m>n / 2 n$ even; $m>(n+1) / 2 n$ odd
11.	110010	$1+x$
12.	101000	1
13.	011000	0
14.	000101	$s_{(n+1) / 2, \ldots, n}^{n}: n$ odd
15.	000001	x
16.	111101	ϕ

Proof. We describe symmetric functions contained in in each class (cf. Table 3.13).
The class 1 is Sheffer class described in Section 5, Chapter 3. It is easy to see the classes $3,7,8,11,12,12,13,14$ and 15 since they are linear functions and $S M$ and $S M^{\prime}$ and other special functions. The class 2 consists of monotone decreasing functions except one function $S M^{\prime}$; the intersections of the other sets and monotone decreasing functions are constants or the unary function $x+1$. Class $3,8: L^{s}(n) \subseteq\left(S^{s} \cup \bar{S}^{s}\right){\overline{N_{0}}}^{s}{\overline{N_{1}}}^{s} \bar{M}^{s} \bar{M}^{s}$. Class 4: we are to exclude $S L, S M=S N_{1}=S N_{0}$ and $S M^{\prime}$ from S. Class 5,6: we consider class 6 (the class 5 is similar). From $N_{0} S \subseteq N_{0} M, N_{0} L \subseteq N_{0} M$ and $N_{0} M^{\prime} \subseteq N_{0} M$ the class 6 equals to $N_{0} \backslash N_{0} M$. We have $s_{m, m+1, \ldots, n} \in N_{0} \Leftrightarrow m>n / 2$, i.e. $m \geq n / 2+1$ for n even and $m \geq(n+1) / 2$ for n odd. Thus $\left|N_{0}^{s} M^{s}(n)\right|=n+2-(n / 2+1)=n / 2+1$ for n even and $=n+2-((n-1) / 2+1)=(n+3) / 2$ for n odd. Finally, class 9,10 : From $f \in M \bar{M}^{\prime}$ we have $f=s_{m, m+1, \ldots, n}^{n}, m>0$ (if $m=0$ then $f \in M M^{\prime}$). These do not belong to L for $n>1$. We have $f \in N_{0} \Leftrightarrow m>n / 2$ and $f \in N_{1} \Leftrightarrow m<n / 2+1$. Consider the class 9 . Then $m \leq n / 2$ and $m<n / 2+1$. For n even this means $m \leq n / 2$ and there are all $n / 2$ such functions. For n odd this means $m \leq(n-1) / 2$ and there are all $(n-1) / 2$ such functions. None of functions in both cases belong to S. Class 10

Table 3.14: Number of n-ary symmetric functions in each class under sequential completeness.

class \backslash	$n=1$	n even	n odd >1
1	0	$2^{n+1}-2^{n / 2+1}-n-2$	$2^{n+1}-3 \cdot 2^{(n+1) / 2}-n+3$
2	0	n	$n-1$
3	0	2	0
4	0	0	$2^{(n+1) / 2}-4$
5,6	0	$2^{n / 2}-n / 2-1$	$2^{(n+1) / 2}-(n+1) / 2-1$
7,14	0	0	1
8	0	0	2
9,10	0	$n / 2$	$(n-1) / 2$
11,15	1	0	0
12,13	1	1	1
sum	4	2^{n+1}	2^{n+1}

Table 3.15: Numbers of up to n-ary symmetric functions in each class.

class \backslash	$n \geq 1$
1	$2^{n+2}-\left(9+(-1)^{n}\right) 2^{[(n+1) / 2]}-\left[n^{2} / 2\right]+2 n-4[n / 2]+6$
2	$\left[n^{2} / 2\right]$
3	$2[n / 2]$
4	$2^{[(n-1) / 2]+2}-4[(n-1) / 2]-4$
5,6	$\left(7+(-1)^{n}\right) 2^{[(n-1) / 2]}-(1 / 2)\left[n^{2} / 2\right]-n-[(n-1) / 2]-5$
7,14	$[(n-1) / 2]$
8	$2[(n-1) / 2]$
9,10	$\left[n^{2} / 2\right] / 2$
11,15	1
12,13	n
sum	$2^{n+2}-4$

is similar.
The number of up to n-ary symmetric functions in each class is given in Table 3.15.
Theorem 3.7.3. The number N^{n} of bases consisting solely of n-ary symmetric functions under sequential completeness is given in Table 3.16.

3.8. Concluding remarks

We have given the numbers of symmetric functions in each class for each construction described in Chapter 2. By this we have given formulas for the number of bases consisting solely of n-ary functions. The numerical data for the small numbers of n are given

Table 3.16: Number of s-bases consisting of n-ary functions under sequential completeness.

	n even	n odd
N^{n}	$3 \cdot 2^{n}+(n+1) 2^{n / 2+1}$	$3 \cdot 2^{n+1}+(7 n-9) 2^{(n-1) / 2}$
	$-n^{2} / 4-2 n-7$	$-n^{2} / 4-17 n / 2+3 / 4$
N_{1}^{n}	$2^{n+1}-2^{n / 2+1}-n-2$	$2^{n+1}-3 \cdot 2^{(n+1) / 2}-n+3$
N_{2}^{n}	$2^{n}+(n+2) 2^{n / 2+1}$	$2^{n+2}+(7 n-3) 2^{(n-1) / 2}$
	$-n^{2} / 4-n-5$	$-n^{2} / 4-15 n / 2-49 / 4$
N_{3}^{n}	0	10

Table 3.17: Numbers of bases consisting solely of n-ary symmetric functions.

n	2	3	4	5	6	7	8	9	10
ordinary composition	2	36	72	446	1,078	5,634	16,628	77,834	263,154
r-line	7	15	31	63	127	255	511	1,023	2,047
2-line fix	7	33	47	189	199	885	791	3,813	3,127
uniform composition	14	99	764	5,699	40,322	317,613	$2,266,232$	$18,387,347$	$137,559,230$
Ibuki composition	14	66	272	1,034	4,202	16,410	66,020	262,202	$1,050,590$
Inagaki composition	14	64	180	662	1,732	6,890	20,060	84,362	280,020
sequential	12	45	69	248	276	1,017	1,017	3,840	3,724

in Table 3.17. By the given data for the number of up to n-ary functions contained in each class we can calculate the formula for the number of bases consisting of up to n-ary functions.

Chapter 4

Sheffer and Symmetric Sheffer functions in P_{2}

In this chapter we give the four formulas for the numbers of Sheffer functions, Sheffer with constant functions, Sheffer symmetric functions and Sheffer symmetric with constant functions under each functional construction which we have seen in the previous chapters.

4.1. Introduction

A Sheffer Boolean function is a well-known notion which means that it can produce by itself all Boolean functions through composition. A typical example of such function is the NAND operation. A variation of the notion of Sheffer functions is that of Sheffer with constants (in this chapter abbreviated to c-Sheffer), which assumes that one can freely utilize constant-valued functions (0 and 1). This is a more suitable assumption in real circuit design, since the constant-valued functions are usually obtained with no extra cost. A comprehensive survey on the topic of completeness can be found in [Ros77].

We show the formulas for the number of n-variable Sheffer functions, for the four cases: Sheffer, c-Sheffer, symmetric Sheffer, symmetric c-Sheffer. Here some previous results by other researchers are included in order to achieve completeness of the presentation. The derivations for the formulas are always by the so-called inclusion exclusion principle (cf. [Vil71]) using the inclusion relations of the sets we have seen in lemmas 2.2.1-2.2.4, Chapter 2 and 3.2.1-3.2.3, Chapter 3 freely. Thus the proofs are not described in detail.

The subsets of Boolean functions which we have seen in the previous chapters are used in describing the conditions for Shefferness. From Section 2 through Section 8 we present the explicit formulas for Sheffer and symmetric Sheffer functions. Finally in Section 9 tables are shown which exhibit the calculated numbers of Sheffer functions in each case.

We must note that some cases still remain unsolved because we don't know the formula for the numbers of the two subsets of Boolean functions. An explicit formula for the number $\Psi(n)$ of monotone increasing Boolean functions is not known (the Dedekind problem), but a good asymptotic formula has been obtained [Kor81] (see also [Hro85,Kle69]). The first few values of the function are shown in Table 4.1. Also we could not find an explicit formula for the function $\Theta(n)$ (only the shape of the formula is known very recently [PMN88]), which shows that the number $\Theta(n)$ increases very rapidly comparing even with $\Psi(n)$). We calculated first a few values, which are shown in Table 4.2 (the calculation is possible only up to $n=4$ by naive enumeration using computer).

Table 4.1. Values of $\Psi(n)$.

n	1	2	3	4	5	6	7
$\Psi(n)$	3	6	20	168	7,581	$7,828,354$	$2,414,682,040,998$

Table 4.2. Values of $\Theta(n)$.

n	1	2	3	4	5
$\Theta(n)$	2	6	40	1,376	$1,314,816$

4.2. Sheffer functions under ordinary composition

Our first construction method is the ordinary one. In this construction functions from a given set of primitives are combined by composition of functions, together with identification and permutation of variables. Thus the projection functions p_{i}^{n} are freely used in composition.

In this section only the last theorem is new. The first theorem is well-known (see [Ros77]) and is easily obtained from the Post completeness theorem 2.3.1, Chapter $2: a$
set of functions is complete under ordinary composition if and only if it is not included in each of the 5 sets T_{0}, T_{1}, M, S and L.

Theorem 4.2.1. A function f is Sheffer if and only if $f \notin T_{0} \cup T_{1} \cup S$.
Theorem 4.2.2. The number of n-ary Sheffer functions is $\Sigma(n)=2^{2^{n}-2}-2^{2^{n-1}-1}$.
Theorem 4.2.3. [Tos72] The number $\Sigma^{s}(n)$ of n-ary symmetric Sheffer functions is 2^{n-1} for n even and $2^{n-1}-2^{(n-1) / 2}$ for n odd.

Theorem 4.2.4. [Jab52] A function f is c-Sheffer if and only if $f \notin M \cup L$.
Theorem 4.2.5. [Hik82] The number of n-ary c-Sheffer functions is $\Sigma^{c}(n)=2^{2^{n}}-$ $2^{n+1}+n+2-\Psi(n)$.

Theorem 4.2.6. The number of n-ary symmetric c-Sheffer functions is $\Sigma^{c s}(n)=2^{n+1}-$ $n-4$.

Proof. $\Sigma^{c s}(n)=\left|P^{s}(n)\right|-\left|M^{s}(n)\right|-\left|L^{s}(n)\right|+\left|M^{s}(n) \cap L^{s}(n)\right|=2^{n+1}-(n+2)-4+2$.

Thus, when n is large, almost all symmetric Boolean functions are Sheffer with constants.

4.3. Sheffer functions under r-line coding

All the result about r-line coding completeness is derived from the following Theorem 2.4.1, Chapter 2:

Theorem 4.3.1. A set of functions is complete under r-line coding if and only if it is not contained in each of the 3 sets L, C and D.

Theorem 4.3.2. A function f is Sheffer and c-Sheffer under r-line coding if and only if $f \notin L \cup C \cup D$.

Proof. The second assertion comes from the fact that $\left\{c_{0}^{n}, c_{1}^{n}\right\} \subseteq L \cap C \cap D$.
Thus, the notions of Sheffer and c-Sheffer coincide under r-line coding completeness.

Theorem 4.3.3. The numbers of n-ary functions Sheffer and c-Sheffer under r-line coding are $\Sigma_{\text {rlc }}(n)=\Sigma_{\text {rlc }}^{c}(n)=2^{2^{n}}-2^{n+2}+2 n+2$.

Proof. $\Sigma_{r l c}(n)=\Sigma_{r l c}^{c}(n)=2^{2^{n}}-2^{n+1}-2\left(2^{n}+1\right)+3(n+2)-(n+2)$.
Theorem 4.3.4. The numbers of n-ary symmetric functions Sheffer and c-Sheffer under r-line coding are $\Sigma_{\text {rlc }}^{s}(n)=\Sigma_{\text {rlc }}^{c s}(n)=2^{n+1}-6$.

Proof. $\Sigma_{r l c}^{s}(n)=\Sigma_{r l c}^{c s}(n)=2^{n+1}-4-3-3+2+2+2-2$.

4.4. Sheffer functions under 2-line fixed coding

The theorems about Sheffer functions in this section are derived from the following Theorem 2.5.1, Chapter 2:

A set of functions is complete under the 2-line fixed coding if and only if it is not contained in each of the 6 sets S, L, C, D, N_{0} and N_{1}.

Theorem 4.4.1. A function f is Sheffer under the 2-line fixed coding if and only if $f \notin S \cup L \cup C \cup D \cup N_{0} \cup N_{1}$.

We could not find an explicit formula for the number of functions in the above case.
Theorem 4.4.2. A symmetric function f is Sheffer under the 2-line fixed coding if and only if $f \notin S^{s} \cup L^{s} \cup N_{0}^{s} \cup N_{1}^{s}$.

Proof. $C^{s} \cup D^{s} \subseteq N_{0}^{s} \cup N_{1}^{s}$.
Theorem 4.4.3. The number $\Sigma_{2 l f c}^{s}(n)$ of n-ary symmetric Sheffer functions under the 2-line fixed coding is $2^{n+1}-2^{n / 2+1}-2$ for n even and $2^{n+1}-3 \cdot 2^{(n+1) / 2}+2$ for n odd.

Proof. When n even, $S^{s}(n)=N_{0}^{s}(n) \cap N_{1}^{s}(n)=\phi$. Thus $\Sigma_{2 l f c}^{s}(n)=\left|P^{s}(n)\right|-\left|L^{s}(n)\right|-$ $\left|N_{0}^{s}(n)\right|-\left|N_{1}^{s}(n)\right|+\left|L^{s}(n) \cap N_{0}^{s}(n)\right|+\left|L^{s}(n) \cap N_{1}^{s}(n)\right|=2^{n+1}-2^{n / 2}-2^{n / 2}-2$. When n odd, $\Sigma_{2 l f c}^{s}(n)=2^{n+1}-2^{(n+1) / 2}-2^{(n+1) / 2}-4+5+2-2^{(n+1) / 2}-1$.

Theorem 4.4.4. A function f is c-Sheffer under the 2-line fuxed coding if and only if $f \notin L \cup C \cup D$.

Proof. Because $c_{0} \notin S, c_{1} \notin N_{0}$ and $c_{0} \notin N_{1}$.
Thus, from Theorem 4.3..2, the sets of c-Sheffer functions under r-line coding and the 2 -line fixed coding coincide. Hence from Theorems 4.3.. 3 and 4.3.. 4 we immediately have the following theorems.

Theorem 4.4.5. The number of n-ary c-Sheffer functions under the 2-line fixed coding is $\Sigma_{2 l f c}^{c}(n)=2^{2^{n}}-2^{n+2}+2 n+2$.

Theorem 4.4.6. The number of n-ary symmetric c-Sheffer functions under the 2 -line fixed coding is $\Sigma_{2 l f c}^{c s}(n)=2^{n+1}-6$.

4.5. Sheffer functions under uniform delay composition

The following Theorem 2.6.1, Chapter 2 is fundamental for this section.
A set of functions is complete under uniform delay composition if and only if it is not contained in each of the 8 sets: $T_{0}, T_{1}, M, S, L, X, M^{\prime}$ and K.

There is no Sheffer function under this construction [Kud60], because $\bar{T}_{0} \cap \bar{T}_{1} \subseteq X$. However, in the case of Shefferness with constants, we have the following:

Theorem 4.5.1. [Hik82] A function f is c-Sheffer under uniform delay composition if and only if $f \notin M \cup M^{\prime} \cup L \cup K$.

Theorem 4.5.2. [Hik82] The number of n-ary functions Sheffer with constants is $\Sigma_{u n i}^{c}(n)=2^{2^{n}-1}-2^{n}+2 n+4-2 \Psi(n)$.

Theorem 4.5.3. The number of n-ary symmetric c-Sheffer functions under uniform delay composition is $\Sigma_{u n i}^{c s}(n)=2^{n}-2 n-1+(-1)^{n}$.

Proof. Consider the functions outside K^{s}. Note that $\left|M^{s}(n) \cap \overline{K^{s}(n)}\right|=\mid M^{\prime s}(n) \cap$ $\overline{K^{s}(n)} \mid=n$; and also note that $L^{s}(n) \cap \overline{K^{s}(n)}=\left\{a+x_{1}+\ldots+x_{n}\right\}$ when n is odd, and is ϕ when n is even.

4.6. Sheffer functions under Ibuki construction

Another construction method for unit delay primitives is proposed independently in Ibuki [Ibu68]. He allows non-uniform composition in some case. His completeness theorem is.

Theorem 4.6.1. [Ibu68] A set of functions is complete under Ibuki construction if and only if it is not contained in each of the 7 sets: T_{0}, T_{1}, M, S, L, X and M^{\prime}.

There is no Sheffer function in this construction by the same reason as the previous section. From Theorems 4.5 .1 and 4.6.1 the following corollary is immediate.

Corollary 4.6.1. If a set of functions is complete under uniform delay composition then it is complete under Ibuki construction.

Theorem 4.6.2. A function f is c-Sheffer under Ibuki construction if and only if $f \notin M \cup L \cup M^{\prime}$.

Proof. $c_{1} \notin T_{0}, c_{0} \notin T_{1}, c_{0} \notin S$, and $c_{0} \notin X$.
Theorem 4.6.3. The number of n-ary c-Sheffer functions under Ibuki construction is

$$
\Sigma_{I b u k i}^{c}(n)=2^{2^{n}}-2^{n+1}+2 n+4-2 \Psi(n)
$$

Proof. Note that $\left|M(n) \cup M^{\prime}(n)\right|=2 \Psi(n)-2$. Also use Lemma 2.1.
Theorem 4.6.4. The number of n-ary symmetric c-Sheffer functions under Ibuki construction is

$$
\Sigma_{I b u k i}^{c s}(n)=2^{n+1}-2 n-4
$$

Proof. From lemmas in Section 3 we have $\left|M^{s}(n) \cup L^{s}(n) \cup M^{\prime s}(n)\right|=2 n+4$.

4.7. Sheffer functions under Inagaki construction

Still another modification to Kudrjavcev's construction is treated in [Ina82] by Inagaki. He further weakened Ibuki's restriction, assuming that one is allowed to construct constant-valued functions with their inputs being nonuniform delays. In this construction one feeds input signals in some span of time so that one can maintain stable output. Thus, for example, oscillating input sequence like $0101 \ldots$ is prohibited.

Theorem 4.7.1. [Ina82] A set of Boolean functions is complete under Inagaki construction if and only if it is not contained in each of the 6 sets: T_{0}, T_{1}, M, S, L and M^{\prime}.

From Theorems 4.6.1 and 4.7.1 the following corollary is immediate.

Corollary 4.7.1. If a set of functions is complete under Ibuki construction then it is complete under Inagaki construction.

There exist Sheffer functions in contrast to the former two cases.
Theorem 4.7.2. A function f is Sheffer under Inagaki construction if and only if $f \notin T_{0} \cup T_{1} \cup S \cup M^{\prime}$.

Proof. $f \notin T_{0} \cup T_{1} \cup S$ implies $f \notin M \cup L$.
We could not find an explicit formula for the number $\Sigma_{\text {Inagaki }}(n)$. But for the symmetric case we have the following.

Theorem 4.7.3. The number $\Sigma_{\text {Inagaki }}^{s}(n)$ of n-ary symmetric Sheffer functions under Inagaki construction is $2^{n-1}-n$ for n even, and $2^{n-1}-2^{(n-1) / 2}-n+1$ for n odd.

Proof. Only the rough sketch. When n is even, note that the number is $\mid \overline{T_{0}^{s}(n)} \cap$ $\overline{T_{1}^{s}(n)}\left|-\left|M^{\prime s}(n)\right|+\left|\left(T_{0}^{s}(n) \cup T_{1}^{s}(n)\right) \cap M^{\prime s}(n)\right|\right.$. When n is odd, note that the number is $\left|\overline{T_{0}^{s}(n)} \cap \overline{T_{1}^{s}(n)}\right|-\left|\overline{T_{0}^{s}(n)} \cap \overline{T_{1}^{s}(n)} \cap S^{s}(n)\right|-\left|\overline{T_{0}^{s}(n)} \cap \overline{T_{1}^{s}(n)} \cap M^{\prime s}(n)\right|+\mid \overline{T_{0}^{s}(n)} \cap \overline{T_{1}^{s}(n)} \cap$ $S^{s}(n) \cap M^{\prime s}(n) \mid$.

Theorem 4.7.4. A function f is c-Sheffer under Inagaki construction if and only if $f \notin M \cup L \cup M^{\prime}$.

Hence, from Theorem 4.6.2, the sets of c-Sheffer functions under Ibuki construction and Inagaki construction coincide. Following theorems are immediately obtained from Theorems 4.6.3 and 4.6.4.

Theorem 4.7.5. The number of n-ary c-Sheffer functions under Inagaki construction is

$$
\Sigma_{\text {Inagaki }}^{c}(n)=2^{2^{n}}-2^{n+1}+2 n+4-2 \Psi(n)
$$

Theorem 4.7.6. The number of n-ary symmetric c-Sheffer functions under Inagaki construction is

$$
\Sigma_{\text {Inagaki }}^{c s}(n)=2^{n+1}-2 n-4
$$

4.8. Sheffer functions under sequential circuit construction

We present the result about Sheffer functions based on the following Theorem 2.7.1, Chapter 2:

Theorem 4.8.1. A set of functions is complete under sequential circuit construction if and only if it is not contained in each of the 6 sets: M, S, L, N_{0}, N_{1} and M^{\prime}.

Since $N_{0} \subseteq T_{0}$ and $N_{1} \subseteq T_{1}$, the following corollary is immediate from Theorems 4.7.1 and 4.8.1.

Corollary 4.8.1. If a set of functions is complete under Inagaki construction then it is complete under sequential circuit construction.

Theorem 4.8.2. A function f is Sheffer under sequential circuit construction if and only if $f \notin M \cup S \cup L \cup N_{0} \cup N_{1} \cup M^{\prime}$.

We could not find an explicit formula for $\Sigma_{s e q}(n)$. But in the symmetric case we have the following.

Theorem 4.8.3. The number $\Sigma_{\text {seq }}^{s}(n)$ of n-ary symmetric Sheffer functions under sequential circuit construction is $2^{n+1}-2^{n / 2+1}-n-2$ for n even and $2^{n+1}-3 \cdot 2^{(n+1) / 2}-n+3$ for n odd.

Proof. When n is even, $M^{s}(n) \subseteq N_{0}^{s}(n) \cup N_{1}^{s}(n)$. When n is odd, note that $N_{0}^{s}(n) \cap$ $N_{1}^{s}(n) \subseteq S^{s}(n), L^{s}(n) \cap N_{0}^{s}(n)=M^{\prime s}(n) \cap N_{0}^{s}(n)=\left\{c_{0}^{n}\right\}$, and $L^{s}(n) \cap N_{1}^{s}(n)=M^{\prime s}(n) \cap$ $N_{1}^{s}(n)=\left\{c_{1}^{n}\right\}$. Details omitted.
Theorem 4.8.4. A function f is c-Sheffer under sequential circuit construction if and only if $f \notin M \cup L \cup M^{\prime}$.

From Theorem 4.6.2 and Theorem 4.7.5, c-Shefferness coincides under Ibuki, Inagaki and sequential. Thus we have the following.
Theorem 4.8.5. The number of n-ary c-Sheffer functions under sequential circuit construction is

$$
\Sigma_{s e q}^{c}(n)=2^{2^{n}}-2^{n+1}+2 n+4-2 \Psi(n)
$$

Theorem 4.8.6. The number of n-ary symmetric c-Sheffer functions under sequential circuit construction is $\Sigma_{\text {seq }}^{c s}(n)=2^{n+1}-2 n-4$.

4.9. Concluding remarks

As is well-known, the condition for completeness is conveniently expressed by listing all maximal incomplete sets under each construction. In Table 4.3 the maximal incomplete sets under the constructions treated in this chapter are summarized. In Tables 4.4 are shown consditions of Shefferness and c-Shefferness (Table 4.5 presents the same conditions for symmetric functions). Table 4.6 presents essentially 2 -ary Sheffer functions. In Tables 4.7 and 4.8 are shown n-ary functions Sheffer and Sheffer with constants, respectively, for $2 \leq n \leq 4$, for each case of the constructions. In Tables 4.9 and 4.10 are shown n-ary symmetric functions Sheffer and Sheffer with constants, respectively, for $2 \leq n \leq 6$. All the values in the tables are calculated by the formulas given in the paper, except those marked by $\left(^{*}\right)$ in Table 4.7 which are obtained by naive enumeration.

Table 4.3: Maximal incomplete sets under various constructions.

	T_{0}	T_{1}	M	S	L	C	D	N_{0}	N_{1}	X	M^{\prime}	K
ordinary composition	x	x	x	x	x							
r-line coding					x	x	x					
2-line fixed coding				x	x	x	x	x	x			
uniform	x	x	x	x	x					x	x	x
Ibuki construction	x	x	x	x	x					x	x	
Inagaki construction	x	x	x	x	x						x	
sequential construction			x	x	x			x	x		x	
ordinary with consts.			x		x							
r-line with consts.					x	x	x					
2-line fixed with consts.					x	x	x					
uniform with consts.		x		x						x	x	
Ibuki with consts.		x		x						x		
Inagaki with consts.		x		x						x		
sequential with consts.		x		x						x		

Table 4.4: Conditions of Shefferenss and c-Sheferness under various constructions.

	T_{0}	T_{1}	M	S	L	C	D	N_{0}	N_{1}	X	M^{\prime}	K
ordinary composition	x	x		x								
r-line coding					x	x	x					
2-line fixed coding				x	x	x	x	x	x			
Inagaki construction	x	x		x							x	
sequential construction			x	x	x			x	x		x	
ordinary with consts.			x		x							
r-line with consts.					x	x	x					
2-line fixed with consts.					x	x	x					
uniform with consts.			x		x						x	x
Ibuki with consts.			x		x						x	
Inagaki with consts.		x		x						x		
sequential with consts.		x		x						x		

Table 4.5: Conditions of symmetric function Shefferenss and c-Sheferness.

	T_{0}	T_{1}^{s}	M^{s}	S^{s}	L^{s}	C^{s}	$D^{\text {s }}$	N_{0}^{s}	N_{1}^{s}	X^{s}	$M^{\prime s}$	K^{3}
ordinary composition	x	x		x								
r-line coding					x	x	x					
2-line fixed coding				x	x			x	\mathbf{x}			
Inagaki construction	x	x		x							x	
sequential construction			x	x	x			x	x		x	
ordinary with consts.			X		x							
r-line with consts.					x	x	x					
2 -line fixed with consts.					x	x	x					
uniform with consts.			x		x						x	x
Ibuki with consts.			X		x						x	
Inagaki with consts.			X		x						x	
sequential with consts.			x		x						x	

Table 4.6: Essentially 2-ary Sheffer functions under various constructions.

	$\overline{x \vee y}$	$x \vee y$	$y \bar{x}$	$y \rightarrow x$	$x \bar{y}$	$x \rightarrow y$	$x \not \equiv y$	$x \equiv y$	$\overline{x y}$	$x y$
ordinary composition	x								x	
r-line coding	x		x	x	x	x			x	
2-line fixed coding uniform	x								x	
Ibuki construction Inagaki construction sequential construction										
ordinary with consts.	x		x	x	x	x			x	
r-line with consts.	X		x	x	x	x			x	
2-line fixed with consts. uniform with consts.	x		x	x	x	x			x	
Ibuki with consts.			x	x	X	x				
Inagaki with consts.			x	x	x	X				
sequential with consts.			x	x	x	x				

Table 4.7: The number of n-ary Sheffer functions.

n	2	3	4	ratio when $n \rightarrow \infty$
total	16	256	65,536	
ordinary composition	2	56	16,256	$1 / 4$
r-line coding	6	232	65,482	1
2-line fixed coding $\left(^{*}\right)$	2	162	62,538	$?$
uniform delay	-	-	-	0
Ibuki	-	-	-	0
Inagaki ${ }^{*}$)	0	42	16,102	$1 / 4$
sequential composition $\left(^{*}\right)$	0	148	62,366	$?$

Table 4.8: The number of n-ary functions Sheffer with constants.

n	2	3	4	ratio when $n \rightarrow \infty$
total	16	256	65,536	
ordinary composition	6	225	65,342	1
r-line coding	6	232	65,482	1
2-line fixed coding	6	232	65,482	1
uniform delay	0	90	32,428	$1 / 2$
Ibuki	4	210	65,180	1
Inagaki	4	210	65,180	1
sequential composition	4	210	65,180	1

Table 4.9: The number of n-ary symmetric Sheffer functions.

n	2	3	4	5	6	ratio when $n \rightarrow \infty$
total	8	16	32	64	128	
ordinary composition	2	2	8	12	32	$1 / 4$
r-line coding	2	10	26	58	122	1
2-line fixed coding	2	6	22	42	110	1
uniform delay	-	-	-	-	-	0
Ibuki	-	-	-	-	-	0
Inagaki	0	0	4	8	26	$1 / 4$
sequential composition	0	4	18	38	104	1

Table 4.10: The number of n-ary symmetric functions Sheffer with constants.

n	2	3	4	5	6	ratio when $n \rightarrow \infty$
total	8	16	32	64	128	
ordinary composition	2	9	24	55	118	1
r-line coding	2	10	26	58	122	1
2-line fixed coding	2	10	26	58	122	1
uniform delay	0	0	8	20	52	$1 / 2$
Ibuki	0	6	20	50	112	1
Inagaki	0	6	20	50	112	1
sequential composition	0	6	20	50	112	1

Chapter 5

Classification of P_{3}

In this chapter we classify P_{3}, the set of all three-valued logical functions. In the first section we state the completeness criterion for P_{3} which gives $18 P_{3}$-maximal sets. Then we present inclusion relations of intersections of the maximal sets as lemmas. These lemmas are useful not only for the classification of P_{3} but also for understanding the basic structure of P_{3}. The study of classes also provides information on the closed sets which are the intersections of families of maximal sets. This is of independent interest relating to a further study toward describing all closed sets of P_{3}. In Section 5.2 we explain a strategy of the classification briefly. After that we proceed to the classification of P_{3}.

5.1. Basic structure of P_{3}

In this section intersections of the P_{3}-maximal sets are investigated. Operations over relations introduced in Chapter 1 are used to prove basic inclusion relations among them. In some cases we present the results from [Miy71] omitting the proofs.

The investigation of this chapter is based on the following fundamental result due to Jablonskij. In the following theorem T is the Stupecki clone (of all essentially unary or non-surjective functions); L is the clone of all linear or affine (mod 3) functions; S of all functions selfdual with respect to the cyclic permutation (012); M_{0}, M_{1}, M_{2} are determined by linear orders (chains) on $E_{3} ; U_{0}, U_{1}, U_{2}$ by the nontrivial equivalence relations on $E_{3} ; B_{0}, B_{1}, B_{2}$ by the so called central relations and T_{0}, \ldots, T_{12} by unary relations (i.e. subsets of E_{3}). Throughout this chapter $x+y$ and $x y$ denote the element of E_{3} congruent $(\bmod 3)$ to $x+y$ and $x y$, respectively.

Theorem 5.1.1. [Jab58] P_{3} has exactly the following 18 maximal sets:

$$
\begin{aligned}
& T=\operatorname{Pol}\left(\left\{(a, b, c)^{T} \in E_{3}^{3} \mid a=b \text { or } a=c \text { or } b=c\right\}\right), \\
& L=\operatorname{Pol}\left(\left\{(a, b, c)^{T} \in E_{3}^{3} \mid c=2(a+b)\right\}\right), \\
& S=\operatorname{Pol}\binom{012}{120} \text {, } \\
& \begin{array}{l}
M_{0}=\operatorname{Pol}\binom{012220}{012011}, \quad M_{1}=\operatorname{Pol}\binom{012001}{012122}, \quad M_{2}=\operatorname{Pol}\binom{012112}{012200}, \\
U_{0}=\operatorname{Pol}\binom{01212}{01221}, \quad U_{1}=\operatorname{Pol}\binom{01202}{01220}, \quad U_{2}=\operatorname{Pol}\binom{01201}{01210},
\end{array} \\
& B_{0}=\operatorname{Pol}\binom{0120102}{0121020}, \quad B_{1}=\operatorname{Pol}\binom{0120112}{0121021}, \quad B_{2}=\operatorname{Pol}\binom{0120212}{0122021}, \\
& T_{0}=\operatorname{Pol}(0), \quad T_{1}=\operatorname{Pol}(1), \quad T_{2}=\operatorname{Pol}(2), \\
& T_{01}=\operatorname{Pol}(01), \quad T_{02}=\operatorname{Pol}(02), \quad T_{12}=\operatorname{Pol}(12) .
\end{aligned}
$$

Let us call the functions of $D:=\left\{f \mid W(f) \neq E_{k}\right\}$ degenerate functions, where $W(f)$ denotes the sets of values of f (range of f).

Theorem 5.1.2. [Slu39]

$$
T=D \cup P_{k}^{(1)} .
$$

Another characteristic of T is the set of functions, substituting any degenerate functions in its all arguments results in a degenerate function (T may be called semidegenerate functions). L is the set of functions which can be expressed as a linear function of its variables. The set of linear functions is maximal only if k is a prime. S is the set of functions preserving the mapping $\phi: E_{3} \rightarrow E_{3} ; \phi(x)=x+1$.

If a binary relation $R \subset E_{3} \times E_{3}$ contains $\{(0,0),(1,1),(2,2)\}$ then R is called reflexive. The sets M_{i}, U_{i}, B_{i} are reflexive.
M_{1}, M_{0}, M_{2} are the set of functions preserving the three order relations $2 \leq_{0} 0 \leq_{0}$ $1,0 \leq_{1} 1 \leq_{1} 2,1 \leq_{2} 2 \leq_{2} 0$ respectively. They are called nondecreasing functions, respectively with respect to the three orders $\leq_{0}, \leq_{1}, \leq_{2} . f \in U_{2}$ is equivalent to : if $(f(a), f(b))=(0,2)$ or $(1,2)$ then there is i such that $\left(a_{i}, b_{i}\right)=(0,2)$ or $(1,2)$. In the same manner, $f \in B_{1}$ is equivalent to : if $(f(a), f(b))=(0,2)$ then there is i such that $\left(a_{i}, b_{i}\right)=(0,2)$.
T_{a} and $T_{a b}$ is the set of functions preserving a and $\{a, b\}$, respectively. That is, for $f \in T_{a}$ we have $f(\boldsymbol{a})=a$, and for $f \in T_{a b}$ we have $f(\boldsymbol{x}) \in\{a, b\}$ for any $\boldsymbol{x} \in\{a, b\}^{n}$.

Let the permutation group (symmetric group) over $\{0,1,2\}$ be $S_{3}=\left\{\varepsilon, \sigma_{0}, \sigma_{1}, \sigma_{2}, \sigma_{3}\right.$, $\left.\sigma_{4}\right\} ; \sigma_{0}=(12), \sigma_{1}=(02), \sigma_{2}=(01), \sigma_{3}=(012), \sigma_{4}=(210)$, where $\varepsilon,(p, q)$ and (p, q, r) denote identity, transposition of p and q, and cyclic permutation of p, q, r, respectively. In Table 5.1 we presents the multiplications of the elements of the permutation, where $\gamma=\alpha \beta$ means $\gamma(x)=\alpha(\beta(x))$. Note that $\sigma_{i}^{2}=\varepsilon(i=0,1,2)$.

Since similarity plays an important role in our discussion we present the table of σ similar of each maximal set for all $\sigma \in S_{3}$ in Table 5.2. These σ-similar can be calculated by Lemma 1.3.2 and Lemma 1.4.2 (Chapter 1).

Table 5.2: σ-similar of maximal sets, where - denotes invariance.

				ε	σ_{0}	σ_{1}	σ_{2}	σ_{3}

We now proceed to investigate the intersections of the maximal sets.

Theorem 5.1.3.

$K:=M_{1} M_{2} M_{0}=\left\{0,1,2\right.$ (constant functions),$x_{i}(i=1,2, \ldots ;$ projection functions $\left.)\right\}$.
We give the proof after two lemmas.

Lemma 5.1.1. If $f \in K$ then for any i and for any $a_{j}(j=1, \ldots, n ; j \neq i)$,

$$
g\left(x_{i}\right) \equiv f\left(a_{1}, \ldots, a_{i-1}, x_{i}, a_{i+1}, \ldots, a_{n}\right)=x_{i} \text { or constant. }
$$

Proof. Let $\hat{\boldsymbol{a}}=\left(a_{1}, \ldots, a_{i-1}, x_{i}, a_{i+1}, \ldots, a_{n}\right)$, then $\hat{\mathbf{0}} \leq_{1} \hat{\mathbf{1}} \leq_{1} \hat{\mathbf{2}}, \hat{\mathbf{1}} \leq_{2} \hat{\mathbf{2}} \leq_{2} \hat{\mathbf{0}}, \hat{\boldsymbol{2}} \leq_{0}$ $\hat{\mathbf{0}} \leq_{0} \hat{\mathbf{1}}$. Hence, if $f \in K$ then $f(\hat{\mathbf{0}})=0, f(\hat{\mathbf{1}})=1, f(\hat{\mathbf{2}})=2$ or $f(\hat{\mathbf{0}})=f(\hat{\mathbf{1}})=f(\hat{\mathbf{2}})=$ constant.

Lemma 5.1.2. If $f(x, y) \in P_{3}^{(2)}$ depends both on x and y, then $f \notin K$.
Proof. Assume $f(x, y) \in K$ and $f(x, y)$ depends both on x and y. Then there are $c, c^{\prime}\left(c \neq c^{\prime}\right)$ and a such that $f(c, a) \neq f\left(c^{\prime}, a\right)$. From Lemma 5.1.1 $f(x, a)$ must be x or constant, therefore $f(x, a) \equiv x$. Analogously it should be $f(b, y) \equiv y$ for some b. Hence $f(b, a)=b=a$ follows. Assume $b=a=0$. Then $f(x, y)$ is represented by the following table:

$x \backslash y$	0	1	2
0	0	1	2
1	1	$*$	$*$
2	2	$*$	$*$

Again by Lemma 5.1.1 $f(2, y) \equiv$ constant or y. On the other hand $f(2,0)=2$ from the above table. Hence $f(2, y) \equiv 2$. Analogously we conclude $f(x, 1) \equiv 1$. Accordingly we have $f(2,1)=2$ and $f(2,1)=1$, a contradiction. The case $b=a=1$ or 2 is similar.

Proof of the theorem. It is easy to see that only the constant functions and projection functions belong to K among all functions of $P_{k}^{(1)}$. Therefore it suffice to show that, if $f \in K$ then f depends only one variable. We show that if $f\left(x_{1} \ldots x_{n}\right) \in K$ depends on at least two variables, say x_{j} and x_{i}, then there is a function in K which depends just two variables. Since this contradict to Lemma 5.1.2, any f contained in K must depends at most only one variable.

For simplicity put $j:=1$. From Lemma 5.1.1,

$$
\begin{equation*}
f\left(x_{1} a_{2} \ldots a_{n}\right)=x_{i} \text { and } f\left(b_{1} \ldots b_{i-1} x_{i} b_{i+1} \ldots b_{n}\right)=x_{i} \tag{5.1}
\end{equation*}
$$

for some $a_{2}, \ldots, a_{n}, b_{1}, \ldots, b_{n}$. Put $x_{i}=c$ for any $c \in E_{3}$. Suppose

$$
\begin{equation*}
f\left(b_{1} b_{2} \ldots c \ldots b_{n}\right) \neq f\left(b_{1} b_{2}^{\prime} \ldots c \ldots b_{n}\right) \tag{5.2}
\end{equation*}
$$

for some b_{2} and $b_{2}^{\prime}\left(b_{2} \neq b_{2}^{\prime}\right)$. Then $h(x, y):=f\left(b_{1} x b_{3} \ldots b_{i-1} y b_{i+1} \ldots b_{n}\right)$ depends on x and y. In fact, $f\left(b_{2}, c\right) \neq h\left(b_{2}^{\prime}, c\right)$ and $f\left(b_{2}, c\right) \neq h\left(b_{2}, c^{\prime}\right)$ for $c \neq c^{\prime}$ from (5.1) and (5.2).

Table 5.3:

ε	σ_{0}	σ_{1}	σ_{2}	σ_{3}	σ_{4}
$D(0,1)$	$D(2,0)$	$D(1,2)$	-	$D(2,0)$	$D(1,2)$
$D(1,2)$	-	$D(0,1)$	$D(2,0)$	$D(0,1)$	$D(2,0)$
$D(2,0)$	$D(0,1)$	-	$D(1,2)$	$D(1,2)$	$D(0,1)$

Since K contains constants and K is closed, we have $h(x, y) \in K$. This contradicts to Lemma 5.1.2. Thus varying the value of x_{2} does not vary the value of f. Repeating the same procedure for $x_{3}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}$ we conclude $f\left(b_{1} a_{2} \ldots a_{i-1} c a_{i+1} \ldots a_{n}\right)=c$. Since c is arbitrary, this indicate

$$
\begin{equation*}
f\left(b_{1} a_{2} \ldots a_{i-1} x_{i} a_{i+1} \ldots a_{n}\right) \equiv x_{i} \tag{5.3}
\end{equation*}
$$

Let $g(x, y):=f\left(x a_{2} \ldots a_{i-1} y a_{i+1} \ldots a_{n}\right)$, then $g(x, y) \in K$ depends on x and y from (5.1) and (5.3). This contradicts to Lemma 5.1.2 and completes the proof.

Lemma 5.1.3. [Miy71]

$$
M_{1} M_{0} \subseteq U_{2}, M_{2} M_{1} \subseteq U_{0}, \text { and } M_{0} M_{2} \subseteq U_{1}
$$

Corollary 5.1.1.

$$
M_{1} M_{2} M_{0} \subseteq U_{2} U_{0} U_{1}
$$

Lemma 5.1.4. [Miy71]

$$
U_{2} U_{0} U_{1} \subseteq M_{1} M_{2} M_{0}
$$

Note 5.1.1. Let $D(0,1):=\{W(f) \subseteq\{0,1\}\}$ and let $D(1,2), D(2,0)$ be analogously defined. σ-similar of $D(p, q)$ is indicated in Table 5.3.

We can show the following relations [Miy71]:

$$
\begin{align*}
& D(0,1) U_{2} U_{0} \subseteq M_{1} \tag{5.4}\\
& D(2,0) U_{2} U_{1} \subseteq M_{1} \tag{5.5}
\end{align*}
$$

Taking σ_{2} and σ_{0}-similar of (5.4) and (5.5), respectively, we have

$$
\begin{align*}
& D(0,1) U_{0} U_{1} \subseteq M_{0} \tag{5.6}\\
& D(0,1) U_{1} U_{0} \subseteq M_{2} \tag{5.7}
\end{align*}
$$

By (5.4), (5.6) and (5.7),

$$
\begin{equation*}
D(0,1) U_{1} U_{0} \subseteq M_{0} M_{1} M_{2}=K \tag{5.8}
\end{equation*}
$$

Hence considering Theorem 5.1.3, we have

$$
D(0,1) U_{0} U_{1}=\{0,1\}, D(1,2) U_{1} U_{2}=\{1,2\} \text { and } D(2,0) U_{2} U_{0}=\{2,0\}
$$

Lemma 5.1.5.

$$
M_{1} M_{2} \subseteq B_{0}, M_{2} M_{0} \subseteq B_{1} \text { and } M_{0} M_{1} \subseteq B_{2}
$$

Proof. The right-hand side relation can be obtained by the left-hand side relations by an operation

$$
\mathbf{C}=\left|\begin{array}{l}
01 \\
10
\end{array}\right|
$$

Corollary 5.1.2. $M_{0} M_{1} M_{2} \subseteq B_{0} B_{1} B_{2}$.
Lemma 5.1.6. [Miy71] $U_{2} U_{0} \subseteq B_{1}, U_{0} U_{1} \subseteq B_{2}$ and $U_{1} U_{2} \subseteq B_{0}$.
Corollary 5.1.3. $U_{0} U_{1} U_{2} \subseteq B_{0} B_{1} B_{2}$.
Lemma 5.1.7. [Miy71] $B_{0} B_{1} \subseteq U_{2}, B_{1} B_{2} \subseteq U_{0}$ and $B_{2} B_{0} \subseteq U_{1}$.
Corollary 5.1.4. $B_{0} B_{1} B_{2} \subseteq U_{0} U_{1} U_{2}$.
Theorem 5.1.4. $K=M_{0} M_{1} M_{2}=B_{0} B_{1} B_{2}=U_{0} U_{1} U_{2}=\{0,1,2$ (constant functions), $x_{i}(i=1,2, \ldots)($ projections $\left.)\right\}$.

Proof. By Corollaries 5.1.1,5.1.3,5.1.4, Lemma 5.1.4 and Theorem 5.1.3.
Lemma 5.1.8. $T_{01} T_{12} \subseteq T_{1}, T_{12} T_{20} \subseteq T_{2}$ and $T_{20} T_{01} \subseteq T_{0}$.
Proof. From the relational intersection we have $T_{01} \cap T_{12}=T_{1}$.
Corollary 5.1.5. $T_{01} T_{12} T_{20} \subseteq T_{0} T_{1} T_{2}$.
Lemma 5.1.9. $M_{1} \cup M_{2} \cup M_{0} \subseteq T_{01} \cup T_{12} \cup T_{20}$.
Proof. Let $f \in T_{01} T_{12} T_{20}$ then there are $a \in\{0,1\}^{n}, b \in\{1,2\}^{n}, c \in\{2,0\}^{n}$ such that $f(\boldsymbol{a})=2, f(\boldsymbol{b})=0, f(\boldsymbol{c})=1$. This implies $f \in \bar{M}_{1} \bar{M}_{2} \bar{M}_{0}$.

Note 5.1.2.

$$
\begin{array}{rll}
U_{0} \cup U_{1} \cup U_{2} & \nsubseteq & T_{01} T_{12} T_{20} \\
B_{0} \cup B_{1} \cup B_{2} & \nsubseteq & T_{01} T_{12} T_{20}
\end{array}
$$

Counterexamples of $U_{2} \subseteq T_{01} T_{12} T_{20}$ and $B_{0} \subseteq T_{01} T_{12} T_{20}$ are any functions in the classes $\# 10$ and \#26, respectively (they are given later).

Lemma 5.1.10.

$$
\begin{array}{lll}
B_{0} B_{1} \subseteq T_{01}, M_{0} M_{1} \subseteq T_{01} & \text { except constant function } & f=2 \\
B_{1} B_{2} \subseteq T_{12}, M_{1} M_{2} \subseteq T_{12} & \text { except constant function } & f=0 \\
B_{2} B_{0} \subseteq T_{01}, M_{2} M_{0} \subseteq T_{20} & \text { except constant function } & f=1
\end{array}
$$

Proof. 1). Assume $f \notin B_{0} B_{1} \bar{T}_{01}$. Then $f\left(\{0,1\}^{n}\right)=2$. Because, since $(a, b) \in B_{0} B_{1}$ for any $a, b \in\{0,1\}^{n}$, assuming $f(c) \in\{0,1\}$ for some $c \in\{0,1\}$ leads to $f\left(\{0,1\}^{n}\right) \in$ $\{0,1\}$. We show $f(\boldsymbol{a})=2$ for any $\boldsymbol{a} \in E^{n} \backslash\{0,1\}^{n}$. Put $u_{i}:=0, v_{i}:=1$ if $a_{i}=2$, $u_{i}=v_{i}=a_{i}$ otherwise. Then $\boldsymbol{u}, \boldsymbol{v} \in\{0,1\}^{n}$ and $(\boldsymbol{a}, \boldsymbol{u}) \in B_{0}$ and $(\boldsymbol{a}, \boldsymbol{v}) \in B_{1}$. From $f \in B_{0} B_{1}$ we have $(f(\boldsymbol{a}), f(\boldsymbol{u})) \in B_{0}$ and $(f(\boldsymbol{a}), f(\boldsymbol{v})) \in B_{1}$. Since $f(\boldsymbol{u})=f(\boldsymbol{v})=2$ we have $f(a)=2$.
2). Assume $f \in M_{1} M_{0} \bar{T}_{01}$. There is $\boldsymbol{a} \in\{0,1\}^{n}$ such that $f(\boldsymbol{a})=2$, which implies $f(\mathbf{1})=f(\mathbf{2})=2$ from $f \in M_{1}$ and $\boldsymbol{a} \leq \mathbf{1} \leq \mathbf{2}$. On the other hand $\mathbf{2}$ and $\mathbf{1}$ are respectively the minimal and maximal elements according to the order $2 \leq_{0} 0 \leq_{0} 1$. This implies $f \equiv 2$.

Lemma 5.1.11.

$$
\begin{align*}
& U_{0}=M_{2} \text { on } D(0,1) M_{1} \tag{5.9}\\
& U_{2}=M_{0} \text { on } D(2,0) M_{1} \tag{5.10}
\end{align*}
$$

Proof. First we prove (5.9). 1) Let us show $D(0,1) M_{1} U_{0} \subseteq M_{2}$. Assume $f \in$ $D(0,1) M_{1} U_{0} M_{2}$ then there are $a \leq_{2} b$ such that $f(a) \mathbb{Z}_{2} f(b)$. From $f \in D(0,1)$ we have $(f(\boldsymbol{a}), f(\boldsymbol{b}))=(0,1)$. Define \boldsymbol{a}^{\prime} by

$$
a_{i}^{\prime}= \begin{cases}2, & \text { if }\left(a_{i}, b_{i}\right)=(1,2) \text { or }(1,0) \\ a_{i}, & \text { otherwise }\end{cases}
$$

If $\boldsymbol{a}=\boldsymbol{a}^{\prime}$, then we have $\boldsymbol{b} \leq \boldsymbol{a}$ and $f(\boldsymbol{b})=1 \not 又 f(\boldsymbol{a})=0$, contradicting $f \in M_{1}$. If $\boldsymbol{a} \neq \boldsymbol{a}^{\prime}$, then $\left(\boldsymbol{a}, \boldsymbol{a}^{\prime}\right) \in U_{0}$ and hence $f\left(\boldsymbol{a}^{\prime}\right)=0$. On the other hand, $\boldsymbol{b} \leq \boldsymbol{a}^{\prime}$ from the construction of \boldsymbol{a}^{\prime}. Again $f(\boldsymbol{b})=1 \not \leq f\left(\boldsymbol{a}^{\prime}\right)=0$ contradicts to $f \in M_{1}$.
2) Converse $D(0,1) M_{1} M_{2} \subseteq U_{0}$ is from Lemma 5.1.3. The proof of (5.10) can be done analogously (note that (5.9) and (5.10) are not σ-simislar).

Corollary 5.1.6.

$$
\begin{array}{rll}
U_{0}=M_{2} & \text { on } & D(0,1) M_{1} \\
U_{0}=M_{1}, & U_{1}=M_{0} & \text { on }
\end{array} \quad D(0,1) M_{2}, ~ \begin{array}{rll}
U_{1} & =M_{2} & \text { on }
\end{array} \quad D(0,1) M_{0} .
$$

Proof. Equation (5.11) is (5.9). The first and the second equations of (5.12) are σ_{4} and σ_{0}-similar of (5.10), respectively. (5.13) is σ_{2}-similar of (5.11). The equations (5.14),(5.15),(5.16) and (5.17),(5.18),(5.19) are σ_{4} and σ_{3}-similar of (5.11),(5.12),(5.13), respectively.

Note 5.1.3. From Lemma 1.4.2 (Chapter 1) we have the following equations.

$$
M_{r}^{\sigma}=M_{\sigma^{-1}(r)}, U_{r}^{\sigma}=U_{\sigma^{-1}(r)}, B_{r}^{\sigma}=B_{\sigma^{-1}(r)} \text { and } D(p, q)^{\sigma}=D\left(\sigma^{-1} p, \sigma^{-1} q\right)
$$

5.2. Strategy of the classification

The final classification result of P_{3} is indicated in the Appendix 1, where ${ }^{*}$ no (number preceded by ${ }^{*}$) denotes serial identification number of the class (according its order of appearance), while \#no (number preceded by \#) denotes the sorted according to the "degree of completeness" number of the class. All the representatives of the classes are indicated in Appendix 2 separately.

The process of classification is as follows. First we classify the functions of T. Then $\bar{T}(L \cup S)$ is classified, and after this the remaining functions $\overline{T L S}$ are classified by M type, U type, B type, T_{p} type and finally $T_{p q}$ type maximal sets. It is clear that we consider the functions which are not yet classified in each stage of the process. After above process it remains only one class, namely the class of functions which belong to none of 18 maximal sets. This class consists of so called Sheffer functions or complete functions.

The process is straightforward and we will identify all 406 classes of P_{3} among $2^{18}=$ 262,144 possible classes. The classification process reveals the finite structure of P_{3}.

We show the correspondence of sections and the functions to be classified.

```
Section 5.3 T
Section \(5.4 \bar{T}(L \cap S)\)
Section 5.5 \(\quad M:=\overline{T L S}\left(M_{0} \cup M_{1} \cup M_{2}\right)\)
Section \(5.6 \quad U:=\overline{T L S M}\left(U_{0} \cup U_{1} \cup U_{2}\right)\)
Section 5.7 \(B:=\overline{T L S M U}\left(B_{0} \cup B_{1} \cup B_{2}\right)\)
Section \(5.8 \overline{\text { TLSMUB }}\).
```


5.3. Classification of T

Let $P_{\text {onto }}^{(1)}:=\left\{f \mid f \in P_{3}^{(1)}\right.$ and f is onto $\}$ and $D^{\prime}(0,1):=D(0.1) \backslash\{0,1\}, D^{\prime}(1,2):=$ $D(1,2) \backslash\{1,2\}, D^{\prime}(2,0):=D(2,0) \backslash\{2,0\}$. Then from Theorem 5.1.2 and σ-similar, $T=P_{\text {onto }}^{(1)}+\{0,1,2\}+D^{\prime}(0,1)+D^{\prime}(1,2)+D^{\prime}(2,0)=P_{\text {onto }}^{(1)}+\{0,1,2\}+D^{\prime}(0,1)+$ $D^{\prime}(0,1)^{\sigma_{1}}+D^{\prime}(0,1)^{\sigma_{0}}$, where " + " denotes direct sum and " $\{0,1,2\}$ " denotes all constant functions. As for each function in $P_{\text {onto }}^{(1)}$ and $\{0,1,2\}$, its class is immediately known (Table 5.4). Hence it is sufficient to consider $D^{\prime}(0,1)$. Note that we must pay attention to the classes in $D^{\prime}(0,1)$ that are invariant under σ_{1} and σ_{0} similar in counting the total number of classes of T.

First we prepare some lemmas for the classification of $D^{\prime}(0,1)$.
Lemma 5.3.1. $D^{\prime}(0,1) \subseteq \bar{S}$.
By σ-similar we have the following.
Corollary 5.3.1. $D \subseteq \bar{S}$.
Thus by Theorem 5.1.2 and Corollary 5.3.1 we have the following.

Table 5.4: Classes of $P_{\text {onto }}^{(1)}+\{0,1,2\}$.

$* n o$	functions	$T L S$	$M_{1} M_{2} M_{0}$	$U_{2} U_{0} U_{1}$	$B_{0} B_{1} B_{2}$	$T_{0} T_{1} T_{2}$	$T_{01} T_{12} T_{20}$	$\# n o$
$* 1$	x	000	000	000	000	000	000	$\# 406$
$* 2$	$x+1, x+2$	000	111	111	111	111	111	$\# 83$
$* 3$	$2 x$	001	111	101	011	011	101	$\# 259$
$* 4$	$2 x+1$	001	111	011	110	110	011	$\# 260$
$* 5$	$2 x+2$	001	111	110	101	101	110	$\# 258$
$* 6$	0	001	000	000	000	011	010	$\# 405$
$* 7$	1	001	000	000	000	101	001	$\# 404$
$* 8$	2	001	000	000	000	110	100	$\# 403$

Corollary 5.3.2. $T S=\left\{x_{i}, x_{i}+1, x_{i}+2(i=1,2, \ldots)\right\}$.
Lemma 5.3.2. $D^{\prime}(0,1) \subseteq \bar{L}$.
Proof. Prove that if $f \in L \backslash\{0,1,2\}$ then f is onto. Assume such f. Then $f(\boldsymbol{x})=$ $c_{0}+\sum c_{i} x_{i}$ and there is at least a $c_{i} \neq 0$. Put $d=f(\boldsymbol{x}+\boldsymbol{1})-f(\boldsymbol{x})=\sum c_{i}=0,1$ or 2 . If $d \neq 0$ then f is onto, because $f(\boldsymbol{x}), f(\boldsymbol{x}+\mathbf{1})$ and $f(\boldsymbol{x}+\mathbf{2})$ differ one another. Assume $d=0$. Since $c_{i} \neq 0$ there are $\hat{\boldsymbol{a}}$ and $\hat{\boldsymbol{a}}^{\prime}$ such that $f(\hat{\boldsymbol{a}}) \neq f\left(\hat{\boldsymbol{a}}^{\prime}\right)$, where two vectors $\hat{\boldsymbol{a}}$ and $\hat{\boldsymbol{a}}^{\prime}$ differs only at i-th coordinate ($a_{i} \neq a_{i}^{\prime}$). Let $a^{\prime \prime}$ be the remaining element of $E_{3} \backslash\left\{a, a^{\prime}\right\}$. Then we have $f\left(\hat{\boldsymbol{a}}^{\prime}\right)=f(\hat{\boldsymbol{a}})-c_{i}\left(a-a^{\prime}\right)$ and $f\left(\hat{\boldsymbol{a}}^{\prime \prime}\right)=f(\hat{\boldsymbol{a}})-c_{i}\left(a-a^{\prime \prime}\right)$. This implies that f is onto, since $f\left(\hat{\boldsymbol{a}}^{\prime}\right) \neq f(\hat{\boldsymbol{a}}), f\left(\hat{\boldsymbol{a}}^{\prime \prime}\right) \neq f(\hat{\boldsymbol{a}})$ and $f\left(\hat{\boldsymbol{a}}^{\prime \prime}\right) \neq f\left(\hat{\boldsymbol{a}}^{\prime}\right)$.

By σ-similar we have the following corollary.
Corollary 5.3.3. $D \backslash\{0,1,2\} \subseteq \bar{L}$.
Thus by Theorem 5.1.2 and Corollary 5.3.3 we have:
Corollary 5.3.4. $T L=P_{\text {onto }}^{(1)}=\{0,1,2\}$.
Lemma 5.3.3. $D^{\prime}(0,1) \subseteq \bar{B}_{2} B_{0} B_{1} \bar{T}_{2} T_{01} U_{2}$.
Proof. Suppose $f \in D^{\prime}(0,1) B_{2}$, then there are $a, b \in E_{3}^{n}$ such that $f(a)=0$ and $f(\boldsymbol{b})=1$ from $f \in D^{\prime}(0,1)$. Considering that $(\boldsymbol{a}, \mathbf{2}) \in B_{2}$ we have $f(\mathbf{z})=0$ since $f(\boldsymbol{a})=0$ and $f \in D^{\prime}(0,1)$. On the other hand. $(\boldsymbol{b}, \mathbf{2}) \in B_{2}$ leads to $f(\mathbf{z})=1$ in the analogous manner. A contradiction. The remaining assertions are obvious from the definitions.

Note 5.3.1. From this lemma we see that the classes of $D^{\prime}(0,1)$ are neither $\sigma_{0^{-}}$nor σ_{1}-invariant.

Now let us introduce a new notation to represent a partition of $D^{\prime}(0,1)$. We set

$$
A(i, j, k):=\{f \mid f(\mathbf{0})=i, f(\mathbf{1})=j, f(\mathbf{2})=k\}
$$

Then $D^{\prime}(0,1)$ can be represented as

$$
D^{\prime}(0,1)=\sum_{i, j, k=0}^{1} A(i, j, k)
$$

where the summation is direct sum of sets. It is easy to see that

$$
\begin{array}{ll}
A(1,1,1)=A(0,0,0)^{\sigma_{2}}, & A(1,1,0)=A(0,0,1)^{\sigma_{2}} \\
A(0,1,1)=A(0,1,0)^{\sigma_{2}}, & A(1,0,1)=A(1,0,0)^{\sigma_{2}}
\end{array}
$$

Therefore it suffices to investigate only the four sets (again we must be careful about that the same class may be included in the different sets of $A(i, j, k))$. We prepare some preliminary lemmas on $A(i, j, k)$.

Lemma 5.3.4. $(A(0,0,0)+A(0,1,0)) U_{1} \subseteq T_{20}\left(M_{2} M_{0}+\bar{M}_{2} \bar{M}_{0}\right)$.
Proof. First we show $f \in T_{20}$. Let $f \in(A(0,0,0)+A(0,1,0)) U_{1}$ then $f\left(\{2,0\}^{n}\right)=0$, hence $f \in T_{20}$. This is because $f(\mathbf{o})=f(\mathbf{z})=0,(\boldsymbol{a}, \mathbf{o}) \in U_{1},(\boldsymbol{a}, \mathbf{z}) \in U_{1}$ for any $a \in\{2,0\}^{n}$ and $f \in D^{\prime}(0,1)$.

Next we show $D^{\prime}(0,1) U_{1} T_{20} M_{2} \subseteq M_{0}$. Assume $f \in D^{\prime}(0,1) U_{1} T_{20} M_{2} \bar{M}_{0}$. There are $\boldsymbol{a}, \boldsymbol{b}$ such that $f(\boldsymbol{a}) \leq_{0} f(\boldsymbol{b})$ and $f(\boldsymbol{a})=1, f(\boldsymbol{b})=0$ from $f \in D^{\prime}(0,1)$. Define b^{\prime} in the following: $b_{i}^{\prime}=2$ if $\left(a_{i}, b_{i}\right)=(2,0), b_{i}^{\prime}=b_{i}$ otherwise for each i. Since, $\left(\boldsymbol{b}, \boldsymbol{b}^{\prime}\right) \in U_{1}$ we have $f\left(\boldsymbol{b}^{\prime}\right)=0$ (including the case $\boldsymbol{b}=\boldsymbol{b}^{\prime}$). From the definition we have $\boldsymbol{b} \leq_{2} \boldsymbol{a}$, and we have $f\left(\boldsymbol{b}^{\prime}\right)=0 \geq_{2} f(\boldsymbol{a})=1$, a contradiction. Analogously we can prove $D^{\prime}(0,1) U_{1} T_{20} M_{0} \subseteq M_{2}$. Thus $f \in M_{2}$ and $f \in M_{0}$ is equivalent under $f \in(A(0,0,0)+A(0,1,0)) U_{1}$.

Lemma 5.3.5. $D^{\prime}(0,1) U_{0} \bar{U}_{1} \subseteq \bar{T}_{20}$.
Proof. Assume $f \in D^{\prime}(0,1) U_{0} \bar{U}_{1}$. Then there are $(a, b) \in U_{1}$ such that $(f(a), f(b))=$ $(0,1)$. If $b \in\{2,0\}^{n}$ then $f \in \bar{T}_{20}$. Otherwise construct b^{\prime} by putting $b_{i}^{\prime}=2$ if $b_{i}=1$, $b_{i}^{\prime}=b_{i}$ otherwise. Then $\boldsymbol{b}^{\prime} \in\{2,0\}^{n}$ and $f\left(\boldsymbol{b}^{\prime}\right)=1$ from $\left(\boldsymbol{b}, \boldsymbol{b}^{\prime}\right) \in U_{0}$. Hence $f \in \bar{T}_{20}$.

Lemma 5.3.6. $A(0,1,0) \bar{T}_{20} \subseteq \bar{M}_{2} \bar{M}_{0}$.
Proof. There is \boldsymbol{a} such that $f(\boldsymbol{a})=1$. The results follow from $f \in A(0,1,0), 2 \leq_{2} \boldsymbol{a} \leq_{2}$ 0 and $2 \leq_{2} \boldsymbol{a} \leq_{2} \mathbf{o}$.

Lemma 5.3.7.

$$
\begin{aligned}
& A(0,0,0) \subseteq T_{0} \bar{T}_{1} \bar{T}_{12} \bar{M}_{1} \bar{M}_{2} \bar{M}_{0} \\
& A(0,0,1) \subseteq T_{0} \bar{T}_{1} \bar{T}_{12} \bar{T}_{20} \bar{M}_{2} \bar{M}_{0} \bar{U}_{0} \bar{U}_{1} \\
& A(0,1,0) \subseteq T_{0} T_{1} \bar{T}_{12} \bar{M}_{1} \bar{U}_{0} \\
& A(1,0,0) \subseteq \bar{T}_{0} \bar{T}_{1} \bar{T}_{12} \bar{T}_{20} \bar{M}_{1} \bar{M}_{2} \bar{M}_{0} \bar{U}_{1}
\end{aligned}
$$

Proof. The right hand side terms are implied from the definition of $A(i, j, k)$.
We now proceed to classify $A(0,0,0), A(0,0,1), A(0,1,0)$ and $A(1,0,0)$ in this order. (1) Classification of $A(0,0,0)$. From Lemmas 5.3.3 and 5.3.7 the remaining sets are U_{0}, U_{1} and T_{20}. Since $U_{0} U_{1}$ is impossible from Lemmas 5.1.5 and 5.3.6. We have the following classifications:

Proof. 1) and 2) are derived from Lemmas 5.3.4 and 5.3.5, respectively.
(2) Classification of $A(0,0,1)$. From Lemmas 5.3.3 and 5.3.7 the remaining sets is M_{1} only. Hence we have the following.

$$
A(0,0,1)= \begin{cases}\text { 1) } M_{1} & f 3.5(* 17=\# 321) \\ \text { 2) } \bar{M}_{1} & (\text { same class as } * 12)\end{cases}
$$

(3) Classification of $A(0,1,0)$. From the same lemmas the remaining sets are M_{2}, M_{0}, T_{20} and U_{1}. We have the following.

Lemma Proof. The terms of 1) are derived from Lemma 5.3.4 and the last term of 2) is derived from Lemma 5.3.6. In 2) the term $M_{2} M_{0}$ is impossible from Lemma 5.1.3. Note 5.3.2. The class ${ }^{*} 24$ is σ_{2}-invariant.
(4) Classification of $A(1,0,0)$. From Lemmas 5.3.3 and 5.3.7 the remaining set is U_{0} only. Hence we have the following.

$$
A(1,0,0)=\left\{\begin{array}{lll}
1) & U_{0} & f 3.12 \\
\text { 2) } & (* 30=\# 248) \\
\bar{U}_{0} & f 3.13 & (* 31=\# 190)
\end{array}\right.
$$

Note 5.3.3. The class ${ }^{*} 31$ is σ_{2}-invariant.

Conclusions: Thus we have completed the classification of $D^{\prime}(0,1)$ and hence of T. Let $\left|D^{\prime}(0,1)\right|$ denote the number of classes of $D^{\prime}(0,1)$. Paying attention to the two σ_{2}-invariant classes (${ }^{*} 24$ and ${ }^{*} 31$), we have $\mid D^{\prime}(0,1)=2(|A(0,0,0)|+|A(0,0,1)|+$ $|A(0,1,0)|+\mid A(1,0,0)-2=2(4+1+6+2)-2=24$.

Since the classes of $D^{\prime}(0,1)$ is neither σ_{0} nor σ_{1} invariant, we have $|T|=\left|P_{o n t o}^{(1)}\right|+$ $\left|\{0,1,2\}+\left|D^{\prime}(0,1)\right|+\left|D^{\prime}(1,2)\right|+\left|D^{\prime}(2,0)\right|=5+3+3 \times 24=80\right.$, of which $4+13=17$ classes are σ-similar-free.

5.4. Classification of $L \cup S$

In this section the structure of $L \cup S$ is investigate and the set $\bar{T}(L \cup S)$ is classified.
First some lemmas will be proved. For the summation (\sum_{i}) which appears in a linear function we always omit indicating the variable i when no confusion is evident.

Lemma 5.4.1. $[\operatorname{Ros} 70] f \in L \Leftrightarrow f(\boldsymbol{a}+\boldsymbol{b})=f(\boldsymbol{a})+f(\boldsymbol{b})-f(\mathbf{o})$, where $\boldsymbol{a}, \boldsymbol{b} \in E_{3}^{n}$ and o is the identity of the field $\{0,1,2\}$.

This lemma is useful to certify whether a function f belongs to L or not.

Lemma 5.4.2.

$$
f \in S \Rightarrow f \in F_{R} \text { if and only if } f \in F_{R+1}
$$

where $R+1=\sigma_{3} R=\left\{\left(a_{i}+1, b_{i}+1\right) \mid\left(a_{i}, b_{i}\right) \in R\right\}$.
Proof. First we note that $R+1=\sigma_{3} R$ and $\sigma_{4}(R+1)=R$ and further that any function $f \in S$ is both σ_{3} and σ_{4}-invariant. Thus $f\left(\sigma_{3} \boldsymbol{a}\right)=\sigma_{3} f(\boldsymbol{a})$ and $f\left(\sigma_{4} \boldsymbol{a}\right)=\sigma_{4} f(\boldsymbol{a})$ for $f \in S$. Since $f^{\sigma_{3}}(\boldsymbol{x})=\sigma_{3}^{-1} f\left(\sigma_{3} \boldsymbol{x}\right)$ and $f^{\sigma_{4}}(\boldsymbol{x})=\sigma_{4}^{-1} f\left(\sigma_{4} \boldsymbol{x}\right)$ we have $f^{\sigma_{3}}=f^{\sigma_{4}}=f$. Thus if $f \in S$ belongs to F_{R} then $f^{\sigma_{4}}=f \in\left(F_{r}\right)^{\sigma_{4}}=F_{R+1}$ from Lemma 1.4.2.

Note 5.4.1. The relation R and $R+1$ is σ_{3}-similar. Lemma 5.4 .2 asserts that if $f \in S$ belong to F_{R} then f belongs to $F^{\sigma_{3}}$ (equivalently $F^{\sigma_{4}}$ simultaneously).

Lemma 5.4.3. $\bar{T} S \subseteq \tilde{M} \tilde{U} \tilde{B}$, where $\tilde{M}=\bar{M}_{0} \bar{M}_{1} \bar{M}_{2}, \tilde{U}=\bar{U}_{0} \bar{U}_{1} \bar{U}_{2}$, and $\tilde{B}=\bar{B}_{0} \bar{B}_{1} \bar{B}_{2}$.

Proof. Suppose $f \in \bar{T} S M_{1}$. Then $f \in \bar{T} S M_{1} M_{2} M_{0} \subseteq K$ from Lemma 5.4.2 and Theorem 5.1.4. However, from Theorem 5.1.2 $\bar{T} K=\phi$, a contradiction. With respect to the remaining U and B the proofs are analogous.

Lemma 5.4.4. $S \bar{T}_{0} \bar{T}_{1} \bar{T}_{2} \subseteq \bar{T}_{01} \bar{T}_{12} \bar{T}_{20}$.
Proof. Let $f \in S \bar{T}_{0}$ then we have only two cases: either $f(\mathbf{o})=1, f(\mathbf{x})=2, f(\mathbf{z})=0$ or $f(\mathbf{0})=2, f(\mathbf{1})=0, f(\mathbf{2})=1$. In both cases $f \in \bar{T}_{01} \bar{T}_{12} \bar{T}_{20}$. \square

Lemma 5.4.5. $\bar{T} L \subseteq \bar{T}_{01} \bar{T}_{12} \bar{T}_{20}$.
Proof. Let $f=c_{0}+\sum c_{i} x_{i}$. First we show that if $f \in \bar{T} L T_{01}$ then at least there are $c_{i}=1$ and $c_{j}=2$ in the coefficients of f. From $f \in T_{01}$ we have $c_{0}=0$ or 1. Again from $f \in \bar{T}, f$ depends on at least two variables. So, for simplicity, assume that f depends both on x_{1} and x_{2}. First, suppose $c_{k}=1$ for all nonzero c_{k}. Then

$$
\begin{array}{r}
f(1,1,0, \ldots, 0)=c_{0}+c_{1}+c_{2}=2, \text { if } c_{0}=0 \\
f(1,0, \ldots, 0)=c_{0}+c_{1}=2, \text { if } c_{0}=1
\end{array}
$$

These contradict to $f \in T_{01}$. Analogously, assuming the other case: $c_{k}=2$ for all nonzero c_{k}, leads to a contradiction. Thus assume $f \in \bar{T} L T_{01}$ and assume that $c_{1}=$ $1, c_{2}=2$ for simplicity. Then

$$
\begin{aligned}
f(0,1,0, \ldots, 0) & =c_{0}+c_{2}=2, \text { if } c_{0}=0 \\
f(1,0, \ldots, 0) & =c_{0}+c_{1}=2, \text { if } c_{0}=1
\end{aligned}
$$

These contradict to $f \in T_{01}$. With respect to T_{12} and T_{20} the proofs are similar.

For convenience we divide L and S into several subsets:

$$
L=L_{0}+L_{1}+L_{2},
$$

where $L_{a}:=\left\{f \mid f=\dot{c_{0}}+\sum c_{i} x_{i}\right.$ and $\left.\sum_{i=1}^{n}=a\right\}$.
Again we divide each L_{a} into 3 subsets:

$$
L_{a}=L_{a 0}+L_{a 1}+L_{a 2},
$$

where $L_{a b}:=\left\{f \mid f \in L_{a}\right.$ and $\left.f(\mathbf{o})=c_{0}=b\right\}$.
Similarly, we divide S into the following 3 subsets:

$$
S=S_{0}+S_{1}+S_{2}
$$

where $S_{a}:=\{f \mid f \in S$ and $f(\mathbf{o})=a\}$.
σ-similar of each of these subsets is indicated in the Table 5.5. The next Lemma 5.4.6 is used to calculate this table.

Lemma 5.4.6. $[\operatorname{Miy} 71]\left(L_{a b}\right)^{\sigma}=L_{a l b+m^{\prime}+l m a}$, where $\sigma \in S_{3}, \sigma(x)=l x+m, \sigma^{-1}(x)=$ $l x+m^{\prime}$.

Lemma 5.4.7. $L S=L_{1}$.
Proof. Suppose $f \in L S$, then $f(\boldsymbol{x}+1)=f(\boldsymbol{x})+1$. Hence $\sum c_{i}=1$, i.e. $f \in L_{1}$. The converse is analogous.

Due to Lemma 5.4.7, previous lemmas concerning S are also applicable to L_{1}. Next lemma provides a property of the remaining set of L, i.e. $L \backslash L_{1}=L_{0}+L_{2}=L_{00}+$ $L_{20}+L_{01}+L_{22}+L_{02}+L_{21}$.

Table 5.5: σ-similar of $L_{a b}$ and S_{a}.

ε	σ_{0}	σ_{1}	σ_{2}	σ_{3}	σ_{4}
L_{00}	-	L_{02}	L_{01}	L_{02}	L_{01}
L_{01}	L_{02}	\bar{L}_{10}	L_{00}	L_{00}	L_{02}
L_{02}	L_{01}	L_{00}	-	L_{01}	L_{00}
L_{10}	-	-	-	-	-
L_{11}	L_{12}	L_{12}	L_{12}	-	-
L_{12}	L_{11}	L_{11}	L_{11}	-	-
L_{20}	-	L_{21}	L_{22}	L_{21}	L_{22}
L_{21}	L_{22}	L_{20}	-	L_{22}	L_{20}
L_{22}	L_{21}	-	L_{20}	L_{20}	L_{21}
S_{0}	-	-	-	-	-
S_{1}	-	-	-	-	-
S_{2}	-	-	-	-	-

Lemma 5.4.8.

1) $L_{00}+L_{20} \subseteq T_{0} \bar{T}_{1} \bar{T}_{2}$,
2) $L_{01}+L_{22} \subseteq \bar{T}_{0} T_{1} \bar{T}_{2}$,
3) $L_{02}+L_{21} \subseteq \bar{T}_{0} \bar{T}_{1} T_{2}$.

Proof. Assume $f \in L_{00}+L_{20}$. Then $f(\mathbf{o})=c_{0}=0$ and $f(\mathbf{x})=\sum c_{i}=0, f(\mathbf{z})=$ $2 \sum c_{i}=0$ (in case $f \in L_{00}$) or $f(\mathbf{1})=\sum c_{i}=2, f(\mathbf{2})=2 \sum c_{i}=1$ (in case $f \in L_{20}$). Hence $f \in T_{0} \bar{T}_{1} \bar{T}_{2}$. The cases 2) and 3) are similar of 1).

Now by a series of lemmas we will prove Corollary 5.4 .1 which is an analog inclusion of Lemma 5.4.3 (we have L in place of S). Lemma 5.4.2 simplified the proof of Lemma 5.4.3. However, we have no corresponding one with respect to L. Thus we must consider M, U and B separately, although it suffices to consider L_{0} and L_{2} owing to Lemma 5.4.7. In fact it is sufficient to consider L_{00} and L_{20} from Table 5.5.

Lemma 5.4.9. $\bar{T} L \subseteq \tilde{M}$.
Proof. Let us prove $\bar{T}\left(L_{0}+L_{2}\right) \subseteq \bar{M}_{1}$. Note that $f \in L_{a}$ implies $f(\boldsymbol{x}+\mathbf{1})=f(\boldsymbol{x})+a$. If $a=0$ then $f(\mathbf{0})=f(\mathbf{1})=f(\mathbf{2})$. Hence $f \notin M_{1}$ because f should be an onto function from $f \notin T$. If $a=2$, we have $f(\mathbf{x})=f(\mathbf{o})+2, f(\mathbf{z})=f(\mathbf{o})+1$. Hence $f \notin M_{1}$ whichever $f(\mathbf{0})=0,1$ or 2 . By σ-similar we have $\bar{T} L \subseteq \tilde{M}$.

In the following proofs we use the "modular operation" +1 which maps $a \in\{0,1\}^{n}$ onto $\boldsymbol{a}+\mathbf{1} \in\{1,2\}^{n}$ and $\boldsymbol{a}+\mathbf{2} \in\{0,2\}^{n}$. Hence $f(\boldsymbol{a}+\mathbf{2})=c_{0}+\sum c_{i} a_{i}+2 \sum c_{i}=f(\boldsymbol{a})$ if $f \in L_{0}$ and $f(\boldsymbol{a}+\mathbf{1})=f(\boldsymbol{a})+2$ if $f \in L_{2}$.

Lemma 5.4.10. $\bar{T} L \subseteq \tilde{U}$.
Proof. The lemma follows from $\bar{T}\left(L_{0}+L_{2}\right) \subseteq U_{2}$ and Lemmas 5.4.3 and 5.4.7. Assume $f \in \bar{T} U_{2}$ then f is onto, hence there is $\boldsymbol{a} \in E_{3}^{n} n$ such that $f(\boldsymbol{a})=2$. Define \boldsymbol{a}^{\prime} as follows: $a_{i}^{\prime}=0$ if $a_{i}=1, a_{i}^{\prime}=a_{i}$ otherwise for all i. Then $\boldsymbol{a}^{\prime} \in\{2,0\}^{n}$ and $f\left(\boldsymbol{a}^{\prime}\right)=2$ since $\left(\boldsymbol{a}, \boldsymbol{a}^{\prime}\right) \in U_{2}$. Hence $\boldsymbol{a}^{\prime}+\mathbf{1}=\in\{0,1\}^{n}$ and $f\left(\{0,1\}^{n}\right)=2$ since $\left(\boldsymbol{a}^{\prime}+\mathbf{1}, \boldsymbol{b}\right) \in U_{2}$ for any $\boldsymbol{b} \in\{0,1\}^{n}$. Thus if $f \in L_{0}$ then $f\left(\{0,1\}^{n}=f\left(\{1,2\}^{n}=2\right.\right.$, and if $f \in L_{2}$ then $f\left(\{1,2\}^{n}\right)=f\left(\{0,1\}^{n}\right)+1=1$. In both cases $f \in T_{12}$, contradicting Lemma 5.4.5.

Lemma 5.4.11. $\bar{T} L \subseteq \tilde{B}$.
Proof. Let us prove $\bar{T} L \subseteq \bar{B}_{0}$. Suppose $f \in B_{0}$. Then f cannot take the values 1 and 2 on $\{0,1\}^{n}$, because $(1,2) \in B_{0}$ and $(\boldsymbol{a}, \boldsymbol{b}) \in B_{0}$ foe any $\boldsymbol{a}, \boldsymbol{b} \in\{0,1\}^{n}$. Therefore, either 1) $f\left(\{0,1\}^{n}\right) \subseteq\{0,1\}$ or 2) $f\left(\{0,1\}^{n}\right) \subseteq\{0,2\}$ holds exclusively for all $f \in B_{0}$. In case 1) $f \in T_{01}$ results. In case 2), if $f \in L_{0}$ then from $f\left(\{0,1\}^{n}\right)=f\left(\{0,2\}^{n}\right)$ we have $f \in T_{02}$; if $f \in L_{2}$ then we have $f \in T_{12}$, since $f\left(\{0,1\}^{n}\right) \subseteq\{0,2\}$ leads to $f\left(\{1,2\}^{n}\right) \subseteq\{1,2\}$ by modular operation. These contradict to Lemma 5.4.5. Thus $\bar{T} L \subseteq B_{0}$, and hence $\bar{T} L \subseteq \tilde{B}$ by σ-similar.

Corollary 5.4.1. $\bar{T} L \subseteq \tilde{M} \tilde{U} \tilde{B} \tilde{T}_{p q}$.

Proof. From Lemmas 5.4.5, 5.4.9, 5.4.10, and 5.4.11.
We now proceed to classify $\bar{T}(L \cup S)=\bar{T}(L \bar{S}+L S+\bar{L} S)$, considering each subset separately in this order.
(1) Classification of $L \bar{S}=L_{0}+L_{2}$. The remaining sets are T_{p} type only from Lemma 5.4.11. Since $L_{0}+L_{2}=L_{00}+L_{20}+L_{01}+L_{22}+L_{02}+L_{21}$; possible classes are restricted to the following 3 classes by Lemma 5.4.8. Only an example to class * 81 is sufficient.

$$
\bar{T} L S \tilde{M} \tilde{U} \tilde{B} \tilde{T}_{p q}\left\{\begin{array}{lll}
\text { 1) } T_{0} \bar{T}_{1} \bar{T}_{2}=L_{00}+L_{20} & f 4.1 & (* 81=\# 41) \\
\text { 2) } \bar{T}_{0} T_{1} \bar{T}_{2}=L_{01}+L_{22} & f^{\sigma_{2}} 4.1 & (* \underline{2}=\# 40) \\
\text { 3) } \bar{T}_{0} \bar{T}_{1} T_{2}=L_{02}+L_{21} & f^{\sigma_{1}} 4.1 & (* \underline{83}=\# 39)
\end{array}\right.
$$

(2) Classification of $L S=L_{0}+L_{2}$. The remaining sets are T_{p} type only from Lemma 5.4.1. Further from Lemma 5.4.2 only two cases: \underline{T}_{p} or \tilde{T}_{p} are possible, where $\underline{T}_{p}=$ $T_{0} T_{1} T_{2}$. Thus L_{1} is divided into the following 2 classes.

$$
\bar{T} L S \tilde{M} \tilde{U} \tilde{B} \tilde{T}_{p q}\left\{\begin{array}{lll}
\text { 1) } & \tilde{T}_{p} & f 4.2 \\
\text { 2) } & (* 84=\# 42) \\
\underline{I}_{p} & f 4.3 & (* 85=\# 187)
\end{array}\right.
$$

(3) Classification of $\bar{L} S$. The remaining sets are T_{p} and $T_{p q}$ types from Lemma 5.4.3. By Lemmas 5.4.2,5.4.4 and 5.1.5 possible classes are restricted to the following 3 classes, where $\underline{T}_{p q}$ denotes the intersection $T_{01} T_{12} T_{20}$.

$$
\bar{T} L S \tilde{M} \tilde{U} \tilde{B}\left\{\begin{array}{rll}
\text { 1) } & \tilde{T}_{p} \tilde{T}_{p q}=S_{1}+S_{2} & f 4.4 \\
\text { 2) } & T_{p} \underline{T}_{p q} \\
3) & \underline{T}_{p} \tilde{T}_{p q}
\end{array}\right\}=S_{0} \quad f 4.5 \begin{array}{ll}
(* 87=\# 11) \\
& f 4.6
\end{array}(* 88=\# 135)
$$

Conclusions of Section 5.4.

We have completed the classification of $\bar{T}(L \cup S) .|\bar{T}(L \cup S)|=8$, and 6 classes out of them are σ-similar free (underline of the class number preceded by ${ }^{*}$ denotes σ-similar class).

5.5. Classification of M

In this section the set $M:=\overline{T S L}\left(M_{1} \cup M_{2} \cup M_{0}\right)$ is classified. For simplicity, we abbreviate $\overline{T S L}$ to \bar{N}. The set M is divide into subsets and they can be represented by using σ-similar as follows:

$$
M=M^{1}+\left(M^{1}\right)^{\sigma_{1}}+\left(M^{1}\right)^{\sigma_{2}}+M^{2}+\left(M^{2}\right)^{\sigma_{0}}+\left(M^{2}\right)^{\sigma_{2}}
$$

where $M^{1}:=\bar{N} M_{1} M_{2} \bar{M}_{0}$ and $M^{2}:=\bar{N} M_{1} \bar{M}_{2} \bar{M}_{0}$. Thus it is sufficient to consider M^{1} and M^{2}. Note that no classes from $M^{1}\left(M^{2}\right)$ are σ_{1} and $\sigma_{2}\left(\sigma_{0}\right.$ and $\left.\sigma_{1}\right)$ invariant.

5.5.1. Classification of M^{1}

First we prepare a lemma for M^{1}. We follow a convention that a suffix pqr represents any of 012,120 and 201.

Lemma 5.5.1. 1) $M_{q} \bar{T} \subseteq T_{p} T_{r}$,
2) $M_{q} T_{p} T_{q} \subseteq T_{p q}$,
3) $M_{q} T_{q} T_{r} \subseteq T_{q r}$.

Proof. 1) Suppose $f(\boldsymbol{p}) \neq p$ and $f \in M_{q} \bar{T}$. Then $f(\boldsymbol{p})=q$ or r. If $f(\boldsymbol{p})=q$ then $f(\boldsymbol{a}) \in D(q, r)$ for any $\boldsymbol{a} \in E_{3}^{n}$, because $\boldsymbol{p} \leq_{q} \boldsymbol{a}$ implies $f(\boldsymbol{p})=q \leq_{q} f(\boldsymbol{a})$. Thus $f \in T$, a contradiction. If $f(\boldsymbol{p})=r$ then analogously $f \equiv r$, again contradicting to $f \in T$. With respect to T_{r} the proof is similar. 2) and 3) are obvious.

From Lemma 5.5.1 we have the following.
Corollary 5.5.1. $M_{1} M_{2} \bar{T} \subseteq T_{0} T_{1} T_{2} T_{01} T_{12} T_{20}$.

Classification of M^{1}. From Lemma 5.1.3 and from Lemma 5.1.5 we have

$$
\begin{equation*}
M^{1} \subseteq B_{0} U_{0} \tag{5.20}
\end{equation*}
$$

Considering Corollary 5.5 .1 the remaining sets are now restricted to U_{2}, U_{1}, B_{1} and B_{2}. Let us consider U type first. Following four classes are possible (we call such trivial classification induced classes): (1) $U_{2} U_{1}$, (2) $U_{2} \bar{U}_{1}$, (1) $\bar{U}_{2} U_{1}$ and (1) $\bar{U}_{2} \bar{U}_{1}$. For each of these subsets we consider the classification by B type maximal sets subsequently.
(1) $U_{2} U_{1}$: Assume $f \in M_{1} U_{2} U_{1}$. Then from (5.20) $f \in M^{1} U_{2} U_{1} U_{0}=M^{1} K$. While $M^{1} K \subseteq \bar{T} K=\phi$ from Theorem 5.1.4.
(2) $U_{2} \bar{U}_{1}$: Assume $f \in M_{1} U_{2} \bar{U}_{1}$. Then from (5.20) and Lemma 5.1.6, $f \in B_{1}$ is derived. Next we conclude $f \notin B_{2}$, because assuming $f \in B_{2}$ results $f \in K$, a contradiction. So this case gives one class.
(3) $\bar{U}_{2} U_{1}$: This is the σ_{0}-similar of the above (2).
(4) $\bar{U}_{2} \bar{U}_{1}$: We conclude $f \in \bar{B}_{2} \bar{B}_{1}$ from (5.20) and Lemma 5.1.7.

Thus M^{1} is divided into the following three classes.

$$
M^{1}=\left\{\begin{array}{lll}
\text { 1) } U_{2} \bar{U}_{1} B_{1} \bar{B}_{2} & f 5.1 & (* 89=\# 402) \\
\text { 2) } \bar{U}_{2} U_{1} \bar{B}_{1} B_{2} & f^{\sigma_{0}} 5.1 & (* 90=\# 401) \\
\text { 3) } \bar{U}_{2} \bar{U}_{1} \bar{B}_{1} \bar{B}_{2} & f 5.2 & (* 91=\# 390)
\end{array}\right.
$$

From above considerations we note that the structure of U type maximal sets determines the structure of the B type maximal sets in M^{1}. Hence we have the following. Corollary 5.5.2. $U_{2}=B_{1}$ and $U_{1}=B_{2}$ in $M_{1} M_{2} \bar{T}$.

5.5.2. Classification of M^{2}

We divide $M^{2}=M_{1} \bar{M}_{2} \bar{M}_{0}$ into subsets using σ-similar as follows.

$$
M^{2}=N_{0}+N_{1}+N_{2}=N_{0}+N_{1}+N_{0}^{\sigma_{1}}
$$

where $N_{i}=\left\{f \mid f \in M^{2}\right.$ and $\left.f(\mathbf{1})=i\right\}$. We classify N_{0} and N_{1} in the following subsections separately.

5.5.2.1. N_{0}

We prove the following lemma for N_{0}.
Lemma 5.5.2. $N_{0} \subseteq T_{0} \bar{T}_{1} T_{2} T_{01} \bar{T}_{12} \bar{U}_{0} \bar{U}_{1} \bar{B}_{1} \bar{B}_{2}$.
Proof. Assume $f \in N_{0}$. Then Lemma 5.5.1 implies $f \in T_{0} T_{2}$. We have $f \in \bar{T}_{1} \bar{T}_{12} T_{01}$ because $f \in M_{1}$ implies $f\left(\{0,1\}^{n}\right)=0$ since $f(\mathbf{1})=0$. We have $f \in \bar{T}_{1} \bar{T}_{12} T_{01}$ from $(\mathbf{1}, \mathbf{2}) \in U_{0} B_{1}$ and $(f(\mathbf{1}), f(\mathbf{2}))=(0,2)$. Finally, Let us show $f \in \bar{U}_{1} \bar{B}_{2}$. By $f \notin T$ there is $\boldsymbol{a} \notin\{01\}^{n}$ such that $f(\boldsymbol{a})=1$. Define \boldsymbol{a}^{\prime} as follows: $a_{i}^{\prime}=0$ if $a_{i}=2, a_{i}^{\prime}=a_{i}$ otherwise for each i. Obviously $\left(a, a^{\prime}\right) \in U_{1} B_{2}$ and $\boldsymbol{a}^{\prime} \in\{0,1\}^{n}$, hence $f \in \mathcal{U}_{1} \bar{B}_{2}$, because $\left(f(\boldsymbol{a}), f\left(\boldsymbol{a}^{\prime}\right)\right)=(1,0)$.

We divide N_{0} into two subsets by T_{20} as follows:

$$
N_{0}=N_{0} T_{20}+N_{0} \bar{T}_{20}
$$

Each subset we classify by the remaining sets U_{2} and B_{0}.

Classification of $N_{0} T_{20}$

There is a representative in each induced set by the remaining U_{2} and B_{0}. Thus, $N_{0} T_{20}$ is divided into the following 4 classes.

$$
N_{0} T_{20}=\left\{\begin{array}{lll}
\text { 1) } U_{1} B_{0} & f 5.3 & (* 98=\# 287) \\
\text { 2) } \bar{U}_{1} B_{0} & f 5.4 & (* 99=\# 234) \\
\text { 3) } U_{2} \bar{B}_{0} & f 5.5 & (* 100=\# 239) \\
\text { 4) } \bar{U}_{2} \bar{B}_{0} & f 5.6 & (* 101=\# 184)
\end{array}\right.
$$

Lemma 5.5.3. $N_{0} \bar{T}_{20} \subseteq \bar{B}_{0}$

Proof. Let $f \in N_{0} \bar{T}_{20}$. Then there is $\boldsymbol{a} \in\{0,2\}^{n}$ such that $f(\boldsymbol{a})=1$. From Lemma 5.5.2 we have $f(\mathbf{z})=2$. Thus $f \notin B_{0}$ from $(\boldsymbol{a}, \mathbf{2}) \in B_{0}$ and $(f(\boldsymbol{a}), f(\mathbf{2}))=(1,2) \notin B_{0}$.

Classification of $N_{0} \bar{T}_{20}$

There is a representative in each induced set by the remaining U_{2}. Thus, $N_{0} \bar{T}_{20}$ is divided into the following 2 classes.

$$
N_{0} \bar{T}_{20}=\left\{\begin{array}{lll}
\text { 1) } U_{2} \bar{B}_{0} & f 5.7 & (* 102=\# 186) \\
\text { 2) } \bar{U}_{2} B_{0} & f 5.8 & (* 103=\# 134)
\end{array}\right.
$$

Thus $\left|N_{0}\right|=\left|N_{0} T_{20}\right|+\left|N_{0} \bar{T}_{20}\right|=4+2=6$, all of which are σ-similar free.

5.5.2.2 N_{1}

The classification of N_{1} is not so simple as that of N_{0}.
Lemma 5.5.4. $N_{1} \subseteq T_{0} T_{1} T_{2} T_{01} T_{12}$
Proof. From $\{01\}^{n} \leq \mathbf{1} \leq\{1,2\}^{n}$ and $f \in M_{1}$ we have $f\left(\{01\}^{n}\right) \leq f(\mathbf{1}) \leq f\left(\{1,2\}^{n}\right)$. Thus $f\left(\{01\}^{n}\right) \subseteq\{0,1\}, f\left(\{1,2\}^{n}\right) \subseteq\{1,2\}$ since $f(\mathbf{i})=1$. From $f \in \bar{T}$ there are $\boldsymbol{a}, \boldsymbol{b}$ such that $f(\boldsymbol{a})=0, f(\boldsymbol{b})=2$. Hence $f(\mathbf{o})=0, f(\mathbf{z})=2$.

Thus the remaining sets are T_{20} and U type and B type sets. Let us divide N_{1} into two subsets by $T_{20}: N_{1}=N_{1} \bar{T}_{20}+N_{1} T_{20}$. Consider the classification of each subset by the U and B type sets. There exists a simple structure in the case of $N_{1} \bar{T}_{20}$. However, in the other case we must consider the structure of the set $M_{1} \bar{M}_{2} \bar{M}_{0}$.

Classification of $N_{1} \bar{T}_{20}$

Lemma 5.5.5. $N_{1} \bar{T}_{20} \subseteq \bar{U}_{1} \bar{U}_{0} \bar{U}_{2}$.
Proof. Let $f \in N_{1} \bar{T}_{20}$. Then there is $\boldsymbol{a} \in\{2,0\}^{n}$ such that $f(\boldsymbol{a})=1$. From $(\boldsymbol{a}, \mathbf{2}) \in$ $B_{0} U_{1}, f \in T_{2}$ and $(f(\boldsymbol{a}), f(\mathbf{2}))=(1,2) \in \bar{B}_{0} \bar{U}_{1}$. By σ_{1}-similar we have $N_{1} \bar{T}_{20} \subseteq \bar{B}_{2} \bar{U}_{1}$.

Note 5.5.1. $[\operatorname{Miy} 71] M_{1} \bar{T}_{20} \bar{T} \subseteq \bar{M}_{2} \bar{M}_{0}$.

Thus $f \in M_{1}$ belongs to $\bar{M}_{2} \bar{M}_{0}$ if $f \in \bar{T}_{20} \bar{T}$.
As for the 8 induced classes by the remaining sets B_{1}, U_{2} and U_{0}, the class $U_{2} U_{0} \bar{B}_{1}$ is empty from Lemma 5.1.6. There are representatives in all the other classes. Thus $N_{1} \bar{T}_{20}$ is divided into the following 7 classes.

$$
N_{0} \bar{T}_{20}=\left\{\begin{array}{lll}
\text { 1) } U_{2} U_{0} B_{1} & f 5.9 & (* 110=\# 363) \\
\text { 2) } U_{2} \bar{U}_{1} B_{1} & f 5.10 & (* 111=\# 339) \\
\text { 3) } \bar{U}_{2} U_{1} B_{1} & f^{\sigma_{1}} 5.10 & (* 112=\# 337) \\
\text { 4) } \bar{U}_{2} \bar{U}_{1} B_{1} & f 5.11 & (* 113=\# 283) \\
\text { 5) } U_{2} \bar{U}_{1} \bar{B}_{1} & f 5.12 & (* 114=\# 286) \\
\text { 6) } \bar{U}_{2} U_{1} \bar{B}_{1} & f^{\sigma_{1}} 5.12 & (* 115=\# 284) \\
7) \bar{U}_{2} \bar{U}_{1} B_{1} & f 5.13 & (* 116=\# 232)
\end{array}\right.
$$

The remaining part of this section is devoted to the classification of $N_{1} T_{20}$ by U type and B type maximal sets.

We call two vectors \boldsymbol{a} and \boldsymbol{b} are neighbors by the order relation \leq if \boldsymbol{a} and \boldsymbol{b} differs only one coordinate i and there is no c such that $a<c<b$. Let us introduce the following notation to represent neighboring vectors (suffix i may be omitted):

$$
\begin{aligned}
a 0_{i} & =\left(a_{1}, \ldots, a_{i-1}, 0, a_{i+1}, \ldots, a_{n}\right) \\
a 1_{i} & =\left(a_{1}, \ldots, a_{i-1}, 1, a_{i+1}, \ldots, a_{n}\right) \\
a 2_{i} & =\left(a_{1}, \ldots, a_{i-1}, 2, a_{i+1}, \ldots, a_{n}\right)
\end{aligned}
$$

Neighboring vectors are useful because of the following lemma.
Lemma 5.5.6. [Miy71] If $f \in \bar{M}_{q}$ then there are neighboring two vectors b and c such that $\boldsymbol{b}<_{q} \boldsymbol{c}$ and $f(\boldsymbol{b}) \leq_{q} f(\boldsymbol{c})$.

Now we prepare a lemma which plays an important role in the classification of $N_{1} T_{20}$. Lemma 5.5.7. If $f \in M_{1} \bar{M}_{2} \bar{M}_{0}$ then there are sets (set) of neighboring vectors $u 0$, $\boldsymbol{u} 1, \boldsymbol{u}$ and $\boldsymbol{v} 0, \boldsymbol{v} 1, \boldsymbol{v}$ corresponding to at least one of the cases indicated in the following Table 5.6.

Table 5.6:
Table 5.7:

cases	$\backslash \boldsymbol{x}$	$\boldsymbol{u} 0$	$\boldsymbol{u} 1$	$\boldsymbol{u} 2$	$\boldsymbol{v} 0$	$\boldsymbol{v} 1$	$\boldsymbol{v} 2$	class
I	$f(\boldsymbol{x})$	0	0	2	0	2	2	$\bar{U}_{2} \bar{U}_{0} \bar{B}_{1}$
II	$f(\boldsymbol{x})$	0	0	2	0	1	1	$\bar{U}_{1} \bar{U}_{0} \bar{B}_{2}$
III	$f(\boldsymbol{x})$	1	1	2	0	2	2	$\bar{U}_{2} \bar{U}_{1} \bar{B}_{0} \bar{B}_{1}$
IV	$f(\boldsymbol{x})$	1	1	2	0	1	1	$\bar{U}_{1} \bar{B}_{0} \bar{B}_{2}$
V	$f(\boldsymbol{x})$	0	0	1				$\bar{U}_{0} \bar{U}_{1} \bar{B}_{2}$
VI	$f(\boldsymbol{x})$	1	2	2				$\bar{U}_{2} \bar{U}_{1} \bar{B}_{0}$

cases	$\backslash \boldsymbol{x}$	$\boldsymbol{u} 0$	$\boldsymbol{u} 1$	$\boldsymbol{u} 2$
I	$f(\boldsymbol{x})$	0	0	1
II	$f(\boldsymbol{x})$	0	0	2
III	$f(\boldsymbol{x})$	1	1	2
IV	$f(\boldsymbol{x})$	1	2	2

Proof. Assume $f \in M_{1} \bar{M}_{2} \bar{M}_{0}$ and f depends on at least two variables. From $f \in M_{1} \bar{M}_{2}$, we show that f has at least one of the set of neighboring vectors indicated in Table 5.7. From $f \in \bar{M}_{2}$ there are neighboring \boldsymbol{a} and \boldsymbol{a}^{\prime} such that $f(\boldsymbol{a}) \mathbb{L}_{2} f\left(\boldsymbol{a}^{\prime}\right)$ from Lemma 5.5.6. Putting $\boldsymbol{a}:=\boldsymbol{u} 1$ and $\boldsymbol{a}^{\prime}:=u 2, f(\boldsymbol{x})$ has values (1), (2) or (3) of Table 5.8, where * may be any of 0,1 or 2 . While the condition $f \in M_{1}$ requires $f(u 0) \leq f(u 1) \leq f(u 2)$. Hence the case (1) is impossible and * must be 0 for the both cases (2) and (3). Thus the cases of I and II of Table 5.7 are necessary. The other case of the same table are derived by taking the neighboring vectors $a:=u 2$ and $a^{\prime}:=u 0$.

Table 5.9:
Possible values of $f \in M_{1} \bar{M}_{0}$.

$f \in \bar{M}_{2}$ and $f(\boldsymbol{u} 1)$	$\not \chi_{2} f(\boldsymbol{u} 2)$.			
cases	$\backslash \boldsymbol{x}$	$\boldsymbol{u} 0$	$\boldsymbol{u} 1$	$\boldsymbol{u} 2$
(1)	$f(\boldsymbol{x})$	$*$	2	1
(2)	$f(\boldsymbol{x})$	$*$	0	1
(3)	$f(\boldsymbol{x})$	$*$	0	2

cases	$\backslash \boldsymbol{x}$	$v 0$	$\boldsymbol{v} 1$	$\boldsymbol{v} 2$
I	$f(\boldsymbol{x})$	0	0	1
II	$f(\boldsymbol{x})$	0	1	1
III	$f(\boldsymbol{x})$	0	2	2
IV	$f(\boldsymbol{x})$	1	2	2

In the same manner from $f \in M_{1} \bar{M}_{0}$ we conclude that f must have at least a construction out of the four cases in Table 5.9. From Table 5.7 and Table 5.9 the lemma follows.

In the rightmost column of Table 5.6 the sets are shown to which the corresponding $f(\boldsymbol{x})$ obviously belongs to.

We show lemmas.
Lemma 5.5.8. $B_{1} T_{20} M_{1} \subseteq U_{2} U_{0}$.

Proof. Suppose $f \in B_{1} T_{20} M_{1} \bar{U}_{2}$. There are $(\boldsymbol{a}, \boldsymbol{b}) \in U_{2}$ such that $(f(\boldsymbol{a}), f(\boldsymbol{b}))=(0,2)$ or $(1,2)$. However $f \in B_{1}$ requires $(f(\boldsymbol{a}), f(\boldsymbol{b}))=(1,2)$ since $(\boldsymbol{a}, \boldsymbol{b}) \in U_{2}$ implies $(\boldsymbol{a}, \boldsymbol{b}) \in$ B_{1}. From $f \in \bar{T}_{20}$ there is $a_{i}=1$. Define \boldsymbol{a}^{\prime} as follows: $a_{i}^{\prime}=0$ if $a_{i}=1, a_{i}^{\prime}=a_{1}$ otherwise. Then $\boldsymbol{a}^{\prime} \in\{2,0\}^{n}$ and $f\left(\boldsymbol{a}^{\prime}\right)=0$ from $f \in T_{20}$. On the other hand, $\left(\boldsymbol{a}^{\prime}, \boldsymbol{b}\right) \in B_{1}$ since if $a_{i}=1$ then $b_{i}=0$ or 1 from $\left(a_{i}, b_{i}\right) \in U_{2}$. Thus $\left(f\left(\boldsymbol{a}^{\prime}, f(\boldsymbol{b})\right)=(0,2) \notin B_{1}\right.$ leads to a contradiction. With respect to U_{0} the proof is similar.

Lemma 5.5.9. $U_{1} \subseteq \bar{B}_{1}, U_{2} \subseteq \bar{B}_{2}$ and $U_{0} \subseteq \bar{B}_{0}$ in $M_{1} \bar{M}_{2} \bar{M}_{0}$.
Proof. If $f \in U_{1}$ then f have values corresponding to the case I of Table 5.6 from Lemma 5.5.7, hence $f \in \bar{B}_{1}$. If $f \in U_{2}$ then f corresponds to II, IV or V of the same table. Hence $f \in \bar{B}_{2}$. If $f \in U_{0}$ then f corresponds to III, IV or VI of the same table. Hence $f \in \bar{B}_{0}$.

Lemma 5.5.10. $\bar{B}_{0} B_{1} \bar{B}_{2}=B_{2} B_{0} \bar{B}_{1}$ in $M_{1} \bar{M}_{2} \bar{M}_{0} T_{20}$.
Proof. 1) Suppose $f \in \bar{B}_{0} B_{1} \bar{B}_{2}$. Then f has a cases of IV, V or VI of Table 56 from Lemma 5.5.7. On the other hand, from $f \in B_{1} T_{20} M_{1}$ and from Lemma 5.5.8, $f \in U_{2} U_{0}$ is derived. Thus the cases V and VI are impossible. Hence $f \in \bar{U}_{1} U_{2} U_{3}$ from IV of the table. 2) The converse is obvious from Lemma 5.1.6 and from Lemma 5.5.9.

Lemma 5.5.11. $U_{1} \subseteq B_{2} B_{0}$ in M_{1}.
Proof. We prove $M_{1} U_{1} \subseteq B_{2}$. The other is the σ_{1}-similar of this. Assume $f \in M_{1} U_{1} \bar{B}_{2}$. There are $(\boldsymbol{a}, \boldsymbol{b}) \in B_{1}$ such that $(f(\boldsymbol{a}), f(\boldsymbol{b}))=(0,1)$. Define \boldsymbol{a}^{\prime} as follows: $a_{i}^{\prime}=0$ if $\left(a_{i}, b_{i}\right)=(1,2), a_{i}^{\prime}=1$ if $\left(a_{i}, b_{i}\right)=(2,1), a_{i}^{\prime}=a_{i}$ otherwise. Then $\boldsymbol{a}^{\prime} \leq \boldsymbol{a}$, hence $f\left(\boldsymbol{a}^{\prime}\right)=0$. While by above construction we have $\left(\boldsymbol{a}^{\prime}, \boldsymbol{b}\right) \in U_{1}$. However $\left(f\left(\boldsymbol{a}^{\prime}\right), f(\boldsymbol{b})\right)=$ $(0,1) \in \bar{U}_{1}$, a contradiction.

Note 5.5.2. Combining Lemmas 5.1 .7 and 5.1 .11 we have

$$
B_{2} B_{0}=U_{1} \text { in } M_{1}
$$

We now classify the concerning set $N_{1} T_{20}$. First we decide possible classes by U maximal sets, then each of this class we divide by B maximal sets.

Consider 8 induced sets by U maximal sets. From Table 5.6, we will conclude neither class $U_{2} \bar{U}_{0} U_{1}$ nor $\bar{U}_{2} U_{0} U_{1}$ exists. First, let us confirm this. Assume $f \in U_{2} \bar{U}_{0} U_{1}$ then $f \in B_{0}$ from Lemma 5.1.6. Hence only cases I, II or V of Table 5.6 is possible for f. While in all these cases either $f \in \bar{U}_{2}$ or $f \in \bar{U}_{1}$, a contradiction. The discussion is analogous to the second case: $\bar{U}_{2} U_{0} U_{1}$. Further, the class $U_{2} U_{0} U_{1} N_{1}$ is empty from Theorem 5.1.3 and $K \bar{T}=\phi$. We classify the remaining 5 sets by B maximal sets.

Classification of $N_{1} T_{20}$

(1) $U_{2} U_{0} \bar{U}_{1}$ coincides with $\bar{B}_{0} B_{1} \bar{B}_{2}$ from Lemma 5.5.10.

$$
U_{2} U_{0} \bar{U}_{1} \bar{B}_{0} B_{1} \bar{B}_{2} \quad f 5.14 \quad(* 117=\# 388)
$$

(2) $\bar{U}_{2} \bar{U}_{0} U_{1}$ coincides with $B_{0} \bar{B}_{1} B_{2}$ from Lemmas $5.5 .10,5.1 .4$ and 5.1 .7

$$
\bar{U}_{2} \bar{U}_{0} \bar{U}_{1} B_{0} \bar{B}_{1} B_{2} \quad f 5.15 \quad(* 118=\# 399)
$$

(3) $U_{2} \bar{U}_{0} \bar{U}_{1}$. From Lemmas 5.5 .8 and 5.5 .9 we have $\bar{B}_{1} \bar{B}_{2}$. There exist representatives for the two induced classes by the remaining set B_{0}.

$$
U_{2} \bar{U}_{0} \bar{U}_{1}\left\{\begin{array}{lll}
B_{0} \\
\bar{B}_{0}
\end{array}\right\} \bar{B}_{1} \bar{B}_{2} \quad f 5.16 \quad(* 119=\# 362)
$$

(4) $\bar{U}_{2} U_{0} \bar{U}_{1}$ is the σ_{1}-similar of (3).
(5) $\bar{U}_{2} \bar{U}_{0} \bar{U}_{1}$. The possible classes by B maximal sets are restricted to the following 3 classes by Lemmas 5.5.8 and 5.1.7.

$$
\bar{U}_{2} \bar{U}_{0} \bar{U}_{1}\left\{\begin{array}{l}
B_{0} \\
\bar{B}_{0} \\
\bar{B}_{0}
\end{array}\right\} \bar{B}_{1}\left\{\begin{array}{lll}
\bar{B}_{2} & f 5.18 & (* 123=\# 335) \\
B_{2} & f^{\sigma_{1}} 5.18 & (* 124=\# 346) \\
\bar{B}_{2} & f 5.19 & (* 125=\# 282)
\end{array}\right.
$$

Conclusions of Section 5.5.

We have completed the classification of $M=\overline{T L S}\left(M_{1} \cup M_{2} \cup M_{0}\right)$. We summarize the classification as follows: $M=M^{1}+\left(M^{1}\right)^{\sigma_{1}}+\left(M^{1}\right)^{\sigma_{2}}+M^{2}+\left(M^{2}\right)^{\sigma_{0}}+\left(M^{2}\right)^{\sigma_{2}} \cdot M^{1}$ is separated into the three classes. Further $M^{2}=N_{0}+N_{1}+N_{2}=N_{0}+N_{1}+N_{0}^{\sigma_{1}} \cdot\left|N_{0}\right|=6$. $N_{1}=N_{1} \bar{T}_{20}+N_{1} T_{20}$ and $\left|N_{1} \bar{T}_{20}\right|=7,\left|N_{1} T_{20}\right|=9$, hence $\left|N_{1}\right|=16$, thus $\left|M^{2}\right|=28$. We note that no class is common among N_{0}, N_{1} and $N_{0}^{\sigma_{1}}$.

Therefore $|M|=3\left|M_{1}\right|+3\left|M_{2}\right|=3 \times 3+3 \times 28=93$, of which σ-similar-free classes are 19.

5.6. Classification of U

In this section the set $U:=\left\{f \mid f \in \overline{T L S M}\left(U_{2} \cup U_{0} \cup U_{1}\right)\right\}$ will be classified. Obviously we can write $U=U^{1}+\left(U^{1}\right)^{\sigma_{1}}+\left(U^{1}\right)^{\sigma_{2}}+U^{2}+\left(U^{2}\right)^{\sigma_{1}}+\left(U^{2}\right)^{\sigma_{2}}$, where

$$
U^{1}:=\overline{T L S M} U_{2} \bar{U}_{0} U_{1} \text { and } U^{2}:=\overline{T L S M U_{2}} U_{0} \bar{U}_{1} .
$$

Thus it is sufficient to consider U^{1} and U^{2} in subsections 5.6.1 and 5.6.2, respectively. We note that any class in U^{1} and U^{2} is neither σ_{1} - nor σ_{2}-invariant.

5.6.1. $\quad U^{1}$.

We prepare several lemmas. The symbol \bar{D} is used to indicate that we are concerning onto functions.

Lemma 5.6.1. $U_{2} U_{1} \subseteq T_{01} T_{20} T_{0} B_{0}$.
Proof. From Lemmas 5.1.6 and 5.1.8 it is sufficient to show $U_{2} U_{1} \subseteq T_{01} T_{20}$. Suppose $f \in U_{2} U_{1}$. There is $\boldsymbol{a} \in\{0,1\}^{n}$ such that $f(\boldsymbol{a})=2$. We have $f\left(\{0,1\}^{n}\right)=2$ since $\left(\boldsymbol{a},\{0,1\}^{n}\right) \in U_{2}$. From $f \in \bar{D}$ there is \boldsymbol{b} such that $f(\boldsymbol{b})=1$. Define \boldsymbol{b}^{\prime} as follows: ${ }^{2} b_{i}^{\prime}=0$ if $b_{i}=2, b_{i}^{\prime}=b_{i}$ otherwise. Obviously $\left(b, b^{\prime}\right) \in U_{1}$ and hence $f\left(b^{\prime}\right)=1$ and $b^{\prime} \in\{0,1\}^{n}$, contradicting the above assertion. As for T_{20} the proof is similar.

Lemma 5.6.2. If $f \in \bar{M}_{1} U_{2} U_{1}$ then there are vectors $u 0, u 1$ and $u 2$ such that

$$
(f(u 0), f(u 1), f(u 2))=(1,0,1) \text { or }(2,2,0)
$$

as shown in Table 5.10.
Table 5.11:
Possible values of $f \in \bar{M}_{0}$.
Table 5.10:
Possible values of $f \in \bar{M}_{0} U_{2} U_{0}$.

cases	$f \backslash \boldsymbol{x}$	$\boldsymbol{u} 0$	$\boldsymbol{u} 1$	$\boldsymbol{u} 2$
I	$f(\boldsymbol{x})$	1	0	1
II	$f(\boldsymbol{x})$	2	2	0

cases	$f \backslash \boldsymbol{x}$	$\boldsymbol{u} 0$	$\boldsymbol{u} 1$	$\boldsymbol{u} 2$
(1)	$f(\boldsymbol{x})$	2	$*$	0
(2)	$f(\boldsymbol{x})$	0	$*$	1
(3)	$f(\boldsymbol{x})$	2	$*$	1
(4)	$f(\boldsymbol{x})$	0	2	$*$
(5)	$f(\boldsymbol{x})$	1	0	$*$
(6)	$f(\boldsymbol{x})$	1	2	$*$

Proof. If $f \in \bar{M}_{0}$ then f has at least one of values out of 6 cases indicated in Table 5.11. This can be easily shown from $f \in \bar{M}_{0}$ analogously as Lemma 5.5.6. Then considering the additional condition of $f \in U_{2} U_{1}$. leads to Table 5.10.

Lemma 5.6.3. $\bar{M}_{0} U_{2} U_{1} \subseteq \bar{T}_{12}$.
Proof. Assume $f \in \bar{M}_{0} U_{2} U_{1} T_{12}$. Then there are vectors satisfying $(f(u 0), f(u 1), f(u 2))=$ $(1,0,1)$ or ($2,2,0$) from Lemma 5.6.2. Consider the first case. Define $v \in E_{3}^{n-1}$ as follows: $v_{i}=2$ if $u_{i}=0, v_{i}=u_{i}$ otherwise (we may assume $n \geq 2$, since the assertion holds when $n=1$). Obviously $(u 1, v 1) \in U_{1}$ and $v 1 \in\{1,2\}^{n}$. Hence $f(v 1)=2$ from $f \in T_{12}$ and $f(u)=0$. On the other hand, we have $f(v 0)=1$ from $(u 0, v 0) \in U_{1}$. Thus $(f(v 0), f(\boldsymbol{v} 1))=(1,2) \notin U_{2}$, contradicting $f \in U_{2}$ since $(v 0, v 1) \in U_{2}$.

For the second case, the proof is similar.
Lemma 5.6.4. $U_{2} \bar{T}_{12} \subseteq \bar{B}_{1}$.
Proof. Suppose $f \in U_{2} \bar{T}_{12}$. Then there is $a \in\{1,2\}^{n}$ such that $f(a)=0$. From $f \in \bar{D}$ there is \boldsymbol{b} such that $f(\boldsymbol{b})=2$. Define \boldsymbol{b}^{\prime} as follows: $b_{i}^{\prime}=1$ if $\left(a_{i}, b_{i}\right)=(2,0), b_{i}^{\prime}=b_{i}$ otherwise for each i. Then $f\left(b^{\prime}\right)=2$ from $\left(b, b^{\prime}\right) \in U_{2}$. Thus we see that $\left(a, b^{\prime}\right) \in B_{1}$ and $\left(f(\boldsymbol{a}), f\left(\boldsymbol{b}^{\prime}\right)\right) \notin B_{1}$. Note that no $\left(a_{i}, b_{i}\right)=(0,2)$ occurs because $\boldsymbol{a} \in\{1,2\}^{n}$.

Taking σ_{0}-similar of this we have the following.
Corollary 5.6.1. $U_{2} U_{1} \overline{D T}_{12} \subseteq \bar{B}_{1} \bar{B}_{2}$.
Corollary 5.6.2. $U^{1} \subseteq T_{01} T_{20} \bar{T}_{12} T_{0} B_{0} \bar{B}_{1} \bar{B}_{2}$.
Proof. From Lemmas 5.6.1, 5.6.3 and Corollary 5.6.1.
Classification of U^{1}. Now the remaining sets are only T_{1} and T_{2} from Corollary 5.6.2. There are representatives in all 4 induced classes by these sets. Thus U^{1} is divided into the following 4 classes.

$$
U^{1}=\left\{\begin{array}{lll}
\text { 1) } T_{1} T_{2} & f 6.1 & (* 182=\# 320) \\
\text { 2) } T_{1} \bar{T}_{2} & f 6.2 & (* 183=\# 267) \\
\text { 3) } \bar{T}_{1} T_{2} & f^{\sigma_{0}} 6.2 & (* \underline{184}=\# 266) \\
\text { 4) } \bar{T}_{1} \bar{T}_{2} & f 6.3 & (* 185=\# 220)
\end{array}\right.
$$

5.6.2. $\quad U^{2}$.

For convenience we again follow the convention that the suffix pqr represents 012,120 and 201. We prepare several lemmas.

Lemma 5.6.5. If $f \in U_{r} T_{p q} \bar{D}$ then $f(\boldsymbol{a})=r$ and $f(\boldsymbol{b})=r$ for some $\boldsymbol{a} \in\{p, r\}^{n}$ and $\boldsymbol{b} \in\{p, r\}^{n}$.

Proof. From $f \in \bar{D} T_{p q}$ there is u such that $f(\boldsymbol{u})=r$ and there is i such that $u_{i}=r$.
Define \boldsymbol{a} and \boldsymbol{b} as follows: $a_{i}=p, b_{i}=q$ if $u_{i} \neq r$, otherwise $a_{i}=b_{i}=u_{i}(=r)$. Then $f(\boldsymbol{a})=f(\boldsymbol{b})=r$ follows from $(\boldsymbol{a}, \boldsymbol{u}) \in U_{r}$ and $(\boldsymbol{b}, \boldsymbol{u}) \in U_{r}$.

Lemma 5.6.6.

$$
\begin{aligned}
& U_{r} T_{p q} \bar{T}_{p r} \bar{D} \subseteq \bar{B}_{p}, \\
& U_{r} T_{p q} \bar{T}_{q r} \bar{D} \subseteq \bar{B}_{q} .
\end{aligned}
$$

Proof. Assume $f \in U_{r} T_{p q} \bar{T}_{p r} \bar{D}$. Then $f(\boldsymbol{b})=q$ for some $\boldsymbol{b} \in\{p, r\}^{n}$. On the other hand, $f(\boldsymbol{a})=r$ for some $\boldsymbol{a} \in\{p, r\}^{n}$ from Lemma 5.6.5 $(\boldsymbol{a} \neq \boldsymbol{b})$. Then $f \notin B_{p}$ because $(b, a) \in B_{p}$. The second relation is similar.

Lemma 5.6.7. $T_{p} \bar{T}_{p q} \subseteq \bar{B}_{p}$.
Proof. From $f \in T_{p} \bar{T}_{p q}$ we have $f(\boldsymbol{p})=p$ and $f(\boldsymbol{a})=r$ for some $\boldsymbol{a} \in\{p, q\}^{n}$. Then $f \in \bar{B}_{q}$ because $(\boldsymbol{p}, \boldsymbol{a}) \in B_{q}$.

Corollary 5.6.3. $T_{p} T_{q} \bar{T}_{r} \subseteq \bar{B}_{r}$.
Proof. From $f \in \bar{T}_{r}$ and Lemma 5.1.8, either $f \in \bar{T}_{p r}$ or $f \in \bar{T}_{q r}$. From $f \in T_{p} T_{q}$ and Lemma 5.6.7 we have $f \in \bar{B}_{r}$ in both cases.

Lemma 5.6.8. $\bar{T}_{p} T_{p q} \bar{D} \subseteq \bar{T}_{p r} \bar{B}_{p}$.
Proof. From $f \in \bar{T}_{p} T_{p q}$ we have $f(\boldsymbol{p})=q$, hence $f \in \bar{T}_{p r}$. Further $f(a)=r$ for some a from $f \in \bar{D}$. Thus we conclude $f \in \bar{B}_{r}$ from $(p, a) \in B_{p}$. \square

Lemma 5.6.9. $\bar{T}_{p} \bar{T}_{q} \bar{T}_{r} T_{p q} \subseteq \bar{B}_{r}$.
Proof. From $f \in \bar{T}_{p} \bar{T}_{q} \bar{T}_{r} T_{p q}$ we have $f(\boldsymbol{p})=q, f(\boldsymbol{q})=p$, and $f(\boldsymbol{r})=p$ or q. Hence $f \in \bar{B}_{r}$ from $(\boldsymbol{p}, \boldsymbol{r}) \in B_{r}$ and $(\boldsymbol{q}, \boldsymbol{r}) \in B_{r}$. \square

We divide U^{2} into two subsets by T_{12} as follows:

$$
U^{2}=U^{2} T_{12}+U^{2} \bar{T}_{12}
$$

Then we classify each subset separately in Subsections 5.6.2.1 and 5.6.2.2 by the remaining $T_{p}, T_{p q}$ and B type maximal sets.
5.6.2.1. $U^{2} T_{12}$.

We divide $U^{2} T_{12}$ further into the following 4 induced subsets by T_{1} and T_{2} : (1) $T_{1} T_{2}$, (2) $T_{1} \bar{T}_{2}$, (3) $\bar{T}_{1} T_{2}$ and (4) $\bar{T}_{1} \bar{T}_{1}$. Each subset is classified by the remaining maximal sets in this order.
(1) $U^{2} T_{12} T_{1} T_{2}$.

We divide this set by T_{0} into the two induced subsets, and consider each case separately as (1a) and (1b).
(1a) $U^{2} T_{12} T_{0} T_{1} T_{2}$: This set is divided into the following 10 classes by the remaining T_{01}, T_{20} and B type maximal sets.

Proof. 1), 2). From $f \in T_{0} T_{1} \bar{T}_{01}$ and from Lemma 5.6.7 we conclude $f \in \bar{B}_{0} \bar{B}_{1}$. Further in 1) from $f \in \bar{T}_{20}$ we have $f \in \bar{B}_{2}$. 4). Among 8 induced classes by B_{0}, B_{1} and B_{2}, three which include $B_{0} B_{2}$ and $B_{0} B_{1}$ are impossible from Lemma 5.1.7 and $f \in \bar{U}_{2} \bar{U}_{1}$.
(1b) $U^{2} \bar{T}_{0} T_{12} T_{1} T_{2}$: This set is classified into the following 5 classes. Note that from Corollary 5.6.3 we derive $f \in \bar{B}_{0}$. And from Lemma 5.1.8 the class $T_{01} T_{20}$ is impossible.

Proof. 1), 2), 3). From Lemma 5.6.6 and $f \in U_{0} T_{21} \bar{T}_{20} \bar{D}$ results $f \in \bar{B}_{2}$. 3). Further from Lemma 5.6.7 we have $f \in \bar{B}_{1}$.
(2) $U^{2} T_{12} T_{1} \bar{T}_{2}$.

From Lemma 5.6 .8 we have $f \in \bar{T}_{20} \bar{B}_{2}$. Hence the remaining sets are T_{0}, T_{01}, B_{0} and B_{1}. We divide this set into two subsets by T_{0}, and consider each case separately as (2a) and (2b).
(2a) $U^{2} T_{12} T_{1} \bar{T}_{2} T_{0}$: This set is divided into the following 4 classes.

$$
U^{2} T_{12} T_{0} T_{1} \bar{T}_{2}=\left\{\begin{array}{cccc}
\text { 1) } & \bar{T}_{01} \bar{B}_{0} \bar{B}_{1} & f 6.14 & (* 209=\# 116) \\
& \\
\text { 2) } & T_{01}\left\{\begin{array}{lll}
B_{0} \bar{B}_{1} & f 6.15 & (* 210=\# 210) \\
\bar{B}_{0} B_{1} & f 6.16 & (* 211=\# 208) \\
\bar{B}_{0} \bar{B}_{1} & f 6.17 & (* 212=\# 162)
\end{array}\right.
\end{array}\right.
$$

Proof. 1). From $f \in T_{0} T_{1} \bar{T}_{01}$ and from Lemma 5.6 .7 we have $f \in \bar{B}_{0} \bar{B}_{1}$. 2). Among 4 induced classes by B_{0} and B_{1} we cannot have $B_{0} B_{1}$ from Lemma 5.1.7 and $f \notin U_{2}$. (2b) $U^{2} T_{12} T_{1} \bar{T}_{2} \bar{T}_{0}$: This set is divided into the following 3 classes.

$$
U^{2} T_{12} \bar{T}_{0} T_{1} \bar{T}_{2}=\left\{\begin{array}{llll}
1) & \bar{T}_{01} \bar{B}_{0} \bar{B}_{1} & f 6.18 & (* 213=\# 72) \\
2) & T_{01} \bar{B}_{0}\left\{\begin{array}{lll}
B_{1} & f 6.19 & (* 214=\# 165) \\
\bar{B}_{1} & f 6.20 & (* 215=\# 112)
\end{array}, \begin{array}{ll}
&
\end{array}\right)
\end{array}\right.
$$

Proof. 1). From Lemma 5.6.6 we have $U_{0} T_{21} \bar{T}_{10} \bar{D} \subseteq \bar{B}_{1}$ and from Lemma 5.6.7 we have $T_{1} \bar{T}_{10} \subseteq \bar{B}_{0} .2$). From Lemma 5.6 .8 we have $\bar{T}_{0} T_{01} \subseteq \bar{B}_{0}$.
(3) $U^{2} T_{12} \bar{T}_{1} T_{2}$.

This set is the σ_{0}-similar of the case (2).
(4) $U^{2} T_{12} \bar{T}_{1} \bar{T}_{2}$.

We have $\bar{B}_{1} \bar{B}_{1} \bar{T}_{01} \bar{T}_{20}$ from Lemma 5.6.8. Thus the remaining sets are T_{0} and B_{0}. Hence this set is divided into the following 3 classes.

$$
U^{2} T_{12} T_{1} \bar{T}_{2}=\left\{\begin{array}{llll}
1) & T_{0}\left\{\begin{array}{lll}
B_{0} & f 6.21 & (* 223=\# 118) \\
\bar{B}_{0} & f 6.22 & (* 224=\# 74) \\
2) & \bar{T}_{0} \bar{B}_{0} & f 6.23 \\
(* 225=\# 32)
\end{array}, \begin{array}{ll}
&
\end{array}\right)
\end{array}\right.
$$

Proof. 2). From Lemma 5.6 .9 we have $\bar{T}_{0} \bar{T}_{1} \bar{T}_{2} T_{12} \bar{D} \subseteq \bar{B}_{0}$.
Conclusion of Section 5.6.2.1 We have considered 4 subsets: $U^{2} T_{12}\left(T_{1} T_{2}+T_{1} \bar{T}_{2}+\bar{T}_{1} T_{2}\right.$ $\left.+\bar{T}_{1} \bar{T}\right)$. We have $\left|U^{2} T_{12} T_{1} T_{2}\right|=15,\left|U^{2} T_{12} \bar{T}_{1} T_{2}\right|=\left|U^{2} T_{12} T_{1} \bar{T}_{2}\right|=7$ and $\left|U^{2} T_{12} \bar{T}_{1} \bar{T}_{2}\right|=3$. Hence $\left|U^{2} T_{12}\right|=32$, of which σ-similar-free classes are 20.

5.6.2.2. $U^{2} \bar{T}_{12}$.

Now the remaining part of U^{2} is $U^{2} \bar{T}_{12}$. First we show two lemmas with respect to the remaining B, T_{p} and $T_{p q}$ type maximal sets.

Lemma 5.6.10. $T_{p q} U_{r} \bar{D} \subseteq \bar{T}_{p} \bar{T}_{q} \bar{B}_{p} \bar{B}_{q}$.
Proof. Assume $f \in T_{p q} U_{\mathbf{r}} \bar{D}$. Then $f(\boldsymbol{a})=r$ for some $\boldsymbol{a} \in\{p, q\}^{n}$. Hence $f\left(\{p, q\}^{n}\right)=r$ since $(\boldsymbol{a}, \boldsymbol{b}) \in U_{r}$ for any $\boldsymbol{b} \in\{p, q\}^{n}$. Thus $f \in \bar{T}_{p} \bar{T}_{q}$. Further $f(\boldsymbol{c})=q$ from $f \in \bar{D}$. Since $(\boldsymbol{p}, \boldsymbol{c}) \in B_{p}$ and $(f(\boldsymbol{p}), f(\boldsymbol{c}))=(r, q) \in \bar{B}_{p}$, we conclude $f \in \bar{B}_{p}$. As for \bar{B}_{q} the proof is similar.

Lemma 5.6.11. $\bar{T}_{p} \bar{D} \subseteq \bar{B}_{p}$.
Proof. From $f \in \bar{D}$ we have $f(\boldsymbol{a})=r, f(\boldsymbol{b})=q$. From $f \in \bar{T}_{p}$ we have $f(\boldsymbol{p})=q$ or r. Since $(\boldsymbol{p}, \boldsymbol{a}) \in B_{p}$ and $(\boldsymbol{p}, \boldsymbol{b}) \in B_{p}$ we conclude $f \in \bar{B}_{p}$.

Now we are ready to classify $U^{2} T_{12}$. Since $U^{2} T_{12} \subseteq \bar{T}_{1} \bar{T}_{2} \bar{B}_{1} \bar{B}_{2}$, we divide $U^{2} T_{12}$ by T_{01} and T_{20} into 4 induced subsets: (1) $T_{01} T_{20}$, (2) $T_{01} \bar{T}_{20}$, (3) $\bar{T}_{01} T_{20}$ and (4) $\bar{T}_{01} \bar{T}_{20}$. We classify them separately. We have only two remaining sets T_{0} and B_{0} for each of above cases.
(1) $U^{2} \bar{T}_{12} T_{01} T_{20}$

From Lemma 5.1.8 we have $f \in T_{0}$. $\dot{\text { We }}$ have the following two classes.

$$
U^{2} \bar{T}_{12} T_{01} T_{20}=T_{0}\left\{\begin{array}{lll}
B_{0} & f 6.24 & (* 226=\# 166) \\
\bar{B}_{0} & f 6.22 & (* 227=\# 114)
\end{array}\right.
$$

(2) $U^{2} \bar{T}_{12} T_{01} \bar{T}_{20}$.

$$
U^{2} \bar{T}_{12} T_{01} \bar{T}_{20}=\left\{\begin{array}{llll}
\text { 1) } & T_{0}\left\{\begin{array}{lll}
B_{0} & f 6.26 & (* 228=\# 119) \\
\bar{B}_{0} & f 6.27 & (* 229=\# 75) \\
\text { 2) } & \bar{T}_{0} \bar{B}_{0} & f 6.28 \\
(* 230=\# ~ 33)
\end{array}\right.
\end{array}\right.
$$

Proof. 2). From Lemma 5.6.11 we have $\bar{T}_{0} \bar{D} \subseteq \bar{B}_{0}$.
(3) $U^{2} \bar{T}_{12} \bar{T}_{01} T_{20}$.

This case is the σ_{0}-similar of the case (2).
(4) $U^{2} \bar{T}_{12} \bar{T}_{01} \bar{T}_{20}$.

This set is divided into the following 3 classes.

$$
U^{2} \bar{T}_{12} \bar{T}_{01} \bar{T}_{20}=\left\{\begin{array}{llll}
\text { 1) } & T_{0}\left\{\begin{array}{lll}
B_{0} & f 6.29 & (* 234=\# 76) \\
\bar{B}_{0} & f 6.30 & (* 235=\# 34) \\
2) & \bar{T}_{0} \bar{B}_{0} & f 6.31
\end{array}(* 236=\# 9)\right.
\end{array}\right.
$$

Proof. 2). From Lemma 5.6.11 we have $\bar{T}_{0} \bar{D} \subseteq \bar{B}_{0}$.
Conclusions of 5.6.2.2. Thus, summing all four cases we have $\left|U^{2} T_{12}\right|=\left|U^{2} T_{12} T_{01} T_{12}\right|$ $+\left|U^{2} T_{12} T_{01} \bar{T}_{12}\right|+\left|U^{2} T_{12} \bar{T}_{01} T_{12}\right|+\left|U^{2} T_{12} \bar{T}_{01} \bar{T}_{12}\right|=2+2 \times 3+3=11$, of which σ_{0}-free classes are 8. Thus $\left|U^{2}\right|=\left|U^{2} T_{12}\right|+\left|U^{2} \bar{T}_{12}\right|=32+11=43$, of which σ-free classes are 28.

Conclusion of Sections 5.6. $|U|=3\left|U^{1}\right|+3\left|U^{2}\right|=3 \times 4+3 \times 43=141$, of which σ-free classes are $3+28=31$.

5.7. Classification of B

In this section the set $B:=\overline{T L S M U}\left(B_{0} \cup B_{1} \cup B_{2}\right)$ will be classified. Put $\bar{G}:=\overline{T L S M U}$ and $B:=\bar{G}\left(B_{0} \cup B_{1}\right)$ for simplicity. Obviously we can represent B as

$$
B=\bar{G}\left(B_{0} B_{1} B_{2}+B_{0} B_{1} \bar{B}_{2}+B_{0} \bar{B}_{1} B_{2}+\bar{B}_{0} B_{1} B_{2}+B_{0} \bar{B}_{1} \bar{B}_{2}+\bar{B}_{0} \bar{B}_{1} B_{2}+\bar{B}_{0} B_{1} \bar{B}_{2}\right)
$$

However, we have $\bar{G} B_{0} B_{1} B_{2}=\phi$ from Lemma 5.1.4 and $\bar{G} B_{p} B_{q} \subseteq \bar{G} U_{r}=\phi$ from Lemma 5.1.7. Hence we have $B=B^{1}+\left(B^{1}\right)^{\sigma_{2}}+\left(B^{1}\right)^{\sigma_{1}}$, where

$$
B^{1}=\bar{G} B_{0} \bar{B}_{1} \bar{B}_{2}
$$

Thus it is sufficient to consider only B^{1}. We prepare several lemmas.

Lemma 5.7.1. $B_{p} \bar{D} \subseteq T_{p}$.
Proof. . We show a contradiction assuming $f(p)=q$. From $f \in \bar{D}$ we have $f(b)=r$ for some \boldsymbol{b}. Hence $f \in \bar{B}_{p}$, since $(\boldsymbol{p}, \boldsymbol{b}) \in B_{p}$. When $f(\boldsymbol{p})=r$, a similar contradiction results.

Lemma 5.7.2. $T_{p} B_{q} \subseteq T_{p q}$.
Proof. Assume $f \in T_{p} B_{q} \bar{T}_{p q}$. Then $f(a)=r$ for some $a \in\{p, q\}^{n}$. This contradicts to $f \in B_{q}$ since $(\boldsymbol{p}, \boldsymbol{a}) \in B_{q}$ and $(f(\boldsymbol{p}), f(\boldsymbol{a})) \notin B_{q}$.

Now we divide B^{1} into the following 4 subsets by T_{1} and T_{2} and consider each case separately:

$$
B^{1}=B^{1}\left(T_{1} T_{2}+T_{1} \bar{T}_{2}+\bar{T}_{1} T_{2}+\bar{T}_{1} \bar{T}_{2}\right)
$$

(1) $B^{1} T_{1} T_{2}$.

From Lemma 5.7.2 we have $B^{1} T_{1} T_{2} \subseteq T_{10} T_{20}$. Thus the remaining set is T_{12}.

$$
B^{1} T_{1} T_{2}=T_{01} T_{20}\left\{\begin{array}{lll}
\text { 1) } T_{12} & f 7.1 & (* 323=\# 254) \\
\text { 2) } \bar{T}_{12} & f 7.2 & (* 324=\# 194)
\end{array}\right.
$$

(2) $B^{1} T_{1} \bar{T}_{2}$.

From Lemma 5.7.2 we have $B^{1} T_{1} \subseteq T_{01}$, and with respect to the remaining T_{12} and T_{20}, the class $T_{12} T_{20}$ is impossible from Lemma 5.1.8 and \bar{T}_{2}. Thus there are 3 classes.

$$
B^{1} T_{1} \bar{T}_{2}=T_{01}\left\{\begin{array}{lll}
\text { 1) } \bar{T}_{12} T_{20} & f 7.3 & (* 325=\# 149) \\
\text { 2) } T_{12} \bar{T}_{20} & f 7.4 & (* 326=\# 150) \\
\text { 3) } \bar{T}_{12} \bar{T}_{20} & f 7.5 & (* 327=\# 101)
\end{array}\right.
$$

(3) $B^{1} \bar{T}_{1} T_{2}$. This is the σ_{0}-similar of (2).
(4) $B^{1} \bar{T}_{1} \bar{T}_{2}$.

Among 8 induced classes by T_{01}, T_{12} and $T_{20}, 3$ classes which include $T_{01} T_{12}$ and $T_{20} T_{12}$ are impossible from $\bar{T}_{1} \bar{T}_{2}$ and Lemma 5.1.8.

$$
B^{1} T_{1} \bar{T}_{1} \bar{T}_{2}=\left\{\begin{array}{lll}
\text { 1) } T_{01} \bar{T}_{12} T_{20} & f 7.6 & (* 331=\# 99) \\
\text { 2) } T_{01} \bar{T}_{12} \bar{T}_{20} & f 7.7 & (* 332=\# 64) \\
\text { 3) } \bar{T}_{01} \bar{T}_{12} T_{20} & f^{\sigma 0} 7.7 & (* 333=\# 62) \\
\text { 4) } \bar{T}_{01} T_{12} \bar{T}_{20} & f 7.8 & (* 334=\# 63) \\
\text { 5) } \bar{T}_{01} \bar{T}_{12} T_{20} & f 7.9 & (* 335=\# 26)
\end{array}\right.
$$

Conclusion of Section 5.7. Thus $B=B^{1}+\left(B^{1}\right)^{\sigma_{2}}+\left(B^{1}\right)^{\sigma_{1}}$ and $\left|B^{1}\right|=\left|B^{1} T_{1} T_{2}\right|+$ $2\left|B^{1} T_{1} \bar{T}_{2}\right|+\left|B^{1} \bar{T}_{1} \bar{T}_{2}\right|=13$. Thus, $|B|=3 \times 13=39$, of which 9 are σ-similar-free.

5.8. Classification of $\overline{T L S M U B}$

In this section all the functions (the complement set of the set of functions so far classified) will be classified. We put $I:=\overline{T L S M U B}$. Obviously I can be represented as

$$
I=T^{0}+T^{1}+\left(T^{1}\right)^{\sigma_{1}}+\left(T^{1}\right)^{\sigma_{2}}+\left(T^{2}\right)^{\sigma_{1}}+\left(T^{2}\right)^{\sigma_{2}}+T^{3}
$$

where $T^{0}:=I T_{0} T_{1} T_{2}, T^{1}:=I \bar{T}_{0} T_{1} T_{2}, T^{2}:=I T_{0} \bar{T}_{1} \bar{T}_{2}$ and $T^{3}:=I \bar{T}_{0} \bar{T}_{1} \bar{T}_{2}$. We are suffice to consider T^{0}, T^{1}, T^{2} and T^{3}. Now the remaining sets are only $T_{p q}$ type sets. In the following classification we will see that the condition $\overline{T L S M U B}$ does not
influence the possible classes of T_{p} type maximal sets. We mean that possible classes by T_{p} maximal sets are restricted only by $T_{p q}$ sets through Lemma 5.1.8.

Classification of T^{0}

T^{0} is divided into the following 8 classes (all induced sets by T_{01}, T_{12} and T_{20}).

$$
T^{0}=\left\{\begin{array}{lll}
\text { 1) } T_{01} \bar{T}_{12} T_{20} & f 8.1 & (* 362=\# 191) \\
\text { 2) } T_{01} T_{12} \bar{T}_{20} & f 8.2 & (* 363=\# 138) \\
\text { 3) } T_{01} \bar{T}_{12} T_{20} & f^{\sigma_{2}} 8.2 & (* \underline{364}=\# \underline{137}) \\
\text { 4) } T_{01} \bar{T}_{12} \bar{T}_{20} & f 8.3 & (* 365=\# 92) \\
\text { 5) } \bar{T}_{01} T_{12} T_{20} & f^{\sigma_{0}} 8.2 & (* \underline{366}=\# \underline{6}) \\
\text { 6) } \bar{T}_{01} \bar{T}_{12} T_{20} & f^{\sigma_{1}} 8.3 & (* \underline{367}=\# \underline{91}) \\
\text { 7) } \bar{T}_{01} T_{12} \bar{T}_{20} & f^{\sigma_{0}} 8.3 & (* \underline{368}=\# \underline{90}) \\
\text { 8) } \bar{T}_{01} \bar{T}_{12} \bar{T}_{20} & f 8.7 & (* \underline{369}=\# \underline{62})
\end{array}\right.
$$

Classification of T^{1}

T^{1} is divided into the following 6 classes. From Lemma 5.1.8 and \bar{T}_{0} the classes which include $T_{01} T_{20}$ are impossible.

$$
T^{1}=\left\{\begin{array}{lll}
\text { 1) } T_{01} \bar{T}_{12} T_{20} & f 8.5 & (* 370=\# 85) \\
\text { 2) } T_{01} \bar{T}_{12} \bar{T}_{20} & f^{\sigma_{0}} 8.5 & (* 371=\# 92) \\
\text { 3) } \bar{T}_{01} T_{12} T_{20} & f 8.6 & (* 372=\# 47) \\
\text { 4) } \bar{T}_{01} \bar{T}_{12} T_{20} & f 8.7 & (* 373=\# 46) \\
\text { 5) } \bar{T}_{01} T_{12} \bar{T}_{20} & f^{\sigma_{0}} 8.6 & (* 374=\# 45) \\
\text { 6) } \bar{T}_{01} \bar{T}_{12} \bar{T}_{20} & f 8.8 & (* 375=\# 18)
\end{array}\right.
$$

Classification of T^{2}

T^{2} is divided into the following classes. From Lemma 5.1.8 and $\bar{T}_{1} \bar{T}_{2}$, the 3 classes which include $T_{01} T_{12}$ and $T_{12} T_{20}$ are impossible.

$$
T^{2}=\left\{\begin{array}{lll}
\text { 1) } T_{01} \bar{T}_{12} T_{20} & f 8.9 & (* 388=\# 48) \\
\text { 2) } T_{01} \bar{T}_{12} \bar{T}_{20} & f 8.10 & (* 389=\# 21) \\
\text { 3) } \bar{T}_{01} T_{12} \bar{T}_{20} & f 8.11 & (* 390=\# 20) \\
\text { 4) } \bar{T}_{01} \bar{T}_{12} T_{20} & f^{\sigma_{0}} 8.10 & (* 391=\# 19) \\
\text { 5) } \bar{T}_{01} \bar{T}_{12} \bar{T}_{20} & f 8.12 & (* 392=\# 7)
\end{array}\right.
$$

Classification of T^{3}

T^{3} is divided into the following classes. From Lemma 5.1.8 and $\bar{T}_{0} \bar{T}_{1} \bar{T}_{2}$, the 4 classes which include $T_{01} T_{12}$, and $T_{12} T_{20}$ and $T_{20} T_{01}$ are impossible.

$$
T^{3}=\left\{\begin{array}{lll}
\text { 1) } & T_{01} \bar{T}_{12} \bar{T}_{20} & f 8.13 \\
\text { 2) } & (* 403=\# 4) \\
\text { 3) } \bar{T}_{01} \bar{T}_{12} \bar{T}_{20} & f^{\sigma_{1}} \bar{T}_{21} T_{20} & f^{\sigma_{0}} 8.13 \\
\text { 4) } & \left(* \underline{404}=\# \underline{T_{1}} \bar{T}_{01} \bar{T}_{12} \bar{T}_{20}\right. & f 8.14
\end{array}(* 405=\# 2) ~(* 406=\# 1) ~ \$\right.
$$

Table 5.12: Numbers of the classes of the subsets of P_{3}.

subsection	considered subset	classes	σ-similar-free classes
5.4	T	80	17
5.5	$L \cup S$	8	6
5.6	M	93	19
5.7	U	141	31
5.8	B	39	9
5.9	$\overline{T L S M U B}$	45	14
	Total	406	96

Conclusion of 4.8. Thus we have $\left|T^{0}\right|=8,\left|T^{1}\right|=6,\left|T^{2}\right|=5$ and $\left|T^{3}\right|=4$. Hence $|\overline{T L S M U B}|=\left|T^{0}\right|+3\left|T^{1}\right|+3\left|T^{2}\right|+\left|T^{3}\right|=45$, of which 14 are σ-similar free.

5.9. The result of the classification of P_{3}

We have completed the classification of P_{3}, investigating the structure of the intersections of the $18 P_{3}$-maximal sets. All the classes and representative functions are presented in Appendix 1 and 2, respectively. Every representative is chosen from the least arity functions [Miy71].

Thus we have the following theorem.
Theorem 5.9.1. P_{3}, is divided into the 406 nonempty classes, of which 96 are σ-similarfree.

In Table 5.12 we show the classes of the set considered in the corresponding subsections 5.4-5.9. We note that the origianl classification in [Miy71] counted a few characteristic vectors twice as different classes, consequently the number of classes reported in [Miy79] is not quite right; this was corrected in [Sto84a].

Further from the fact that all the representative functions of the classes shown in the Appendix 2 are of not greater than 3 arity, we have the following theorem.

Theorem 5.9.2. Each class of P_{3} has a representative function of not greater than 3 variables.

Let a closed set $F \subseteq P_{k}$ be finitely generated. The minimal number r such that every base of F can be constructed by functions depending on at most r variables (i.e.
r arity) is called the order of F [Lau84b]. In case that F has no finite base the order of F is set to \aleph_{0}.

Theorem 5.9.2 states that
Corollary 5.9.1. The order of P_{3} is 3.
We know that the order of P_{2} (under ordinary composition) is also 3.

5.10. Enumerations of bases of P_{3}

The list of 406 characteristic vectors of P_{3}-classes tells many things. Especially, we will show that the maximal rank of a pivotal incomplete set is 7 , while that of a base is 6. This is a rather unexpected result. Since a base corresponds to a minimum cover of $1 \cdots 1$ and a pivotal incomplete set corresponds to a minimal cover of some binary vector in which at least one coordinate should be 0 , one may naturally assume that the maximal rank of a base is greater than or equal to that of a pivotal incomplete set. The reality is not like this. The number of classes of bases of P_{3} is exactly $6,239,721$ (recall that we have only 42 for P_{2}), in which the number of bases which contain constant functions is exactly 1,391 .

Let us call a characteristic vector simply a vector. Recall that a set of vector is a base if it satisfies the following two conditions: 1) bit-wise OR for all the vectors results in unit vector $1 \cdots 1$ (Equation (1.1)) and 2) for each vector of the set, bit-wise OR for all the remaining vectors of the set does not equal that for all the vectors (Equation (1.2)).

The last condition is equivalent to saying that for every class of the set there is at least one "pivot", a maximal set in which all the other classes of the set except the class are included. Also recall that a set is called pivotal if it satisfies the condition 2).

First, let us see how vectors can be used.
Example 5.10.1. In Table 5.13 we show vectors of the function $j_{0}(x), j_{1}(x)$ and $j_{2}(x)$, where $j_{i}(x)$ is defined by $j_{i}(i)=2, j_{i}(x)=0$ for $x \neq i$. Note that $\max (x, y)=\sigma_{1}-\operatorname{sim}$. of $\min (x, y), 2=\sigma_{1^{-}}, \sigma_{3^{-}}$sim. of 0 and $1=\sigma_{2^{-}}, \sigma_{4^{-}}$sim. of 0 , where sim. stand for similar. It is well-known that the set $F=\left\{0,1,2, j_{0}(x), j_{1}(x), j_{2}(x), \min (x, y), \max (x, y)\right\}$ is complete. By examining the vectors of these functions we see that F is complete but

Table 5.13: Characteristic vectors of $j_{i}(x)$, max, min and constants.

wt	$\# n o$	$T L S$	$M_{1} M_{2} M_{0}$	$U_{2} U_{0} U_{1}$	$B_{0} B_{1} B_{2}$	$T_{0} T_{1} T_{2}$	$T_{01} T_{12} T_{20}$	$*$ no	representative
12	$\# 242$	011	111	100	010	111	110	$* 78$	$j_{0}(x)$
11	$\# 306$	011	101	110	010	011	110	$* 65$	$j_{1}(x)$
7	$\# 393$	011	010	010	010	010	010	$* 68$	$j_{2}(x)$
6	$\# 400$	111	010	001	100	000	000	$* 92$	$\max (x, y)$
6	$\# 402$	111	001	001	001	000	000	$* 89$	$\min (x, y)$
4	$\# 403$	001	000	000	000	110	100	$*$	8
4	$\# 404$	001	000	000	000	101	001	$*$	7
4	$\# 405$	001	000	000	000	011	010	$* 6$	0

not a base. It is easily verified that a base from F should contain $\min (x, y), \max (x, y), 1$, since these are only elements that cover B_{2}, B_{0} and T_{20}-th coordinates, respectively. By the base criteria we see that the following two sets are only bases that can be composed from F :

$$
\left\{\min (x, y), \max (x, y), 1, j_{1}(x)\right\} \text { and }\left\{\min (x, y), \max (x, y), 1, j_{0}(x), j_{2}(x)\right\}
$$

The enumerationons of bases of P_{3} can be done by examining the base criteria for all combinations of the classes. Although the procedure is quite simple, its direct application is far from feasibility due to combinatorial difficulty; it has required over 20 hours to examine the base criteria for 10^{6} combinations of 6 tuples of vectors $\left\langle b_{1}, b_{2}, \ldots, b_{6}\right\rangle$ from P_{3}-vectors by a computer which has about 1 MIPS processing speed (Tosbac 5600 computer). The feasible algorithm to overcome this difficulty we present in Chapter 7.

Here we summarize the enumeration results.
An example of redundant incomplete (actually a pivotal) set with rank 7 is shown in [Jab58]. It has been a problem whether this is the maximum rank of a pivotal set. We show that it is true.

Theorem 5.10.1. The maximal rank of a pivotal incomplete set of P_{3} is 7.
This means that maximal rank of a nonredundant incomplete set is greater than or equal to 7 (not every nonredundant incomplete set is pivotal incomplete set), and this tempts us to believe that the maximal rank of a base is also greater than or equal to 7 . However, this does not hold.

Theorem 5.10.2. The maximal rank of a base of P_{3} is 6 .
In Example 5.10 .2 we will see these situations in more detail.
Theorem 5.10.3. The number of bases of P_{3} is exactly 6,239,721.
We note that the first report [Miy79] on the number of classes of base was not quite right and the above number is the corrected result by [Sto84a].

Theorem 5.10.4. The number of bases which contain constant functions $0,1,2$ is exactly 1,391 .

$$
\begin{array}{l|rrrrrr|r}
\text { rank } & 1 & 2 & 3 & 4 & 5 & 6 & \text { total } \\
\hline \text { bases } & 0 & 0 & 0 & 2 & 633 & 756 & 1,391
\end{array}
$$

5.10.1. Examples of bases and pivotals

The situation which yields an interesting "gap" between Theorem 5.10.1 and Theorem 5.10.2 can be understood by the following example.

Example 5.10.2. In Table 5.14 and Table 5.15 we list 10 classes with the least degrees of completeness (i.e. weight) and their representative functions, respectively. By examining these vectors we can see that the set $Y=\left\{\sigma_{4}-\min , \sigma_{2}-\min , \max , \min , 0,1,2\right\}$ is pivotal incomplete set with maximal rank 7 . Indeed, it is easy to see that Y is contained in the maximal set B and each class has at least a pivot. This example is essentially the same as one presented by Jablonskij [Jab58, p.136]. Joining σ_{3}-min or σ_{0}-min to Y yields a complete set, but in both cases the resulting sets are redundant (non-pivotal). More precisely, by examining the vectors we can see that joining σ_{3}-min to Y yields redundancy of $\sigma_{2}-\mathrm{min}$ and max, and joining $\sigma_{0}-\mathrm{min}$ results redundancy of $\sigma_{4}-\mathrm{min}$ and \min. Thus we have only two bases of the maximal rank 6: $\left\{\sigma_{4}-\min , \sigma_{3}-\min , \min , 2,1,0\right\}$ and $\left\{\sigma_{2}-\min , \max , \sigma_{0}-\min , 2,1,0\right\}$ that can be constructed from these classes.

Example 5.10.3. The following 9 sets are all pivotal incomplete sets with maximal rank 7 . Every permutations in $\left\{\sigma_{0}, \sigma_{1}, \sigma_{2}\right\}$ is with even length, while one from $\left\{\varepsilon, \sigma_{3}, \sigma_{4}\right\}$ is with odd length. The following list consists of taking every two functions from each
of these categories and adding constant functions.

1) $\left\{\sigma_{0}-\min , \quad \max , \quad \min , \sigma_{3}-\min , 0,1,2\right\} \subset M_{1}$
2) $\left\{\sigma_{0}-\min , \sigma_{2}-\min , \quad \min , \sigma_{4}-\min , 0,1,2\right\} \subset M_{2}$
3) $\quad\left\{\max , \sigma_{2}-\min , \sigma_{3}-\min , \sigma_{4}-\min , 0,1,2\right\} \subset M_{0}$
4) $\left\{\max , \sigma_{2}-\min , \quad \min , \sigma_{3}-\min , 0,1,2\right\} \subset U_{2}$
5) $\left\{\sigma_{0}-\min , \quad \max , \quad \min , \sigma_{4}-\min , 0,1,2\right\} \subset U_{0}$
6) $\left\{\sigma_{0}-\min , \sigma_{2}-\min , \sigma_{3}-m i n, \sigma_{4}-\min , 0,1,2\right\} \subset U_{1}$
7) $\left\{\sigma_{0}-\min , \sigma_{2}-\min , \quad \min , \sigma_{3}-\min , 0,1,2\right\} \subset B_{0}$
8) $\left\{\max , \sigma_{2}-\min , \quad \min , \sigma_{4}-\min , 0,1,2\right\} \subset B_{1}$
9) $\left\{\sigma_{0}-\min , \quad \max , \sigma_{3}-\min , \sigma_{2}-\min , 0,1,2\right\} \subset B_{2}$

Table 5.14: 10 classes of P_{3} which have the least completeness degrees.

$w t$	$\# n o$	$T L S$	$M_{1} M_{2} M_{0}$	$U_{2} U_{0} U_{1}$	$B_{0} B_{1} B_{2}$	$T_{0} T_{1} T_{2}$	$T_{01} T_{12} T_{20}$	$*$ no	representative
6	$\# 397$	111	100	100	100	000	000	$* 96$	σ_{4}-sim. min
6	$\# 398$	111	100	000	001	000	000	$* 95$	σ_{2}-sim. min
6	$\# 399$	111	010	010	010	000	000	$* 93$	σ_{3}-sim. min
6	$\# 400$	111	010	001	100	000	000	$* 92$	σ_{1}-sim. min
6	$\# 401$	111	001	100	010	000	000	$* 90$	σ_{0}-sim. min
6	$\# 402$	111	001	001	001	000	000	$* 89$	$\min (x, y)=$ f.
4	$\# 403$	001	000	000	000	110	100	$* 8$	2 (constant)
4	$\# 404$	001	000	000	000	101	001	$*$	7
4	1 (constant)								
4	$\# 405$	001	000	000	000	011	010	$*$	0 (constant)
0	$\# 406$	000	000	000	000	000	000	$*$	1

Table 5.15: Representatives functions.

$f \backslash x y$	00	01	02	10	11	12	20	21	22
$\sigma_{4}-\min$	0	1	2	1	1	2	2	1	2
$\sigma_{2}-\min$	0	1	0	1	1	1	1	1	2
$\sigma_{3}-\min$	0	0	2	0	1	2	2	2	2
$\max =\sigma_{1}-\min$	0	1	2	1	1	2	2	2	2
$\sigma_{0}-\min$	0	0	0	0	1	2	0	2	2
\min	0	0	0	0	1	1	0	1	2

Example 5.10.4. In Table 5.16 and Table 5.17 we show three classes and their representative functions, respectively. The first one is a base with single function (a similar function of Webb function $\max (x, y)+1$). The last two are all classes each of which is complete with constant functions (c-complete). It may have a practical significance

Table 5.16:

$w t$	$\# n o$	$T L S$	$M_{1} M_{2} M_{0}$	$U_{2} U_{0} U_{1}$	$B_{0} B_{1} B_{2}$	$T_{0} T_{1} T_{2}$	$T_{01} T_{12} T_{20}$	$*$ no	representative
18	$\# 1$	111	111	111	111	111	111	$* 406$	$f 8.14$ (Sheffer)
12	$\# 191$	111	111	111	111	000	000	$* 362$	$f 8.1$
11	$\# 288$	110	111	111	111	000	000	$* 87$	$f 4.5$

Table 5.17: Representatives functions.

$f \backslash x y$	00	01	02	10	11	12	20	21	22
$f 8.14$	1	0	1	0	2	0	1	0	0
$f 8.1$	0	1	0	0	1	2	0	2	2
$f 4.5$	0	0	2	0	1	1	2	1	2

that these two representatives depend on two variables, while in two-valued case there exist only three-variable representatives in the corresponding classes (there exist also all two classes which are complete with constants in two-valued case).

5.10.2. Conclusive discussions

We have enumerated all the bases of three-valued logical functions. Now it has become known that three-valued case is far much complex than two-valued case. The classification approach, originally due to [Jab52], has been proved to be useful also for three-valued case, but it will be hard to apply for the cases with greater than three.

In the base enumeration a peculiar structure of P_{3} is revealed: the maximal rank of a base is 6 , while that of a pivotal incomplete set is 7 . There are a few investigation on the maximal rank of a base of $P_{3}[\mathrm{Krn} 73]$. Another proof that the maximal rank of bases of P_{3} is 6 is presented recently [Vuk84], which does not resort to enumeration of whole bases directly. It is known that for $P_{k}(k \geq 3)$ there is a set which has a base with infinite rank, and a set with no base [JaM59]. Thus a family of the closed sets each of which is spanned by a pivotal incomplete set is merely a special family of all closed sets of P_{k}.

5.11. Classifications and base enumeration results for P_{3} and its all maximal sets

In this last section we are going to presents classification and enumeration results of all bases for the set P_{3} and all $18 P_{3}$-maximal sets. First we give some historical remarks. First attempt to derive classes of functions of P_{3} was done in [Miy71]. This paper also give the notion of pivotal sets as necessary conditions for a set to be base. However, as we noted before, it counted a few characteristic vectors twice as different classes, consequently the number of bases reported in [Miy79] was not quite right; this was corrected in [Sto84a]. The following Table 5.18 presents the numbers of maximal sets and the numbers of classes of functions for the sets P_{2}, P_{3} and all P_{3}-maximal sets.

The numbers of classes of bases and pivotal incomplete sets for the same sets as in the former table are shown in the following two Tables 5.19 and 5.20.

In the table we abbreviated references as follows: [P] for [Pos21], [J1,J2] for [Jab52, Jab58], [L] for [Lau82b], [Ma] for [Mac79], [B1,B2] for [BaD78,BaD80], [JIK] for [Jab52,INN63,Krn65], [M1,M2,M3,M4,M5] for [Miy71,Miy79,Miy82,Miy83,Miy84], [S1] for [Sto84a] and [S2,S3,S4] for [Sto84b,Sto86a,Sto86b].

Table 5.18: Numbers of maximal sets and numbers of classes of functions for P_{3} and its maximal sets.

	P_{2}	P_{3}	B_{1}	M_{1}	T_{0}	U_{0}	T_{01}	T	L	S
maximal	5	18	7	13	12	13	15	5	5	2
sets	$[\mathrm{P}]$	$[\mathrm{J} 2]$	[L]	$[\mathrm{Ma}]$	$[\mathrm{L}]$	[L]	[L]	[L]	[B1]	[B2]
classes of	15	406	54	88	253	383	607	6	10	4
functions	[JIK]	[M1,S1]	[M3]	[S2]	[M5]	[S3]	[S4]	[M4]	[M4]	[M4]

Table 5.19: Classes of bases of P_{3} and of its all maximal sets.

rank	$\begin{array}{r} P_{2} \\ {[\mathrm{I}, \mathrm{~K}]} \end{array}$	$\begin{array}{r} P_{3} \\ {[\mathrm{~S} 1, \mathrm{M} 2]} \end{array}$	$\begin{array}{r} B_{1} \\ {[\mathrm{M} 3]} \end{array}$	$\begin{gathered} M_{1} \\ {[\mathrm{~S} 2]} \end{gathered}$	$\begin{array}{r} T_{0} \\ {[\mathrm{M} 5]} \end{array}$	$\begin{array}{r} U_{0} \\ {[\mathrm{~S} 3]} \end{array}$	$\begin{gathered} T_{01} \\ {[\mathrm{~S} 4]} \end{gathered}$	$\begin{array}{r} T \\ {[\mathrm{M} 4]} \end{array}$	$\begin{gathered} L^{3} \\ {[\mathrm{M} 4]} \end{gathered}$	$\begin{array}{r} S \\ {[\mathrm{M} 4]} \end{array}$
1	1	1	-	-	1	1	1	-	$\stackrel{3}{-3}$	1
2	17.	8,265	28	-	4,492	4,344	12,259	-	18	1
3	22	794,256	999	1,514	234,031	680,285	2,580,026	6	6	-
4	2	4,612,601	2,831	40,104	552,927	7,300,491	38,508,259	-	-	-
5	-	810,474	724	75,209	91,377	7,627,060	53,641,851	-	-	-
6	-	14,124	17	1,916	892	944,257	7,545,748	-	-	-
7	-	-	-	1	-	15,804	35,616	-	-	-
Σ	42	6,239,721	4,599	118,744	883,720	16,572,242	102,323,760	6	24	2

Table 5.20: Classes of pivotal incomplete sets of P_{3} and of its all maximal sets.

	P_{2}	P_{3}	B_{1}	M_{1}	T_{0}	U_{0}	T_{01}	T	L	S
1	13	404	53	87	251	381	605	5	9	2
2	31	60,335	931	3,153	21,363	57,284	147,266	10	10	-
3	7	$1,418,970$	3,678	37,946	202,689	$1,594,342$	$6,385,808$	-	-	-
4	-	$2,677,899$	2,240	96,323	149,804	$5,057,975$	$32,278,690$	-	-	-
5	-	176,187	168	15,087	6,595	$1,911,408$	$18,947,380$	-	-	-
6	-	1,368	1	55	8	96,464	$1,198,502$	-	-	-
7	-	9	-	-	-	240	648	-	-	-
Σ	51	$4,335,172$	7,071	152,651	38,0710	$8,718,094$	$58,958,899$	15	19	2

Chapter 6

Classifications of maximal sets of P_{3}

In this chapter we classify the maximal sets of $P_{3}: T$ (semi-degenerate or Słupecki set), L (linear functions) and S (self-dual functions), B and T_{0} (the set of functions preserving a constant 0). We also presents enumerations of bases and pivotal incomplete sets for each case.

6.1. T (Słupecki functions or semi-degenerate functions)

In this section we will classify the P_{3}-maximal clone $T=D \cup\left[P_{3}^{(1)}\right]$, which we call semi-degenerate functions or Słupecki functions.

For a unary function $f \in P_{3}^{(1)}$ we denote it by $s_{f(0) f(1) f(2)}$; for example, identity function is denoted by s_{012}; for simplicity we use x for identity function also, and also put $c_{0}=s_{000}, c_{1}=s_{111}$ and $c_{2}=s_{222}$.

The classification is based on the following theorem. In presenting the theorem we introduce our notations for the submaximal sets.

Theorem 6.1.1. [Lau82b]
T has exactly the following 5 maximal clones.
(1) $S_{0}:=D \cup\left[s_{021}\right]$.
(2) $S_{1}:=D \cup\left[s_{210}\right]$.
(3) $S_{2}:=D \cup\left[s_{102}\right]$.
(4) $S_{+}:=D \cup\left[s_{120}, s_{201}\right]$.
(5) $S_{b}:=\left[P_{3}^{(1)}\right] \cup \cup_{n=1}^{\infty}\left\{f^{(n)} \in P_{3} \mid \exists f_{i} \in P_{3}^{(1)}\right.$ such that $f\left(x_{1}, \ldots ., x_{n}\right)=f_{0}\left(f_{1}\left(x_{1}\right)+\right.$ $\left.\left.f_{2}\left(x_{2}\right)+\ldots+f_{n}\left(x_{n}\right) \bmod 2\right)\right\}$

We recall that the notation $[F]$ denotes the clone generated from F. For simplicity we omit set notation; thus $\left[s_{021}\right]$ means $\left[\left\{s_{021}\right\}\right]$. The identity function s_{012} is always included in all sets by definition. Also note that onto functions that can be generated by each of the above first four maximal sets are only its own unary onto functions.

Let S_{i} and $S_{j}(i \neq j)$ be any of S_{0}, S_{1}, S_{2} and S_{+}.
Lemma 6.1.1. We have $S_{i} S_{j}=D+\left[s_{012}\right]$, hence $S_{0} S_{1} S_{2} S_{+}=D+\left[s_{012}\right]$.
Proof. $\left[D+s_{012}\right] \subset S_{i} S_{j}$ is obvious. Converse. Suppose $f \in S_{i} S_{j}$ and f is onto. Then there exists an onto function $f_{0} \in S_{i} S_{j}$ such that $f\left(x_{1}, \ldots, x_{n}\right)=f_{0}(\ldots)$. As we noted above there exist no such onto function except s_{012}.

Lemma 6.1.2. Let S_{i} and S_{j} be as above. Then the set $S_{i} \bar{S}_{j}$ consists exactly of those onto functions in S_{i} excluding [s s_{012}].

Proof. Obviously every onto function contained in S_{i} does not belongs to S_{j} except s_{012}.

Example 6.1.1. $S_{+} \bar{S}_{0}=\left\{s_{120}, s_{201}\right\}$.
Lemma 6.1.3. $T=S_{0} \cup S_{1} \cup S_{2} \cup S_{+}$
Proof. If $f \in T$ is an onto function then f belongs to the right hand side.
Classification. From Lemma 6.1.1 we have the following 4 classes as for S_{0}, S_{1}, S_{2} and S_{+}.

	S_{0}	S_{1}	S_{2}	S_{+}	set
1)	0	0	0	0	$=\left\{D+s_{012}\right\}$
2)	0	1	1	1	$=\left\{s_{021}\right\}$
3)	1	0	1	1	$=\left\{s_{210}\right\}$
4)	1	1	0	1	$=\left\{s_{102}\right\}$
5)	1	1	1	0	$=\left\{s_{120}, s_{201}\right\}$

We combine the above classes and the remaining maximal set S_{b}. The class formed by combining \bar{S}_{b} and each of the above 2)-5) is empty from Lemma 6.1.2, because combining \bar{S}_{b} means to exclude all $P_{3}^{(1)}$, while only unary onto functions exist in the above classes. Thus we have the following theorem.

Theorem 6.1.2. T has the following 6 classes.

Class	S_{0}	S_{1}	S_{2}	S_{+}	S_{b}	representatives
1)	1	1	1	0	0	$\left\{s_{120}, s_{201}\right\}$
2)	1	1	0	1	0	$\left\{s_{102}\right\}$
3)	1	0	1	1	0	$\left\{s_{210}\right\}$
4)	0	1	1	1	0	$\left\{s_{021}\right\}$
5)	0	0	0	0	1	$g_{1.1}$
6)	0	0	0	0	0	$s_{012}, 0,1,2$

where $g_{1.1}:=g(x, y)=1$ if $x=y=2$, otherwise $g(x, y)=0$.
Note 6.1.1. The class 5) includes functions which depend on $2 n$ variables (we can easily extend $g_{1.1}$. to such functions), and the class 6) which contains $D S_{b}$ also includes functions which depend on n variables, e.g., $f\left(x_{1}, \ldots, x_{n}\right):=s_{011}\left(s_{001}\left(x_{1}\right)+s_{001}\left(x_{2}\right)+\right.$ $\left.\ldots+s_{001}\left(x_{n}\right) \bmod 2\right)$.

Since the proof of $g_{1.1} \notin S_{b}$ is a bit lengthy, we put it separately in the end of this subsection. We first give bases and pivotals of T.

Theorem 6.1.3. T has exactly the following 6 bases whose rank $=$ 3:

$$
\{1,2,5\},\{1,3,5\},\{1,4,5\},\{2,3,5\},\{2,4,5\},\{3,4,5\}
$$

Thus any base of T consists exactly of three elements.
Theorem 6.1.4. T has exactly the following 15 pivotal incomplete sets.

$$
\begin{gathered}
\text { rank }=1: \text { each of } 5 \text { classes except null class. } \\
\text { rank }=2:\{1,5\},\{2,5\},\{3,5\},\{4,5\},\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\} .
\end{gathered}
$$

Now we give the proof of $g_{1.1} \notin S_{b}$.
Put $g(x, y):=g_{1.1}$. Recall $g(2,2)=1$, and $g(x, y)=0$ for the other values of x and y. Assume $g(x, y)=f_{0}\left(f_{1}(x)+f_{2}(y) \bmod 2\right)$ for some $f_{i} \in P_{3}^{(1)}$. We show a contradiction.

Since range $g=\{0,1\}, f_{0}$ should map the subdomain $\{0,1\}$ onto $\{0,1\}$, i.e. f_{0} should be either $s_{01 *}$ or $s_{10 *}$, where ${ }^{*}$ denote 0,1 or 2 .

1) Case of $f_{0}=s_{01 *}$.

We have $g(x, y)=s_{01 *}\left(f_{1}(x)+f_{2}(y) \bmod 2\right)=f_{1}(x)+f_{2}(y) \bmod 2$. Hereafter till the end this section $x+y$ and $x y$ denote the element of E_{3} congruent $(\bmod 3) x+y$ and $x y$, respectively. From $g(2,2)=f_{1}(2)+f_{2}(2)=1$, we have $\left(f_{1}(2), f_{2}(2)\right)=(0,1),(1,0),(1,2)$ or $(2,1)$. From the symmetry of f_{1} and f_{2}, it suffices to consider that $\left(f_{1}(2), f_{2}(2)\right)=$ $(0,1)$ or $(1,2)$.
1.1) Case of $f_{1}(2)=0$ and $f_{2}(2)=1$.

We note that $f_{2}(2)=1$ and that $1+a=0$ leads to $a=1$. Then $g(0,2)=f_{1}(0)+f_{2}(2)=0$ leads to $f_{1}(0)=1$. Thus $g(0,0)=f_{1}(0)+f_{2}(0)=0$ leads to $f_{2}(0)=1$. Hence $g(2,0)=f_{1}(2)+f_{2}(0)=0$ leads to $f_{1}(2)=1$. But this contradicts to the assumption $f_{1}(2)=0$.
1.2) Case of $f_{1}(2)=1$ and $f_{2}(2)=2$.

Then $g(2,0)=f_{1}(2)+f_{2}(0)=0$ leads to $f_{2}(0)=1$. Thus $g(0,0)=f_{1}(0)+f_{2}(0)=0$ leads to $f_{1}(0)=1$. Hence $g(0,2)=f_{1}(0)+f_{2}(2)=0$ leads to $f_{2}(2)=1$. But this contradicts to the assumption $f_{2}(2)=2$.
2) Case of $f_{0}=s_{10 *}$.

We have

$$
g(x, y)=s_{10 *}\left(f_{1}(x)+f_{2}(y) \bmod 2\right)=\left(f_{1}(x)+f_{2}(y) \bmod 2\right)+1=f_{1}(x)+f_{2}(y)+1
$$

From $g(0,0)=f_{1}(0)+f_{2}(0)+1=0$ we have $f_{1}(0)+f_{2}(0)=1$. Thus from the symmetry of f_{1} and f_{2}, just like as we already saw for Case 1), it suffices to consider that $\left(f_{1}(0), f_{2}(0)\right)=(0,1)$ or $(1,2)$.
2.1) Case of $f_{1}(0)=0$ and $f_{2}(0)=1$.

We note that $f_{1}(0)=0$ and that $1+a=0$ leads to $a=1$. Then $g(0,2)=f_{1}(0)+$ $f_{2}(2)+1=0$ leads to $f_{2}(2)=1$. Thus $g(2,2)=f_{1}(2)+f_{2}(2)+1=1$ leads to $f_{1}(2)=1$. Hence $g(2,0)=f_{1}(2)+f_{2}(0)+1=0$ leads to $f_{2}(0)=0$. But this contradicts to the assumption $f_{2}(0)=1$.
2.2) Case of $f_{1}(0)=1$ and $f_{2}(0)=2$.

Then $g(2,0)=f_{1}(2)+f_{2}(0)+1=0$ leads to $f_{1}(2)=1$. Thus $g(2,2)=f_{1}(2)+f_{2}(2)+1=1$ leads to $f_{2}(2)=1$. Hence $g(0,2)=f_{1}(0)+f_{2}(2)+1=0$ leads to $f_{1}(0)=0$. But this contradicts to the assumption $f_{1}(0)=1$.

6.2. L (Linear functions)

We will classify the P_{3}-maximal set $L:=\left\{f \mid f(\boldsymbol{x})=\sum_{i=1}^{n} c_{i} x_{i}+c_{0}\right\}$, which is called linear functions. All maximal sets of L are given by the following theorem. In [BaD78] they showed all the closed sets of L for prime valued k. Their notations are slightly different from ours in the following theorem: they use L_{α} for $L T_{\alpha}(\alpha=0,1,2), L \triangle$ for $L S$, and $L^{(1)}$ is the same.

Theorem 6.2.1. [BaD 78$]$ L has exactly the following 5 maximal sets.
(1) $L T_{0}=\{f \mid f \in L$ and $\left.f(\mathbf{o})=0)\right\}$
(2) $L T_{1}=\{f \mid f \in L$ and $\left.f(\mathbf{1})=1)\right\}$
(3) $L T_{2}=\{f \mid f \in L$ and $\left.f(2)=2)\right\}$
(4) $L S=\{f \mid f \in L$ and $f(\boldsymbol{x}+\mathbf{1})=f(\boldsymbol{x})+1\}$
(5) $L^{(1)}=[0,1,2, x, x+1, x+2,2 x, 2 x+1,2 x+2]$.

Classification goes in the following manner.
First we will classify $L^{(1)}$ (5 classes), then $\bar{L}^{(1)} \cap L S$ (2 classes), and finally the remaining set (3 classes). Thus we will find total 10 classes.

Lemma 6.2.1. Obviously $L^{(1)}$ is classified by the other maximal sets into the following 5 classes.

$L T_{0}$	$L T_{1}$	$L T_{2}$	$L S$	representatives
0	0	0	0	x
1	1	1	0	$x+1, x+2$
0	1	1	1	$0,2 x$
1	0	1	1	$1,2 x+2$
1	1	0	1	$2,2 x+1$

Now we divide L into subsets as we did in the previous chapter (Chapter 5).
Put $L:=L_{0}+L_{1}+L_{2}$, where $L_{a}:=\left\{f \mid f(\boldsymbol{x})=c_{0}+\sum_{i=1}^{n} c_{i} x_{i}, \sum_{i=1}^{n} c_{i}=a\right\}$. Further each L_{a} is divided into the following three subsets:

$$
L_{a}=L_{a 0}+L_{a 1}+L_{a 2}, \text { where } L_{a b}=\left\{f \mid f \in L_{a} \text { and } f(\mathbf{o})=a\right\}
$$

Then we have $L S=L_{1}$ from Lemma 5.4.7, Chapter 5.

Lemma 6.2.2. From the property of $f(\boldsymbol{x}+\mathbf{1})=f(\boldsymbol{x})+1$, the set $\bar{L}^{(1)} \cap L S\left(\subset L_{1}\right)$ is divided into the following 2 classes.

$$
\begin{array}{cccl}
L T_{0} & L T_{1} & L T_{2} & \text { representatives } \\
\hline 0 & 0 & 0 & 2 x+2 y=f 4.3 \\
1 & 1 & 1 & 2 x+2 y+1=f 4.2
\end{array}
$$

where f.4.3 and $f 4.4$ are from the previous chapter (they are given in Appendix 2).
Lemma 6.2.3. $\bar{L}^{(1)}\left(L_{0}+L_{2}\right)$ is divided into the following 3 classes.

$L T_{0}$	$L T_{1}$	$L T_{2}$	representatives
0	1	1	$x+2 y=f 4.1$
1	0	1	σ_{2}-similar of $x+2 y(=x+2 y+1)$
1	1	0	σ_{1}-similar of $x+2 y(=x+2 y+2)$

where $f 4.1$ is from the previous chapter.
Proof. This is in fact Lemma 5.4.5. And this can be easily seen Also from the properties:
$L_{0}=L_{00}+L_{12}+L_{21}$ and $L_{2}=L_{02}+L_{11}+L_{20}$, and $f(\mathbf{o})=b, f(\mathbf{1})=a+b$ and $f(\mathbf{2})=2 a+b$ for $f \in L_{a b}$.

From Lemmas 6.2.1,6.2.2 and 6.2.3 we have the following theorem.

Theorem 6.2.2. L is divided into the following 10 classes.

	L_{1}	$L S$	$L T_{0}$	$L T_{1}$	$L T_{2}$	representatives
1)	1	1	1	1	0	$x+y+1, x+2 y+2$
2)	1	1	1	0	1	$x+y+2, x+2 y+1$
3)	1	1	0	1	1	$x+y, x+2 y$
4)	1	0	1	1	1	$2 x+2 y+1,2 x+2 y+2$
5)	0	1	1	1	0	$2,2 x+1$
$6)$	0	1	1	0	1	$1,2 x+2$
$7)$	0	1	0	1	1	$0,2 x$
$8)$	0	0	1	1	1	$x+1, x+2$
$9)$	1	0	0	0	0	$2 x+2 y$
10)	0	0	0	0	0	x

In the above table we listed all n-ary ($n \leq 2$) linear functions as representatives.
Theorem 6.2.3. L has exactly the following 24 bases.

```
rank = 1: none.
rank=2:1 }\times{2,3,4,6,7,8},2\times{3,4,5,7,8},3\times{4,5,6,8},4\times{5,6,7}
```

rank $=3:\{5,6,9\},\{5,7,9\},\{5,8,9\},\{6,7,9\},\{6,8,9\},\{7,8,9\}$.
Theorem 6.2.4. L has exactly the following 19 pivotal incomplete sets.
rank $=1$: each of 9 classes except null class.
rank $=2:\{5,6\},\{5,7\},\{5,8\},\{5,9\},\{6,7\},\{6,8\},\{6,8\},\{7,8\},\{7,9\},\{8,9\}$.
In the linear functions one can see most clearly the relation between pivotal and nonredundant sets. A nonpivotal incomplete set can be redundant as is seen in the following example.

Example 6.2.1. 1. $F_{1}:=\{0\}$ is pivotal, and hence nonredundant.
2. $F_{2}:=\{0,2 x\}$ is nonredundant, and not pivotal; as we have seen these functions have the same characteristic vector (hence F_{2} is not a minimal cover).
3. $F_{3}:=\{x+1, x+2\}$ is not pivotal and is redundant.
4. $F_{4}:=\{2 x, 2 x+2 y\}$ is pivotal and noncomplete.
5. $F_{5}:=\{2 x, 2 x+2 y, x+1\}$ is pivotal and complete, i.e. it is a base.

A nonpivotal incomplete set can also be nonredundant.
Example 6.2.2. $F=\{0, f(x, y)=x+2 y\}$ is not pivotal and incomplete. F is redundant; indeed $f(x, x)=x+2 x \equiv 0$.

Example 6.2.3. The set F of constants and any linear function of two variables, i.e., $F=\{0,1,2, l(x, y)=a x+b y+c(a \neq 0, b \neq 0)\}$ is complete, but it is redundant; one or two of constants (depending on $l(x, y)$) is not necessary to be a base.

6.3. S (Self-dual functions)

We will classify the set $S=\{f \mid f(\boldsymbol{x}+\mathbf{1})=f(\boldsymbol{x})+1\}$ which are called self-dual functions. All the submaximal sets of S is given by the following theorem.

Theorem 6.3.1. [DHM80a] S has exactly the following 2 maximal sets.
(1) $S L=\{f \mid f \in S$ and $f \in L\}$.
(2) $S T_{0}=\{f \mid f \in S$ and $f(\mathbf{o})=0\}$.

Thus S is divided into the following four classes, and immediately we have the following classes of bases.

class	$S L$	$S T_{0}$	representative
1)	1	1	$f 4.4$
2)	1	0	$f 4.5$
3)	0	1	$x+1$
4)	0	0	$2 x+2 y$

where $f 4.4$ and $f 4.5$ are from the previous chapter.
Theorem 6.3.2. S has exactly the following 2 bases and 2 pivotal incomplete sets.
bases: 1 (rank $=1$), $\{2,3\}(\operatorname{rank}=2)$.
pivotals: $2,3($ rank $=1)$.
It is interesting to note that such a non-trivial function as $2 x+2 y$ belongs to the null class; thus no incomplete set exists adding to which $2 x+2 y$ becomes complete in S. For functions in null class no incomplete set of functions can be added so that the joined set become complete. Null class containing non-trivial functions is seen in T, S and B (to be described in the next section).

6.4. Classification of B_{1}

In this section we classify a P_{3}-maximal set $B_{1}=\operatorname{Pol}\binom{0120112}{0121021}$, which is the set of functions preserving a so called central relation. We will show 54 classes and prove that B_{1} has 4,599 classes of bases. We also show that there is no Sheffer function in B_{1}.

The maximal set B_{1} is the set of functions f : if $f\binom{a}{b} \in\binom{02}{20}$ then there is i such that $\binom{a_{i}}{b_{i}} \in\binom{02}{20}$.

First we show a completeness theorem for B_{1} due to Lau.

Theorem 6.4.1. [Lau82b] B_{1} has exactly the following 7 maximal sets:
(1) $T_{1}=B_{1} \cap \operatorname{Pol}(1)$,
(2) $T_{01}=B_{1} \cap \operatorname{Pol}(01)$,
(3) $T_{12}=B_{1} \cap \operatorname{Pol}(12)$,
(4) $T_{20}=B_{1} \cap \operatorname{Pol}(20)$,
(5) $M_{5}=\operatorname{Pol}\binom{01211}{01202}$,
(6) $M_{6}=\operatorname{Pol}\binom{01210122}{01201210}$,
(7) $M_{7}=\operatorname{Pol}\left(\begin{array}{l}1210121122120110010 \\ 2101112121221010100 \\ 0022111212221101000\end{array}\right)$.

Now, we give a few explanations for each submaximal set. M_{5} has the following property: $f \in M_{5} \Leftrightarrow$ if $f\binom{\boldsymbol{a}}{\boldsymbol{b}} \in\binom{01}{12}$ then there is i such that $\binom{a_{i}}{b_{i}} \in\binom{01}{12}$. M_{6} has the following property: $f \in M_{6} \Leftrightarrow$ if $f\binom{\boldsymbol{a}}{\boldsymbol{b}}=\binom{0}{2}$ then there is i such that $\binom{a_{i}}{b_{i}}=\binom{0}{2} \cdot M_{7}$ is the set of functions preserving the relation $\rho:=3$-ary universal relation $\backslash \rho^{\prime}$, where $\rho^{\prime}=\left(\begin{array}{c}0202 \\ 2002 \\ * * 20\end{array}\right)$. Since M_{7} is a subset of B_{1}, we have the following property: $f \in M_{7} \Leftrightarrow$ if $\left(\begin{array}{c}\boldsymbol{a} \\ \boldsymbol{b} \\ \boldsymbol{c}\end{array}\right) \in\left(\begin{array}{c}02 \\ 02 \\ 20\end{array}\right)$ then there is i such that $\left(\begin{array}{c}a_{i} \\ b_{i} \\ c_{i}\end{array}\right) \in\left(\begin{array}{c}02 \\ 02 \\ 20\end{array}\right)$. The reason of not occurring the first and second columns is that, otherwise f does not belong to B_{1}. Finally, we note the following inclusion

$$
D(0,1) \cup D(1,2) \subset M_{6} M_{7}
$$

We recall some lemmas from Chapter 5. The following lemma is a corollary of Lemma 5.7.1.

Lemma 6.4.1. $f \in B_{1} \Rightarrow f \in T_{1} \cup D(0,1) \cup D(1,2)$.
Corollary 6.4.1. $f \in \bar{T}_{1} B_{1} \Rightarrow f \in D(0,1) \cup D(1,2)$.
The following is the Lemma 5.1.8.

$$
f \in T_{01} T_{12} \Rightarrow f \in T_{1}\left(T_{01} T_{12} \bar{T}_{1} \text { is impossible }\right)
$$

The following is the corollary of Lemma 5.7.2.

Corollary 6.4.2. $f \in B_{1} \bar{T}_{01} \bar{T}_{12} \Rightarrow f \in T_{1}\left(\bar{T}_{01} \bar{T}_{12} \bar{T}_{1}\right.$ is impossible in $\left.B_{1}\right)$.

We consider all the possible subsets and classify them separately in the following subsections: $M_{7} M_{6} M_{5}, M_{7} M_{6} \bar{M}_{5}, M_{7} \bar{M}_{6} M_{5}, M_{7} \bar{M}_{6} \bar{M}_{5}, \bar{M}_{7} M_{6}\left(M_{5} \cup \bar{M}_{5}\right), \bar{M}_{7} \bar{M}_{6} M_{5}$, and $\bar{M}_{7} \bar{M}_{6} \bar{M}_{5}$. Since B_{1} is σ_{1}-similar invariant, we say simply similar for σ_{1}-similar in this section. Recall that σ_{1}, σ_{2} and σ_{4} are (20), (01) transposition and (210) cyclic permutation, respectively.

6.4.1. $\quad M_{7} M_{6} M_{5}$.

Lemma 6.4.2. $f \in \bar{T}_{1} \bar{T}_{20} B_{1} \Rightarrow f \in \bar{M}_{5}$.
Lemma 6.4.3. $f \in \bar{T}_{01} \bar{T}_{12} B_{1} \Rightarrow f \in \bar{M}_{6}$.
From these two lemmas the classes $\bar{T}_{1} \bar{T}_{20}$ and $\bar{T}_{01} \bar{T}_{12}$ are impossible. We have the following 8 classes (cf. Lemma 5.1.8).

${ }^{*}{ }_{\text {no }}$	T_{1}	T_{01}	T_{12}	T_{20}	
${ }^{*_{1}}$	0	0	0	0	$\sigma_{2}-\min , \sigma_{4}-\min$
${ }^{*} 2$	0	0	0	1	$s_{012}, 1$
${ }^{*} 3$	0	0	1	0	s_{010}
${ }^{*} 4$	0	0	1	1	s_{110}
${ }^{*}$	1	0	1	1	0
${ }^{*} 6$	0	1	0	0	similar of $*_{3}$
${ }^{*} 7$	0	1	0	1	similar of $*_{4}$
${ }^{*}$	1	1	0	0	similar of $*_{5}$

Recall that $\max =\sigma_{1}-\min$. These \min , \max and σ_{i}-min functions are given in the previous chapter.
6.4.2. $\quad M_{7} M_{6} \bar{M}_{5}$.

From Lemma 6.4.3 the class $\bar{T}_{01} \bar{T}_{12}$ is impossible. we have the following 10 classes (cf. Lemma 5.1.8):

${ }^{\text {no }}$	T_{1}	T_{01}	T_{12}	T_{20}	representative
${ }^{*} 9$	0	0	0	0	$\sigma_{2}-\min , \sigma_{4}-\min$
${ }^{*} 10$	0	0	0	1	$f 2.1$
${ }^{*_{11}}$	0	0	1	0	$f 2.2$
${ }^{*_{12}}$	0	0	1	1	$f 2.3$
${ }^{*} 13$	1	0	1	0	$f 2.4$
${ }^{*} 14$	1	0	1	1	$f 2.5$
${ }^{*} 15$	0	1	0	0	similar of $*_{11}$
${ }^{*_{16}}$	0	1	0	1	similar of $*_{12}$
${ }^{*} 17$	1	1	0	0	similar of $*_{13}$
${ }^{*} 18$	1	1	0	1	similar of $*_{14}$

6.4.3. $\quad M_{7} \bar{M}_{6} M_{5}$.

Lemma 6.4.4.

$$
f \in B_{1} \bar{M}_{6} \Rightarrow f \in T_{1}
$$

Proof. Suppose $f(\mathbf{1})=0$. From $f \in \bar{M}_{6}$ there is $f\binom{01201212}{01210120}=\binom{0}{2}$. Since $f \in B_{1},\binom{2}{0}$ exists in the arguments. Then we have $f\binom{11111111}{01210120}=\binom{0}{2} \in \bar{B}_{1}$, a contradiction. If $f(\mathbf{1})=2$ the proof is similar.

By this lemma we can delete all classes of \bar{T}_{1} in \bar{M}_{6}. This leads to the following 8 classes $\left(f \in T_{1}\right)$.

$*_{\text {no }}$	T_{01}	T_{12}	T_{20}	representative
*19	0	0	0	f3.1
*20	0	0	1	$f 3.2$
*21	0	1	0	$f 3.3$
${ }^{2} 2$	0	1	1	$f 3.4$
*23	1	0	0	similar of *21
*24	1	0	1	similar of *22
*25	1	1	0	s_{210}
*26	1	1	1	$f 3.5$

6.4.4. $\quad M_{7} \bar{M}_{6} \bar{M}_{5}$.

Similarly as the previous case we can delete all classes of $f \in \bar{T}_{1}$. We have the following 8 classes $\left(f \in T_{1}\right)$.

${ }^{*}$ no	T_{01}	T_{12}	T_{20}	representative
${ }^{*} 27$	0	0	0	$f 4.1$
${ }^{*} 28$	0	0	1	$f 4.2$
${ }^{*} 29$	0	1	0	$f 4.3$
${ }^{*} 30$	0	1	1	$f 4.4$
${ }^{*} 31$	1	0	0	similar of ${ }^{*} 29$
${ }^{*} 32$	1	0	1	similar of ${ }^{3} 30$
${ }^{*} 33$	1	1	0	$f 4.5$
34	1	1	1	$f 4.6$

6.4.5. $\bar{M}_{7} M_{6}\left(M_{5} \cup \bar{M}_{5}\right)$.

Lemma 6.4.5. $f \in \bar{M}_{7} M_{6} B_{1} \Rightarrow f \in T_{12} T_{01}$.

We omit a rather complicate proof of this lemma (cf. [Miy82]). This lemma together with Lemma 5.1.8 and Lemma 6.4 .3 reduces the number of classes remarkably. For $\bar{M}_{7} M_{6} M_{5}$ we have only two classes:

$*_{\text {no }}$	T_{1}	T_{01}	T_{12}	T_{20}	representative
${ }^{*} 35$	0	0	0	0	\min , \max
${ }^{*} 36$	0	0	0	1	$f 5.1$

Similarly, for $\bar{M}_{7} M_{6} \bar{M}_{5}$ we have only two classes.

${ }^{*}$ no	T_{1}	T_{01}	T_{12}	T_{20}	representative
${ }^{*} 37$	0	0	0	0	$f 5.2$
${ }^{*} 38$	0	0	0	1	$f 5.3$

6.4.6. $\bar{M}_{7} \bar{M}_{6} M_{5}$.

From Lemma 6.4 .4 we have $f \in T_{1}$ and 8 classes are possible. There exists a representative function in each class.

$*_{\text {no }}$	T_{01}	T_{12}	T_{20}	representative
${ }^{*_{3}}$	0	0	0	$f 6.1$
$*_{40}$	0	0	1	$f 6.2$
$*_{41}$	0	1	0	$f 6.3$
$*_{42}$	0	1	1	$f 6.4$
$*_{43}$	1	0	0	similar of $*_{41}$
$*_{44}$	1	0	1	similar of $*_{42}$
${ }^{*} 45$	1	1	0	$f 6.5$
${ }_{46}$	1	1	1	$f 6.6$

6.4.7. $\bar{M}_{7} \bar{M}_{6} \bar{M}_{5}$.

By the same reason as the former subsection we have the following 8 classes $\left(f \in T_{1}\right)$.

	T_{01}	T_{12}	T_{20}	representative
${ }^{*} 47$	0	0	0	$f 7.1$
$*_{48}$	0	0	1	$f 7.2$
$*_{49}$	0	1	0	$f 7.3$
${ }^{*} 50$	0	1	1	$f 7.4$
$*_{51}$	1	0	0	similar of $*_{49}$
$*_{52}$	1	0	1	similar of ${ }^{*} 50$
${ }^{*} 53$	1	1	0	$f 7.5$
${ }^{*} 54$	1	1	1	$f 7.6$

And this complete our classification of B_{1}. The complete classes are shown in Table 6.1.

6.4.8. Results and conclusive discussions

It is a bit surprising that such nontrivial functions as σ_{2}-min or σ_{4}-min have a null characteristic vector, since this indicates that these functions joined to any subset of B_{1} effect null concerning generation of a function by superposition. We summarize the results as the theorems.

Theorem 6.4.2. B_{1} is divided into 54 nonempty classes.
Since there exists a representative with at least four arguments in every class, we have:

Theorem 6.4.3. For every base of B_{1} there exist an equivalent base consisting of at most 4 -ary functions, i.e. the order of B_{1} is 4 .

The classes of bases and pivotals of B_{1} are enumerated.
Theorem 6.4.4. The numbers of classes of bases and pivotals of B_{1} are 4,599 and 7,071 respectively.

Corollary 6.4.3. Maximal rank of bases or pivotals of B_{1} is 6 (there are 17 bases with the maximal rank) and there is no Sheffer function in B_{1}.

We give several illustrative examples.

Example 6.4.1. We list all 28 bases of B_{1} with rank 2.

```
1\times{17,18,30,31,44,45},2\times{17,18},3\times{18,31,45},4\times{17,30,44},
    5\times{17,18,30,31},7\times18,8\times17,10\times{17,18},11\times{18,31},12\times{17,30},17\times21,
    18\times20.
```

Example 6.4.2. There is only one base containing all constants functions among 17 bases with maximal rank 6 . One such example is $\{2,1,0, \min , f 3.1, f 2.1\}$.

Example 6.4.3. There is only one pivotal with the maximal rank 6. One such example is $\left\{\min , f 3.1, f 2.1, s_{212}, s_{010}, 1\right\}$.

Example 6.4.4. The following set is P_{3} pivotal with a maximal rank 7 [Jab58]: $\left\{\max , \sigma_{2}-\min , \min , \sigma_{4}-\min , 0,1,2\right\} \subset B_{1}$. It may seem that this set span some maximal set of B_{1}, however actually this spans a smaller set. We show characteristic vectors of these functions. Thus this set spans some subset of $M_{5} M_{6}$.

$w t$	$\# n o$	M_{7}	M_{6}	M_{5}	T_{1}	T_{01}	T_{12}	T_{20}	$*$ no	representative
1	$\# 48$	1	0	0	0	0	0	0	$* 35$	\max , \min
0	$\# 54$	0	0	0	0	0	0	0	$* 1$	$\sigma_{2}-\min , \sigma_{4}-\min$
2	$\# 45$	0	0	0	1	0	1	0	$* 5$	0
1	$\# 53$	0	0	0	0	0	0	1	$* 2$	1
2	$\# 44$	0	0	0	1	1	0	0	$* 8$	2

Table 6.1: Classes of B_{1}.

wt	\#no	$M_{7} M_{6} M_{5}$	T_{1}	$T_{01} T_{12} T_{2 O}$	*no	representative
6	(\#1)	111	0	111	*54	$f 7.6$
5	(\#2)	111	0	110	*53	$f 7.5$
5	(\#3)	111	0	101	*52	similar of $f 7.4$
5	(\#4)	111	0	011	*50	$f 7.4$
5	(\#5)	110	0	111	*46	$f 6.6$
5	(\#6)	011	0	111	*34	$f 4.6$
4	(\#7)	111	0	100	*51	similar of $f 7.3$
4	(\#8)	111	0	010	*49	f7.3
4	(\#9)	111	0	001	*48	f7.2
4	(\#10)	110	0	110	*45	$f 6.5$
4	(\#11)	110	0	101	*44	similar of $f 6.4$
4	(\#12)	110	0	011	*42	$f 6.4$
4	(\#13)	011	0	110	*33	$f 4.5$
4	(\#14)	011	0	101	*32	similar of $f 4.4$
4	(\#15)	011	0	011	*30	$f 4.4$
4	(\#16)	010	0	111	*26	$f 3.5$
4	(\#17)	001	1	101	*18	$s_{121}, s_{122}, s_{221}$
4	(\#18)	001	1	011	*14	$s_{001}, s_{100}, s_{101}$
3	(\#19)	111	0	000	*47	f7.1
3	(\#20)	110	0	100	*43	similar of f6.3
3	(\#21)	110	0	010	*41	$f 6.3$
3	(\#22)	110	0	001	*40	$f 6.2$
3	(\#23)	101	0	001	*38	$f 5.3$
3	(\#24)	011	0	100	*31	similar of f4.3
3	(\#25)	011	0	010	*29	$f 4.3$
3	(\#26)	011	0	001	*28	$f 4.2$
3	(\#27)	010	0	110	*25	s_{210}
3	(\#28)	010	0	101	*24	similar of $f 3.4$
3	(\#29)	010	0	011	*22	$f 3.4$
3	(\#30)	001	1	100	*17	similar of $f 2.5$
3	(\#31)	001	1	010	*13	$f 2.5$
3	(\#32)	001	0	101	*16	similar of $f 2.4$
3	(\#33)	001	0	011	*12	$f 2.4$
2	(\#34)	110	0	000	*39	$f 6.1$
2	(\#35)	101	0	000	*37	$f 5.2$
2	(\#36)	100	0	001	*36	$f 5.1$
2	(\#37)	011	0	000	*27	f4.1
2	(\#38)	010	0	100	*23	similar of $f 3.3$
2	(\#39)	010	0	010	*21	$f 3.3$
2	(\#40)	010	0	001	*20	$f 3.2$
2	(\#41)	001	0	100	*15	similar of $f 2.3$
2	(\#42)	001	0	010	*11	$f 2.3$
2	(\#43)	001	0	001	*10	$f 2.2$
2	(\#44)	000	1	100	*8	2
2	(\#45)	000	1	010	*5	0
2	(\#46)	000	0	101	*7	s_{211}
2	(\#47)	000	0	011	*4	s_{110}
1	(\#48)	100	0	000	*35	min, max
1	(\#49)	010	0	000	*19	$f 3.1$
1	(\#50)	001	0	000	*9	$f 2.1$
1	(\#51)	000	0	100	*6	s_{212}
1	(\#52)	000	0	010	*3	s_{010}
1	(\#53)	000	0	001	*2	$s_{011}, 1$
0	(\#54)	000	0	000	*1	σ_{2} - and σ_{4}-similar of min

Table 6.2: Representatives of classes of B_{1}.

$f \backslash x y$	00	01	02	10	11	12	20	21	22	$f \backslash x y$	00	01	02	10	11	12	20	21	22
$f 2.2$	1	0	1	1	1	1	1	1	1	$f 4.6$	1	1	1	2	1	1	1	1	0
$f 2.4$	1	1	1	1	1	1	1	0	1	$f 6.3$	0	0	0	1	1	0	2	1	0
$f 3.3$	0	1	0	1	1	1	2	1	0	$f 6.5$	2	1	0	1	1	0	0	0	0
$f 3.4$	1	1	1	1	1	1	2	1	0	$f 7.4$	1	0	1	1	1	0	2	1	1
$f 3.5$	2	1	0	1	1	1	1	1	0	$f 7.6$	1	2	1	2	1	1	1	1	0
$f 4.4$	1	1	1	1	1	0	2	1	1										
f2.1	00	01	10	11	12	21	22	20	02	$f 2.3$	00	01	10	11	12	21	22	20	02
0	0	1	1	1	1	1	2	2	2	0	0	1	1	1	1	1	0	0	0
1	1	1	1	1	1	2	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	1	1	1	1	1	2	2	2	2	0	1	1	0	1	1	0	0	0
$f 2.5$	00	01	10	11	12	21	22	20	02	$f 3.1$	00	01	10	11	12	21	22	20	02
0	0	1	1	1	1	1	0	0	0	0	0	1	1	1	1	1	0	2	0
1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	0	1	1	0	1	1	0	0	0	2	2	1	2	1	1	1	2	2	0
$f 3.2$	00	01	10	11	12	21	22	20	02	$f 4.2$	00	01	10	11	12	21	22	20	02
0	0	1	1	1	1	1	0	2	0	0	1	1	1	1	1	1	0	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2
2	2	1	2	1	1	1	1	2	0	2	1	1	1	1	1	1	1	1	1
$f 4.3$	00	01	10	11	12	21	22	20	02	$f 4.5$	00	01	10	11	12	21	22	20	02
0	0	1	1	1	1	1	0	0	2	0	2	1	1	1	1	1	0	0	2
1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	0	1	1	1
2	0	1	1	1	1	1	0	0	0	2	2	1	1	1	1	1	0	0	2
$f 5.1$	00	01	10	11	12	21	22	20	02	$f 5.3$	00	01	10	11	12	21	22	20	02
0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1	1	1	1	1
1	0	0	1	1	1	1	1	1	0	1	1	0	1	1	1	1	1	1	1
2	0	0	1	1	1	1	2	1	0	2	1	1	1	1	1	2	1	1	1
$f 6.1$	00	01	10	11	12	21	22	20	02	$f 6.2$	00	01	10	11	12	21	22	20	02
0	0	1	1	1	1	1	2	2	2	0	0	1	1	1	1	1	2	2	2
1	0	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1
2	0	1	0	1	1	1	2	0	2	2	0	1	0	1	1	1	2	0	1

Representatives of classes of B_{1} (continued).

$f 6.4$	00	01	10	11	12	21	22	20	02	$f 6.6$	00	01	10	11	12	21	22	20	02
0	1	1	1	1	2	1	2	1	2	0	2	1	1	1	2	1	2	1	2
1	1	1	1	1	1	1	1	1	2	1	1	1	1	1	1	1	1	1	2
2	1	1	1	1	1	1	0	1	2	2	1	1	1	1	1	1	0	1	2
f7.1	00	01	10	11	12	21	22	20	02	f7.2	00	01	10	11	12	21	22	20	02
0	0	1	1	1	2	1	2	0	2	0	0	1	1	1	2	1	2	0	2
1	1	1	1	1	1	2	1	1	1	1	1	1	1	1	1	2	1	1	1
2	0	0	1	1	1	1	2	2	0	2	0	0	1	1	1	1	2	1	0
f7. 3	00	01	10	11	12	21	22	20	02	$f 4.1$	00	01	10	11	12	21	22	20	02
0	0	1	1	1	1	1	0	2	0	00	0	1	1	1	1	1	0	2	2
1	1	1	1	1	1	2	1	1	1	01	1	1	1	1	1	1	1	1	1
2	2	1	1	1	0	1	1	2	0	10	1	1	1	1	1	1	1	1	1
										11	1	1	1	1	1	1	1	1	2
										12	1	1	1	1	1	1	1	1	1
										21	1	1	1	1	1	1	1	1	1
										22	2	1	1	1	1	1	2	2	2
										20	2	1	1	1	1	1	2	2	2
										02	2	1	1	1	1	1	2	2	2
f5.2	00	01	10	11.	12	21	22	20	02	f7.5	00	01	10	11	12	21	22	20	02
00	0	1	1	1	1	1	0	0	0	00	2	1	1	1	1	1	0	2	2
01	1	1	1	1	1	1	1	1	1	01	1	1	1	1	1	1	1	1	1
10	1	1	1	0	1	1	1	1	1	10	1	1	2	1	1	1	1	1	1
11	1	0	1	1	1	1	1	1	1	11	1	2	1	1	1	1	0	2	2
12	1	1	1	1	1	2	1	1	1	12	1	1	1	1	1	1	1	1	1
21	1	1	1	1	1	1	1	1	1	21	1	1	1	1	1	1	1	1	1
22	0	1	1	1	1	1	2	2	0	22	2	1	1	1	1	1	0	2	2
20	0	1	1	1	1	1	0	0	0	20	2	1	1	1	1	1	0	2	2
02	0	1	1	1	1	1	2	2	0	02	2	1	1	1	1	1	0	2	2

6.5 Classification of T_{0}

The set T_{0} of three-valued logical functions preserving 0 is classified into 253 classes using the known classification of P_{3} (the whole set of three-valued logical functions).

Recall that T_{0} is the set of all 3-valued logical functions f such that $f(0, \ldots, 0)=0$. In [Miy84] the classes of functions and bases for T_{0} are given. In this sections we give much simpler description of it using the classification of P_{3}. We recall:

Theorem 6.5.1. [Lau82b] T_{0} has exactly the following 12 maximal sets.

Group I.

(1) $K_{10}=\operatorname{Pol}\binom{012}{021}$.
(2) $K_{11}=\operatorname{Pol}\binom{00102}{01020}$.
(3) $K_{12}=\operatorname{Pol}\binom{0010212}{0102021}$.

Group II.
(4) $T_{0} M_{1}=\operatorname{Pol}(0) \operatorname{Pol}\binom{012001}{012122}$.
(5) $T_{0} M_{2}=\operatorname{Pol}(0) \operatorname{Pol}\binom{012121}{012200}$.
(6) $T_{0} U_{12}=\operatorname{Pol}(0) \operatorname{Pol}\binom{01212}{01221}$.
(7) $T_{0} B_{0}=\operatorname{Pol}(0) \operatorname{Pol}\binom{0120012}{0121200}$.

Group III.
(8) $T_{0} T_{1}=\operatorname{Pol}(0) \operatorname{Pol}(1)$.
(9) $T_{0} T_{2}=\operatorname{Pol}(0) \operatorname{Pol}(2)$.
(10) $T_{0} T_{01}=\operatorname{Pol}(0) \operatorname{Pol}(01)$.
(11) $T_{0} T_{12}=\operatorname{Pol}(0) \operatorname{Pol}(12)$.
(12) $T_{0} T_{20}=\operatorname{Pol}(0) \operatorname{Pol}(20)$.

Note that only the three sets K_{10}, K_{11} and K_{12} are not P_{3}-maximal. In Section 2 we need the following 14 technical lemmas which are of independent interest (as statements about the lattice of closed sets ordered by \subseteq). First we list them together (as Lemmas 1.1-1.14) and then proceed with their proofs.

Lemma 6.5.1. $K_{10} K_{12} \subseteq K_{11}$.

Lemma 6.5.2. $T_{1} K_{10} \subseteq T_{2}, T_{2} K_{10} \subseteq T_{1}$.
Lemma 6.5.3. $T_{01} K_{10} \subseteq T_{02}$.
Lemma 6.5.4. $U_{0} K_{12} \subseteq K_{10}$.
Lemma 6.5.5. $T_{1} K_{12} \subseteq T_{02}, T_{2} K_{12} \subseteq T_{01}$.
Lemma 6.5.6. $B_{0} T_{01} T_{02} U_{0} \subseteq K_{11}$.
Lemma 6.5.7. $K_{10} K_{12} \subseteq B_{0}$.
Lemma 6.5.8. $U_{0} K_{12} \subseteq B_{0}$.
Lemma 6.5.9. $M_{1} K_{10} \subseteq M_{2}$.
Lemma 6.5.10. $M_{1} K_{10} \subseteq U_{0}$.
Lemma 6.5.11. $B_{0} K_{12} \subseteq K_{11}$.
Lemma 6.5.12. $K_{12} T_{12} \subseteq B_{0}$.
Lemma 6.5.13. $K_{10} B_{0} \subseteq K_{12}$.
Lemma 6.5.14. $M_{1} T_{02} K_{12} \subseteq K_{11}$.
Proofs. We must prove inclusions of the form $\operatorname{Pol}_{1} \cdots$ Pol $_{i} \subseteq \operatorname{Pol}_{0}$ (where $i=4$ in Lemma 6.5.6, $i=3$ in Lemma 6.5.14 and $i=2$ otherwise). The inclusion holds if we can express ρ_{0} by a logical formula based on $\exists, \&,=$ and membership in $\rho_{j}(1 \leq j \leq i)$.

We show what we mean by an example. Let

$$
\kappa_{10}:=\binom{012}{021}, \kappa_{12}:=\binom{0010212}{0102021}, \kappa_{11}:=\binom{00102}{01020} .
$$

Put

$$
\lambda:=\left\{(x, y):(x, y) \in \kappa_{12},(x, u) \in \kappa_{10},(u, y) \in \kappa_{12} \text { for some } u\right\}
$$

This may be written as $\lambda=\kappa_{12} \cap\left(\kappa_{10} \circ \kappa_{12}\right)$ where \circ denotes the relational (de Morgan) product or composition.

We prove $\kappa_{11}=\lambda$ by a direct check. First clearly $\lambda \subseteq \kappa_{12}$. We have $(0,0),(0,1),(0,2)$ $\in \kappa_{10} \circ \kappa_{12}$ (choose $u=0$ in all 3 cases), $(2,0) \in \kappa_{10}$ (choose $u=1$) and $(1,0) \in \kappa_{10} \circ \kappa_{12}$
(choose $u=2$) and so $\kappa_{11} \subseteq \lambda \subseteq \kappa_{12}$. $\operatorname{Next}(1,2) \notin \kappa_{10} \circ \kappa_{12}$ (if it were we would need $u=2$ but $(2,2) \notin \kappa_{12}$) and similarly $(2,1) \notin \kappa_{10} \circ \kappa_{12}$ (we need $u=1$ but $(1,1) \notin \kappa_{12}$). It follows that $\kappa_{11}=\lambda$.

The above fact Pol $\rho_{1} \cdots$ Pol $\rho_{i} \subseteq$ Pol $_{0}$ is well known ([Ros70, $\left.\S 4\right]$, for more information cf. [Pok79, §1.1, ch. 2]), and may be proved directly (it has also an interesting and basic converse called Galois polytheory, cf. ibid).

In the sequel $\kappa_{i j}$ denotes the relation in $K_{i j}=P o l \kappa_{i j}$ (see Theorem 1.2, group I), similarly $U_{i}=\operatorname{Pol} \nu_{i}, M_{i}=\operatorname{Pol} \mu_{i}$, and $B_{0}=$ Pol β_{0}.

Lemma 6.5.1.
$\kappa_{11}=\left\{(x, y) \mid(x, y) \in \kappa_{12},(x, u) \in \kappa_{10}\right.$ and $(y, u) \in \kappa_{12}$ for some $\left.u\right\}$ (see above).
Lemma 6.5.2.
$\{2\}=\left\{x \mid(x, u) \in \kappa_{10}\right.$ for some $\left.u \in\{1\}\right\}$ (as $T_{i}=\operatorname{Pol}\{i\}$ where $\{i\}$ is a unary relation; of course $u \in\{1\}$ means $u=1$). Similarly $\{1\}=\left\{x \mid(x, 2) \in \kappa_{10}\right\}$.

Lemma 6.5.3.
$\{0,2\}=\left\{x \mid(x, u) \in \kappa_{10}\right.$ for some $\left.u \in\{0,1\}\right\}$.
Lemma 6.5.4.

$$
\kappa_{10}=\nu_{0} \cap \kappa_{12} .
$$

Lemma 6.5.5.

$$
\{0,2\}=\left\{x \mid(x, 1) \in \kappa_{12}\right\},\{0,1\}=\left\{x \mid(x, 2) \in \kappa_{12}\right\} .
$$

Lemma 6.5.6.
$\kappa_{11}=\left\{(x, y) \mid(x, y) \in \beta_{0},(x, u) \in \mu_{0},(u, v) \in \beta_{0},(v, y) \in \nu_{0}\right.$ for some $u \in\{0,1\}$ and $v \in\{0,2\}\}$. To see \subseteq consider the following $(x, u, v, y): \quad(0,0,2,1),(1,1,0,0)$, $(0,0,2,2),(2,1,0,0)$ and $(0,0,0,0)$. The inclusion \supseteq is obtained as follows. If $(1, u) \in \mu_{0}$ and $(v, 1) \in \nu_{0}$ for some $u \in\{0,1\}$ and $v \in\{0,2\}$, then $u=1$ and $v=2$ and hence $(u, v) \notin \beta_{0}$ proving $(1,1)$ does not belong to the right side. The proof for $(2,2)$ is similar. As the right side is a subrelation of β_{0} this complete the proof.

Lemma 6.5.7.
$\beta_{0}=\left\{(x, y) \mid(x, u),(v, y) \in \kappa_{10},(x, v),(u, y) \in \kappa_{12}\right.$ for some u and $\left.v\right\}$.
Lemma 6.5.8.
Combine Lemmas 6.5.4 and 6.5.7.
Lemma 6.5.9.
$\mu_{2}=\left\{(x, y) \mid(x, u),(v, y) \in \kappa_{10}\right.$ for some $\left.u \geq v\right\}, \square$
Lemma 6.5.10.
$\nu_{0}=\left\{(x, y) \mid(u, v),(w, t) \in \kappa_{10}, u \leq x \leq t, w \leq y \leq v\right\}$.
Lemma 6.5.11.
Let $f \in \bar{K}_{11} K_{12}$. From $f \in \bar{K}_{11}$ there are $\binom{\boldsymbol{a}}{\boldsymbol{b}} \in \kappa_{11}$ such that $\binom{f(\boldsymbol{a})}{f(b)} \in$ $\binom{1212}{1221}$. However, from $f \in \kappa_{12}$ and $\kappa_{11} \subseteq \kappa_{12}$ we have $\binom{f(\boldsymbol{a})}{f(\boldsymbol{b})} \notin\binom{12}{12}$. Hence we have $f \notin B_{0}$.

Lemma 6.5.12.
$\beta_{0}=\left\{(x, y) \mid(x, u),(u, y) \in \kappa_{12}\right.$ for some $\left.u \in\{1,2\}\right\}$.
Lemma 6.5.13.
$\kappa_{12}=\left\{(x, y):(x, u),(v, y) \in \kappa_{10},(x, v),(u, y) \in \beta_{0}\right.$ for some u and $\left.v\right\}$. To prove \subseteq we take the following quadruples $(x, u, v, y):(0,0,0,0),(0,0,2,1),(0,0,1,2)$ and $(1,2,1,2)$ (the right side is obviously symmetric). For \supseteq note that neither $(1,1)$ nor $(2,2)$ belong to the right side (if (1,1) would then $u=2$ in contradiction to $(2,1) \notin \beta_{0}$ and similarly for $(2,2)$).

Lemma 6.5.14.

$$
\kappa_{11}=\left\{(x, y) \in \kappa_{12}: x \leq u, v \geq y,(x, v),(u, y) \in \kappa_{12} \text { for some } u, v \in\{0,2\}\right\}
$$

To see \subseteq note that the right side is symmetric and take the quadruples (x, u, v, y) : $(0,0,0,0),(0,2,2,1)$ and $(0,0,2,2$,$) . For \supseteq$ note the following. First the right side is symmetric. If (1,2) belongs to the right side then $u \geq 1, u \in\{0,2\}$ means $u=2$ in contradiction to $(2,2) \notin \kappa_{12}$.

Lemma 6.5.15. $U_{0} B_{0} \subseteq T_{01} \cup T_{02} \cup K_{11}$.
Proof. Suppose there exists an n-ary $f \in U_{0} B_{0} \bar{T}_{01} \bar{T}_{02} \bar{K}_{11}$. Then there are $\binom{a}{b} \in \kappa_{11}^{n}$ such that $\binom{f(\boldsymbol{a})}{f(\boldsymbol{b})} \notin \kappa_{11}$, i.e $\in\binom{1212}{1221}$. Were $\binom{f(\boldsymbol{a})}{f(\boldsymbol{b})} \in\binom{12}{21}$, in view of $\kappa_{11} \subseteq \beta_{0}$ we would have $f \notin B_{0}$. Next suppose $f(\boldsymbol{a})=f(\boldsymbol{b})=1$. Define a vector c so that $\left(\begin{array}{l}\boldsymbol{a} \\ \boldsymbol{b} \\ \boldsymbol{c}\end{array}\right) \in\left(\begin{array}{l}01020 \\ 00102 \\ 01010\end{array}\right)^{n}$. Now $\binom{\boldsymbol{a}}{\boldsymbol{c}} \in \nu_{0}^{n}$ and $f \in U_{0}$ imply $f(\boldsymbol{c}) \neq 0$. Next $\binom{\boldsymbol{b}}{\boldsymbol{c}} \in \beta_{0}^{n}$ and $f \in B_{0}$ imply $\binom{1}{f(c)} \in \beta_{0}$ and therefore together we have $f(\boldsymbol{c}) \neq 2$ and $f(c) \neq 1$. Since $f \notin T_{01}$, there is a vector $d \in\{0,1\}^{n}$ such that $f(d)=2$. From
$f(c)=1, f(d)=2$ and $\binom{c}{d} \in\binom{0110}{0011}$ we conclude $f \notin B_{0}$, a contradiction. Finally if $f(a)=f(b)=2$ the proof is quite similar.

Lemma 6.5.16. The set $M_{1} \bar{T}_{2} T_{02}$ consists of constant functions with value 0 only and so $M_{1} \bar{T}_{2} T_{02} \subseteq K_{10} K_{11} K_{12}$.

Proof. From $f \in \bar{T}_{2} T_{02}$ follows $f(2) \in\{0,2\}$ and $f(2) \neq 2$ i.e. $f(2)=0$. From $f \in M_{1}$ and $y \leq 2$ for all $y \in E$ we get $f \equiv 0 f(\boldsymbol{x}) \leq 0$ for all $\boldsymbol{x} \in E^{n}$ i.e. which is an element of $K_{10} K_{11} K_{12}$.

6.5.1. Classification of T_{0}

The sets $T_{1}, T_{2}, T_{01}, T_{02}, T_{12}, U_{0}, B_{0}, M_{1}$ and M_{2} are P_{3}-maximal sets. Among the 406 classes of P_{3} exactly 248 classes are subsets of T_{0}. However, only 93 classes are obtained from the above nine P_{3}-maximal sets (as intersections of the sets or their complements). The interchange 1 and 2 in the definition of each maximal set $T_{1}, T_{2}, T_{01}, T_{02}, T_{12}, U_{0}$, $B_{0}, M_{1}, M_{2}, K_{10}, K_{11}$ and K_{12} yields $T_{2}, T_{1}, T_{02}, T_{01}, T_{12}, U_{0}, B_{0}, M_{2}, M_{1}, \overline{K_{10}}, K_{11}$ and K_{12} respectively. The class T_{0} is mapped onto itself. Two classes are similar if the characteristic vectors are obtained by one from the other by applying the above mapping to all coordinates of the vector, i.e., $a_{i}^{\prime}=a_{i^{\prime}}$, where ' denote the above mapping of maximal sets. Among the 93 classes (the sum of the fourth column in Table 6.3), 58 are pairwise nonsimilar.

The complete classification of T_{0} is obtained by checking all 8 possible cases with respect to the sets K_{10}, K_{11} and K_{12} for each of the above 93 classes. From Lemmas 1 16 we can show that many classes are empty. In Table 6.3 for each of the 58 nonsimilar classes with respect to the first 9 maximal sets we give the ordinal number of one of the corresponding classes of P_{3} from [Sto84a,Miy71] (the second and the third column of the table). In the next to the last column we give the number of corresponding classes of the set T_{0} obtained by concatenating the characteristic vectors corresponding to K_{10}, K_{11} and K_{12}. In the last column we indicate the lemmas, on the basis of which some of the 8 cases do not occur.

For each of the remaining 169 (the sum of the numbers of the next to the last column) classes, a representative function is shown in Table 6.5 (163 representatives,
the 6 representatives are unary, which are shown in the table). Counting the similarity (summing s-column multiplied by c-column for all rows), we have:

Theorem 6.5.2. [Miy84] The number of the classes of T_{0} is 253.

The classes are listed in Table 6.4 and there representatives in Table 6.5.

6.5.2. Enumeration of bases of T_{0}

Using the list of 353 characteristic vectors the T_{0}-bases and T_{0}-pivotal incomplete sets are computed [Miy84]: they are 883,720 and 380,710 , respectively. The maximal rank of a base of T_{0} is 6 . The detailed data are shown in Chapter 5 .

6.6. Concluding remarks

The classifications for the other maximal sets of P_{3} were done by Stojmenovic as we have seen in Chapter 5. The maximal sets M_{1}, U_{0} and T_{01} have 88,383 and 607 classes and their bases are $118,744,16,572,242$ and $102,323,760$. Maximal rank of a base of each set is 7 . All the results were reported in [MiS87b] jointly with Stojmenović.

Table 6.3:

no	P_{3}-class	sim.	$M_{1} M_{2}$	U_{0}	B_{0}	$T_{1} T_{2}$	$T_{01} T_{12} T_{20}$	gen. classes	lemma
1	7	1	11	1	1	11	111	6	$L 7$
2	20	1	11	1	1	11	101	4	L12
3	21	2	11	1	1	11	011	4	L3
4	23	2	11	1	1	01	111	2	L2,5
5	26	1	11	1	0	11	111	4	L11, 13
6	34	1	11	0	1	11	111	4	L8
7	48	1	11	1	1	11	010	6	$L 7$
8	52	2	11	1	1	01	110	4	L2
9	53	2	11	1	1	01	101	2	L2,5
10	54	2	11	1	1	01	011	2	L2, 5
11	55	1	11	1	1	00	111	4	L5
12	63	1	11	1	0	11	101	4	L11, 13
13	64	2	11	1	0	11	011	3	L3, 11
14	74	1	11	0	1	11	101	4	L8
15	75	2	11	0	1	11	011	2	$L 3,8$
16	76	1	11	0	0	11	111	2	L4, 13, 15
17	88	2	11	1	1	01	010	4	L2
18	89	2	11	1	1	01	001	2	L2,5
19	91	1	11	1	1	00	101	4	L5
20	92	2	11	1	1	00	011	2	L3, 5
21	99	1	11	1	0	11	010	4	L11, 13
22	101	2	11	1	0	01	011	2	L2,5
23	114	1	11	0	1	11	010	4	L8
24	116	2	11	0	1	01	101	2	L2,5
25	118	1	11	0	0	11	101	2	L4, 13, 15
26	119	2	11	0	0	11	011	2	L3,4
27	133	2	01	1	1	10	101	2	L2, 5
28	134	2	01	1	1	10	011	4	L2
29	137	1	11	1	1	00	010	6	L7
30	138	2	11	1	1	00	001	2	L3, 5
31	149	2	11	1	0	01	010	3	L2, 11
32	150	2	11	1	0	01	001	,	L2,5
33	162	2	11	0	1	01	001	2	L2,5
34	163	1	11	0	1	00	101	4	L5
35	166	1	11	0	0	11	010	2	$L 4,6,13$
36	183	2	01	1	1	10	100	2	$L 2,5$
37	184	2	01	1	1	10	010	3	L2, 14
38	185	2	01	0	1	10	101	,	$L 2,5$
39	191	1	11	1	1	00	000	4	L12
40	194	1	11	1	0	00	010	4	L11, 13
41	204	2	11	0	1	00	001	2	L3, 5
42	210	2	11	0	0	01	001	2	L2, 5
43	232	2	01	1	1	00	001	2	L3, 5
44	234	2	01	1	0	10	010	3	L2, 11
45	235	2	01	0	1	10	100	2	L2, 5
46	254	1	11	1	0	00	000	4	L11, 13
47	258	1	11	0	1	00	000	4	L8
48	282	2	01	1	1	00	000	2	L10, 12
49	284	2	01	0	1	00	001	2	L3, 5
50	309	2	01	1	0	11	011	3	L3, 11
51	315	1	11	0	0	00	000	2	L4, 6, 13
52	335	2	01	1	0	00	000	3	L10, 11
53	336	2	01	0	1	00	000	2	L8, 9
54	378	2	01	1	0	10	100	2	L2, 5
55	381	2	01	1	0	01	001	2	L2,5
56	390	1	00	0	0	00	000	2	L4, 6, 13
57	396	2	00	0	0	01	001	2	L2, 5
58	405	1	00	0	0	11	010	1	L16

Table 6.4: Classes of T_{0} coordinates are: $K_{10} K_{11} K_{12} M_{1} M_{2} U_{0} B_{0} T_{1} T_{2} T_{01} T_{12} T_{20}$.

$w t$	no		similar	$w t$	no		similar
12	1	111111111111		9	51	111110101101	
11	2	111111111110	$g^{\prime} 4$	9	52	111110011110	
11	3	111111111101		9	53	111110011011	$g^{\prime} 52$
11	4	111111111011		9	54	111101101110	$g^{\prime} 58$
11	5	111111110111		9	55	111101101101	$g^{\prime} 57$
11	6	111111101111		9	56	111101011110	$g^{\prime} 59$
11	7	111111011111		9	57	111011110101	
11	8	111110111111		9	58	111011110011	
11	9	110111111111		9	59	111011011011	
11	10	101111111111		9	60	110111111010	
11	11	011111111111		9	61	110111110011	$g^{\prime} 62$
10	12	111111111010		9	62	110111101110	
10	13	111111110110		9	63	101111111010	
10	14	111111110101		9	64	101111110110	
10	15	111111110011	$g^{\prime} 16$	9	65	101111110101	
10	16	111111101110		9	66	101111110011	$g^{\prime} 67$
10	17	111111101101		9	67	101111101110	
10	18	111111101011	$g^{\prime} 13$	9	68	101111101101	
10	19	111111100111		9	69	101111101011	$g^{\prime} 64$
10	20	111111011110		9	70	101111100111	
10	21	111111011101		9	71	101111011110	
10	22	111111011011	$g^{\prime} 20$	9	72	101111011101	
10	23	111110111110		9	73	101111011011	$g^{\prime} 71$
10	24	111110111101		9	74	101110111110	
10	25	111110111011	$g^{\prime} 23$	9	75	101110111101	
10	26	110111111110		9	76	101110111011	$g^{\prime} 74$
10	27	110111111011	$g^{\prime} 26$	9	77	101110011111	
10	28	101111111110		9	78	100111111110	
10	29	101111111101		9	79	100111111011	$g^{\prime} 78$
10	30	101111111011	$g^{\prime} 28$	9	80	100111011111	
10	31	101111110111		9	81	011111111010	
10	32	101111101111		9	82	011111100111	
10	33	101111011111		9	83	011110111101	
10	34	101110111111		9	84	001111111101	
10	35	100111111111		9	85	001110111111	
10	36	011111111101		8	86	111111100100	$g^{\prime} 88$
10	37	011110111111		8	87	111111100010	
10	38	001111111111		8	88	111111100001	
9	39	111111110100	$g^{\prime} 42$	8	89	111111010100	$g^{\prime} 92$
9	40	111111110010		8	90	111111010010	
9	41	111111101010		8	91	111111001010	
9	42	111111101001		8	92	111111001001	
9	43	111111100110		8	93	111110110100	$g^{\prime} 94$
9	44	111111100101		8	94	111110101001	
-	45	111111100011	$g^{\prime} 43$	8	95	111110100101	
9	46	111111011010		8	96	111101101010	$g^{\prime} 100$
9	47	111111010110		8	97	111101101001	$g^{\prime} 99$
9	48	111111001011	$g^{\prime} 47$	8	98	111100101101	$g^{\prime} 101$
9	49	111110111010		8	99	111011110100	
9	50	111110110101		8	100	111011110010	

$w t$	no		similar	$w t$	no		similar
8	101	111010110101		7	151	111011100001	
8	102	110111110010	$g^{\prime} 103$	7	152	111011010100	
8	103	110111101010		7	153	111011010010	
8	104	110101101110		7	154	111011001001	
8	105	110011110011	$g^{\prime} 104$	7	155	111010110100	
8	106	101111110100	$g^{\prime} 109$	7	156	110111100010	
8	107	101111110010		7	157	101111100100	$g^{\prime} 159$
8	108	101111101010		7	158	101111100010	
8	109	101111101001		7	159	101111100001	
8	110	101111100110		7	160	101111010100	$g^{\prime} 163$
8	111	101111100101		7	161	101111010010	
8	112	101111100011	$g^{\prime} 110$	7	162	101111001010	
8	113	101111011010		7	163	101111001001	
8	114	101111010110		7	164	101110110100	$g^{\prime} 165$
8	115	101111001011	$g^{\prime} 114$	7	165	101110101001	
8	116	101110111010		7	166	101110100101	
8	117	101110110101		7	167	101110011010	
8	118	101110101101		7	168	101101101010	$g^{\prime} 172$
8	119	101110011110		7	169	101101101001	$g^{\prime} 171$
8	120	101110011101		7	170	101100101101	$g^{\prime} 173$
8	121	101110011011	$g^{\prime} 119$	7	171	101011110100	
8	122	101101101110	$g^{\prime} 126$	7	172	101011110010	
8	123	101101101101	$g^{\prime} 125$	7	173	101010110101	
8	124	101101011110	$g^{\prime} 127$	7	174	100111110010	$g^{\prime} 175$
8	125	101011110101		7	175	100111101010	
8	126	101011110011		7	176	100111011010	
8	127	101011011011		7	177	100101101110	
8	128	100111111010		7	178	100101011110	s_{020}
8	129	100111110011	$g^{\prime} 130$	7	179	100011110011	$g^{\prime} 177$
8	130	100111101110		7	180	100011011011	s_{020}^{\prime}
8	131	100111011110		7	181	011111100010	
8	132	100111011101		7	182	011110100101	
8	133	100111011011	$g^{\prime} 131$	7	183	001111100101	
8	134	011111100101		7	184	001110111010	
8	135	011110111010		7	185	000111011101	
8	136	001111111010		7	186	000110011111	
8	137	001111100111		6	187	111111000000	
8	138	001110111101		6	188	111110100000	
8	139	000111011111		6	189	111101100000	$g^{\prime} 191$
7	140	111111100000		6	190	111100100100	$g^{\prime} 192$
7	141	111111000010		6	191	111011100000	
7	142	111110100100	$g^{\prime} 142$	6	192	111010100001	
7	143	111110100001		6	193	101111100000	
7	144	111110010100	$g^{\prime} 145$	6	194	101111000010	
7	145	111110001001		6	195	101110100100	$g^{\prime} 196$
7	146	111101100100	$g^{\prime} 151$	6	196	101110100001	
7	147	111101010100	$g^{\prime} 154$	6	197	101110010100	$g^{\prime} 198$
7	148	111101001010	$g^{\prime} 153$	6	198	101110001001	
7	149	111101001001	$g^{\prime} 152$	6	199	101101100100	$g^{\prime} 204$
7	150	111100101001	$g^{\prime} 155$	6	200	101101010100	$g^{\prime} 207$

$w t$	no	$\mathrm{K}_{10} \mathrm{~K}_{11} \mathrm{~K}_{12} \mathrm{M}_{1} \mathrm{M}_{2} \mathrm{U}_{0} \mathrm{~B}_{0} \mathrm{~T}_{1} \mathrm{~T}_{2} \mathrm{~T}_{01} \mathrm{~T}_{12} \mathrm{~T}_{20}$	similar
6	201	101101001010	$g^{\prime} 206$
6	202	101101001001	$g^{\prime} 205$
6	203	101100101001	$g^{\prime} 208$
6	204	101011100001	
6	205	101011010100	
6	206	101011010010	
6	207	101011001001	
6	208	101010110100	
6	209	100111100010	
6	210	100111010010	$g^{\prime} 211$
6	211	100111001010	
6	212	100101101010	
6	213	100011110010	$g^{\prime} 212$
6	. 214	011111100000	
6	215	001111100010	
6	216	001110100101	
6	217	000111011010	
6	218	000110011101	s_{021}
5	219	111101000000	$g^{\prime} 221$
5	220	111100100000	$g^{\prime} 222$
5	221	111011000000	
5	222	111010100000	
5	223	111000010100	$g^{\prime} 224$
5	224	111000001001	
5	225	101111000000	
5	226	101110100000	
5	227	101101100000	$g^{\prime} 229$
5	228	101100100100	$g^{\prime} 230$
5	229	101011100000	
5	230	101010100001	
5	231	100111000010	
5	232	100101001010	10
5	233	100011010010	s_{010}^{\prime}
5	234	011110100000	
5	235	001111100000	
5	236	000110011010	
4	237	101110000000	
4	238	101101000000	$g^{\prime} 240$
4	239	101100100000	$g^{\prime} 241$
4	240	101011000000	
4	241	101010100000	
4	242	101000010100	s_{011}^{\prime}
4	243	101000001001	s_{011}
4	244	100111000000	
4	245	001110100000	
4	246	000111000010	
3	247	100101000000	$g^{\prime} 248$
3	248	100011000000	
3	249	000111000000	
3	250	000000011010	0
$w t$	no	$\mathrm{K}_{10} \mathrm{~K}_{11} \mathrm{~K}_{12} \mathrm{M}_{1} \mathrm{M}_{2} \mathrm{U}_{0} \mathrm{~B}_{0} \mathrm{~T}_{1} \mathrm{~T}_{2} \mathrm{~T}_{01} \mathrm{~T}_{12} \mathrm{~T}_{20}$	similar
2	251	101000000000	
2	252	000110000000	
0	253	000000000000	s_{012}

Table 6.5: Representatives of classes of T_{0} (163 functions).

$f \backslash x y$	00	01	02	10	11	12	20	21	22	$f \backslash x y$	00	01	02	10	11	12	20	21	22
$g 1$	0	1	2	1	2	0	2	1	1	$g 68$	0	2	0	0	1	2	0	1	1
g3	0	2	0	2	2	1	0	1	1	g70	0	2	1	0	1	0	0	1	2
$g 4$	0	1	2	1	0	0	0	2	1	$g 71$	0	0	0	0	2	1	0	1	0
$g 6$	0	2	1	2	1	0	1	0	1	$g 72$	0	0	1	0	2	1	0	1	1
$g 7$	0	2	0	2	0	2	0	2	1	$g 75$	0	1	2	0	2	1	0	1	1
$g 8$	0	2	1	1	0	0	1	0	0	g78	0	1	0	0	2	0	0	2	0
$g 10$	0	1	2	0	2	0	0	1	1	$g 80$	0	0	1	0	2	0	0	0	1
g11	0	2	1	2	0	2	1	1	0	$g 81$	0	1	2	1	0	1	2	2	0
$g 12$	0	1	2	1	0	1	0	0	0	$g 82$	0	2	1	1	1	0	2	0	2
$g 13$	0	1	0	1	2	0	0	0	2	g83	0	2	1	1	2	2	2	1	1
$g 16$	0	2	0	2	1	2	0	0	0	g87	0	1	2	0	1	0	2	0	2
$g 17$	0	2	1	2	1	1	0	1	1	g88	0	1	1	1	1	1	0	1	2
g19	0	2	1	2	1	0	1	1	2	g91	0	0	2	0	1	2	2	2	0
g20	0	2	2	0	0	0	2	0	0	g92	0	1	0	0	1	1	1	1	1
$g 21$	0	0	1	0	2	1	1	1	1	g94	0	1	1	1	1	2	2	1	1
g23	0	1	2	2	0	0	2	0	0	$g 95$	0	2	1	2	1	1	1	1	2
g24	0	1	2	1	2	1	2	1	1	g99	0	1	2	0	2	2	2	2	2
$g 26$	0	2	0	1	2	0	0	2	0	g101	0	1	1	1	2	2	1	2	2
$g 28$	0	1	0	0	2	1	0	0	0	g104	0	2	0	1	1	1	0	2	0
$g 29$	0	2	0	0	2	1	0	1	1	g108	0	1	0	0	1	2	0	2	0
g32	0	2	1	0	1	0	0	0	1	g109	0	1	0	0	1	1	0	2	1
g33	0	2	0	0	0	2	0	0	1	$g 110$	0	2	0	0	1	2	0	0	2
g35	0	0	1	0	2	2	0	0	0	$g 113$	0	0	0	0	0	1	0.	1	0
g37	0	2	1	2	0	0	1	0	0	$g 114$	0	0	0	0	2	0	0	0	2
g38	0	1	2	0	2	0	0	0	1	$g 118$	0	2	1	0	1	1	0	1	1
$g 41$	0	1	0	1	1	2	0	2	0	g119	0	2	2	0	0	0	0	0	0
$g 42$	0	1	2	0	1	1	2	2	1	g120	0	0	0	0	2	1	0	1	1
$g 43$	0	2	0	2	1	2	0	0	2	$g 125$	0	0	0	0	2	2	1	2.	2
g44	0	0	1	2	1	1	1	1	2	g126	0	0	1	0	0	1	0	1	2
$g 46$	0	1	0	1	0	1	0	1	0	g127	0	0	1	0	0	1	0	1	1
$g 47$	0	0	2	0	2	0	2	0	2	$g 128$	0	0	0	0	0	0	2	1	0
$g 51$	0	2	1	2	1	1	1	1	1	$g 130$	0	2	0	0	1	0	0	0	0
g52	0	2	2	2	0	0	2	0	0	$g 131$	0	2	0	0	2	0	0	0	0
g57	0	2	2	0	2	2	1	2	2	g132	0	0	0	2	2	2	0	1	1
g 58	0	0	1	0	0	1	1	1	2	g135	0	1	2	1	0	0	2	0	0
g59	0	0	1	0	0	1	1	1	1	g136	0	1	2	0	0	1	0	2	0
$g 62$	0	2	0	1	1	0	0	0	0	g137	0	2	1	0	1	0	0	0	2
$g 63$	0	1	2	0	0	1	0	0	0	g138	0	2	1	0	2	2	0	1	1
$g 64$	0	1	0	0	2	0	0	0	2	g139	0	0	0	0	2	0	0	0	1
$g 67$	0	2	0	0	1	2	0	0	0	g140	0	1	0	1	1	1	0	2	2

Representatives of classes of T_{0} (continued).

$f \backslash x y$	00	01	02	10	11	12	20	21	22
$g 141$	0	0	2	0	1	0	2	0	2
$g 151$	0	0	1	0	1	1	1	1	2
$g 152$	0	0	2	0	2	2	2	2	2
$g 153$	0	0	2	0	0	2	2	2	2
$g 154$	0	0	1	0	1	1	1	1	1
$g 155$	0	1	2	1	2	2	2	2	2
$g 162$	0	0	2	0	1	0	0	2	0
$g 163$	0	0	0	0	1	2	1	1	1
$g 166$	0	0	0	2	1	1	1	1	2
$g 173$	0	1	1	0	2	2	0	2	2
$g 175$	0	0	2	0	1	1	0	0	0
$g 176$	0	0	0	0	0	0	0	1	0
$g 177$	0	2	0	0	1	0	0	2	0
$g 182$	0	2	1	1	1	2	2	1	2
$g 186$	0	2	1	0	0	0	0	0	0
$g 191$	0	0	2	1	1	2	2	2	2
$g 192$	0	1	1	1	1	1	1	1	2
$g 193$	0	1	0	0	1	1	0	2	2
$g 204$	0	0	1	0	1	1	0	1	2
$g 205$	0	0	2	0	2	2	0	2	2

$f \backslash x y$	00	01	02	10	11	12	20	21	22
$g 206$	0	0	2	0	0	2	0	2	2
$g 207$	0	0	1	0	1	1	0	1	1
$g 208$	0	1	2	0	2	2	0	2	2
$g 209$	0	0	2	0	1	1	0	0	2
$g 211$	0	1	0	0	1	0	0	0	0
$g 216$	0	2	1	0	1	1	0	2	2
$g 217$	0	0	0	0	0	2	0	1	0
$g 221$	0	0	2	0	1	2	2	2	2
$g 222$	0	1	2	1	1	2	2	2	2
$g 224$	0	1	1	1	1	1	1	1	1
$g 230$	0	1	1	0	1	1	0	1	2
$g 231$	0	0	2	0	1	0	0	0	2
$g 234$	0	1	2	1	1	2	2	1	2
$g 236$	0	1	2	0	0	0	0	0	0
$g 240$	0	0	2	0	1	2	0	2	2
$g 241$	0	1	2	0	1	2	0	2	2
$g 245$	0	1	2	0	1	1	0	2	2
$g 246$	0	0	0	0	1	0	0	0	2
$g 248$	0	0	2	0	1	2	0	1	2
$g 251$	0	0	0	0	1	1	0	1	2

$g 9$	$g 34$	$g 36$	$g 49$	$g 60$	$g 74$
000200000	001211110	000200100	011111222	000100000	002000020
000000000	000000000	100212100	000000000	00000000	001000020
100000000	000000000	200212100	000000000	200000000	001000020

$g 77$	$g 84$	$g 85$	$g 100$	$g 103$	$g 111$
000211100	000012000	002121210	000011200	000100000	000200000
000000000	000211100	00000000	000022211	000100000	000121100
000000000	000222100	000000000	222222222	200000000	000111210

$g 116$	$g 134$	$g 143$	$g 145$	$g 156$	$g 158$
010000002	000200100	01000001	010000001	000100000	000020000
010000001	100112100	001111110	001111110	000100000	000101000
010000002	200212200	001111210	001111110	200000200	000010200

Representatives of classes of T_{0} (continued).

$g 159$	$g 165$	$g 167$	$g 171$	$g 172$	$g 181$
000100000	001112110	000000000	000010200	000000000	011000022
000121100	000111100	010000001	000222200	000022200	000100000
000111210	000111100	010000002	000222200	001222220	000000200

$g 183$	$g 184$	$g 185$	$g 187$	$g 188$	$g 194$
002012010	010112202	000012000	000020000	000111200	000000000
000122100	000000000	000212100	000121100	100111100	000101000
000211200	000000000	000212100	200222200	200111200	000010200

$g 196$	$g 198$	$g 212$	$g 214$	$g 215$	$g 225$
001112110	001000010	000120000	001021020	000112200	000100000
000111100	000111100	001111000	000111101	000101200	000121100
000111200	000111100	000120000	020222200	000120200	000111200

$g 226$	$g 229$	$g 235$	$g 237$	$g 244$	$g 249$
001000020	000020200	000021000	000000000	000010000	001100220
000111100	001121210	000112111	000112200	000112100	000112200
000111200	001122220	022212200	000111200	000212200	000112200

$g 252$

001000020
000112200
000112200

Chapter 7

Applications of a Subset Generating Algorithm to Base Enumeration, Knapsack and Minimal Covering Problems

On the basis of a backtrack procedure for lexicographic enumeration of all subsets of a set of n elements we give an algorithm for both determining of all bases consisting of functions from a given complete set in a considered subset of the set of k-valued logical functions and for enumeration of all classes of bases in the subset. We use the lexicographic algorithm also for solving knapsack and minimal covering problems. A cut technique is described which is used in these algorithms to reduce the number of examined subsets of $\{1, \ldots, n\}$. Some computational data upon the classes of P_{3} are also given.

7.1. Generating all subsets of $\{1, \ldots, n\}$ in lexicographic order

In this Section we consider the problem of generating all r-subsets (subsets containing r elements) of the set $\{1,2, \ldots, n\}$ for $1 \leq r \leq n$ and for $1 \leq r \leq m \leq n$. We assume that each subset will be represented as a sequence $a_{1} a_{2} \ldots a_{r}$ where $1 \leq a_{1}<\ldots<a_{r} \leq n$.

Recall definition of lexicographic order of subsets. For two subsets $a=\left(a_{1}, \ldots, a_{p}\right)$ and $b=\left(b_{1}, \ldots, b_{q}\right), a<b$ is satisfied if and only if there exists $i(1 \leq i \leq q)$ such that $a_{j}=b_{j}$ for $1 \leq j<i$ and either $a_{i}<b_{i}$ or $p=i-1$. This order has an important property that enables simple calculation with r-subsets. Ehrlich [Ehr73] described a loopless procedure for generating of subsets of a set of n elements. A procedure based
on Gray code for the same problem is given in [NiW78]. Also, in [NiW78] an algorithm for generating all r-subsets ($1 \leq r \leq m \leq n$) in lexicographic order is proposed. Semba [Sem84] improved the efficiency of the algorithm. We will modify his algorithm by presenting it in PASCAL-like notation without goto statements. Application of the algorithm for minimal covering problem results in another modification of the algorithm in the case $1 \leq r \leq m \leq n$.

The lexicographic enumeration of r-subsets goes in the following manner (for example, let $n=5$):
$1,12,123,1234,12345$, 1235, 124, 1245, 125,
$13,134,1345$, 135 ,
14, 145,
15,
$2,23,234,2345$, 235,
24, 245,
25 ,
3, 34, 345,
35 ,
4, 45,
5.

The algorithm is in "extend" phase when it goes from "left" to "right" staying in a row. If the last element of a subset is n then algorithm shifts to the next row. We call this phase "reduce" phase. Every subset of $\{1, \ldots, n\}$ is represented in the algorithm below by a sequence $j_{1}, \ldots, j_{r}, 1 \leq r \leq n, 1 \leq j_{1}<\ldots<j_{r} \leq n$.

First we give an algorithm for generating all r-subsets for $1 \leq r \leq n$. This algorithm will be used in base enumerations.

```
begin
    read(n); r:= 0; j}\mp@subsup{j}{r}{}:=0
    repeat
        if }\mp@subsup{j}{r}{}<n\mathrm{ then extend else reduce;
        print out j}\mp@subsup{j}{1}{},\ldots,\mp@subsup{j}{r}{
```

until $j_{1}=n$
end;
extend \equiv begin $j_{r+1}:=j_{r}+1 ; r:=r+1$ end
reduce \equiv begin $r:=r-1 ; j_{r}:=j_{r}+1$ end .

Note that between any two printed subsets exactly two conditions are checked: $j_{r}<n$ and $j_{1}=n$.

The algorithm for generating all r-subsets for $1 \leq r \leq m \leq n$ we modify with respect to its use in minimal covering problem.

```
begin
    \(\operatorname{read}(\mathrm{n}) ; r:=0 ; j_{r}:=0 ;\)
    repeat
        if \(j_{r}<n\) and \(r<m\) then extend else cut;
        print out \(j_{1}, \ldots, j_{r}\)
    until \(j_{1}=n\)
end;
extend \(\equiv\) begin \(j_{r+1}:=j_{r}+1 ; r:=r+1\) end
reduce \(\equiv\) begin \(r:=r-1 ; j_{r}:=j_{r}+1\) end
cut \(\equiv\) if \(j_{r}<n\) then \(j_{r}:=j_{r}+1\) else reduce .
```

Besides "extend" and "reduce" phases we use in the algorithm a new phase called "cut" phase. The phase will be used when algorithm goes from some subset to some subset in a lower row (not necessarily in the subsequent row) skipping several subsets (when the number r of elements in these subsets is greater than m).

7.2. Functional completeness and enumeration of bases

In this Section we describe an application of our lexicographic algorithm to base enumeration for a subset of the set of k-valued logical functions.

We call nonredundant incomplete sets simply addable. The rank of a base (addable set) is the number of its elements. Here we recall some definitions. The characteristic vector of $f \in H$ is $c_{1} \ldots c_{d}$, where $c_{i}=0$ if $f \in H_{i}$ and $c_{i}=1$ otherwise $(1 \leq i \leq d)$. Whenever it is possible to avoid confusion we call characteristic vectors simply vectors. All functions $f \in H$ with the same (characteristic) vector form a class of functions. For
a base its class of bases is the set of classes of functions for functions belonging to the base.

The conditions of completeness and nonredundancy of a set of (classes of) functions F can be conveniently expressed by using characteristic vectors of (classes of) functions belonging to F. We can say that a base corresponds to a minimal cover of $1 \ldots 1$ (unit vector), and nonredundant set corresponds to a minimal cover of some non-unit vector (in which some 0 's may occur; we except null vector).

We define bitwise OR operation \vee for characteristic vectors in the following way:

$$
\left(a_{1}^{\prime}, \ldots, a_{d}^{\prime}\right) \vee\left(a_{1}^{\prime \prime}, \ldots, a_{d}^{\prime \prime}\right)=\left(a_{1}^{\prime} \vee a_{1}^{\prime \prime}, \ldots, a_{d}^{\prime} \vee a_{d}^{\prime \prime}\right)
$$

Criteria for the completeness and nonredundancy of a set a_{1}, \ldots, a_{r} of characteristic vectors are respectively in the following (the two equations are shown in Chapter 1):

$$
\begin{array}{ccc}
a_{1} \vee \ldots \vee a_{r} & = & 1 \ldots 1 \\
a_{1} \vee \ldots \vee a_{j-1} \vee a_{j+1} \vee \ldots \vee a_{r} & \neq a_{1} \vee \ldots \vee a_{r} \tag{1.2}\\
\text { for each } j=1, \ldots, r
\end{array}
$$

Thus any set containing null class (whose vector is $0 \ldots 0$) is redundant. Addable sets are nonredundant, but not conversely.

If we have a complete list of characteristic vectors for nonempty classes of functions of a set, we can enumerate all its classes of bases.

As an example, assume a set M contains 4 maximal sets $M_{1}, M_{2}, M_{3}, M_{4}$ and 6 classes of functions:

$$
1.00112 .01003 .10004 .00105 .00016 .0000
$$

For instance, class 1 is the set $M_{1} M_{2} \bar{M}_{3} \bar{M}_{4}$, where $\bar{X}=M \backslash X$ (complement set).
M has exactly two classes of bases: $\{1,2,3\}$ and $\{2,3,4,5\}$. We consider the class $\{1,2,3\}$. Bitwise OR for the set results 1111 (completeness). Bitwise OR for the set $\{1,2\}$ results 0111 , for the set $\{1,3\}$ results 1011 and for the set $\{2,3\}$ results 1100 (nonredundancy). The set $\{1,3,4\}$ is redundant, because bitwise OR for the sets $\{1,3,4\}$ and $\{1,3\}$ are equal (to 1011).

7.3. The lexicographic enumeration of bases and classes of bases

Let d and n denote the numbers of maximal sets and functions or classes of functions respectively. Then we are given n vectors with length d, indexed by $1, \ldots, n$.

To perform an exhaustive enumeration of classes of bases we should enumerate every r-tuple of vectors a_{1}, \ldots, a_{r} for each $r=2, \ldots, d$ (for $r=1$ it is trivial) and check the completeness (2.1) and redundancy (2.2) conditions for them (rank r base criteria). However this direct method does not work, because of too many r-tuples to be generated. Suppose we are enumerating r vectors a_{1}, \ldots, a_{r} for checking the base criteria. Instead of enumerating whole r vectors and checking criteria for them, we will inspect i-tuple of vectors a_{1}, \ldots, a_{i} incrementary for $i=1, \ldots, r$, and at each i-th stage we will certify (by examining simple conditions) that this i-tuple can or cannot be included in a rank r base (addable set). This idea of incremental check can be conveniently implemented in the lexicographic enumeration of subsets.

The lexicographic algorithm enumerates classes of bases and addable sets for every rank at the same time. Moreover the maximal ranks of bases and addable sets are automatically given as a result.

Suppose we are enumerating taken r elements out of n object stored in an array consecutively, i.e. $a(1), \ldots, a(n)$. The selected indexes are to be stored in an array j as $j_{1}, \ldots, j_{r}, 1 \leq j_{i} \leq n$ for each $i, 1 \leq i \leq r$.

Suppose we are examining taken r-subset $a\left(j_{1}\right), \ldots, a\left(j_{r}\right)$, where selected indexes are stored in an array j as $j_{1}, \ldots, j_{r}, 1 \leq j_{1}<\ldots<j_{r} \leq n$ and $a(i)$ denotes a_{i}. There are three possible cases after the examination: redundant, base and addable set (i.e. nonbase-nonredundant). The enumeration of subsets in lexicographic order can be controlled in the following manner.

If a r-tuple is either redundant or base then it is unnecessary to "extend" it to $r+1$ tuple, since adding a new vector to them will result in "redundancy"; in the former case the r-tuple is already redundant and in the latter it is already "complete". Hence in these cases we can bypass the lexicographic enumeration of subsets to an appropriate point. The next subset is $j_{1}, j_{2}, \ldots, j_{r}-1, j_{r}+1$ if $j_{r} \neq n$; otherwise it is the next subset in lexicographic order and the bypass effects nothing. Thus only the remaining addable case can be extended.

As an example we consider the same set M as before. The class 6 (null class) is omitted. In this case $n=5$ and $d=4$. The notions "extend", "reduce", "cut", "redundant", "base" and "addable" we denote simply by "e","r","c","n","b","a" respectively.

1-a,e; 1,2-a,e; 1,2,3-b,c;
1,2,4-n,c;
1,2,5-n, c,r;
1,3-a,e; 1,3,4-n,c;
1,3,5-n,c,r;
1,4-n,c;
1,5-n,c,r;
2-a,e; 2,3-a,e; 2,3,4-a,e; 2,3,4,5-b,c,r;
2,3,5-a,r;
2,4-a,e; 2,4,5-a,r;
2,5-a,r;
3-a,e; 3,4-a,e; 3,4,5-a,r;
3,5-a,r;
4-a,e; 4,5-a,r;
5-a.

We can write our algorithm as follows. Let b_{r} be the number of (classes of) bases of rank r.

begin

$\operatorname{read} n, d, a(i), i:=1, n ; r:=1 ; j_{1}:=1 ;$
repeat
if $a\left(j_{1}\right), \ldots, a\left(j_{r}\right)$ is addable
then if $j_{r}<n$
then extend
else reduce
else begin
if $a\left(j_{1}\right), \ldots, a\left(j_{r}\right)$ is a base then $b_{r}:=b_{r}+1$;
cut;
end
until $j_{1}=n$;
print out $b_{i}, 1 \leq i \leq d$
end.

In the algorithm "extend", "reduce" and "cut" are defined as before. Note that the last set n are not checked in the algorithm. It can be easily done before printing results.

7.4. Redundancy checks

We describe a technique (called bitwise pivotality checks) to reduce the computation in redundancy checks.

Suppose we are checking redundancy of a_{1}, \ldots, a_{r} (for simplicity we write a_{i} for $a\left(j_{i}\right)$). For every redundancy check we know that a_{1}, \ldots, a_{r-1} are included in the tuple which we examined just before (only a_{r} is a newly added vector). Thus we can assume that we already have $R_{k}=a_{1} \vee \ldots \vee a_{k}$ for $1 \leq k \leq r-1$ in an array R (for a convenience we add R_{0} and assume $R_{0}=0$).

The redundancy condition for the r-tuple can be formulated in the following way (we use a variable B to reduce the number of bitwise OR operations).

For $r \geq 2$.

$$
\begin{align*}
& R_{r}=R_{r-1} \vee a_{r} \text { and } R_{r-1} \neq R_{r}, \tag{7.1}\\
& B=B \vee a_{k+1} \text { (initial } B=0 \text {) and } R_{k-1} \vee B \neq R_{r} \text { for } k=r-1, \ldots, 1 \tag{7.2}
\end{align*}
$$

For $r=1$.
a_{1} is addable if it is neither null vector nor unit vector
(if a_{1} is a unit vector then it is a base)

The program checks (7.1) and (7.2) for $k=r, \ldots, 1 ; k \geq 2$ in this order, and whenever a condition is not satisfied the check ends immediately with redundancy result.

For a rank r redundancy check we need at most r comparisons and at most $2 r-1$ bitwise OR operations.

If the number of components d in vectors a_{i} is less than the number of bits (usually 16 or 32) of given computer then it is possible to represent a vector a_{i} by an integer number $c_{1}+2 \cdot c_{2}+\ldots+2^{d-1} \cdot c_{d}$, where $c_{1} c_{2} \ldots c_{d}$ are the components of the vector a_{i} in the redundancy check we can treat these vectors as integer numbers because OR operation between integer numbers is defined as a machine instruction OR between corresponding components of their binary notations. Otherwise bitwise OR can be realized with (characteristic) vectors as an array of d elements. However, in this case there are another technique called counter redundancy check which is proved faster as well.

In the check of redundancy we use two auxiliary sequences $s_{i}(1 \leq i \leq d)$ and $p_{i}(1 \leq$ $i \leq r) . s_{i}$ is the number of units in the i-th position in the vectors $p\left(j_{1}\right), \ldots, p\left(j_{r-1}\right)$. The sequence p_{1}, \ldots, p_{r} has the following property: p_{i}-th position of each vector is equal to 1 only for $p\left(j_{i}\right)$ (it is equal to 0 for the vectors $p\left(j_{t}\right), 1 \leq t \leq r, t \neq i$).

The presented lexicographic algorithm can be supplemented also with this technique. Note that algorithm with bitwise redundancy check using machine command is proved as about twice faster (when n is about 500 and d is about 15) than one with counter redundancy check.

Applying this algorithm classes of bases for several subsets of P_{k} are determined (cf. [MiS87a]). P_{3} has exactly 18 maximal sets [Jab58] and 406 classes of functions [Miy71,Sto84a]. We present the numbers of classes of bases of P_{3} of each rank in the following table:

rank	1	2	3	4	5	6	Σ
bases	1	8,265	794,256	$4,612,601$	810,474	141,124	$6,239,721$

The lexicographic enumeration algorithm with this bitwise redundancy check requires about 16 minutes computer time (the computer FACOM M380 is used). The total number of examined tuples is $N=194759642$ for the classes of functions sorted according first to the number of units in the vector and then sorted lexicographically within the same group. Bearing in mind the total number of subsets 2^{406} we can calculate efficiency of cut technique in this case. The program generates in the average 4.41-tuple and consume in the average 2.17 bitwise OR operations to recognize whether it is a base, addable or redundant (bitwise redundancy check is used). Note that computer time depends on the order of characteristic vectors.

7.5. Application of the base enumeration algorithm

Kabulov [Kab82] considered the following problem: Given a complete set F of functions from P_{k} together with the Boolean matrix displaying the relation " \in " between the members of F and maximal sets in P_{k} (i.e. with characteristic vectors of functions in F), determine all bases composed from functions of the set F. He described a method, using Boolean expressions, to solve this problem.

We can apply the same algorithm described in Section 3 to this problem, because each function is represented by their class of functions. The output in this case are exactly bases instead of classes of bases. Note that in the considered application several function may have the same characteristic vector. However, they compose different bases.

Our algorithm can be used to calculate the number of (classes of) bases composed from vectors $m+1, \ldots, n$ at the same time (for a given $m \leq n$), because in the lexicographic order we examine first all subsets containing vector 1 , then all subsets containing vector $2, \ldots$

In [KuO66, $\mathrm{PeS} 68, \mathrm{Wer} 42$] procedures for determining the number of bases of P_{2} consisting of n-ary functions are described and computational results for $n=2$ and $n=3$ are obtained. There exist no formulae for numbers of n-ary functions in some classes of functions of P_{2}, because the number of n-ary monotone functions in P_{2} is not known. We present another approach to this problem. It is divided into several subproblems.

1) determination of classes of functions for considered set (not limited to P_{2}),
2) determination of the number of n-ary functions in each class,
3) determination of all classes of bases,
4) determination of numbers of bases containing n-ary functions (or functions with at most n variables).

The methods presented in [KuO66, PeS68, Wer42] use only step 4) for P_{2}. Our method can be applied for solving 3) assuming that 1) is already solved. Also, our algorithm can be applied for solving 4) assuming that 2) is solved by applying another procedure. Note that 2) can be done without solving 1) because for each function f we can determine corresponding class of functions. It is sufficient to check inclusion of f in each maximal set of considered closed set; such procedure can be easily written using description of maximal sets [Ros77]. In this manner we can determine classes of functions containing n-ary functions. We can apply our algorithm to count bases. We obtain the number of bases containing n-ary functions in a class of bases by multiplying the numbers of n-ary functions in the classes of functions which compose the base, whenever a class of
bases is found. During this procedure we can also enumerate classes of bases consisting of classes of n-ary functions.

Following this description we determined the number of bases of Boolean functions composed from n-ary functions for $n \leq 4$. Obtained data are presented in the following table. For $n=2$ this result is derived by Wernick [Wer42] and for $n=3$ by Kudielka and Oliva [KuO66]. Note that the set P_{2} of Boolean functions contains 5 maximal sets [Pos21], 15 classes of functions [Jab52,INN63,Krn65] and 42 classes of bases [INN63,Krn65].

$$
\begin{array}{crrr}
n & 2 & 3 & 4 \\
\hline \text { bases } & 32 & 6,664 & 275,790,502
\end{array}
$$

7.6. Minimal covering problem

Minimal covering problem is one of famous combinatorial problems and there exist a list of solutions for this problem (cf. [Rot69,YoM85]). We will give a solution using the lexicographic enumeration of subsets.

The minimal covering problem is the problem of minimizing the objective function $x_{1}+\ldots+x_{n}$, subject to constraints

$$
\begin{equation*}
\left(x_{1}, \ldots, x_{n}\right) A \geq(1, \ldots, 1) \tag{7.3}
\end{equation*}
$$

where $A=\left[a_{i j}\right]$ is an $n \times d$ coefficient matrix with $a_{i j}=0$ or 1 , and each variable x_{j} is 0 or 1 for each j.

We will introduce some new notions in order to give a new solution for the problem and to show connection between minimal covering problem and base enumeration.

A vector $\left(x_{1}, \ldots, x_{n}\right)$ satisfying (7.3) is called complete for A. We call a vector $\left(x_{1}, \ldots, x_{n}\right)$ nonredundant in A if

$$
\left(x_{1}, \ldots, x_{n}\right) A>\left(y_{1}, \ldots, y_{n}\right) A
$$

is valid for each vector $\left(y_{1}, \ldots, y_{n}\right)$ for which $y_{i} \leq x_{i}$ for each $i, 1 \leq i \leq n$ and $y_{1}+\ldots+$ $y_{n}<x_{1}+\ldots+x_{n}$ is satisfied.

A vector $\left(x_{1}, \ldots, x_{n}\right)$ is called base in A if it is complete and nonredundant in A. Nonredundant noncomplete vectors we call simply addable. The rank of a base (addable
set) $\left(x_{1}, \ldots, x_{n}\right)$ is the sum $x_{1}+\ldots+x_{n}$. Thus minimal covering problem is problem of finding a base in A with minimal rank.

There is another definition of minimal covering problem [Kar72]: For a given collection C of subsets of a finite set and positive integer $r \leq|C|$ decide whether C contains a cover for S of size r or less, i.e. a subset $C^{\prime} \subseteq C$ with $\left|C^{\prime}\right| \leq r$ such that every element of S belongs to at least one member of C^{\prime}. This problem is exactly to find a base with rank r or less, if we represent a subset by n bits characteristic vector. Karp [Kar72] proved that this problem is NP-complete.

The notions of addable sets, bases and rank have almost the same meaning in both base enumeration and minimal covering problem. Minimal covering problem corresponds directly to finding a base with minimal rank. Thus we can modify our algorithm so that once we find a base with rank r then no subsets of rank $\geq r$ will be considered further.

In the presented branch and bound algorithm $a(i)$ denotes the i-th row of matrix $A(1 \leq i \leq n)$, i.e. $a(i)=\left(a_{i_{1}}, \ldots, a_{i_{n}}\right)$. We suppose that minimal rank of bases (solution of our problem) is between 2 and $n-1$ to make our algorithm shorter. It is easy to improve our algorithm to deal with these cases. Also some techniques for eliminating some rows or columns (cf.[Rot69]) can be applied before running the algorithm.

```
begin
    read \(n, d, a(i), i:=1, n ;\) minrank \(:=d ; r:=1 ; j_{1}:=1 ; T:=\{1\} ;\)
    repeat
        if \(a\left(j_{1}\right), \ldots, a\left(j_{r}\right)\) is addable in \(A\)
            then if \(j_{r}<n\) and \(r<\) minrank -1
                then extend
                else cut
            else begin
                        if \(a\left(j_{1}\right), \ldots, a\left(j_{r}\right)\) is a base in \(A\) then
                        begin
                        minrank \(=r\);
                        \(T:=\left\{j_{1}, \ldots, j_{r}\right\} ;\)
                        end;
                        cut
                end
    until \(j_{1}=n\) or minrank \(=2\);
    printout minrank, \(T\)
end.
```

The two procedures "extend" and "cut" are defined as before. Note that T corresponds to a solution $\left(x_{1}, \ldots, x_{n}\right)$ of minimal covering problem so that $x_{j}=1$ if and only if $j \in T$.

7.7. Knapsack problem

An input for the knapsack problem are integer numbers a_{1}, \ldots, a_{n}, C. The problem is to find a subset T of $\{1, \ldots, n\}$ to maximize $\Sigma_{i \in T} a_{i}$ subject to the requirement that $\Sigma_{i \in T} a_{i} \leq C$. A more general formulation of the knapsack problem has more applications than this. Namely the input consists of C and two sequences a_{1}, \ldots, a_{n} and p_{1}, \ldots, p_{n}. The problem is to maximize $\Sigma_{i \in T} p_{i}$ subject to the restraint $\Sigma_{i \in T} a_{i} \leq C$ where T, as before, is a subset of the indexes.

We give a solution for more general knapsack problem based on the lexicographic order of subsets. Elements i that are a_{i} greater than C should be eliminated. In the presented algorithm $a\left(j_{i}\right)$ denotes $a_{j_{i}}$.

```
begin
    \(\operatorname{read} n, d, a_{i}, p_{i}, i=1, n ;\)
    \(r:=1 ; j_{1}:=1 ;\) maxsum \(:=p_{1} ; T:=\{1\} ;\)
    repeat
        \(S:=a\left(j_{1}\right)+\ldots+a\left(j_{r}\right) ;\)
        if \(S \leq C\)
            then begin
                \(P:=p\left(j_{1}\right)+\ldots+p\left(j_{r}\right) ;\)
                if \(P>\) maxsum then begin
                        maxsum \(:=P ;\)
                        \(T:=\left\{j_{1}, \ldots, j_{r}\right\}\)
                                    end;
                if \(j_{r}<n\) then extend else reduce
            end
            else cut;
    until \(j_{1}=n\);
    printout maxsum, \(T\)
end.
```

In the algorithm "extend", "reduce" and "cut" are defined as before. The set $\{n\}$ should be examined before printing.

7.8. Concluding remarks

In this chapter we modified backtrack procedures for lexicographic enumeration of subsets and applied the procedure to the base enumeration, knapsack and minimal covering problems. Several variational uses of base enumeration algorithm are presented. The presented "cut" techniques use special properties of bases and addable sets, owing to which, for instance, base enumeration were possible for about $n=600$ (for the case $n=605$, $\mathrm{d}=15$ it took about 8 hours using bitwise redundancy check by FACOM 380 computer with 16 MIPS).

Karp [Kar72] proved that the problem of determining of a covering set with rank $\leq r$ for given r is NP-complete. Our algorithms are directly related to the problem. Thus any algorithm for solving these problems takes exponential time according to numbers of rows and columns n and d. There exist a number of algorithms for exact and approximate solution of knapsack and minimal covering problems (see, for example, [Baa78,Rot69,YoM85]).

Chapter 8

Classification of $P_{k 2}$

The set of functions of $P_{k 2}$ (mapping the set $\{0,1, \ldots, k-1\}^{n}$ into $\{0,1\}, n=1,2, \ldots$) is divided into equivalence classes so that two functions are in the same class if their membership in the maximal subclones of $P_{k 2}$ coincides. This also leads to a natural classification of the set of bases (i.e. nonredundant complete subsets) of $P_{k 2}$. We determine all nonempty classes of functions of $P_{k 2}$ and show that the number of them is $13 A_{k}-11 A_{k-1}$, where A_{k} is the number of equivalence relations on the set of k elements. The maximal number of elements in a base of $P_{k 2}$ is proved to be $k+2$. Computational results for the numbers of classes of bases are also presented for $k=3$ and 4 .

8.1. Introduction

The algebra $P_{k 2}$ of all functions whose domain is a Cartesian power of E_{k} and whose range is E_{2} was considered in [Bur73,HaF84,Lau75,Lau82b,Sas84]. Every n-ary function of $P_{k 2}$ may be interpreted as an n-ary predicate, or, equivalently, $f^{-1}(1)$ is an n-ary relation on E_{k}. We mention some applications. Functions of $P_{3,2}$ permit the description of a decision (the values 0,1) with abstention from voting (the value 2). Special functions of $P_{3,2}$ are of interest in the theory of noncorrect algorithms [Zur78,BDHL79]. In [EFR74] it is mentioned that functions of $P_{k 2}$ may be used to describe logical and arithmetical branchings in programs where the arithmetical constants are arguments and the two logical constants form the range. In [Sas84] a minimum sum-of-products expression for the functions of $P_{k 2}$ is used to get a minimum PLA (programmable logic array) with decoders (actually, $k=4$ for PLA with two-bit decoders).

In this chapter we determine classes of functions for the set $P_{k 2}$. The maximal number
of elements in a base of $P_{k 2}$ is also determined to $k+2$.

8.2. Definitions and notations

In this chapter we are interested in the set

$$
P_{k 2}=\bigcup_{n \geq 1}\left\{f: E_{k}^{n} \rightarrow E_{2}\right\}
$$

We recall the following theorem.
Theorem 8.2.1. $[\operatorname{Pos} 21] P_{2}$ has exactly the following $5 P_{2}$-maximal sets:

$$
\begin{gathered}
T_{0}=\operatorname{Pol}(0), T_{1}=\operatorname{Pol}(1), S=\operatorname{Pol}\binom{01}{10} \\
L=\operatorname{Pol}\left(\left\{(a, b, c, d)^{T} \in E_{2}^{4} \mid a+b=c+d(\bmod 2)\right\}\right), M=\operatorname{Pol}\binom{010}{011} .
\end{gathered}
$$

Here T_{i} consists of Boolean functions f such that $f(i, \ldots, i)=i(i=0,1), S$ is the set of selfdual Boolean functions (satisfying $f\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)=\overline{f\left(x_{1}, \ldots, x_{n}\right)}$), L is the set of linear Boolean functions and M is the set of monotone (or isotone) Boolean functions.

The 15 nonempty classes of functions of P_{2} are shown in the Table 8.1. We remark that the classes 10100,01100 and 00000 consist only of functions \{constant 0 function\}, \{constant 1 function $\}$ and $\left\{x_{i}\right.$ (function depending only one variable) $\}$, respectively. We also remark that the set of classes $\{01100,10100,00110,00001\}$ is a class of basis with a maximum rank 4 ; for example, a base $\{0,1, x y, x+y+z\}$ belong to this class of basis.

In this chapter H is the set $P_{k 2}$ of all $f: E_{k}^{n} \rightarrow E_{2}(n=1,2, \ldots)$. It is clear that $P_{k 2}$ is closed. Let $p r: P_{k 2} \rightarrow P_{2}$ be defined by setting $p r f:=g$ where $g(a)=f(a)$ for all $a \in E_{2}^{n}$ (the restriction of f to E_{2}).

We denote the intersection of sets X_{1}, \ldots, X_{n} by $X_{1} \ldots X_{n}$. For $X \subseteq P_{k 2}$ put $\bar{X}=$ $P_{k 2} \backslash X$ and for $x \in E_{k}, x^{j}=(x \ldots x)(j$ times $)$. For $X \subseteq P_{2}$, the inverse image of X is $X^{\prime}=p^{-1}(X)=\left\{f \in P_{k 2} \mid\right.$ pr $\left.f \in X\right\}$. For $i, t \in E_{k}$, put $Z_{i t}=P_{k 2} P o l\binom{01 i}{01 t}$. Note that $Z_{i t}=Z_{t i}$.

Theorem 8.2.2. [Bur73,Lau75,Lau82b,Lau84b] The set $P_{k 2}$ has the following 5+(1/2). $(k-2)(k+1)$ maximal sets:

$$
T_{0}^{\prime}, T_{1}^{\prime}, S^{\prime}, L^{\prime}, M^{\prime} \text { and } Z_{i t}(k>i>t \geq 0, i>1)
$$

8.3. Classification of $P_{k 2}$

We denote the characteristic vector of a function f of $P_{k 2}$ by

$$
c_{1} c_{2} c_{3} c_{4} c_{5} c_{02} \ldots c_{0(k-1)} c_{12} \ldots c_{1(k-1)} \ldots c_{(k-2)(k-1)}
$$

with respect to the order of the $P_{k 2}$-maximal sets in Theorem 8.2.2. Note that the values of $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}$ coincide with the corresponding characteristic vector for $p r f \in P_{2}$. For each n-ary $f \in P_{k 2}$ define a relation Q_{f} on the set E_{k} by setting $(i, t) \in Q_{f}$ if $f(\boldsymbol{a})=f(\boldsymbol{b})$ whenever $\binom{\boldsymbol{a}}{\boldsymbol{b}} \in\left(\begin{array}{lll}0 & 1 & i \\ 0 & 1 & t\end{array}\right)^{n}$. Clearly the binary relation Q_{f} on E_{k} is reflexive and symmetric. Now we prove several lemmas needed for the description of the equivalence classes (\equiv) on $P_{k 2}$.

Lemma 8.3.1. Let $f \in P_{k 2}$. Then $f \in Z_{i t}$ if and only if $(i, t) \in Q_{f}$.
Proof. (\Rightarrow) Let $f \in Z_{i t} \operatorname{Pol}\left(\begin{array}{lll}0 & 1 & i \\ 0 & 1 & t\end{array}\right)$ and $\binom{\boldsymbol{a}}{\boldsymbol{b}} \in\left(\begin{array}{lll}0 & 1 & i \\ 0 & 1 & t\end{array}\right)^{n}$. As $f \in \operatorname{Pol}\left(\begin{array}{lll}0 & 1 & i \\ 0 & 1 & t\end{array}\right)$ we have $\binom{f(\boldsymbol{a})}{f(\boldsymbol{b})} \in\left(\begin{array}{lll}0 & 1 & i \\ 0 & 1 & t\end{array}\right)$. However $f(\boldsymbol{a}) \neq i$ as $f \in P_{k 2}$ and $i \geq 2$, hence we have $f(\boldsymbol{a})=f(\boldsymbol{b})$. Therefore $(i, t) \in Q_{f} .(\Leftarrow)$ Let $f \notin Z_{i, t}$. It follows that there are vectors \boldsymbol{a} and \boldsymbol{b} such that $\binom{\boldsymbol{a}}{\boldsymbol{b}} \in\left(\begin{array}{lll}0 & 1 & i \\ 0 & 1 & t\end{array}\right)^{n}$ and $\binom{f(\boldsymbol{a})}{f(\boldsymbol{b})} \notin\left(\begin{array}{lll}0 & 1 & i \\ 0 & 1 & t\end{array}\right)$. This implies $f(\boldsymbol{a}) \neq f(\boldsymbol{b})$, because $f(\boldsymbol{a})$ and $f(\boldsymbol{b})$ take only values 0 or 1 . Hence we conclude $(i, t) \notin Q_{f}$.

Lemma 8.3.2. Let $f \in P_{k 2}$. Then $(0,1) \in Q_{f}$ if and only if the function $p r f$ is constant.
Proof. (\Leftarrow) Let pr f be constant and let $\binom{\boldsymbol{a}}{\boldsymbol{b}} \in\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 1 & 1\end{array}\right)^{n}$. Then $f(\boldsymbol{a})=f(\boldsymbol{b})$. Therefore $(0,1) \in Q_{f} .(\Rightarrow)$ Suppose $p r f$ not constant. Then there is a vector $a \in E_{2}^{n}$ such that $f(\mathbf{o}) \neq f(\boldsymbol{a})$. Since $\binom{\mathbf{o}}{\boldsymbol{a}} \in\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 1 & 1\end{array}\right)^{n}$, we conclude $(0,1) \notin Q_{f}$.
Lemma 8.3.3. The relation Q_{f} is an equivalence relation.
Proof. As mentioned before the reflexivity and symmetry follow from the definition. For transitivity let $(i, t) \in Q_{f},(t, j) \in Q_{f}$ and $\binom{\boldsymbol{a}}{\boldsymbol{b}} \in\left(\begin{array}{lll}0 & 1 & i \\ 0 & 1 & j\end{array}\right)^{n}$. Put $c_{i}=a_{i}$ if
$a_{i}=b_{i}$ and $c_{i}=t$ otherwise. Then $c=\left(c_{1}, \ldots, c_{n}\right)$ satisfies $\binom{\boldsymbol{a}}{c} \in\left(\begin{array}{ll}0 & 1\end{array} i\right.$ $\binom{\boldsymbol{c}}{\boldsymbol{b}} \in\left(\begin{array}{lll}0 & 1 & t \\ 0 & 1 & j\end{array}\right)^{n}$. Thus $f(\boldsymbol{a})=f(\boldsymbol{c})$ and $f(\boldsymbol{c})=f(\boldsymbol{b})$ shows $f(\boldsymbol{a})=f(\boldsymbol{b})$.

Lemma 7.3.4. Let $f, g \in P_{k 2}$ and $\chi_{f}=\left(c_{1}, \ldots, c_{(k-2)(k-1)}\right), \chi_{g}=\left(c_{1}^{\prime}, \ldots, c_{(k-2)(k-1)}^{\prime}\right)$. Then $Q_{f}=Q_{g}$ if and only if
(i) $c_{i t}=c_{i t}^{\prime}$ for all $k>i>t \geq 0, i>1$ and (ii) pr f constant $\Leftrightarrow p r g$ constant.

Note that (ii) is equivalent to $\left(c_{1}, \ldots, c_{5}\right)$ and $\left(c_{1}^{\prime}, \ldots, c_{5}^{\prime}\right)=(0,1,1,0,0)$ or $(1,0,1,0,0)$, Proof. Assume (i) and (ii). By Lemma 7.3.2 we have $(0,1) \in Q_{f} Q_{g}$, since $p r f$ and $p r g$ are constant. Consider $k>i>t \geq 0, i>1$ and $(i, t) \in Q_{f}$. By Lemma 7.3.1f $\in Z_{i t}$ and $c_{i t}=c_{i t}^{\prime}=0$ and so $g \in Z_{i t}$. According to Lemma 7.3.1 we conclude $(i, t) \in Q_{g}$. Together $Q_{f} \subseteq Q_{g}$. By symmetry $Q_{g} \subseteq Q_{f}$ and so $Q_{f}=Q_{g}$. Conversely, assume $Q_{f}=Q_{g}=Q$. From Lemma 7.3.1 we have $c_{i t}=c_{i t}^{\prime}$ for all $k>i>t \geq 0, i>1$. Next, $(0,1) \in Q$ if and only if $p r f$ is constant and $p r g$ is constant from Lemma 7.3.2. \square

Note that the map $f \rightarrow Q_{f}$ is not injective, i.e. several classes of functions can correspond to the same equivalence relation Q. Next theorem determines these classes of functions and gives their number. We show that the map $f \rightarrow Q_{f}$ maps $P_{k 2}$ onto the set of equivalences on E_{k}.

Theorem 7.3.1. Let Q be an equivalence relation on the set E_{k}. Let $n \geq \max (2, k)$ and let g be an n-ary Boolean function such that g is constant exactly if $(0,1) \in Q$. Then there exists $f \in P_{k 2}$ such that $p r f=g$ and $Q=Q_{f}$.

Proof. For $l=2, \ldots, k-1$ put $A_{l}:=\{0,1, l\}^{n} \backslash E_{2}^{n}$. Let C_{1}, \ldots, C_{r} be the equivalence classes of Q and let i_{j} denote the least element of $C_{j}(j=1, \ldots, r)$. Let $1 \leq l \leq r$ and $\left(i_{j}, l\right) \in Q$. To $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right) \in A_{l}$ assign $\boldsymbol{x}^{\prime}=\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)$ defined by $x_{s}^{\prime}=i_{j}$ if $x_{s}=l$ and $x_{s}^{\prime}=x_{s}$ otherwise (i.e. if $x_{s} \in E_{2}$), $1 \leq s \leq n$. We have two cases:
1). Let $(0,1) \notin Q$. We may assume that $i_{1}=0$ and $i_{2}=1$. By assumption g is non-constant. For simplicity assume that $g\left(0^{n}\right)=0$ (if not, replace g by \bar{g}). By an appropriate exchange of variables we may obtain $g\left(1^{a} 0^{n-a}\right)=1$ for some $a(1 \leq a \leq n)$. Define an n-ary $f \in P_{k 2}$ as follows:
a) For $\boldsymbol{x} \in E_{2}^{n}$ put $f(\boldsymbol{x}):=g(\boldsymbol{x})$.
b) For $2<p \leq r$ put

$$
f\left(i_{p} 0^{n-1}\right)=\ldots=f\left(i_{p}^{p-1} 0^{n-p+1}\right)=0, f\left(i_{p}^{p} 0^{n-p}\right)=\ldots=f\left(i_{p}^{n}\right)=1
$$

$f\left(i_{p} 1^{a-1} 0^{n-a}\right):=0$ (where a is defined above) and $f(x):=1$ elsewhere on $A_{i_{p}}$.
c) For $1 \leq p \leq r,\left(i_{p}, l\right) \in Q$ and $\boldsymbol{x} \in A_{l}$ put $f(\boldsymbol{x}):=f\left(\boldsymbol{x}^{\prime}\right)$ and finally
d) put $f(\boldsymbol{x}):=1$ otherwise.

The part c) assures that $Q \subseteq Q_{f}$. For $2<p<q \leq r$, we have

$$
f\left(i_{p}^{q} 0^{n-q}\right)=1 \neq 0=f\left(i_{q}^{q} 0^{n-q}\right)
$$

hence $\left(i_{p}, i_{q}\right) \notin Q_{f}$. Let $2<p \leq r$. We show that $\left(0, i_{p}\right) \notin Q_{f}$. Indeed $f\left(0^{n}\right)=g\left(0^{n}\right)=0$ while $f\left(i_{p}^{p} 0^{n-p}\right)=1$ (here we need $r \leq n$ which follows from $r \leq k \leq n$). Similarly from $f\left(1^{a} 0^{n-a}\right)=g\left(1^{a} 0^{n-a}\right)=1 \neq 0=f\left(i_{p} 1^{a-1} 0^{n-a}\right)$ we get $\left(1, i_{p}\right) \notin Q_{f}$.
Finally $(0,1) \notin Q_{f}$ as $f\left(0^{n}\right)=g\left(0^{n}\right)=0 \neq 1=g\left(1^{a} 0^{n-a}\right)=f\left(1^{a} 0^{n-a}\right)$. Together with c) this shows that $Q_{f} \subseteq Q$ and $Q_{f}=Q$.
2). The case $(0,1) \in Q$ is similar but simpler (note that g is constant by assumption).

Actually the characteristic vectors for all nonempty classes of functions of $P_{k 2}$ can be determined by using Theorem 8.3.1. This is shown simply by an example.

Example 8.3.1. The following table presents the 15 equivalence relations on E_{4} and the components $c_{20}, c_{21}, c_{30}, c_{31}$ and c_{32} of the corresponding characteristic vector. These classes are divided into two groups. The one includes $\{0,1\}$ in an equivalence class (the first 5 cases) and the other not. Exactly in the first group we have $c_{3} c_{4} c_{5}=100$ and $c_{1} c_{2} \in\{01,10\}$. Note that within each of these two groups no $\left\{c_{i t}\right\}$ part of the vector appears twice. The complete list of classes of $P_{4,2}$ is shown in Table 8.1.

Equivalence classes on E_{4}	c_{20}	c_{21}	c_{30}	c_{31}	c_{32}
$\{0,1\},\{2\},\{3\}$	1	1	1	1	1
$\{0,1\},\{2,3\}$	1	1	1	1	0
$\{0,1,3\},\{2\}$	1	1	0	0	1
$\{0,1,2\},\{3\}$	0	0	1	1	1
$\{0,1,2,3\}$	0	0	0	0	0
$\{0\},\{1\},\{2\},\{3\}$	1	1	1	1	1
$\{0\},\{1\},\{2,3\}$	1	1	1	1	0
$\{0\},\{1,3\},\{2\}$	1	1	1	0	1
$\{0,3\},\{1\},\{2\}$	1	1	0	1	1
$\{0\},\{1,2\},\{3\}$	1	0	1	1	1
$\{0\},\{1,2,3\}$	1	0	1	0	0
$\{0,3\},\{1,2\}$	1	0	0	1	1
$\{0,2\},\{1\},\{3\}$	0	1	1	1	1
$\{0,2\},\{1,3\}$	0	1	1	0	1
$\{0,2,3\},\{1\}$	0	1	0	1	0

The number of equivalence relations on an k-element set is $A_{k}=\sum_{r=1}^{k} A(k, r)$, where $A(k, r)=(1 / r!) \sum_{i=0}^{r}(-1)^{i}\binom{r}{i}(r-i)^{k}$ are the well-known Stirling numbers of the second kind [Liu68].

Theorem 7.3.2. The number of classes of functions of $P_{k 2}$ is $13 A_{k}-11 A_{k-1}$.
Proof. In respective case of $(0,1) \in Q$ and $(0,1) \notin Q$ our characteristic vector induced by Q is uniquely determined up to $\left\{c_{i, t}\right\}$ part. There are A_{k-1} of equivalence classes Q of the first type because in this case the number of equivalence relations Q on E_{k} satisfying $(0,1) \in Q$ is A_{k-1}. Accordingly the number of equivalence relation of the second type is $A_{k}-A_{k-1}$.

In the following table we give the numbers A_{k} and the numbers $\mu(k 2)$ of $P_{k 2}$-maximal sets and $\gamma(k 2)$ of classes of functions of $P_{k 2}$ for $1 \leq k \leq 10$.

k	1	2	3	4	5	6	7	8	9	10
$\mu(k 2)$	-	5	7	10	14	19	25	32	40	49
A_{k}	1	2	5	15	52	203	877	4,140	21,147	115,975
$\gamma(k 2)$	-	15	43	140	511	2,067	9,168	44,173	229,371	$1,275,058$

Theorem 7.3.3.

$$
T_{0}^{\prime} T_{1}^{\prime} Z_{i 0} Z_{i 1}=S^{\prime} Z_{i 0} Z_{i 1}=\phi
$$

Proof. Let $g \in Z_{i 0} Z_{i 1}$. Then $(0, i),(i, 0) \in Q_{g}$ and so $(0,1) \in Q_{g}$ by Lemmas 7.3.1 and 7.3.3. Together with Lemma 7.3.2 this proves $p r g$ constant; however, then $g \notin T_{0}^{\prime} T_{1}^{\prime} \cup S^{\prime}$.

Corollary 7.3.1. The intersection of all $P_{k 2}$-maximal sets is empty.

The numbers of classes of bases and pivotal incomplete sets for the sets $P_{3,2}$ and $P_{4,2}$ are shown in the following table. They were obtained by one of the algorithms described in [StM87].

Rank	1	2	3	4	5	6	Σ
bases $P_{3,2}$	1	160	804	272	8	-	1245
pivotals $P_{3,2}$	42	440	435	38	-	-	955
bases $P_{4,2}$	1	1,572	42,822	56,228	6,284	64	106971
pivotals $P_{4,2}$	139	6,336	30,660	10,798	314	-	48,247

7.4. Maximal rank of a base of $P_{k 2}$

We are going to determine the maximal rank of a base of $P_{k 2}$. First we show two combinatorial lemmas. Let $i, t \in E_{k}$ and $i \neq t$. The set $\{i, t\}$ we call a pair set.

Lemma 7.4.1. For every $k^{\prime} \geq k(>2)$ different pair-sets $\{i, t\}$ such that $0 \leq i, t_{\leq} \leq k-1$ and $i \neq t$ there exists a circular sequence $\left\{i_{1}, i_{2}\right\},\left\{i_{2}, i_{3}\right\}, \ldots,\left\{i_{s-1}, i_{s}\right\},\left\{i_{s}, i_{1}\right\}(0 \leq$ $i_{p}, i_{q} \leq k-1$ and $i_{p} \neq i_{q}$ for $p \neq q, 1 \leq p, q \leq s$) consisting of $s \geq 3$ different pair-sets. Proof. The assertion of Lemma can be interpreted as a lemma from graph theory by mapping elements $0, \ldots, k-1$ onto vertices and k^{\prime} pair sets $\{i, t\}$ as only edges of the graph. It is well-known that each graph with n vertices and at least n edges has a circuit.

Lemma 7.4.2. If for a given set T of $k-1$ different pair-sets $\{i, t\}(0 \leq i, t \leq k-1, i \neq$ $t,\{i, t\} \neq\{0,1\}$) there exists no circular sequence (with the definition from Lemma 7.4.1), then there is a sequence which leads from 0 to 1 through at least two pair sets, i.e. there is a sequence $\left\{0, i_{2}\right\},\left\{i_{2}, i_{3}\right\}, \ldots,\left\{i_{s-1}, i_{s}\right\},\left\{i_{s}, 1\right\}$, where $s \geq 2,\left\{i_{p}, i_{p+1}\right\} \in T$ for $1 \leq p \leq s$ and $i_{1}=0, i_{s+1}=1$.

Proof. It is well-known that a graph with k vertices and $k-1$ edges and without circuit is a tree. Thus every two vertices are connected, especially 0 and 1.

Let $F \subseteq P_{k 2}$ be pivotal. To $f \in F$ assign $\Gamma_{f}:=\left\{\{i, j\}: Z_{i j}\right.$ pivot of $\left.f\right\}$ (recall that $Z_{i j}$ is a pivot of f if $f \notin Z_{i j}$ while $\left.F \backslash\{f\} \subseteq Z_{i j}\right)$. Put $G_{F}:=\left(E_{k}, T\right)$ where $T=\bigcup\left\{\Gamma_{f}: f \in F\right\}$. We call G_{F} pivot graph for F.

Lemma 7.4.3. The pivot graph G_{F} is acyclic.
Proof. Let $\left\{i_{1}, i_{2}\right\},\left\{i_{2}, i_{3}\right\}, \ldots,\left\{i_{l}, i_{l+1}\right\} \in T$ where $i_{l+1}=i_{1}$. Here $\left\{i_{1}, i_{2}\right\} \in \Gamma_{f}$ for some $f \in F$ i.e. $f \notin Z_{i_{1} i_{2}}$ while $f \in Z_{i_{j} i_{j+1}}$ for $j=2, \ldots, l$ (by the pivot condition). Now by Lemma 7.3 .1 we have $\left(i_{j}, i_{j+1}\right) \in Q_{f}$ for $j=2, \ldots, l$. In view of Lemma 7.3.3 the relation Q_{f} is transitive and so $\left(i_{1}, i_{2}\right) \in Q_{f}$ and again by Lemma 7.3.1 we get $f \in Z_{i_{1} i_{2}}$, a contradiction.

Lemma 7.4.4. The maximal rank of a base of $P_{k 2}$ is at most $k+2$.
Proof. Let F be a base of $P_{k 2}$ and G the subset of F such that $p r G$ is a base in P_{2}. Let $Y=\left\{T_{0}^{\prime}, T_{1}^{\prime}, S^{\prime}, L^{\prime}, M^{\prime}\right\}$. Assume $|F \backslash G| \geq k-1$ and $H \subseteq F \backslash G,|H|=k-1$. The functions from H cannot have a pivot (in $P_{k 2}$) from Y. (If $f \in H$ has a pivot $P \in Y$, then $G \subseteq P$ in contradiction to $p r G$ basis of P_{2}). Consider the graph G_{H}. By Lemma 7.4.3 it is acyclic and so has at most $k-1$ edges. However, $\left|\Gamma_{h}\right| \geq 1$ for each $h \in H$ and so G_{H} has exactly $k-1$ edges. It follows that G_{H} is a tree. In particular, there is a unique path $\left\{i_{1}, i_{2}\right\},\left\{i_{2}, i_{3}\right\}, \ldots,\left\{i_{s-1}, i_{s}\right\}$ in G_{H} with $i_{1}=0$ and $i_{s}=1$. The set G contains a function f such that $f \notin M^{\prime}$. Clearly f is nonconstant on E_{2} and hence we have $(0,1) \notin Q_{f}$. Therefore, there exists $1 \leq j \leq s-1$ such that $\left\{i_{j}, i_{j+1}\right\} \notin Q_{f}$ (otherwise we have $(0,1) \in Q_{f}$ because Q_{f} is a transitive relation). We have $f \notin Z_{i_{j} j_{j+1}}$ from Lemma 7.3.1. However, $Z_{i_{j} i_{j+1}}$ is a pivot of some $h \in H$ and so $f \in Z_{i_{j} i_{j+1}}$, a contradiction. Thus we conclude that H contains at most $k-2$ functions, But, G contains at most four functions [Jab52,INN63,Krn65,LoW65]. Therefore, F contains at most $k+2$ functions.

Theorem 7.4.1. The maximal rank of a base of $P_{k 2}$ is $k+2$.
Proof. Let $Q_{i}(1 \leq i \leq k-1)$ be the equivalence relations with the two equivalence classes: $\{1, \ldots, i\},\{i+1, \ldots, k-1,0\}$. A base of rank $k+2$ is the set $\left\{f_{1}, \ldots, f_{k+2}\right\}$,
defined by

$$
\begin{aligned}
Q_{f_{i}} & =Q_{i}(1 \leq i \leq k-1), Q_{f_{k}}=Q_{1}, Q_{f_{k+1}}=Q_{f_{k+2}}:=E_{k}^{2} \\
f_{1} & \in T_{0}^{\prime} T_{1}^{\prime} L^{\prime} S^{\prime} \bar{M}^{\prime} \\
f_{i} & \in T_{0}^{\prime} T_{1}^{\prime} L^{\prime} S^{\prime} M^{\prime}(2 \leq i \leq k-1) \\
f_{k} & \in T_{0}^{\prime} T_{1}^{\prime} \bar{L}^{\prime} \bar{S}^{\prime} M^{\prime} \\
f_{k+1}(0, \ldots, 0) & =0 \\
f_{k+2}(0, \ldots, 0) & =1
\end{aligned}
$$

We note that $\operatorname{pr} f_{i}(2 \leq i \leq k-1)$ depends only of one variable and $p r f_{i}(0)=$ $0, \operatorname{pr} f_{i}(1)=1$ from $f_{i} \in T_{0}^{\prime} T_{1}^{\prime} L^{\prime} S^{\prime} M^{\prime}$. Thus, for example, we can take f_{i} as unary functions. Then the requirement $f_{i} \in Q_{i}$ determines f_{i} completely, since $Z_{j, 0}=1$ and $Z_{j, 1}=0$ lead $f_{i}(j)=1$ for $2 \leq j \leq i$ and $Z_{j, 0}=0$ and $Z_{j, 1}=1$ lead $f_{i}(j)=0$ for $i+1 \leq j \leq k-1$. It is easy to see that the functions $\left\{f_{1}, \ldots, f_{k+2}\right\}$ actually cover all : $Z_{i t}$ as well as $T_{0}^{\prime}, T_{1}^{\prime}, L^{\prime}, S^{\prime}, M^{\prime}$. The pivots of f_{1}, f_{k}, f_{k+1} and f_{k+2} are c_{5}, c_{3} and c_{4}, c_{2} and.. c_{1} respectively. The pivots of f_{i} is $Z_{i+1(\bmod k), i}(2 \leq i \leq k-1)$.

Example 7.4.1. Let $k=3$. Put $Q_{1}=\{\{1\},\{2,0\}\}, Q_{2}=\{\{1,2\},\{0\}\}$. The following is the characteristic vectors of a base $\left\{f_{1}, \ldots, f_{5}\right\}$ constructed as in the theorem with rank $k+2=5$.

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	$c_{2,0}$	$c_{2,1}$
f_{1}	0	0	0	0	1	0	1
f_{2}	0	0	0	0	0	1	0
f_{3}	0	0	1	1	0	0	1
f_{4}	0	1	0	1	0	0	0
f_{5}	1	0	0	1	0	0	0

7.5. Concluding remarks

The composition of functions in $P_{k 2}$ is closely related to the composition in P_{2}. Indeed, in a composition of $P_{k 2}$-functions, only the elements in the first layer work as $P_{k 2}$ functions; those in the remaining layers work merely as P_{2} functions. The proof given in Lemma
7.4.4 indicates that a base needs at most $k-2$ elements from $P_{k 2}$ and at most 4 elements from P_{2} for the first layer and for the remaining layers, respectively.

The completeness theory of logical functions leads to the classification problems of closed sets by their maximal sets. These has been done for P_{2}, P_{3} and for some other sets [MiS87a], but very little is done in general [Sto86c,Sto85b]. In this chapter we have determined classes of functions of $P_{k 2}$ and their exact number. Although the numbers of maximal sets and classes of functions of $P_{k 2}$ grow rapidly as $O\left(k^{2}\right)$ and $O(k!)$ respectively, maximal rank of bases of $P_{k 2}$ has been proved to be $k+2$. There remains an open problem about the maximal rank of P_{k}.

Table 8.1:
Classes of functions of $P_{2}=P_{2,2}$
(with respect to the coordinates $T_{0}^{\prime}, T_{1}^{\prime}, S^{\prime}, L^{\prime}, M^{\prime}$ [Jab52,INN63,Krn65]

11111	11011	11001	10111	10101	10100	01111	01101
01100	00111	00110	00011	00010	00001	00000	

Classes of functions of $P_{3,2}$
(with respect to the coordinates $T_{0}^{\prime}, T_{1}^{\prime}, S^{\prime}, L^{\prime}, M^{\prime}, Z_{2,0}, Z_{2,1}$)

1111111	1101101	1011110	1010011	0110111	0011111	0011001	0001010	0000011
1111110	1100111	1011101	1010000	0110110	0011110	0001111	0001001	0000010
1111101	1100110	1010111	0111111	0110101	0011101	0001110	0000111	0000001
1101111	1100101	1010110	011110	0110011	0011011	0001101	0000110	
1101110	1011111	1010101	0111101	0110000	0011010	0001011	0000101	
	Classes of functions of $P_{4,2}$							
(with respect to the coordinates $T_{0}^{\prime}, T_{1}^{\prime}, S^{\prime}, L^{\prime}, M^{\prime}, Z_{2,0}, Z_{2,1}, Z_{3,0}, Z_{3,1}, Z_{3,2}$)								

1111111111	1100111111	1010111111	0111110100	0011111111	0001111111	0000111111
1111111110	1100111110	1010111110	0111110011	0011111110	0001111110	0000111110
1111111101	1100111101	1010111101	0111101111	0011111101	0001111101	0000111101
1111111011	1100111011	1010111011	0111101101	0011111011	0001111011	0000111011
1111110111	1100110111	1010110111	0111101010	0011110111	0001110111	0000110111
1111110100	1100110100	1010110100	0110111111	0011110100	0001110100	0000110100
1111110011	1100110011	1010110011	0110111110	0011110011	0001110011	0000110011
1111101111	1100101111	1010101111	0110111101	0011101111	0001101111	0000101111
1111101101	1100101101	1010101101	0110111011	0011101101	0001101101	0000101101
1111101010	1100101010	1010101010	0110110111	0011101010	0001101010	0000101010
1101111111	1011111111	1010011111	0110110100	0011011111	0001011111	0000011111
1101111110	1011111110	1010011110	0110110011	0011011110	0001011110	0000011110
1101111101	1011111101	1010011001	0110101111	0011011101	0001011101	0000011101
1101111011	1011111011	1010000111	0110101101	0011011011	0001011011	0000011011
1101110111	1011110111	1010000000	0110101010	0011010111	0001010111	0000010111
1101110100	1011110100	0111111111	0110011111	0011010100	0001010100	0000010100
1101110011	1011110011	0111111110	0110011110	0011010011	0001010011	0000010011
1101101111	1011101111	0111111101	0110011001	0011001111	0001001111	0000001111
1101101101	1011101101	0111111011	0110000111	0011001101	0001001101	0000001101
1101101010	1011101010	0111110111	0110000000	0011001010	0001001010	0000001010

Chapter 9

Classifications of Maximal Sets of $P_{k 2}$

In the previous chapter the set of functions of $P_{k 2}$ mapping the set $\{0,1, \ldots, k-1\}^{n}$ into $\{0,1\}$ has been classified. It is shown that the number of $P_{k 2}$-classes is $13 A_{k}-11 A_{k-1}$, where A_{k} is the number of equivalence relations on the set of k elements. The maximal number of elements in a base of $P_{k 2}$ has been also proved to be $k+2$.

In this chapter we consider maximal sets of $P_{k 2}$. We determine classes of functions for all $P_{k 2}$-maximal sets $T_{0}^{\prime}, T_{1}^{\prime}, S^{\prime}, L^{\prime}$ and $Z_{i t}(0 \leq t<i \leq k-1, i \geq 2)$ except M^{\prime}. We also give maximal number of elements in a base (maximal rank f a base) for each of these sets (for S^{\prime} we prove its upper bound to be $2 k$).

We also classify the symmetric functions of $P_{k 2}$ and its maximal sets. In the last section we give numerical data for the respective numbers of classes of functions and classes of symmetric functions of $Z_{i t}, T_{0}^{\prime}, S^{\prime}$ and L^{\prime} for $2 \leq k \leq 10$. We also give numerical data for bases, pivotals, S-bases, S-pivotals for each of the $P_{k 2}$-maximal sets $Z_{i t}, T_{0}^{\prime}, L^{\prime}$ and S^{\prime} for k up to 4.

9.1. Classification of $Z_{i t}$

All the maximal sets of the $P_{k 2}$-maximal set $Z_{i t}$ are given by the following theorem. Recall that $Z_{i t}^{\prime}:=P_{k 2} P o l\binom{01 i}{01 t}$.

Theorem 9.1.1. [Lau84b] Maximal sets of the set $Z_{i t}(0 \leq t<i \leq k-1,2 \leq i)$ are

$$
Z_{j l}^{\prime}:=Z_{i t} Z_{j l}, 0 \leq l<j \leq k-1,2 \leq j, l \neq t \text { or } i \neq j,\{0,1\} \neq\{t, l\} \text { for } i=j
$$

$$
R_{j}:=\operatorname{Pol}\binom{01 i \bar{j}}{01 t j}, 2 \leq j \leq k-1, j \neq i \text { for } t \in E_{2}
$$

$Z_{i t} p r^{-1} B, B \in\left\{T_{0}, T_{1}, L, S, M\right\}$.
As we will see below all the above $\left\{R_{j}\right\}$ and $Z_{j l}^{\prime}=Z_{i t} Z_{j l}$ are not necessarily distinct.
Note 9.1.1. $R_{i}=Z_{i t}$ for $t \in E_{2}$. This is easily seen from that $f(a)=f(b)$ for $\binom{a}{b} \in\binom{01 i i}{01 t i}$ and for $f \in Z_{i t}, t \in E_{2}$.

Next lemma shows that R_{i} coincides with R_{t} in $Z_{i t}$.
Lemma 9.1.1. $R_{i}=R_{t}$ in $Z_{i t}$ for $0 \leq t<i \leq k-1,2 \leq i$.
Proof. Let $f \in R_{i}$ and $\binom{\boldsymbol{a}}{\boldsymbol{b}} \in\binom{01 i t}{01 t t}$. If there is no j such that $a_{j}=b_{j}=t$ then obviously $f(\boldsymbol{a})=f(\boldsymbol{b})$. Otherwise let \boldsymbol{c} be $\left(\begin{array}{l}\boldsymbol{a} \\ \boldsymbol{b} \\ \boldsymbol{c}\end{array}\right) \in\left(\begin{array}{c}01 i t \\ 01 t t \\ 01 i i\end{array}\right)$. Then we have $f(\boldsymbol{a})=f(\boldsymbol{c})$ since $f \in R_{i}$ and $f(\boldsymbol{c})=f(\boldsymbol{b})$ since $f \in Z_{i t}$. Hence $f(\boldsymbol{a})=f(\boldsymbol{b})$.

Thus we have to skip R_{i} in counting maximal sets of $Z_{i t}$ all the time (not only in the case of $t \in E_{2}$). In the proof of the next theorem we show that several sets among above $\left\{Z_{j l}^{\prime}\right\}$ also coincide. Thus the numbers of the maximal sets of $Z_{i t}$ reported in [Lau84b] as $k(k+1) / 2+1$ for $t \geq 2$ and $k(k+1) / 2-1$ for $t=0$ or 1 , are not correct.

Theorem 9.1.2. The number of the maximal sets of $Z_{i t}$ is $k(k-1) / 2+2(k \geq 3)$.
Proof. It follows from relational product that $Z_{i t} Z_{t s} \subseteq Z_{i s}\left(i, t, s \in E_{k}\right)$. Therefore, we conclude

$$
\begin{equation*}
Z_{i s}^{\prime}=Z_{i t} Z_{i s}=Z_{i t} Z_{s t}=Z_{s t}^{\prime} \tag{9.1}
\end{equation*}
$$

Thus, several maximal sets of the type $\left\{Z_{j l}\right\}$ coincide in $Z_{i t}$. For $t \geq 2$ (9.1) is meaningful for $s \in E_{k}, s \neq t, s \neq i(k-2$ values). For $t=0$ or $t=1$ (9.1) is meaningful for $s \in E_{k}, s \neq 0, s \neq 1, s \neq i(k-3$ values $)$. Hence, the number of maximal sets in $Z_{i t}$ is $k(k+1) / 2+1-(k-2)-1=k(k-1) / 2+2$ for $t \geq 2$ (from Lemma 9.1.1 together) and $k(k+1) / 2-1-(k-3)=k(k-1) / 2+2$ for $t=0$ or $t=1$.

Theorem 9.1.3. The number of classes of functions of $Z_{i t}$ is $2^{k-3}\left(13 A_{k-1}-11 A_{k-2}\right)$.

Proof. Consider an equivalence relation Q_{f} defined as in the case of $P_{k 2}$:

$$
(j, l) \in Q \Leftrightarrow f \in Z_{j l} .
$$

Then $(i, t) \in Q$ always holds, because $f \in Z_{i t}$. The number of such relations Q is A_{k-1}. Similarly as in the case of $P_{k 2}$ (Theorem 8.3.2) we can prove that there are $13\left(A_{k-1}-A_{k-2}\right)+2 A_{k-2}$ classes of functions of $Z_{i t}$, according to the maximal sets $\left\{Z_{i t} Z_{j l}\right\}$ and $\left\{Z_{i t} p r^{-1} B \mid B\right.$ maximal set in $\left.P_{2}\right\}$. Now consider $R_{j}(2 \leq j \leq k-1, j \neq i)$. We show that a representative exists in each of both cases of R_{j} and \bar{R}_{j} for each j and for each such class. For $f \in R_{j}$ we put $f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)$, where each of $x_{1}, \ldots, x_{n} \in\{0,1, i, j\}, y_{i}=x_{i}$ for $x_{i} \in\{0,1, j\}$ and $y_{i}=t$ for $x_{i}=i$. For $f \notin R_{j}(n \geq 2)$ we put

$$
\begin{equation*}
f(j, i, 0, \ldots, 0) \neq f(j, t, 0, \ldots, 0) \tag{9.2}
\end{equation*}
$$

All the considered conditions of type (9.2) are independent, because only values $f(j, 0, \ldots, 0)$ (for $t=0$) can be fixed with respect to other maximal sets from $\left\{R_{j}\right\}$. Therefore, there are 2^{k-3} possibilities with respect to the sets $\left\{R_{j}\right\}$. Hence the number of classes of functions of $Z_{i t}$ is $2^{k-3}\left(13 A_{k-1}-11 A_{k-2}\right)$.

Example 9.1.1. Classes of $Z_{2,0}$ and $Z_{2,1}$ in $P_{3,2}$ are isomorphic to those of P_{2}.
Example 9.1.2. We consider classes of $Z_{3,0}$ in $P_{4,2}$. The maximal sets are intersections $Z_{3,0} \mathrm{pr}^{-1} B$ (B is one of the five maximal sets of E_{2}), $Z_{3,0} Z_{i t}, 2 \leq i \leq 3,0 \leq t \leq 2$, $i \neq 3$ for $t=0$ (i.e. $Z_{2,0}$ and $Z_{2,1} ; Z_{3,2}$ is omitted since $Z_{3,0} Z_{2,0}=Z_{3,0} Z_{3,2}$ as indicated in Theorem 9.1.2), and $R_{2}=\operatorname{Pol}\binom{0132}{0102}$. Note that $R_{3}=\operatorname{Pol}\binom{0133}{0103}=\operatorname{Pol}\binom{013}{010}$. We show all the equivalence relations on E_{4} which include $\{0,3\}$.

Equivalence class	$c_{2,0} c_{2,1}$
$\{0,1,3\},\{2\}$	11
$\{0,1,2,3\}$	00
$\{0,3\},\{1\},\{2\}$	11
$\{0,3\},\{1,2\}$	10
$\{0,2,3\},\{1\}$	01

It is easy to check that $c_{3,2}$ coincides with $c_{2,0}$. This confirms that $Z_{3,2}$ coincides with $Z_{2,0}$ in $Z_{3,0}$. To demonstrate our construction of a representative for each of the above classes, let our example equivalence relation Q on E_{4} be $\{0,3\},\{1\},\{2\}$. We proceed
analogously as the steps of Theorem 8.3.1 for $f\left(x_{1}, x_{2}\right)$ for a given $g\left(x_{1}, x_{2}\right) \in P_{2}$. 1) $p r f=g$ and $g\left(x_{1}, x_{2}\right)$ is an arbitrary nonconstant function on E_{2} since $\{0,1\} \notin Q$. 2) Only $\{0,3\} \in Q$. So $f\left(x_{1}, x_{2}\right)=f\left(y_{1}, y_{2}\right)$, where $x_{1}, x_{2} \in\{0,1,3\}, y_{j}=x_{j}$ for $x_{j} \in E_{2}$ and $y_{j}=0$ for $x_{j}=3,1 \leq j \leq 2$. 4) $\{2,0\} \notin Q$ and $\{2,1\} \notin Q$. We put $f(0,2) \neq f(0,0)$ and $f(1,2) \neq f(1,1)$. As for R_{2} we construct two cases. Case of $f \in R_{2} . f\left(x_{1}, x_{2}\right)=f\left(y_{1}, y_{2}\right)$ where $x_{1}, x_{2} \in\{0,1,2,3\}, y_{j}=x_{j}$ for $x_{j} \in\{0,1,2\}$ and $y_{j}=0$ for $x_{j}=3$. Case $f \notin R_{2}$. We put $f(2,3) \neq f(2,0)$. Thus we can see that our construction for f in Theorem 9.1.3 is compatible with that in Theorem 8.3.1. \square

Maximal rank of a base of $Z_{i t}$

As we have seen in the previous chapter, an equivalence relation on E_{K} induced by $f \in P_{k 2}$ by setting $(i, t) i n Q_{f} \Leftrightarrow f \in Z_{i t}$ restricts the number of functions in a base. This can be summarized in the following lemma.

Lemma 9.1.2. The number of pivots from the sets $Z_{i t}$ in any pivotal set of any closed set containing some of sets $Z_{i t}$ as its maximal sets is $\leq k-1$.

Proof. Suppose a pivotal set contains at least k functions which give pivots from the sets $\left\{Z_{i t}\right\}$. Then from Lemma 8.4 .1 follows that there is a circular sequence. Then from Lemma 8.4.3 follows that circular sequence cannot be in a set of pivots for a set of pivotal functions. A contradiction.

Theorem 9.1.4. Maximal rank of a base of $Z_{i t}$ is $2 k-2$.
Proof. According to the maximal sets $Z_{j l}$ and $T_{0}^{\prime}, T_{1}^{\prime}, L^{\prime}, S^{\prime}, M^{\prime}$ there exists a base with a maximal rank $k+1$, because $(i, t) \in Q$ for every Q and we consider the equivalence relation on the set with in fact $k-1$ elements (the proof is similar to that of $P_{k 2}$). The sets R_{j} can give $k-3$ new functions for a base. Hence maximal rank is $k+1+k-3=2 k-2$.

We are to give an example of a base with the maximal rank. Let $i=3, t=2$ for simplicity (examples for $t \in E_{2}$ and any i can be constructed similarly). A base $\left\{f_{j} \mid 1 \leq j \leq 2 k-1, j \neq k+3\right\}$ and corresponding relations Q_{j} for f_{j} are defined as follows:

$$
\begin{array}{ll}
Q_{1} & :=\{1\},\{2,3, \ldots, k-1,0\} \\
Q_{j-1} & :=\{1,2, \ldots, j\},\{j+1, \ldots, k-1,0\}, 3 \leq j \leq k-1, \\
Q_{k-1}=Q_{r} & :=Q_{1}(k+2 \leq r \leq 2 k-2, r \neq k+3) \\
Q_{k}=Q_{k+1} & :=E_{k}^{2} ;
\end{array}
$$

$$
\begin{array}{ll}
f_{1} & \in T_{0}^{\prime} T_{1}^{\prime} L^{\prime} S^{\prime} \bar{M}^{\prime}, \\
f_{k-1} & \in T_{0}^{\prime} T_{1}^{\prime} \bar{L}^{\prime} \bar{S}^{\prime} M^{\prime}, \\
f_{k}(0, \ldots, 0)=0 & \in T_{0} \bar{T}_{1} L \bar{S}^{\prime} M, \\
f_{k+1}(0, \ldots, 0)=1 & \in \bar{T}_{0} T_{1} L \bar{S}^{\prime} M, \\
f_{i} & \in R_{j}(1 \leq i \leq k+1,2 \leq j \leq k-1, j \neq 3), \\
f_{r} & \in T_{0}^{\prime} T_{1}^{\prime} L^{\prime} S^{\prime} M^{\prime}(2 \leq r \leq k-2, k+2 \leq r \leq 2 k-1, r \neq k+3), \\
f_{r} & \in \bar{R}_{r-k} R_{s}, s \neq r-k, 3 \text { for } k+2 \leq r \leq 2 k-1, r \neq k+3 .
\end{array}
$$

We note that $Z_{l, 3}=Z_{l, 2}, 0 \leq l \leq k-1, l \neq 2, l \neq 3$. Pivots for f_{1}, f_{k-1}, f_{k} and f_{k+1} are c_{5}, c_{3}, c_{2} and c_{1}, respectively, and pivots for f_{j} are $Z_{j+2(\bmod k), j+1}$ for $2 \leq j \leq k-2$. Finally, pivots for f_{r} is R_{r-k} for $k+2 \leq r \leq 2 k-1, r \neq k+3$. We remark that functions $f_{r} \in T_{0}^{\prime} T_{1}^{\prime} L^{\prime} S^{\prime} M^{\prime}(k+2 \leq r \leq 2 k-1, r \neq k+3)$ cannot be unary (unary functions lead to $f \in R_{j}$).

Example 9.1.3. We give an example of the above base for $Z_{3,2}$ in $P_{4,2}(k=4, i=3, t=$ 2). Note that $Z_{3,0}=Z_{2,0}, Z_{3,1}=Z_{2,1}$ and $R_{3}=R_{2}$ in $Z_{3,2}\left(\right.$ in $\left.P_{4,2}\right)$.
$\left.\begin{array}{cccccccc} & T_{0} T_{1} L S M & Z_{2,0} Z_{3,1} & R_{2} \\ \hline f_{1} & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ f_{2} & 0 & 0 & 0 & 0 & 0 & & 1\end{array}\right)$
$Q_{1}=\{\{1\},\{2,3,0\}\} ; Q_{2}=\{\{1,2,3\},\{0\}\}$.

9.2. Classification of the maximal set T_{0}^{\prime} : the functions preserving 0

Theorem 9.2.1. [Lau84b] The maximal set T_{0}^{\prime} of $P_{k 2}$ has $4+(k+1)(k-2) / 2$ maximal sets:

$$
\begin{array}{ll}
T_{0,1}:=T_{0}^{\prime} T_{1}^{\prime}, \\
L_{0} & :=T_{0}^{\prime} L^{\prime} \\
M_{0} & :=T_{0}^{\prime} M^{\prime}, \\
N_{0} & :=T_{0}^{\prime} \operatorname{Pol}\binom{001}{010}, \\
T_{0}^{\prime} Z_{i t} & \text { for } 1 \leq t \leq k-2,2 \leq i \leq k-1, t<i, \\
T_{0 i} & :=P_{k 2} \operatorname{Pol}(0 i), 2 \leq i \leq k-1 .
\end{array}
$$

Note 9.2.1. The first four sets are the intersections with the maximal sets of T_{0} in P_{2}. We note that respective cases of $i=1$ and $t=0$ are not included in the above list. It is easy to see that $T_{0 i}=\operatorname{Pol}(0 i)=\left\{f \mid f(\{0, i\})^{n}=0\right.$ for $\left.n=1,2, \ldots\right\}$ for $2 \leq i \leq k-1$ (we write simply $\operatorname{Pol}(0 i)$ for $P_{k 2} \operatorname{Pol}(0 i)$). For $i=1$ this does not hold, because we have $T_{01}=\operatorname{Pol}(01)=P_{2}^{\prime}=P_{k 2}$. Putting $t=0$ for $T_{0}^{\prime} Z_{i t}$, we have $T_{0}^{\prime} Z_{i, 0} \subseteq T_{0} Z_{i, 0}=\operatorname{Pol}(0) \operatorname{Pol}\binom{01 i}{010}=T_{0 i}, 2 \leq i \leq k-1$.

Since the sets $\left\{Z_{i, 0}\right\}$ do not appear as maximal sets, our equivalence relation induced by $f \in T_{0}$ is on the $k-1$ elements of $\{1, \ldots, k-1\}$ (i.e. 0 is excluded). We give several lemmas for the classification.

Lemma 9.2.1. [Sto85] There are exactly 10 classes of functions of T_{0} :

$$
1111,1110,1011,1000,0111,0110,0101,0100,0011,0000
$$

where the coordinates are in the order of T_{1}, L, M and Pol $\binom{001}{010}$.
The maximal rank of a base of T_{0} is 3 . The set $\{(0100),(0011),(1000)\}$ is an example of base. The class 1000 consists only of the constant function 0 . The set of T_{0}^{\prime}-functions corresponding to this class is called 0 -class in the classification below (functions constant 0 on $\{0,1\}^{n}$). The next lemma includes an assertion on this 0 -class as the case $i=1$.

Lemma 9.2.2. $f \in Z_{i j}$ and $f\left(\{0,1\}^{n}\right)=0 \Rightarrow f\left(\{0, j\}^{n}\right)=0$ for $1 \leq i, j \leq k-1$.
Proof. Suppose $f \in Z_{i j}$ and $f(a)=0$ for $a \in(0 i)$. Then $f(b)=0$ for $b \in(0 j)$ because $f \in Z_{i j}$ and $\binom{a}{b} \in Z_{i j}$.
Corollary 9.2.1. $Z_{i j} T_{0 i} \subseteq T_{0 j}$ for $2 \leq i \leq k-1$.
Theorem 9.2.2. The number of classes of functions of T_{0}^{\prime} is $10 \sum_{r=1}^{k-1} A(k-1, r) 2^{r-1}$.
Proof. As we have seen in the previous chapter the equivalence relation Q_{f} on the sets $\{1,2, \ldots, k-1\}$ induced by a function $f \in T_{0}$ determines the characteristic vector of f for $\left\{Z_{i j}\right\}$ by the rule $(i, j) \in Q_{f} \Leftrightarrow f \in Z_{i j}$. Let Q_{f} divide $\{1, \ldots, k-1\}$ into r classes. Let one of these classes be $\left\{i_{1}, \ldots, i_{p}\right\}$. For these numbers we have $Z_{i_{s}, i_{t}}=0(1 \leq s, t \leq p)$. If 1 is included in the set $\left\{i_{1}, \ldots, i_{p}\right\}(p>1)$, we have $f \in Z_{m, 1}$ for any such $m:=i_{s}>1$, i.e. $f \in \operatorname{Pol}(0) \operatorname{Pol}\binom{01 m}{011}$. Further, assume that f is from 0 -class (i.e. $f(\boldsymbol{a})=0$ for
any $\boldsymbol{a} \in(01)$), then from $f \in \operatorname{Pol}\binom{01 m}{011}$ we have $f\left(\{0, m\}^{n}\right)=0$, i.e. $f \in T_{0 m}$; assume otherwise, then from $f \in \operatorname{Pol}(0) \operatorname{Pol}\binom{01 m}{011}$ we conclude $f \notin T_{0 m}$. Thus we distinguish two cases.

Case 1. $1 \notin\left\{i_{1}, \ldots, i_{p}\right\}$. From Lemma 9.2.2 only the two possibilities exist for $T_{0 i_{m}}, m=$ $1, \ldots, p$, namely $f \in T_{0 i_{1}} \ldots T_{0 i_{p}}$ or $f \in \bar{T}_{0 i_{1}} \ldots \bar{T}_{0 i_{p}}$.

Case 2. $1 \in\left\{i_{1}, \ldots, i_{p}\right\}$. There exists exactly one possible case depending on the values of f on $\{0,1\}^{n}$:

$$
\begin{aligned}
& f \in T_{0 i_{1}} \ldots T_{0 i_{p}} \text { for } f \text { from } 0 \text {-class }\left(f\left(\{0,1\}^{n}\right)=0\right) \text { or } \\
& f \in \bar{T}_{0 i_{1}} \ldots \bar{T}_{0 i_{p}} \text { for } f \text { not from 0-class. }
\end{aligned}
$$

So, if Q_{f} divide $\{1, \ldots, k-1\}$ into r classes (one of them includes 1 as its member), there are 2^{r-1} classes of functions with respect to the sets $\left\{Z_{i t}\right\}$ and $\left\{T_{0 i}\right\}$. Further, 10 classes will be derived for each of these vectors if we add first 4 coordinates. We show that these classes are actually nonempty by giving a representative for each class.

Let g be a function with $n \geq 2$ variables in P_{2} such that g is a function of the corresponding class with respect to T_{0}-maximal sets. Let Q be an equivalence relation induced by $Z_{i j}$. Conditions for f are as follows:

1) $f\left(x_{1}, \ldots, x_{n}\right)=g\left(x_{1}, \ldots, x_{n}\right)$ for $x_{1}, \ldots, x_{n} \in E_{2}$.
2) $(i, t) \in Q \Leftrightarrow f\left(x_{1}, \ldots, x_{j-1}, i, x_{j+1}, \ldots, x_{n}\right)=f\left(x_{1}, \ldots, x_{j-1}, t, x_{j+1}, \ldots, x_{n}\right)$ for each $x_{1}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{n} \in E_{k}$ and $1 \leq t<i \leq k-1$.
3) $(i, t) \notin Q(2 \leq i \leq k-1,1 \leq t<i)$ and $f(i, \ldots, i)=f(t, \ldots, t)$
$\Rightarrow\{f(t, i, \ldots, i), f(i, i, \ldots, i)\}=E_{2}$.
4) Let $\left\{i_{1}, i_{2}, \ldots, i_{l}\right\}$ be a class included in Q_{f}. In the case $f \in T_{0 i_{1}} \ldots T_{0 i_{l}}$ let $f(\boldsymbol{x})=0$ for $\boldsymbol{x} \in\left(0 i_{j}\right)(1 \leq j \leq l)$. In the case $f \in \bar{T}_{0 i_{1}} \ldots \bar{T}_{0 i_{l}}$ let $f\left(i_{j}, \ldots, i_{j}\right)=1$.

Example 9.2.1. For $k=3$ all maximal sets of T_{0}^{\prime} in $P_{3,2}$ are $T_{01}, L_{0}, M_{0}, N_{0}, Z_{2,1}$ and T_{02}. The vectors for $Z_{2,1}$ are determined by an equivalence relation on $\{1,2\}$ as follows.

Equivalence class	$Z_{2,1} T_{02}$	$T_{0,1} L_{0} M_{0} N_{0}$
$\{1\},\{2\}$	11	for each of $10 T_{0}$ classes,
	10	for each of $10 T_{0}$ classes,
$\{1,2\}$	01	for each of $9 T_{0}$ classes except 0-class,
	00	for 0-class.

We give all its 30 classes (the coordinates are in the order of $T_{01}, L_{0}, M_{0}, N_{0}, Z_{2,1}$ and T_{02}). In the table of characteristic vectors * at the end of the vector denotes the class having no symmetric representative (cf. Section 9.5).

111111	111110	111101	111011	111010	111001
101111	101110	101101	100011	100010	100000
011111	011110	011101	011011	011010	011001
010111	010110	010101	010011	010010	010001
001111	001110	001101	000011^{*}	000010	000001

Example 9.2.2. Classes of T_{0}^{\prime} in $P_{4,2}$. Equivalence classes are on $\{1,2,3\}$. Maximal sets are $Z_{2,1}, Z_{3,1}, Z_{3,2}, T_{02}$ and T_{03}.

Equivalence class	$Z_{2,1} Z_{3,1} Z_{3,2}$	$T_{02} T_{03}$	number of classes
$\{1\},\{2\},\{3\}$	111	11	for each of $10 T_{0}$ classes,
		10	for each of $10 T_{0}$ classes,
		01	for each of $10 T_{0}$ classes,
$\{1\},\{2,3\}$	110	00	for each of $10 T_{0}$ classes,
		11	for each of $10 T_{0}$ classes,
$\{1,2\},\{3\}$	011	00	for each of $10 T_{0}$ classes,
		10	for each of $9 T_{0}$ classes except 0-class,
		11	for each of $9 T_{0}$ classes except 0-class,
		01	for 0-class,
$\{1,3\},\{2\}$	101	00	for 0-class,
		11	for each of $9 T_{0}$ classes except 0-class,
		01	for each of $9 T_{0}$ classes except 0-class,
		10	for 0-class,
$\{1,2,3\}$	000	11	for 0-class,
		00	for each of $9 T_{0}$ classes except 0-class,

All 110 classes are listed in Table 9.4.
We are going to determine the maximal rank of a base of T_{0}^{\prime}.
Theorem 9.2.3. The maximal rank of bases of T_{0}^{\prime} is $k+1$.

Proof. We note that $Z_{i, 0}=T_{0 i}$ in T_{0} for $2 \leq i \leq k-1$. We can consider sets $Z_{i j}, 2 \leq$ $i \leq k-1,0 \leq j \leq k-2, j<i$. Rank of a base for these sets is greater than rank of a base for T_{0}^{\prime} (the proof is analogous to that of $P_{k 2}$). Let $P=\left\{f_{1}, \ldots, f_{p}\right\}$ be a base with respect to considered sets, V be a subsets of P which is a base with respect to the sets $Y=\left\{T_{01}, L_{0}, M_{0}, N_{0}\right\}$ and $W=Y \backslash V$. The set V contains at most 3 elements from Lemma 9.2.1. The set W contains at most $k-2$ functions (the same proof as in $P_{k 2}$). Thus the rank of a base is less than or equals to $3+k-2=k+1$. We show an example of a base with the rank $k+1$.

Let $Q_{i}(1 \leq i \leq k-1)$ be equivalence relations defined by $\{1, . ., i\},\{i+1, \ldots, k-1,0\}$. Put $Q_{k}:=Q_{1}$ and $Q_{k+1}:=E_{k}^{2}$. The base of rank $k+1$ is the set $\left\{f_{1}, \ldots, f_{k+1}\right\}$ defined by $Q_{f_{i}}:=Q_{i}$ and in the following way.

$$
\begin{aligned}
& f_{i} \in T_{0 i} \Leftrightarrow(0, i) \in Q_{f_{i}} \text { for } 1 \leq i \leq k-1, \\
& f_{1} \in T_{01} L M N_{0} \\
& f_{k} \in T_{01} \bar{L} M N_{0}, \\
& f_{i} \in T_{01} L M N_{0}(2 \leq i \leq k-1), \\
& f_{k+1} \in \bar{T}_{01}^{\prime} L M N_{0} .
\end{aligned}
$$

9.3. Classification of L^{\prime} : the set of functions from $P_{k 2}$ that are linear on $\{0,1\}$

Theorem 9.3.1. [Lau84b] There are $(k-1)(k-2) / 2+4$ maximal sets in $L^{\prime}:=\operatorname{Pr}^{-1}(L)$:

$$
\begin{aligned}
& L_{0}^{\prime}:=L^{\prime} T_{0}^{\prime}, \\
& L_{1}^{\prime}:=L^{\prime} T_{1}^{\prime} \\
& L_{s}^{\prime}:=L^{\prime} S^{\prime}, \\
& L^{(1) \prime}:=\left[a_{0}+a_{1} x \mid a_{0}, a_{1} \in\{0,1\}\right]^{\prime} \\
& L_{q}:=P_{k 2} P o l\left\{(q, q, q, q),(a, b, c, d) \mid(a, b, c, d) \in E_{2}^{4}, a+b=c+d(\bmod 2)\right\}, \\
& \\
& Z_{i t}^{\prime} \quad:=Z_{i t} \sum_{r} r^{-1} L-1,2 \leq t<i \leq k-1
\end{aligned}
$$

We show lemmas for the classification and determine the number of classes of L^{\prime}. For simplicity we write $Z_{i t}$ for $Z_{i t}^{\prime}$ in this section.

Lemma 9.3.1. [Sto85] There are 8 classes of functions in L of P_{2} :

$$
0000,0001,0110,1010,1100,0111,1011,1101
$$

where the coordinates are L_{0}, L_{1}, L_{S} and $L^{(1)}$.

The maximal rank of a base of L in P_{2} is 3 . An example of a base with the maximal rank is $\{(0110),(1010),(0001)\}$.

Lemma 9.3.2. $Z_{i t} L_{i} \subseteq L_{t}$ and $Z_{t i} L_{i} \subseteq L_{t}, 2 \leq i, t \leq k-1$.
Proof. For convenience let $Z_{i t}, L_{i}$ and L_{t} denote the relations instead of the functions preserving these relations. It is easy to see that we can construct L_{t} by repeated applications of relational product and permutations of rows of the relation from $Z_{i t}$ and L_{i}; we use that the relation $L=\left\{(a, b, c, d)^{T} \in E_{2}^{4}, a+b=c+d(\bmod 2)\right\}$ is invariant under permutations of rows. Thus the lemma is proved.

Theorem 9.3.2. The number of classes of functions of L^{\prime} is $8 \sum_{r=1}^{k-2} A(k-2, r) 2^{r}$.
Proof. If i and t are in the same equivalence class induced by $Q=Q_{f}$, i.e. $f \in Z_{i t}$, then there are only two possibilities from Lemma 9.3.2: $f \in L_{i} L_{t}$ or $f \in \bar{L}_{i} \bar{L}_{t}$. Let Q divide $\{2, \ldots, k-1\}$ into r equivalence classes and $\left\{i_{1}, \ldots, i_{l}\right\}$ be one such class. For each equivalence class there are only two possibilities by Lemma 9.3.2: $f \in L_{i_{1}} \cdots L_{i_{l}}$ or $f \in \bar{L}_{i_{1}} \cdots \bar{L}_{l_{l}}$. Hence there are 2^{r} possible classes corresponding to a Q with respect to the sets $\left\{L_{q}\right\} \cup\left\{Z_{i t}\right\}$, and for each of this class there are 8 different prefixes corresponding to the maximal sets of L in P_{2}. We are to give a representative for each possible class of L^{\prime}.

Let $g\left(x_{1}, \ldots, x_{n}\right) \in P_{2}$ be a function of one of the 8 classes with respect to the first 4 maximal sets $(n \geq 3)$. Let Q be an equivalence relation on $\{2, \ldots, k-1\}$ defined by $\left\{Z_{i t}\right\}$. Put $f\left(x_{1}, \ldots, x_{n}\right)=g\left(x_{1}, \ldots, x_{n}\right)$ for $x_{1}, \ldots, x_{n} \in\{0,1\}$. Further, define $f\left(x_{1}, \ldots, x_{n}\right)$ in the following way.

If $(i, t) \in Q$ then set

$$
f\left(x_{1}, \ldots, x_{j-1}, i, x_{j+1}, \ldots, x_{n}\right)=f\left(x_{1}, \ldots, x_{j-1}, t, x_{j+1}, \ldots, x_{n}\right)
$$

for each $i, t, 2 \leq i, t \leq k-1, i \neq t$ and $1 \leq j \leq n$ and for each $x_{m} \in E_{k}(1 \leq m \leq n)$. If $(i, t) \notin Q(2 \leq i<t \leq k-1)$ and $f(i, \ldots, i)=f(t, \ldots, t)$ then set

$$
f(t, i, 0, \ldots, 0) \neq f(i, i, 0, \ldots, 0)
$$

Let an equivalence class induced by Q be $\left\{i_{1}, \ldots, i_{l}\right\}$.

If $f \in L_{i_{1}} \cdots L_{i_{l}}$ then set

$$
f\left(x_{1}, \ldots, x_{j-1}, q, x_{j+1}, \ldots, x_{n}\right)=f\left(x_{1}, \ldots, x_{j-1}, 0, x_{j+1}, \ldots, x_{n}\right)
$$

for each $q \in\left\{i_{1}, \ldots, i_{l}\right\}, 1 \leq j \leq n$ and for $x_{1}, \ldots, x_{n} \in E_{2} \cup\{q\}$.
If $f \in \bar{L}_{i_{1}} \cdots \bar{L}_{i_{l}}$ then set

$$
\begin{aligned}
& f\left(q, 0,0, x_{4}, \ldots, x_{n}\right)=0 \\
& f\left(q, 0,1, x_{4}, \ldots, x_{n}\right)=0 \\
& f\left(q, 1,0, x_{4}, \ldots, x_{n}\right)=0 \\
& f\left(q, 1,1, x_{4}, \ldots, x_{n}\right)=1
\end{aligned}
$$

for each $x_{4}, \ldots, x_{n} \in E_{2}$ and $q \in\left\{i_{1}, \ldots, i_{l}\right\}$. That is, $f\left(q, x_{2}, \ldots, x_{n}\right)=0$ for each $x_{2}, \ldots, x_{n} \in E_{2}$ except $f(q, 1, \ldots, 1)=1$. Thus the result of the theorem follows.

Example 9.3.1. Classes of L^{\prime} in $P_{3,2}$. All its maximal sets are $L_{0}^{\prime}, L_{1}^{\prime}, L_{S}^{\prime}, L^{(1) r}$ and L_{2}, which are the coordinates from left to right.

$$
\begin{array}{llllllll}
11011 & 11010 & 10111 & 10110 & 11001^{*} & 11000 & 10101^{*} & 10100 \\
01111 & 01110 & 01101^{*} & 01100 & 00011 & 00010 & 00001^{*} & 00000
\end{array}
$$

The intersection of all maximal sets contains a unary function s_{010} and in this case the intersection is nonempty.

Example 9.3.2. Classes of L^{\prime} in $P_{4,2}$. All its maximal sets are $L_{0}^{\prime}, L_{1}^{\prime}, L_{S}^{\prime}, L^{(1) \prime}, L_{2}$, L_{3} and $Z_{3,2}$, which are the coordinates from left to right.

1101111	1101101		1101011	1101001	1101110	1101000
1011111	1011101	1011011	1011001	1011110	1011000	
1100111^{*}	1100101^{*}	1100011^{*}	1100001	1100110^{*}	1100000	
1010111^{*}	1010101^{*}	1010011^{*}	1010001	1010110^{*}	1010000	
0111111	0111101	0111011	0111001	0111110	0111000	
0110111^{*}	0110101^{*}	0110011^{*}	0110001	0110110^{*}	0110000	
0001111	0001101	0001011	0001001	0001110	0001000	
0000111^{*}	0000101^{*}	0000011^{*}	0000001	0000110^{*}	0000000	

We are going to determine the maximal rank of a base of L^{\prime}.
Theorem 9.3.3. Maximal rank of a base of L^{\prime} is $k+1$.
Proof. Let P be a base for L^{\prime}, and $A \subseteq P$ be a subset which is a base for the set $L_{0}^{\prime}, L_{1}^{\prime}, L_{S}^{\prime}$ and $L^{(1) \prime}$. The set A contains at most three functions from Lemma 9.3.1.

Let B be a subset of $P \backslash A$ which is a base for $\left\{Z_{i t}\right\}$. We know that B contains at most $k-3$ functions; if there are $k-2$ functions then a circular sequence results, which contradicts to a base (the discussion is analogous to $P_{k 2}$ case). Let $C:=P \backslash A \backslash B . C$ covers sets $\left\{L_{q}\right\}$. We will show that C and B together contain at most $k-2$ functions. Let $Z_{i_{1} i_{1}^{\prime}}, Z_{i_{2} i_{2}^{\prime}}, \ldots, Z_{i_{i} i_{l}^{\prime}}(l \leq k-3)$ be pivots for functions in B. Let $2,3, \ldots, k-1$ be $k-2$ nodes of a graph constructed in such a way that a pair i and j is connected if and only if $Z_{i j}$ is a pivot for a function in B. Let the graph obtained has s connected components $(s \geq 1)$. As an elementary property of graph, the number l of the pivots is $l=k-2-s$, since there is no isolated point in the graph. Now, let f be a function from C whose pivot in L^{\prime} is $L_{i_{1}}$, i.e. $f \in \bar{L}_{i_{1}}$. From $f \in Z_{i_{i}, i_{2}} \bar{L}_{i_{1}}$ follows $f \in \bar{L}_{i_{2}}$. Hence f covers all L_{i} for each node i in the same connected component containing i_{1}. In other words, there is at most one pivot in L_{i} for each of the s connected components of the graph. Thus the number of the pivots in B and C together is at most $s+k-2-s=k-2$.

We show a base with rank $k+I$ in L^{\prime}. We take maximal 3 functions for $A, k-3$ functions for B and a function for C. These $k-3$ functions for B are defined by the equivalence relations

$$
Q_{i}:\{2, \ldots i\},\{i+1, \ldots, k-1\}, 2 \leq i \leq k-2
$$

One function for C should be $f \in Z_{2,3} Z_{3,4} \ldots Z_{k-2, k-1}$ and $f \notin L_{i}$ for exactly one i (the construction is similar to $P_{k 2}$).

9.4. Classification of S^{\prime}

Theorem 9.4.1. [Lau84b] There are $2+(k-2)(k-1)$ maximal sets of the set S^{\prime} :

$$
\begin{array}{ll}
S_{L}^{\prime}:=S^{\prime} L^{\prime} \\
S_{01}^{\prime}:= & S^{\prime} T_{0}^{\prime}\left(=S^{\prime} T_{1}^{\prime}\right) \\
S^{\prime} Z_{i t}, & 0 \leq t<i<k, i \geq 2 \\
S^{(i t)}:= & \operatorname{Pol}\binom{01 i}{10 t}, 2 \leq t<i<k
\end{array}
$$

We need the following property of P_{2}-maximal set S.
Lemma 9.4.1. [Sto85] There are 4 classes of functions of S in $P_{2}: 11,10,01,00$, where the coordinates are S_{L} and S_{01} in this order. The maximal rank of a base of S is 2.

Lemma 9.4.2. $f \in Z_{i j} \Rightarrow f \notin S^{(i j)}$.
Proof. From $f \in Z_{i j}$ follows $f(i, \ldots, i)=f(j, \ldots, j)$. Then immediately $f \notin S^{(i j)}$.
Lemma 9.4.3. $f \in Z_{i j} \Rightarrow f \in S^{(i t)} S^{(t j)} \cup \bar{S}^{(i t)} \bar{S}^{(t j)}$.
Proof. It is sufficient to prove $\bar{S}^{(i t)} S^{(t j)} \subseteq \bar{Z}_{i, j}$. From $f \notin S^{(i t)}$ follows that there are a, b such that $\binom{a}{b} \in\binom{01 i}{10 t}$ and $f(a)=f(b)$. Let c be a vector such that $\left(\begin{array}{l}a \\ b \\ c\end{array}\right) \in$ $\left(\begin{array}{c}01 i \\ 10 t \\ 01 j\end{array}\right)$. From $f \in S^{(t j)}$ follows $\{f(b), f(c)\}=E_{2}$. Therefore $\{f(a), f(c)\}=E_{2}$ and from $\binom{\boldsymbol{a}}{\boldsymbol{c}} \in\binom{01 i}{01 j}$ we conclude $f \notin Z_{i j}$.
Lemma 9.4.4. $S^{(i t)} S^{(t j)} \subseteq Z_{i j}$.
Proof. The relational product of $S^{(i t)}$ and $S^{(t j)}$ equals to $Z_{i j}$. \square
Theorem 9.4.2. The number of classes of functions of S^{\prime} is

$$
4 \sum_{r=1}^{k}\left(A(k-2, r-2) B_{r-2}+2(r-1) A(k-2, r-1) B_{r-1}+r(r-1) A(k-2, r) B_{r}\right)
$$

where $B_{r}=\sum_{m=0}^{[r / 2]}\binom{r}{2 m}(2 m)!/\left(2^{m} m!\right)$ is the number of possible choices of several pairs in the set of r elements.

Proof. There are 4 classes with respect to S_{01}^{\prime} and S_{L}^{\prime}. Let Q be an equivalence relation on $\{0,1, \ldots, k-1\}$ and let $c_{01}, c_{L}, c_{i t}$ and $c_{(i t)}$ denote components corresponding to $S_{01}^{\prime}, S_{L}^{\prime}, S^{\prime} Z_{i t}$ and $S^{(i t)}$, respectively, of a characteristic vector of a function f. Then $(0,1) \notin Q$ (constant functions are not elements of $\left.S^{\prime}\right)$.

From $(i, j) \in Q$ follow $c_{i j}=0$ and $c_{(i j)}=1$ (Lemma 9.4.2). Let K_{1}, \ldots, K_{r} be equivalence classes defined by $Q(1 \leq r \leq k)$. Suppose $\left(i_{1}, i_{2}\right) \in Q$ and $\left(j_{1}, j_{2}\right) \in$ Q. From Lemma 9.4 .3 we conclude $c_{\left(i_{1} j_{1}\right)}=c_{\left(i_{1} j_{2}\right)}=c_{\left(j_{1} i_{2}\right)}=c_{\left(i_{2} j_{2}\right)}$. Therefore we can consider $c_{\left(K_{i} K_{j}\right)}$ instead of individual components $c_{(i j)}$. From Lemma 9.4.4 we get $c_{\left(K_{i} K_{t}\right)}=0 \Rightarrow c_{\left(K_{t} K_{j}\right)}=1$ for $i \neq t, t \neq j, j \neq i$. So the set of pairs $\left\{K_{i}, K_{j}\right\}$ from $\left\{K_{1}, \ldots, K_{r}\right\}$ such that $c_{\left(K_{i} K_{j}\right)}=0$ has no member K_{i} in common between any of two pairs. The number of such possible choices for these pairs are B_{r} (the numbers B_{r} are given in Table 9.1 for $1 \leq r \leq 10$). We have $2 \leq t<i \leq k-1$ for the maximal sets $S^{(i t)}$. So we must omit 0 and 1 from above consideration. There are three cases:

1) $\{0\}$ and $\{1\}$ are two equivalence classes in Q. Then after removing them we consider the equivalence relation $Q^{\prime \prime}$ on the set $\{2, \ldots, k-1\}$ with $r-2$ equivalence classes (member $A(k-2, r-2) B_{r-2}$),
2) $\{0\}$ is an equivalence class in Q and 1 is one of the members of class with ≥ 2 elements. There is $r-1$ possibilities for position of 1 in one of the remaining $r-1$ classes of $Q^{\prime \prime}$ and the number of such equivalence relations $Q^{\prime \prime}$ is $(r-1) A(k-2, r-$ 1) with B_{r-1} possible choices of pair-classes. Similarly we can consider the case interchanging 0 and 1.
3) 0 and 1 are members of two different equivalence classes in Q with ≥ 2 elements (0 and 1 do not enter into the same equivalence class). There still remain r equivalence classes in $Q^{\prime \prime}$ and number of positions of 0 and 1 in these classes is $r(r-1)$ (third member $\left.r(r-1) A(k-2, r) B_{r}\right)$.

We sketch construction of a representative function for each possible class. Let $n \geq k$.

1) $f\left(x_{1}, \ldots, x_{n}\right):=g\left(x_{1}, \ldots, x_{n}\right)$ for $x_{1}, \ldots, x_{n} \in E_{2}$, where g is a function on E_{2} from one of the 4 possible classes of S.
2) $f \in Z_{i t} \Rightarrow f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)$, where $\left\{x_{1}, \ldots, x_{n}\right\} \subseteq\{0,1, i\}, y_{j}=x_{j}$ for $x_{j} \in E_{2}$ and $y_{j}=t$ otherwise.
3) $f \in Z_{i t}$ or $f \notin Z_{i t}$ we can realize as before.
4) $f \in S^{(i t)} \Rightarrow f\left(x_{1}, \ldots, x_{n}\right) \neq f\left(y_{1}, \ldots, y_{n}\right)$, where $\left\{x_{1}, \ldots, x_{n}\right\} \subseteq\{0,1, i\}, y_{j}=$ $x_{j}+1(\bmod 2)$ for $x_{j} \in E_{2}$ and $y_{j}=t$ otherwise.
5) $f \notin S^{(i t)}$. If $(i, t) \in Q$ then $f \notin S^{(i t)}$ is satisfied from Lemma 9.4.2.

Now, consider r equivalence classes $K_{j}, 1 \leq j \leq r$, defined by Q. We can divide them into two groups such that if $c_{\left(K_{i}, K_{j}\right)}=0$ then K_{i} and K_{j} are in different groups. We can define $f(0, i, \ldots, i)=f(1, i, \ldots, i)=0$ for all numbers i in the first group and $f(0, i, \ldots, i)=f(1, i, \ldots, i)=1$ for all numbers i in the second group.

Example 9.4.1. Classes of functions of S^{\prime} in $P_{3,2}$. In this case we have no $S^{(i t)}$ maximal sets. The coordinates are in the order of $S_{L}^{\prime}, T_{01}, Z_{2,0}$ and $Z_{2,1}$.

1111	1011	0111	0011
1110	1010	0110	0010
1101	1001	0101	0001

Example 9.4.2. Classes of functions of S^{\prime} in $P_{4,2}$. There are $17 \cdot 4=68$ classes of functions of S^{\prime} in $P_{4,2}$. We show only 17 classes with respect to S^{\prime}-maximal sets $Z_{2,0}, Z_{2,1}, Z_{3,0}, Z_{3,1}, Z_{3,2}, S^{(3,2)}$, which are determined by an equivalence relation Q on $\{0,1,2,3\}$. Each of these vectors becomes a class of S^{\prime} by appending each of twocomponent vectors 11, 10, 01 and 00 (corresponding S_{L}^{\prime} and S_{01}^{\prime}). We also show the corresponding relation Q for each of these classes.

$Z_{2,0}$	$Z_{2,1}$	$Z_{3,0}$	$Z_{3,1}$	$Z_{3,2}$	$S^{(3,2)}$	Q
1	1	1	1	1	1	$\{0\},\{1\},\{2\},\{3\}$
1	1	1	1	1	0	$\{$
1	1	1	1	0	1	$\{0\},\{1\},\{2,3\}$
1	1	1	0	1	1	$\{0\},\{1,3\},\{2\}$
1	1	1	0	1	0	
1	1	0	1	1	1	$\{0,3\},\{1\},\{2\}$
1	1	0	1	1	0	
1	0	1	1	1	1	$\{0\},\{1,2\},\{3\}$
1	0	1	1	1	0	
1	0	1	0	0	1	$\{0\},\{1,2,3\}$
1	0	0	1	1	1	$\{0,3\},\{1,2\}$
1	0	0	1	1	0	
0	1	1	1	1	1	$\{0,2\},\{1\},\{3\}$
0	1	1	1	1	0	
0	1	1	0	1	1	$\{0,2\},\{1,3\}$
0	1	1	0	1	0	
0	1	0	1	0	1	$\{0,2,3\},\{1\}$

For a relation Q, for example, if $(2,3) \in Q$ is satisfied then $c_{(3,2)}=1$ is uniquely possible for $S^{(3,2)}$. Otherwise both 0 and 1 are possible for $c_{(3,2)}$, because in this case $(2,3) \notin Q$ and we can choose pairs from classes $\{2\},\{3\} \in E_{4} \backslash E_{2}$ in two ways: take one pair $\{\{2\},\{3\}\}$ (value 0) or take no pair (value 1).

Maximal rank of a base of S^{\prime}

Lemma 9.4.5. Let Q_{1}, \ldots, Q_{r} be equivalence relations on E_{k} each of which consists exactly of 2 equivalence classes and satisfying the property that for each $i(1 \leq i \leq r)$ there exist two elements $j, l \in E_{k}$ such that $(j, l) \in Q_{i}$ and $(j, l) \notin Q_{s}(1 \leq s \leq r, s \neq i)$. Then $r \leq k$.

Proof. Let us call such (j, l) as indicated in Lemma pivot induced by Q_{i} (recall that $(j, l) \in Q_{i}$ implies $f \notin S^{(j l)}$ for any f induced by Q_{i}). Let U_{i} and V_{i} denote two classes on E_{k} defined by Q_{i} and assume $0 \in U_{i}$. Suppose $r>k$ and consider k relations Q_{1}, \ldots, Q_{k}. There is a circular sequence in the set of pair sets $\{(j, l)\}$, where (j, l) is a pivot induced by Q_{i}. We denote this sequence by $(0,1),(1,2), \ldots,(m-1, m),(m, 0)$ and assume $(j, j+1) \in Q_{j+1}, 0 \leq j \leq m-1 ;(m, 0) \in Q_{m+1}$ (because of isomorphism we can do this). Consider Q_{k+1}. Then $0,2,4, \ldots, m-1 \in U_{k+1}$ and $1,3, \ldots, m \in V_{k+1}$. So, if m is even then we have a contradiction. Thus m is odd. Consider $Q_{2} .0 \in U_{2}, 1 \in V_{2}, 2 \in V_{2}$ (because (1,2) is a pivot of Q_{2}), $4 \in V_{2}$ (because (3,4) is a pivot of Q_{4}). Thus for $i \geq 3$ odd number belongs to U_{2} and even number to V_{2}. So $m-1 \in V_{2}$ and $m \in U_{2}$. Since ($m, 0$) is a pivot of Q_{m+1} we get $0 \in V_{2}$. Again this is a contradiction.

Theorem 9.4.3. Maximal rank of a base of S^{\prime} is $\leq 2 k$.
Proof. We know that rank of a base for S_{L}^{\prime} and S_{01}^{\prime} is ≤ 2 (Lemma 9.4.1), and for $\left\{Z_{i j}\right\}$ is $\leq k-1$ (Lemma 9.1.2). Assume that a base for $\left\{Z_{i j}\right\}$ has rank $k-1$. Then there is a sequence $\left.\left\{0, i_{1}\right\},\left\{i_{1}, i_{2}\right\}, \ldots,\left\{i_{k-2}, 1\right\}\right\}$ of pivots $Z_{i_{l}, i_{l+1}}$ for $f_{l}, l=0, \ldots, k-2$; $i_{0}=0, i_{k-1}=1$ from Lemma 8.4.2. But from $(0,1) \notin Q_{f}$ for every Q_{f} there exists $l(0 \leq l \leq k-2)$ such that $\left(i_{l}, i_{l+1}\right) \notin Q_{f}$, i.e. $f \notin Z_{i_{l} i_{l+1}}$. Thus $Z_{i_{l} i_{l+1}}$ is not a pivot of f_{l} for $\left\{S_{L}, S_{01}, Z_{i j}, 0 \leq j, i \leq k-1, i \geq 2\right\}$. (similar proof as in $P_{k 2}$). Thus $S_{L}^{\prime}, S_{01}^{\prime}$ and $\left\{Z_{i j}\right\}$ have maximal rank k (for $k=3$ there exists no $S^{(j, l)}$ maximal set and hence maximal rank of a base is $k=3$, which can also be seen from the computational data in Table 9.3).

Consider sets $S^{(l j)}$. Let f_{1}, \ldots, f_{r} be functions which have a pivot from $S^{(l j)}$ in S^{\prime}. We prove $r \leq k$. Let Q_{1}, \ldots, Q_{r} be equivalence relations for f_{1}, \ldots, f_{r}. The condition $c_{(l j)}=0$ can be satisfied for $l \in K_{s}$ and $j \in K_{t}$, where K_{s} and $K_{t}\left(\subseteq E_{k}, s \neq t\right)$ are different equivalence classes of a relation Q_{i}. The set of pairs of such different equivalence classes $\left\{\left\{K_{s_{1}}, K_{t_{1}}\right\}, \ldots,\left\{K_{s_{r}}, K_{t_{r}}\right\}\right\}$ are mutually disjoint, as it has been proved in the proof of Theorem 9.4.2. f_{1}, \ldots, f_{r} will again be pivots for the same sets $\left\{S^{(l j)}\right\}$ if we replace every $c_{(l j)}=1$ by $c_{(l j)}=0$ for any function except when $c_{(l j)}$ is a pivot. Some " 1 " among $c_{(l j)}$ will became 0 by this replacement. This corresponds that we consider new equivalence relations $Q_{1}^{\prime \prime}, \ldots, Q_{r}^{\prime \prime}$ such that $Q_{i}^{\prime \prime}$ consist exactly of two equivalence classes on E_{k}. Let $f_{1}^{\prime \prime}, \ldots, f_{r}^{\prime \prime}$ be new functions taken out from these new
classes. Since the replacement of the values does not effect the pivotality, new pivot of $f_{i}^{\prime \prime}$ coincides with that of f_{i}. If $S^{(l j)}$ is a pivot of $f_{i}^{\prime \prime}$ then $c_{(l j)}=1$ for $f_{i}^{\prime \prime}$. Since $Q_{i}^{\prime \prime}$ has only two equivalence relations and since $c_{(l j)}=0$ is satisfied only for $(l, j) \notin Q_{i}^{\prime \prime}$, we have $(l, j) \in Q_{i}^{\prime \prime}$. From the property of pivot, $c_{(l j)}=0$ is satisfied for other functions $f_{s}^{\prime \prime}$, hence $(l, j) \notin Q_{s}^{\prime \prime}$ for $s \neq i$. From Lemma 9.4.5 we conclude $r \leq k$.

9.5. Classifications of Symmetric Functions of $P_{k 2}$

In this section we determine classes of functions for the set of symmetric functions in $P_{k 2}$ and its all maximal sets except M^{\prime}. The problem in the classification of symmetric functions of $P_{k 2}$ is mainly related to the fact that there exists only one representative $f(x):=x$ (identity function) in the $T_{0} T_{1} L S M$-class ("identity class") of symmetric functions of P_{2}. Since we used n-ary functions of P_{2} for $n>2$ (cf. Theorem 8.3.1) in the construction of representatives of the classes of functions of $P_{k 2}$, we need a separate consideration for the set of symmetric $P_{k 2}$-functions corresponding to this identity class.

First we recall some notions about symmetric functions. A function $f\left(x_{1}, \ldots, x_{n}\right)$ is said to be symmetric if $f\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)$ holds for all $x_{1}, \ldots, x_{n} \in E_{k}$ and every permutation π of $\{1, \ldots, n\}$.

S-base (S-pivotal set) is a base (pivotal set) consisting solely of symmetric functions. Hence a class of S-base (S-pivotal) is a set of classes of functions each of which contains a symmetric function. Thus we need to determine classes of functions for the set of symmetric functions. We use the following fact (this is a corollary of Theorem 3.3.1).

Lemma 9.5.1. [Tos72] Each of 15 classes of functions of P_{2} contain a symmetric function. Unary function $f(x):=x$ is a unique symmetric function of the class $T_{0} T_{1} L S M$. The other 14 classes contain symmetric functions of n variables for any given $n(n>1)$.

9.5.1. Classification of symmetric functions of $P_{k 2}$

Theorem 9.5.1. The number of classes of symmetric functions in $P_{k 2}$ is

$$
12 A_{k}-10 A_{k-1}+2^{k-2}
$$

Proof. As we have seen in Theorem 8.3.2, classes with respect to $\left\{Z_{i t}\right\}$ are determined by an equivalence relation on E_{k} (numbers of the classes are A_{k-1} if $(0,1) \in Q$ and $A_{k}-A_{k-1}$
if $(0,1) \notin Q)$. Further, there are two P_{2}-classes (corresponding to constant functions) for each former class and $13 P_{2}$-classes for each latter class. However, among these 13 classes, the class $T_{0} T_{1} S L M$ contains only a unary symmetric function $(f(x):=x)$. We can show that there is a symmetric representative in each $P_{k 2}$-class corresponding to the other 14 classes, because they contain n-ary symmetric functions for any $n>1$. Thus consider the set of symmetric functions in $P_{k 2}$ defined by $\left\{p r^{-1}(f(x):=x)\right\}$. It is easy to see that $f \in Z_{i t} \Leftrightarrow(i, t) \in Q_{f} \Leftrightarrow f(i)=f(t)$. Thus in this case an equivalence relation Q is defined exactly by two equivalence classes: $I_{0}:=\{i \mid f(i)=0\}$ and $I_{1}:=\{i \mid f(i)=1\}$. The number of such equivalence classes is 2^{k-2}, because $f(0)=0$ and $f(1)=1$. The assertion of the theorem follows from this and Theorem 8.3.2.

Note 9.5.1. The number of classes of functions of $P_{k 2}$ which contain no symmetric function is $A_{k}-A_{k-1}-2^{k-2}$.

9.5.2. Symmetric functions of $Z_{i t}$

Theorem 9.5.2. The number of classes of symmetric functions of $Z_{i t}$ is

$$
2^{k-3}\left(12 A_{k-1}-10 A_{k-2}\right)+2^{k-3}
$$

Proof. Again, consider symmetric functions of $P_{k 2}$ corresponding to unary function $f(x):=x$ of the set $T_{0} T_{1} L S M$. Let $I_{0}=\{j \mid f(j)=0\}$ and $I_{1}=\{j \mid f(j)=1\}$. Obviously $0 \in I_{0}$ and $1 \in I_{1}$. From $f \in Z_{i t}$, either $i, t \in I_{0}$ or $i, t \in I_{1}$ is satisfied, because $f(i)=f(t)$. Further, $f \in Z_{j l}$ if either $j, l \in I_{0}$ or $j, l \in I_{1}$. It follows immediately that $f \in R_{j}$ for every j. The assertion of the theorem follows obviously from these considerations and Theorem 9.1.3.

Note 9.5.2. The number of classes of functions of $Z_{i t}$ which contain no symmetric function is $2^{k-3}\left(A_{k-1}-A_{k-2}\right)-2^{k-3}$.

9.5.3. Symmetric functions of T_{0}^{\prime} in $P_{k 2}$

Theorem 9.5.3. The number of classes of symmetric functions in T_{0}^{\prime} is

$$
9 \sum_{r=1}^{k-1} A(k-1, r) 2^{r-1}+2^{k-2}
$$

Proof. Classes of T_{0} which contain symmetric functions with $n \geq 2$ variables can correspond to classes of symmetric functions of T_{0} in $P_{k 2}$ by the same construction as in Theorem 9.2.2. However, in case of the class with only one variable we need another construction. Only the class 0000 contains no symmetric function with $n \geq 2$ variables; the identity function $f(x):=x \in P_{2}$ is a unique symmetric function in this class. Again let $I_{0}=\{i \mid f(i)=0\}$ and $I_{1}=\{i \mid f(i)=1\}\left(I_{0} \cup I_{1}=E_{k}\right)$. The induced equivalence relation Q_{f} divides $E_{k} \backslash\{0\}$ into exactly two classes and in this case there are 2^{k-2} such $Q_{f}\left(0 \in I_{0}\right.$ and $\left.1 \in I_{1}\right)$. The assertion of the theorem follows from this and Theorem 9.2.2.

Note 9.5.3. The number of classes of functions of T_{0}^{\prime} which contain no symmetric function is $\sum_{r=1}^{k-1} A(k-1, r) 2^{r-1}-2^{k-2}=\sum_{r=1}^{k-2} A(k-1, r) 2^{r-1}$.

9.5.4. Symmetric functions of L^{\prime}

Theorem 9.5.4. The number of classes of symmetric functions of L^{\prime} is

$$
4 \sum_{r=1}^{k-2} A(k-2, r)\left(2^{r}+1\right)
$$

Proof. The following classes of L in $P_{2}: 0001,0111,1011$ and 1101 contain symmetric functions with $n \geq 3$ variables, hence $4 \sum_{r=1}^{k-2} A(k-2, r) 2^{r}$ classes contain symmetric functions. The other classes $0000,0110,1010$ and 1100 contains only symmetric functions $\{0,1, x, x+1\}$ of only one variables. Hence f must have only one variable because $f=g$ on $\{0,1\}$ for $g \in P_{2}$. In this case $f \in L_{2} L_{3} \ldots L_{k-1}$. Hence the number of symmetric class in this case is $4 \sum_{r=1}^{k-2} A(k-2, r)$. The assertion of the theorem follows from this and Theorem 9.3.2.

Note 9.5.4. The number of classes of functions of L^{\prime} which contain no symmetric function is $4 \sum_{r=1}^{k-2} A(k-2, r)\left(2^{r}-1\right)$.

9.5.5. Symmetric functions of S^{\prime}

All classes of S^{\prime} contain a symmetric function, because all classes of functions with respect to S_{L}^{\prime} and S_{01}^{\prime} contain symmetric functions with n variables for any $n \geq 1$ [Sto85]. Hence the classes of functions and the classes of symmetric functions coincide in this case (the number of them is given in Theorem 9.4.2).

8.6. Concluding remarks

Classifications are done for a few general cases of closed sets of P_{k} [Sto86c] (also cf. [MSLR87]). In [MiS87b] classes of functions of $P_{k 2}$ and their exact number is determined. In this chapter we have determined classes of functions and classes of symmetric functions for maximal sets of $P_{k 2}$ (all except M^{\prime}). We have seen that although the numbers of maximal sets and the numbers of classes of functions for both $P_{k 2}$ and its maximal sets grow rapidly as $O\left(k^{2}\right)$ and $O(k!)$, respectively, maximal ranks of a base for both $P_{k 2}$ and its maximal sets have been proved to be $O(k)$.

In the following Table 9.2 we give the numbers $\mu(X)$ of X-maximal sets, $\gamma(X)$ of classes of functions of X and $\sigma(X)$ of classes of functions of X containing symmetric functions, where X denote $P_{k}, P_{k 2}$ and some maximal sets of $P_{k 2}$ for $1 \leq k \leq 10$. We note that these numbers of the maximal sets of P_{k} are given in [Ros73,Ros77], the number of classes of functions of P_{2} in [INN63,Krn65], the number of classes of functions of P_{3} in [Miy71,Sto84a], the numbers of the classes of symmetric functions of P_{2} and P_{3} in [Tos72] and [Sto85], respectively.

The numbers A_{k} and B_{k} needed for the computation of these data are given in Fig. 9.1.

The numbers of classes of bases, pivotal incomplete sets, S-bases and S-pivotal incomplete sets for the sets $P_{3,2}$ and $P_{4,2}$ and for some their maximal sets are shown in the following Table 9.3. One of the algorithms described in [StM86a] is used. The symbol * in the table denotes that S-bases (S-pivotals) and bases (pivotals) coincide on the set marked by it.

In the last Table 9.4 we give the characteristic vectors of the classes of maximal sets $Z_{3,0}$ and T_{0}^{\prime} both in the set $P_{4,2}$.

Table 9.1: A_{k} and $B_{k}(0 \leq k \leq 10)$.

k	0	1	2	3	4	5	6	7	8	9	10
A_{k}	-	1	2	5	15	52	203	877	4,140	21,147	115,975
B_{k}	1	1	2	4	10	26	76	232	764	2,620	9,496

Table 9.2: Numbers of maximal sets, classes and classes of symmetric functions.

k	1	2	3	4	5	6	7	8	9	10
$\mu\left(P_{k}\right)$	-	5	18	82	643	$7,848,984$				$?$
$\gamma\left(P_{k}\right)$	-	15	406	$?$	$?$	$?$	$?$	$?$	$?$	$?$
$\sigma\left(P_{k}\right)$	-	15	394	$?$	$?$	$?$	$?$	$?$	$?$	$?$
							10	14	19	25
$\mu\left(P_{k 2}\right)$	-	5	7	10	32	40	49			
$\gamma\left(P_{k 2}\right)$	-	15	43	140	511	2,067	9,168	44,173	229,371	$1,275,058$
$\sigma\left(P_{k 2}\right)$	-	15	42	134	482	1,932	8,526	40,974	212,492	$1,180,486$
$\mu\left(Z_{i t}\right)$	-	-	5	8	12	17	23	30	38	47
$\gamma\left(Z_{i t}\right)$	-	-	15	86	560	4,088	33,072	293,376	$2,827,072$	$29,359,488$
$\sigma\left(Z_{i t}\right)$	-	-	15	82	524	3,800	30,672	271,840	$2,618,304$	$27,182,720$
$\mu\left(S^{\prime}\right)$	-	2	4	8	14	22	32	44	58	74
$\gamma\left(S^{\prime}\right)$	-	4	12	68	388	2,492	17,676	136,500	$1,138,916$	$10,203,420$
$\sigma\left(S^{\prime}\right)$	-	4	12	68	388	2,492	17,676	136,500	$1,138,916$	$10,203,420$
$\mu\left(T_{0}^{\prime}\right)$	-	4	6	9	13	18	24	31	39	48
$\gamma\left(T_{0}^{\prime}\right)$	-	10	30	110	480	2,270	12,150	71,070	449,590	$3,050,910$
$\sigma\left(T_{0}^{\prime}\right)$	-	10	29	103	440	2,059	10,967	64,027	404,759	$2,746,075$
$\mu\left(L^{\prime}\right)$	-	4	5	7		10				
$\gamma\left(L^{\prime}\right)$	-	8	16	48	176	75	19	25	32	40
$\sigma\left(L^{\prime}\right)$	-	8	12	32	108	436	2,024	10,532	60,364	376,232
$\mu\left(M^{\prime}\right)$	-	4	7	13	22	34	49	67	88	112
$\gamma\left(M^{\prime}\right)$	-	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$
$\sigma\left(M^{\prime}\right)$	-	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$

Table 9.3: Numbers of bases, pivotals, S-bases and S-pivotals.

rank	1	2	3	4	5	6	Σ
bases $P_{2,2}^{*}$	1	17	22	2	-	-	42
pivotals $P_{2,2}^{*}$	13	31	7	-	-	-	51
bases $P_{3,2}$	1	160	804	272	8	-	1,245
S-bases $P_{3,2}$	1	158	770	228	4	-	1,161
pivotals $P_{3,2}$	42	440	435	38	-	-	955
S-pivotals $P_{3,2}$	41	416	374	24	-	-	855
bases $P_{4,2}$	1	1,572	42,822	56,228	6,284	64	106,971
S-bases $P_{4,2}$	1	1,533	39,501	42,652	3,132	16	86,835
pivotals $P_{4,2}$	139	6,336	30,660	10,798	314	-	48,247
S-pivotals $P_{4,2}$	133	5,721	24,293	6,202	126	-	36,475
$P_{3,2}$							
bases $Z_{2,0}^{*}$	1	17	22	2	-	-	42
pivotals $Z_{2,0}^{*}$	13	31	7	-	-	-	51
bases T_{0}	1	98	217	30	-	-	346
S -bases T_{0}	1	96	198	18	-	-	313
pivotals T_{0}	29	174	73	-	-	-	276
S-pivotals T_{0}	28	158	53	-	-	-	239
bases L^{\prime}	-	27	45	3	-	-	75
S-bases L^{\prime}	-	15	12	-	-	-	27
pivotals L^{\prime}	15	46	9	-	-	-	70
S-pivotals L^{\prime}	11	21	3	-	-	-	35
bases $S^{\prime *}$	1	20	4	-	-	-	25
pivotals $S^{\prime *}$	11	13	-	-	-	-	24
$P_{4,2}$					932	8	
bases $Z_{3,0}$ S-bases $Z_{3,0}$	1	509	8,506 7,733	6,314	280	8	15,031
pivotals $Z_{3,0}$	85	2,181	6,780	1,938	40	-	11,024
S-pivotals $Z_{3,0}$	81	1,963	5,171	874	4	-	8,093
bases T_{0}	1	1,174	19,253	16,013	952	-	37,398
S -bases T_{0}	1	1,127	16,436	8,656	392	-	26,610
pivotals T_{0}	109	3,600	10,802	1,916	-	-	16,427
S-pivotals T_{0}	102	3,061	7,219	967	-	-	11,349
bases L^{\prime}	-	171	1,845	912	33	-	2,961
S-bases L^{\prime}	-	75	393	96	-	-	564
pivotals L^{\prime}	47	648	938	96	-	-	1,729
S-pivotals L^{\prime}	31	243	198	3	-	-	475
bases $S^{\prime *}$	1	639	3,430	400	2	-	4,472
pivotals $S^{* *}$	67	1,140	762	10	-	-	1,979
$\begin{aligned} & P_{5,2} \\ & \text { bases } S^{\prime *} \end{aligned}$	1	19,246	1,083,933	1,102,264	47,832	118	2,253,394
pivotals S^{*}	387	49,740	371,903	71,650	519	-	494,199

Table 9.4:
(* at the end of the vector denotes that the class has no symmetric representative.)

Classes of functions of $Z_{3,0}$ in $P_{4,2}$

(coordinates are $T_{0}^{\prime}, T_{1}^{\prime}, S^{\prime}, L^{\prime}, M^{\prime}, Z_{2,0}, Z_{2,1}, R_{2}$).

11111111	11011011	10111101	10100111	01101111	00111111	00110011	00010101	00000111^{*}
11111110	11011010	10111100	10100110	01101110	0011110	00110010	00010100	0000010^{*}
11111101	11001111	10111011	10100001	01101101	00111101	00011111	00010011	00000101^{*}
11111100	11001110	10111010	10100000	01101100	00111100	00011110	00010010	00000100
11111011	11001101	10101111	01111111	01101011	00111011	00011101	00001111	00000011^{*}
11111010	11001100	10101110	01111110	01101010	00111010	00011100	00001110	00000010
11011111	11001011	10101101	01111101	01100111	00110111	00011011	00001101	
11011110	11001010	10101100	01111100	01100110	00110110	00011010	00001100	
11011101	10111111	10101011	01111011	01100001	00110101	00010111	00001011	
11011100	10111110	10101010	01111010	01100000	00110100	00010110	00001010	

> Classes of functions of T_{0}^{\prime} in $P_{4,2}$
> (coordinates are $T_{01}, L^{\prime}, M^{\prime}, N_{0}, Z_{2,1}, Z_{3,1}, Z_{3,2}, T_{03}$ and T_{04}).

111111111	111111110	111111101	111111100	111111011	111111000
111011111	111011110	111011101	111011100	111011011	111011000
101111111	101111110	101111101	101111100	101111011	101111000
100011111	100011110	100011101	100011100	100011011	100011000
011111111	011111110	011111101	011111100	011111011	011111000
011011111	011011110	01101101	011011100	011011011	011011000
010111111	01011110	010111101	010111100	010111011	010111000
010011111	010011110	010011101	010011100	010011011	010011000
00111111	001111110	001111101	001111100	001111011	001111000
000011111^{*}	000011110^{*}	000011101^{*}	000011100^{*}	000011011^{*}	000011000

111101110	111101111	111110111	111110101	111100011
111001110	111001111	111010111	111010101	111000011
101101110	101101111	101110111	101110101	101100011
100001101	100001100	100010110	100010100	100000000
011101110	011101111	011110111	011110101	011100011
011001110	011001111	011010111	011010101	011000011
010101110	010101111	010110111	010110101	010100011
010001110	010001111	010010111	010010101	010000011
001101110	001101111	001110111	001110101	001100011
000001110	000001111^{*}	000010111^{*}	000010101	000000011

Chapter 10

Concluding discussions, an overview and some open problems

The number of P_{k}-maximal sets was approximated in [ZKJ69,ZKJ71] and the exact formula for it was determined in [Ros73]:

k	2	3	4	5	6	7
maximal sets	5	18	82	643	15,182	$7,848,984$

Classification of P_{k} is barely possible for $k=4$.
There are several classification results for subsets in P_{k} [Sto86c,Sto85,MiS87b,MSL87]. A function is linear if there are $a_{0}, \ldots, a_{n} \in E_{k}$ so that, under a certain abelian structure on E_{k},

$$
f\left(x_{1}, \ldots, x_{n}\right)=a_{0}+a_{1} x_{1}+\ldots+a_{n} x_{n}
$$

holds for all $x_{1}, \ldots, x_{n} \in E_{k}$. The set of linear functions has been investigated (cf. [BaD78, $\mathrm{BaD} 80, \mathrm{Lau} 84 \mathrm{~b}]$). It is P_{k}-maximal if and only if k is a prime power [Jab58]. Let L denote the set of linear functions of P_{k} and $T_{m}=\{f \mid f(m, \ldots, m)=m\}$ the set of functions preserving $m(0 \leq m \leq k-1)$.

Theorem 10.1. [BaD78, BaD80] There are exactly $p+2$ maximal sets of L in primevalued logic P_{p} :

$$
\begin{aligned}
L_{m}= & L T_{m}, 0 \leq m \leq p-1, \\
L_{S}= & L S=\left\{a_{0}+a_{1} x_{1}+\ldots+a_{n} x_{n} \mid a_{1}+\ldots+a_{n}=1\right\} \\
& \text { (the set of linear selfdual functions) } \\
L^{(1)}= & \left\{a_{0}+a_{1} x_{i} \mid a_{0}, a_{1} \in E_{p}, i>0\right\} \\
& \text { (the set of essentially unary linear functions) } .
\end{aligned}
$$

There are exactly $2 p+4$ classes of functions of the set L [Sto86c]. Their characteristic vectors listed with respect to the above order of maximal sets are:

$$
\begin{array}{ll}
1: & 0^{p+2} \text { (i.e. } p+2 \text { zeros) } \\
2: & 0^{p+1} 1 \\
3 \leq r \leq p+3: & 1^{r-3} 01^{p+3-r} 0 \\
p+4 \leq r \leq 2 p+4: & 1^{r-p-4} 01^{2 p+5-r}
\end{array}
$$

Let $f\left(x_{1}, \ldots, x_{n}\right)=a_{0}+a_{1} x_{1}+\ldots+a_{n} x_{n}$ be a linear function in P_{p}. The function x is in class 1 , and the function $a_{1} x_{1}+\ldots+a_{n} x_{n}$ is in the class 2 for $n \geq 2$ and $a_{1}+\ldots+a_{n}=1$. The functions $a_{0}+x$ are in class $p+3$ for $a_{0} \neq 0$, and the functions $a_{0}+a_{1} x_{1}+\ldots+a_{n} x_{n}$ for $a_{0} \neq 0$ and $a_{1}+\ldots+a_{n}=1, n \geq 2$ are in class $2 p+4$. The constant function $f=i$ belongs to class $i+3(0 \leq i \leq p-1)$. Let $a_{1}+\ldots+a_{n} \neq 1$ and let a be the number determined uniquely by $a\left(1-a_{1}-\ldots-a_{n}\right)=a_{0}$, i.e. $a_{0}+a_{1} a+\ldots+a_{n} a=a\left(a \in E_{p}\right)$. Then the function $f\left(x_{1}, \ldots, x_{n}\right)=a_{0}+a_{1} x_{1}+\ldots+a_{n} x_{n}$ belongs to class $p+4+a$, because it preserves $\{a\}$.

No Sheffer function for L exists. However, each $f \in L \backslash L^{(1)}$ is c-Sheffer as $0 \notin T_{m}$ ($m \geq$ $1), 1 \notin T_{0}, 0 \notin S$. The number of such n-ary functions is $p^{n+1}-n p(p-1)-p(n \geq 2)$. As $n \rightarrow \infty$ the proportion of c-Sheffer n-ary linear functions (among n-ary linear functions) goes rapidly to 1 .

Bases of rank 2 are composed of any two functions of classes i and j, where i and j satisfy the condition
a) $p+4 \leq i<j \leq 2 p+4$, or
b) $3 \leq i \leq p+3<j \leq 2 p+4$ and $j \neq i+p+1$.

Bases of rank 3 contain a function of class 2 and two functions, each from classes i and j, where $3 \leq i<j \leq p+3$. Thus L contains exactly $4\binom{p+1}{2}$ aggregates; $3\binom{p+1}{2}$ of rank 2 and $\binom{p+1}{2}$ of rank 3. The maximal rank of a base of L is 3 .

The H-maximal sets for the above $p+2 L$-maximal sets H (p prime) are determined in $[\mathrm{BaD} 78]$ and their classification is in [Sto86c].

Let $S=\operatorname{Pol}\left(\begin{array}{ccccc}0 & 1 & \ldots & k-2 & k-1 \\ 1 & 2 & \ldots & k-1 & 0\end{array}\right)$. It is easy to verify that S is a set of selfdual functions in k-valued logic (i.e. f such that $f\left(x_{1}+1, \ldots, x_{n}+1\right)=f\left(x_{1}, \ldots, x_{n}\right)+1$). Note that there are other types of selfdual functions (cf. [Ros70]).

Theorem 10.2. [Sze82] There are exactly two S-maximal sets in prime-valued logic P_{p} :

$$
S_{L}=S L \text { and } S_{0}=S T_{0}
$$

A linear function $a_{0}+a_{1} x_{1}+\ldots+a_{n} x_{n}$ is selfdual if $a_{1}+\ldots+a_{n}=1$. When this holds, the function $a_{1} x_{1}+\ldots+a_{n} x_{n}$ belongs to the set $S_{L} S_{0}$ (class 00) and the functions $a_{0}+a_{1} x_{1}+\ldots+a_{n} x_{n}$ for $a_{0} \neq 0$ belong to the set $S_{L} \bar{S}_{0}$ (class 01).

The number of n-ary Sheffer functions in S is $(p-1) p^{n-1}\left(p^{p^{n-1}-1}-1\right)$. Note that the notions of c-Shefferness and Shefferness coincide, because no constant function belongs to S. There are exactly two aggregates for S; each for ranks 1 and 2.

An overview and some open problems

We give some subsets of P_{k} whose maximal sets are known. Perhaps the most interesting P_{k}-maximal set is the set L of linear functions for k not prime. Let $k=p_{1}^{\alpha_{1}} \ldots p_{m}^{\alpha_{m}}$, $\alpha_{1}, \ldots, \alpha_{m} \geq 1, p_{1}, \ldots, p_{m}$: prime numbers ($p_{i} \neq p_{j}$ for $i \neq j$). All the maximal sets of L are described as follows [Lau84b]:

1) $2^{m}-1$ maximal sets

$$
\begin{aligned}
& T_{d}:=L_{d} \cup \cup_{n \geq 1}\left\{f \in L\left|\exists b, a_{0}, \ldots, a_{n}: b\right| d \wedge b \neq 1 \wedge f(\boldsymbol{x})=a_{0}+b \sum_{i=1}^{n} a_{i} x_{i}\right\}, \\
& \text { where } \boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right) \text { and } \\
& L_{d}:=\bigcup_{n \geq 1}\left\{f \in L \mid \exists a_{0}, \ldots, a_{n}, j: f(\boldsymbol{x})=a_{0}+a_{j} x_{j}+d \sum_{i=1, i \neq j}^{n} a_{i} x_{i}\right\}, \\
& d=p_{i_{1}} \ldots p_{i_{t}},\left\{p_{i_{1}}, \ldots, p_{i_{t}}\right\} \subseteq\left\{p_{1}, \ldots, p_{m}\right\}, 1 \leq t \leq m .
\end{aligned}
$$

2) m maximal sets of type

$$
\begin{aligned}
& L_{*, p_{i}}:=\bigcup_{n \geq 1}\left\{f \in L \mid \exists a_{0}, \ldots, a_{n} \in E_{k}:\right. \\
& \left.f(\boldsymbol{x})=a_{0}+\sum_{i=1}^{n} a_{i} x_{i} \wedge a_{1}+\ldots+a_{n}=1\left(\bmod p_{i}\right)\right\}, 1 \leq i \leq m .
\end{aligned}
$$

3) $p_{1}+\ldots+p_{m}$ maximal sets

$$
\begin{aligned}
& L \cap \operatorname{Pol}\left(j, p_{i}+j, 2 p_{i}+j, \ldots, k-p_{i}+j\right) \text { for all } j \\
& \text { satisfying } 0 \leq j \leq p_{i}-1,1 \leq i \leq m .
\end{aligned}
$$

The special case of $k=p^{m}$ or $k=2 \cdot p(m>1, p>2, p:$ prime) is also investigated in [Lau84b] and [Schr87].

Another interesting maximal set is the set of special selfdual functions S for k not a prime number [Lau84b] (for the case k prime number we have the simple result as described above [Sto85b]). All $2 \prod_{i=1}^{m}\left(\alpha_{i}+1\right)-3$ maximal sets of S are described as

$$
\left\{S \cap \text { Pol } \gamma_{r}, S \cap \text { Pol } \rho_{t} \mid r \in T \backslash\{1\}, t \in T \backslash\{1, k\}\right\}
$$

where $T:=\{x \mid k \equiv 0(\bmod x)\}, \gamma_{r}:=\left\{x \in E_{k} \mid x \equiv 0(\bmod r)\right\}$ and $\rho_{t}:=\{(x, y) \in$ $\left.E_{k}^{2} \mid y-x \equiv 0(\bmod t)\right\}$.

Some cases of selfdual functions are also described in [Mar79].
Compositions of partial k-valued functions are investigated in [Fre66,Lou84,Rom80]. Define $P_{k, l}:=\bigcup_{n \geq 1}\left\{f \mid f: E_{k}^{n} \rightarrow E_{l}\right\}, l>k$, with the operation of composition defined by:

$$
f \circ g= \begin{cases}f * g & \text { if } W(g) \subseteq\{0, \ldots, k-1\} \\ f & \text { otherwise },\end{cases}
$$

where $W(g)$ denotes the range of $g . P_{k, l}$ is a generalization of the partial k-valued logic. $P_{2, l}$ has exactly the following 8 maximal sets [Lau77,Fre66]:

$$
\begin{gathered}
\left\{f \in P_{2, l}| | W(f) \mid \leq l-1\right\}, \text { Pol }^{*}(0), \text { Pol }^{*}(1) \\
\text { Pol }^{*}\binom{0}{1}, \text { Pol }^{*}\binom{01}{10}, \text { Pol }^{*}\binom{001}{011} \\
\quad \text { Pol }^{*}\left(\begin{array}{l}
000111 \\
001101 \\
010011 \\
011001
\end{array}\right), \text { Pol }^{*}\left(\begin{array}{c}
00011011 \\
00110101 \\
01001101 \\
01100011
\end{array}\right)
\end{gathered}
$$

where

$$
\begin{aligned}
\text { Pol }^{*} \rho:= & \left\{f \in P_{2, l} \mid\right. \\
& \left.\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{h}\right)^{T} \in \rho^{n} \Rightarrow\left(f\left(\boldsymbol{a}_{1}\right), \ldots, f\left(\boldsymbol{a}_{h}\right)\right)^{T} \in \rho \cup\left(\{0, \ldots, l-1\}^{h} \backslash\{0,1\}^{h}\right)^{T}\right\} .
\end{aligned}
$$

The set $P_{2, l}$ is being classified [LMS87]. Besides, it is known that $P_{3, l}, l>3$, has exactly 58 maximal sets ([Lau77], a slightly different number of the maximal sets is reported in [Rom80]).

Define $P_{3}(2):=\bigcup_{n \geq 1}\left\{f\left(x_{1}, \ldots, x_{n}\right) \in P_{3}| | W(f) \mid \leq 2\right\} . P_{3}(2)$ has exactly the following 13 maximal sets [Fre66,Lau77]:

$$
\begin{aligned}
\bigcup_{n \geq 1}\{f \mid & \exists f_{0}, \ldots, f_{n} \in P_{3}^{1}(2) \text { (the set of unary functions) : } \\
& \left.f\left(x_{1}, \ldots, x_{n}\right)=f_{0}\left(f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)+\ldots+f_{n}\left(x_{n}\right) \bmod 2\right)\right\}
\end{aligned}
$$

and the classes $P_{3}(2) \cap$ Pol ρ where $\rho \in$

$$
\begin{gathered}
\left\{\binom{012001}{012122},\binom{012112}{012200},\binom{012220}{012011},\binom{01201}{01210},\right. \\
\binom{01202}{01220},\binom{01212}{01221},(01),(02),(12),\binom{0120102}{0121020},
\end{gathered}
$$

$$
\left.\binom{0120121}{0121012},\binom{0120212}{0122021}\right\}
$$

Define $P_{\{0,1\},\{a, 3\}}:=\bigcup_{n, m \geq 1}\left\{f^{n, m} \mid f^{n, m}:\{0,1\}^{n} \times\{a, 3\}^{m} \rightarrow\{0,1\}\right\}, a \in\{0,2\}$, and with a similar generalization of superposition. $P_{\{0,1\},\{a, 3\}}$ has exactly 10 maximal sets for $a=0$ and 21 maximal ones for $a=2$ ([BBK73] also cf. [Lau80]). The maximal sets for Pol (0) are also known [Lau82a].

Finding maximal sets for other subsets of P_{k} and under various modifications of composition are open problems. Among them we find part of automata theory [Das81,Kud60], where some maximal sets are given. Uniform delay composition with unit-delay for P_{3} was solved in [Noz70], and with positive-integer-delays for P_{3} in [Hik78] (30 and 49 maximal sets). Composition with delay was also treated in the general case in [MRR83,RoH83].

The enumeration of Sheffer functions as well as c-Sheffer may be considered in many of the above cases (cf. [Ros77]). For example, the number of n-ary 3 -valued c-Sheffer functions is known only for $n=2$ [Muz75].

Maximal rank of a base is an open problem in many cases. The problem is mentioned early in [Jab58,But60], especially for P_{k}. It is known that some closed subsets of $P_{k}, k \geq$ 3 have an infinite base or no base [JaM59]. It is also known that for $k \geq 8$ some $P_{k^{-}}$ maximal sets have no finite basis [Mik86,Tar86].

Classification and basis enumeration can be used to calculate the number of n-ary bases [StM86a,Wer42,KuO66,PeS68,Ber80,Ber83]. In many cases, this has not yet been done. The corresponding classifications and basis enumerations for symmetric functions are surveyed in [StM86b]. The classification of P_{3} may be shortened if one uses relational calculation extensively as we had done for the maximal set T_{0} in Section 6.5.

Acknowledgments

The author is grateful to his advisor: Professor Tadahiro Kitahashi, Institute of Scientific and Industrial Research, Osaka University for the perpetual encouragement, guidance and comments to this thesis. He is also grateful to his advisor: Professor Koji Torii, Faculty of Engineering Science, Osaka University for frequent consultations and for the words of encouragement which have led to this thesis. He is also grateful to his advisors for this thesis: Professors Tadao Kasami (Faculty of Engineering Science), Jun-ichi Toyota (Institute of Scientific and Industrial Research) and Ken-ichi Taniguchi (Faculty of Engineering Science), Osaka University for the encouragement, guidance and comments.

The author appreciates perpetual encouragement made by his colleagues of the Mathematical Engineering Section, Electrotechnical Laboratory, Drs. Nobuyuki Otsu, Shinji Umeyama, Takio Kurita and Hideki Asoh. He is also thankful to Drs. Koichiro Tamura and Akio Tojo for providing him an opportunity to finish this research.

He wishes to express his appreciation to Professor Akihiro Nozaki for introducing him to this research.

The author is grateful to Professor Ivan Stojmenovic of the Mathematical Institute, University of Novi Sad (Yugoslavia) for a great help in preparing this thesis. The jointworks done with him during his stay in Japan between November 1985 and February 1986 have not only lead to a completeness of the work but also gave a perspective for the further studies. The author is also greatly indebted to Professor Teruo Hikita for his perpetual help and encouragement, and for the jointwork. He has also provided with many comments to this thesis. This thesis also includes several jointworks shared with Professors Rusins Freivalds, Dietlinde Lau, Hajime Machida and Ivo G. Rosenberg. The author's sincerest gratitude and deepest respect go to these coauthors.

Bibliography

[ArH63] Arnold R.F. and Harrison M.A., Algebraic properties of symmetric and partially symmetric Boolean functions, IEEE Trans. Electro. Comput., EC-12 (1963), 244-251.
[Baa78] Baase S., "Computer Algorithms: Introduction to Design and Analysis", Addison-Wesley, Reading, Mass., 1978.
[BaD78] Bagyinszki J., Demetrovics J., The lattice of linear classes in prime-valued logics, Banach Center Publications PWN, 8/1978.
[BaD80] Baginszki J., Demetrovics J., The structure of the maximal linear classes in prime-valued logics, C.R. Math. Rep. Acad. Sci. Canada, Vol.II (1987) No.4, 209-213.
[Ber80] Berman J., Algebraic properties of k-valued logics, Proc. Int. Symp. MVL, Evanston, Illinois, 1980, 195-204.
[Ber83] Berman J., Free spectra of 3-element algebras, Univ. Alg. and Lattice Theory, Springer-Verlag, 1983, Lecture Notes in mathematics, 10-53.
[BBK73] Blochina G.N., Burosch G. and Kudrjavcev V.B., Vollständigkeits-bedingungen für 2 Algebren von Postschen Typ, Math. Balkanica 3 (1973), 281-296.
[Bur73] Burosch G., Über die ordnung der prädvollständigen klassen in algebren von prädikaten, Preprint, WPU Rostock (1973).
[BDH79] Burosch G., Dassow W., Harnau W. and Lau D., Über algebren von prädikaten, Preprint, WPU Rostock (1979).
[BDH85] Burosch G., Dassow W., Harnau W. and Lau D., On subalgebras of an algebra of predicates, Elektron. Informationsverarb. Kybernet. EIK 21 (1/2) (1985), 9-22.
[BDHL79] Burosch G., Drews K.-D, Harnau W. and Lau D., Conditional monotonous functions over a finite set. Part I, MTA SzTAKI Közlemények 23 (1979), 43-53.
[But60] Butler J.W., On complete and independent sets of operations in finite algebras, Pacific J. Math. 10 (1960), 1169-1179.
[But86] Butler J.T., Efficient test for diagnosability in three-valued models of local area networks embeded in a wide area network, Proc. 16-th Int. Symp. on MVL, Blacksburg, Vir., USA, 1986, 100-103.
[Cej69] Cejtlin G.E., Questions of functional completeness for a certain modification of the algebra of logic, Cybernetics, 4 (1969), 400-407.
[Cej70] Cejtlin G.E., The structure of a modified Post algebra and its properties (Russian), Kibernetika 4, 1970, 39-54.
[Das81] Dassow W., "Completeness Problems in the Structural Theory of Automata", Akademie-Verlag, Berlin, 1981.
[DHM80a] Demetrovics J., Hannak, L. and Marchenkov, S.S., On closed classes of self-dual functions in P_{3}, Preprint, WP Rostock, 1980.
[DHM80b] Demetrovics J., Hannak L., Marchenkov S.S., Some remarks on structure of P_{3}, C. R. Math. Rep. Acad. Sci. Canada, Vol. II (1980) No.4, 215-219.
[Ehr73] Ehrlich G., Loopless algorithms for generating permutations, combinations and other combinatorial configurations, J. ACM, 20, 3 (1973), 500-513.
[Eml86] Emeljanov N.R., An approach to the construction of efficient algoritms for the detection of completeness in many-valued logics (Russian), Mat. Zametki, 39, 5, (1986), 766-770.
[EFR74] Epstein G., Frieder G. and Rine D.C., The development of multiple-valued logic as related to computer science, Preprint, Indiana University, Bloomington (1974).
[Fre66] Freivald R.V., Completeness criteria for partial functions of algebra logic and many-valued logics (in Russian), Dokl. Akad. Nauk SSSR, 167 (1966), 1249-1250.
[Fre68] Freivald R. V. Completeness up to coding of systems of functions of k-valued logic and the complexity of its determination (in Russian), Dokl. Akad. Nauk SSSR, 180 (1968), 803-805; English translation in Soviet Math. Dokl., 9 (1968), 699-702.
[Gin85] Gindikin S.G., Algebraic Logic, Springer-Verlag, New York Inc., 1985.
[GLK84] Goodman J.W., Leonberger F.I., Kung S. Y. and Athale R. A., Optical interconnections for VLSI systems, Proc. IEEE, 72, 7, July 1984, 850-865.
[HaF84] Haga T. and Fukumura T., The P-valued Input, Q-valued output treshold logic and the (P, Q)-polypheck-like function, Proc. IEEE ISMVL (1984) 20-26.
[Hik78] Hikita T., Completeness criterion for functions with delay defined over a domain of three elements, Proc. Japan Acad., 54, Ser. A, 10 (1978), 335-339.
[Hik82] Hikita T., Enumeration of Boolean functions Sheffer with constants, Trans. IECE Japan, E6, no. 12, Dec. 1982, 714-716.
[Hro85] Hromkovic J., On the number of monotone functions from two-valued logic to k-valued logic, Kybernetika, 21 (1985), 3, 229-234.
[Hur86] Hurst S.L., A survey: developments in optoelectronics and its applicability to multiple-valued logic, Proc. 16-th Int. Symp. on MVL, Blacksburg, Vir., USA, 1986, 179-188.
[INN63] Ibuki K., Naemura K., Nozaki A., General theory of complete sets of logical functions, IECE of Japan 46,7(1963).
[Ibu68] Ibuki K., "A study of universal logical elements" (Japanese), Res. of Inst. of Electrocomm., no. 3747, 1968, pp. 1-144.
[Ina82] Inagaki K., t_{6}-completeness of sets of delayed logic elements (in Japanese), Trans. IECE Japan, J63-D (1982), 827-834.
[IPT69] Ivas'kiv Y.L., Posperov D.A. and Tošic̀ Z., Representation in many-valued logics (Russain), Kibernetika 2 (1969) 35-47.
[Jab52] Jablonskij S.V., On superpositions of the functions of algebra of logic (Russian), Mat. Sbornik 30, 72, 2 (1952), 329-348.
[Jab58] Jablonskij S.V., Functional constructions in a k-valued logic (Russian), Trudi Math. Inst. Steklov, 51 (1958), 5-142.
[Jab78] Jablonskij S.V., On some results in functional system, Int. Congress Math. Helsinki, 1978, 963-970.
[JGK66] Jablonskij S.V., Gavrilov G.P., Kudrjavcev V.B,. Functions in algebraic logic and Post classes, Nauka, Moscow, 1966.
[JaM59] Janov Y.I. and Mučnik A.A., Existence of k-valued closed classes without a finite basis (Russian), Dokl. Akad. Nauk. SSSR 127 (1959) 1, 44-46.
[Kab82] Kabulov A.V., Synthesis of bases of complete systems of logical functions (Russian), Dokl. Akad. Nauk UzSSR (1982), no. 4, 3-5.
[KaF78] Karunanithi S. and Friedman A. D., Some new types of logical completeness, IEEE Trans. Comput., C-27 (1978), 998-1005.
[Kar72] Karp R.M., Reducibility among combinatorial problems, in "Complexity of Computer Computations", (R.E. Miller and J.W. Thatcher eds.), 85-103, Plenum Press, New York, 1972.
[Kor81] Korshunov A.D., On the number of monotone Boolean functins, Problemy kibernetiki 38 (1981), 5-109.
[Kle69] Kleitman D., On Dedekind's problem: the number of monotone Boolean functions, Proc. Amer. Math. Soc., 21 (1969), 677-682.
[Krn65] Krnić L., Types of bases in the algebra of logic (Russian), Glasnik Mat.-fiz. i astr., 20, 1965, 1-2, 23-32.
[Krn73] Krnic L., Cardinals of bases in the 3-valued logic -I-Tb, Glasnik Mat. ser. III, 8 (28)(1973), 169-174.
[KuO66] Kudielka V. and Oliva P., Complete sets of functions of two and three binary variables. IEEE Trans. Electronic Computers, EC-15, 930-931d, 1966.
[Kud60] Kudrjavcev V.B., Completeness theorem for a class of automata without feedback couplings, Doklad. Akad. Nauk. SSSR, 132, 2 (1960), 272-274; also Soviet Mathematics Dokladi, A.M.S., vol. 1, pp. 537-539, 1960.
[Kud62] Kudrjavcev V.B., Completeness theorem for a class of automata without feedback couplings (in Russian), Problemy Kibernet., 8 (1962), 91-115.
[Kud70] Kudrjavcev V.B., The covering of precomplete classes of k-valued logic (Russian). Diskret. Analiz., 17 (1970) 32-44.
[Kud82] Kudrjavcev V.B., Functional systems (Russian), Monograph, Izd. Moskow Univ. 1982, 157 pp.
[Lau75] Lau D., Prävollständige klassen von $P_{k, l}$, Elektron. Informationsverarb. Kybernet. EIK 11 (10/12) (1975) 624-626.
[Lau77] Lau D., Eigenschaften gewisser abgeschlossener Klassen in Postschen Algebren, Dissertation A, Rostock 1977.
[Lau80] Lau D., Basen und Ordnungen der maximalen zweier mehrsortiger Functionenalgebren, Rostock. Math, Kolloq. 15, 81-90, 1980.
[Lau82a] Lau D., Die maximalen Klassen von $\mathrm{Pol}_{k}(0)$, Rostock. Math, Kolloq. 19, 29-47, 1982.
[Lau82b] Lau D., Submaximale klassen von P_{3}, Elektron. Informationsverarb. Kybernet. EIK 18 (1982) 4-5, 227-243.
[Lau84a] Lau D., Die Maximalen Klassen von $\operatorname{Pol}_{k}\left\{(x, x+1 \bmod k) x \in E_{k}\right\}$, Rostocker Math. Kolloq. 25 (1984), 23-30.
[Lau84b] Lau D., "Funktionenalgebren über endlichen mengen", Dissertation B, WPU Rostock, 1984.
[Lau87a] Lau D., Über abgeschlossene Mengen von $P_{k, 2}$, submitted to Electron. Informationsverarb. Kybernet.
[Lau87b] Lau D., Über abgeschlossene Teilmengen von $P_{3,2}$, submitted to Electron. Informationsverarb. Kybernet.
[Lau87c] Lau D., Über abgeschlossene Mengen von linearer Funktionen in mehrwertigen Logiken, submitted to Electron. Informationsverarb. Kybernet.
[LMS87] Lau D., Miyakawa M. and Stojmenović I., Classifications of $P_{2 l}$ and \tilde{P}_{2}, manuscript 1987.
[LiR77] Liebler M.E., Roesser R.P., Multile-real-valued Walsh functions, in Computer Science and Multiple-Valued Logic (D.C. Rine ed), North-Holland, 1977, 626-639.
[Liu68] Liu C.L., Introduction to Combinatorial Theory, McGraw-Hill, New York, 1968.
[LoW65] Loomis H.H. and Wyman J.R., On complete sets of logical primitives, IEEE TR. EC-14 (2) (1965) 173-174.
[Lou84] Lou Zhukai, The classification of normal relations in many-valued logics, J. of Xiangtan University, 2 (1984), 1-15.
[Mac79] Machida H., On closed sets of three-valued monotone logical functions, In: Finite algebra and multiple-valued logic, Proceedings of 1979 Szeged Conf. (B. Csákany, I.G. Rosenberg eds.) Coll. Math. Soc. J. Bolyai 28, North Holland 1981, 441-467.
[Mal76] Mal'ćev A.I., Post's iterative algebra (Russian), Novosibirsk State University, Novosibirsk, 1976, 1-100.
[Mar79] Marčenkov S.S., On closed classes of selfdual functions in many-valued logics, Problemy Kibernet. 36 (1979), 5-22.
[MRR83] Martin L., Reischer C., Rosenberg I.G.,Problem de Complètual pour les circuits aux èléments avec retard, EIK 19 (1983), 4/5, 171-186.
[Mar54] Martin N.M., The Sheffer functions of 3-valued logic, J. Symb. Logic, 19 (1954), 45-51.
[Mart60] Martynjuk V.V., Investigation of certain classes of functions in many-valued logics (russian), Problemy Kibernet. 3(1960), 45-60.
[McC81] McColl W.F., Planar Crossover, IEEE C-30, 3, 1981, 223-225.
[Mic77] Michalski R.S., Variable-valued logic and its application to pattern recognition and machine learning, Computer Science and multiple-valued logic, D.C. Rine, ed. North-Holland, 1977, 597625.
[Mik86] Mikheeva E.A., Existence in k-valued logic of maximal classes not having a finite basis (Russain), Dokl. Akad. Nauk SSSR, 287, 1986, 1, 49-52.
[Miy71] Miyakawa M., Functional completenes and structure of three-valued logics I - Classification of P_{3}-, Res. of Electrotech. Lab., No.717, 1-85(1971).
[Miy79] Miyakawa M., Enumerations of bases of three-valued logical functions, In: Finite algebra and multiple-valued logic, Proceedings of 1979 Szeged Conf. (B. Csákany, I.G. Rosenberg eds.) Coll. Math. Soc. J. Bolyai 28, North Holland 1981, 469-487.
[Miy82] Miyakawa M., Enumeration of bases of a submaximal set of three-valued logical functions, Rostock. Math. Kolloq., 19 (1982), 49-66.
[Miy83] Miyakawa M., Enumeration of bases of maximal clones of three-valued logical functions (I)SD (Słupecki functions), L (linear functions P_{+}(self-dual functions)-, Bul. Electrotech. Lab., 47, 8 (1983), Ibaraki, 651-661., Corrigendum, Bul. Electrotech. Lab., 48, 8 (1984), 739-740.
[Miy84] Miyakawa M., Enumeration of bases of maximal clones of three-valued logical functions(II) - I_{a} (the functions preserving a constant) -, Bul. Electrotech. Lab., 48, 3 (1984), Ibaraki, 169-204.
[Miy85a] Miyakawa M., A note to the classification and base enumeration of three-valued logical functions, Bul. Electrotech. Lab., 49 (3) (1985) 197-210.
[Miy85b] Miyakawa M., Optimum decision trees - An optimum variable theorem and its related applications -, Acta Informatica 22, 1985,
[MIS85] Miyakawa M., Ikeda K. and Stojmenović I., Bases of Boolean functions under certain compositions, Rev. of Res., Fac. of Sci., Novi Sad, math. ser. 15, 2 (1985), 92-104.
[MiS87a] Miyakawa M. and Stojmenović I., Classifications and base enumerations of the maximal sets of three-valued logical functions, RIM Koukyuroku 519, Kyoto University, 1986; Mathematical Reports, The Royal Society of Canada, 6, 2, 1987.
[MiS87b] Miyakawa M. and Stojmenovic I., Classification of $P_{k, 2}$, Discrete Applied Math., submitted.
[MSL87] Miyakawa M., Stojmenovic I. and lau D., Classification of the maximal sets of $P_{k, 2}$, to be published.
[MSLR87] Miyakawa M., Stojmenović I., Lau D. and Rosenberg I.G., Classifications and base enumerations in many-valued logics - a survey -, Proc. 17-th Internat. Symp. on Multiple-Valued Logic, Boston, May 1987, IEEE, 152-160.
[MSH87] Miyakawa M., Stojmenović I., Hikita T., Machida H., and Freivalds R., Sheffer and symmetric Sheffer Boolean functions under several compositions, EIK, Journal of Inf. Processing, to appear.
[Muz75] Muzio J., Ternary two-place functions that are complete with constants, Proc. 1975 Int. Symp. MVL, 27-33, Bloomington, Ind., 1975.
[Neu56] von Neumann, J., Probabilistic logic and the synthesis of reliable organisms from unreliable components, Automata Studies, C.E. Shannon and J. McCarthy eds, Prineton, Princeton University Press, 1956, 43-98.
[NiW78] Nijenhuis A. and Wilf H.S., "Combinatorial Algorithms", 2nd ed., Academic Press, New York, 1978.
[Noz70] Nozaki A., Realisation des fonctions definies dans un ensemble fini a l'aides des organes elementaires d'entreè sortie, Proc. Japan Acad., 46, 6, 478-482 (1870).
[Noz78] Nozaki A., Functional completeness of multi-valued logical functions under uniform compositions, Rep. of Fac. of Eng. Yamanashi Univ. no. 29, Dec. 1978, pp. 61-67.
[Noz82] Nozaki A., Completeness of logical gates based on sequential circuits (in Japanese), Trans. IECE Japan, J65-D (1982), 171-178.
[PeS68] Petrick S.R. and Sethares G.C., On the determination of complete sets of logical functions, IEEE Trans. on Computers C-17, 3 (1968), 273.
[PMN88] Pogasyan G., Miyakawa M. and Nozaki A.. On the number of Boolean functions with an intersecting coordinate, manuscript 1988.
[Pok79] Pöschel R., Kalužnin L.A., Funktionen und Relationen Algebren, Ein Kapitel der Diskreten Mathematik, Math. Monographien B. 15, VEB Deutche Verlag d. Wiss., Berlin 1979 and Math. R. B. 67 Birkhäuser Verlag, Basel \& Stuttgart 1979.
[Pos21] Post E.L., "Introduction to a general theory of elementary propositions", Amer. J. Math. vol. 43, pp.163-185, 1921.
[Pos41] Post E.L., The two-valued iterative systems of mathematical logic, Annals of Math. Studies No. 5 (Princeton Univ. Press) 1941.
[Rom80] Romov V. A., On maximal subalgebras of algebra of partial functions of many-valued logic (Russian), Kibernetika 1 (1980), 28-35.
[Ros65] Rosenberg I.G., La structure des fonctions de plusieurs variables sur un ensemble fini, C.R. Acad. Sci. Paris, Ser. A.B. 260 (1965), 3817-3819.
[Ros70] Rosenberg, I. G. über die funktionale vollständigkeit in den mehrwertigen logiken. Rozpr. CSAV Rada Math. Prir. Ved. Praha 80 (4) (1970) 3-93.
[Ros73] Rosenberg I.G., The number of maximal closed classes in the set of functions over a finite domain, J. Combinatorial Theory, 14 (1973), 1-7.
[Ros77] Rosenberg I.G., Completeness properties of multiple-valued logic algebra, in Rine D.C.(ed.): "Computer Science and Multiple-valued logic: Theory and Applications", North-Holland,s 2-nd ed. 1984, 144-186.
[RoH83] Rosenberg I.G., Hikita T., Completeness for uniformly delayed circuits, Proc. 13-th Iñt. Symp. MVL, 1983, 2-10.
[Rot69] Roth R., Computer solutions to minimum-cover problems, Oper. Res., 17 (1969), 455-473.
[Sal62] Salomaa A., Some completeness criteria for for sets of functions over a finite domain I. -II. Ann. Univ. Turkuensis, Turku, Ser A.I. 53 (1962) 1-9; 63 (1963) 1-19.
[Sas84] Sasao T., Tautology checking algorithms for multiple-valued input binary functions and their application, Proc. IEEE ISMVL (1984) 242-250.
[Scho69] Schofield P., Independent conditions for completeness of finite algebras with a single generator. J. London Math. Soc. 44 (1969) 413-423.
[Schr87] Schröder B., Über abgeschlossene Mengen von Linearen Funktionen in $P_{2 p}$ (p prim, $p>2$). Rostock. Math. Kolloq. 31, 21-41 (1987).
[Sem84] Semba I., An efficient algorithm for generating all k-subsets ($1 \leq k \leq m \leq n$) of the set $\{1,2, \ldots, n\}$ in lexicographic order, J. of Algorithms, 5 (1984), 281-283.
[Sha49] Shannon C. E., A symbolic analysis of relay and switching circuits, Bell Syst. Tech. J., 28 (1949), 59-98.
[Slu39] Slupecki J., Kriterium pełnocsi wielowartosiewych systemow logiki zdaǹ, C. R. Seanc. Soc. Sci. Varsovie 32 (1939), 102-109 (Eng. trans.: Studia logica 30 (1972), 153-157).
[Sto84a] Stojmenović I., Classification of P_{3} and the enumeration of bases of P_{3}, Rev. of Res., Fac of Sci., math. ser., Novi Sad, 14, 1(1984),73-80.
[Sto84b] Stojmenović I., Enumeration of the bases of three-valued monotone logical functions, Rev. of Res., Fac of Sci., math. ser., Novi Sad,14,1(1984),81-98.
[Sto85] Stojmenović I., Classification problems of maximal sets of two and three-valued logic (SerboCroatian), Ph.D. thesis, Univ. of Zagreb, 1985.
[Sto85b] Stojmenović I., Enumeration of bases of semi-degenerate, linear and self-dual functions in prime-valued logics, Rev. of Res., Fac. of Sci., math. ser., Novi Sad, 15, 2, 1985, 105-122.
[Sto86a] Stojmenović I., Classification of a maximal clone of three-valued logical functions, Elektron. Informationsverarb. Kybernet. EIK, 22 (10/11), 1986, 535-545.
[Sto86b] Stojmenovic I., Classification of the set of three-valued logical functions preserving the set $\{0,1\}$, Rostock. Math. Kolloq., 30, 19-36, 1986.
[Sto86c] Stojmenović I., A Classification of the set of linear functions in prime-valued logics, Acta Sci. Math., to be published.
[Sto86d] Stojmenović I., Classification of the maximal clones of propositional algebra, Rev. of Res., Fac. of Sci., math.ser., Novi Sad, to appear.
[Sto87] Stojmenović I., On Sheffer symmetric functions in three-valued logic, Discr. Appl. Math., to appear.
[StM86a] Stojmenović I. and Miyakawa M., On base enumeration algorithms, Bul. Electrotechn. Lab., Ibaraki,50, 4, (1986), 293-313.
[StM86b] Stojmenovic I. and Miyakawa M., Symmetric Functions in Many-valued Logics - A survey. Extended abstracts. Note on Multiple-Valued Logic in Japan 6, 1, July 1986.
[StM87] Stojmenović I. and Miyakawa M., Application of a subset generating algorithm to base enumeration, knapsack and minimal covering problems, The Computer J. to appear.
[Sze82] Szendrei Á., Algebras of prime cardinality with a cyclic automorphism, Arch. math. (Basel) 39 (1982), 417-427.
[Tar86] Tardos C., On finitely generated maximal clone of operations, Order 3 (1986), 211-218.
[Tos72] Tosić R., S-bases of propositional algebra, Publ. Inst. Math., 14 (28) (1972), pp. 139-148, Beograd.
[Tos81] Tosić R., Classes of bases for a modification of propositional algebra, Rev.of Res., Fac.of Sci., Novi Sad, 11 (1981), 287-295.
[Vil71] Vilenkin N. Y., "Combinatorics", Academic Press, 1971.
[Vuk84] Vukovic A., On the bases of the three-valued logic, Glasnik mat., 19 (3) (1984), 3-11.
[WIS86a] Watanabe M., Itoh H., Saito M., Saiki J., Fukushi M., Mukai S., Yajima H. and Uekusa S., Optical three-valued logical circuit using twin-stripe semiconductor laser (Japaneas), Proc. The 47th Autumn Meeting, 1986, The japan Society of Aplied Physics, p.86.
[WIS86b] Watanabe M., Itoh H., Saito M., Mukai S., Yajima H. and Uekusa S., Optical tristability using a twin-stripe laser diode, Extended abstract of the 18-th (1986 international) Conference on Solid State Devices and Materials, Tokyo, 1986, 165-168.
[WMTY87] Watanabe M., Mukai S., Itoh H., Yajima H., Optical tristability and associated ternary digital functions using a twin-stripe laser diode, IEE Proc. H., to appear.
[Web35] Webb D.L., Generation of any N-valued logic by one binary operator, Proc. Nat. Acad. Sci., vol. 21, pp. 252-254, 1935. .
[Wer42] Wernick W., Complete sets of logical functions, Trans. Amer. Math. Soc. 51 (1942), 117-132.
[Whe66] Wheeler R.F., Complete connectives for the 3-valued propositional calculus, Proc. London Math. Soc., 16 (1966), pp. 167-192.
[YoM85] Young M.H.a nd Muroga S., Symmetric minimal covering problem and minimal PLA's with symmetric variables, IEEE Trans. Comput. C-34, 6, (1985), 523-541.
[ZKJ69] Zacharova Ju. Kudrjavcev V.B. and Jablonskij S.V., Precomplete classes in k-valued logics (Russian), Dokl. Akad. Nauk. 186 (1969), 509-512; Soviet Math. Doklady 10 (1969), 618-622.
[ZKJ71] Zacharova E.Ju. Kudrjaveev V.B. and Jablonskij S.V., A correction, Dokl. Akad. Nauk. 199 (1971), 90.
[Zur78] Žuravljev Ju.I., On an algebraic approach toward solving recognition or classification problems, Problemy Kybernetiki 33 (1978) 5-68 (in Russian).

Appendix 1. Classes of P_{3}.

$w t$	\#no	$T L S$	$M_{1} M_{2} M_{0}$	$U_{2} U_{0} U_{1}$	$B_{0} B_{1} B_{2}$	$T_{0} T_{1} T_{2}$	$T_{01} T_{12} T_{20}$	*no	representative
18	\#1	111	111	111	111	111	111	*406	$f 8.14$ (Sheffer)
17	\#2	111	111	111	111	111	110	*405	σ_{0}-similar of $f 8.13$
17	\#3	111	111	111	111	111	101	*404	σ_{1}-similar of $f 8.13$
17	\#4	111	111	111	111	111	011	*403	$f 8.13$
17	\#5	111	111	111	111	110	111	*397	σ_{1}-similar of $f 8.12$
17	\#6	111	111	111	111	101	111	*402	σ_{2}-similar of $f 8.12$
17	\#7	111	111	111	111	011	111	*392	$f 8.12$
17	\#8	111	111	110	111	111	111	*322	σ_{2}-similar of $f 6.31$
17	\#9	111	111	101	111	111	111	*236	$f 6.31$
17	\#10	111	111	011	111	111	111	*279	σ_{1}-similar of $f 6.31$
17	\#11	110	111	111	111	111	111	*86	f4.4
16	\#12	111	111	111	111	110	110	*396	σ_{3}-similar of $f 8.10$
16	\#13	111	111	111	111	110	101	*394	σ_{1}-similar of $f 8.10$
16	\#14	111	111	111	111	110	011	*395	σ_{1}-similar of $f 8.11$
16	\#15	111	111	111	111	101	110	*400	σ_{2}-similar of $f 8.11$
16	\#16	111	111	111	111	101	101	*401	σ_{4}-similar of $f 8.10$
16	\#17	111	111	111	111	101	011	*399	σ_{2}-similar of $f 8.10$
16	\#18	111	111	111	111	100	111	*375	$f 8.8$
16	\#19	111	111	111	111	011	110	*391	σ_{0}-similar of $f 8.10$
16	\#20	111	111	111	111	011	101	*390	$f 8.11$
16	\#21	111	111	111	111	011	011	*389	$f 8.10$
16	\#22	111	111	111	111	010	111	*387	σ_{2}-similar of $f 8.8$
16	\#23	111	111	111	111	001	111	*381	σ_{1}-similar of $f 8.8$
16	\#24	111	111	111	110	110	111	*348	σ_{1}-similar of $-f 7.9$
16	\#25	111	111	111	101	101	111	*361	σ_{2}-similar of $f 7.9$
16	\#26	111	111	111	011	011	111	*335	$f 7.9$
16	\#27	111	111	110	111	111	110	*311	σ_{2}-similar of $f 6.23$
16	\#28	111	111	110	111	111	101	*319	σ_{4}-similar of $f 6.28$
16	\#29	111	111	110	111	111	011	*316	σ_{2}-similar of $f 6.28$
16	\#30	111	111	110	111	101	111	*321	σ_{2}-similar of $f 6.30$
16	\#31	111	111	101	111	111	110	*233	σ_{0}-similar of $f 6.28$
16	\#32	111	111	101	111	111	101	*225	$f 6.23$
16	\#33	111	111	101	111	111	011	*230	$f 6.28$
16	\#34	111	111	101	111	011	111	*235	$f 6.30$
16	\#35	111	111	011	111	111	110	*276	σ_{3}-similar of $f 6.28$
16	\#36	111	111	011	111	111	101	*273	σ_{1}-similar of $f 6.28$
16	\#37	111	111	011	111	111	011	*268	σ_{1}-similar of $f 6.23$
16	\#38	111	111	011	111	110	111	*278	σ_{1}-similar of $f 6.30$
16	\#39	101	111	111	111	110	111	*83	σ_{1}-similar of $f 4.1$
16	\#40	101	111	111	111	101	111	*82	σ_{2}-similar of $f 4.1$
16	\#41	101	111	111	111	011	111	*81	$f 4.1=x+2 y$
16	\#42	100	111	111	111	111	111	*84	$f 4.2=2 x+2 y+1$
15	\#43	111	111	111	111	110	100	*393	σ_{1}-similar of $f 8.9$
15	\#44	111	111	111	111	101	001	*398	σ_{2}-similar of $f 8.9$
15	\#45	111	111	111	111	100	110	*374	σ_{0}-similar of $f 8.6$
15	\#46	111	111	111	111	100	101	*373	$f 8.7$
15	\#47	111	111	111	111	100	011	*372	$f 8.6$
15	\#48	111	111	111	111	011	010	*388	$f 8.9$
15	\#49	111	111	111	111	010	110	*385	σ_{2}-similar of $f 8.7$
15	\#50	111	111	111	111	010	101	*386	σ_{4}-similar of $f 8.6$

$w t$	\#no	TLS	$M_{1} M_{2} M_{0}$	$U_{2} U_{0} U_{1}$	$B_{0} B_{1} B_{2}$	$T_{0} T_{1} T_{2}$	$T_{01} T_{12} T_{20}$	*no	representative
15	\#51	111	111	111	111	010	011	*384	σ_{2}-similar of $f 8.6$
15	\#52	111	111	111	111	001	110	*380	σ_{3}-similar of $f 8.6$
15	\#53	111	111	111	111	001	101	*378	σ_{1}-similar of $f 8.6$
15	\#54	111	111.	111	111	001	011	*379	σ_{1}-similar of $f 8.7$
15	\#55	111	111	111	111	000	111	*369	$f 8.4$
15	\#56	111	111	111	110	110	110	*346	σ_{3}-similar of $f 7.7$
15	\#57	111	111	111	110	110	101	*345	σ_{1}-similar of $f 7.7$
15	\#58	111	111	111	110	110	011	*347	σ_{1}-similar of $f 7.8$
15	\#59	111	111	111	101	101	110	*360	σ_{2}-similar of $f 7.8$
15	\#60	111	111	111	101	101	101	*359	σ_{4}-similar of $f 7.7$
15	\#61	111	111	111	101	101	011	*358	σ_{2}-similar of $f 7.7$
15	\#62	111	111	111	011	011	110	*333	σ_{0}-similar of $f 7.7$
15	\#63	111	111	111	011	011	101	*334	$f 7.8$
15	\#64	111	111	111	011	011	011	*332	$f 7.7$
15	\#65	111	111	110	111	110	110	*306	σ_{4}-similar of $f 6.18$
15	\#66	111	111	110	111	101	110	*310	σ_{2}-similar of $f 6.22$
15	\#67	111	111	110	111	101	101	*318	σ_{4}-similar of $f 6.27$
15	\#68	111	111	110	111	101	011	*315	σ_{2}-similar of $f 6.27$
15	\#69	111	111	110	111	011	110	*299	σ_{2}-similar of $f 6.18$
15	\#70	111	111	110	101	101	111	*320	σ_{2}-similar of $f 6.29$
15	\#71	111	111	101	111	110	101	*220	σ_{0}-similar of $f 6.18$
15	\#72	111	111	101	111	101	101	*213	$f 6.18$
15	\#73	111	111	101	111	011	110	*232	σ_{0}-similar of $f 6.27$
15	\#74	111	111	101	111	011	101	*224	$f 6.22$
15	\#75	111	111	101	111	011	011	*229	$f 6.27$
15	\#76	111	111	101	011	011	111	*234	$f 6.29$
15	\#77	111	111	011	111	110	110	*275	σ_{3}-similar of $f 6.27$
15	\#78	111	111	011	111	110	101	*272	σ_{1}-similar of $f 6.27$
15	\#79	111	111	011	111	110	011	*267	σ_{1}-similar of $f 6.22$
15	\#80	111	111	011	111	101	011	*256	σ_{1}-similar of $f 6.18$
15	\#81	111	111	011	111	011	011	*263	σ_{3}-similar of $f 6.18$
15	\#82	111	111	011	110	110	111	*277	σ_{1}-similar of $f 6.29$
15	\#83	000	111	111	111	111	111	*2	$x+1, x+2$
14	\#84	111	111	111	111	100	100	*371	σ_{0}-similar of $f 8.5$
14	\#85	111	111	111	111	100	001	*370	$f 8.5$
14	\#86	111	111	111	111	010	100	*383	σ_{4}-similar of $f 8.5$
14	\#87	111	111	111	111	010	010	*382	σ_{2}-similar of $f 8.5$
14	\#88	111	111	111	111	001	010	*377	σ_{3}-similar of $f 8.5$
14	\#89	111	111	111	111	001	001	*376	σ_{1}-similar of $f 8.5$
14	\#90	111	111	111	111	000	110	*368	σ_{0}-similar of $f 8.3$
14	\#91	111	111	111	111	000	101	*367	σ_{1}-similar of $f 8.3$
14	\#92	111	111	111	111	000	011	*365	$f 8.3$
14	\#93	111	111	111	110	110	100	*344	σ_{1}-similar of $f 7.6$
14	\#94	111	111	111	110	100	101	*340	σ_{1}-similar of $f 7.5$
14	\#95	111	111	111	110	010	110	*343	σ_{3}-similar of $f 7.5$
14	\#96	111	111	111	101	101	001	*357	σ_{2}-similar of $f 7.6$
14	\#97	111	111	111	101	100	101	*356	σ_{4}-similar of $f 7.5$
14	\#98	111	111	111	101	001	011	*353	σ_{2}-similar of $f 7.5$
14	\#99	111	111	111	011	011	010	*331	$f 7.6$
14	\#100	111	111	111	011	010	110	*330	σ_{0}-similar of $f 7.5$

$w t$	\#no	$T L S$	$M_{1} M_{2} M_{0}$	$U_{2} U_{0} U_{1}$	$B_{0} B_{1} B_{2}$	$T_{0} T_{1} T_{2}$	$T_{01} T_{12} T_{20}$	*no	representative
14	\#101	111	111	111	011	001	011	*327	$f 7.5$
14	\#102	111	111	110	111	110	100	*308	σ_{4}-similar of $f 6.20$
14	\#103	111	111	110	111	101	001	*313	σ_{2}-similar of $f 6.25$
14	\#104	111	111	110	111	100	110	*302	σ_{4}-similar of $f 6.14$
14	\#105	111	111	110	111	011	010	*301	σ_{2}-similar of $f 6.20$
14	\#106	111	111	110	111	010	110	*292	σ_{2}-similar of $f 6.13$
14	\#107	111	111	110	111	001	110	*295	σ_{2}-similar of $f 6.14$
14	\#108	111	111	110	101	101	110	*309	σ_{2}-similar of $f 6.21$
14	\#109	111	111	110	101	101	101	*317	σ_{4}-similar of $f 6.26$
14	\#110	111	111	110	101	101	011	*314	σ_{2}-similar of $f 6.26$
14	\#111	111	111	101	111	110	100	*222	σ_{0}-similar of $f 6.20$
14	\#112	111	111	101	111	101	001	*215	$f 6.20$
14	\#113	111	111	101	111	100	101	*206	$f 6.13$
14	\#114	111	111	101	111	011	010	*227	$f 6.25$
14	\#115	111	111	101	111	010	101	*216	σ_{0}-similar of $f 6.14$
14	\#116	111	111	101	111	001	101	*209	$f 6.14$
14	\#117	111	111	101	011	011	110	*231	σ_{0}-similar of $f 6.26$
14	\#118	111	111	101	011	011	101	*223	$f 6.21$
14	\#119	111	111	101	011	011	011	*228	$f 6.26$
14	\#120	111	111	011	111	110	100	*270	σ_{1}-similar of $f 6.25$
14	\#121	111	111	011	111	101	001	*258	σ_{1}-similar of $f 6.20$
14	\#122	111	111	011	111	100	011	*252	σ_{1}-similar of $f 6.14$
14	\#123	111	111	011	111	011	010	*265	σ_{3}-similar of $f 6.20$
14	\#124	111	111	011	111	010	011	*259	σ_{3}-similar of $f 6.14$
14	\#125	111	111	011	111	001	011	*249	σ_{1}-similar of $f 6.13$
14	\#126	111	111	011	110	110	110	*274	σ_{3}-similar of $f 6.26$
14	\#127	111	111	011	110	110	101	*271	σ_{1}-similar of $f 6.26$
14	\#128	111	111	011	110	110	011	*266	σ_{1}-similar of $f 6.21$
14	\#129	111	110	111	111	100	110	*165	σ_{3}-similar of $f 5.8$
14	\#130	111	110	111	111	100	011	*159	σ_{2}-similar of f5.8
14	\#131	111	101	111	111	001	110	*131	σ_{0}-similar of $f 5.8$
14	\#132	111	101	111	111	001	101	*137	σ_{4}-similar of $f 5.8$
14	\#133	111	011	111	111	010	101	*109	σ_{1}-similar of $f 5.8$
14	\#134	111	011	111	111	010	011	*103	$f 5.8$
14	\#135	110	111	111	111	000	111	*88	$f 4.6$
13	\#136	111	111	111	111	000	100	*366	σ_{0}-similar of $f 8.2$
13	\#137	111	111	111	111	000	010	*364	σ_{2}-similar of $f 8.2$
13	\#138	111	111	111	111	000	001	*363	$f 8.2$
13	\#139	111	111	111	110	100	100	*338	σ_{1}-similar of $f 7.3$
13	\#140	111	111	111	110	100	001	*339	σ_{1}-similar of $f 7.4$
13	\#141	111	111	111	110	010	100	*341	σ_{3}-similar of $f 7.3$
13	\#142	111	111	111	110	010	010	*342	σ_{3}-similar of $f 7.4$
13	\#143	111	111	111	101	100	100	*355	σ_{4}-similar of $f 7.4$
13	\#144	111	111	111	101	100	001	*354	σ_{4}-similar of $f 7.3$
13	\#145	111	111	111	101	001	010	*352	σ_{2}-similar of $f 7.4$
13	\#146	111	111	111	101	001	001	*351	σ_{2}-similar of $f 7.3$
13	\#147	111	111	111	011	010	100	*329	σ_{0}-similar of $f 7.4$
13	\#148	111	111	111	011	010	010	*328	σ_{0}-similar of $f 7.3$
13	\#149	111	111	111	011	001	010	*325	$f 7.3$
13	\#150	111	111	111	011	001	001	*326	f7.4

$w t$	\#no	TLS	$M_{1} M_{2} M_{0}$	$U_{2} U_{0} U_{1}$	$B_{0} B_{1} B_{2}$	$T_{0} T_{1} T_{2}$	$T_{01} T_{12} T_{20}$	*n	representative
13	\#151	111	111	110	111	100	100	*305	σ_{4}-similar of $f 6.17$
13	\#152	111	111	110	111	010	100	*294	σ_{4}-similar of $f 6.12$
13	\#153	111	111	110	111	010	010	*291	σ_{2}-similar of $f 6.12$
13	\#154	111	111	110	111	001	010	*298	σ_{2}-similar of $f 6.17$
13	\#155	111	111	110	111	000	110	*280	σ_{2}-similar of $f 6.4$
13	\#156	111	111	110	110	110	100	*307	σ_{4}-similar of $f 6.19$
13	\#157	111	111	110	101	101	001	*312	σ_{2}-similar of $f 6.24$
13	\#158	111	111	110	011	011	010	*300	σ_{2}-similar of $f 6.19$
13	\#159	111	111	101	111	100	100	*208	σ_{0}-similar of $f 6.12$
13	\#160	111	111	101	111	100	001	*205	$f 6.12$
13	\#161	111	111	101	111	010	100	*219	σ_{0}-similar of $f 6.17$
13	\#162	111	111	101	111	001	001	*212	$f 6.17$
13	\#163	111	111	101	111	000	101	*194	$f 6.4$
13	\#164	111	111	101	110	110	100	*221	σ_{0}-similar of $f 6.19$
13	\#165	111	111	101	101	101	001	*214	$f 6.19$
13	\#166	111	111	101	011	011	010	*226	$f 6.24$
13	\#167	111	111	011	111	100	001	*255	σ_{1}-similar of $f 6.17$
13	\#168	111	111	011	111	010	010	*262	σ_{3}-similar of $f 6.17$
13	\#169	111	111	011	111	001	010	*251	σ_{3}-similar of $f 6.12$
13	\#170	111	111	011	111	001	001	*248	σ_{1}-similar of $f 6.12$
13	\#171	111	111	011	111	000	011	*237	σ_{1}-similar of $f 6.4$
13	\#172	111	111	011	110	110	100	*269	σ_{1}-similar of $f 6.24$
13	\#173	111	111	011	101	101	001	*257	σ_{1}-similar of $f 6.19$
13	\#174	111	111	011	011	011	010	*264	σ_{3}-similar of $f 6.19$
13	\#175	111	110	111	111	100	100	*163	σ_{3}-similar of $f 5.6$
13	\#176	111	110	111	111	100	001	*157	σ_{2}-similar of $f 5.6$
13	\#177	111	110	110	111	100	110	*164	σ_{3}-similar of $f 5.7$
13	\#178	111	110	011	111	100	011	*158	σ_{2}-similar of $f 5.7$
13	\#179	111	101	111	111	001	010	*129	σ_{0}-similar of $f 5.6$
13	\#180	111	101	111	111	001	001	*135	σ_{4}-similar of $f 5.6$
13	\#181	111	101	110	111	001	110	*130	σ_{0}-similar of $f 5.7$
13	\#182	111	101	101	111	001	101	*136	σ_{4}-similar of $f 5.7$
13	\#183	111	011	111	111	010	100	*107	σ_{1}-similar of $f 5.6$
13	\#184	111	011	111	111	010	010	*101	$f 5.6$
13	\#185	111	011	101	111	010	101	*108	σ_{1}-similar of $f 5.7$
13	\#186	111	011	011	111	010	011	*102	$f 5.7$
13	\#187	100	111	111	111	000	111	*85	$f 4.3=2 x+2 y$
13	\#188	011	111	110	010	111	110	*79	σ_{0}-similar of $f 3.13$
13	\#189	011	111	101	100	111	101	*55	σ_{1}-similar of $f 3.13$
13	\#190	011	111	011	001	111	011	*31	$f 3.13$
12	\#191	111	111	111	111	000	000	*362	$f 8.1$
12	\#192	111	111	111	110	000	100	*337	σ_{1}-similar of $f 7.2$
12	\#193	111	111	111	101	000	001	*350	σ_{2}-similar of $f 7.2$
12	\#194	111	111	111	011	000	010	*324	f7.2
12	\#195	111	111	110	111	000	100	*282	σ_{2}-similar of $f 6.6$
12	\#196	111	111	110	111	000	010	*284	σ_{4}-similar of $f 6.6$
12	\#197	111	111	110	110	100	100	*304	σ_{4}-similar of $f 6.16$
12	\#198	111	111	110	110	010	100	*293	σ_{4}-similar of $f 6.11$
12	\#199	111	111	110	101	100	100	*303	σ_{4}-similar of $f 6.15$
12	\#200	111	111	110	101	001	010	*296	σ_{2}-similar of $f 6.15$

$w t$	\#no	$T L S$	$M_{1} M_{2} M_{0}$	$U_{2} U_{0} U_{1}$	$B_{0} B_{1} B_{2}$	$T_{0} T_{1} T_{2}$	$T_{01} T_{12} T_{20}$	*no	representative
12	\#201	111	111	110	011	010	010	*290	σ_{2}-similar of $f 6.11$
12	\#202	111	111	110	011	001	010	*297	σ_{2}-similar of $f 6.16$
12	\#203	111	111	101	111	000	100	*196	$f 6.6$
12	\#204	111	111	101	111	000	001	*198	σ_{0}-similar of $f 6.6$
12	\#205	111	111	101	110	100	100	*207	σ_{0}-similar of $f 6.11$
12	\#206	111	111	101	110	010	100	*218	σ_{0}-similar of $f 6.16$
12	\#207	111	111	101	101	100	001	*204	$f 6.11$
12	\#208	111	111	101	101	001	001	*211	$f 6.16$
12	\#209	111	111	101	011	010	100	*217	σ_{0}-similar of $f 6.15$
12	\#210	111	111	101	011	001	001	*210	$f 6.15$
12	\#211	111	111	100	110	110	100	*189	σ_{1}-similar of $f 6.3$
12	\#212	111	111	011	111	000	010	*239	σ_{1}-similar of $f 6.6$
12	\#213	111	111	011	111	000	001	*241	σ_{3}-similar of $f 6.6$
12	\#214	111	111	011	110	100	001	*253	σ_{1}-similar of $f 6.15$
12	\#215	111	111	011	110	010	010	*260	σ_{3}-similar of $f 6.15$
12	\#216	111	111	011	101	100	001	*254	σ_{1}-similar of $f 6.16$
12	\#217	111	111	011	101	001	001	*247	σ_{1}-similar of $f 6.11$
12	\#218	111	111	011	011	010	010	*261	σ_{3}-similar of $f 6.16$
12	\#219	111	111	011	011	001	010	*250	σ_{3}-similar of $f 6.11$
12	\#220	111	111	010	011	011	010	*185	$f 6.3$
12	\#221	111	111	001	101	101	001	*193	σ_{2}-similar of $f 6.3$
12	\#222	111	110	111	111	000	010	*172	σ_{2}-similar of $f 5.13$
12	\#223	111	110	111	110	100	100	*161	σ_{3}-similar of $f 5.4$
12	\#224	111	110	111	101	100	001	*155	σ_{2}-similar of $f 5.4$
12	\#225	111	110	110	111	100	100	*162	σ_{3}-similar of $f 5.5$
12	\#226	111	110	011	111	100	001	*156	σ_{2}-similar of $f 5.5$
12	\#227	111	101	111	111	000	100	*144	σ_{0}-similar of $f 5.13$
12	\#228	111	101	111	101	001	001	*133	σ_{4}-similar of $f 5.4$
12	\#229	111	101	111	011	001	010	*127	σ_{0}-similar of $f 5.4$
12	\#230	111	101	110	111	001	010	*128	σ_{0}-similar of $f 5.5$
12	\#231	111	101	101	111	001	001	*134	σ_{4}-similar of $f 5.5$
12	\#232	111	011	111	111	000	001	*116	$f 5.13$
12	\#233	111	011	111	110	010	100	*105	σ_{1}-similar of $f 5.4$
12	\#234	111	011	111	011	010	010	*99	$f 5.4$
12	\#235	111	011	101	111	010	100	*106	σ_{1}-similar of $f 5.5$
12	\#236	111	011	011	111	010	010	*100	$f 5.5$
12	\#237	011	111	110	010	110	110	*64	σ_{3}-similar of $f 3.4$
12	\#238	011	111	110	010	011	110	*60	σ_{0}-similar of $f 3.4$
12	\#239	011	111	101	100	110	101	*36	σ_{1}-similar of $f 3.4$
12	\#240	011	111	101	100	101	101	*40	σ_{4}-similar of $f 3.4$
12	\#241	011	111	100	100	111	101	*56	σ_{4}-similar of $f 3.12$
12	\#242	011	111	100	010	111	110	*78	$j_{0}=\sigma_{0}$-similar of f3.12
12	\#243	011	111	011	001	101	011	*16	σ_{2}-similar of $f 3.4$
12	\#244	011	111	011	001	011	011	*12	$f 3.4$
12	\#245	011	111	010	010	111	110	*80	σ_{3}-similar of $f 3.12$
12	\#246	011	111	010	001	111	011	*32	σ_{2}-similar of $f 3.12$
12	\#247	011	111	001	100	111	101	*54	σ_{1}-similar of $f 3.12$
12	\#248	011	111	001	001	111	011	*30	$f 3.12=s_{100}$
12	\#249	001	111	110	101	101	110	*5	$2 x+2=\sigma_{2}{ }^{-}, \sigma_{4}-\operatorname{sim} .2 x$
12	\#250	001	111	101	011	011	101	*3	$2 x$

$w t$	\#no	TLS	$M_{1} M_{2} M_{0}$	$U_{2} U_{0} U_{1}$	$B_{0} B_{1} B_{2}$	$T_{0} T_{1} T_{2}$	$T_{01} T_{12} T_{20}$	*no	representative
12	\#251	001	111	011	110	110	011	*4	$2 x+1=\sigma_{1}-, \sigma_{3}$-sim. $2 x$
11	\#252	111	111	111	110	000	000	*336	σ_{1}-similar of $f 7.1$
11	\#253	111	111	111	101	000	000	*349	σ_{2}-similar of $f 7.1$
11	\#254	111	111	111	011	000	000	*323	f7.1
11	\#255	111	111	110	111	000	000	*289	σ_{2}-similar of $f 6.10$
11	\#256	111	111	110	110	000	100	*281	σ_{2}-similar of $f 6.5$
11	\#257	111	111	110	011	000	010	*283	σ_{4}-similar of $f 6.5$
11	\#258	111	111	101	111	000	000	*203	$f 6.10$
11	\#259	111	111	101	110	000	100	*195	$f 6.5$
11	\#260	111	111	101	101	000	001	*197	σ_{0}-similar of $f 6.5$
11	\#261	111	111	100	110	100	100	*187	σ_{1}-similar of $f 6.2$
11	\#262	111	111	100	110	010	100	*188	σ_{3}-similar of $f 6.2$
11	\#263	111	111	011	111	000	000	*246	σ_{1}-similar of $f 6.10$
11	\#264	111	111	011	101	000	001	*240	σ_{3}-similar of $f 6.5$
11	\#265	111	111	011	011	000	010	*238	σ_{1}-similar of $f 6.5$
11	\#266	111	111	010	011	010	010	*184	σ_{0}-similar of $f 6.2$
11	\#267	111	111	010	011	001	010	*183	$f 6.2$
11	\#268	111	111	001	101	100	001	*192	σ_{4}-similar of $f 6.2$
11	\#269	111	111	001	101	001	001	*191	σ_{2}-similar of $f 6.2$
11	\#270	111	110	111	111	000	000	*181	σ_{2}-similar of $f 5.19$
11	\#271	111	110	111	011	000	010	*169	σ_{2}-similar of $f 5.11$
11	\#272	111	110	110	111	000	010	*171	σ_{3}-similar of $f 5.12$
11	\#273	111	110	110	110	100	100	*160	σ_{3}-similar of $f 5.3$
11	\#274	111	110	011	111	000	010	*170	σ_{2}-similar of $f 5.12$
11	\#275	111	110	011	101	100	001	*154	σ_{2}-similar of $f 5.3$
11	\#276	111	101	111	111	000	000	*153	σ_{0}-similar of $f 5.19$
11	\#277	111	101	111	110	000	100	*141	σ_{0}-similar of $f 5.11$
11	\#278	111	101	110	111	000	100	*142	σ_{0}-similar of $f 5.12$
11	\#279	111	101	110	011	001	010	*126	σ_{0}-similar of $f 5.3$
11	\#280	111	101	101	111	000	100	*143	σ_{4}-similar of $f 5.12$
11	\#281	111	101	101	101	001	001	*132	σ_{4}-similar of $f 5.3$
11	\#282	111	011	111	111	000	000	*125	$f 5.19$
11	\#283	111	011	111	101	000	001	*113	$f 5.11$
11	\#284	111	011	101	111	000	001	*115	σ_{1}-similar of $f 5.12$
11	\#285	111	011	101	110	010	100	*104	σ_{1}-similar of $f 5.3$
11	\#286	111	011	011	111	000	001	*114	$f 5.12$
11	\#287	111	011	011	011	010	010	*98	$f 5.3$
11	\#288	110	111	111	111	000	000	*87	$f 4.5$
11	\#289	011	111	110	010	110	100	*63	σ_{3}-similar of $f 3.3$
11	\#290	011	111	110	010	011	010	*59	σ_{0}-similar of $f 3.3$
11	\#291	011	111	110	010	010	110	*72	σ_{0}-similar of $f 3.11$
11	\#292	011	111	101	100	110	100	*35	σ_{1}-similar of $f 3.3$
11	\#293	011	111	101	100	101	001	*39	σ_{4}-similar of $f 3.3$
11	\#294	011	111	101	100	100	101	*48	σ_{1}-similar of $f 3.11$
11	\#295	011	111	100	100	101	101	*38	σ_{4}-similar of $f 3.2$
11	\#296	011	111	100	010	011	110	*58	σ_{0}-similar of $f 3.2$
11	\#297	011	111	011	001	101	001	*15	σ_{2}-similar of $f 3.3$
11	\#298	011	111	011	001	011	010	*11	$f 3.3$
11	\#299	011	111	011	001	001	011	*24	$f 3.11$
11	\#300	011	111	010	010	110	110	*62	σ_{3}-similar of $f 3.2$

$w t$	\#no	TLS	$M_{1} M_{2} M_{0}$	$U_{2} U_{0} U_{1}$	$B_{0} B_{1} B_{2}$	$T_{0} T_{1} T_{2}$	$T_{01} T_{12} T_{20}$	*no	representative
11	\#301	011	111	010	001	101	011	*14	σ_{2}-similar of f3.2
11	\#302	011	111	001	100	110	101	*34	σ_{1}-similar of $f 3.2$
11	\#303	011	111	001	001	011	011	*10	$f 3.2$
11	\#304	011	110	110	010	110	110	*66	σ_{3}-similar of $f 3.5$
11	\#305	011	110	011	001	101	011	*18	σ_{2}-similar of $f 3.5$
11	\#306	011	101	110	010	011	110	*65	$j_{1}=\sigma_{0}$-similar of $f 3.5$
11	\#307	011	101	101	100	101	101	*42	σ_{4}-similar of f3.5
11	\#308	011	011	101	100	110	101	*41	σ_{1}-similar of $f 3.5$
11	\#309	011	011	011	001	011	011	*17	$f 3.5=s_{001}$
10	\#310	111	111	110	110	000	000	*288	σ_{4}-similar of $f 6.9$
10	\#311	111	111	110	101	000	000	*285	σ_{2}-similar of $f 6.7$
10	\#312	111	111	110	011	000	000	*287	σ_{2}-similar of $f 6.9$
10	\#313	111	111	101	110	000	000	*202	σ_{0}-similar of $f 6.9$
10	\#314	111	111	101	101	000	000	*201	$f 6.9$
10	\#315	111	111	101	011	000	000	*199	$f 6.7$
10	\#316	111	111	100	110	000	100	*186	σ_{1}-similar of $f 6.1$
10	\#317	111	111	011	110	000	000	*242	σ_{1}-similar of $f 6.7$
10	\#318	111	111	011	101	000	000	*244	σ_{1}-similar of $f 6.9$
10	\#319	111	111	011	011	000	000	*245	σ_{3}-similar of $f 6.9$
10	\#320	111	111	010	011	000	010	*182	$f 6.1$
10	\#321	111	111	001	101	000	001	*190	σ_{2}-similar of f6.1
10	\#322	111	110	111	110	000	000	*180	σ_{3}-similar of $f 5.18$
10	\#323	111	110	111	101	000	000	*179	σ_{2}-similar of $f 5.18$
10	\#324	111	110	110	111	000	000	*178	σ_{3}-similar of $f 5.17$
10	\#325	111	110	110	011	000	010	*168	σ_{3}-similar of $f 5.10$
10	\#326	111	110	011	111	000	000	*176	σ_{2}-similar of $f 5.17$
10	\#327	111	110	011	011	000	010	*167	σ_{2}-similar of f5.10
10	\#328	111	101	111	101	000	000	*152	σ_{4}-similar of $f 5.18$
10	\#329	111	101	111	011	000	000	*151	σ_{0}-similar of $f 5.18$
10	\#330	111	101	110	111	000	000	*148	σ_{0}-similar of $f 5.17$
10	\#331	111	101	110	110	000	100	*139	σ_{0}-similar of $f 5.10$
10	\#332	111	101	101	111	000	000	*150	σ_{4}-similar of $f 5.17$
10	\#333	111	101	101	110	000	100	*140	σ_{4}-similar of $f 5.10$
10	\#334	111	011	111	110	000	000	*124	σ_{1}-similar of $f 5.18$
10	\#335	111	011	111	011	000	000	*123	$f 5.18$
10	\#336	111	011	101	111	000	000	*122	σ_{1}-similar of $f 5.17$
10	\#337	111	011	101	101	000	001	*112	σ_{1}-similar of $f 5.10$
10	\#338	111	011	011	111	000	000	*120	$f 5.17$
10	\#339	111	011	011	101	000	001	*111	$f 5.10$
10	\#340	011	111	110	010	010	100	*75	σ_{3}-similar of $f 3.8$
10	\#341	011	111	110	010	010	010	*69	σ_{0}-similar of $f 3.8$
10	\#342	011	111	101	100	100	100	*45	σ_{1}-similar of $f 3.8$
10	\#343	011	111	101	100	100	001	*51	σ_{4}-similar of $f 3.8$
10	\#344	011	111	100	100	110	100	*33	σ_{1}-similar of $f 3.1$
10	\#345	011	111	100	010	110	100	*61	σ_{3}-similar of $f 3.1$
10	\#346	011	111	011	001	001	010	*21	$f 3.8$
10	\#347	011	111	011	001	001	001	*27	σ_{2}-similar of $f 3.8$
10	\#348	011	111	010	010	011	010	*57	σ_{0}-similar of $f 3.1$
10	\#349	011	111	010	001	011	010	*9	$f 3.1$
10	\#350	011	111	001	100	101	001	*37	σ_{4}-similar of $f 3.1$

$w t$	\#no	TLS	$M_{1} M_{2} M_{0}$	$U_{2} U_{0} U_{1}$	$B_{0} B_{1} B_{2}$	$T_{0} T_{1} T_{2}$	$T_{01} T_{12} T_{20}$	*no	representative
10	\#351	011	111	001	001	101	001	*13	σ_{2}-similar of $f 3.1$
9	\#352	111	111	110	010	000	000	*286	σ_{2}-similar of $f 6.8$
9	\#353	111	111	101	100	000	000	*200	$f 6.8$
9	\#354	111	111	011	001	000	000	*243	σ_{1}-similar of $f 6.8$
9	\#355	111	110	110	110	000	000	*177	σ_{3}-similar of $f 5.16$
9	\#356	111	110	011	101	000	000	*175	σ_{2}-similar of $f 5.16$
9	\#357	111	110	010	011	000	010	*166	σ_{2}-similar of $f 5.9$
9	\#358	111	101	110	011	000	000	*147	σ_{0}-similar of $f 5.16$
9	\#359	111	101	101	101	000	000	*149	σ_{4}-similar of $f 5.16$
9	\#360	111	101	100	110	000	100	*138	σ_{0}-similar of $f 5.9$
9	\#361	111	011	101	110	000	000	*121	σ_{1}-similar of $f 5.16$
9	\#362	111	011	011	011	000	000	*119	$f 5.16$
9	\#363	111	011	001	101	000	001	*110	$f 5.9$
9	\#364	011	111	100	100	100	100	*43	σ_{1}-similar of $f 3.6$
9	\#365	011	111	100	010	010	100	*73	σ_{3}-similar of $f 3.6$
9	\#366	011	111	010	010	010	010	*67	σ_{0}-similar of $f 3.6$
9	\#367	011	111	010	001	001	010	*19	$f 3.6$
9	\#368	011	111	001	100	100	001	*49	σ_{4}-similar of $f 3.6$
9	\#369	011	111	001	001	001	001	*25	σ_{2}-similar of $f 3.6$
9	\#370	011	110	110	010	010	010	*70	σ_{0}-similar of f3.9
9	\#371	011	110	101	100	100	100	*47	σ_{1}-similar of $f 3.10$
9	\#372	011	110	101	100	100	001	*53	σ_{4}-similar of $f 3.10$
9	\#373	011	110	011	001	001	010	*22	$f 3.9$
9	\#374	011	101	110	010	010	100	*76	σ_{3}-similar of $f 3.9$
9	\#375	011	101	101	100	100	100	*46	σ_{1}-similar of $f 3.9$
9	\#376	011	101	011	001	001	010	*23	$f 3.10$
9	\#377	011	101	011	001	001	001	*29	σ_{2}-similar of $f 3.10$
9	\#378	011	011	110	010	010	100	*77	σ_{3}-similar of $f 3.10$
9	\#379	011	011	110	010	010	010	*71	σ_{0}-similar of $f 3.10$
9	\#380	011	011	101	100	100	001	*52	σ_{4}-similar of $f 3.9$
9	\#381	011	011	011	001	001	001	*28	σ_{2}-similar of $f 3.9$
8	\#382	111	110	101	100	000	000	*174	σ_{2}-similar of $f 5.15$
8	\#383	111	110	010	011	000	000	*173	σ_{2}-similar of $f 5.14$
8	\#384	111	101	100	110	000	000	*145	σ_{0}-similar of $f 5.14$
8	\#385	111	101	011	001	000	000	*146	σ_{0}-similar of $f 5.15$
8	\#386	111	100	110	101	000	000	*97	σ_{2}-similar of $f 5.2$
8	\#387	111	011	110	010	000	000	*118	$f 5.15$
8	\#388	111	011	001	101	000	000	*117	$f 5.14$
8	\#389	111	010	011	110	000	000	*94	σ_{1}-similar of $f 5.2$
8	\#390	111	001	101	011	000	000	*91	$f 5.2$
7	\#391	011	100	100	100	100	100	*44	σ_{1}-similar of $f 3.7$
7	\#392	011	100	010	001	001	010	*20	$f 3.7=s_{010}$
7	\#393	011	010	010	010	010	010	*68	$j_{2}=\sigma_{0}$-similar of $f 3.7$
7	\#394	011	010	001	100	100	001	*50	σ_{4}-similar of $f 3.7$
7	\#395	011	001	100	010	010	100	*74	σ_{3}-similar of $f 3.7$
7	\#396	011	001	001	001	001	001	*26	σ_{2}-similar of $f 3.7$
6	\#397	111	100	100	100	000	000	*96	σ_{4}-similar of $f 5.1$
6	\#398	111	100	010	001	000	000	*95	σ_{2}-similar of $f 5.1$
6	\#399	111	010	010	010	000	000	*93	σ_{3}-similar of $f 5.1$
6	\#400	111	010	001	100	000	000	*92	σ_{1}-similar of $f 5.1$

$w t$	\#no	$T L S$	$M_{1} M_{2} M_{0}$	$U_{2} U_{0} U_{1}$	$B_{0} B_{1} B_{2}$	$T_{0} T_{1} T_{2}$	$T_{01} T_{12} T_{20}$	$*$ no	representative
6	$\# 401$	111	001	100	010	000	000	$* 90$	σ_{0}-similar of $f 5.1$
6	$\# 402$	111	001	001	001	000	000	$* 89$	$f 55.1=\min (x, y)$
4	$\# 403$	001	000	000	000	110	100	$* 8$	$2=\sigma_{1}-, \sigma_{3}$-similar of 0
4	$\# 404$	001	000	000	000	101	001	$* 7$	$1=\sigma_{2}-, \sigma_{4}$-similar of 0
4	$\# 405$	001	000	000	000	011	010	$* 6$	0 (constant)
0	$\# 406$	000	000	000	000	000	000	$* 1$	x (projection functions)

Appendix 2. Representatives of classes of $P_{3}(f 3.1-f 8.14)$.

$$
\begin{array}{c|llll|llll|lll}
f 3.5 & 0 & 1 & 2 \\
\hline f(x) & 0 & 0 & 1
\end{array} \quad \begin{array}{ll}
f 3.7 & 0 \\
\hline
\end{array} \quad 1 \quad 2 . \quad \begin{gathered}
f 3.12 \\
f(x) \\
\hline
\end{gathered}
$$

$f \backslash x y$	00	01	02	10	11	12	20	21	22
$f 3.1$	0	0	0	1	0	1	0	0	0
$f 3.2$	0	1	1	0	0	0	0	0	0
$f 3.3$	0	0	0	0	0	1	0	1	0
$f 3.4$	0	0	1	0	0	0	1	0	0
$f 3.8$	0	1	0	0	1	1	0	0	0
$f 3.9$	0	1	0	1	1	0	0	0	0
$f 3.10$	0	1	0	0	1	1	0	1	0
$f 3.11$	0	0	1	0	1	0	0	0	0
$f 3.13$	1	1	0	1	0	0	0	0	0
$f 4.1$	0	2	1	1	0	2	2	1	0
$f 4.2$	1	0	2	0	2	1	2	1	0
$f 4.3$	0	2	1	2	1	0	1	0	2
$f 4.4$	1	0	0	1	2	1	2	2	0
$f 4.5$	0	0	2	0	1	1	2	1	2
$f 4.6$	0	0	1	2	1	1	2	0	2
$f 5.1$	0	0	0	0	1	1	0	1	2
$f 5.2$	0	0	0	0	1	1	0	2	2
$f 5.3$	0	0	0	0	0	1	0	1	2
$f 5.4$	0	0	0	0	0	1	0	2	2
$f 5.7$	0	0	1	0	0	1	1	1	2
$f 5.8$	0	0	1	0	0	1	0	2	2
$f 5.9$	0	1	1	1	1	1	1	1	2
$f 5.10$	0	0	1	0	1	1	1	1	2
$f 5.11$	0	0	1	1	1	1	1	2	2
$f 5.12$	0	1	1	0	1	1	2	2	2
$f 5.13$	0	0	1	0	1	2	1	2	2
$f 5.15$	0	0	0	0	1	2	2	2	2
$f 5.16$	0	0	0	0	1	1	2	2	2
$f 6.2$	0	0	2	0	1	2	0	0	0
$f 6.3$	0	0	0	1	0	1	2	2	0
$f 6.4$	0	2	2	2	1	1	1	1	2
$f 6.5$	0	2	2	1	1	2	2	2	2
$f 6.10$	0	0	0	1	1	2	2	1	2
$f 6.11$	1	0	0	1	1	1	2	1	2
$f 6.12$	1	0	0	1	1	2	2	1	2
$f 6.13$	2	2	1	0	1	2	0	2	2
$f 6.14$	0	2	1	2	1	1	1	1	1
$f 6.15$	0	0	0	0	1	2	0	2	1

$f \backslash x y$	00	01	02	10	11	12	20	21	22
$f 6.16$	0	1	1	1	1	2	1	2	1
$f 6.17$	0	1	1	0	1	2	0	2	1
$f 6.18$	2	2	1	0	1	2	0	2	1
$f 6.19$	1	1	1	0	1	2	0	1	1
$f 6.20$	1	0	0	1	1	2	2	1	1
$f 6.21$	0	0	0	0	2	2	0	1	1
$f 6.22$	0	0	0	2	2	2	1	2	1
$f 6.23$	2	1	2	0	2	1	0	2	1
$f 6.24$	0	1	2	0	0	0	0	0	0
$f 6.25$	0	1	2	1	0	0	2	0	0
$f 6.27$	0	1	2	1	0	0	1	0	0
$f 6.28$	1	1	2	1	0	0	1	0	0
$f 6.29$	0	2	1	0	0	0	0	0	0
$f 6.30$	0	2	1	2	0	0	1	0	0
$f 6.31$	2	2	1	2	0	0	1	0	0
$f 7.2$	0	0	2	0	1	0	0	1	2
$f 7.3$	0	1	0	0	1	2	0	0	0
$f 7.4$	0	0	0	0	1	2	1	1	1
$f 7.5$	0	0	1	1	1	0	0	2	1
$f 7.6$	0	0	0	0	0	1	0	2	0
$f 7.7$	0	0	0	0	0	2	1	1	1
$f 7.8$	0	0	1	0	2	1	0	1	1
$f 7.9$	0	2	1	0	0	1	0	2	0
$f 8.1$	0	1	0	0	1	2	0	2	2
$f 8.2$	0	0	1	1	1	2	0	1	2
$f 8.3$	0	0	1	1	1	0	1	2	2
$f 8.4$	0	1	1	2	1	0	0	1	2
$f 8.5$	1	0	1	0	1	1	0	2	2
$f 8.6$	1	0	0	0	1	0	1	2	2
$f 8.7$	1	0	1	2	1	1	0	2	2
$f 8.8$	2	0	1	0	1	0	1	0	2
$f 8.9$	0	0	2	0	0	1	2	2	0
$f 8.10$	0	1	1	0	0	2	1	2	0
$f 8.11$	0	0	1	0	2	2	0	2	1
$f 8.12$	0	2	1	1	0	2	1	1	0
$f 8.13$	1	1	0	1	0	2	0	2	0
$f 8.14$	1	0	1	0	2	0	1	0	0

Representatives of classes of P_{3} (continued) f3.6-f7.1

$f 3.6$	00	01	10	11	12	21	22	20	02	f5.5	00	01	10	11	12	21	22	20	02
0	0	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	0	1	1	1	0	1	1	1	1	0	0	0	0	1	1	1	1	1
2	0	1	0	1	0	1	0	0	0	2	0	0	1	1	2	2	2	2	2
$f 5.6$	00	01	10	11	12	21	22	20	02	$f 5.14$	00	01	10	11	12	21	22	20	02
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	2	0	0
1	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	2	1	1
2	0	1	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
$f 5.17$	00	01	10	11	12	21	22	20	02	$f 5.18$	00	01	10	11	12	21	22	20	02
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	0	1	1	1	1	0	1	1	0	0	0	1	1	2	2	0	0
2	0	1	0	1	2	2	2	2	2	2	0	0	2	2	2	2	2	2	2
$f 5.19$	00	01	10	11	12	21	22	20	02	$f 6.1$	00	01	10	11	12	21	22	20	02
0	0	0	0	0	0	0	0	0	0	,	0	0	0	0	0	2	2	2	0
1	0	0	0	1	1	1	2	1	0	1	0	0	1	1	1	2	2	2	0
2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	0	2	0	2
$f 6.6$	00	01	10	11	12	21	22	20	02	$f 6.7$	00	01	10	11	12	21	22	20	02
0	0	2	0	2	1	1	2	0	2	0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1	1	0	0	0	1	2	2	2	0	0
2	2	2	2	2	2	2	2	2	2	2	0	0	0	1	1	2	2	0	0

$f 6.8$	00	01	10	11	12	21	22	20	02
0	0	1	1	1	1	1	2	2	2
1	1	1	1	1	1	2	1	1	1
2	2	1	1	1	2	1	2	2	2

$f 6.9$	00	01	10	11	12	21	22	20	02
0	0	0	1	1	1	1	2	2	0
1	1	1	1	1	1	2	1	1	1
2	2	1	1	1	2	1	2	2	2

$f 6.26$	00	01	10	11	12	21	22	20	02										
0	0	0	0	0	0	0	0	0	0		$f 7$	0	00	01	10	11	12	21	22
	20	02																	
1	0	1	0	0	0	0	0	0	2		1	0	0	0	0	1	0	0	0
2	0	2	0	0	0	0	0	0	1		2	0	0	0	2	1	2	1	0
2	1	1	2	0	0														

Appendix 3. List of basic inclusions in P_{3}.
Lemma 5.1.3.

$$
M_{1} M_{0} \subseteq U_{2}, M_{2} M_{1} \subseteq U_{0}, \text { and } M_{0} M_{2} \subseteq U_{1}
$$

Corollary 5.1.1.

$$
M_{1} M_{2} M_{0} \subseteq U_{2} U_{0} U_{1}
$$

Lemma 5.1.4.

$$
U_{2} U_{0} U_{1} \subseteq M_{1} M_{2} M_{0}
$$

Note 5.1.1.

$$
\left.\begin{array}{l}
D(0,1) U_{2} U_{0} \subseteq M_{1}, \\
D(2,0) U_{2} U_{1} \\
\subseteq \\
D(0,1) U_{1}, \\
D(5.5) \\
D(0,1) U_{1} U_{0}
\end{array} \subseteq M_{0}, \quad 15.6\right)
$$

$$
D(0,1) U_{0} U_{1}=\{0,1\}, D(1,2) U_{1} U_{2}=\{1,2\} \text { and } D(2,0) U_{2} U_{0}=\{2,0\}
$$

Lemma 5.1.5.

$$
M_{1} M_{2} \subseteq B_{0}, M_{2} M_{0} \subseteq B_{1} \text { and } M_{0} M_{1} \subseteq B_{2}
$$

Corollary 5.1.2.

$$
M_{0} M_{1} M_{2} \subseteq B_{0} B_{1} B_{2}
$$

Lemma 5.1.6.

$$
U_{2} U_{0} \subseteq B_{1}, U_{0} U_{1} \subseteq B_{2} \text { and } U_{1} U_{2} \subseteq B_{0}
$$

Corollary 5.1.3.

$$
U_{0} U_{1} U_{2} \subseteq B_{0} B_{1} B_{2}
$$

Lemma 5.1.7.

$$
B_{0} B_{1} \subseteq U_{2}, B_{1} B_{2} \subseteq U_{0} \text { and } B_{2} B_{0} \subseteq U_{1}
$$

Corollary 5.1.4.

$$
B_{0} B_{1} B_{2} \subseteq U_{0} U_{1} U_{2}
$$

Theorem 5.1.4

$$
K=M_{0} M_{1} M_{2}=B_{0} B_{1} B_{2}=U_{0} U_{1} U_{2}=\left\{0,1,2, x_{i}(i=1,2, \ldots)\right\}
$$

Lemma 5.1.8.

$$
T_{01} T_{12} \subseteq T_{1}, T_{12} T_{20} \subseteq T_{2} \text { and } T_{20} T_{01} \subseteq T_{0}
$$

Corollary 5.1.5.

$$
T_{01} T_{12} T_{20} \subseteq T_{0} T_{1} T_{2}
$$

Lemma 5.1.9.

$$
M_{1} \cup M_{2} \cup M_{0} \subseteq T_{01} \cup T_{12} \cup T_{20}
$$

Note 5.1.2.

$$
\begin{array}{ccc}
U_{0} \cup U_{1} \cup U_{2} & \nsubseteq & T_{01} T_{12} T_{20} \\
B_{0} \cup B_{1} \cup B_{2} & \nsubseteq & T_{01} T_{12} T_{20}
\end{array}
$$

Lemma 5.1.10.

$$
\begin{array}{lll}
B_{0} B_{1} \subseteq T_{01}, M_{0} M_{1} \subseteq T_{01} & \text { except constant function } & f=2 \\
B_{1} B_{2} \subseteq T_{12}, M_{1} M_{2} \subseteq T_{12} & \text { except constant function } & f=0 \\
B_{2} B_{0} \subseteq T_{01}, M_{2} M_{0} \subseteq T_{20} & \text { except constant function } & f=1
\end{array}
$$

Corollary 5.1.6 (Lemma 5.1.11).

$$
\begin{array}{lll}
U_{0}=M_{2} & \text { on } & D(0,1) M_{1} \\
U_{0}=M_{1}, U_{1}=M_{0} & \text { on } & D(0,1) M_{2} \\
U_{1}=M_{2} & \text { on } & D(0,1) M_{0} \\
U_{1}=M_{0} & \text { on } & D(1,2) M_{2} \\
U_{1}=M_{2}, U_{2}=M_{1} & \text { on } & D(1,2) M_{0} \\
U_{2}=M_{0} & \text { on } & D(1,2) M_{1} \\
U_{2}=M_{1} & \text { on } & D(2,0) M_{0} \\
U_{2}=M_{0}, U_{0}=M_{2} & \text { on } & D(2,0) M_{1} \\
U_{0}=M_{1} & \text { on } & D(2,0) M_{2} . \tag{5.19}
\end{array}
$$

Let $P_{\text {onto }}^{(1)}:=\left\{f \mid f \in P_{3}^{(1)}\right.$ and f is onto $\}$ and $D^{\prime}(0,1):=D(0,1) \backslash\{0,1\}, D^{\prime}(1,2):=$ $D(1,2) \backslash\{1,2\}, D^{\prime}(2,0):=D(2,0) \backslash\{2,0\}$. Let $D:=P_{3} \backslash D(0,1) \cup D(1,2) \cup D(2,0)$.
Lemma 5.3.1.

$$
D^{\prime}(0,1) \subseteq \bar{S}
$$

Corollary 5.3.1.

$$
D \subseteq \bar{S} .
$$

Corollary 5.3.2.

$$
T S=\left\{x_{i}, x_{i}+1, x_{i}+2(i=1,2, \ldots)\right\}
$$

Lemma 5.3.2.

$$
D^{\prime}(0,1) \subseteq \bar{L}
$$

Corollary 5.3.2.

$$
D \backslash\{0,1,2\} \subset \bar{L}
$$

Corollary 5.3.4.

$$
T L=P_{o n t o}^{(1)}+\{0,1,2\}
$$

Lemma 5.3.5.

$$
D^{\prime}(0,1) U_{0} \bar{U}_{1} \subseteq \bar{T}_{20}
$$

Lemma 5.4.3.
$\bar{T} S \subseteq \tilde{M} \tilde{U} \tilde{B}$, where $\tilde{M}=\bar{M}_{0} \bar{M}_{1} \bar{M}_{2}, \tilde{U}=\bar{U}_{0} \bar{U}_{1} \bar{U}_{2}$, and $\tilde{B}=\bar{B}_{0} \bar{B}_{1} \bar{B}_{2}$.

Lemma 5.4.4.

$$
S \bar{T}_{0} \bar{T}_{1} \bar{T}_{2} \subseteq \bar{T}_{01} \bar{T}_{12} \bar{T}_{20}
$$

Lemma 5.4.5.

$$
\bar{T} L \subseteq \bar{T}_{01} \bar{T}_{12} \bar{T}_{20}
$$

Let $L_{a}:=\left\{f \mid f=c_{0}+\sum c_{i} x_{i}\right.$ and $\left.\sum_{i=1}^{n}=a\right\}$ and $L_{a b}:=\left\{f \mid f \in L_{a}\right.$ and $f(\mathbf{o})=c_{0}=$ b\} $\left(L_{a}=L_{a 0}+L_{a 1}+L_{a 2}\right)$.

Lemma 5.4.7.

$$
L S=L_{1}
$$

Lemma 5.4.8.

$$
\begin{array}{ll}
\text { 1) } L_{00}+L_{20} & \subseteq T_{0} \bar{T}_{1} \bar{T}_{2} \\
\text { 2) } L_{01}+L_{22} & \subseteq \bar{T}_{0} T_{1} \bar{T}_{2}, \\
\text { 3) } L_{02}+L_{21} \subseteq \bar{T}_{0} \bar{T}_{1} T_{2}
\end{array}
$$

Lemma 5.4.9.

$$
\bar{T} L \subseteq \tilde{M} .
$$

Lemma 5.4.10.

$$
\bar{T} L \subseteq \tilde{U}
$$

Lemma 5.4.11.

$$
\bar{T} L \subseteq \tilde{B}
$$

Lemma 5.5.1.

$$
\begin{aligned}
& \text { 1) } M_{q} \bar{T} \\
& \text { 2) } M_{q} T_{p} T_{q} T_{r}, \\
& \text { 3) } T_{p q}, \\
& \text { 3) } M_{q} T_{q} T_{r} \subseteq T_{q r}
\end{aligned}
$$

Corollary 5.5.1.

$$
M_{1} M_{2} \bar{T} \subseteq T_{0} T_{1} T_{2} T_{01} T_{12} T_{20}
$$

Corollary 5.5.2.

$$
U_{2}=B_{1} \text { and } U_{1}=B_{2} \text { in } M_{1} M_{2} \bar{T}
$$

Lemma 5.5.8.

$$
B_{1} T_{20} M_{1} \subseteq U_{2} U_{0}
$$

Lemma 5.5.9.

$$
U_{1} \subseteq \bar{B}_{1}, U_{2} \subseteq \bar{B}_{2} \text { and } U_{0} \subseteq \bar{B}_{0} \text { in } M_{1} \bar{M}_{2} \bar{M}_{0}
$$

Lemma 5.5.10.

$$
\bar{B}_{0} B_{1} \bar{B}_{2}=B_{2} B_{0} \bar{B}_{1} \text { in } M_{1} \bar{M}_{2} \bar{M}_{0} T_{20} .
$$

Lemma 5.5.11.

$$
U_{1} \subseteq B_{2} B_{0} \text { in } M_{1}
$$

Note 5.5.2.

$$
B_{2} B_{0}=U_{1} \text { in } M_{1} .
$$

Lemma 5.6.1.

$$
U_{2} U_{1} \subseteq T_{01} T_{20} T_{0} B_{0}
$$

Lemma 5.6.3.

$$
\bar{M}_{0} U_{2} U_{1} \subseteq \bar{T}_{12}
$$

Lemma 5.6.4.

$$
U_{2} \bar{T}_{12} \subseteq \bar{B}_{1}
$$

Corollary 5.6.1.

$$
U_{2} U_{1} \overline{D T}_{12} \subseteq \bar{B}_{1} \bar{B}_{2}
$$

Lemma 5.6.6.

$$
\begin{aligned}
& U_{r} T_{p q} \bar{T}_{p r} \bar{D} \subseteq \bar{B}_{p}, \\
& U_{r} T_{p q} \bar{T}_{q r} \bar{D} \subseteq \bar{B}_{q} .
\end{aligned}
$$

Lemma 5.6.7.

$$
T_{p} \bar{T}_{p q} \subseteq \bar{B}_{p}
$$

Corollary 5.6.3.

$$
T_{p} T_{q} \bar{T}_{r} \subseteq \bar{B}_{r}
$$

Lemma 5.6.8.

$$
\bar{T}_{p} T_{p q} \bar{D} \subseteq \bar{T}_{p r} \bar{B}_{p}
$$

Lemma 5.6.9.

$$
\bar{T}_{p} \bar{T}_{q} \bar{T}_{r} T_{p q} \subseteq \bar{B}_{r}
$$

Lemma 5.6.10.

$$
T_{p q} U_{r} \bar{D} \subseteq \bar{T}_{p} \bar{T}_{q} \bar{B}_{p} \bar{B}_{q} .
$$

Lemma 5.6.11.

$$
\bar{T}_{p} \bar{D} \subseteq \bar{B}_{p}
$$

Lemma 5.7.1.

$$
B_{p} \bar{D} \subseteq T_{p}
$$

Lemma 5.7.2.

$$
T_{p} B_{q} \subseteq T_{p q}
$$

