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                              Abstract 

Let Pk be the set of k-valued logical functions. The functions in a closed subset F of  .Pk 

may be classified by their membership in the maximal subsets of F. This also divides 

all its bases into finite equivalence classes. This thesis presents classifications and basis 

enumerations in the following cases: various functional constructions in  P2, the set  P3 

and its several maximal sets, the set Pk2 of functions which map cartesian power of 

k-element set  {0,  1,  , k  —  1} into the two values  {0,  1}, and its 4 out of all 5 families 
of maximal sets. 

  The formulas for the numbers of  n-ary  Sheffer functions, functions Sheffer with con-

stants, symmetric Sheffer functions, and symmetric functions Sheffer with constants, 

in various functional constructions of  132, are given. The formulas for the number of 

bases consisting solely of n-ary symmetric functions in each of the constructions are also 

given. 
  Applications of a subset generating algorithm to efficient base enumeration, knapsack 

and minimal covering problems are also described.
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Introduction 

In the synthesis of large and complicated electronic instruments such as computers, a 

small number of basic primitives are used to compose logic networks in the instruments. 

These basic primitives should be, in general, able to compose an arbitrary network. 

For example, the NAND primitive is commonly used as one of such primitives. Let us 

see an example. A network  f  (g(x, y,  z),  y,  h(y, z)) is composed of three-primitives  f, g 

and h and has three inputs x, y and z. Note that neither delay nor synchronization 

is considered in this example, and no feed-back connection is allowed (a circuit with 

this restriction is called a combinatorial circuit). A set of basic primitives which can 

compose any logical network is called a complete set (or a base) of logical functions. 

There is a variety of compositions depending on the methods of constructing a network 

from gates, or on restrictions imposed by real circuit requirements. Accordingly, there 

are many notions for complete sets. 

  Recently, the concept of many-valued logic has been found to be useful in many 

areas, such as diagnosis of multiprocessor systems  [But86], software (e.g. decision tables 

 [Miy8513]), pattern recognition [Mic77], signal processing  [LiR77], and optoelectronics 

 [1-lur86]. 
  Main expectation in practice for many-valued logic in contrast to two-valued logic 

exists in its information density achievable without increasing the size or complexity 

of devices. It is well-known that one of the crucial problems in increasing information 

density in VLSI is the "pin" and "line" limitations associated with it (i.e. too large 

numbers of pins and lines to be arranged in a limited area). Many-valued logic allows 

each input pin to accept and each output pin to deliver more information, thereby 

making the total number of pins required in an integrated circuit chip much less than 

the case of binary elements. This eventually extends the line limitation, because the 

line density can be kept less in VLSI. A serious effort is being done for developing 

optical three-valued devices  [WIS86a]. Optical devices are advantageous since they can 

avoid "interconnection delay" limitation; as the lines become very thin, their resistance 

increases and the propagation of voltage becomes delayed, so that this eventually limits 

the speed of VLSI [GLK84]. 

  The synthesis problem of network can be divided into three major problems. The 
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first one is to find an efficient criterion, completeness  criterion, to determine whether 

a given set of functions is complete or not. The second one is to enumerate all bases. 

Finally, the third one is to investigate an optimum construction of a network from a 

given base. This thesis is mainly devoted to the second problem, and especially, we are 

interested in many-valued cases. To be precise, we treat two-valued, three-valued, and 

some of general k-valued cases. The enumeration of bases is useful when one needs to 

select an appropriate base. Such a situation often arises when by a specific device some 

logical functions are difficult to implement while others are easy. The selection of a 

simple, reliable and economic base implementable by physical devices is a fundamental 

problem in the construction of networks. 

  Historically, the completeness problem about Boolean functions was first studied. 

Although several complete systems were known earlier, a general and most natural cri-

terion is expressed in terms of so-called  precomplete or maximal sets. Such completeness 

criterion was given first by Post in  [Pos21], which has been rediscovered many times, 

cf.  [Jab52,INN63]. As the first step toward many-valued logic, Jablonskij gave the 

completeness criterion for 3-valued logic in  [Jab58]. For general k-valued logic, it was 

given by Rosenberg [Ros65]. The criterion consists of a list of all maximal sets. Let Pk 
be the set of all k-valued logical functions. There are 5 and 18 maximal sets in P2 and 

P3, respectively, and 6 families of them in  Pk. Some other studies of the completeness 

problem can be seen in  [Ma176,Ros77,Pok79,Lau84b]. 
  Further in  [Jab52] Jablonskij showed a straightforward method for classifying the 

whole functions of P2 into nonempty equivalence classes in order to determine all its 

bases (nonredundant complete sets): one has to investigate the intersections of the 

partitions by  H, and P2 \  H where  Hi (1  < i  < m) are P2-maximal sets. This also 
 divides all its bases into finite equivalence classes. This was done independently in 

 [INN63] and  [Krn65]. It is shown that P2 is divided into 15 classes [Jab52], and there 
 are 42 classes of bases in P2  [INN  63]. It is also shown that the maximal number of 

 elements of a base of P2 is 4  [Jab52]. The above classification is valid provided the 

 considered set has a finite base. 

   Thus the classification and the basis enumeration became the second step of the 

 functional completeness theory following the completeness criterion. However, this is 
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often not so simple because of three reasons. Firstly, the number m of the maximal sets 

is usually rather large. The possible classes are only  25 = 32 for m = 5 (P2 case), while 

for m = 18 (P3 case) it is 218 = 262144, and the number  m grows very rapidly when k 

increases. The second reason is that the descriptions of maximal sets are usually not 

easy to handle. Owing to the development of many-valued logic algebras we can now 

describe most maximal sets in terms of  relations which the functions in the maximal 

sets "preserve". However, the relations are often complex. Lastly, the enumeration of 

bases is equivalent to the minimum cover problem, a famous NP-complete problem, 

which makes the enumeration extremely difficult in some cases. One has to invent an 

efficient algorithm to make the enumeration feasible. We have developed an efficient 

algorithm, but even with it, the enumeration of bases which involves about 600 classes 

required about 17 hours by FACOM M380 computer (about 16 MIPS). 

  The first step for the classification and base enumeration of P3 was done by the 

author in  [Miy71] and [Miy79], respectively. There are 406 classes of functions and 

6,239,721 classes of bases of P3 (the original classification counted some classes twice; 

this was corrected in  [Sto84a]). The author showed in [Miy79] that the maximal number 

of elements of a base of P3 is 6, which answered the long-standing problem posed early 

in [Jab58] about the bases of P3. Since there exists an incomplete  nonredundant set 

with 7 elements, the maximal number of elements of a base of P3 had been conjectured 

to be greater than or equal to 7. The above answer disproved the conjecture (this result 

is  confhiued later by another method, not through enumeration, in [Vuk84]). 

  Recently, Machida [Mac79], Lau  [Lau82b] and others determined all submaximal sets 

of P3. The author  [Miy82,Miy83,Miy84] and  Stojmenovie [Sto86a,Sto86b] determined 

their classes and bases (this was jointly reported in [MiS87a]). There are few classi-

fication results about closed sets in Pk. The set L of linear functions for the case k 

prime number is classified in [Sto86c]. The set of functions Pk2 which maps k-values 

{0, 1, ..., k  —1}n to the two values {0, 1} and its maximal sets were classified jointly by 
the author and  StojmenoviC. 

   The present thesis describes the classifications and basis enumerations done by the 

author. We now give a detailed description for each chapter (we also indicate the papers 

where the given results were reported). 
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  In Chapter 1 we give basic definitions. From Chapter 2 through Chapter 4 we treat 

Boolean cases. We consider 7 different kinds of functional constructions in  P2: ordinary 

composition, 2-line fixed coding construction, r-line coding construction, uniform com-

position, its Ibuki variation, its Inagaki variation, and sequential circuit construction. 

  In Chapter 2 we give classes of functions and classes of bases of Boolean functions 

under each of these functional constructions  [MIS85]. In Chapter 3 we give the formulas 

for the numbers of bases consisting solely of symmetric n-ary functions (so called  8-bases) 

for each construction. And in Chapter 3 we  give formulas for the numbers of Sheffer, 

symmetric Sheffer, "Sheffer with constants", and "symmetric Sheffer with constants" 

functions of n-ary functions [MSH87]. 

  In Chapter 5 we show that the set P3 of three-valued logical functions is divided into 

406 classes and that the number of its classes of bases is 6,239,721. We also show that, 

despite the existence of noncomplete independent sets with 7 elements, the maximal 

number of functions of a base of P3 is 6. We also give some example of bases and 

nonredundant incomplete sets  [Miy71,Miy79]. 

  In Chapter 6 we present classes and bases for several maximal sets of  P3: T, L, S 

 [Miy83], B  [Miy82], and  To  [Miy84] (also cf.  [MiS87a]). 
  In Chapter 7 we show that the problem of base enumeration is equivalent to the mini-

mal cover problem (an NP-complete problem). We give an algorithm which enumerates 

all bases in lexicographic order. We demonstrate its efficiency on some examples of 

real data. We also show that our base enumeration algorithm is applicable with slight 

modifications to minimal covering and knapsack problems  [Miy85a,StM86a,StM87]. 

   In Chapter 8 we present classifications of  Pk  . We show that the number of classes is 

 13Ak  —11Ak_i, where Ak is the number of equivalence relations on the set of k elements. 

The maximal rank of Pk,2 is proved to be k  +  2 [MiS87b]. 

   In Chapter 9 we present classifications of 4 families of maximal sets out of all its 5 

 families, namely  Zit,  2.'„ L' and  S'. We also prove that their maximal ranks are 2k  — 

 2, k 1, k 1 and less than 2k, respectively [MSL87]. We also give the numerical data 

 of the numbers of bases and s-bases for 2  < k < 10. 

   In Chapter 10 we state several open problems. All the above mentioned results about 

 classifications and basis enumerations are also included in the survey paper  [MSLR87]. 
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Chapter 1 

Definitions and Preliminaries 

1.1. Functional completeness problem and classification in Pk 

As a motivation we shall consider the following situation arising in the synthesis of 

switching functions. We have certain basic elements called gates. Each gate has one 

or several inputs and a single output. The gate receives signals on the inputs and 

transform them into the output signal. For simplicity's sake we assume that all the 

input and output signals belong to the same finite set (called alphabet) whose elements 

(called letters) are denoted by  0,1,... ,k —1. Note that it does not matter how the letters 
are denoted; the first k natural numbers are as convenient as any other symbols. We 

are to describe synthesis of networks constructed from gates by  connecting outputs of 

certain gates to inputs of other gates. Variable  xi is used to denote the signals feeded 

in the input of a gate (or network). 

  Let k be a fixed positive integer (k > 1), and Ek :=  {0,1, , k — 1} be the set of k 

integers. An ordered n-tuple of elements from  Ek (an element of cartesian product  En 

is called a vector and denoted by  (al,  a2, ,  an). We may delete the commas between 

the coordinates as well as parenthesis of the vector when there is no confusion, i.e. a 

vector may be represented by a =  al E  E. An  n-ary k-valued function f is a 

map from  ET: to  Ek, i.e. f is a function of  n variables ranging in Ek with values in Ek. 

The functioning of a gate can be described by assigning an output letter  fai  ...  an to 

every vector  a=ai  ...  an. Thus the gate realizes a function  f. The number  n of inputs 

corresponds to the arity of the function  f  . For our purposes the function f completely 

describes the functioning of the gate. A function f can be represented by a table shown 

in Table 1.1. 
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Definition 1.1.1. The set of k-valued logical function of n variables is denoted by Pi!'), 
i.e. 

                   .137!n) :=  {f(xi,...,xn)i  f  —> Ek}. 

Put Pk :=  u  1  Pi(cn)  , the set of k-valued logical functions. 

The elements of P2 (a special case k = 2) is called  Boolean functions. 

  Two functions f and g  (f,  g E Pk) is equal, in symbol f = g, if the arities of both 

functions are equal  (n) and  f  (al, ,  an) =  g(ai, ,  an) for all  (ai, ,  an) E 

Definition 1.1.2.  f(x)  depends on  xi  if there exist  ai, a2,  •  •  • ,  ai+i,  ••• ,  an,  b,  c E 

Ek, b  # c, such that 

         f(a1,  a2,...,  ai+i, ,  an)  f  (al,  a2,... , c,  ai+i, , an). 

If f depends on  xi then  xi is said to be an  essential variable of  f  . Otherwise it is a 

 nonessential (fictitious or dummy) variable. 

                                Table 1.1. 

        xi x2 . • • Xn-1 Xn f (X1 X2 • . . Xn_i Xn) 

      al a2 an_i an f (al a2 an_i an) 

   Suppose that we have a collection of gates  {Gi} realizing functions  fi E Pk. These 

 gates can be combined into combinatorial switching network by attaching outputs of 

 certain gates to inputs of certain gates so that the resulting network has a single output 

 and no feedback is created. This means that the single output of the network defines a 

 unique f E  Pk of inputs of the network which is nothing else than a "composition" of the 

 fi's. Note that we automatically assume that we are allowed to reorder or identify the 

 inputs. Thus, having a gate f E  ./32) we have at our disposal the gates realizing both 

 g E  PP) and  h  E  Pi!1) defined by  gala2 :=  fa2ai and  hat :=  faiai for every  ai,  a2 E  Ek. 

                                   6
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  The above composition of functions needs a more precisely  definition. Operations 

over  Pk means (1) renaming variables of a function (especially, this includes permuting 

variables and equating variables) and (2) substituting a function into an argument 

(variable) of a function. This can be defined more formally by introducing the following 
elementary operations over  Pk (represented in basic universal algebra terminology after 

Mal'cev  [Ma176]). 

Definition 1.1.3. The three unary operations  (,  r, A, V and a binary operation * we 

define by the following equations. Let f E  Pi!n) and g E  Pin/). Then  (f  E  Pi!n),71. E 
 pi(n),  f  E  pi!max(n-1,1)),  vf E  pi(  n+                             and f * g E Pi!n+m-1): 

 rf  .(f  =Af  =  f  forn=1 

              (C f)(xl xn) := f (x2 .xnxi), 

               (7f)(xi xn)  •= f(x2xixn), 

                f)(xi xn-1) := f(xixi xn-l), 

 (V  f)(xi  xn+i)  :=  f(x2x3 xn+i), 

            (f *  g)(xi  xn+m_i) :=  f(g(xi  •  •  •  x.)x.+1  •  •  • xn+m-1), 

for every  xl,  ,  xn+m-i E  Elt• 

  The algebra <  Pk;  7,  C, A,  V,  * > is called  iterative algebra. A function h is called 

a  superposition over a set F of functions if it is obtained from the elements of F by 

applying the above operations  Co-,  A, V and * finite times. Note that the operation V 

serves to introduce new variables as well as to identify two functions which are different 

only in fictitious (nonessential) variables. 

Example 1.1.1. A composition  h(xi,  x2) :=  f  (xi,  g(xi,  x2)) can be represented by 

the following elementary operations to  f(xi, x2) and  g(xi, x2);  h(x  1, x2) =  A(((((r  f) * 

g)(xi, x2, x3))). Indeed,  fi(xi, x2)  :=  rf(x1, x2) =  f(x2, xi);  hi(xi, x2, x3)  := (fi * 

g)(xi, x2, x3) =  f1(g(x1, x2), x3) =  f  (x3,  g(x1, x2));  h2(xi, x2, x3)  :=  rhi(xi, x2, x3) := 

h1(x2, x3, x1) =  f  (xi, g(x2, x3)). Finally,  h(xi, x2) :=  Ah2(x1,  xl, x2) =  f  (xi,  g(x1, x2)). 

0 
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Definition 1.1.4. A subset of Pk is said to be closed if it contains all superpositions of 

 its members. For F  C  Pk we define its closure [F] as the least set which is generated by 

 superpositions from F. 

 Thus F C Pk is closed if F  = [F]. 

   Additionally, we introduce the following simple n-ary operation (1  < i  < n) called 

 projections which are defined by  ey.(xi,  ,  xn) =  xi (i-th coordinate) for every x  E 
 Thus  e1 is the identity map on Ek. Let E :=  < i < n, n  =  1,2,  .  .} be the 

 set of all projections. Usually all the projections  are also allowed as a basic operation 

 of "composition" since projection functions are directly obtained from the inputs of 

 network in practice. A closed set containing the set of projection is called clone in the 

 terminology of universal algebra. Most of the closed sets treated in this thesis are clones. 

 Definition 1.1.5. For closed sets F and H such that F C H (proper inclusion), F is 

 H  -maximal if there is no closed set  G such that  F  C  G  C  H. 

 Equivalently, a subset F is H-maximal if and only if [F U  In] = H for every f E H  \  F. 

 Definition 1.1.6. A subset F  C H is complete in H if H is the least closed set 

 containing F. 

 Again, equivalently, a subset F is H-complete if and only if [F] = H. 

    In the sequel we always assume that H has the following property: each proper closed 

  subset of H extends to an H-maximal set, i.e. for each proper closed subset there is an 

  H-maximal set containing it (this property need not hold in general, in fact there is an 

  example of such P8-maximal set [Mik86,Tar86]). Then, it is known that then there are 

  finitely many H-maximal sets, say  H1, , Hm. The following theorem due to Kuznecov 

  is well-known [Jab58]. 

  Theorem 1.1.1. (Completeness theorem in a general form) [Jab58] Suppose the 

  number  m of H-maximal sets is finite. Then a subset of functions in H is complete in 

  H if and only if it is contained in no H-maximal set. 

    This theorem reduces the  completeness problem to giving all maximal sets. Inves-

  tigations of completeness and related topics, usually called the functional completeness 
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 problems, are mathematically important, and have a wide range of applications including 

their direct relationship to logical circuit design. 

Example 1.1.2. Let  Ti be the set of functions such that  f(i) = i for i = 0,1,  S  be the 
set of self-dual functions, L be the set of linear functions and M be the set of monotone 

functions in P2 (see Example 2.1 below for a more detailed description). The five sets 
 To,  Ti, L,  S, M are all the P2-maximal sets: a subset F is P2-complete if and only if F 

is not contained in each of the five sets .  ^ 

Definition 1.1.7. An H-complete set F is a base of H if no proper subset of F is 

complete in H. 

Note that F is a base of H if and only if 1) F is H-complete, i.e. [F] = H and 2) F is 
not redundant, i.e.  [F  \  f] H for every f E F. The rank of a base is the number of 

its elements. 

Example 1.1.3. In view of the disjunctive normal form expansion of Boolean functions, 
the set  {AND,  OR,  NOT} is P2-complete but is not a base. It is well-known that 

 {AN  D  ,  NOT} and  {OR,  NOT} are bases.  ̂  

Definition 1.1.8. A function f is Sheffer for H if  {f} is a base (of rank 1) of H . 

  A function f is  Sheffer for H if and only if every g E H is a composition of a finite 

number of copies of  f. Clearly f is  Sheffer for H if and only if it belongs to no H-

maximal sets. Typical examples of Boolean two-variable functions that are  Sheffer for 

P2 are the Sheffer (or better Nicode's) strokes NAND and NOR of the algebra of logic. 
A Sheffer stroke describes the "operation" of a two-input one-output gate (or element) 

G such that every Boolean function  f(xi,  ,  xn) may be represented by the output of 

a combinatorial (i.e. feedback-free) network with inputs  xl , ,  xr, and built solely from 
copies of  G (however, the number of the gates needed for the representation may be 

large). 

  A comprehensive survey on  Sheffer functions can be found in [Ros77]. A variation of 

the definition of completeness is the concept of "complete with constants" , abbreviated 

c-complete, which assumes that for composition besides f one can freely utilize constant-

valued functions. More precisely, let Q denote the set of unary constant functions from 
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 H. A subset F of H is c-complete in H if F U Q is complete in  H. This makes sense 

in real combinatorial circuits, since the constant-valued functions (i.e. constant signals) 

are usually obtained with no extra cost. In particular, f is  c-  Sheffer for H means  {f} 

is c-complete in  H. 

Classification of Pk  Pab52,INN63,Krn64,Miy711 

  There is a straightforward method for enumerating all H-bases. The functions from 

H may be classified by their membership in the H-maximal sets. Let  Hi.,  . ,  H,, be 

the H-maximal sets. As mentioned above, a subset F of H is complete in H if and only 

if for each 1  < i < m there is  fi  E F  fl (H \  Hi) (the fi's need not be distinct). This 

leads to the following: 

Definition 1.1.9. Define the map  (p : H  {0,1}m by setting  (p(f) :=  .. am where 

 ai = 0 if f E  Hi and  ai = 1 if f  Hi (here  al  ...  am stands for the more customary 

 (ai,  ,  am) or <  al,  ,  am >). We call  cp(f) the characteristic vector  of  f. We put 

f g if  f,  g E H have the same characteristic vector, i.e. if  co(f) = co(g). 

Clearly -a-- is an equivalence relation on H (it is the standard kernel of  so) and so it 

partitions H into pairwise disjoint nonempty sets called (equivalence) classes. Note 

that for f g we have either  f,g E  Hi or  f,g  Hi for all i =  1, ,  m. We write 

AB for A  fl  B,  Al for A and A° for H \ A (A, B subsets of H). Clearly each class is 

of the form  HP  ...  lir where (1 — ai)  ... (1 — am) is a characteristic vector (i.e. it is a 

non-empty set of the form  HT  ...Hmam with  al  ...  am E  {0,1}'). 

Example 1.1.4. The set  ToTiLSM is a P2-class, which consists only of the n-ary 

constant functions  ej, for n  =.1,2, 

  If f  E  F  C  H and f  g, then clearly F is complete (base) in H if and only if 

(X \  {f}) U {g} is complete (base) in  H. Thus it suffices to study the completeness in 
 H up to the equivalence In other words, we can discuss the completeness in H in 

 terms of these classes instead of individual functions. If there are m maximal sets, then 

 the number of possible classes of functions is  2m, each of which being associated with 

 a unique characteristic vector. However, as we will see throughout this thesis, most of 

 the classes are empty depending on the  structure of the set  H. 
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  If to  al  ...  a77,  E  {0,1}171 we associate A = :  ai = 1} and if  A1, ,  Al are the subsets 

of  {17  •  '  m} corresponding to the characteristic vectors, the completeness problem 

is reduced to the listing of subsets of  {Al, , A1} covering  {1, , m} and the basis 

problem to the listing of such coverings which are irredundant (no proper subset covers 

 {1,  ,  m}). 

  As we have already seen, a set F = C H is a base of H if and only if 

it is complete and nonredundant. It is easy to see that these conditions, respectively, 

can be represented in terms of characteristic vectors as follows (from Theorem 1.1.1 and 
Definition 1.1.7): 

              E  cp(f) =  1-  - 1 (i.e. has all coordinates = 1), (1.1) 
 fEF 

           E  v(f)  E  (p(f) for all i =  1,  ,  r, (1.2) 
 f  EF\f,  fEF 

where sum is the component-wise logical OR of Boolean  m-vectors. 

Definition 1.1.10. A set F of functions is pivotal if it satisfies the condition (1.2). 

A pivotal incomplete set is simply called pivotal in case of no confusion. 

  Once we know all the characteristic vectors of a set, we can find all complete sets, 

pivotal sets and all bases by a direct combinatorial check (which may be done by a 
simple computer program, provided m is not large). 

  For a given set F  C H the classes of F is the set of classes of functions belonging 

to F. All bases and pivotals consisting of the same classes of functions form a  class of 

bases (or aggregate) and classes of pivotals. The enumeration algorithm of all classes of 

bases and pivotals for moderately large m (the number of all maximal sets for H) and 

for large number of classes by efficiently checking the above conditions of completeness 

and nonredundancy (pivotalness) for all combinations of the characteristic vectors will 

be discussed in chapter 7. 

   The study of classes also provides information on the closed sets which are the inter-

 sections of families of H-maximal sets, which is of independent interest (e.g. for H = P3 

 with one exception the least nontrivial intersections are all minimal clones [Ros87: pri-

 vate  communication]). The characteristic vectors can also be applied to seek the set of 

 classes of functions which makes a given incomplete set complete. 
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1.2. Functions preserving a relation 

For the description of closed sets containing all projections (i.e. clones), we need the 

following essential concept of "functions preserving a relation" (cf.  [Ros77]). 

  Let  h> 1. An h-ary relation p on Ek is a subset of  Ek (i.e. a set of h-tuples over  Ek) 

whose elements are written as column vectors. Given h row n-vectors  a2  =  (ail, ,  ain) 

(i =  1,  ,  h) we write  (a1,  .  .  .  ,  ah)T E  pn to indicate that  (al i,  .  ,  ahi)T E p for all 

j =  1,  ,n, where T denotes the transpose (this means that the h x n matrix with 
rows  al,  ...,ah  has all columns in p). We say that an n-ary f E Pk preserves p if 

 (f  (cti),...,  f  (ah))T E p whenever  ah)T E  pn. 

The set of functions preserving p is denoted by Pol p. 

  For a special case h=2, we write apb  <4.  (ai,  bi) E p for all 1  < i  < n. Several examples 

are given below in Theorem 2.1. It is known that each  Pol p is a clone, and conversely 

that to each clone C there are relations  pi,  p2,  . such that  Pol  p1  2  Pol  )92  2  2 C 

and C =  pi. In particular, if H is a clone, then all H-maximal sets are of the 

form  Pol p for some relation p. 

  Throughout this chapter by x y and xy we mean x y (mod k) and xy (mod k), 

respectively. Intersection of sets  X,. will be denoted by Finally, let  xr 

denote  x  ...x (r times) whenever x is a component of a vector. 

Example 1.2.1. The P2-maximal sets can be represented as follows. 

 To =  Pol(0) =  Iff(0,0)                          =  0}(set of functions preserving 0), 

T1 =  Pol(1) =  {ff (1,...,1)= 1}(set of functions preserving 1), 

 5,  Pot (0101)                — - {fI f  (xi  +  1, ...,xn +  1)  f  (xi, ...,  xn) for each xi E  {0  ,1}  , 1Ci n} 

      (set of selfdual functions), 

 L =  P  ol({(a,b,  c,  d)T  E  E24  I  b  =  c+  d}) 

    =  {f  I  f(xi,•  •  ,  x,) =  ao  aixi  anxn for some  at E  E2, 0  <  i  <  n} 

      (set 
(010 of linear functions).               )M =  Pol= {f  I  xi  C  yi  A  .  .  .  A  xn  5  yn  f(xi,...,xn)  <  f  (yi,  •  •  • , y Th)} 

       (set of monotone non-decreasing functions), 
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1.3. Operations over relations 

In the classification we have to use many inclusion relations between functions preserving 

relations, such as  To1T12  C  Ti (see  §5.1, Chapter 5). The following binary operations 

over relations provide methods to prove such inclusions by showing directly that the 

relation on the right may be built from the relations on the left by applying them finite 

times. 

  We define the unary relation  c,  T and binary relations o (relational product), x 

(cartesian product) and  n (inclusion) as follows. 

p o p'  (al, ,  ah_i,  ah, ,  ah-Fhl  _2  13u :  (al, , u) E p A (u,  ah,...  ah-Fie  -2) E 
          p x p' =  {(a1,  ..  •  ,ah+w)  I  (al,  •  •  • ,  ah)  E  p  A  (ah+i,  •  •  • ,  ah+h,)  E p'} 

 pn  p'  =  {(al,  ,  ah)  I  (al,  ah) E  p  A  (al,  ...,ah) E  p'}, 
                    (Jo :=  {(ai,  ...,ah)1(a2,  ah,  ai) E p}, 

 rp  :=  {(a1,...  ,  ah)I(a2,  al,  .  ,  ah) E p} 

  The following lemma holds  [Pok79]. 

Lemma 1.3.1. 

 PolpPolp'  C  Polp  * p' 

where * is any of o, x and  n operations. 

Lemma 1.3.2. Let the inverse relation of p be  p' =  {(ah,  ,  ai)1(ai,  ,  ah) E  p}. 

Then  Polp =  Polp'. 

  We also note that permuting and duplicating columns of a relation does not change 

the set of functions preserving it, i.e.  Polp =  Polp', where p' is a permuted columns of 

the relation p. 

  In addition to these operations, we also use a more general operation, which produce 

a relation from a given set of relations. 

Definition 1.3.1.  [Ros70] Let C =  [cii] be an m x h matrix with elements from  Emh, 

 (h,m,p  > 1). An m-ary operation over relations  q(po,...,pm_i) is a map, which 
associate any h-ary  po, ,  pm_i on Ek the following p-ary relation  o on Ek: 

                     (ao, ,  ap_1) E  o<#,  Zap,  ap+i, ,  amh_i 
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such that, for all i =  0,  ,m — 1,  (acio,  ,  aci,h_i) E  pi. 

Example 1.3.1. Let h = m = p = 2 and 

                  C =[ 0 2 
                           2 1 

Then a =  OL(po, pi) is a binary relation a on  Ek: (ao,  al) E  a<=>  3a2 such that 

(ao, a2)  E  po, (a2, ai) E  pi. Thus  OUpo,  p1) =  po  o  pi (a relational product). An 
intersection of relations can be expressed as an operation over the relations. 

Theorem 1.3.1.  [Ros70] Let  Po,  •  •  Pm-i be h-ary relations on Ek,  CT =  OUP°,  •  •  • ,  Pm-i) 

be an operation over the relations. Then 

                       nPolpi C Polo-. 
                                      i=0 

1.4. Homomorphism and similarity 

Definition 1.4.1. Let  A,  B C  .Pk be closed sets. A and B is homomorphic if there 

exists a mapping  a  : A B (f fa) satisfying 

                 (Cf)a =  (fa,  (Tf)a = 
 (Af)a =  L\f",  (V =  V  ft  and 

                           (f * =  fa * ga. 

If the mapping a is one to one, then A and B is isomorphic (in symbol A B). 

Definition 1.4.2. Let Sk be the permutation group (symmetric group) over  Ek and 

  ( k) let a =0— 1E Sk. Let e be the identity permutation. We write permuted 
           al . • • ak-i 

value by a as  ai =  ai. Define the product of permutations by  a  [3(x) :=  a(y(3(x)) 

for each  ozo3  E Sk. For f E Pk and a E Pk we define a similar function of f by 

   := g(ai ...  an) := a(-1) f(o-ai...  an) for any a E  E. For a set A, its a-similar is 

defined by 

 A°  :={f°If  A}. 

  The mapping a-similar is one-to-one mapping, since Sk is a group. An iteration of 

a-similar transformations is represented by a product of permutations as follows. 

 (fa1)°2(a) =  f°1°2(a) =  (0.10.2)-i  f(0.1(0.2a)). 
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  The set of a-transformations for a E Sk with the iteration operations is a group which 

is isomorphic to  Sk over Pk. Hence, properties of permutation group Sk are preserved 

by a-similar transformations. In general,  fa°  0  f°' since the symmetric group is not 

commutative when  k  > 3. 

Lemma 1.4.1.  [Jab58] 

 F  F'  for  a  E  Sk. 

Corollary 1.4.1. 

 A  C  B  .44.9  C  Bcr,  (AU  =  A°. 
 (AB)a =  A9B9,  (A  \ B)9 = \ B9, 

 (74-.)9  =  A9  where  A  :=  Pk  A. 

  Thus, when an inclusion relation holds, for example,  AB  C C, then its dual  A9B9 C 

C9 holds for each a E Sk. The latter inclusion relation is a a-similar of the former. The 

notion of a-similar is used also for proof procedures. It is an extension of the notion of 
"dual" in the usual Boolean logic. ';; 

Corollary 1.4.2. The following properties of sets of Pk are preserved by a-similar: 

               1) closed, 2) maximal, 3) complete and 4) base. 

Corollary 1.4.3. 

         f  E  Mil  MO/4+1Mim<#.  f E WT,+,  •  •  --RIZ.) 

where  Mir, 1  < j  < m are maximal sets of Pk and  Mi., is the complement of Mir. 

  Thus a-transformation induces an automorphism of the sets of all classes. This means 

that if the class  xi exists then the class  x"ii exists for each a E Sk. However,  Xi and  x`l 

coincide when  xi is invariant under a-similar. Corollary 1.4.3 greatly reduces the search 

of possible classes. 

  The next lemma provides a method to find a corresponding a-similar set when a 

given set is characterized by a relation. 

Lemma 1.4.2.  [Miy71]  (Poly)9 = p,  where  o-'  p =  ,  cr'  ah)  Kai,  ,  ah) E 

 Al. 
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Corollary 1.4.4. Let p =  R, =  {(0,  cr0),  ..  .  ,  (k —  1,  o-(k — 1)} be an induced binary 

relation by a permutation cr E  5k.  Then  (PolR„)cr =  PolR„-i. Hence, if  o-2 =  e, i.e 

Q =  cr-1,  Po1R, is  o--invariant. 

  Especially, we note that for k = 3,  ao = (12),  al = (02) and  o-2 = (01) are idempotent, 

where  (ij) denote the transposition of i and j. 

                  012012 Example 1.4.1. Assume k = 3 andcr3 =( 

                                                                                                                                                                                                                       • 

                                     120 '(74=201Let p :=  Ra3 = 

 {(0,  1), (1, 2), (2,  0)}. The set of functions S =  Polp is a maximal set of P3. We have 
o-V p = p, cr41 p = p, and  o-T1 =  of for i =  0,1,  2. Hence from Lemma 1.4.2 and 

Corollary 1.4.4 S is  a-invariant for any  a  E S3. 

Example 1.4.2. Let p := {0,  1} be a unary relation and T01 =  Po/(01). Since  oV  p = p, 

 118712 = T01, i.e. T01 is  0-2-invariant. While  alp =  {2,  1}. Hence  Tg.? = T12, where T12 is 

the set of functions preserving a unary relation  {1,  2}. 
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Chapter 2 

Functional Constructions and their 

Bases in P2 

The notion of completeness of a set of logical functions depends on the construction 

method of a network from a given set of logical primitives. The delay caused by func-

tioning of gates which we ignored in the previous definitions also poses restrictions on 

the composition of functions and on the logical function the network is intended to 

realize. Besides ordinary composition, we consider six ways of various functional con-

structions in this chapter. Our purpose is to present classes of functions and classes of 

bases (aggregates) for each of these constructions. Throughout Chapters 2 through 4 

we consider in the set of all Boolean functions P2. 

2.1. Introduction 

We are given certain basic elements (primitives) called gates which are realizations of 

certain logical functions. These gates can be combined into a switching circuit called 

network. For each network we distinguish  inputs and an  output (if necessary, primary 
 inputs and primary  output will be used to distinguish from those of the gates). Thus the 

network can be represented by  f  (xi, ,  xn), which defines output y =  f  (xi, ,  x,,,) as 
a function of the primary input  xl,  •  •  • ,  xn. 

  We briefly describe seven different ways of the construction of networks arising in 

practical switching circuit designs, giving classes of bases for each of them. 

  In the next section we give short preliminaries for some subsets of Boolean functions 

P2 to be used in the completeness criteria described in the later sections. In Section 

2.3 we summarize classical Post completeness. In Section 2.4 we treat completeness 
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under r-line coding, in Section 2.5 completeness under 2-line fixed coding  (bothjwith 
primitives without delay), in Section 2.6 three completeness under composition with 
unit delay primitives (uniform composition and its 2 modifications), and in Section 2.7 

sequential circuit completeness (with unit delay primitives). 

2.2. Preliminaries on subsets of Boolean functions 

For a set F we denote the number of its elements by  IFI.  IF(n)I denotes the number 

of n-ary functions contained in F. We denote the complement set of F by  F, i.e. 

F = P2 \ F. Let  co and  ci be the constant-valued functions of n-variables assuming the 

values 0 and 1, respectively. The set of constant functions which takes 0 (1) for arities 

n =  1,2,  ... we denote simply by 0 (1). 

  We give definitions of several subsets of P2 which we use for the classifications of P2 

 {MSH87]. 

1) Functions preserving zero. 

 To =  {fif(0,..., 0) = 0}, 

 IT0(n)1= 
2) Functions preserving one. 

           = {f If(1,..., 1) = 1}, 

                        =  22n-1. 

3) Monotone increasing functions. . 

 M=  {flf(x1,...,x7,)  yn) if  xi  5  yi for  all  i}. 

 IM(n)I =  T(n). 

4) Selfdual functions. 

   S = = 

 is(n),  =  22n-1 

5) Linear functions. 

 L  =  {flf(xi,  ••.,  xn)  =  ao  +  aixi  +  +  anxn for  some  ai  E  E}. 

 IL(n)I =  2n+1. 

6) Conjunctions. 

        C =  {0,1}  U 
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         IC(n)I  =  271+1. 
7)  Disjunction. 

 D  ---=  {0,1}  U{xiV  ...  V  x  ii}  , 

 ID(n)I =  2n + 1. 
8) Notbut-like functions. 

 No =  {fl if  f(xi,...,Xn) = 1 then  xi  =  yi = 1 for some i}. 

 INo(n)I = 0(n). 

9) If-like functions. 

          • =  fp  if  xn)  =  f(m.,  ••.,yn)  =  0  then  xi  =  yi  =  0  for  some  0. 

               =  0(n). 

10) Functions exchanging zero and one. 

 X  =  {flf(x,...,x)  = 

 IX(n)I =  22n-2. 
11) Monotone decreasing  functions. 

 =  {flf(xi,...,x„ ,)  f(yi,...,yn)  if  xi  5_  yi for  all 

 IM'(n)I = 
12) Functions uniting zero and one. 

 K  =  {  fif  (0,...,0)  =  f(1,...,1)}. 

 1K  (n)I =  22n-1. 

Note 2.2.1. We give a representation of the sets by relations.  To =  Po/(0),  T1 = 

       p 001101) s p (0101  P  ol(1), , L =  Polf(a,b,c,d)la+b  = c+d (mod  2)}, 

 No =  Pol (001101               , =  Pol. The functions T(n) and 0(n) we explain in      010110JJJ 
Section 4.1. 

   We list several useful inclusion relations for the classification. We omit the proofs. 

Lemma 2.2.1.  M(n)  fl  L(n) = L(n)  fl  C(n) = L(n)  fl D(n)  =  C(n)  fl D(n) 

= L(n)  fl  C(n)  fl D(n)  =  {c701, ci, 

  L(n)  fl  M'(n)  =  {co,  cl,  n},  M(n)  n M'(n) =  {co, 

Lemma 2.2.2. S  C  NoNi U  7071,  NoNi  C  S. 
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Lemma 2.2.3.  SL  =  {x  +  1 (only for  n = 1), a +  x1  + ...  x2,i+i,a E  {0,1}, 

 m=1,2,...,}, 

 LN0 =  {0,  xi},  LN1 =  {1,  xi},  SNo  C M and SM  C  No. 

Lemma 2.2.4. L(1)M(1)  = {0, 1, x1},  L(1)M'(1)  =  {0,1, x1 1}. 

Also we note that 

 n-ary linear functions (except constants) are selfdual for n odd 

   (no selfdual function exists for n even). 

2.3. Bases under ordinary composition 

The first completeness is one under ordinary composition which we defined in Chapter 

1. The composition is defined as an operation of either renaming variables of a function 

(permuting variables and equating variables) or substituting a function into an argument 
of a function. One can construct a new function from a given set of primitives applying 

the composition any finite times. Additionally one is allowed to use any projection 

functions  g in the construction. 

  The following Post's theorem on the P2-completeness under this composition and the 

classification of Boolean functions are most fundamental facts. This is well-known. 

Theorem 2.3.1.  [POS21] P2 has exactly the following 5 maximal sets:  To,  T1,  L,  S, M. 

Theorem 2.3.2.  [Jab52] There are 15 classes of functions of P2. 

   We presents them by their characteristic vectors in Table 2.1. Components of char-

acteristic vectors are given in the order  To,  T1,  S, L, M of P2-maximal sets. For instance, 

class 6 represents the set  ToTiSLM, where  X denotes P2 \ X. The class 9 (10) consists 

only of the constant functions 1 (0), and the class 15 only of the set of all projection 

functions  74 (xi,  ,  xn) =  xi, i =  1,  2,  ... , n, n =  1,  2,  ..., which is often denoted simply 

by x. 

Theorem 2.3.3.  [INN63] There are 42 classes of bases of P2. 
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                      Table 2.1: P2-classes under ordinary composition. 

            1. 11111 2. 11011 3. 01111 4. 10111 5. 11001 

            6. 10101 7. 01101 8. 00111 9. 10100 10. 01100 

           11. 00110 12. 00011 13. 00010 14. 00001 15. 00000 

 1. class of rank 1: (1), 
17 classes of rank  2: 2 x  {3,4, 6,  7,8,9,  10,11}, 

                 3 x  {4,5,6,9},4  x  {5,7,10},5 x {8,11}, 
22 classes of rank 3: 5 x  {6,7,9,10} x  {12,13}, {6 x  {7,10},  (9, 7)} x  {8,  11,12,13}, 

 (9,10) x  {8,12}, 
 2 classes of rank 4: (9,10,14) x  {11,13}. 

Note that there are only four classes of bases containing constant functions: (8,9,10), 

(9,10,12), (9,10,11,13) and (9,10,13,14). 

  The number of n-ary functions included in each of the 15 class are given in [Krn65] (for 

some classes it is given in terms of  W(n): the number of monotone Boolean functions). 

There are 51 pivotals (13, 31 and 7 with ranks 1,2 and 3, respectively). 

2.4. Bases under r-line coding 

Freivalds [Fre68] introduced the notion of completeness under r-line coding (which he 

called up to coding completeness). In this construction every input and output of the 

outermost network consists of "r-lines" and signals 0 or 1 are feeded to each input or 

taken out from the output as a length r binary code. While internally these input lines 

are treated as usual binary input. So in the internal networks every composition is done 

according to ordinary composition. In Fig. 2.1 we show examples of networks of AND 

and NAND constructed with AND and OR primitives with the coding 0 01 and 

1 10. Note that in this coding negation of the outermost network is realized simply 

by exchanging the output lines, so if f is realizable then its negation is also realizable 

in this composition. 

  Assume a coding 
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 x1

x2

 x1

x2

Figure 2.1: AND and NAND in double-line logic

                                 0 am . • • • aor, 

                                  1 —> aii • • • air, 

 where  ai;  E  {0,  1},  0  <  i  <  1,  1  <  j  <  r. 
  We shall say that a network compute  f(xl, ,  xn) with the coding, if , to each 

argument  xi there is associated the r inputs (j =  1,  .  .  .  ,  r), the network has r output 

 b1  (1 =  1, , r) and operates as follows: for the computation of  f(mi, ,  ran) one 

feed in signals  am;; (0 or 1) at input line  aii, 1  < i  <  n,  1  < j  < n and the network 

produces as output b1 the results  A=  af(nzi,...,„„)1,1<l<r. We shall say that F  C P2 
is complete under a fixed coding if every f E P2 is computable with the coding by a 

network on F. We say that a set of function is complete under fixed r-line coding if every 

function is computable by some network of r-lines under this coding using the functions 

in the set. A set of functions is complete under r-line coding (in original term, complete 

up to coding) if for every function there exists an r-line coding of 0 and 1 (depending 

on the function) under which the function is realizable by the functions in the sets. 

Theorem 2.4.1. [Fre68] A set of function is complete under r-line coding if and only 

if it is not included in each of the three sets:  L,  C and D. 

  We note that the original presentation of the above theorem is not quite correct 

(the sets C and D are correct to include the constant functions, while in the original 
description they are excluded from the sets C and D, cf.  [MSH87]). 

Theorem 2.4.2. There exists exactly 5 classes of functions under r-line coding com-

pleteness. 

Proof. We have LD  C  C,  LC  C D and CD C L, i.e.  LCD(n) =  {0,1,  xi,  1  < i  <  n} 

(Lemma 2.2.1). The classes are shown in Table 2.2.  ̂  

                                   22



               Table 2.2: Classes of functions under r-line coding completeness 

      class L C D representatives (symmetric) 
      1.  0  0  0  0,  1,  x 

      2.  0  1  1  a  xi  xn,  a  =  0  or  1,  for  n  >  1;  1  x  for  n  =  1 

    3.  1  0  1  xi  n  >  1 

      4.  1  1  0  xi  V  x2...  V  x„,  n  >  1 

      5. 1 1 1 all remaining symmetric functions, e.g.  7172 

Theorem 2.4.3. There are 4 classes of bases: rank  1: (5); rank 2 : (2,3),(2,4),(3,4). 

There are 3 classes of pivotals: rank  1: (2),(3) and (4). 

Example 2.4.1. We give all bases for 2-ary functions under r-line coding: 

 {x {x  y(+1), x V y}, {xy, x V  y}, {NAND(x, y)},  {NOR(x,  y)}. 

The following bases include a unary function  {-E, xy},  {T, x V y}. As we show in 

Fig. 2.1, AND(x, y) can be composed of {x V y, xy} under the coding 0 01,1  —> 10. 

2.5. Bases under 2-line fixed coding 

The completeness problem under a fixed coding 0 01 and 1 —+ 10 (this is  so called 

double rail logic  [Neu56]) was solved by Ibuki  [Ibu68]. Karunanithi and Friedman 

 [KaF78] also considered this completeness independently, and gave the condition which 
are stated in somewhat complex terms  but equivalent to the following. This notion 

coincides with SP-algebra described in [Gin85]. The classification is done by Ibuki 

 [Ibu68]. 

Theorem 2.5.1. A set of functions is complete under 2-line fixed coding if and only if 

it is not contained in each of the following 6 sets:  No,  N1,  S,  L,  C and D. 

Theorem 2.5.2.  [Ibu68] There are 12 classes of functions, 28 classes of bases (1 for 

rank 1, 22 for rank 2 and 5 for rank 3) and 20 classes of pivotals (10 classes for each 

 of ranks  1,2). 

  The characteristic vectors of these classes are given in Section 3.5. 
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xl

x2

x3

Figure 2.2: uniform composition

2.6. Bases under compositions with delayed functions

Usually a gate needs some duration of time to give an output. So it is natural to assume 

that each primitive function has certain delay time. In this section we assume that all 

primitives have uniform delay (a unit time). Taking the delay time into consideration 
various compositions have been proposed. We consider three constructions proposed by 

 Kudrjavcev, Ibuki and Inagaki, respectively. These are closely related each other. 

Uniform composition 

  The theory of uniform delay composition was initiated by  Kudrjavcev  [Kud60]. In 

this construction every composition is to be done so that for each gate the delays along 

all paths from the primary inputs to the inputs of the gate are equal. This means that 

the composition should be synchronized. This is imposed even on primitives of constant-

valued functions. Projections can be used freely (which can be used in the first layer 

of the composition as primitives with delay zero). Furthermore in this composition it 

is assumed that (1) all initial input signals are given only once and simultaneously and 

(2) no feedback connections are allowed in compositions. 
  A set F  C P2 is complete under uniform composition if one can realize every function 

in some delay (which depends on the realized function) by a network on F using uniform 

composition. 

  For example, the network in Fig. 2.6 is synchronized, but one in Fig. 2.7 is not 

synchronized and have a feedback connection. 

  The following theorem is proved in  [Kud60], but explicit statement in this form is 

due to Nozaki [Noz78]. 

Theorem 2.6.1.  [Kud60] A set of functions is complete under uniform composition if 

and only if it is not contained in each of the 8 sets:  To,Z,S,  L,  M,  M',  X and K.
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              Table 2.3: Classes of functions under uniform delay compositions. 

 ToTiSLMM'XK representative 
                 1.  1  1  1  1  1  1  0  1  x1T2x3  V1112Y3 

                 2.  1  1  1  1  1  0  0  1  111-2 
                 3.  1  1  0  1  1  1  0  1  x112  V  ±2  Y3  V  13x1 

                  4.  1  1  0  1  1  0  0  1  1172  V1-21-3  V  131-1 
                5.  0  1  1  1  1  1  1  0  x172 

                6.  1  0  1  1  1  1  1  0  xi  V 
                7.  1  1  0  0  1  1  0  1  xi  +  x2  + 

                8.  1  1  0  0  1  0  0  1 Ti 
                9.  1  0  1  0  1  1  1  0  xi  + 

               10.  0  1  1  0  1  1  1  0  xi  +  s2 
                11. 0 0 1 1 1 1 1 1  1i12x3  x1Y2Y3 

               12.  1  0  1  0  0  0  1  0 1 
               13.  0  1  1  0  0  0  1  0 0 
                14.  0  0  1  1  0  1  1  1  1ix2 
                15.  0  0  0  1  1  1  1  1  51x2  V  x2Y3  V  F3xi 

                 16. 0 0 0 1 0 1 1 1  1ix2 V  12x3 V  13x1 
                17.  0  0  0  0  1  1  1  1  xi  +  x2  +  x3 

                18.  0  0  0  0  0  1  1  1  Si 

Theorem 2.6.2. There are 18 classes under uniform delay composition and they coin-

cide with those under Ibuki's  (Inagaki's) composition. 

Proof Characteristic vector for these classes has 8 coordinates, which is constructed 

by adding K coordinate to Ibuki's coordinates. We have K =  ToTi U  Toll (disjoint), 

because f  E K  .4=> either  f(0) =  f(1) = 0 or  f(0) =  f(1) = 1. Therefore the values for 

the coordinate K is determined by those for  To and T1. 0 

  In Table 2.3 we give the classes and their representatives. Symmetric representatives 

for the classes 1,3,5,6,11 and 15 we mention in Section 3.6. 

Theorem 2.6.3. There are exactly 118 classes of bases and 115 classes of pivotals 

under uniform delay compositions. They are given below. 

Note that no Sheffer class exists in our case as well as in Ibuki's one. 

Ibuki composition 

  Ibuki  [Ibu68] defined a slightly different composition independently, and gave all 

7 maximal set, which coincide with above sets except K. The only difference of this 
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                Table 2.4: Classes of bases under uniform delay compositions. 

 rank 1 (0): none; 
 rank 2 (44): {1,2,3,4} x {5,6,9,10,11}, {1,2} x {15,16,17,18}, {1,3} x {12,13}, 

            {1,2,3,4} x 14, {5,6,11,14} x  {7,8}, 
 rank 3 (72): (2,7) x {12,13}, 4 x {12,13} x {7,15,16,17,18}, 

           {5 x {6,9,12},(6,10)} x {11,14,15,16,17,18}, 
           (6,11) x {13,14,15,16,17,18}, {7,8} x {9,10,12,13} x {15,16}, 

           {9 x {10,13},(10,12)} x {11,14,15,16}, (12,13) x {11,15}, 
 rank 4 (2): (12,13,17) x  {14,16}. 

              Table 2.5: Classes of pivotals under uniform delay compositions. 

rank 1 (18): (1) - (18); 
 rank 2 (79): (2,3),{2,4} x {7,12,13}, {3,4,5,6,7,8,9,10,12,13} x {15,16,17,18}, 

          {5,6} x {11,14}, {6,9,12} x  {5,10,13}, {7,8,11,14} x  {9,10,12,13}, 
         14 x {15,17}, (16,17) 

rank 3 (18):  {8x  {12,13},{9,12}  x{10,13}}  x  {17,18},  {{12,13}x17,(12,13)}x {14,16}. 

construction from the uniform composition consists in that the constant valued function 

with delay zero can be freely used. Thus, for example, a composition  f(x,  4(y)) is 

allowed. 

Inagaki composition 

  Yet another modification was done by Inagaki, who gave 6 maximal sets which  coin-

cides with above sets except X and K. He weakened  Ibuki's construction in the following 

points: the input paths of the constant valued functions may have non-uniform delays. 

He showed an example of such a realization of a constant valued function using NAND 

primitives. Feedback loops are still prohibited. However, it is necessary to feed input 

signals in some span of time in order to obtain stable output; thus, for example, feeding 

oscillating signals like  0101... to inputs are prohibited. 

  It turns out that the uniform construction is the most restrictive construction among 

the three constructions. That is, if f is complete under uniform composition, then it is 

complete in the other constructions. Their classifications are closely related to ours. 

Classes and bases of Ibuki and Inagaki compositions 

  Classes of functions in these cases are the same 18 classes as in the former case 
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xl 

x2

                       Figure 2.3: Sequential circuit composition 

 [Ibu68,Ina82]. The last component and the last two components must be eliminated (K 
and  X,  K  are not maximal sets respectively in these cases). 

  Although the classes of uniform delay case coincides with those under Ibuki's and 

Inagaki's case, the bases and pivotals are different due to the extra coordinate. There 

are 93 classes of bases (49, 42 and 2 with ranks 2,3 and 4 respectively)  [Ibu68], and 88 

pivotals (18, 58 and 12 with ranks 1, 2 and 3 respectively). There are 82 classes of bases 

in  Inagaki case (1, 39, 40, and 2 with ranks 1, 2, 3 and 4)  [Ina82], and 77 pivotals (17, 

48 and 12 with ranks 1, 2 and 3 respectively). Only in Inagaki case there exist Sheffer 

class. 

2.7. Bases under sequential circuit composition 

A composition allowing loops by using unit delay primitives is considered by Nozaki 

 [Noz82]. He introduced the notion of s-completeness (s for sequential  circuit). In Fig. 
2.7 we show an example of the network. Note that we don't require uniform delay any 

more. We briefly explain the construction. Assume that in our network there are  m 

primitives whose output is denoted by  ui (1  < i  <  m) and n primary inputs denoted by 
 xl,  .  •  • ,  xn. The output of the first primitive u1 is assumed to be the primary output of 

the network. Now output of a primitive is determined by the previous states (outputs) 

of all the primitives as well as primary inputs. Thus the output of the primitive  ui after 

unit delay (denoted by  un is expressed by

 Di(ui,  um,  x1,...  ,  xn),

                . . 

um  Dm  ,  um,  xi,  .  .  ,  xn).
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  For example, in Fig. 2.7 we have  ul =  add(x  1, x2, u2) and  u; =  or(x2,  u2). Let 

q =  {0,1}' and y =  {0,  1}n correspond to the sets of states of the primitives and inputs 
of the network respectively. Then the network is described by a function 

 D:QxY  Q (2.1) 

and the first element of Q is the output of the network. For example, in Fig. 2.7 

D((1, 0), (1, 0)) =  (1,  0). The state transition of D under feeding  x(1).  .  x(t) to an 

initial state s(1) is determined successively by s(2) =  D(s(1),  x(1)), s(3) = D(s(2), 

 x(2)),  .  s(t + 1) =  D(s(t), x(t)). The last state s(t + 1) is denoted by D*(s(1), a) 

and called final  state corresponding to the input sequence a =  x(1)  .  .x(t), and the 

first component of s(t + 1) is final output denoted by  Dfina1(s(1),  a). The notion of 

realization of function f by a network D is defied as follows. 

 (1) There exists an initial state s(1) called good state such that there exist some 
   delay D such that the output y(t) of the network at time t is the function value 

   corresponding to the inputs at time t — d, i.e. y(t) =  f  (x(t — d)). 

 (2) For any state s there is an input sequence a called an initialize sequence such that 
    D*(s, a) is a good state. 

  In' Fig. 2.7 D realizes  x+y-E1 with initialize sequence (0,1) or (1,0) with delay 1. 

  We denote the set of all functions realizable with some delay by a network on F by 

 [F}3. Now F is called s-complete if  [F], = P2. 

Theorem 2.7.1.  [Noz82] There are exactly 6 maximal sets under s-completeness. They 

are  No, N1,  S, L, M and  M'. 

  From this and the completeness criteria for Ibuki composition, we have that if F is 

complete under Ibuki construction, then it is s-complete. 

Theorem 2.7.2. There are exactly 16 classes of functions under s-completeness. They 

are indicated in Table 2.6. 

Proof. To have these classifications we use classes with respect to  To, T1,  S,  L,  M and M' 

given in Table 2.3. Since  No  C  To and  Nl  C  T1, for example, the case  ToTi splits into 
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                     Table 2.6: Classes of functions under s-completeness. 

 NoNiSLMM' symmetric functions 

                 1. 1 1 1 1 1 1  x172 V  71X2 V  Y31 

                 2.  1  1  1  1  1  0 1-172, 
                 3.  1  1  1  0  1  1  xi  +  x2, 

                 4. 1 1 0 1 1 1  71Y2 V  Y173 V  73X1) 

                  5.  1  0  1  1  1  1  xi  V  T.27 

                 6.  0  1  1  1  1  1  7172, 
                  7. 1 1 0 1 1 0  71Y2 V  'T.273 V  Y371, 

                 8. 1 1 0 0 1 1 x1 + x2 +  x3, 

                 9.  1  0  1  1  0  1  xi  v  x2, 

                 10.  0  1  1  1  0  1  x1x2, 

               11.  1  1  0  0  1  0  1  +  x 

               12.  1  0  1  0  0  0 1 
               13.  0  1  1  0  0  0 0 

                 14. 0 0 0 1 0 1 xix2 V x2x3 V  xsxi, 

                15.  0  0  0  0  0  1  xi 

                 16. 1 1 1 1 0 1  xixi V x3x4 

the four cases:  NoNi,  N0N1,  N0N1 and  NoNi (the other three cases are  similar):: Thus 

it suffices to check each of these classes for each class in Table 2.3. We briefly give how 

the above classes are derived from Table 2.3, Chapter 2. Let the class number in Table 

2.3 be denoted by prefixing # before the number, e.g. #15 is the class 000111 in the 

order of  ToTiSLMM' coordinates. The classes 1,2,4,5,6,7,8,11,12 and 13 were derived 

from #1,#2,#3,#5,#6,#4,#7,#8,#12 and #13, respectively. The class 3 comes from 

#9,#10  and #11 jointly. Class #17 give also the class 8 (we have two possibility:  N0N1 

and  N0N1 from Lemma 2.2.2 but the first case gives the class 8 and the second does 

not occur from  N0N1  C S of the same Lemma). The class #15 gives also only the class 

4 (the other cases do not occur from Lemma 2.2.2). Finally the class #14 gives three 

classes 9, 10 and 16 because  N0N1  C S prohibit  N0N13 case. 

  Only the class 16 has no symmetric representative (this will be discussed in detail in 

Chapter 3).  ̂  

Theorem 2.7.3. There are  exactly 58  classes of  bases and 39  classes of  pivotals under 

 s-completeness. They are indicated in Table 2.7 and 2.8 respectively. 
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                      Table 2.7: Classes of bases under s-completeness. 

       rank 1 (1): (1); 
       rank 2 (47):  {2,3}  x {4,5,6,9,10,14},  2x{3,8,15},(3,7), 

                {4,5} x  {8,10,13}, (4,5), {4,6} x {9,12}, 
                 5 x {6,7,11},{6,9,10} x  {7,8,11}, 

                   {2,3,4,5,6,7,8,11} x 16, 
       rank 3 (10): {7x  {8-{-{14,15}} x {12,13},  {8,11}x{12,13}x 14. 

                     Table 2.8: Classes of pivotals under s-completeness. 

   rank 1 (15): 2 - 16; 
  rank 2 (20): (7) x  {8,12,13,14,15}, (8) x  {12,13,14}, (9) x {10,13}, (10,12), 

            (11) x {12,13,14,15}, (12) x {13,14,15}, (13) x {14,15}; 
   rank 3 (4):  (11,15)x{12,13}, (12,13) x {14,15}. 

2.8. Concluding remarks 

We have described several functional constructions and presented classes of bases for 

each of them, using the corresponding classification  of  P2. They are summarized in Table 

2.9. Another modification of the composition can be found in algebra  .1.° proposed by 

Cejtlin  [Cej70]. Classifications and base consideration was done for this case by  Tosie 

 [Tos81]. Several other modifications of propositional algebras are considered in  [Gin85]. 

         Table 2.9: Maximal sets, classes and bases for the 7 constructions in this chapter. 

                     maximal sets classes bases  min rank max rank pivotals 

ordinary composition 5 15 42 1 4 51 

r-line 3 5 4 1 2 3 

2-line fix 6 12 28 1 3 10 

uniform composition 8 18 118 2 4 115 

Ibuki composition 7 18 93 2 4 88 

Inagaki composition 6 18 82 1 4 77 

sequential 6 16 58 1 3 39 
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Chapter 3 

Bases Consisting of Symmetric 

Functions 

As an application of the enumeration of classes of bases we  ewe formulas  Nn for the 

number of bases of P2 consisting solely of n-ary symmetric functions for each functional 

construction described in Chapter 2. 

3.1. Introduction 

Usually primitives are selected from symmetric functions in practice; nonsymmetry of 

the input variables complicates the situation, for example, by involving nonsymmetry 

of delays. Indeed, almost all bases are symmetric functions in practice. The symmetry 

of functions simplifies the synthesis of switching functions. Connecting an output of 

a gate to any input of another gate gives shorter length of geometrical connections 

and avoids extra intersection of the lines. Both are important issues in VLSI design. 

Moreover, symmetric functions have algebraic properties which make it desirable to treat 

them as a separate class. Thus we call bases (pivotals) consisting only of symmetric 

functions s-bases (s-pivotals). We show that there exists a symmetric representative 

in each class under the 7 constructions described in Chapter 2, except one class in 

sequential completeness. This gives the following theorem. 

Theorem 3.1.1. Classes of bases and classes of s-bases coincide under each of the 6 out 

of all 7 constructions described in Chapter 2 (the only exception is the sequential circuit 

construction). In other words there is  a, base consisting only of symmetric functions for 

each class of bases under each construction. 
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  It is worth mentioning that there are several classes having no symmetric represen-

tative in P3. We are going to give formulas for the exact numbers of n-ary and up to 

n-ary symmetric functions included in each of the classes. By this we can calculate the 

formula for  Nn and  .10n (the number of bases consisting solely of up to n-ary symmetric 

functions). Indeed the number of bases consisting solely of n-ary symmetric functions 

in a class of bases can be calculated as a product of the numbers of corresponding func-

tions in each class of functions belonging to the class of base. Summing these numbers 

for all classes of bases for rank i we obtain corresponding data  NI' for bases of rank i 

and finally summing them for all ranks we have  Nn. Similarly we can calculate  NIC-n. 

Our results in this chapter are the number  Nn for each construction. 

3.2. Preliminaries on subsets of symmetric Boolean functions 

A function  f  (xi, ,  xn) is said to be  symmetric if 

 f  (xi,  •  •  •  ,xn) =  f  (X  ir(1),  •  •  • X ir(n)) 

holds for all  xi, ,  xr, E Ek and every permutation  7r on  {1, ,  n}. 

  A  fundamental symmetric function  sr is determined by the number of its variables n 

and the number r such that  srn takes the value 1 if and only if r of its arguments assume 

the value 1. 

  For given n, there exist exactly  n+1 fundamental symmetric functions:  so, ,  snn. 

Each symmetric function can be uniquely represented as a disjunction of the fundamen-

tal symmetric functions  [Sha49]. Hence the number of n-ary symmetric functions in 

P2 is  2n+1. The above property provides a suitable notation for symmetric functions, 

setting 

                              := srniV ... Vsrn,(n1). 

The constants 0 and 1 are symmetric functions which correspond to  s and 

respectively. Assume that 0  <  r1 < < ri < n. Let R  :=  {ri,  ,  ri} and s:= 

 Thus  .971(xi,  ,  xn) = 1  .#>.  xi-{-...+xn  E  R,  where  xi  +  x2+  ...+  xn denote the number 

of l's in the vector  (xi,  •  .  •  ,xn). 

  We give representation of symmetric functions for each of the subsets described in 

Section 2, Chapter 2. The indicated number of symmetric functions is easily obtained 
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from this. The set of symmetric functions from F we denote by  F3. Let  co and  ci be 

the constant-valued functions of n-variables assuming the values 0 and 1, respectively. 

Let  Al (xi,  ...,xn) =  xi be the projection function of n variables that returns the value 

of  the i-th argument; also let  n be the function that returns the dual value of the i-th 

argument. 

1) Tc;{sk10R}. 

  ITj(n)l =  2n. 
 2)  Tis  =  {srAn  E  R}. 

  ITAn)1 =  271. 
 3) Ms=3n,4-1 ,n)  •  •  • 

 IMs(71)1  n  +  2. 
4)  Ss  =  E  R  if  and  only  if  n  —  i  R  for  all  i  =  0,  ,  (n  —  1)/2,  n  odd}. 

 ISS(n)I  =  2(n+1)/2 for n odd and 0 for n even  [ArH63]. 
 5)  L3  =leo ,  c7?  ,x  ...  x  n(=  s{1,3,...,n) for n odd and  =  s{1,3,...,n-1}                                                         for n even), 

    1 + ..  •+=for n odd andfor n even)}, 

 1L8(n)1  =  4. 
6)ca= {szn}(= x1  .  xn)}. 

 ICs(n)1  =  3. 
 7)  Ds =  xi V  ... V Xn)}. 

 IDs(n)I =  3. 
 8)  No =  {s112ri > n, where r1 is the smallest in  R}. 

 IN69(n)1 =  242 for n even and  2(n+1)/2 for n odd. 
 9)  Ni =  {.3112r < n where r is the greatest in  {0,1,  ... , n} \ R}.    

INf(n)1 =  2n12 for n even and  2(n+1)/2 for n odd. 
10)  Xs =  {410 E  R,n R}. 

 pcs(n)1=  2n-1. 
  is 11)= 1}. 

 IM"(n)I =  n  +  2. 
12)  Ks  =  {40,n  E  R  or  0,n  R}  . 

 IKs(n)I =  2n. 
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Example 3.2.1.

S3(3)  = {s3 s3 s3  s3         {cup fo72), S{1,3}, 
NO) = Is30, s{2}, 3{33}  -- s{2,3}.1„ ll  Ni (3) {s

{2,3})  s{o,2,3}1  3{1,2,3} =,

Table 3.1: Intersections of the subsets of symmetric functions.

N1 S L M M'

 N0

 

I  Ix  (n  =  1)}  {x  (n = 1),
qn+1)/2,...,n}(

n odd)

 {x  (n,  =  1),  0}  {x (n =  1),0
3(n+1)/2,...,n}

(n odd)

 {0}

N1  {x  (n  =1),
33_  n/2}
(n,  odd)

 {x (n = 1),
1}

 {x (n = 1),
1}

 {1,
370,...,n/2)
(n odd)

S {37,3,...,7173701,2,...,n-1}
 (n odd)

ITS(n1-1)/2,...,n}
 (n odd)

 {53,...,(n-1)/2}
(n odd)

L  {x (n  =  1),
 0,1}

 fx  4-1  (n  = 1),
 0,1}

M  {0,1}

  In the next lemmas we summarize without proofs several results on the sets of sym-

metric functions expressed as intersections of the subsets defined previously. These 

results will be used in the argument in the succeeding sections. 

Lemma 3.2.1.  MS(n)  C  No  U 

 For  77,  >  2, 

 Ms  (n)nLs  (n) =  Ls  (n)nCs  (n) =  Ls  (n)n  Ds  (n) =  Cs  (n)n  Ds  (n) =  Ms  (n)n  M"(n) = 

  =  Ls  (n)  n  M'S(n) =  {co,  . 

And 

 M's(n)  n  No(n) =  Ls  (n)  n  NN(n) =  co, 

 M"  (n)  n  Ni(n) =  Ls  (n)  n  Ni(n) =  ci  . 

Lemma 3.2.2. For  n even  S3(n) =  0. For n odd, 

 Ss  (n)  n  Ls(n)  =  fa  +  xi  +  +  xida  =  0,1}, 

 Ss  (n)  n  Ms(n) =  Ss  (n)  n  Nj(n) =  Ss  (n)  fl  N  (n) =  No(n)  n  Ni  (n) =  No(n)  n  MS(n) 

  =  N  f(n)  n  (n) =  Ss  (n)  n  Ms(n)  n  NN(n)  n  N  f(n) 

  = 
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and 

  58(n)  n  M's(n)  =  {37-10.,...,(n-1)12}  • 

Lemma 3.2.3.  NN(n)  fl  Cs  (n)  =  {0  ,x1A•••  A  x  n}  ,  N1 (n) n  Cs  (n)  =  {1, x1  V  •  •  • V  xn} 

  In Table 3.1 we summarize the intersections of the sets. 

3.3. S-bases under the ordinary composition 

In [Tos72]  Tosie characterized the n-ary symmetric functions contained in each of the 

15 classes under ordinary composition. 

Theorem 3.3.1. [Tos72] The number of n-ary symmetric functions in. each  class under 

ordinary composition is given in Table  3.2. 

     Table 3.2: Number of n-ary symmetric functions in each class under ordinary composition. 

        ToTiSLM n =1 n even n > 1 odd 

       1. 11111 0 2n-1 2n-1 2(n-1)/2 

     2. 11011 0 0 2(n-1)/2 

          3. 01111 ( 4. 10111) 0 2'1 - 2 2n-1 
   5. 11001 1 0 1 

       6. 10101 ( 7. 01101) 0 1 0 

       9. 10100 (10. 01100) 1 1 1 
    11. 00110 0 n - 1 

     12. 00011 0 0 2(n-1)/2 2 

   13. 00010 0 0 1 

   14. 00001 0 0 1 

   15. 00000 1 0 0 

  We briefly summarize it because our classification uses this. In all expression below 

we assume  {n.,  ...,ri}  C  {1,  ,n  -  1}  and  1  <  /  <  n  -  1. 

 1. (Sheffer class)  sroi,,,,•,,,,on > 1, except the case  n odd,  1 =  (n-1)/2 and  ri E  {i,  n  -  i} 
    for all  i,1  <  i  <  (n-1)/2; NOR function  s,?) =  rg and NAND function  41 =  x  V  -g. 

 2. (linear class)  so  rl for n odd, n > 1 and  ri  E {i, n -  i} for all i, 1  < i  < (n  -1)/2, 

     except the function x1xn + 1=3"-;.,2,4,...,n-1;so,1=xyV re V TT. 

 3. (preserving 0 class) n > 2, except the constant function 0. For n even the 

     function x1  .  •  • +  xn + 1 =  80,2,...,n is also excluded;  4,2 =  --,(xyz V 

                                   35

 ToTiSLM n =1 n even n > 1 odd 

1. 11111 0 2n-1 2'1 - 2(n-1)/2 

2. 11011 0 0 2(n-1)/2 _ 1 

5. 11001 1 0 1 

6. 10101 ( 7. 01101) 0 1 0 

9. 10100 (10. 01100) 1 1 1 
11. 00110 0 n n - 1 

12. 00011 0 0 2(n-1)/2 _ 2 

13. 00010 0 0 1 

14. 00001 0 0 1 

15. 00000 1 0 0



4. (preserving 1 class) n > 2, except the constant function 1. For n even 

  also the function 1 + x1  +  +  XnA                                   =-0 ,2,...,n is also excluded;  s0,3 = (xyz V z). 

5. (linear selfdual class) Only 1 +  xi + +  xn = for  n  > 1 odd. 

6. (linear preserving 1 class)  1  +  xi  +  +  X  nSrrtn  A for  n even,  n  > 1; 4,2 =  x  +y  +1. 

7. (linear preserving 0 class) x1 + +  xn  = for n even, n > 1;  si  = x y. 

8. (preserving constants class) n > 3, except the functions  sL+1,,_,,, for 1 < 

   j  <  n. For n odd,  n  > 1, the functions  s  i  Tj  n are also excluded if they satisfy the 
  selfdual condition  ri  E  {i, n — for all i, 1  < i  < (n — 1)/2;  44. 

9. (constant 1 class) Only the constant function 1. 

10. (constant 0 class) Only the constant function 0. 

11. (monotone preserving constants class) for n > 1, 1  <  j  < n and j 

  (n  +  1)/2 if n is odd;$ = xy. 

12. (selfdual preserving constants class)  s  i  Tt,n for  ri E  {i,n — i}, 1  < i  < (n — 1)/2 

   and  n odd,  n  > 4. The functions  sr;n+1)/2 ,...,n                                           and  xi  +...+xn = are excluded; 

 5 

 s15. 

13. (monotone selfdual class)  sn  (n+1)/2,...,n for n odd,  n  > 1;  43 = xy V yz V zx. 
14. (linear selfdual class)  xi + +  xn =  31,3,...,n for n odd,  n  > 1;  4,3 =  x  y + z. 

15. (identity class) Only the function  f  (x) = x = 

  The number of s-bases of P2 consisting of  n-ary (n > 1) functions is  N(n) =  2n + 

 4n-1 n — 4 if n is even and  N(n) =  2(n-1)/2 +  4n-1 + 3  8(n-1)/2 +  2n-1 6 otherwise 

 [Tos72]. The formulas for  N(<) are also given there. 

3.4. S-bases under r-line coding 

Theorem 3.4.1. The  'numbers of  n-ary and up  to n-ary symmetric functions in each 
class under 2-line fixed coding are given in Table 3.3. 

  The proof is obvious from Table 2.2, Chapter 2. 

Theorem 3.4.2 S-bases consisting of n-ary functions (n  > 2) is: rank 1:  Ni =  2n+1_6 

 (Sheffer symmetric functions), rank 2:  _AT = 2  • 1 +  2  • 1 + 1  • 1 = 5. Thus there are 

 Nn  =  2n+1  1 
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Table 3.3: Number of symmetric functions in each class under r-line coding. 

Number of n-ary functions Number of up to n-ary functions

class LCD n= 1  n  >  1

1. 000 3 2

2. 011 1 2

3. 101  0 1

4. 110 0 1

5. 111  0  2n-I-1  — 6

 S1.1111 4 2n+1

class

1.  2n  + 1

2.  2n  —  1

3.  n  —  1

4.  n  —  1

5.  2n+2  —  6n  —  2

 SUM  2n+2 — 4

s-bases under r-line coding. Similarly we have the number of s-bases consisting of up to 

n-ary functions 

                            N 5.n =__  2n+2  5n2 14n  + 1. 

3.5. S-bases under 2-line fixed coding 

We give the classes  [Ibu68], where the components are in the order of  LDCSNi and  No. 

                        Table 3.4: Classes under 2-line fixed coding 

     1. 000110 2. 000101 3. 011011 4. 011111 5. 101101 6. 110110 

     7. 111000 8. 111011 9. 111101 10. 111110 11. 111111 12. 000000 

Theorem 3.5.1.  [Sto85] The number of symmetric functins in the classes under 2-line 

fixed coding are given in Table 3.5. 

  Symmetric representatives in each of the above classes are given in  [Sto85]. We 

explain it briefly, because the original counting is slightly incorrect. It is easy to see 

 that  only  0,  1,  a  d-E7_0  xi  (n  =  2m  +1,  m  >  1,  a  =  0,  1;  a  =  1  for  n  =  1),  a  d-E7_0  xi  (n = 

 2m,  m > 0, a =  0,1),  VT  1xi,  Art_ixi belong to the first 6 classes, respectively. From 

Lemma 3.2.2 only7for n odd and n  > 2 is in the class 7. The class 8 contains 

the selfdual functions except the intersection with each of the other sets. From Lemma 

3.2.2 only the three functions belong to these intersections:  sr,' E  SMNON1 

and  s1,3,...,„, =  xi and 31,3,...,n = 1  +  7_1  xi belong to SL for n odd. The classes 

9 and 10 consist of N1 and  No, respectively, except the intersection with each of the 

                                   37



          Table 3.5: Numbers of n-ary symmetric functions under 2-line fixed coding. 

          class n = 1 n = 2m > 1 n = 2m + 1 

   1,2 1 1 1 

  3 1 0 2 

  4 0 2 0 

   5,6 0 1 1 

  7 0 0 1 

        9,10 0 2n/2 2 2(n-1-1)/2 3 

              11 0 2n+1 — 2n/2+1 — 2 2n+1 — 3 • 2(n+1)/2 + 2 

   12 1 0 0 

     sum 4 2n+1 2n+1 

        Table 3.6: Numbers of up to n-ary symmetric functions under 2-line fixed coding. 

    class n = 1 n > 1 

      1,2 1 

 12 1 1 

   sum. 4 2n+2 — 4 

other sets. From Lemma 3.2.3 only the following functions belong to these intersections: 

30,1,...,n = 1, =  Vi  1x2 E  N1D; further  s(n+1)/2,...,n E  NiNoMS when n odd. The 

class 10 is similar;  .57, = 0,  s  = E  N0C and further  s  kn+1)/2,...,71  E  N0N1MS when 

n > 1 odd. The class 11 contains all the remaining functions (the Sheffer class to be 

considered in the next Chapter 4). The class 12 contains only the identity function. 

  We show the numbers of up to n-ary symmetric functions in each class in Table 3.6 

(note that Table 3.5 and 3.6 are corrected slightly: classes 8,9,10 case  n odd). 

Theorem 3.5.2. The number of s-bases consisting solely of  n-ary  functions under  2-

line fixed coding is given in Table 3.7. 
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class n = 1 n = 2m > 1 n = 2m + 1 

1,2 1 1 1 

3 1 0 2 

4 0 2 0 

5,6 0 1 1 

7 0 0 1 

 11 0 2n+1 — 2n/2+1 — 2 2n+1 — 3 • 2(n+1)/2 + 2 

12 1 0 0 

sum 4 2n+1 2n+1

class n = 1 n > 1  

1,2 1 n 

12 1 1 

sum 4 2n+2 — 4



       Table 3.7: Number of s-bases consisting of n-ary functions under 2-line fixed coding. 

            n even n odd 
                Nn 3 2n ± 2 • 2n/2 — 9 2n+3 ___ 9 2(71+1)/2 ± 5 

               AT 2' -1- 4 • 2n/2 — 7 3 "n+1                                            + 6 • 2(n+1)/2 — 4 
   Aq. 0 7 

       Table 3.8: Number of symmetric functions in each class under uniform compositions. 

             n, = 1 n even n odd 
             1,11 0 2'1 n 2n-1 2(n-1)/2 n +1 

       3,15 0 0 2(n-1)/2 2 
     4,7,16,17 0 0 1 
       5,6 0 2n-1 2 2n-1 

    8,18 1 0 0 
    9,10 0 1 0 
    12,13 1 1 1 
      sum 4 2n+1 2n+1 

3.6. S-bases under the uniform composition and its variations 

Theorem 3.6.1. The  number of symmetric functions in each class under uniform  com-

position are given in Table 3.8 

Proof. Our classification is a subclassification of P2-classes under ordinary composition 

(cf. Table 2.1) described in Section 3, Chapter 2 since 5 sets  To, T1, S, L and M are 
common to both cases. The only difference between the two classifications consists in 

dividing the classes 1,2 and 5 in Table 3.2 into the classes 1,2; 3,4; 7,8 respectively, so 

that functions of the set M' belongs to the classes 2,4,8 and functions from M' to the 

classes 1,3,7. Let us use a prefix  # to denote the classes in Table 3.2 (also in Section 3, 

Chapter 2). We divide the classes #1, #2 and #5 by M'. 

   1. Classification of #1. Case n even. Only  the  n functions:  3100.7...,n-1)  S10,1,...,n-2)  •  • • SO 

belong to M'; the remaining belong to  M. Case  n odd. Among the functions described 

in the case n even, only one  sa1,...,(n-1)/2 E SM' should be deleted from Lemma 3.2.2. 
Thus we have n — 1 functions for f  E M'; the other  2(n-1)/2 —  n  +1 functions belong to 

 M. 
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    n even n odd 
Nn 3 2n ± 2 • 2"/2 — 9 2n+3 9 2(71+1)/2 ± 5 

Aq. 0 7

    n =1 n even n odd 

4,7,16,17 0 0 1 

8,18 1 0 0 

9,10 0 1 0 

12,13 1 1 1 

sum 4 2n+1 2n+1



  Table 3.9: The number of up to n-ary functions in each class under uniform delay composition. 

             Class Number of up to n-ary symmetric functions 

   8,18 1 

            12,13 

      sum 2n+2 — 4 

      Table 3.10: Number of s-bases consisting of n-ary functions under uniform composition. 

 n  even  n  odd 

 Nn  23(n-1) + (n  4_  3)22n-2  23(n-1) +  25(n-1)/2                                              + (n  1)22n_2  — n  •  2(3n-1)12 
       —n(n  3)2n-1  + 2n2 — n  +(l . —  n2)2n-1 +  (2n  ±  3)2(n-1)/2  +  n2 — n — 5  

Ni 0 0 
 /‘/."  3.22n-2 2n  3  22n-2  —  2-1 - 2n — 2 

 23(n-1) +  n  22n-2  23(n-1) +  25(n-1)/2                                              ^(n —  2)22n-2 n  2(3n-1)/2 
       —n(n +  3)2n-1  +  2n2  n +(2  —  n2)2n-1  + (2n  ±  3)2(n-1)/2  +  n2 3 

NZ 0 

  2. Classification of #2. Only one function sn0,1,...,(n-1)/2belongs to SM' from Lemma 
3.2.2; the other belong to  Mi. 

  3. Classification of #5. For n even no function exists. Consider n odd. Only one 

function  .s = x1  + 1 belongs to M' for n = 1. For n odd > 1 only one function 

802,4,...,n-1=1 +  x1  + • • • xn belongs toM. ^

In Table 3.9 the number of up to n-ary functions is given for each class which is easily 

verified from the result in [Tos72] and Table 3.8. 

Theorem 3.6.2. The number of symmetric functions consisitng solely of n-ary function 

is given in Table  3.10. 

  Ibuki and Inagaki constructions 

  We give the formula for the number of s-bases consisting of solely n-ary symmetric 

functions for each case in Tables 3.11 and 3.12. 
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 Class Number of up to n-ary symmetric functions 

8,18 1 

 12,13 

  sum



 Table 3.11: Number of s-bases consisting of n-ary functions (Ibuki construction). 

        n even n odd 
 Nn  22n  4_  2n-F1  _  3n  —  4  22n  +  2  2(n+1)/2  _  6 

 Ni 0 0 
 22n  _  2n  —  4  22n  _  2n-1  _  2n  —  3 

 2n+1 — n csn-1                            z+  2  •  2(")/2 + n — 3 
 NZ 0 

Table 3.12: Number of s-bases consisting of n-ary functions (Inagaki construction). 

 n even n odd 
 Nn  22n-2  + (3n +  5)2n-1  — 4n — 4  22'2 + 3  23(n-1)/2  + (3n —  2)2"1 

                                +(n +  2)2(n-1)/2 — 4n — 2 
 Nin  2n-1  — n  2n-1  —  2(n-1)/2  — n + 1 

 NT  22'2 + 3n  •  2n-1 — 2n — 4  22"2 +  3  •  23(n-1)/2  + (3n —  2)2' 
                                +(n +  2)2(n-1)/2 — 4n — 2 

 2n+1  —  n  2,1  _  2  •  2(n+1)/2  —  n  —  1 
 NZ 0

3.7. S-bases under sequential circuit composition 

In Table 3.13 we show symmetric functions included in each class of s-completeness. 

Lemma 3.7.1. There is no symmetric representative in the class 16. 

Proof. Assume f E M, i.e. f = 0  < m  <  n (we exclude the constant .97'). 0 

from the consideration). From f  No we have 2m <  n and from f N1 we have 

2(m — 1)  > n. That is,  in  < n/2 and m  > n/2 + 1, a contradiction.  ^ 

  This give the following. 

Theorem 3.7.1. There are exactly 50 classes of  s-bases and 38 classes of  s-pivotals 

under s-completeness. 

  They are given by deleting the classes of bases and pivotals including the class 16 

from those indicated in Tables 2.7 and 2.8, Chapter 2 respectively (we simply delete the 

last line of rank 2 bases and one pivotal consisting solely of the class 16). 

Theorem 3.7.2. The  number of n-ary symmetric functions in each of the 16 classes 

under sequential completeness are given in Table 3.14. 
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        Table 3.13: Symmetric functions in the classes of functions under s-completeness. 

 NoNiSLMM' symmetric functions 

     1. 1 1 1 1 1 1 the remaining symmetric functions 

     2. 1 1 1 1 1 0  m n. Exclude m (n — 1)/2 for n odd 
     3. 1 1  1  0  1 1  a  +  xi  +  •  •  •  +  (m  >  1,a E {0,1}) 

     4. 1 1 0 1 1 1  snfo,..„ for n odd > 1: m = — 1)/2,  ri E {i,  n — 
                        except a +  x1  •  •  • +  x2m4-1;  .9;1  (n-14)/2,...,n; 

     5.  1  0  1  1  1  1  4,  2r  <  n  and  .s7k  M 
     6.  0  1  1  1  1  1  371,  2r1  >  n  and  s'A  M 
      7. 1 1 0 1 1 0  sa1,...,(„1)/2 :  n odd 

     8.  1  1  0  0  1  1  a  +  xi  +  •  •  •  +  x2m+i(m  >  1,a  E  {0,  1}) 
      9.  1  0  1  1  0  1  snm,,n+i,...,n;  m<  n/2,  m>  0 

    10. 0 1 1 1 0 1n;m > n/2  n even;  m > (n + 1)/2 n odd 
    11.  1  1  0  0  1  0  1  +  x 

    12.  1  0  1  0  0  0 1 
    13.  0  1  1  0  0  0 0 
   14.  0  0  0  1  0  1 : n odd 

    15.  0  0  0  0  0  1 x 
    16.  1  1  1  1  0  1 0 

Proof. We describe symmetric functions contained in in each class (cf. Table 3.13). 

  The class 1 is Sheffer class described in Section 5, Chapter 3. It is easy to see the 

classes 3,7,8,11,12,12,13,14 and 15 since they are linear functions and SM and SM' and 

other special functions. The class 2 consists of monotone decreasing functions except 

one function SM'; the intersections of the other sets and monotone decreasing functions 

are constants or the unary function x 1. Class 3,8:  Ls(n)  C  (Ss U3s)Nos.3711—rM's. 

Class 4: we are to exclude SL,  SM=SN1=SN0 and  SM` from S. Class 5,6: we consider 

class 6 (the class 5 is similar). From  NoS  C  NoM,  NoL  C  NoM and  NoM'  C  NoM the 

class 6 equals to  No \  NoM. We have  E  No  <=> m > n/2, i.e. m  > n/2 + 1 for 

n even and  m  > (n + 1)/2 for n odd. Thus  INJ,M3(n)1 = n + 2 —  (n/2 + 1)  = n/2 + 1 

for n even and = n + 2 — ((n — 1)/2 + 1) = (n + 3)/2 for  n odd. Finally, class 9,10: 

From  f  E  MM we have f = > 0 (if m = 0 then f  E MM'). These do 

not belong  to  L  for  n  >  1. We have f  E  No  <=>.  m  >  n/2 and f  ENI  m  <  n/  2  +  1. 

Consider the class 9. Then m  <  n/2 and m < n/2  +  1. For n even this means m < n/2 

and there are all  n/2 such functions. For n odd this means m <  (n — 1)/2 and there 

are all (n — 1)/2 such functions. None of functions in both cases belong to S. Class 10 
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Table 3.14: Number of n-ary symmetric functions in each class under sequential completeness. 

   class\  n= 1  n even n  odd  > 1  
        1 0  27+1  —  2742+1  —  n  —  2 27+1 —3•27+1)i                                    2 n 3 

  2 0  n  n  —  1 

 3 0 2 0 

  4 0 0 2(n+1)/2 4 

      5,6 0  2742 — n/2 — 1  2(n+1)12 —  (n + 1)/2 — 1 
 7,14 0 0 1 

 8 0 0 2 

   9, 10 0 n/2  (n — 1)/2 
 11,15 1 0 0 

 12,13 1 1 1 

  sum 4  27+1  27+1 

          Table 3.15: Numbers of up to n-ary symmetric functions in each class. 

 class\  n> 1  
        1  274-2 — (9 +  (_i)7)2[(7-1-1)/2J  [n2/2] +  2n — 4[n/2] + 6 

  2  [n2/2] 
  3  2[n/2] 
        4  2[(7-1)/21+2 —  4[(n — 1)/2] — 4 

       5,6 (7  (-1)n)2Rn-1)/21 — (1/2)[n2/2] — n — [(n  —  1)/2] — 5 
    7,14 [(n — 1)/2] 

    8  2[(n  —  1)/2] 
  9, 10  [n2/2]/2 • 

 11,15 1 

       12,13 

 slim  27+2 — 4

is similar.  ^ 

  The number of up to n-ary symmetric functions in each class is given in Table 3.15. 

Theorem 3.7.3. The number  Nn of bases consisting solely of  n-ary symmetric func-

tions under sequential completeness is given in Table 3.16. 

3.8. Concluding remarks 

We have given the numbers of symmetric functions in each class for each construction 

described in Chapter 2. By this we have given formulas for the number of bases consist-

ing solely of  n-ary functions. The numerical data for the small numbers of  n are given 

                                   43



    Table 3.16: Number of s-bases consisting of n-ary functions under sequential completeness. 

 n even  n odd 

 Nn 3  •  2n + (n +  1)270+1 3  .  2n+1 + (7n  —  9)2(n-1)12 
 —n2/4  —  2n  —  7  —n2/4—  17n/2  +3/4  

 Ni  2n+1  —  2n/2+1  — n — 2 2n+1  —  3.  2(n+1)/2  — n + 3 
 .AT  2n + (n +  2)2n/2+1  2n+2 +  (7n  —  3)2(n-1)/2 

                   —n2/4 — n — 5  —n2/4  — 15n/2 — 49/4 
 /VT 0 10 

          Table 3.17: Numbers of bases consisting solely of n-ary symmetric functions. 

n 2 3 4 5 6 7 8 9 10  
ordinary composition 2 36 72 446 1,078 5,634 16,628 77,834 263,154 
r-line 7 15 31 63 127 255 511 1,023 2,047 
2-line fix 7 33 47 189 199 885 791 3,813 3,127 
uniform composition 14 99 764 5,699 40,322 317,613 2,266,232 18,387,347 137,559,230 
Ibuki composition 14 66 272 1,034 4,202 16,410 66,020 262,202 1,050,590 
Inagaki composition 14 64 180 662  1,732 6,890 20,060 84,362 280,020 
sequential 12 45 69 248 276 1,017 1,017 3,840 3,724 

in Table 3.17. By the given data for the number of up to n-ary functions contained 

in each class we can calculate the formula for the number of bases consisting of up to 

n-ary functions. 
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Chapter 4 

Sheffer and Symmetric Sheffer 

functions  in P2 

In this chapter we give the four formulas for the numbers of Sheffer functions, Sheffer 

with constant functions, Sheffer symmetric functions and Sheffer symmetric with con-

stant functions under each functional construction which we have seen in the previous 

chapters. 

4.1. Introduction 

A Sheffer Boolean function is a well-known notion which means that it can produce by 

itself all Boolean functions through composition. A typical example of such function is 

the NAND operation. A variation of the notion of Sheffer functions is that of Sheffer 

with constants (in this chapter abbreviated to  c-Sheffer), which assumes that one can 

freely utilize constant-valued functions (0 and 1). This is a more suitable assumption 

in real circuit design, since the constant-valued functions are usually obtained with 

no extra cost. A comprehensive survey on the topic of completeness can be found in 

 [Ros77]. 
  We show the formulas for the number of n-variable Sheffer functions, for the four 

cases: Sheffer, c-Sheffer, symmetric Sheffer, symmetric c-Sheffer. Here some previous 

results by other researchers are included in order to achieve completeness of the presen-

tation. The derivations for the formulas are always by the so-called inclusion exclusion 

principle (cf. [Vi171]) using the inclusion relations of the sets we have seen in lem-
mas 2.2.1-2.2.4, Chapter 2 and 3.2.1-3.2.3, Chapter 3 freely. Thus the proofs are not 

described in detail. 
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  The subsets of Boolean functions which we have seen in the previous chapters are 

used in describing the conditions for  Shefferness. From Section 2 through Section 8 we 

present the explicit formulas for Sheffer and symmetric Sheffer functions. Finally in 

Section 9 tables are shown which exhibit the calculated numbers of Sheffer functions in 

each case. 

  We must note that some cases still remain unsolved because we don't know the 

formula for the numbers of the two subsets of Boolean functions. An explicit for-

mula for the number  T(n) of monotone increasing Boolean functions is not known (the 

Dedekind problem), but a good asymptotic formula has been obtained  [Kor81] (see also 

 [Hro85,K1e69]). The first few values of the function are shown in Table 4.1. Also we 
could not find an explicit formula for the function  0(n) (only the shape of the formula 

is known very recently  [PMN88]), which shows that the number 0(n) increases very 

rapidly comparing even with  T(n)). We calculated first a few values, which are shown 

in Table 4.2 (the calculation is possible only up to n = 4 by naive enumeration using 

computer). 

                        Table 4.1. Values  of  111(n). 

 n  1  2 3 4 5 6 7  

 W(n) 3 6 20 168 7,581 7,828,354 2,414,682,040,998 

                       Table  4.2. Values of 0(n). 

 n  1  2 3 4 5  

                  0(n) 2 6 40 1,376 1,314,816 

4.2. Sheffer functions under ordinary composition 

Our first construction method is the ordinary one. In this construction functions from a 

given set of primitives are combined by composition of functions, together with identi-

fication and permutation of variables. Thus the projection functions  IR are freely used 

in composition. 

   In this section only the last theorem is new. The first theorem is well-known (see 

[Ros77]) and is easily obtained from the Post completeness theorem 2.3.1, Chapter  2  : a 
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set of functions is complete under ordinary composition if and only if it is not included 

in each of the 5 sets  To,  T1,  M,  S and L. 

Theorem 4.2.1. A function f is  Sheffer if and only if f  To U  T1 U S. 

Theorem 4.2.2. The number of n-ary  Sheffer functions is E(n) =  22n-2  22"-1-1. 

Theorem 4.2.3.  [Tos72] The number  Es(fl) of n-ary symmetric Sheffer functions is 

 2' for n even and  2" —  2(n-1)/2 for n odd. 

Theorem 4.2.4.  [Jab52] A function f is  c-Sheffer if and only if f M U L. 

Theorem 4.2.5.  [Hik82] The number of n-ary  c-Sheffer functions is  Ec(n) = 22n  — 

2n+1  n  +  2  —  W(n). 

Theorem 4.2.6. The number of n-ary symmetric  c-Sheffer functions is  Ees(n) = 

 n  —  4. 

 Proof.  Ecs  (n) =  1-733(n)i—  iMs(n)i—  iLs(n)i  IMs(n)  n  Ls(n)I=  2n+1—  (n-1-2) —  4+2. 

  Thus, when n is large, almost all symmetric Boolean functions are Sheffer with 

constants. 

4.3. Sheffer functions under r-line coding 

All the result about r-line coding completeness is derived from the following Theorem 

2.4.1, Chapter 2: 

Theorem 4.3.1. A set of functions is complete under r-line coding if and only if it is 

not contained in each of the  3 sets  L,C and D. 

Theorem 4.3.2. A function f is Sheffer and  c-Sheffer under r-line coding if and only 

 if  f  cLUCUD. 

Proof. The second assertion comes from the fact that  {co,  cLncn D.  ^ 

  Thus, the notions of Sheffer and c-Sheffer coincide under r-line coding completeness. 
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Theorem 4.3.3. The numbers of n-ary functions  Sheffer and c-Sheffer under r-line 

coding are  Ertc(n) =  E.ic(n) =  22n —  2n+2 + 2n + 2. 

Proof.  Er/c(n)  =  Ecrte(n) =  22n —  2n+1 —  2(2n + 1) + 3(n + 2) — (n + 2).  ̂  

Theorem 4.3.4. The numbers of n-ary symmetric functions  Sheffer and  c-Sheffer 

under r-line coding are  E,;ic(n) =  E..7c(n)  = 2n+1  — 6. 

Proof.  Eric(n) =  EI(n)  =2n+1  —4-3-3+2+2+2-2.  ^ 

4.4. Sheffer functions under 2-line fixed coding 

The theorems about Sheffer functions in this section are derived from the following 

Theorem 2.5.1, Chapter 2: 

  A set of functions is complete under the 2-line fixed coding if and only if  it is not 

contained in each  of the 6 sets  S,  L,C,D,  No and  Ni.- 

Theorem 4.4.1. A function f is  Sheffer under the 2-line fixed coding if and only if 

f  OsuLucupuNou  N1. 

  We could not  find an explicit formula for the number of functions in the above case. 

Theorem 4.4.2. A symmetric function f is Sheffer under the 2-line fixed coding if and 

only  if  f  cZ  Ss  U  Ls  U  NU  NI. 

Proof.  Cs  U  Ds  C  .ATJU  NI.  ^ 

Theorem 4.4.3. The number  Eife(n) of n-ary symmetric Sheffer functions under the 

2-line fixed coding is  2n+1 — 2n/2+1  — 2 for n even and  2n+1  — 3  .  2(n+1)/2 + 2 for n odd. 

Proof. When n even,  Ss(n) =  Nj(n)  n  NI (n) =  0. Thus  Elifc(n) =  11:"(n), —  ILs(n)I  — 

IN (n) I — I  /17(n)  1  +  ILs(n)  n  Nos(n)I +  ILs(n)  n  1\7(n)1 =  2n+1—  2n/2  —  2n/2  — 2. When 
n odd,  E.;/fc(n) =  2n+1  —  2(n+1)/2  —  2(n+1)/2  —  4+5+2                                                 _ 2(n+1)/2 —1.  ^ 

Theorem 4.4.4. A function f is  c-Sheffer under the 2-line fixed coding if and only if 

f f.  L  U  CUD. 
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       Proof Because  co  V  S,  ci  No and co  V N1.  ̂  

         Thus, from Theorem  4.3..2, the sets of c-Sheffer functions under r-line coding and 

       the 2-line fixed coding coincide. Hence from Theorems  4.3..3 and  4.3..4 we immediately 

       have the following theorems. 

       Theorem 4.4.5. The number of n-ary  c-Sheffer functions under the 2-line fixed coding 

       is  Elfc(n) =  22" —  2n+2  + 2n + 2. 

       Theorem 4.4.6. The number of n-ary symmetric c-Sheffer functions under the  2-line 

       fixed coding is  Egfc(n) =  2n+1 — 6. 

      4.5. Sheffer functions under uniform delay composition 

       The following Theorem 2.6.1, Chapter 2 is fundamental for this section. 

         A set of functions is complete under uniform delay composition if and only if it is 

       not contained in each  of the 8 sets:  210,111,M,  S,  L,  X,  M' and K. 

         There is no Sheffer function under this construction  [Kud60], because  To  n T1  c,  x. 

       However, in the case of Shefferness with constants, we have the following: 

       Theorem 4.5.1.  [Hik82] A function f is  c-Sheffer under uniform delay  composition if 

      and only if f  VMUM'ULUK. 

       Theorem 4.5.2.  [Hik82] The number of  n-ary functions  Sheffer with constants is 

        Ect,ni(n) =  22n-1 —  2n  + 2n  + 4 —  21(n). 

        Theorem 4.5.3. The number of  n-ary symmetric c-Sheffer functions under uniform 

        delay composition is  Ecusni(n) =  2n — 2n — 1 +  (-1)n. 

       Proof Consider the functions outside  K3. Note that  IMs(n)  fl  Ks(n)I =  1M's(n)  fl 

       IC8(n)i= n; and also note that  .Ls(n)  fl Ks(n) = {a +  x1  +  ...  +  xn} when n is odd, and 

       is  0 when n is even.  ̂  

      4.6. Sheffer functions under Ibuki construction 

       Another construction method for unit delay primitives is proposed independently in 

        Ibuki  [Ibu68]. He allows non-uniform composition in some case. His completeness 

        theorem is. 

                                          49



Theorem 4.6.1.  [Ibu68] A set of functions is complete under  Ibuki construction if and 

only if it is not contained in each of the 7 sets:  To,  T1,  M,  S,  L, X and M'. 

  There is no Sheffer function in this construction by the same reason as the previous 

section. From Theorems 4.5.1 and 4.6.1 the following corollary is immediate. 

Corollary 4.6.1. If a set of functions is complete under uniform delay composition 

then it is complete under  Ibuki construction. 

Theorem 4.6.2. A function f is c-Sheffer under  Ibuki construction if and only if 

 f  VMULUM'. 

Proof. c1  V  To,  co  V T1,  co S, and  co  V  X.  ^ 

Theorem 4.6.3. The number of n-ary  c-Sheffer functions under  Ibuki construction is 

  Ebuki(n) =  22n —  2n-1-1 + 2n + 4 — 2W(n). 

Proof Note that IM(n) U  .111`(n)1=  2T(n) — 2. Also use Lemma 2.1.  ̂  

Theorem 4.6.4. The number of n-ary symmetric c-Sheffer functions under  Ibuki con-

struction is 

 Ecibuki  (n) =  2n+1 — 2n — 4. 

Proof From lemmas in Section 3 we have  IMs(n) U  Ls(n) U  M's(n)i= 2n + 4.  ̂  

4.7. Sheffer functions under Inagaki construction 

Still another modification to  Kudrjavcev's construction is treated in  [Ina82] by  Ina-

gaki. He further weakened Ibuki's restriction, assuming that one is allowed to construct 
constant-valued functions with their inputs being nonuniform delays. In this construc-

tion one feeds input signals in some span of time so that one can maintain stable output. 

Thus, for example, oscillating input sequence like 0101... is prohibited. 

Theorem 4.7.1.  [Ina82] A set of Boolean functions is complete under Inagaki con-

struction if and only if it is not contained in each of the 6 sets:  To,Ti,M,S,L and 

 M'. 

   From Theorems 4.6.1 and 4.7.1 the following corollary is immediate. 
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Corollary 4.7.1. If a set of functions is complete under Ibuki construction then it is 

complete under Inagaki construction. 

  There exist Sheffer functions in contrast to the former two cases. 

Theorem 4.7.2. A function f is  Sheffer under Inagaki construction if and only if 

 f  To  U  TiU  S  U  M' 

Proof. f  ¢T0UT1USimplies f  M  U  L.  ^ 

  We could not find an explicit formula for the number  Einagaki(n). But for the sym-

metric case we have the following. 

Theorem 4.7.3. The number EsTnagaki(n) of n-ary symmetric Sheffer functions under 

                                                        I 

 Inagaki construction is  2'1 — n for n even, and 2n-1 — 2(n-1)/2 n 1 for n odd. 

Proof. Only the rough sketch. When n is even, note that the number is  IZT(n)  fl 

 Ti  (n)  I—  IM"  (n)I+1(TO(n)  U  211(n))  n  M's(n)I. When n is odd, note that the number is 

 IT  (n)  n  Ti  (n)I —  ITel(n)  fl  Ti  (n)  n  Ss  (n)I —  1111(n)  n  Tf(n)  nM's(n)  I  ITd(n) n  TAn)  n 
 Ss  (n)  n  M"(n)1. ^ 

Theorem 4.7.4. A function f is  c-Sheffer under  Inagaki construction if and only if 

f  0MULUM'. 

   Hence, from Theorem 4.6.2, the sets of c-Sheffer functions under Ibuki construction 

and Inagaki construction coincide. Following theorems are immediately obtained from 

Theorems 4.6.3 and 4.6.4. 

Theorem 4.7.5. The number of n-ary  c-Sheffer functions under Inagaki construction 

is 

 Elnagaki(n)  =  22"  —  2n+1 + 2n + 4 —  2T(n). 

 Theorem 4.7.6. The number of n-ary symmetric c-Sheffer functions under Inagaki 

 construction is 

   Ecisnagaki(n) = 2n+1 2n — 4. 
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 4.8. Sheffer functions under sequential circuit construction 

We present the result about Sheffer functions based on the following Theorem 2.7.1, 

Chapter 2: 

Theorem 4.8.1. A set of functions is complete under sequential circuit construction if 

and only if it is not contained in each of the 6 sets:  M,  S,  L,  No,  N1 and M'. 

  Since  No  C  To and N1  C T1, the following corollary is immediate from Theorems 

4.7.1 and 4.8.1. 

Corollary 4.8.1. If a set of functions is complete under  Inagaki construction then it 

is complete under sequential circuit construction. 

Theorem 4.8.2. A function f is Sheffer under sequential circuit construction if and 

 onlyiff  OMUSULUNoUNiUM'. 

  We could not find an explicit formula for  E„q(n). But in the symmetric case we have 

the following. 

Theorem 4.8.3. The number  Esseq(n) of  n-ary symmetric  Sheffer functions under se-

quential circuit construction is  2n+1_2n/2+1_n-2 for n even and 2n+1-32 n+12_n+3 

for n odd. 

Proof. When n is even,  Ms(n)  C  NN(n) U  N1(n). When n is odd, note that  Nj(n) n 

 Ni  (n)  C  Ss  (n),  Ls  (n)  n  Nj(n) =  M's(n)  n  N  An) =  {41, and  Ls  (n)  n  Ni9(n) =  M"(n)n 

 Ni9(n) =  fen. Details omitted.  ^ 

Theorem 4.8.4. A function f is c-Sheffer under sequential circuit construction if and 

only if  f  cZMULUM'. 

   From Theorem 4.6.2 and Theorem 4.7.5, c-Shefferness coincides under Ibuki, Inagaki 

and sequential. Thus we have the following. 

Theorem 4.8.5. The number of n-ary  c-Sheffer functions under sequential circuit 

 construction is 

 Ecseq(n)  =  22n  2n+1 +  2n  -I- 4 —  2W(n). 

Theorem 4.8.6. The number of n-ary symmetric  c-Sheffer functions under sequential 

 circuit construction is  Ec,seq(n) =  271+1 — 2n — 4. 
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4.9. Concluding remarks 

As is well-known, the condition for completeness is conveniently expressed by listing all 

maximal incomplete sets under each construction. In Table 4.3 the maximal incomplete 

sets under the constructions treated in this chapter are summarized. In Tables 4.4 are 

shown consditions of Shefferness and c-Shefferness (Table 4.5 presents the same condi-

tions for symmetric functions). Table 4.6 presents essentially 2-ary Sheffer functions. 

In Tables 4.7 and 4.8 are shown  n-ary functions Sheffer and  Sheffer with constants, re-

spectively, for 2  <  n  < 4, for each case of the constructions. In Tables 4.9 and 4.10 are 

shown  n-ary symmetric functions  Sheffer and  Sheffer with constants, respectively, for 

2  <  n,  <  6. All the values in the tables are calculated by the formulas given in the paper, 

except those marked by (*) in Table 4.7 which are obtained by naive enumeration. 

         Table 4.3: Maximal incomplete sets under various constructions. 

                          ToTiMsLcDNo NI. . , C M' K 
       ordinary composition x x x xx 

   r-line coding x x x 
    2-line fixed coding xx x x x x 

  uniform x x x xx x x x 
    Ibuki construction x x x xx x x 

    Inagaki construction x x x xx x 
    sequential construction x x x x x x 

     ordinary with consts. x x 
     r-line with consts. x x x ' 

      2-line fixed with consts. x x x 
   uniform with consts. x x x x 

   Ibuki with consts. x x x 
   Inagaki with consts. x x x 
    sequential with consts. x x x 

  Table 4.4: Conditions of Shefferenss and c-Sheferness under various constructions. 
                       ToTiMsLCDNoNi XM' K 

      ordinary composition x x x 
   r-line coding x x x 

     2-line fixed coding xx x x x x 
    Inagaki construction x x x x 

     sequential construction x x x x x x 

      ordinary with consts. x x 
    r-line with consts. x x x 

      2-line fixed with consts. x x x 
   uniform with consts. x x x x 

   Ibuki with consts. x x x 
   Inagaki with consts. x x x 
    sequential with consts. x x x 
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ordinary composition x x x x x 

r-line coding x x x 

2-line fixed coding x x x x x x , 

uniform x x x x x x x x 

Ibuki construction x x x x x x x 

Inagaki construction x x x x x x 

sequential construction x x x x x x 

ordinary with consts. x x 

r-line with consts. x x x ' 

2-line fixed with consts. x x x 

uniform with consts. x x x x 

Ibuki with consts. x x x 

Inagaki with consts. x x x 

sequential with consts. x x x

             To Ti M S L C D No NI . X Mi K 

ordinary composition x x x 

r-line coding x x x 

2-line fixed coding x x x x x x 

Inagaki construction x x x x 

sequential construction x x x x x x 

ordinary with consts. x x 

r-line with consts. x x x 

2-line fixed with consts. x x x 

uniform with consts. x x x x 

Ibuki with consts. x x x 

Inagaki with consts. x x x 

sequential with consts. x x x



Table 4.5: Conditions of symmetric function Shefferenss and c-Sheferness.

 To'  Ti  Ms  Ss  Ls Cs  Ds  Nj  NI  X'  M"  Ks 
ordinary composition x x x 
r-line coding x x x 
2-line fixed coding x x x x 
Inagaki construction x x x x 
sequential construction x x x x x x 

ordinary with consts. x x 
r-line with consts. x x x 
2-line fixed with consts. x x x 
uniform with consts. x x x x 
Ibuki with consts. x x x 
Inagaki with consts. x x x 
sequential with consts. x x x

Table 4.6: Essentially 2-ary Sheffer functions under various constructions.

 xVy xVy  yT  y-).x  xy  x--4y  x0y x-..--_-_,y  xy xy 
ordinary composition x x 
r-line coding x x x x x x 
2-line fixed coding x x 
uniform 
Ibuki construction 
Inagaki construction 
sequential construction 

ordinary with consts. x x x x x x 
r-line with consts. x x x x x x 
2-line fixed with consts. x x x x x x 
uniform with consts. 
Ibuki with consts. x x x x 
Inagaki with consts. x x x x 
sequential with consts. x x x x

Table 4.7: The number of n-ary  Sheffer functions.

                 2 3 4 ratio when n  00 

total 16 256 65,536 

ordinary composition 2 56 16,256 1/4 
r-line coding 6 232 65,482 1 

2-line fixed coding(*) 2 162 62,538 ? 
uniform delay - - - 0 

Ibuki - - - 0 

Inagaki(*) 0 42 16,102 1/4 
sequential composition(*) 0 148 62,366 ?
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Table 4.8: The number of  n-ary functions Sheffer with constants. 

                2 3 4 ratio when n oo 

total 16 256 65,536 

 ordinary composition 6 225 65,342 1 

r-line coding 6 232 65,482 1 

 2-line fixed coding 6 232 65,482 1 

uniform delay 0 90 32,428 1/2 
Ibuki 4 210 65,180 1 

Inagaki 4 210 65,180 1 

 sequential composition 4 210 65,180 1

  Table 4.9: The number of n-ary symmetric Sheffer functions. 

n 2 3 4 5 6 ratio when  n  —> oo 

total 8 16 32 64 128 

ordinary composition 2 2 8 12 32 1/4 
r-line coding 2 10 26 58 122 1 

2-line fixed coding 2 6 22 42 110 1 

uniform delay - - - - - 0 

Ibuki 

Inagaki 0 0 4 8 26 1/4 
sequential composition 0 4 18 38 104 1

Table 4.10: The number of  n-ary symmetric functions Sheffer with constants. 

 Ti, 2 3 4 5 6 ratio when n  co 

  total 8 16 32 64 128 

    ordinary composition 2 9 24 55 118 1 

   r-line coding 2 10 26 58 122 1 

    2-line fixed coding 2 10 26 58 122 1 

   uniform delay 0 0 8 20 52 1/2 
  Ibuki 0 6 20 50 112 1 

  Inagaki 0 6 20 50 112 1 

    sequential composition 0 6 20 50 112 1
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Chapter 5 

Classification of P3 

In this chapter we classify  P3, the set of all three-valued logical functions. In the first 

section we state the completeness criterion for P3 which gives 18 P3-maximal sets. Then 

we present inclusion relations of intersections of the maximal sets as lemmas. These 

lemmas are useful not only for the classification of P3 but also for understanding the 

basic structure of P3. The study of classes also provides information on the closed sets 

which are the intersections of families of maximal sets. This is of independent interest 

relating to a further study toward describing all closed sets of P3. In Section 5.2 we 

explain a strategy of the classification briefly. After that we proceed to the classification 

 of  P3. 

5.1. Basic structure of P3 

In this section intersections of the P3-maximal sets are investigated. Operations over 

relations introduced in Chapter 1 are used to prove basic inclusion relations among 

them. In some cases we present the results from  [Miy71] omitting the proofs. 

  The investigation of this chapter is based on the following fundamental result due 

to Jablonskij. In the following theorem T is the Slupecki clone (of all essentially unary 

or non-surjective functions); L is the clone of all linear or  affine (mod 3) functions; S 

of all functions selfdual with respect to the cyclic permutation (012);  Mo, M1, M2 are 

determined by linear orders (chains) on  E3; Uo, U1, U2 by the nontrivial equivalence 

relations on  E3;  Bo, B1, B2 by the so called central relations and  To, ,  T12 by unary 

relations (i.e. subsets of E3). Throughout this chapter x y and  xy denote the element 

of  E3 congruent (mod 3) to x y and xy, respectively. 
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 Theorem 5.1.1. [Jab58] P3 has exactly the following 18 maximal sets: 

            T =  Pol({(a,b,c)T  E  E3  I  a  =  b  or  a  =  c  or  b  =  c}), 

            L =  Pol({(a,  b,  c)T  E  I  c = 2(a +  b)1), 

     (  

 S = Pol012) 
                       120' 

         012220012001 012112  M
oPolMPolPM2 = Pol           012011)'1—012122 )'012200)' 

     0121201202 01201  U
0=PolU1=PolU2= Pol         01221)'01220 )'01210 ) 

   (          0120102_(0120212  Bo = PolB2 = Pol             0121020)'B1=Pol                            0121021)'-0122021 )' 
 To = Pol(0),  T1 = Pol(1), T2 =  P0/(2), 

 T01 =  P0/(01),  To2 =  P0/(02),  T12 =  P0/(12). 

    Let us call the functions of D :=  If  IT47(f)  Ek} degenerate functions,  where"'  W(f) 

  denotes the sets of values of f (range of  f). 

  Theorem 5.1.2.  [S1u39] 

 T=DUP  i!1) 

    Another characteristic of T is the set of functions, substituting any degenerate func-

  tions in its all arguments results in a degenerate function (T may be called semi-

  degenerate functions). L is the set of functions which can be expressed as a linear 

  function of its variables. The set of linear functions is maximal only if k is a prime. S 

  is the set of functions preserving the mapping  0 :  E3  ---+  E3;  q(x) = x 1. 

    If a binary relation R C  E3  x  E3 contains {(0, 0),  (1,1), (2,  2)} then R is called 

  reflexive. The sets  Mi,  Ui,  Bi are reflexive. 

    M1,  M07 M2 are the set of functions preserving the three order relations 2  <o 0  <o 

  1, 0 <1 1  <1  2,1  <2 2  <2 0 respectively. They are called  nondecreasing  functions, 

  respectively with respect to the three orders  <0,  <17  <2  • f  E U2 is equivalent to : if 

 (f  (a),  f(b)) =  (0,2) or  (1,2) then there is i such that  (ai,  bi) =  (0,2) or  (1,2). In the 
  same manner, f E B1 is equivalent  to  : if  (f(a),  f  (b)) = (0, 2) then there is i such that 

  (ai,  bi)  =  (0,  2). 
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  Ta and Tab is the set of functions preserving a and {a,  b}, respectively. That is, for 

f  E  Ta we have  f  (a) = a, and for f E  Tab we have  f  (x) E  {a,  b} for any  x  E  {a,  br. 

  Let the permutation group (symmetric group) over  {0,1, 2} be S3 =  {e,  0-0,  al,  a2, a3, 

0-41;  0.0 =  (12),  ai =  (02),  a2  =  (01),  a3 =  (012),  54 = (210), where  e,  (p,  q) and  (p,  q,  r) 

denote identity, transposition of p and q, and cyclic permutation of p, q, r, respectively. 

In Table 5.1 we presents the multiplications of the elements of the permutation, where 

-y =  a8 means -y(x) =  a(P(x)). Note that  ol =  e (i = 0,  1,  2). 

  Since similarity plays an important role in our discussion we present the table of a-

similar of each maximal set for all a  E S3 in Table 5.2. These a-similar can be calculated 

by Lemma 1.3.2 and Lemma 1.4.2 (Chapter 1). 

                                   Table 5.2: a-similar of maximal 

                                      sets, where - denotes invariance.

Table 5.1: S3 X S3.

a \ p ao Cri  a2  0.3  64

ao 6  03  a4 al  0'2

al  474 E  0.3 0-2 ao

 a2  0.3  a4 E ao  al

 0-3  0.2 ao Q1  (74  E

 0-4 Q1  (72 ao  E  0'3

T 

L 

S 

M1 

M2 

 MO 

U2 

 UP 

U1 

 B0 

B1 

B2 

 TO 

T1 

T2 

 T01 

T12 

 T20

 a0  al  a2  0-3  0-4

M2  —  Mo.MO M2 

 M1  MO  —  M1  MO 
— M2 M1 M2 M2 

 Uo  —  U1  Uo 
—  U2  Ui  U2  Ui 

 U2  —  Uo  Uo  U2 
—  B2  B1 B2 B1 

 B2  —  Bo  Bo  B2 

 Bi  Bo  —  B1  BO 
 —  T2  T1  T2  T1 

 T2  —  To  To  T2 

T1  To —  T1  To 

 T02  T12  —  T20  T12 
- T01  T02  T01  T02 

 Tot — T12 T12  T01

  We now proceed to investigate the intersections of the maximal sets. 

Theorem 5.1.3. 

K :=  M1M2M0 =  {0,1,2  (constant  functions),  xi (i  =  1,  2,...; projection  functions)}. 

  We give the proof after two lemmas.
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Lemma 5.1.1.  If  f E K then for any i and for any  ai (j  =1,...,n;  j i), 

 g(xi)  =  f  (al,  •  • ,  ai-1,  xi,  ai+i,  •  •  • ,  a.) =  xi or constant. 

 Proof. Let a =  (cti,  -  •  -  ai-i,  xi,  ai+1,...  ,an), then  6  <,  I  <,  2,  i  <2  2  <2  6,  2 <0 

     Hence,  if  f  E  K  then  f(o)  =  0,  f(i)  =  1,  f  =  2  or  AO)  =  f(i)  f  = 

constant. ^ 

Lemma 5.1.2. If  f(x,y)  E  1:12) depends both on x and y,  then f K. 

Proof. Assume  f  (x, y) E K and  f(x, y) depends both on x and y. Then there are 

c,  c' (c  5 c') and a such that  f  (c, a)  f  (c', a). From Lemma 5.1.1  f  (x, a) must be x or 

constant, therefore  f  (x, a)  a- x. Analogously it should be  f  (b, y) y for some b. Hence 

 f  (b, a) = b = a follows. Assume b = a = 0. Then  f(x,y) is represented by the following 

table: 
 x  \  y 0 1 2  

                       0  0  1  2 

                       1  1  *  * 

                       2  2  *  * 

Again by Lemma 5.1.1  f(2, y)  a-- constant or y. On the other hand  1(2,  0)  = 2 from the 

above table. Hence  f  (2, y) 2. Analogously we conclude  f  (x,1) 1. Accordingly we 

have  f(2, 1) = 2 and  f(2, 1) = 1, a contradiction. The case b = a  =1 or 2 is similar.  ̂  

Proof of the theorem. It is easy to see that only the constant functions and projection 

functions belong to K among all functions of  PP). Therefore it suffice to show that, if 

f E K then f depends only one variable. We show that if  f(xi  xn) E K depends 

on at least two variables, say  x; and  xi, then there is a function in K which depends 

just two variables. Since this contradict to Lemma 5.1.2, any f contained in K must 

depends at most only one variable. 

  For simplicity put j := 1. From Lemma 5.1.1, 

              f  (x1a2  ...  an) =  xi and  f  (bi  bi_ixibi+i  •  •  •  b.) =  xi, (5.1) 

for some  a2, ,  an, Put  xi = c for any c E E3. Suppose 

 f  (bib2  c  ...b.)  f  (bibi2  .  .  .  c  .  .  •  b.), (5.2) 

for some b2 and  b'2 (b2  b'2). Then h(x, y) :=  f  (bixb3  bi_iybi+i  bn) depends on x 

and y. In fact,  f  (b2, c)  h(b'2, c) and  f(b2, c) h(b2, c') for c c' from (5.1) and (5.2). 
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                                    Table 5.3: 

        6  0-0  0-1  U2  a3 

 D(0,  1)  D(2,  0)  D(1,  2) -  D(2,  0)  D(1,2) 
 D(1,  2) —  D(0,1)  D(2,  0)  D(0,1)  D(2,  0) 

 D(2,0) D(0,1) —  D(1,2)  .D(1,2) D(0,1) 

Since K contains constants and K is closed, we have h(x, y) E K. This contradicts to 

Lemma 5.1.2. Thus varying the value of x2 does not vary the value of  f. Repeating the 

same procedure for  x3, ,  xi+i, ,  xn, we conclude  f  (bia2  ...  an) = c. 

Since c is arbitrary, this indicate 

 f(bia2  •  ..  ...  an)  xi. (5.3) 

  Let  g(x,  y) :=  f(xa2...  ... an), then  g(x,  y) E K depends on x and y from 

(5.1) and (5.3). This contradicts to Lemma 5.1.2 and completes the proof.  ̂  

Lemma 5.1.3.  [Miy71] 

 MiMo  C  U2,  M2M1  C Uo, and  M0M2  C 

Corollary 5.1.1. 

 M1M2M0  C  U2U0U1. 

Lemma 5.1.4.  [Miy71] 

 U2  U0U1  C  M1  M2  MO  • 

Note 5.1.1. Let D(0,1) := {W(f)  C  {0,  1}} and let  D(1,  2),  D(2,  0) be analogously 

 defined.  a-similar of  D(p,  q) is indicated in Table 5.3. 

  We can show the following relations  [Miy71]: 

 D(0,1)U2U0  C  M1i (5.4) 

 D(2,  0)U2U1  C  M1. (5.5) 

Taking a2 and  co-similar of (5.4) and (5.5), respectively, we have 

 D(0,1)U0U1  C  Mo, (5.6) 

               D(0,1)U1U0  C M2. (5.7) 
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       By (5.4), (5.6) and (5.7), 

                    D(0,1)U1U0  C  MoM1M2  = K. (5.8) 

       Hence considering Theorem 5.1.3, we have 

 D(0,1)U0U1 =  {0,1}  ,D(1,2)U1U2 =  {1,2} and  D(2,0)U2Uo =  {2,4 

       Lemma 5.1.5. 

 M1M2  C  Bo)  M2Mo  C B1 and  MoMI  C B2. 

      Proof. The right-hand side relation can be obtained by the left-hand side relations by 

       an operation 
                                  0  C =01                                    10 

       Corollary 5.1.2.  MoM1M2  C  BoB1-B2. 

      Lemma 5.1.6.  [Miy71] U2U0  C  B1,  U0U1  C  B2 and  Il1U2  C  Bo. 

       Corollary 5.1.3.  UoU1U2  C  Bo13032. 

      Lemma 5.1.7.  [Miy71]  BoBi  C  U2i  B1  B2  C  Uo and B2B0  C U1. 

       Corollary 5.1.4.  BoBi  B2  C  U0U1  U2  - 

       Theorem 5.1.4. K =  MoM1M2  =  B0131132 =  U0U1U2 =  {0,1,2  (constant functions), 

 xi (i  =  1,  2,  ...) (projections)}. 

        Proof. By Corollaries 5.1.1,5.1.3,5.1.4, Lemma 5.1.4 and Theorem 5.1.3.  ̂  

       Lemma 5.1.8.  To1T12  C T1,  T12T20  C T2 and  T20T01  C  To. 

       Proof. From the relational intersection we have  T01  fl  T12 =  T1 

        Corollary 5.1.5.  To  Ti  2  T2  0  C  TO  T1  T2 

       Lemma 5.1.9.  M1  U  M2  U  Mo  C  T01  U  Ti2  U  T2  0 

       Proof. Let f  E  To1Ti2T20 then there are a E  {0,  i}n,  b E  {1,  2}n,  C  E  {2,  0}n such that 

 f  (a) = 2,  f  (b) = 0,  f(c) = 1. This implies f E  M1M2M0. ^ 
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 Note 5.1.2. 

 Uo  U  U1  U  U2  g  To1Ti2T20, 

 Bo  u  Bi  u  B2  g  To1Ti2T2o• 

 Counterexamples of U2  C  T01T12T20 and  Bo  C  T01T12T20 are any functions in the classes 

 #10 and #26, respectively (they are given later). 

  Lemma 5.1.10. 

 BoBi  C  T01,  MoMi  C  Tot except constant function f = 2, 

 BiB2  C  T12,  M1  M2  C  T12 except constant function f = 0, 

            B2B0  C  T01,  M2Mo  C T20 except constant function f  =  1. 

 Proof. 1). Assume f  BoBiToi. Then  f({0,1}n) = 2. Because, since (a, b)  E  B0B1 

 for any a, b E  {0,  1}n, assuming  f(c) E  {0,1} for some c E  {0,1} leads to  f({0,  1}n) E 

 {0,1}. We show  f  (a)  = 2 for any a  E  En \  {0,1}n. Put  ui :=  0,  vi := 1 if  ai = 2, 
 ui =  vi =  ai otherwise. Then  u,  v E  {0,1}n and  (a,  u) E Bo and  (a,  v)  E B1. From 

 f E  BoBi we have  ( f  (a),  f  (u))  E Bo and  (f(a),  f  (v)) E B1. Since  f(u) =  f(v) = 2 we 
 have  f  (a)  =  2. 

    2). Assume f  E  MiMoToi. There is a  E  {0,  1}n such that  f  (a) = 2, which implies 

 f(i.) =  f(2) = 2 from f  E  Mi and a <  i. < 2. On the other hand 2 and  i are 
  respectively the minimal and maximal elements according to the order 2  <0 0  <o 1. 

  This implies f a-- 2.  ^ 

  Lemma 5.1.11. 

                Uo = M2 on  D(0,  1)M1, (5.9) 

                 U2 =  M0 on D(2, 0)M1. (5.10) 

  Proof. First we prove (5.9). 1) Let us show  D(0,1)M1U0  C  M2. Assume f E 

 D(0,1)M1U0M2 then there are a  <2 b such that  f  (a) 2  f  (b). From f E D(0,1) 

  we have  (f  (a),  f  (b))  =  (0,1). Define a' by 

 a, =2,  if  (ai,bi)  =  (1,2) or  (1,0), 
 ai, otherwise. 
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    If a  = a', then we have b  < a and  f(b) = 1  f(a) = 0, contradicting f  E  M. If 

     a  0 a', then  (a,a') E  U0 and hence  f(a') = 0. On the other hand, b  < a' from the 

     construction of a'. Again  f(b) = 1  f(a') = 0 contradicts to f E 

       2) Converse  D(0,  1)Mi  M2  C Uo is from Lemma 5.1.3. The proof of (5.10) can be 

     done analogously (note that (5.9) and (5.10) are not u-simislar). ^ 

      Corollary 5.1.6. 

                       Uo = M2 on  D(0,  1)M1 (5.11) 

 Uo  =  M1,  U1  =  Mo on  D(0,1)M2 (5.12) 

                      U1 = M2 on  D(0,1)Mo (5.13) 

                       U1 =  Mo on D(1, 2)M2 (5.14) 

 =  M2,  U2  =  Mi. on  D(1,2)Mo (5.15) 

                       U2 =  Mo on  D(1,  2)M1 (5.16) 

                        U2  =  Mi. on  D(2,  0)Mo (5.17) 

                   U2 =  MO  Uo = M2 on  D(2,  0)M1 (5.18) 

                       Uo =  Ml on  D(2,0)M2- (5.19) 

     Proof. Equation (5.11) is (5.9). The first and the second equations of  (5.12)  are  o4 

     and  co-similar of (5.10), respectively. (5.13) is  0-2-similar of (5.11). The equations 

     (5.14),(5.15),(5.16) and (5.17),(5.18),(5.19) are  c4 and  o3-similar of (5.11),(5.12),(5.13), 
      respectively.  ^ 

      Note 5.1.3. From Lemma 1.4.2 (Chapter 1) we have the following equations. 

                =  Mc-1(r),  Ur=  Ucr-10.),  /3;  =  B47-1(r) and  D(p,q)u = 

     5.2. Strategy of the classification 

      The final classification result of P3 is indicated in the Appendix 1, where  *no (number 

      preceded by *) denotes serial identification number of the class (according its order of 
      appearance), while #no (number preceded by #) denotes the sorted according to the 

      "degree of completeness" number of the class . All the representatives of the classes are 

      indicated in Appendix 2 separately. 
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  The process of classification is as follows. First we classify the functions of T. Then 

T(L U S) is classified, and after this the remaining functions TLS are classified by M 

type, U type, B type,  Tr, type and finally Tpq type maximal sets. It is clear that we 

consider the functions which are not yet classified in each stage of the process. After 

above process it remains only one class, namely the class of functions which belong to 

none of 18 maximal sets. This class consists of so called Sheffer functions or complete 

functions. 

  The process is straightforward and we will identify all 406 classes of P3 among  218 = 

 262,144 possible classes. The classification process reveals the finite structure of  P3. 

  We show the correspondence of sections and the functions to be classified. 

                 Section 5.3 T 

               Section 5.4  T(L  n  s) 
                Section 5.5 M  :=   TLS(Mo  U  M1  U M2) 

                Section 5.6 U :=  TLSM(Uo  U  U1  U U2) 
                Section 5.7 B :=  TLSMU(Bo  U  Bl U B2) 

                 Section 5.8 TLSMUB. 

5.3. Classification of T 

Let  4,110 :=  Ulf E  pp) and f is onto} and  D1(0,1) := D(0.1) \  {0,1},  D1(1,2) := 
D(1, 2) \ {1, 2},  D'(2, 0) := D(2, 0) \ {2,  0}. Then from Theorem 5.1.2 and  a-similar, 
T = 4,11, +  {0,1,2} +  D1(0,1) +  D1(1,2) +  D1(2,0) =  {0,1,2}  D1(0,1) + 

 D'(0, 1Y1  +  1)u°, where  "+" denotes direct sum and  "{0,1,2}" denotes all constant 
functions. As for each function in  4,110 and {0,1,2}, its class is immediately known 

(Table 5.4). Hence it is sufficient to consider  D1(0,1). Note that we must pay attention 
to the classes in  D1(0,1) that are invariant under  al and  ao similar in counting the total 
number of classes of T. 

   First we prepare some lemmas for the classification of  D1(0,  1). 

Lemma 5.3.1.  D1(0,  1)  C S. 

   By  a-similar we have the following. 

 Corollary 5.3.1. D 

   Thus by Theorem 5.1.2 and Corollary 5.3.1 we have the following. 
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                        Table 5.4: Classes of P0„10  +10,1,21. 

 *no  f  unctions  TLS  Mi.  M2  MO  U2  U0  Ul  BOB'  B2  T0T1  T2  T01  T12  T20 #no  
 *1  x 000 000 000 000 000 000 #406 

 *2  x  +  1,x  +  2 000 111 111 111 111 111  #  83 
 *3 2x 001 111 101 011 011 101 #259 

 *4  2x  +  1 001 111 011 110 110 011 #260 
 *5  2x  +  2 001 111 110 101 101 110 #258 
 *6 0 001 000 000 000 011 010 #405 
 *7 1 001 000 000 000 101 001 #404 
 *8 2 001 000 000 000 110 100 #403 

Corollary 5.3.2. TS =  {xi,  xi  +1,xi  +  2 (i =  1,  2,  ...)}. 

Lemma 5.3.2.  D1(0,1)  c L. 

Proof. Prove that if f E L \  {0,1,2} then f is onto. Assume such  f. Then  f(x)  = 

 co  +  >  cixi and there is at least a  ci  * 0. Put  d  =  f  1)  —  f  (x)  =  >  ci = 0,1 or 2. If 

d 0 then f is onto, because  f(x),  f(x +  i) and  f(x + 2) differ one another. Assume 

d = 0. Since  ci  * 0 there are a and such that  f(a)  me), where two vectors a 

and differs only at i-th coordinate  (ai  *  a'i). Let a" be the remaining element of 

E3  {a,  a'}. Then we have  f  (ee) =  f  (a) —  ci(a — a') and  f  (ii") =  f  .) —  ci(a — a"). This 

implies that f is onto, since  f(a')  f  (&),  f  (a")  f and  f(ail)  Me). 0 

  By  a--similar we have the following corollary. 

Corollary 5.3.3. D \  {0,1,2}  C  T. 

  Thus by Theorem 5.1.2 and Corollary 5.3.3 we have: 

Corollary 5.3.4.  TL =  enlo  =  {0,1,2}. 

Lemma 5.3.3.  D'(0,1)  C  T3-2BoB1T2T01tT2. 

Proof. Suppose f E  D'(0,1)B2, then there are a, b E  .q1 such that  f  (a) = 0 and 

 f(b) = 1 from f  E  D1(0,1). Considering that (a, 2) E B2 we have  f(2) = 0 since 
 f  (a) = 0 and f E  D'(0,1). On the other hand.  (b,  2) E B2 leads to  f(2) = 1 in the 

analogous manner. A contradiction. The remaining assertions are obvious from the 

definitions. 0 
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Note 5.3.1. From this lemma we see that the classes of  D'(0,  1) are neither  ao- nor 

 al-invariant. 

  Now let us introduce a new notation to represent a partition of  D'(0,  1.). We set 

 k)  :=  Iflf(0)  =  i,f(1)=  j,  f(2) =  k}. 

Then  D'(0,  1) can be represented as 

 D1(0,1)  =  E  A(i,  j,  k), 
 i,j,k=0 

where the summation is direct sum of sets. It is easy to see that 

 A(1,1,1) =  A(0,0,0)°2,  A(1,1,0) =  A(0,0,1)°2, 
 A(0,1,1) =  A(0,1,0)`72,  A(1,0,1)  =  A(1,0,  0)°2. 

Therefore it suffices to investigate only the four sets (again we must be careful about 

that the same class may be included in the different sets of  A(i, j, k)). We prepare some 

preliminary lemmas on  A(i,  j, k). 

Lemma 5.3.4. (A(0,  0,  0) +  A(0,  1,  0))U1  C  T20(M2Mo  M2M0). 

Proof. First we show f E T20. Let f E (A(0,  0,  0) +  A(0,  1, 0))U1 then  f({2,  Or) = 0, 

hence f E T20. This is because  f(o) =  f(2) = 0,  (a, E  U1,  (a,2)  E U1 for any 

a E  {2,0}n and f E  D'(0,1). 

  Next we show  D'(0,1)U1T20M2  C Mo. Assume f E  D'(0,1)U1T20M2M0. There 

are a, b such that  f  (a)  <0  f  (b) and  f  (a) = 1,  f  (b) = 0 from f E  D'  (0  ,1). Define 

b' in the following:  b2 = 2 if (ai,  bi)  = (2, 0),  bE =  bi otherwise for each i. Since, 

(b, b')  E U1 we have  f  (b') = 0 (including the case b = b'). From the definition we 
have b  <2 a, and we have  f  (b') = 0  >2  f  (a) = 1, a contradiction. Analogously we 

can prove  D'(0,1)U1T20M0  C M2. Thus f E M2 and f E  Mo is equivalent under 

f  E  (A(0,0,0)  ±  A(0,1, 0))U1.  0 

Lemma 5.3.5.  D'(0,1)u0rr1  C T20. 

Proof. Assume f  E  .TY(0,1)U0rt1. Then there are  (a,  b) E Ui such that  (f  (a),  f  (b))  = 

 (0,1). If b E {2,  Or then f E T20. Otherwise construct b' by putting  14 = 2 if  bi = 1, 
  =  bi otherwise. Then b' E {2,  Or and  f  (b') = 1 from (b, b') E U0. Hence f E  T20.  ̂  
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Lemma 5.3.6. A(0, 1,  0)T20  C  M2M0. 

Proof. There is a such that  f(a) = 1. The results follow from f  E  A(0,  1, 0), 2  <2 a <2 

 o  and  2  <2  a  <2  0.  ^ 

Lemma 5.3.7. 

 A(0,  0,  0)  C  ToT1T12M1M2M0, 

 A(0,  0,1)  C  ToT1T12T2oM2Morforr1, 

 A(0,  1,  0)  C  ToTiT12M1rro, 

 A(1,  0,  0)  C  ToT1T12T20M1M2M071• 

Proof. The right hand side terms are implied from the definition of A(i,  j,  k). ^ 

  We now proceed to classify A(0,  0,  0), A(0, 0,1),  A(0,  1,  0) and  A(1,  0,  0) in this order. 

(1) Classification of A(0,  0,  0). From Lemmas 5.3.3 and 5.3.7 the remaining sets are 
Uo, U1 and T20. Since  UoUi is impossible from Lemmas 5.1.5 and 5.3.6. We have the 

following classifications: 

                      1)  70E/17'20  f3.1  (4, 9 = #349) 

 A(0, 0, 0) =2) U0U1T20  f3.2 (*10 = #303)                   3) uou {T20  f3.3  (*11 = #298)                             T20  f3.4 (*12  = #244) 

Proof. 1) and 2) are derived from Lemmas 5.3.4 and 5.3.5, respectively. ^ 

  (2) Classification of  A(0,  0, 1). From Lemmas 5.3.3 and 5.3.7 the remaining sets 
is M1 only. Hence we have the following. 

              A(001)  =1) M1  f3.5 (*17 = #321)               ,,                            2) M1 (same class as *12) 

  (3) Classification of  A(0,1, 0). From the same lemmas the remaining sets are 
 M2,  MO  T20 and U1. We have  the_following. 
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              1)U1T20 {M2m2m-M:f6(*19                              f33,7(*20:4#339627) 
    A(0,1,0) =M2M0  f3.8  (*21 = #346)                         T

20 M2Mo  f3.9 (*22 = #373)               2) U1  M2Mo  f3.10 (*23 = #376) 
                          T20  M2M0  f3.11 (*24 = #299) 

Lemma Proof. The terms of 1) are derived from Lemma 5.3.4 and the last term of 2) is 

derived from Lemma 5.3.6. In 2) the term  M2M0 is impossible from Lemma 5.1.3.  ̂  

Note 5.3.2. The class *24 is  a2-invariant. 

  (4) Classification of A(1, 0, 0). From Lemmas 5.3.3 and 5.3.7 the remaining set is 
Uo only. Hence we have the following. 

                       1) U0 f3.12 (=#248)             A(1,0,0).{                         2)  Uo  f3.13 (*3*301 = #190) 

Note 5.3.3. The class *31 is  o-2-invariant. 

Conclusions: Thus we have completed the classification of  D'(0,  1) and hence of T. 

Let  ID'(0,  1)1 denote the number of classes of  D'(0,  1). Paying attention to the two 

a2-invariant classes (*24 and *31), we have  ID1(0,  1) =  2(IA(0,  0,  0)1  -1-  IA(0,0,  1)1 + 

 IA(0,1,  0)1+  IA(1,0,0)  —  2  =  2(4  -1-  1  +  6  -I-  2)  —  2  =  24. 
  Since the classes of  D'(0,  1) is neither  ao nor  al invariant, we have  ITI = IPL1)tol 

 1{0,1, 2}  +  ID'(0,  1)1 +  ID1(1,  2)1+ ID'(2,  0)1 = 5 + 3  -1- 3 x 24 = 80, of which  4+13=17 
classes are  a-similar-free. 

5.4. Classification of L U S 

In this section the structure of L U S is investigate and the set  T(L U S) is classified. 

  First some lemmas will be proved. For the summation  (fit) which appears in a linear 

function we always omit indicating the variable i when no confusion is evident. 

Lemma 5.4.1.  [Ros70] f E L  <#.  f(a b) =  f(a)+  f(b) —  f(o), where  a,  b  E  .E3 and 

o is the identity of the field  {04,2}. 

                                  68



  This lemma is useful to certify whether a function f belongs to L or not. 

Lemma 5.4.2. 

 fES-fE FR if and only if f E 

where R  +1=  a3R =  {(at  1,  bi  1)Kai,  bi) E R}. 

Proof First we note that  R+1=  cr3R and  cr4(R+1) = R and further that any function 

f E S is both  o3 and  o-4-invariant. Thus  f  (cr3a) =  cr3f  (a) and  f  (cr4a) =  cr4f  (a) for 

f E S. Since  f'3(x) =  aVf  (a3x) and  f'4(x) =  (TV  f(a4x) we have  tr3 =  f'4 =  f. 
Thus if f E S belongs to FR then  f°4 = f E  (Fr)u4 =  FR+1 from Lemma 1.4.2.  ̂  

Note 5.4.1. The relation R and  R+1 is  o-3-similar. Lemma 5.4.2 asserts that if f E S 

belong to FR then f belongs to  FC13 (equivalently  Fa4 simultaneously). 

Lemma 5.4.3. TS  C 

where  M =  mom1m2,  U  =Uorfil72, and  B  =  B0B1B2. 

Proof Suppose f E  TSM1. Then f E TSM1M2M0  C K from Lemma 5.4.2 and 

Theorem 5.1.4. However, from Theorem 5.1.2 TK =  0, a contradiction. With respect 

to the remaining U and B the proofs are analogous.  ̂ 

Lemma 5.4.4.  ST0T1T2  C  T01T12172o. 

Proof Let f  E ST0 then we have only two cases: either  f(o) = 1,  f(i) = 2,  f(2) = 0 

or  f(o) = 2,  f(i) = 0,  f(2) = 1. In  both cases f E  T01T12T20-

  ^ Lemma 5.4.5.  TL  CToiTi2T20- 

Proof Let f =  co  +  cixi. First we show that if f E TLT01 then at least there are 

ci = 1 and  ci = 2 in the coefficients  of  f. From f E T01 we have  co = 0 or 1. Again from 

f E  T, f depends on at least two variables. So, for simplicity, assume that f depends 

both on x1 and x2. First, suppose ck = 1 for all nonzero ck. Then 

 f(1,1,  0,  =  co  4-  ci  c2  =  2,  if  co  =  0, 

 f  (1,0,  .  ,  0)  =  co  +  c1  =  2, if  co  = 1. 
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These contradict to f E  T01. Analogously, assuming the other case:  ck = 2 for all 

nonzero  ck, leads to a contradiction. Thus assume f E  TLToi and assume that c1 = 

1, c2 = 2 for simplicity. Then 

 AO,  1,  0,  .  ,  0) =  co  +  c2  =  2,  if  co  =  0, 

 f(1,0,  ,0)  =  co  +  2, if  co  =  1. 

These contradict to f E T01. With respect to T12 and T20 the proofs are similar.  ̂  

  For convenience we divide L and S into several subsets: 

 L  Lo  +  +  L2, 

where La :=  If  If  =  co +  E  cixi and  Er.it..1 =  a}. 

  Again we divide each La into 3 subsets: 

                              La =  Lao +LalLa2, 

where Lab  :=  IfIf E La and  f  (o) =  co =  b}. 

  Similarly, we divide S into the following 3 subsets: 

                         S  =  So+  Si+  S27 

 where  Sa  :=  -Ulf  E  S  and  f(o)  =  al. 

 a-similar of each of these subsets is indicated in the Table 5.5. The next Lemma 

5.4.6 is used to calculate this table. 

Lemma 5.4.6.  [Miy71]  (Lab)° = La  11)-1-mi-Firna, where  a  E  S3,  a(x) = lx  +m,  a-1(x) = 

 lx  +  m'. 

Lemma 5.4.7. LS = L1. 

Proof. Suppose f E LS, then  f(x 1)  =  f(x)  1.. Hence  E  c= = 1, i.e. f  E L1. The 

 converse is analogous.  ^ 

   Due to Lemma 5.4.7, previous lemmas concerning S are also applicable to L1. Next 

lemma provides a property of the remaining set of L, i.e. L L1 =  L0 + L2 =  Loo 

 L20 + L01 + L22 +  L02 +  L21- 
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                           Table 5.5:  a-similar of Lab and  Sa. 

               6 ao a2 Cr3 cr4 

                     Loo — LO2 LO1 LO2 L01 

                   LO1 LO2 LOO LOO LO2 

                     LO2 LO1 Loo — Loi Loo 

                   L11 L12 L12 L12 — 

                  L12 Lll L11 L11 — 

                     L20 — L21 L22 L21 L22 

                     L21 L22 L20 — L22 L20 

                      L22 L21 — L20 L20 L21 

             — — — — — 

Lemma 5.4.8. 

                       1)  Loo L20  C  ToT1T2, 

 2)  L01  ±  L22  C  TOT1T2) 

 3)  Lot  +  L21 C ToT1T2. 

Proof. Assume f E Loo L20. Then  f(o) =  co = 0 and  f(i) =  E 0,  f(2) 

 2  E  ct = 0 (in case f  E Loo) or  f(i) =  E  ci = 2,  f(2) =  2E  c= = 1 (in case f  E L20). 

Hence f E  T0T1T2. The cases 2) and 3) are similar of 1).  ̂  

  Now by a series of lemmas we will prove Corollary 5.4.1 which is an analog inclusion 

of Lemma 5.4.3 (we have L in place of S). Lemma 5.4.2 simplified the proof of Lemma 

5.4.3. However, we have no corresponding one with respect to L. Thus we must consider 

 M,  U and B separately, although it suffices to consider  L0 and L2 owing to Lemma 5.4.7. 

In fact it is sufficient to consider  L00 and  L20 from Table 5.5. 

Lemma 5.4.9. TL C 

Proof. Let us prove  T(L0 + L2)  C  M1. Note that f E La implies  f(x  -I- 1) =  f(x) + a. 

If a = 0 then  f(o) =  f(i) =  f(2). Hence f M1 because f should be an onto function 

from f  0 T. If a = 2, we have  f(i) =  f(o) + 2,  f(2) =  f(o) + 1. Hence f  M1 

whichever  f(o) = 0, 1 or 2. By a-similar we have TL  C 
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6 ao a2 Cr3 cr4  

Loo — LO2 LO1 LO2 L01 

LO1 LO2 LOO LOO LO2 

Lo2 LO1 LOO LO1 Loo 

L11 L12 L12 L12 — 

L12 Lll L11 L11 — — 

L20 — L21 L22 L21 L22 

L21 L22 L20 — L22 L20 

L22 L21 — L20 L20 L21



  In the following proofs we use the "modular operation" +1 which maps a  E  {0,  1}n 

onto a +1 E {1, 2}n and a ± 2 E {0, 2}n. Hence f(a +2) = co + E ciai + 2 E ci = f(a) 
if f E  Lo and  f  (a  +1) =  f(a)  +  2 if f E  L2. 

Lemma 5.4.10. TL C U. 

Proof. The lemma follows from  1,(Lo + L2)  C U2 and Lemmas 5.4.3 and 5.4.7. Assume 

f E  TU2 then f is onto, hence there is a E  .E;"'n such that  f(a) = 2. Define a' as 
follows:  di = 0 if  ai = 1,  di =  ai otherwise for all i. Then a' E {2,  Or and  f(a') = 2 
since (a, a') E U2. Hence a' + 1 =E  {0,  1}n and  f  ({O,1}n) = 2 since (a' +  1,  b) E U2 

for any  b  E  {0,  1}n. Thus if f  E  Lo then  f({0,1}n  =  f({1,2}n = 2, and if f  E  L2 then 

 f({1,  2}n) =  f  (10)  11n)  + 1 = 1. In both cases f E T12, contradicting Lemma 5.4.5.  ̂ 

Lemma 5.4.11.  n  C  B. 

Proof. Let us prove TL  C  Bo. Suppose f E  Bo. Then f cannot take the values 1 and 2 

on  {0,1}n, because (1, 2) E  Bo and (a, b) E  Bo foe any a, b  E  {0,  1}". Therefore, either 

1)  f  (10,  11n)  g  0,11 or 2)  f({0,  1}n)  g  0,21 holds exclusively for all f E  Bo. In case 1) 

f E  To; results. In case 2), if f E  Lo then from  f({0,1}n) =  f  ({0,  2}n) we have f E  212; 
if f E L2 then we have f E T12, since  f({0,1}71)  g  {0,2} leads to  f({1,2}n)  C  {1,2} 

by modular operation. These contradict to Lemma 5.4.5. Thus  TLC Bo, and hence 

 TL "C  it by  a-similar.  ^ 

Corollary 5.4.1.  TL  C  1c4"  CI  iitg. 

Proof. From Lemmas 5.4.5, 5.4.9, 5.4.10, and 5.4.11.  ̂  

  We now proceed to classify  r.L U S) = T(L3 + LS  +1,S), considering each subset 

separately in this order. 

(1) Classification of  L3  =  Lo  + L2. The remaining sets are  Tp type only from Lemma 
5.4.11. Since  Lo + L2 =  L00  +  L20 + L01  + L22 +  LO2 + L21, possible classes are restricted 

to the following 3 classes by Lemma 5.4.8. Only an example to class *81 is sufficient. 

                    1)  ToT1T2 =  Loo +  L20  f  4.1 (*81 = #41) 
          TL S11-41.1. .13—ilpq 2) To Ti272= L01 + L22  f  '24.1 (*82 = #40) 

   { 

                     3) ToTiT2 =  Lo2  +  L21  f  '14.1  (*83  = #39) 
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(2) Classification of LS =  L0  + L2. The remaining sets are  Tp type only from Lemma 
5.4.1. Further from Lemma 5.4.2 only two  cases:Tp or  f', are possible, where  Tp = 

 ToTiT2. Thus L1 is divided into the following 2 classes. 

            TLS.114IfIt{1) Tp  f4.2 (*84 = #42)                      Pq2)  z
p  f4.3 (*85 = #187) 

(3) Classification of  TS. The remaining sets are  Tp and Tpq types from Lemma 5.4.3. 
By Lemmas 5.4.2,5.4.4 and 5.1.5 possible classes are restricted to the following 3 classes, 

where  Tpq denotes the intersection  ToiTi2T2o• 

               2)      TLSMUB/                     1)TpT
Tpq= S1-1-S2  f4.4 (*86  = #11)        TLSk                                         ---PT7r-P'g =  SO                                  f4.5 (*87 = #297) 

      3)  TpTpq  f4.6 (*88 = #135) 

Conclusions of Section 5.4. 

  We have completed the classification of  T(L  U  S).  IT(L  U  s)1=8, and 6 classes out of 

them are  o--similar free (underline of the class number preceded by * denotes  a-similar 

class). 

5.5. Classification of M 

In this section the set M :=  TSL(Mi U M2 U  MO is classified. For simplicity, we 

abbreviate  TSL to  N. The set M is divide into subsets and they can be represented by 

using  a-similar as follows: 

 Ay =  M14_  (Ml)°1 +  (0.)0.2 +  M2 +  per  4_  (M2)a2  , 

where  M1 :=  NMIM2M0 and M2 :=  NM1M2Mo. Thus it is sufficient to consider M1 

 and M2. Note that no classes from M1 (M2)are  al and a2  (o-0 and  an) invariant. 

 5.5.1. Classification of M1 

 First we prepare a lemma for  M1. We follow a convention that a suffix pqr represents 

 any of 012, 120 and 201. 

                                  73



Lemma 5.5.1. 1) MqT  C  Tp  Tr  ) 
             2) MqTpTq  C Tpq, 

             3)  MqTqT,  C  Tqr. 

Proof. 1) Suppose  f(p)  0 p and f E MqT. Then  f(p) = q or r. If  1(p) = q then 

 f(a)  E  D(q,  r) for any a E  E3, because p  54 a implies  f  (p) = q  5..q  f(a). Thus f E T, 

a contradiction. If  f  (p) = r then analogously f r, again contradicting to f E T. 

With respect to Tr the proof is similar. 2) and 3) are obvious.  ̂  

  From Lemma 5.5.1 we have the following. 

Corollary 5.5.1.  Mi.  M2  T  c  ToT1T2  TO1  T1  22120. 

Classification of M1. From Lemma 5.1.3 and from Lemma 5.1.5 we have 

             M1  C  BoUo. (5.20) 

  Considering Corollary 5.5.1 the remaining sets are now restricted to  U2, U1, B1 and 

B2. Let us consider U type first. Following four classes are possible (we call such trivial 

classification induced classes): (1) U2U1, (2) U2U1, (1)  U2U1 and (1)  U2U1. For each of 

these subsets we consider the classification by B type maximal sets subsequently. 

  (1)  U2  U1: Assume f  E  M1U2U1. Then from (5.20) f  E  M1U2U1U0 =  M1K. While 
 MlIC C TK =  0 from Theorem 5.1.4. 

  (2)  U2U1: Assume f E  M1U2M. Then from (5.20) and Lemma 5.1.6, f E  B1 
is derived. Next we conclude f  V B2, because assuming f E B2 results f  E  K, a 

contradiction. So this case gives one class. 

  (3) U2 U1: This is the  ao-similar of the above (2). 

  (4) U2  U1: We conclude f E  .732731 from (5.20) and Lemma 5.1.7. 

  Thus M1 is divided into the following three classes. 

               {1) U2rt1B1T32 f5.1 (*89 = #402)               MI.=2) MUFTI].B2 f°05.1  (*90  = #401) 
                   3)U2U1B1B2  f5.2 (*91 = #390) 

  From above considerations we note that the structure of U type maximal sets deter-

mines the structure of the B type maximal sets in  lt/P. Hence we have the following. 

Corollary 5.5.2. U2 = B1 and U1 = B2 in  M1M2T. 
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5.5.2. Classification of M2 

We divide M2 =  M1M2Mo into subsets using a-similar as follows. 

                  M2  =  No  +N1  +N2  =  No  +N1  +  Ng  1  , 

where  Ni  =  {  flf E M2 and  f(i) = i}. We classify  No and N1 in the following subsec-

tions separately. 

5.5.2.1.  No 

  We prove the following lemma for  No. 

Lemma 5.5.2.  No C  ToT1T2To1T12UoU1B1B2• 

Proof. Assume f E  No. Then Lemma 5.5.1 implies f E  T0T2. We have f E T1T12To1 

because  f E  M1 implies  MOM') = 0 since  f(i) = 0. We have f  E  T1T12T01 from 

 (1,  2) E  U0B1 and  (Ai),  f(2))  =  (0,2). Finally, Let us show f E  U1B2. By f T 
there is a  {01}n such that  f(a) = 1. Define a' as follows:  di = 0 if  ai = 2,  (2 =  ai 

otherwise for each i. Obviously (a, a') E  U1B2 and a' E  10,1r, hence f  E  U1B2, 

because  (f  (a),  f(a'))  =  (1,0).  ^ 

  We divide  No into two subsets by  T20 as follows: 

 No =  NoT20+  NoT2o. 

  Each subset we classify by the remaining sets U2 and  Bo. 

  Classification of  NoT2o 

   There is a representative in each induced set by the remaining U2 and  Bo. Thus, 

 N0T20 is divided into the following 4 classes. 

                       1)  U1.80 f5.3 (* 98 = #287) 
                      2) Tr1B0  f5.4 (* 99 = #234)                 N

0T20 =  3)  U2  770 f5.5 (*100 = #239) 
                      4)  7/2730  f5.6 (*101  = #184) 

 Lemma  5.5.3.  NO  112  0  C Bo 
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Proof. Let f E  N0T20. Then there is a E {0,  2}n such that  f(a)  = 1. From Lemma 

5.5.2 we have  f(2) = 2. Thus f  t%  Bo from (a,  2)  E  B0 and  (f(a),  f(2))  =  (1,2)  B0. 

0 

  Classification of  NoT2o 

  There is a representative in each induced set by the remaining  U2. Thus,  NoT20 is 

divided into the following 2 classes. 

               N0T2_{ 1) U2.7-3-0  f5.7 (*102 = #186)                   0—2)  MB °  f5.8 (*103 = #134) 

  Thus  IN01=  IN0T201  +  IN0T201=  4+  2 = 6, all of which are  a-similar free. 

   5.5.2.2  Ni . 

  The classification of  Ni . is not so simple as that of  N0. 

Lemma 5.5.4. N1 C  To  Ti  T2  Tal.  7112 

Proof. From  {01}n  <  i  <  {1,  2}n and f  E  M1 we have  f({01}n)  <  f(1)  <  f({1,  2}n). 

Thus  f({01}n)  c  {0,1},  f  ({1,2}-)  c  {1,2} since  f(i) = 1. From f  E  T  there are a, b 

such that  f(a) = 0,  f(b) = 2. Hence  f(o) = 0,  f(2) = 2.  ^ 

  Thus the remaining sets are T20 and U type and B type sets. Let us divide  Ni. into 

two subsets by T20: N1 =  N1T20 +  N1T20. Consider the classification of each subset by 

the U and B type sets. There exists a simple structure in the case of  N1T20. However, 

in the other case we must consider the structure of the set  M1M2M0. 

  Classification of  N1T20 

Lemma 5.5.5.  N1T20 C  MU0T-12- 

Proof. Let f  E  N1T20. Then there is a  E {2,  0}n such that  f  (a) = 1. From (a, 2)  E 

 BOUT, f  E T2 and  ( f  (a),  f  (2)) =  (1,  2) E  BOUT. By  cri.-similar we have  N1T20  g  --g2T71. 

0 Note 5.5.1.  [Miy71]  M1T20T  C  M2M0. 

                                   76



Thus f E M1 belongs to M2M0 if f E T20T. 

  As for the 8 induced classes by the remaining sets B1, U2 and Uo, the class  U2Uor1 

is empty from Lemma 5.1.6. There are representatives in all the other classes. Thus 

 N1T20 is divided into the following 7 classes. 

             {1)  U2U0B1 f5. 9 (*110 = #363) 
                     2) U2T-T1B1 f5.10 (*111 = #339) 

                    3)ri2/T1B1  1°15.10 (*112=  #337) 
 N0T20 =4)  Tr2rt1B1  f5.11 (*113  = #283) 
                   5)  U2/717131  f5.12 (*114 = #286) 
                     6) U2U1B1  f615.12  (*115  = #284) 
                  7)  rf2Tr1B1  f5.13 (*116  = #232) 

  The remaining part of this section is devoted to the classification of  N1T20 by U type 

and B type maximal sets. 

  We call two vectors a and b are neighbors by the order relation  < if a and b differs 

only one coordinate i and there is no c such that a < c < b. Let us introduce the 

following notation to represent neighboring vectors (suffix i may be omitted): 

 a0i =  (a1,  ...  ,  ai_i,  0,  ai-Fi,  •  •  •  ,  an) 

 al.i = (al, • • • , ai-i, 1, ai-Fi , - • • , an) 

 a2i =  (al,  ... ,  ai_i, 2,  ai+i  ,  •  •  • , an)• 

Neighboring vectors are useful because of the following lemma. 

Lemma 5.5.6.  [Miy7l] If f  E  Mq then there are neighboring two vectors b and c such 

that b  <q c and  f  (b)  q  f(c). 

  Now we prepare a lemma which plays an important role in the classification of  N1T20. 

Lemma 5.5.7. If f E  M1M2M0 then there are sets (set) of neighboring vectors  u0, 

ul, u and  vO,  vl, v corresponding to at least one of the cases indicated in the following 

 Table 5.6. 
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Table 5.6:

cases  \x  u0  ul u2  v0  vi v2 class

I f(x) 0 0 2 0 2 2  U2UoBi .
II  f(x) 0 0 2 0 1 1  U1U0B2

III f(x) 1 1 2 0 2 2  U2U1BoBi

 IV f(x) 1 1 2 0 1 1  U1B0B2

V f(x) 0 0 1  UoUFB2

VI f(x) 1 2 2  U2  U1B0

       Table 5.7: 
Possible values of f E  M1M2.

cases  \x  u0 ul u2

I  f(x)  0  0 1

II f(x)  0 0 2

III f(x) 1 1 2

 IV f(x) 1 2 2

Proof. Assume f E  114.1M2M0 and f depends on at least two variables. From f E 

we show that f has at least one of the set of neighboring vectors indicated in Table 5.7. 

From f E M2 there are neighboring a and a' such that  f  (a)  f  (a') from Lemma 

5.5.6. Putting a := ul and a'  := u2,  f  (x) has values (1), (2) or (3) of Table 5.8, where 
* may be any of 0,1 or 2. While the condition f E M1 requires  f  (u0)  <  f  (ul)  <  f  (u2). 

Hence the case (1) is impossible and * must be 0 for the both cases (2) and (3). Thus 

the cases of I and II of Table 5.7 are necessary. The other case of the same table are 

derived by taking the neighboring vectors a  :=  u2 and a' :=  u0.

                         T     Table 5.8:Table 5.9: 
    Possible values ofPossible values of f E MiMo. 

 E M2 and  .f  (ul)  2  Ala).  \  I  .,n
cases \x u0  ul u2

(1)  f(x) * 2 1

(2)  f(x) * 0 1

 (  3  )  f  (  x  ) * 0 2

cases \x  v0  vl v2

I  f  (x)  0  0 1

II  f  (  x  ) 0 1 1

III  f  (x) 0 2 2

 IV  f  (x) 1 2 2

  In the same manner from f E  Mi.Mo we 

construction out of the four cases in Table 5.9. 

follows.  ^

  In the rightmost column of Table 5.6 

 f  (x) obviously belongs to. 

  We show lemmas.

Lemma 5.5.8.  B  1  T2  oMi  C U2  U0  •

conclude that f must have at least a 

From Table 5.7 and Table 5.9 the lemma

the sets are shown to wh ich the corresponding
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Proof Suppose f E  BiT20M1U2. There are  (a,  b) E U2 such that  (f(a),  f(b))  =  (0,  2) 

or (1,2). However f  E B1 requires  (f(a),  f(b))  =  (1,  2) since (a, b) E U2 implies  (a ,  b) E 
B1.  From  f E  T20  there  is  ai = 1.  Define  a'  as  follows:  di =  0  if  ai =  1,  ai =  a1 otherwise. 

Then a' E {2,  0}n and  f  (a') = 0 from f  E T20. On the other hand,  (a', E B1 since 

if  ai = 1 then  bi = 0 or 1 from (ai,  bi)  E U2. Thus  (f(a',  f(b))  = (0, 2)  0 B1 leads to a 
contradiction. With respect to U0 the proof is similar.  ̂  

Lemma 5.5.9. U1 C  B1, U2  C B2 and U0  C  Bo  in  M1M2M0. 

Proof If f E U1 then f have values corresponding to the case I of Table 5.6 from Lemma 

5.5.7, hence f E  Bi. If f E U2 then f corresponds to II, IV or V of the same table. 

Hence f  E B2. If f E U0 then f corresponds to III, IV or VI of the same table. Hence 

 f  E  Bo.  ^ 

Lemma 5.5.10.  R0B1B2=  B2B0B1 in  MiM2MoT2o-

Proof. 1) Suppose f E BoB132. Then f has a cases of IV, V or VI of Table  5.6 from 

Lemma 5.5.7. On the other hand, from f E  B1T20241 and from Lemma 5.5.8,  f  E  U2U0 
is derived. Thus the cases V and VI are impossible. Hence f E  *U-1U2U3 from IV of the 

table. 2) The converse is obvious from Lemma 5.1.6 and from Lemma 5.5.9.  ̂  

Lemma 5.5.11. U1 C  B2  Bo in M1. 

Proof We prove  M1  U1  C B2. The other is the  o-1-similar of this. Assume f  E  M1  U1R2 

There are (a, b)  E B1 such that  (f(a),  f(b))  = (0, 1). Define a' as follows:  as = 0 

if (ai,  bi)  =  (1,  2),  di = 1 if (ai,  bi)  =  (2,1), =  ai otherwise. Then a'  < a, hence 

 f(a') = 0. While by above construction we have  (a'  ,b) E U1. However  (f(a'),  f(b))  = 

 (0,1) E  U1, a contradiction.  ^ 

Note 5.5.2. Combining Lemmas 5.1.7 and 5.1.11 we have 

 B2Bo=U1 in M1. 

  We now classify the concerning set  N1T20. First we decide possible classes by U 

maximal sets, then each of this class we divide by B maximal sets. 

                                  79



  Consider 8 induced sets by U maximal sets. From Table 5.6, we will conclude neither 

class U2T.T0U1 nor  "MU°  Ili exists. First, let us confirm this. Assume f  E  U2troU1 then 

f E  Bo from Lemma 5.1.6. Hence only cases I, II or V of Table 5.6 is possible for 

 f. While in all these cases either f E  U2 or f  E  U1, a contradiction. The discussion 
is analogous to the second case: T-T2UoU1. Further, the class  U2U0U1N1 is empty from 

Theorem 5.1.3 and KT =  0. We classify the remaining 5 sets by B maximal sets. 

  Classification of  N1T2o 

  (1)  U2U0rl1 coincides with  N0B1T32 from Lemma 5.5.10. 

 U2U0tr1j0B1T32  f5.14 (*117 = #388) 

  (2)  772rf0U1 coincides with  Borfi  B2 from Lemmas 5.5.10, 5.1.4 and 5.1.7 

 (72r/0-tr1BoR1B2 f5.15 (*118 = #399) 

  (3) U2T—IoU1 . From Lemmas 5.5.8 and 5.5.9 we have  NA. There exist representatives 
for the two induced classes by the remaining set  Bo. 

            u2-u-ou1 { 17B0 }B_-B-2 ff55..1167((**112190=:333628)) 
  (4) 1-12u0u-1 is the  al-similar of (3). 

  (5) 172737/1. The possible classes by B maximal sets are restricted to the following 
3 classes by Lemmas 5.5.8 and 5.1.7. 

 Bo 
        U2UOU1 No Ri f 

   { 

               Bo 73B: f5;18 (*123 = #335) 
                                5.18  (*124  =  #346) 

 B2  f5.19 (*125 = #282) 

  Conclusions of Section 5.5. 

  We have completed the classification of M =  TLS(M1 U M2 U M0). We summarize 

the classification as follows: M  =  Ml  +(Mi)°l  -F(M1)°.2 + M2  -I-  (M2)"  d-(M2)°2.  1111 is 

separated into the three classes. Further M2 =  No  +Ni  +N2 =  No  +  Ni  +  Ng'  .  IN01=6. 

N1 =  AriT20 +  N1T20 and  IN1T2o1 = 7,  IN1T20I = 9, hence  1N1l = 16, thus 1M21 = 28. 

We note that no class is common among  No,  N1 and  Ng'. 

  Therefore  IMI =  31M1l+  31M2I = 3 x  3  +  3 x 28 = 93, of which  a-similar-free classes 

are 19. 
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5.6. Classification of U 

In this section the set U  :=  Ulf E TLSM(U2 U Uo U  U1)} will be classified. Obviously 

we can write U =  Ell  (Ul)°1  (Ul)Q2  U2  (u2yr1 ,(u2\a2                                             )where 

              U1 :=  TLSMU2U0Ui and U2 :=  TLSMU2Uorri. 

Thus it is sufficient to consider  Ul and U2 in subsections 5.6.1 and 5.6.2, respectively. 

We note that any class in  Ul and U2 is neither  (3-1- nor  o2-invariant. 

5.6.1.  Ul. 

We prepare several lemmas. The symbol  D is used to indicate that we are concerning 

onto functions. 

Lemma 5.6.1. U2U1 C  To1T20ToBo. 

Proof. From Lemmas 5.1.6 and 5.1.8 it is sufficient to show  U2U1 C  T01T20. Suppose 

f E  U2  U1. There is a E  {0,  1}n such that  f(a) = 2. We have  f({0,1}n) =  2 since 

(a,  {0, E U2. From f  E  D there is b such that  f(b)  =  1. Define b' as  follows:  -14  = 0 
if  bi = 2, =  bi otherwise. Obviously  (b, b') E  t/l and hence  f(bi) = 1 and b' E  {0,1}n, 

contradicting the above assertion. As for T20 the proof is similar.  ̂  

Lemma 5.6.2.  If  f E  M1U2U1 then there are vectors  u0,  ul and u2 such  that 

 (f  (uO),  f  (u1),  f  (u2))  =  (1,0  ,1) or  (2,2,0) 

as shown in Table  5.10.

                                  Table 5.11: 

       Table 5.10:Possible values of f E  Mo.                         casesInxI u0 ul u2 
Possible values of f E MoU2Uo. rf.. ..\ I

cases  f  \  x  u0  u1
u2

I

II
 f(x)
 f(x)

1

2

0

2

1

 o

cases  f  \  x  u0 ul u2

(1)  f(x) 2 0

(2) f(x) 0 * 1

(3)  f(x) 2 * 1

(4) f(x) 0 2 *

(5) f(x) 1 0 *

(6)  f(x) 1 2 *

Proof If f E  Mo then f has at least one of values out of 6 cases indicated in Table 5.11. 

This can be easily shown from f E  Mo analogously as Lemma 5.5.6. Then considering 

the additional condition of f  E  U2(.71  leads to Table 5.10.  ^ 
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Lemma 5.6.3.  MoU2U1 C T12. 

Proof Assume f E  MoU2U1T12. Then there are vectors satisfying  (f  (u0),  f  (u1),  f  (u2))  = 

 (1, 0, 1) or (2,2,0) from Lemma 5.6.2. Consider the first case. Define v E  Er as fol-
lows:  vi  = 2 if  ui = 0,  vi =  ui otherwise (we may assume n  > 2, since the assertion 

holds when n = 1). Obviously  (u1,  v1) E U1 and  v1 E {1,  2}n. Hence  f(v1) = 2 from 

f E T12 and  f(u1) = 0. On the other hand, we have  f(v0) = 1 from  (u0,  v0) E U1. 
Thus  (f  (v0),  f(v1))  =  (1,2)  0  U2, contradicting f E U2 since  (v0,  v1) E  U2  • 

  For the second case, the proof is similar.  ̂  

Lemma 5.6.4.  U2T12 C  7B1. 

Proof Suppose f E U2T12. Then there is a  E  {1,  2}n such that  1(a) = 0. From f E  D 

there is b such that  f(b) = 2. Define b' as follows:  b'i = 1 if (ai,  bi)  =  (2,0),  lli = bi 

otherwise for each i. Then  f  (b1) = 2 from  (b  ,b`) E U2. Thus we see that (a, b') E  B1 

and  (f  (a),  f  (W))  fl  B1. Note that no  (ai,  bi)  =  (0,2) occurs because a E  {1,  2}n.  -0 

  Taking  (70-similar of this we have the following. 

Corollary 5.6.1.  U2U1D  T12  C :B1g2. 

Corollary 5.6.2. U1  C  ToiT20T12TOB0731112. 

Proof From Lemmas 5.6.1, 5.6.3 and Corollary 5.6.1.  ^ 

Classification of U1. Now the remaining sets are only T1 and T2 from Corollary 5.6.2. 

There are representatives in all 4 induced classes by these sets. Thus U1 is divided into 

the following 4 classes. 

                     1)  T1T2  f6.1 (*182 = #320) 

                Ul = 2)  T1T2  f6.2 (*183 = #267)                      3)  T
1T2  fq°6.2  (*184  =  #266) 

                    4)  T1T2  f6.3 (*185 = #220) 

 5.6.2. U2. 

For convenience we again follow the convention that the suffix pqr represents 012, 120 

 and 201. We prepare several lemmas. 
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Lemma 5.6.5.  If  f E  UrTpqr  then  f(a) = r and  f(b) = r for some a  E  {p,r}n and 

 b  E  {p,r}n. 

Proof. From f E  DTpq there is u such that  f(u) = r and there is i such that  ui = r. 

Define a and b as follows:  at = p,  bT = q if  ui r, otherwise  at =  bi =  ui (= r). Then 

 f(a) =  f(b) = r follows from (a, u) E  Ur and  (b,  u) E  U.  ^ 

Lemma 5.6.6. 

 Ur  Tpr  .T:;)  C  Hp, 
 UrTpqT  qrr  C  Bg. 

Proof. Assume f E  UrTpq2  p.p. Then  f(b) = q for some b E  {p,  rin. On the other 

hand,  f  (a) = r for some a E  {p,  rin from Lemma 5.6.5 (a  b)  . Then f  B, because 

(b, a) E  B. The second relation is similar.  ̂  

Lemma 5.6.7.  TpTpq  C  BP. 

Proof. From f E  TpTpq we have  f(p) = p and  f(a) = r for some a E  fp,  qr. Then 

f E  Ng because (p, a) E  Bq.  ̂  

Corollary 5.6.3.  TpliqTr C7Hr. 

Proof From f E  T,. and Lemma 5.1.8, either f E  Tpr or f E  Tq  r  . From f  E  TpTq and 

Lemma 5.6.7 we have f  E  B, in both cases.  ̂  

Lemma 5.6.8.  TpTpqr  CTprT3p. 

Proof From f E  TpTpq we have  f  (p) = q, hence f E  Tpr.  . Further  f(a) = r for some a 

from f  E  Di Thus we conclude f E  _Br from (p, a) E  BP.  ̂  

Lemma 5.6.9.  T  pTqT  rTpq C 

Proof From f E  TpT  qTrTpq we have  f(p) = q,  f(q) = p, and  f(r) = p or q. Hence 

 f  E  ffr  from  (p,  r)  E  Br  and  (q,  r)  E  Br-  ̂  

   We divide  U2 into two subsets by  T12 as follows: 

                           U2 = U2T12 U2T12. 

Then we classify each subset separately in Subsections 5.6.2.1 and 5.6.2.2 by the re-

maining  Tp, Tpq and B type maximal sets. 
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5.6.2.1.  U2T12. 

  We divide U2T12 further into the following 4 induced subsets by  T1 and  T2:  (  1  )  T1T2, 

(2)  T1T2, (3)  T1T2 and (4)  T1T1. Each subset is classified by the remaining maximal 
sets in this order. 

  (1)  U22112T1T2• 
  We divide this set by  To into the two induced subsets, and consider each case sepa-

rately as  (1a) and  (lb). 

 (la)  U2T12ToT1T2: This set is divided into the following 10 classes by the remaining 
T01,  1'20 and B type maximal sets. 

                 1)  To1T2o  Ho/1172  f6.4  (*194 = #163) 

                2)  ToiT20 ffoRi{f6.5 (*195 = #259) 
                                     f6.6 (*196 = #203) 

                  3)  To1T20  =  (T012;0)6° 
 U2  Ti2  TOT1  T2 =  B0T31-172  f6.7 (*199 = #315)  -H

OB'  B2  f6.8 (*200 = #353) 
                4)  TO1  T20  RCA  172  f6.9 (*201 = #314) 
                         -170171 B2  f"6.9  (*202  =  #313) 
 F0rl1r32  f6.10 (*203 = #258) 

Proof. 1), 2). From f E  ToTiToi and from Lemma 5.6.7 we conclude f E  DORI.. Further 

in 1) from f  e T20 we have f E  76'2. 4). Among 8 induced classes by  Bo, B1 and  B2, 

three which include  B0B2 and  B0B1 are impossible from Lemma 5.1.7 and f  E 

0 (lb)  U2T0T12T1T2: This set is classified into the following 5 classes. Note that from 
Corollary 5.6.3 we derive f E  Bo. And from Lemma 5.1.8 the class  T01T20 is impossible. 

                   1) TO1T20 T32B1  f6.11  (*204  =  #207)                                  B
i  f6.12 (*205 = #160)      U 2 T

i 2 TO T1 T2 =  2)  T oi  T20  =  (2101T2  0  )" 
                    3)  T01  T2  0  R1F2  f6.13 (*206 = #213) 

Proof. 1), 2), 3). From Lemma 5.6.6 and f E  U0T21T2075 results f E  B2. 3). Further 

from Lemma 5.6.7 we have f E  B1. ^ 

   (2)  U2Ti2TiT2• 
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  From Lemma 5.6.8 we have f E T20B2. Hence the remaining sets are  To,  Tot,  Bo 

and B1. We divide this set into two subsets by  T0, and consider each case separately as 

(2a) and (2b). 

(2a)  U2T12T1T2T0: This set is divided into the following 4 classes. 
                     1)  To1B0-T31  f6.14 (*209 = #116) 

 B0B1  f6.15  (*210  =  #210)         U2T
12T0T1T2=2) T01  R0B1 f6.16 (*211 = #208) 

                            R0.1731  f6.17 (*212  = #162) 

Proof. 1). From f E  T0T1T01 and from Lemma 5.6.7 we have f E  B0B1. 2). Among 4 

induced classes by  B0 and B1 we cannot have  B0B1 from Lemma 5.1.7 and f  cZ U2. ^ 

(2b)  U2712T1172T0: This set is divided into the following 3 classes. 

                 { 1)  To1BoB1  f6.18 (*213 = # 72)  U2T12T0T1T2 = ,,—Th, f B1  f6.19 (*214 = #165)                       2)/01-0o  ff
i f6.20 (*215 = #112) 

Proof. 1). From Lemma 5.6.6 we have  U0T21T10D-  C  Ri and from Lemma 5.6.7 we have 

 T1T10  C  750. 2). From Lemma 5.6.8 we have  T0T01  C  Bo.  ^ 

  (3)  U2T12T1T2. 
  This set is the  ao-similar of the case (2). 

  (4)  U2T12T1T2. 
  We have  Tr1T31To1T20 from Lemma 5.6.8. Thus the remaining sets are  To and  B0. 

Hence this set is divided into the following 3 classes. 

                {Bo f6.21 (*223 = #118)     U21)            Ti2TiT2 =- T° {Bo f6.22 (*224 = # 74) 
                     2)  TOGO  f6.23 (*225 = # 32) 

Proof. 2). From Lemma 5.6.9 we have  T0T1T2T12D  C  No.  ̂  

   Conclusion of Section 5.6.2.1 We have considered 4 subsets:  U2T12(T1T2±T1T2+751212 

 +Ti  T)  . We have  IU2Ti2TiT21 = 15,  IU2T12T1T21=1U2Z2TiT21 = 7 and  W2T12TIT21 =  3. 

Hence  W221121= 32, of which  a-similar-free classes are 20. 

 5.6.2.2. U2T12. 

   Now the remaining part of U2 is  U2T12. First we show two lemmas with respect to 

the remaining B,  ; and Tpq type maximal sets. 
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Lemma 5.6.10.  TpqUrD  C  TpTqBpBq. 

Proof. Assume  f E  TinU,75. Then  f(a) = r for some a E  {p,  q}n. Hence  f  ({p,  q}n) = r 

since (a, b) E Ur for any b  E  {p,  q}n. Thus f E TpTq. Further  f(c) = q from  f E  D. 

Since  (p,  c) E  Bp and  (f(p),  f  (c))  = (r, q)  E  Bp, we conclude f E _Bp. As for  rig the 

proof is similar.  ̂  

Lemma 5.6.11.  Tpri C .71p. 

Proof. From f E  D we have  1(a) = r,  f(b) = q. From f E  TIp we have  f(p) = q or r. 

Since (p, a) E  Bp and (p, b) E  Bp we conclude f E  Bp.  ̂  

  Now we are ready to classify  U2T12. Since U2T12  C  IT1T227113-2, we divide  U2T12 by 

 T01 and T20 into 4 induced subsets: (1)  T01T20, (2)  T01T20, (3)  T01T20 and (4)  To1T20-

We classify them separately. We have only two remaining sets  To and  Bo for each of 

above cases. 

  (1)  U2T12T012120• 
  From Lemma 5.1.8 we have f E  To. We have the following two classes. 

 Bo  f6.24 (*226 = #166)             U2T
12T01T20 = To  B O f6.22 (*227 = #114) 

  (2)  U2T12T01 T20* 

 1)-B0  f6.26 (*228 = #119)  U2Ti2T01T20 =p°{T30  /6.27 (*229 = # 75) 

   { 

                     2)Toff()  f6.28 (*230 = # 33) 

Proof 2). From Lemma 5.6.11 we have  Tor  C  Bo.  ̂  

  (3)  U2T12T01  T20* 
  This case is the  cro-similar of the case (2). 

   (4)  U211-127701  T20* 
  This set is divided into the following 3 classes. 

         u2Ti2ToiT20 = 1) To{73.0B..0f6.29 (*234 = #76) 

    { 

                      2) Torio f6.30 (*235 = #34)  f6.31 (*236 = # 9) 
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Proof. 2). From Lemma 5.6.11 we have  ToD C  Bo.  ̂  

  Conclusions of 5.6.2.2. Thus, summing all four cases we  have1U211121=  'U27'127'0121121 

+  1U2Ti2To1T1121  1U2T12  TO1T12  I  +  U2  Ti2ToiTi2  I= 2 + 2 x 3 + 3 = 11, of which  ao-free 

classes are 8. Thus  1U21 =  1U2T121+1U2T121 = 32 + 11 = 43, of which  a-free classes are 

28. 

  Conclusion of Sections 5.6.  1U1 =  31U11+  31U21 = 3 x  4+  3 x 43 = 141, of which 

 a-free classes are 3+28=31. 

5.7. Classification of B 

In this section the set B  :=TLSMU(BoUBiUB2) will be classified. Put  G  :=  TLSMU 

and B := U  B1) for simplicity. Obviously we can represent B as 

  B  =U(BoBiB2  BoBiff2  Boff1B2  Bo-71172 +  7150171B2  RoBil572). 

However, we have  GBoBiB2 =  g5 from Lemma 5.1.4 and  0BpBq  C  GU, = from 

Lemma 5.1.7. Hence we have B  =  B1  (Biy2 +  (B1)0.1, where 

 B1 =  GB0T31B2. 

Thus it is sufficient to consider only  Bl. We prepare several lemmas. 

Lemma 5.7.1.  Bpr  C  Tp. 

Proof. . We show a contradiction assuming  f(p)  = q. From f  E  D we have  f(b) = r 

for some b. Hence f E  Bp, since  (p,  b) E  Bp. When  f(p) = r, a similar contradiction 

results.  ^ 

 Lemma 5.7.2. TpBq  C  Tpq. 

 Proof. Assume f E  TpB  qT  pq Then  f(a) = r for some a E  {p,  qr. This contradicts to 

f E Bq since  (p,  a) E Bq and  (f(p),  f(a))  ¢ Bq.  ̂  

   Now we divide B1 into the following 4 subsets by T1 and T2 and consider each case 

 separately: 

 B1 =  B1(TiT2  T1272  T,T2  T1T12)• 
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(1)  B1T1T2. 
  From Lemma 5.7.2 we have  B1T1T2  C  T1oT20. Thus the remaining set is T12. 

             BiTiT2--=T012120{1) T12 f7.1 (*323 = #254)                          2)  T12  f7.2 (*324 = #194) 

(2)  BlT1T2• 
  From Lemma 5.7.2 we have  BIZ  C  Toi, and with respect to the remaining T12 and 

T20, the class  T12T20 is impossible from Lemma 5.1.8 and  T2. Thus there are 3 classes. 

                       1) T12T20  f7.3 (*325 = #149) 

    { 

            B1T1T2 = T01 2)T2T0
3))T112T220ff77..4(*326(*327#                            7=0115002 

(3)  B1T1T2. This is the  co-similar of (2). 

(4)  BiT1T2* 
  Among 8 induced classes by T01, T12 and  T20, 3 classes which include  T01T12 and 

 T207112 are impossible from  T1T2 and Lemma 5.1.8. 

                       1)  To1T12T20  f7.6 (*331 = #99) 
                       2)  To1T12T20  f7.7 (*332 = #64) 
            BlTiTiT2 = 3) T01T12T20tr°7.7  (*333  =  #62) 

  { 

                      4)ToiTi2T20  f7.8 (*334 = #63) 
                       5)  2701T12T20  f  7.9 (*335 = #26) 

  Conclusion of Section 5.7. Thus B =  B1  +  (B1)°2  ±  (B1)al and  IB11  =  1B1T1T21+ 

 21B1712721  +  IB1Z.T21  = 13. Thus,  IBI = 3 x 13 = 39, of which 9 are a-similar-free. 

5.8. Classification of TLSMUB 

In this section all the functions (the complement set of the set of functions so far 

classified) will be classified. We put I  :=  TLSMUB. Obviously I can be represented 

 as 

           I  = T°  +  T1 +  (TT' +  (T1r2 +  (T2)'' +  (T2)°2  +  T3, 

where T° :=  IT0T1T2, T1 :=  IT0T1T2, T2 :=  IT0T172 and T3 :=  /170T1T2. We are 

suffice to consider T°,  T1, T2 and T3. Now the remaining sets are only Tpq type 

sets. In the following classification we will see that the condition TLSMUB does not 
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influence the possible classes of  Tp type maximal sets. We mean that possible classes 

by  Tp maximal sets are restricted only by Tpq sets through Lemma 5.1.8. 

Classification of T° 

  T° is divided into the following 8 classes (all induced sets by  Tot, T12 and T20). 

                   1) ToiT12T20  f8.1 (*362 = #191) 
                   2) ToiTi2T20  f8.2 (*363 = #138) 
                   3) ToiTi2T20  f'28.2 (*364 = #137) 

 To = 4) ToiT12T20  f8.3 (*365 = #92)                    5)T
oiTi2T20  P8.2 (*366 = #136) 

                   6) To1T12T20P8.3  (*367  = # 91) 
                    7) ToiTi2T20  fa°8.3  (*368  =  #  90) 
                   8) ToiTi2T20  f8.7 (*369 = #  62) 

Classification of T1 

  T1 is divided into the following 6 classes. From Lemma 5.1.8 and  To the classes 

which include  Toj  T2  0 are impossible. 

              {1)  To1T12T20  f8.5 (*370 = #85) 
                    2) To1T12T20  fq°8.5  (*371  = #92) 

              2,1=3)ToiT12T20  f8.6 (*372 = #47)                     4) T
o1T12T20  f8.7 (*373 = #46) 

                    5)ToiTi2T20 fcr°8.6  (*374  = #45) 
                    6) ToiTi2T120  f8.8 (*375 = #18) 

Classification of T2 

  T2 is divided into the following classes. From Lemma 5.1.8 and  T1T12, the 3 classes 

which include  To1T12 and  T12T20 are impossible. 

              {1)  To1T12T20  f8.9 (*388 = #48) 
                   2) To1T12T20  f8.10 (*389 = #21) 

              T2 = 3) ToiTi2T20  f8.11 (*390 = #20) 
                     4) T0171-12T20  P'8.10  (*391  =  #19) 
                   5)  To1T12T120  f8.12 (*392 = # 7) 

Classification of T3 

  T3 is divided into the following classes. From Lemma 5.1.8 and  T0TIT-2, the 4 classes 

which include  To1T12, and  T12T20 and  T2oTo1 are impossible. 

               {1) To1T12T20  f8.13  (*403 = #4)                 T3 = 2) ToiTi2T120  f°18.13 (*404-= #)                     3)T
oiTi2T20  P8.13  (*405  = #2) 

                    4)  To1T12T20  f8.14  (*406 = #1) 
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                  Table 5.12: Numbers of the classes of the subsets of P3. 

          subsection considered subset classes a-similar-free classes 

    5.4 T 80 17 

     5.5 L U S 8 6 

    5.6 M 93 19 

    5.7 U 141 31 

   5.8 B 39 9 

      5.9 TLSMUB 45 14 

      Total 406 96 

  Conclusion of 4.8. Thus we have  1T°1 = 8, 1T11 = 6, 1T21 = 5 and 1T31 = 4. Hence 

 1TLSMUBI =  iT°i+  311'11+ 31T21 1T31 = 45, of which 14 are  a-similar free. 

5.9. The result of the classification of P3 

We have completed the classification of  P3, investigating the structure of the inter-

sections of the 18 P3-maximal sets. All the classes and representative functions are 

presented in Appendix 1 and 2, respectively. Every representative is chosen from the 

least arity functions  [Miy71]. 

  Thus we have the following theorem. 

Theorem 5.9.1. P3  ,is divided into the 406 nonempty classes, of which 96 are  a  -similar-

free. 

  In Table 5.12 we show the classes of the set considered in the corresponding sub-

sections 5.4 - 5.9. We note that the  origianl classification in  [Miy71] counted a few 

characteristic vectors twice as different classes, consequently the number of classes re-

ported in [Miy79] is not quite right; this was corrected in [Sto84a]. 

  Further from the fact that all the representative functions of the classes shown in the 

Appendix 2 are of not greater than 3 arity, we have the following theorem. 

Theorem 5.9.2. Each class of P3 has a representative function of not greater than  3 

variables. 

  Let a closed set F  C  Pk be finitely generated. The minimal number r such that 

every base of F can be constructed by functions depending on at most r variables (i.e. 
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 5.4 T 80 17 

 5.5 L U S 6 

 5.6 M 93 19 

 5.7 U 141 31 

 5.8 B 39 9 

  5.9 TLSMUB 45 14 

   Total 406 96



r arity) is called the order of F  [Lau8413]. In case that F has no finite base the order of 

F is set to 

  Theorem 5.9.2 states that 

Corollary 5.9.1. The order  of  P3 is 3. 

  We know that the order of P2 (under ordinary composition) is also 3. 

5.10. Enumerations of bases of P3 

The list of 406 characteristic vectors of P3-classes tells many things. Especially, we will 

show that the maximal rank of a pivotal incomplete set is 7, while that of a base is 

6. This is a rather unexpected result. Since a base corresponds to a minimum cover 

of 1  •  • 1 and a pivotal incomplete set corresponds to a minimal cover of some binary 

vector in which at least one coordinate should be 0, one may naturally assume that the 

maximal rank of a base is greater than or equal to that of a pivotal incomplete set. The 

reality is not like this. The number of classes of bases of P3 is exactly  6,239,721-(recall 

that we have only 42 for P2), in which the number of bases which contain constant 

functions is exactly 1,391 . 

  Let us call a characteristic vector simply a vector. Recall that a set of vector is a 

base if it satisfies the following two conditions: 1) bit-wise OR for all the vectors results 

in unit vector  1 1 (Equation (1.1)) and 2) for each vector of the set, bit-wise OR for 

all the remaining vectors of the set does not equal that for all the vectors (Equation 

(1.2)). 
  The last condition is equivalent to saying that for every class of the set there is at 

least one "pivot", a maximal set in which all the other classes of the set except the class 

are included. Also recall that a set is called pivotal if it satisfies the condition 2). 

   First, let us see how vectors can be used. 

Example 5.10.1. In Table 5.13 we show vectors of the function  jo(x),  ji(x) and j2(x), 

where  ji(x) is  defined by  MO =  2,  ji(x) = 0 for x i. Note that max(x, y)  =  o1-sim. of 

min(x, y), 2 =  o3-sim. of 0 and 1 =  o2-,a4-sim. of 0, where sim. stand for similar. 

It is well-known that the set F =  10,1,2,  jo(x),  ji(x), j2(x),  min(x,  y),  max(x,  y)} is 

complete. By examining the vectors of these functions we see that F is complete but 
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              Table 5.13: Characteristic vectors of  ji(x), max,  min and constants. 

wt #no TLS  M1M2M0  U2UoUi  BoBiB2  ToT1T2  ToiTi2T20 *no representative 
12 #242 011 111 100 010 111 110 *78  j0(s) 

 11 #306 011 101 110 010 011 110 *65  j1(x) 
 7 #393 011 010 010 010 010 010 *68 j2(x) 
 6 #400 111 010 001 100 000 000 *92  max  (x,  y) 

 6 #402 111 001 001 001 000 000 *89  min.  (x,  y) 
 4 #403 001 000 000 000 110 100 * 8 2 

 4 #404 001 000 000 000 101 001 * 7 1 
 4 #405 001 000 000 000 011 010 * 6 0 

not a base. It is easily verified that a base from F should contain  min(x, y), max(x, y), 1, 

since these are only elements that cover B2,  B0 and T20-th coordinates, respectively. By 

the base criteria we see that the following two sets are only bases that can be composed 

from F: 

 {min(x,  y),  max(x,  y),  1,  ji(x)} and  {min(x,y),max(x,  y),  1,  jo(x),  j2(x)}. 

0 

  The enumerationons of bases of P3 can be done by examining the base criteria for all 

combinations of the classes. Although the procedure is quite simple, its direct applica-

tion is far from feasibility due to combinatorial difficulty; it has required over 20 hours 

to examine the base criteria for 106 combinations of 6 tuples of vectors  (b1,  b2,  ..  - , b6) 

from P3-vectors by a computer which has about 1 MIPS processing speed (Tosbac 5600 

computer). The feasible algorithm to overcome this difficulty we present in Chapter 7. 

   Here we summarize the enumeration results. 

  An example of redundant incomplete (actually a pivotal) set with rank 7 is shown in 

 [Jab58]. It has been a problem whether this is the maximum rank of a pivotal set. We 
show that it is true. 

Theorem 5.10.1. The maximal rank of a pivotal incomplete set of P3 is 7. 

  This means that maximal rank of a nonredundant incomplete set is greater than or 

equal to 7 (not every nonredundant incomplete set is pivotal incomplete set), and this 

tempts us to believe that the maximal rank of a base is also greater than or equal to 7. 

However, this does not hold. 
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Theorem 5.10.2. The maximal rank of a base  of  P3 is 6. 

  In Example 5.10.2 we will see these situations in more detail. 

Theorem 5.10.3. The number of bases  of  P3 is exactly  6,239,721. 

  We note that the first report [Miy79] on the number of classes of base was not quite 

right and the above number is the corrected result by  [Sto84a]. 

Theorem 5.10.4. The number of bases which contain constant functions 0,1,2 is ex-

actly 1,391. 

                 rank 1 2 3 4 5 6 total 
                  bases 0 0 0 2 633 756  1,391 

5.10.1. Examples of bases and pivotals 

The situation which yields an interesting "gap" between Theorem 5.10.1 and Theorem 

5.10.2 can be understood by the following example. 

Example 5.10.2. In Table 5.14 and Table 5.15 we list 10 classes with the least degrees 

of completeness (i.e. weight) and their representative functions, respectively. By exam-

ining these vectors we can see that the set Y ={  a4-min,  a2-min, max,  min,  0,1,2} is 

pivotal incomplete set with maximal rank 7. Indeed, it is easy to see that Y is contained 

in the maximal set B and each class has at least a pivot. This example is essentially 

the same as one presented by Jablonskij  [Jab58, p.136]. Joining  a3-min or  ao-min to Y 

yields a complete set, but in both cases the resulting sets are redundant (non-pivotal). 
More precisely, by examining the vectors we can see that joining a3-min to Y yields 

redundancy of  a2-min and max, and joining  ao-min results redundancy of  o-4-min and 

 min. Thus we have only two bases of the maximal rank 6:  {a4-min,a3-min,  min, 2,1,0} 

 and  {a2-min,  max,o-o-min, 2,1,0} that can be constructed from these classes. 0 

 Example 5.10.3. The following 9 sets are all pivotal incomplete sets with maximal 

 rank  7  . Every  peimutations in  { ao,  al, a2} is with even length, while one from  {e, a3,  a4} 

 is with odd length. The following list consists of taking every two functions from each 
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of these categories and adding constant functions. 

           1)  {o-o-min, max,  min,  o3-min,  0,1,2} C  Mi. 
           2)  {oo-min, a2-min,  min,  o4-min,  0,1,2} C M2 
 3)  {max,  a-2-min,  o-3-min,  a-4-min,  0,1,2} C  Mo 
           4) {max,  o2-min,  min,  o-3-min,  0,1,2} C U2 
           5)  {6o-min, max,  min,  a-4-min,  0,1,  2} C Uo 
            6)  {uo-min,  a2-min,  a3-min,  a-4-min,  0,1,  2} C U1 
            7)  {v0-min,  v2-min,  min,  o3-min,  0,1,  2} C  Bo 
            8) {max,  a2-min,  min,  a4-min,  0,1,2} C  Bi. 
            9)  {a0-min, max,  a-3-min,  a2-min,  0,1,  2} C B2 

0 

             Table 5.14: 10 classes of P3 which have the least completeness degrees. 

   wt  #no TLS  Al1M2M0  U2UoU1  BoB1B2  Toll  T2  TO  1  T1  2  T2  0 *no representative 
  6 #397 111 100 100 100 000 000 *96  e4-sim.  min 

  6 #398 111 100 010 001 000 000 *95  Q2-sim.  min 
   6 #399 111 010 010 010 000 000 *93 cr3-sim.  min 
  6 #400 111 010 001 100 000 000 *92  cr1-sim.  min 
  6 #401 111 001 100 010 000 000 *90  cr0-sim.  min 
   6 #402 111 001 001 001 000 000 *89  min(x,  y)  =  f.5.1 

   4 #403 001 000 000 000 110 100 * 8 2 (constant) 
   4 #404 001 000 000 000 101 001 * 7 1 (constant) 
   4 #405 001 000 000 000 011 010 * 6 0 (constant) 
   0 #406 000 000 000 000 000 000 * 1 x (projections) 

                            Table 5.15: Representatives functions. 

 f  \  xy 00 01 02 10 11 12 20 21 22 
        u4-min 0 1 2 1 1 2 2 1 2 

         (72-min 0 1 0 1 1 1 1 1 2 

 o-3-min 0 0 2 0 1 2 2 2 2 

 max  =  ai-min 0 1 2 1 1 2 2 2 2 

 cro-min 0 0 0 0 1 2 0 2 2 

 min 0 0 0 0 1 1 0 1 2 

Example 5.10.4. In Table 5.16 and Table 5.17 we show three classes and their repre-

sentative functions, respectively. The first one is a base with single function (a similar 

function of Webb function  max(x,  y) + 1). The last two are all classes each of which 

 is complete with constant functions (c-complete). It may have a practical significance 
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                                              Table 5.16: 

          wt  no  TLS  M1M2M0  U2UoU1  B  oBiB2  ToT1T2  T01T12T20 *no representative 

        18 #1 111 111 111 111 111 111 *406  f8.14 (Sheffer) 
        12 #191 111 111 111 111 000 000 *362  f  8.1 

       11 #288 110 111 111 111 000 000 *87  f4.5 

                                      Table 5.17: Representatives functions. 

 f  \  sy 00 01 02 10 11 12 20 21 22  
 f8.14 1 0 1 0 2 0 1 0 0 
 f  8.1 0 1 0 0 1 2 0 2 2 
 f4.5 0 0 2 0 1 1 2 1 2 

          that these two representatives depend on two variables, while in two-valued case there 

          exist  only three-variable representatives in the corresponding classes (there exist also 

          all two classes which are complete with constants in two-valued case). ^ 

           5.10.2. Conclusive discussions 

          We have enumerated all the bases of three-valued logical functions. Now it has be-

           come known that three-valued case is far much complex than two-valued case. The 

          classification approach, originally due to [Jab52], has been proved to be useful also for 

          three-valued case, but it will be hard to apply for the cases with greater than three. 

             In the base enumeration a peculiar structure of P3 is revealed: the maximal rank of 

          a base is 6, while that of a pivotal incomplete set is 7. There are a few investigation 

          on the maximal rank of a base of P3  [Krn73]. Another proof that the maximal rank of 

          bases of P3 is 6 is presented recently  [Vuk84], which does not resort to enumeration of 

          whole bases directly. It is known that for Pk  (k  > 3) there is a set which has a base with 

          infinite rank, and a set with no base [JaM59]. Thus a family of the closed sets each of 

          which is spanned by a pivotal incomplete set is merely a special family of all closed sets 

           of  Pk. 
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5.11. Classifications and base enumeration results for P3 and its 

     all maximal sets 

In this last section we are going to presents classification and enumeration results of all 

bases for the set P3 and all 18 P3-maximal sets. First we give some historical remarks. 

First attempt to derive classes of functions of P3 was done in  [Miy71]. This paper also 

give the notion of pivotal sets as necessary conditions for a set to be base. However, 

as we noted before, it counted a few characteristic vectors twice as different classes, 

consequently the number of bases reported in  [Miy79] was not quite right; this was 

corrected in [Sto84a]. The following Table 5.18 presents the numbers of maximal sets 

and the numbers of classes of functions for the sets  P2 P3 and all P3-maximal sets. 

  The numbers of classes of bases and pivotal incomplete sets for the same sets as in 

the former table are shown in the following two Tables 5.19 and 5.20. 

  In the table we abbreviated references as follows:  [P] for  [Pos21], [J1,J2] for  [Jab52,Jab58], 

 [L] for  [Lau82b], [Ma] for  [Mac79], [B1,B2] for  [BaD78,BaD80], [JIK] for  [Jab52,INN63,Krn65], 

 [M1,M2,M3,M4,M5]  for  [Miy71,Miy79,Miy82,Miy83,Miy84],  [S1] for  [Sto84a] and [S2,S3,S4] 
for  [Sto84b,Sto86a,Sto86b]. 
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Table 5.18: Numbers of maximal sets and numbers of classes of functions for P3 and its maximal sets. 

       P2 P3 B1 M1  TO U0  T01 T L S  

 maximal 5 18 7 13 12 13 15 5 5 2 

 sets  {P} [J2] [L]  [Ma] [L] [L] [L]  [L]  [B1] [B2] 

 classes of 15 406 54 88 253 383 607 6 10 4 

 functions [JIK] [M1,S1] [M3] [S2] [M5] [S3] [S4] [M4]  [M4] [M4] 

                Table 5.19: Classes of bases of P3 and of its all maximal sets. 

   P2 P3 B1  Mi.  To  U0  To1 T  L- S 
rank [I,K]  [S1,M2] [M3] [S2] [M5] [S3] [S4] [M4]  [M4];. [M4] 
1 1 1 - - 1 1 1 -  = 1 
2  17. 8,265 28 - 4,492 4,344 12,259 - 18 1 
3 22 794,256 999 1,514 234,031 680,285 2,580,026 6 6  -
4 2 4,612,601 2,831 40,104 552,927 7,300,491 38,508,259 - -  -
5 - 810,474 724 75,209 91,377 7,627,060 53,641,851-- - 
6 - 14,124 17 1,916 892 944,257 7,545,748-- - 
7 - - - 1 - 15,804 35,616-- - 
E 42 6,239,721 4,599 118,744 883,720 16,572,242 102,323,760 6 24 2 

         Table 5.20: Classes of pivotal incomplete sets of P3 and of its all maximal sets. 

    P2  P3 B1 M1  TO  U0  T01 T L S  
   1 13 404 53 87 251 381 605 5 9 2 
     2 31 60,335 931 3,153 21,363 57,284 147,266 10 10  -
      3 7 1,418,970 3,678 37,946 202,689 1,594,342 6,385,808 - -  -
      4 - 2,677,899 2,240 96,323 149,804 5,057,975  32,278,690 - -  -
     5 - 176,187 168 15,087 6,595 1,911,408 18,947,380 - -  -
    6 - 1,368 1 55 8 96,464 1,198,502 - -  -
  7 - 9 - - - 240 648 - -  -
      E 51 4,335,172 7,071 152,651 38,0710 8,718,094 58,958,899 15 19 2 
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Chapter 6 

Classifications of maximal sets of P3 

In this chapter we classify the maximal sets of  P3  : T (semi-degenerate or Slupecki set), 

L (linear functions) and S (self-dual functions), B and  To (the set of functions preserving 

a constant 0). We also presents enumerations of bases and pivotal incomplete sets for 

each case. 

6.1. T (Slupecki functions or semi-degenerate functions) 

In this section we will classify the P3-maximal clone T = D U [Pr], which we call 
semi-degenerate functions or Slupecki functions. 

  For a unary function f E  P41) we denote it by  s  f  (o)f  (i)f  (2)  ; for example, identity 
function is denoted by  son; for simplicity we use x for identity function also, and also 

put  Co =  soon,  c1 = s111 and  c2 = 3222- 

  The classification is based on the following theorem. In presenting the theorem we 

introduce our notations for the submaximal sets. 

Theorem 6.1.1.  [Lau82b] 

   T has exactly the following 5 maximal clones. 

 (1)  So  :=  D  U  [3021]• 

 (2)  Si.  :=  D  U[3210]. 

 (3) S2 := D U  [slog]. 

  (4)  S+ := D U  [S120)  3201]• 
  (5) Sb :=  [Pr)]  U  U"_1{f(n)  E  P3I3fi E  PP) such that  f(xi,....,xn) =  fo(f1(xi) 

 f2(x2)  +  f,i(xn) mod 2)} 
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We recall that the notation [F] denotes the clone generated from F. For simplicity 

we omit set notation; thus [8021] means  [{8021}]. The identity function  5012 is always 

included in all sets by definition. Also note that onto functions that can be generated 

by each of the above first four maximal sets are only its own unary onto functions. 

  Let  Si and  Si (i j) be any of  So, S1, S2 and  S.f.. 

Lemma 6.1.1. We have  Si = D [8012], hence  SoSiS2S+ = D  [son]. 

Proof. [D + 8012]  CSi is obvious. Converse. Suppose f  ESi and f is onto. Then 

there exists an onto function fo  ESi such that  f(xi,... ,  xn) =  fo(...). As we noted 

above there exist no such onto function except  S012.  ̂ 

Lemma 6.1.2. Let  Si and  Si be as above. Then the set  STS; consists exactly of those 

onto functions in  Si excluding [5012]. 

Proof. Obviously every onto function contained in  Si does not belongs to  Si except  5012• 

0 Example 6.1.1.  S+So =  {s120)  5201}  •^ 

 Lemma  6.1.3.  T  =  SoU  U  S2  U  S+ 

Proof. If f  E T is an onto function then f belongs to the right hand side.  ^ 

Classification. From Lemma 6.1.1 we have the following 4 classes as for  So,  S1,  S2 and 

 S+. 

 So S1 S2  S+ set 
                 1) 0 0 0  0  =  {D  soi2} 

                 2) 0 1 1 1  =  {son} 
                3) 1 0 1 1  =  {8210} 
                4) 1 1 0 1  =  {3102} 
                  5) 1 1 1 0 =  {3120,3201} 

   We combine the above classes and the remaining maximal set  Sb. The class  foimed 

by combining  Sb and each of the above 2)- 5) is empty from Lemma 6.1.2, because 

 combining  Sb means to exclude all  PP), while only unary onto functions exist in the 

 above classes. Thus we have the following theorem. 
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Theorem 6.1.2. T has the following 6 classes. 

                 Class  So  Si S2  5+ Sb representatives 
               1) 1 1 1 0 0  {8120,  8201  } 

             2) 1 1 0 1 0  {s102} 
             3) 1 0 1 1 0  {5210} 
             4) 0 1 1 1 0  {so21} 
           5) 0 0 0 0 1 

               6) 0 0 0 0 0  8012,0,1,2 

where g1.1 :=  g(x,y)  =1  if  x = y  = 2, otherwise  g(x,y) = 0. 

Note 6.1.1. The class 5) includes functions which depend on 2n variables (we can 

easily extend to such functions), and the class 6) which contains DSb also includes 

functions which depend on n variables, e.g.,  f  (xi, ,  xn) :=  sou(sooi(xi)  som(x2) 

• • •  so01(x7,) mod 2). 

  Since the proof of  g1.  lit  Sb is a bit lengthy, we put it separately in the end of this 

subsection. We first give bases and pivotals of T. 

Theorem 6.1.3. T has exactly the following 6 bases whose rank = 3: 

 11,2,51,  {1,3,5},  {1,4,5},  {2,3,5},  {2,4,5},  {3,4,5}. 

Thus any base of T consists exactly of three elements. 

Theorem 6.1.4. T has exactly the following 15 pivotal incomplete sets. 

                  rank = 1: each of 5 classes except null class. 

   rank = 2:  {1,5}, {2,5},  {3,5},  {.4,5}, {1,2},  {1,3}, {1,4},  {2,3}, {2,4}, {3,4}. 

   Now we give the proof of  g1.1  Si,. 

   Put  g(x,y) :=  g1.1 . Recall g(2, 2) = 1 , and  g(x,  y) = 0 for the other values of 

x and y. Assume  g(x,  y) = fo(fi(x)  +  f2(y) mod 2) for some  fi  E . We show a 

 contradiction. 

   Since range g =  {0,1}, fo should map the  subdomain. {0,1} onto {0,1}, i.e.  fo should 

 be either  sm. or  310., where * denote 0,1 or 2 

   1) Case of fo = soi.• 
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 We have  g(x  , y) =  soi,„(fi(x) +  12(y) mod 2) =  fi(x)  +  12(y) mod 2. Hereafter till the 

end this section x y and xy denote the element of E3 congruent  (  mod 3) x y and xy, 

respectively.  From  g(2,  2) =  11(2)+12(2) = 1,  we  have  ( fi(2),  12(2)) = (0,  1),  (1,  0),  (1,  2) 

or (2,1) . From the symmetry of  h and 12, it suffices to consider that  (11(2),  12(2)) = 

 (0,1) or  (1,2)  . 
  1.1) Case of  fi(2) = 0 and  f2(2) = 1. 

 We  note that 12(2) =  1  and that 1+a =  0  leads  to  a  = 1.  Then  g(0,  2) =  f1(0)+  f2(2) = 0 

leads to  fi(0) = 1. Thus  g(0,  0) =  fi(0) + 12(0)  = 0 leads to 12(0) = 1. Hence 

g(2, 0) =  11(2) +  f2(0) = 0 leads to  11(2)  = 1. But this contradicts to the assumption 

 11(2)  =  0. 
  1.2) Case of  11(2) = 1 and 12(2) = 2. 

Then g(2, 0) =  11(2)  +  12(0) = 0 leads to 12(0) = 1. Thus g(0, 0) =  fi(0)  +  12(0) = 0 

leads to  f1(0) = 1. Hence g(0, 2) =  MO)  +  12(2) = 0 leads to 12(2) = 1. But this 

contradicts to the assumption 12(2) = 2. 

  2) Case of fo =  slat, 

We have 

 g(x  ,  y) =  sio.(fi(x)  12(y) mod 2) =  (fi(x)  +  12(y) mod 2) + 1 =  fi(x) + 12(y) + 1. 

From  g(0,  0) =  /1(0) + 12(0) + 1 = 0 we have  MO) + 12(0) = 1. Thus from the 

symmetry of  fi and 12, just like as we already saw for Case 1), it suffices to consider 

that  (11(0),12(0)) = (0, 1) or (1,2) . 

  2.1) Case of  fi(0) = 0 and 12(0) = 1. 

We note that  fi(0) = 0 and that 1 + a = 0 leads to a = 1. Then  g(0,  2) =  MO) + 

 /2(2)  +  1 = 0 leads  to  12(2) = 1. Thus  g(2,  2)  =  11(2)  +  12(2)  ±  1 = 1 leads  to  11(2) = 1. 

Hence g(2, 0) =  11(2) + 12(0)  + 1 = 0 leads to 12(0) = 0. But this contradicts to the 

 assumption 12(0) = 1. 

  2.2) Case of  MO)  =  1 and 12(0)  =  2. 

Then g(2, 0) =  11(2)+12(0)+1 = 0 leads to fi(2) = 1. Thus g(2, 2)  =  f1(2)+12(2)+1  = 1 

 leads to 12(2) = 1. Hence  g(0,2) =  MO)  +  12(2) + 1 = 0 leads to  f1(0) = 0. But this 

 contradicts to the assumption  MO) = 1 .  ̂  
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6.2. L (Linear functions) 

 We will classify the P3-maximal set L  :=  {flf(x)  =  cixi + co}, which is called 

 linear functions. All maximal sets of L are given by the following theorem. In [BaD78] 

 they showed all the closed sets of L for prime valued k. Their notations are slightly 

 different from ours in the following theorem: they use La for LTa (a = 0, 1, 2),  LA for 

 LS, and  L(') is the same. 

 Theorem 6.2.1. [BaD78] L has exactly the following 5 maximal sets. 

 (1)  LT0=  EL and  f(o)=0)} 

 (2)  LT1  =  {flf  EL and  f(1)  =  1)} 

 (3)  LT2  = E L and  f(2)=2)} 

 (4)  LS  =  E  L and  f(x  +1.).  f(x)+1} 

  (5)  L(1)  =  [0,1,  2,  x,  x  1,  x  +  2,  2x,  2x  +1,2x  +  2]. 

   Classification goes in the following manner. 

 First we will classify  L(1) (5 classes), then -.E(1)  n  LS (2 classes) ,and finally the remaining 

 set (3 classes). Thus we will find total 10 classes. 

 Lemma 6.2.1.  Obviously  L(') is classified by the other maximal sets into the following 

  5 classes. 

                    LT0  LT1 LT2 LS representatives 
            0 0 0  0  x 
               1 1 1 0 x+1,x+2 
               0 1 1 1  0,  2x 

 1. 0 1 1  1,2x  +2 
                1 1 0 1  2,2x  +1 

   Now we divide L into subsets as we did in the previous chapter (Chapter 5). 

 Put L :=  Lo +  L1 + L2, where La  :=  {flf(x) = co + a}. Further 

 each La is divided into the following three subsets: 

           La = Lao + Lai  +  L  a2, where Lab =  {flf E  La and  f  (o) =  a}  . 

 Then we have LS = L1 from Lemma 5.4.7, Chapter 5. 
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Lemma 6.2.2. From the property of  f(x + 1) =  f(x)± 1, the  set t1) n  LS(c L1) is 

divided into the following 2 classes. 

                    LT0  LTi. LT2 representatives 
                  0 0 0  2x  +  2y  =  f4.3 

                  1 1 1  2x  +2y  +1=  f4.2 

where f.4.3 and f4.4 are from the previous chapter (they are given in Appendix 2). 

Lemma 6.2.3. L(1)(L0-1- L2) is divided into the following 3 classes. 

              LT0  LT]. LT2 representatives 
            0 1 1  x  +  2y  =  f4.1 

              1 0 1  a2-similar of x 2y (= x 2y + 1) 
              1 1 0  a-1-similar  of  x  +  2y  (=  x  +  2y  +  2) 

where  f  4.1 is from the previous chapter. 

Proof. This is in fact Lemma 5.4.5. And this can be easily seen Also from the properties: 

 Lo =  Loo + L12 + L21 and L2  = L02 + L11 + L20 , and  f(o) = b, = a  + b and 

 f(2)  =  2a  +  b  for  f  E Lab. 0 
  From Lemmas 6.2.1,6.2.2 and 6.2.3 we have the following theorem. 

Theorem 6.2.2. L is divided into the following  10 classes. 

 Li. LS LT0  LTi. LT2 representatives 
         1) 1 1 1 1 0 x+y+1,x+2y+2 

         2) 1 1 1 0 1 x+y+2,x+2y+1 
         3) 1 1 0 1 1 x+y,x+2y 
          4) 1 0 1 1 1 2x+2y+1,2x+2y+2 
         5) 0 1 1 1 0  2,  2x  +  1 

         6) 0 1. 1 0 1  1,2x  +  2 
        7) 0 1 0 1 1  0,  2x 

        8) 0 0 1 1 1 x+1,x+2 
         9) 1 0 0 0 0  2x  +  2y 

       10) 0 0 0 0 0 x 

  In the above table we listed all n-ary (n  < 2) linear functions as representatives. 

Theorem 6.2.3. L has exactly the following  2.4 bases. 

 rank = 1  : none. 

 rank = 2 : 1  x{2,3,4,6,7,8}, 2  x{3,4,5,7,8}, 3  x{4,5,6,8}, 4  x{5,6,7}. 
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 rank =  3  :  {5,  6,9},  {5,7,9},  {5,8,  9},  {6,  7,  9},  {6,  8,  9},  {7,8,  9}. 

Theorem 6.2.4. L has exactly the following 19 pivotal incomplete sets. 

rank =  1: each of 9 classes except null class. 

rank = 2: {5,6},  {5,7},{5,8}, {5,9}, {6,7}, {6,8},  {6,8}, {7,8},  {7  ,9}, {8,9}. 

  In the linear functions one can see most clearly the relation between pivotal and 

 nonredundant sets. A nonpivotal incomplete set can be redundant as is seen in the 

following example. 

Example 6.2.1. 1. F1  :=  {0} is pivotal, and hence nonredundant. 

  2. F2  :=  {O, 2x} is  nonredundant, and not pivotal; as we have seen these functions 

have the same characteristic vector (hence F2 is not a minimal cover). 

  3. F3 :=  {x +  1,  x + 2} is not pivotal and is redundant. 

  4. F4 := {2x, 2x  + 2y} is pivotal and noncomplete. 

  5. F5 :=  {2x,  2x + 2y, x  +  1} is pivotal and complete, i.e. it is a base.  ̂  

  A nonpivotal incomplete set can also be nonredundant. 

Example 6.2.2. F =  {0,  f(x,y) = x 2y} is not pivotal and incomplete. F is redun-

dant; indeed  f(x, x) = x  +  2x  7,- 0.  ̂  

Example 6.2.3. The set F of constants and any linear function of two variables, i.e., 

F  =  {0,1,2,  l(x, y) = ax by  + c (a  0 0, b 0)} is complete, but it is redundant; one 

or two of constants (depending on  l(x, y)) is not necessary to be a  base.  ̂  

6.3. S (Self-dual functions) 

We will classify the set S  ={flf(x+3.).  f(x)+1} which are called self-dual functions. 

All the submaximal sets of S is given by the following theorem. 

Theorem 6.3.1.  [DHM80a] S has exactly the following 2 maximal sets. 

                (1) SL  =  {fif  E  S  and  f  E  L}. 
               (2)  STo  =  {flf E S and  f(o)=  0}. 
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     Thus S is divided into the following four classes, and immediately we have the fol-

   lowing classes of bases. 

                         class SL ST0 representative 

                   1) 1 1  f4.4 
                   2) 1 0  f4.5 
                      3) 0  .1  x  +  1 

                     4) 0 0  2x  +  2y 

    where f 4.4 and  f  4.5 are from the previous chapter. 

    Theorem 6.3.2. S has exactly the following 2 bases and 2 pivotal incomplete sets. 

    bases: 1 (rank = 1), {2,3} (rank = 2). 

    pivotals: 2, 3 (rank = 1). 

      It is interesting to note that such a non-trivial function as 2x + 2y belongs to the 

    null class; thus no incomplete set exists adding to which 2x  + 2y becomes complete in 

    S. For functions in null class no incomplete set of functions can be added so that the 

    joined set become complete. Null class containing non-trivial functions is seen in T, S 
    and B (to be described in the next section). 

   6.4. Classification of B1 

          (  

 In this section we classify a P3-maximal set B1 =  Poi0120112which is the set of                                   0121021)' 
    functions preserving a so called central relation. We will show 54 classes and prove that 

    B1 has 4,599 classes of bases. We also show that there is no Sheffer function in B1. 
                                              02 

    The maximal set acis the set of functions  f: if fthen there is i                                                 20 

   such thatE02               20) • 
       First we show a completeness theorem for B1 due to Lau. 
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Theorem 6.4.1. [Lau82b] B1  has  exactly the following 7 maximal sets: 

 (1)  Ti. =  Bi  n  Po/(1), 
             (2) T01 = B1 n  Pol(01), 
              (3) T12 = B1  n  Po/(12), 
 (  4  ) T20 = B1  n  Po/(20), 

            (5) m.,  =  poi 0011220121 ) , 

                           1210121122120110010 

            (6)  M6 =  pot0011220101212120 )  , 
              (7) M7 =  Pol 2101112121221010100 . 

                           0022111212221101000 

  Now, we give a few ex lanations for each submaximal set. M5 has the following 
 01 

property:f E M5 <=> if f ab E °121 then there is i such that  b. E  12  • 

M6 has the following property: f  E M6  <#.  if f  (  ab =  2 then there is i such that 
( ab:)= ( °2).M7 is the set of functions preserving the relation p := 3-ary universal           0202 ) 
relation\p', where p' = 2002 . Since M7 is a subset of B1, we have the following 

   ( 

                      **20 

    a2ai 02 property: f E M7'i*if(b)E002 then there is i  such  that bi E 02 
      c  20  .  ci 20 

The reason of not occurring the first and second columns is that, otherwise f does not 

belong to B1. Finally, we note the following inclusion 

 D(0,1) U  D(1,  2) C M6M7. 

  We recall some lemmas from Chapter 5. The following lemma is a corollary of Lemma 

5.7.1. 

Lemma 6.4.1. f E B1  = f E T1 U  D(0,1) U  D(1,  2). 

Corollary 6.4.1. f E  T1B1  = f E  D(0,1) U D(1, 2). 

  The following is the Lemma 5.1.8. 

                f E  T01T12  = f E  Ti.  (T01T12T1 is impossible). 

   The following is the corollary of Lemma 5.7.2. 
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Corollary 6.4.2. f  EToiTi2  f E  T1  (To1T12T1 is impossible in B1). 

  We consider all the possible subsets and classify them separately in the following 

subsections: M7M6M5,  M7M6M5,  M7M6M5,  M7M6M5,  M7M6(M5 U M5), M7M6M5, 

and  M7M6M5. Since B1 is  al-similar invariant, we say simply similar for  al-similar 

in this section. Recall that  al,  a2 and  a4 are (20), (01) transposition and (210) cyclic 

permutation, respectively. 

6.4.1. M7M6M5. 

Lemma 6.4.2. f E  TIT20Bi  = f E M5. 

Lemma 6.4.3. f E  To1T12B1 f E M6. 

  From these two lemmas the classes  T1T20 and  T01T12 are impossible. We have the 

following 8 classes (cf. Lemma 5.1.8). 
                 *no T

1 T01 T12 T20 
               *1 0 0 0 0  a2-min,  o-4-min 

              *2 0 0 0 1 3012,1 

            *3 0 0 1 0 solo 

           *4 0 0 1 1  sin 

           *5 1 0 1 1 0 

               *6 0 1 0 0 similar of *3 

               *7 0 1 0 1 similar of *4 

               *8 1 1 0 0 similar of *5 

   Recall that max =  al-min. These  min, max and  o=-min functions are given in the 

previous chapter. 

6.4.2.  M7M6M5. 

From Lemma 6.4.3 the class  T01T12 is impossible. we have the following 10 classes (cf. 

 Lemma 5.1.8): 
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                   *no T1 T01 T12 T20 representative 
               *9 0 0 0 0  a2-min ,  a-4-min 

            *10 0 0 0 1 f2 .1 
            *11 0 0 1 0  f2 .2 
            *12 0 0 1 1  f2 .3 
            *13 1 0 1 0  f2 .4 
            *14 1 0 1 1  f2 .5 
               *15 0 1 0 0 similar of *11 

               *16 0 1 0 1 similar of *12 
               *17 1 1 0 0 similar of *13 
               *18 1 1 0 1 similar of *14 

6.4.3.  M7M6M5. 

                                                                                                                                                                       • Lemma 6.4.4. 

 fEB1M6fETI 

                                      00112201212120 Proof.Suppose  f(i) = 0. From f E M6 there isf01210120Since 

                                         0111110111210120EB1, f E B1,(20)exists in the arguments. Then we have f12 
a contradiction. If  f(i) = 2 the proof is similar.  ̂  

  By this lemma we can delete all classes of T1 in M6. This leads to the following 8 

classes (f E T1). 

                       *no T01 T12 T20 representative 
               *19 0 0 0 f3 .1 

              *20 0 0 1  f3 .2 
               *21 0 1 0  f3 .3 
              *22 0 1 1  f3 .4 
                  *23 1 0 0 similar of *21 

                   *24 1 0 1 similar of *22 
               *25 1 1 0  3210 

               *26 1 1 1  f3 .5 

6.4.4. M7M6M5. 

Similarly as the previous case we can delete all classes  of  f E T1. We have the following 

8 classes (f E  T1). 
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                     *no  T01 T12  T20 representative 
               *27 0 0 0  f  4.1 

               *28 0 0 1  f  4.2 
               *29 0 1 0  f  4.3 
               *30 0 1 1  f  4.4 
                  *31 1 0 0 similar of *29 

                  *32 1 0 1 similar of *30 
               *33 1 1 0  f  4.5 

              34 1 1 1  f  4.6 

6.4.5.  M7M6(M5 U  M  5). 

Lemma 6.4.5. f E  M7M6/31 f E 

  We omit a rather complicate proof of this lemma  (cf. [Miy82]). This lemma together 

with Lemma 5.1.8 and Lemma 6.4.3 reduces the number of classes remarkably. For 

M7M6M5 we have only two classes: 

                    *no T1  T01 T12 T20 representative 
             *35 0 0 0 0  min ,  max 

             *36 0 0 0 1  f  5.1 

Similarly, for  M7M6M5 we have only two classes. 

                    *no  T1  T01 T12 T20 representative 
             *37 0 0 0 0  f5 .2 

             *38 0 0 0 1 f5 .3 

6.4.6. M7M6M5. 

From Lemma 6.4.4 we have f E  T1 and 8 classes are possible. There exists a represen-

tative function in each class. 
 *no  Tot T12 T20 representative 

               *39 0 0 0  f6 .1 
               *40 0 0 1  f  6.2 
                *41 0 1 0  f  6.3 
               *42 0 1 1  f  6.4 
                  *43 1 0 0 similar of *41 

                  *44 1 0 1 similar of *42 
                *45 1 1 0  f  6.5 

               *46 1 1 1  f6 .6 
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6.4.7. M7M6M5. 

By the same reason as the former subsection we have the following 8 classes (f E T1). 

 T01 T12 T20  representative 
                 *47 0 0 0  f  7  .1 

              *48 0 0 1  f7 .2 
              *49 0 1 0  f7 .3 
               *50 0 1 1  f  7.4 
                  *51 1 0 0 similar of *49 

                  *52 1 0 1 similar of *50 
                *53  1. 1 0  f7.5 

                *54 1 1 1  f  7.6 

   And this complete our classification of B1. The complete classes are shown in Table 

 6.1. 

6.4.8. Results and conclusive discussions 

It is a bit surprising that such nontrivial functions as  v2-min or  o4-min have a null 

 characteristic vector, since this indicates that these functions joined to any subset of 

 B1 effect null concerning generation of a function by superposition. We summarize the 

 results as the theorems. 

 Theorem 6.4.2.B1 is divided into 54 nonempty classes. 

   Since there exists a representative with at least four arguments in every class, we 

 have: 

 Theorem 6.4.3. For every base of B1 there exist an equivalent base consisting of at 

 most 4-ary functions, i.e. the order of B1 is 4. 

   The classes of bases and pivotals of B1 are enumerated. 

 Theorem 6.4.4. The numbers of classes of bases and pivotals of B1 are 4,599 and 

 7,071 respectively. 

 Corollary 6.4.3. Maximal rank of bases or pivotals of B1 is 6 (there are 17 bases with 

 the maximal  rank) and there is no Sheffer function  in B1. 

   We give several illustrative examples. 
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Example 6.4.1. We list all 28 bases of B1 with rank 2. 

 1  x  {17,18,  30,31,  44,  45}, 2 x  {17,  18}, 3 x  {18,  31,  45},  4  x  {17,  30,  44}, 
 5  x  {17,  18,  30,  31},  7  x  18,  8  x  17,  10  x  {17,18},  11  x  {18,  31},  12  x  {17,30},  17  x  21, 

 18  x  20.  ^ 

Example 6.4.2. There is only one base containing all constants functions among 17 

bases with maximal rank 6. One such example is {2,  1,  0,  min,  f3.1,  f2.1}.  ^ 

Example 6.4.3. There is only one pivotal with the maximal rank 6. One such example 

is  {min,  f3.1,  s212,  solo,  1}•  ̂  

Example 6.4.4. The following set is P3 pivotal with a maximal rank 7  [Jab58]: 

 {max,  Q2-min,  min,  Q4-min, 0, 1, 2} C B1. It may seem that this set span some maxi-
mal set of B1, however actually this spans a smaller set. We show characteristic vectors 

of these functions. Thus this set spans some subset of M5M6. 

 wt #no M7 M6 M5 T1  TO1 T12 T20 *no representative 
      1 #48 1 0 0 0 0 0 0 *35 max,  min 

      0 #54 0 0 0 0 0 0 0 *1  o2  -min,  a4-min 
     2  #45  0 0 0 1 0 1 0  *5  0 

     1  #53  0 0 0 0 0 0 1  *2  1 
     2 #44 0 0 0 1 1 0 0 *8 2 
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              Table 6.1: Classes of  B1. 

wt  #no  M7M6M5 T1  T017122'20 *no representative 
6 (#1) 111 0 111 *54  f7.6 
5 (#2) 111 0 110 *53  f7.5 
5 (#3) 111 0 101 *52 similar of  f7.4 
5 (#4) 111 0 011 *50  f7.4 
5 (#5) 110 0 111 *46  f6.6 
5 (#6) 011 0 111 *34  f4.6 
4 (#7) 111 0 100 *51 similar of  f7.3 
4 (#8) 111 0 010 *49  f7.3 
4 (#9) 111 0 001 *48  f7.2 
4 (#10) 110 0 110 *45  f6.5 

 4 (#11) 110 0 101 *44 similar of  f6.4 
4 (#12) 110 0 011 *42  f6.4 
4 (#13) 011 0 110 *33 f4.5 

 4 (#14) 011 0 101 *32 similar of  f4.4 
4 (#15) 011 0 011 *30 f4.4 
4 (#16) 010 0 111 *26  f3.5 

 4 (#17) 001 1 101 *18  8121,s122,s221 
 4 (#18) 001 1 011 *14  soon  sioo,  sloe 

3 (#19) 111 0 000 *47 f7.1 
 3 (#20) 110 0 100 *43 similar of  f6.3 

3 (#21) 110 0 010 *41  f6.3 
3 (#22) 110 0 001 *40  f6.2 
3 (#23) 101 0 001 *38  f5.3 

 3 (#24) 011 0 100 *31 similar of  f4.3 
 3 (#25) 011 0 010 *29  f4.3 

 3 (#26) 011 0 001 *28 14.2 
 3 (#27) 010 0 110 *25  sno 
 3 (#28) 010 0 101 *24 similar of  f3.4 

 3 (#29) 010 0 011 *22  f3.4 
 3 (#30) 001 1 100 *17 similar of  f2.5 

 3 (#31) 001 1 010 *13 f2.5 
 3 (#32) 001 0 101 *16 similar of f2.4 

 3 (#33) 001 0 011 *12 f2.4 
 2 (#34) 110 0 000 *39  f6.1 
 2 (#35) 101 0 000 *37  f5.2 
 2 (#36) 100 0 001 *36  f5.1 
 2 (#37) 011 0 000 *27 f4.1 
 2 (#38) 010 0 100 *23 similar of  f3.3 

 2 (#39) 010 0 010 *21  f3.3 
 2 (#40) 010 0 001 *20 f3.2 
 2 (#41) 001 0 100 *15 similar of f2.3 

 2 (#42) 001 0 010 *11  f2.3 
 2 (#43) 001 0 001 *10 f2.2 
 2 (#44) 000 1 100 *8 2 
 2 (#45) 000 1 010 *5 0 
 2 (#46) 000 0 101 *7 s211 
 2 (#47) 000 0 011 *4  sno 
 1 (#48) 100 0 000 *35  min, max 

 1 (#49) 010 0 000 *19 f3.1 
 1 (#50) 001 0 000 *9  f2.1 
 1 (#51) 000 0 100 *6 s212 
 1 (#52) 000 0 010 *3  solo 
 1 (#53) 000 0 001 *2  so11,1 
 0 (#54) 000 0 000 *1  0-2- and  04-similar of  min 
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Table 6.2: Representatives of classes of  B1.

 f  \  xy 00 01 02 10 11 12 20 21 22  f\xy 00 01 02 10 11 12 20 21 22

 f2.2 1 0 1 1 1 1 1 1 1  f  4.6 1 1 1 2 1 1 1 1 0

 f  2.4 1 1 1 1 1 1 1 0 1  f6.3 0 0 0 1 1 0 2 1 0

 f  3.3 0 1 0 1 1 1 2 1 0  f  6.5 2 1 0 1 1 0 0  0  0

 f  3.4 1 1 1 1 1 1 2 1  0  f  7.4 1 0 1 1 1  0 2 1 1

 f  3.5 2 1 0 1 1 1 1 1 0  f  7.6 1 2 1 2 1 1 1 1 0

 f  4.4 1 1 1 1 1  0 2 1 1

 f  2.1 00 01 10 11 12 21 22 20 02  f  2.3 00 01 10 11 12 21 22 20 02

0 0 1 1 1 1 1 2 2 2 0 0 1 1 1 1 1 0  0 0

1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 1 1 1 1 1 2 2 2 2 0 1 1 0 1 1 0 0 0

 f  2.5 00 01 10 11 12 21 22 20 02  f3.1 00 01 10 11 12 21 22 20 02

0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 2 0

1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 0 1 1 0 1 1 0 0 0 2 2 1 2 1 1 1 2 2 0

 f  3.2 00 01 10 11 12 21 22 20 02  f4.2 00 01 10 11 12 21 22 20 02

0 0 1 1 1 1 1 0 2 0 0 1 1 1 1 1 1 0 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2

2 2 1 2 1 1 1 1 2 0 2 1 1 1 1 1 1 1 1 1

f 4.3 00 01 10 11 12 21 22 20 02 f 4.5 00 01 10 11 12 21 22 20 02

0 0 1 1 1 1 1 0 0 2 0 2 1 1 1 1 1 0  0  2

1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1

2 0 1 1 1 1 1 0 0 0 2 2 1 1 1 1 1 0 0 2

 f5  .1 00 01 10 11 12 21 22 20 02  f  5.3 00 01 10 11 12 21 22 20 02

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1

1  0 0 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1

2 0 0 1 1 1 1 2 1 0 2 1 1 1 1 1 2 1 1 1

 f  6.1 00 01 10 11 12 21 22 20 02  16.2 00 01 10 11 12 21 22 20 02

0 0 1 1 1 1 1 2 2 2 0 0 1 1 1 1 1 2 2 2

1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1

2 0 1 0 1 1 1 2 0 2 2 0 1 0 1 1 1 2 0 1
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Representatives of classes of B1 (continued).

 f  6.4 00 01 10 11 12 21 22 20 02  f6.6 00 01 10 11 12 21 22 20 02

0 1 1 1 1 2 1 2 1 2  0 2 1 1 1 2 1 2 1 2

1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2

2 1 1 1 1 1 1 0 1 2 2 1 1 1 1 1 1 0 1 2

 f7.1 00 01 10 11 12 21 22 20 02  f  7.2 00 01 10 11 12 21 22 20 02

0 0 1 1 1 2 1 2 0 2 0  0 1 1 1 2 1 2  0 2

1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1

2 0 0 1 1 1  1 2 2 0 2 0 0 1 1 1 1 2 1 0

 f  7.3 00 01 10 11 12 21 22 20 02  f  4.1 00 01 10 11 12 21 22 20 02

0 0 1 1 1 1 1 0 2 0 00 0 1 1 1 1 1 0 2 2

1 1 1 1 1 1 2 1 1 1 01 1 1 1 1 1 1 1 1 1

2 2 1 1 1 0 1 1 2 0 10 1 1 1 1 1 1 1 1 1

11 1 1 1 1 1 1 1 1 2

12 1 1 1 1 1 1 1 1 1

21 1 1 1 1 1 1 1 1 1

22 2 1 1 1 1 1 2 2 2

20 2 1 1 1 1 1 2 2 2

02 2 1 1 1 1 1 2 2 2

 f  5.2 00 01 10  11 12 21 22 20 02

00 0 1 1 1 1 1 0 0 0

01 1 1 1 1 1 1 1 1 1

10 1 1 1 0 1 1 1 1 1

11 1 0 1 1 1 1 1 1 1

12 1 1 1 1 1 2 1 1 1

21 1 1 1 1 1 1 1 1 1

22 0 1 1 1 1 1 2 2 0

20 0 1 1 1 1 1 0 0 0

02 0 1 1 1 1 1 2 2 0

 f  7.5
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6.5 Classification of  To 

The set  To of three-valued logical functions preserving 0 is classified into 253 classes 

using the known classification of P3 (the whole set of three-valued logical functions). 

  Recall that  To is the set of all 3-valued logical functions f such that  1(0, , 0) = 0. 

In [Miy84] the classes of functions and bases for  To are given. In this sections we give 

much simpler description of it using the classification of  P3. We recall: 

Theorem 6.5.1.  [Lau8213]  T0 has  exactly the following  .12 maximal sets. 

 Group I. 

(1)  K10=  Pot (0021-21 ) • 
            0

001010220 (2) K11= Pol 

(3) K12 =  Pol 00010102212             0102021 

 Group II. 

(4)  ToM1  = Pol(0)Pol (001122010221 
              0012212001) (5)  T0M2  = Pol(0)Pol12 

              0011222). (6)  T0U12  = Pol(0)Pol12 

                    i 

            01220                 1200102). (7)  T0B0  = Pol(0)Pol0 

 Group III. 

(8)  T0T1 = Pol(0)Pol(1). 

(9)  T0T2  = Pol(0)Pol(2). 

(10)  ToToi = Pol(0)Pol(01). 

(11)  T0T12  = Pol(0)Pol(12). 

(12)  ToT20 = Pol(0)Pol(20). 

  Note that only the three sets  K10,  K11 and K12 are not P3-maximal. In Section 2 we 

need the following 14 technical lemmas which are of independent interest (as statements 

about the lattice of closed sets ordered by  C). First we list them together (as Lemmas 

1.1-1.14) and then proceed with their proofs. 

Lemma 6.5.1.  If1oK12 C  K11. 

                                 115



Lemma 6.5.2.  71Kio  C T2,  T2Kio  C 

Lemma 6.5.3.  ToiKio C  Toe• 

Lemma 6.5.4.  UoKi2 C 

Lemma 6.5.5.  T1Ki2  C  T02, T2K12  C  T01. 

Lemma 6.5.6.  BoToi  TO2  U0 C  Kll  • 

Lemma 6.5.7.  K10K12 C  Bo. 

Lemma 6.5.8.  U0K12 C  B0. 

Lemma 6.5.9.  M1K10 C M2. 

Lemma 6.5.10.  M1K10  C  U0. 

Lemma 6.5.11.  B0K12 C  K11. 

Lemma 6.5.12.  K12T12 C  BO. 

Lemma 6.5.13.  K10B0 C K12. 

Lemma 6.5.14.  M1T02K12 C  Ku.• 

  Proofs. We must prove inclusions of the form Polpi  •  Polpi  C  Polpo (where i = 4 

in Lemma 6.5.6, i = 3 in Lemma 6.5.14 and i = 2 otherwise). The inclusion holds if we 

can express Po by a logical formula based on  3,8z, = and membership in  pi  (1.  < j  < i). 

  We show what we mean by an example. Let 

           (012(0010212(00102           xi°:=021ic120102021'.=01020 • 

Put 

          A :=  {(x,  y)  :  (x,  Y)  E  K12,  (X,  U) E  icio,(u,y) E  k12 for some u}. 

This may be written as A =  ni2  n  (Kio  0  n12) where o denotes the relational (de Morgan) 

product or composition. 

  We prove = A by a direct check. First clearly A  C  ,c12. We have (0, 0),  (0,1), (0, 2) 

E  /c10  0 K12 (choose u = 0 in all 3 cases),  (2,0) E  nio (choose u = 1) and  (1,0) E  Ic10 0 K12 
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(choose u = 2) and so  mil  C A  C K12. Next  (1,2)  0  Kio 0 K12 (if it were we would need 
u = 2 but  (2,2)  0 K12) and similarly (2, 1) 0 K10  0 K12 (we need u = 1 but (1, 1)  0 K12). 

It follows that K11 =  A. 

  The above fact  PolpiC Polpo is well known  artos70, §4], for more informa-

tion cf. [Pok79, §1.1, ch. 2]), and may be proved directly (it has also an interesting and 

basic converse called Galois polytheory, cf. ibid). 

  In the sequel  xi; denotes the relation in  Kii = Pol  rcii (see Theorem 1.2, group I), 

similarly  Ui = Pol  Pol  pi, and B0 = Pol 

   Lemma 6.5.1. 

 K11 =  {(x,Y)1(x,  y) E  1c12,  (x,  u) E K10 and  (y,u) E K12 for some u} (see above).  ̂  

   Lemma 6.5.2. 

  {2} =  {xI(x,u) E  'io for some u E {1}} (as  T= = Pol{i} where {i} is a unary 
relation; of course u  E {1} means u = 1). Similarly {1} =  {x  kx,  2)  E  Kio}•  ̂ 

   Lemma 6.5.3. 

 {0,2}  =  {x1(x,u)  E  Kio for  some  u E {0,1}}.  ̂  
   Lemma 6.5.4. 

 Klo =  vo  n  112. ^ 

   Lemma 6.5.5. 

 {0,2} =  {x1(x,  1)  E  K12},  {0,1} =  lxi(x,2)  E  K12}. 
   Lemma 6.5.6. 

 K11 =  {(x,Y)1(x, E  (x,  u)  E  [to,  (u,  v)  E  13o,  (v,  y) E  v0  for  some  u  E  {0,1} 

and v  E  {0,2}}. To see  C consider the following  (x,u,v,y) :  (0,  0,2,  1),  (1,1,0,0), 

 (0,  0,  2,  2),(2, 1,  0,  0) and (0,0,0,0). The inclusion  D is obtained as follows. If  (1,  u)  E 
and (v, 1)  E  vo for some u  E {0, 1} and v  E {0, 2}, then u = 1 and v = 2 and hence 

(u, v)  0,(30 proving (1, 1) does not belong to the right side. The proof for  (2,2) is similar. 
As the right side is a subrelation of  ,30 this complete the proof. 

   Lemma 6.5.7. 

 flo =  {(x,Y)1(x,u),(v  Y)  E  K10,  (x,  v),  (u,  y)  E K12 for some u and v}.  ̂  
   Lemma 6.5.8. 

   Combine Lemmas 6.5.4 and 6.5.7.  ^ 

    Lemma 6.5.9. 
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 P2 =  -Rx,Y)1(x,u),(v,Y) E  Kio for some u  > v},  ̂  
  Lemma 6.5.10. 

  vo  =  {(x,Y)Ku,v),(w,t)  E  n10,u  5_ x  <  t,w  < y  < v}.  ̂  

  Lemma 6.5.11. 

 Let f  E  K11K12. From f E  Ku there areb(aE Alisuch thatf(a)) 
                                      f(b 

(1212).f(b)12.        However,from f E.K12and nil Cni2 we haveHence 1221f( 

 we  have  f  V  Bo.  ̂  

  Lemma 6.5.12. 

 #0 =  {(x,Y)1(x,u),(u,Y) E K12 for some u E  {1,2}}. 

  Lemma 6.5.13. 

  K12 = {(x,  y)  : (x, u),  (v,  y)  E  K10,  (x,  v), (u, y) E  4 for some u and v}. To prove  C we 

take the following quadruples  (x,  u, v, y) :  (0,  0,  0,  0),  (0,  0,  2, 1),  (0,  0,  1,  2) and  (1,  2,1, 2) 

(the right side is obviously symmetric). For  D note that  neither.  (1,1) nor  (2,2) belong 
to the right side (if  (1,1) would then u  = 2 in contradiction to  (2,1)  V  /30 and similarly 

for (2,2)). 

  Lemma 6.5.14. 

  K11 =  {(x,  y)  E  c12 : x  5  u,v  >  y,(x,v),(u,y) E K12 for some  u,v E  {0,2}}. 

To see C note that the right side is symmetric and take the quadruples  (x,  u,  v, y) : 

 (0,  0,  0,  0), (0,  2,2,1) and  (0,  0,2,2,  ). For  D note the following. First the right side is 
symmetric. If  (1,2) belongs to the right side then u  >  1,  u E  {0,  2} means u = 2 in 

contradiction to  (2,2) V K12- 

Lemma 6.5.15.  U0/30 C  T01 U  T02 U  K11. 

Proof. Suppose there exists an n-ary f E  U0B0T01To2K11. Then there are                                          (aE Kit 
     ( f(a) ) ( 1212 ). f (a) E 12 such that V Kii, i.e E Were in view of     f(b) 1221 f(b) 21 ' 

Kii  C we we would have f  V  Bo. Next suppose  f(a) =  f(b) = 1. Define a vector c      a 01020 ) n 

       ) 

  b so that b E 00102 . Now (aE vg.and f E U0 imply  f(c) 0. Next 

 ( 

   c 01010c 

)1     E Oonand f E B0 imply(f(c)))                               E/30 and therefore together we have f(c) 0 2 

( and  f(c)  0 1. Since f  V T01, there is a vector d E  {0,1}n such that  f(d) = 2. From 
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 (c  f(c) = 1,  f(d)  =  2 andc (00101)we conclude f  Bo, a contradiction. Finally 
if  f(a) =  f(b) = 2 the proof is quite similar.  ^ 

Lemma 6.5.16. The set  MiT2T02 consists of constant functions with value 0 only and 

so  M1T2T02  C  K10K11K12. 

Proof. From f E T2T02 follows  f(2) E  {0,  2} and  f(2)  0 2 i.e.  f(2) = 0. From f E Ml 

and y  < 2 for all y E E we get f  = 0  f(x)  < 0 for all  x E E" i.e. which is an element 

of  KioKi1Ki2-  ^ 

6.5.1. Classification of  To 

The sets  T1i T2, T01, T02, T12, U0, B0, M1 and M2 are P3-maximal sets. Among the 406 

classes of P3 exactly 248 classes are subsets of  To. However, only 93 classes are obtained 

from the above nine P3-maximal sets (as intersections of the sets or their complements). 

The interchange 1 and 2 in the definition of each maximal set T1, T2, T01,  Toe, T12,  U0, 

 Bo,  MI, M2, K10,  Klf and K12 yields T2,  T1, T02, T01, T12,  U0,  BO, M2,  Ml, K10,  K11 

and K12 respectively. The class  To is mapped onto itself. Two classes are similar 

if the characteristic vectors are obtained by one from the other by applying the above 

mapping to all coordinates of the vector, i.e.,  di =  av,  where' denote the above mapping 

of maximal sets. Among the 93 classes (the sum of the fourth column in Table 6.3), 58 

are pairwise nonsimilar. 

  The complete classification of  To is obtained by checking all 8 possible cases with 

respect to the sets K10, K11 and K12 for each of the above 93 classes. From Lemmas 1  -

16 we can show that many classes are empty. In Table 6.3 for each of the 58 nonsimilar 

classes with respect to the first 9 maximal sets we give the ordinal number of one of the 

corresponding classes of P3 from  [Sto84a,Miy71] (the second and the third column of the 

table). In the next to the last column we give the number of corresponding classes of the 

set  To obtained by concatenating the characteristic vectors corresponding to  Kio, Kll 

and K12. In the last column we indicate the lemmas, on the basis of which some of the 

 8 cases do not occur. 

   For each of the remaining 169 (the sum of the numbers of the next to the last 

 column) classes, a representative function is shown in Table 6.5 (163 representatives, 
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the 6 representatives are unary, which are shown in the table). Counting the similarity 

(summing s-column multiplied by c-column for all rows), we have: 

Theorem 6.5.2.  [Miy84] The number of the classes  of  To is 253. 

  The classes are listed in Table 6.4 and there representatives in Table 6.5. 

6.5.2. Enumeration of bases of  To 

Using the list of 353 characteristic vectors the  To-bases and To-pivotal incomplete sets 

are computed [Miy84]: they are 883,720 and 380,710, respectively. The maximal rank 

of a base of  T0 is 6. The detailed data are shown in Chapter 5. 

6.6. Concluding remarks 

The classifications for the other maximal sets of P3 were done by  StojmenoviC as we 

have  seen  in Chapter 5. The maximal sets M1, U0 and T01 have 88, 383 and 607 classes 

and their bases are 118,744, 16,572,242 and 102,323,760. Maximal rank of a base of 

each set is 7. All the results were reported in [MiS87b] jointly with  Stojmenovie. 
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                            Table 6.3: 

no P3-class sim.  M1M2 Uo  Bo T1 T2  Tot  T12T20 gen. classes lemma 
1 7 1 11 1 1 11 111  6  L7 
2 20 1 11 1 1 11 101 4  L12 
3 21 2 11 1 1 11 011 4  L3 
4 23 2 11 1 1 01 111 2  L2,5 
5 26 1 11 1 0 11 111 4 L11,13 
6 34 1 11 0 1 11 111 4  L8 
7 48 1 11 1 1 11 010 6  L7 
8 52 2 11 1 1 01 110 4  L2 
9 53 2 11 1 1 01 101 2 L2,5 

10 54 2 11 1 1 01 011 2 L2,5 
11 55 1 11 1 1 00 111 4  L5 
12 63 1 11 1 0 11 101 4 L11,13 
13 64 2 11 1 0 11 011 3  L3,11 
14 74 1 11 0 1 11 101 4  L8 
15 75 2 11 0 1 11 011 2  L3,8 
16 76 1 11 0 0 11 111 2 L4,13,15 
17 88 2 11 1 1 01 010 4  L2 
18 89 2 11 1 1 01 001 2 L2,5 
19 91 1 11 1 1 00 101 4  L5 
20 92 2 11 1 1 00 011 2  L3,5 
21 99 1 11 1 0 11 010 4  L11,13 
22 101 2 11 1 0 01 011 2  L2,5 
23 114 1 11 0 1 11 010 4  L8 
24 116 2 11 0 1 01 101 2 L2,5 
25 118 1 11 0 0 11 101 2 L4,13,15 
26 119 2 11 0 0 11 011 2 L3,4 
27 133 2 01 1 1 10 101 2  L2,5 
28 134 2 01 1 1 10 011 4  L2 
29 137 1 11 1 1 00 010 6  L7 
30 138 2 11 1 1 00 001 2 L3,5 
31 149 2 11 1 0 01 010 3 L2,11 
32 150 2 11 1 0 01 001 2 L2,5 
33 162 2 11 0 1 01 001 2 L2,5 
34 163 1 11 0 1 00 101 4  L5 
35 166 1 11 0 0 11 010 2  L4,6,13 
36 183 2 01 1 1 10 100 2 L2,5 
37 184 2 01 1 1 10 010 3 L2,14 
38 185 2 01 0 1 10 101 2 L2,5 
39 191 1 11 1 1 00 000 4  L12 
40 194 1 11 1 0 00 010 4 L11,13 
41 204 2 11 0 1 00 001 2 L3,5 
42 210 2 11 0 0 01 001 2 L2,5 
43 232 2 01 1 1 00 001 2 L3,5 
44 234 2 01 1 0 10 010 3 L2,11 
45 235 2 01 0 1 10 100 2 L2,5 
46 254 1 11 1 0 00 000 4 L11,13 
47 258 1 11 0 1 00 000 4  L8 
48 282 2 01 1 1 00 000 2 L10,12 
49 284 2 01 0 1 00 001 2 L3,5 

50 309 2 01 1 0 11 011 3 L3,11 
51 315 1 11 0 0 00 000 2  L4,6,13 
52 335 2 01 1 0 00 000 3 L10,11 
53 336 2 01 0 1 00 000 2 L8,9 
54 378 2 01 1 0 10 100 2 L2,5 
55 381 2 01 1 0 01 001 2 L2,5 
56 390 1 00 0 0 00 000 2  L4,  6,  13 
57 396 2 00 0 0 01 001 2 L2,5 
58 405 1 00 0 0 11 010 1 L16 
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                Table 6.4: Classes of  To 

     coordinates are:  If10K1iKi2Mi  M2  U0  B  0  T1  T2  TO  1  T12  T2  0  - 

vit no  similar wt no similar 
12 1 111111111111 9 51 111110101101 
11 2 111111111110 g'4 9 52 111110011110 
11 3 111111111101 9 53 111110011011 g'52 
11 4 111111111011 9 54 111101101110 g'58 
11 5 111111110111 9 55 111101101101 g'57 
11 6 111111101111 9 56 111101011110 g'59 
11 7 111111011111 9 57 111011110101 
11 8 111110111111 9 58 111011110011 
11 9 110111111111 9 59 111011011011 
11 10 101111111111 9 60 110111111010 
11 11 011111111111 9 61 110111110011 g'62 
10 12 111111111010 9 62 110111101110 
10 13 111111110110 9 63 101111111010 
10 14 111111110101 9 64 101111110110 
10 15 111111110011 g'16 9 65 101111110101 
10 16 111111101110 9 66 101111110011 g'67 
10 17 111111101101 9 67 101111101110 
10 18 111111101011 g'13 9 68 101111101101 
10 19 111111100111 9 69 101111101011 g'64 
10 20 111111011110 9 70 101111100111 
10 21 111111011101 9 71 101111011110 
10 22 111111011011 g'20 9 72 101111011101 
10 23 111110111110 9 73 101111011011 g'71 
10 24 111110111101 9 74 101110111110 
10 25 111110111011 g'23 9 75  101110111101 
10 26 110111111110 9 76 101110111011 g'74 
10 27 110111111011 g'26 9 77 101110011111 
10 28 101111111110 9 78 100111111110 
10 29 101111111101 9 79 100111111011  g'78 
10 30 101111111011 g'28 9 80 100111011111 
10 31 101111110111 9 81 011111111010 
10 32 101111101111 9 82 011111100111 
10 33 101111011111 9 83 011110111101 
10 34 101110111111 9 84 001111111101 
10 35 100111111111 9 85 001110111111 
10 36 011111111101 8 86 111111100100 g'88 
10 37 011110111111 8 87 111111100010 
10 38 001111111111 8 88 111111100001 

 9 39 111111110100 g'42 8 89 111111010100 g'92 
 9 40 111111110010 8 90 111111010010 

 9 41 111111101010 8 91 111111001010 
 9 42 111111101001 8 92 111111001001 
 9 43 111111100110 8 93 111110110100 g'94 

 9 44 111111100101 8 94 111110101001 
 9 45 111111100011 g'43 8 95 111110100101 
 9 46 111111011010 8 96 111101101010  g'100 

 9 47 111111010110 8 97 111101101001 g'99 
 9 48 111111001011 g'47 8 98 111100101101  g'101 

 9 49 111110111010 8 99 111011110100 
 9 50 111110110101 8 100 111011110010 
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 tut no similar  wt no similar 

8 101 111010110101 7 151 111011100001 

8 102 110111110010 g'103 7 152 111011010100 

8 103 110111101010 7 153 111011010010 

8 104 110101101110 7 154 111011001001 

8 105 110011110011 g'104 7 155 111010110100 

8 106 101111110100 g'109 7 156 110111100010 

8 107 101111110010 7 157 101111100100 g'159 

8 108 101111101010 7 158 101111100010 

8 109 101111101001 7 159 101111100001 

8 110 101111100110 7 160 101111010100 g'163 

8 111 101111100101 7 161 101111010010 

8 112 101111100011  g'110 7 162 101111001010 

8 113 101111011010 7 163 101111001001 

8 114 101111010110 7 164 101110110100 g'165 

8 115 101111001011 g'114 7 165 101110101001 

8 116 101110111010 7 166 101110100101 

8 117 101110110101 7 167 101110011010 

8 118 101110101101 7 168 101101101010 g'172 

8 119 101110011110 7 169 101101101001 g'171 

8 120 101110011101 7 170 101100101101 g'173 

8 121 101110011011 g'119 7 171 101011110100 

8 122 101101101110 g'126 7 172 101011110010 

8 123 101101101101 g'125 7 173 101010110101 

8 124 101101011110 g'127 7 174 100111110010 g'175 

8 125 101011110101 7 175 100111101010 

8 126 101011110011 7 176 100111011010 

8 127 101011011011 7 177 100101101110 

8 128 100111111010 7 178 100101011110 8020 

8 129 100111110011 g'130 7 179 100011110011 g'177 

8 130 100111101110 7 180 100011011011  6020 

8 131 100111011110 7 181 011111100010 

8 132 100111011101 7 182 011110100101 

8 133 100111011011 g'131 7 183 001111100101 

8 134 011111100101 7 184 001110111010 

 8 135 011110111010 7 185 000111011101 

 8 136 001111111010 7 186 000110011111 

 8 137 001111100111 6 187 111111000000 

 8 138 001110111101 6 188 111110100000 

 8 139 000111011111 6 189 111101100000 g'191 

 7 140 111111100000 6 190 111100100100 g'192 

 7 141 111111000010 6 191 111011100000 

 7 142 111110100100 g'142 6 192 111010100001 

 7 143 111110100001 6 193 101111100000 

 7 144 111110010100 g'145 6 194 101111000010 

 7 145 111110001001 6 195 101110100100 g'196 

 7 146 111101100100 g'151 6 196 101110100001 

 7 147 111101010100 g'154 6 197 101110010100 g'198 

 7 148 111101001010 g'153 6 198 101110001001 

 7 149 111101001001 g'152 6 199 101101100100 g'204 

 7 150 111100101001 g'155 6 200 101101010100 g'207 
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wt no  K1oK11Ki2M1M2UoBoTiT2Toi ,  T12  T20 similar 
6 201 101101001010 g'206 
6 202 101101001001 g'205 
6 203 101100101001 g'208 
6 204 101011100001 
6 205 101011010100 
6 206 101011010010 
6 207 101011001001 
6 208 101010110100 
6 209 100111100010 
6 210 100111010010 g'211 
6 211 100111001010 
6 212 100101101010 
6 213 100011110010 g'212 
6  214 011111100000 
6 215 001111100010 
6 216 001110100101 
6 217 000111011010 
6 218 000110011101 8021 
5 219 111101000000 g'221 
5 220 111100100000 g'222 
5 221 111011000000 
5 222 111010100000 
5 223 111000010100 g'224 
5 224 111000001001 
5 225 101111000000 
5 226 101110100000 
5 227 101101100000 g'229 
5 228 101100100100 g'230 
5 229 101011100000 
5 230 101010100001 
5 231 100111000010 
5 232 100101001010  solo 
5 233 100011010010 sino 
5 234 011110100000 
5 235 001111100000 
5 236 000110011010 
4 237 101110000000 
4 238 101101000000 g'240 
4 239 101100100000 g'241 
4 240 101011000000 
4 241 101010100000 
4 242 101000010100 411 
4 243 101000001001 soli 
4 244 100111000000 
4 245 001110100000 
4 246 000111000010 
3 247 100101000000  ' g'248 
3 248 100011000000 
3 249 000111000000 
3 250 000000011010 0 

wt no  KioKiiKi2M1M2UoBoTiT2Toi  T12  T20 similar 
2 251 101000000000 
2 252 000110000000 
0 253 000000000000  $012 
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Table 6.5: Representatives of classes of  To (163 functions).

 f  \  xy 00 01 02 10 11 12 20 21 22 f \  xy 00 01 02 10 11 12 20 21 22

 gl 

g3 

g4 

g6 
g7 

g8 

 g10 

 gll 

g12 

g13 

g16 

g17 

g19 

g20 

g21 

g23 

g24 

g26 

g28 
g29 

g32 

g33 

g35 

g37 
g38 

g41 

g42 

g43 

g44 

g46 

g47 

g51 

g52 

g57 

g58 
g59 

g62 

g63 
g64 

g67

 0  1  2  1  2  0  2  1  1 

 0  2  0  2  2  1  0  1  1 

 0  1  2  1  0  0  0  2  1 

 0  2  1  2  1  0  1  0  1 
 0  2  0  2  0  2  0  2  1 

 0  2  1  1  0  0  1  0  0 

 0  1  2  0  2  0  0  1  1 

 0  2  1  2  0  2  1  1  0 

 0  1  2  1  0  1  0  0  0 

 0  1  0  1  2  0  0  0  2 

 0  2  0  2  1  2  0  0  0 

 0  2  1  2  1  1  0  1  1 

 0  2  1  2  1  0  1  1  2 

 0  2  2  0  0  0  2  0  0 

 0  0  1  0  2  1  1  1  1 
 0  1  2  2  0  0  2  0  0 

 0  1  2  1  2  1  2  1  1 

0 2 0 1 2 0  0  .  2 0 
 0  1  0  0  2  1  0  0  0 

 0  2  0  0  2  1  0  1  1 

 0  2  1  0  1  0  0  0  1 

 0  2  0  0  0  2  0  0  1 

 0  0  1  0  2  2  0  0  0 

 0  2  1  2  0  0  1  0  0 
 0  1  2  0  2  0  0  0  1 

 0  1  0  1  1  2  0  2  0 

 0  1  2  0  1  1  2  2  1 

 0  2  0  2  1  2  0  0  2 

 0  0  1  2  1  1  1  1  2 

 0  1  0  1  0  1  0  1  0 
 0  0  2  0  2  0  2  0  2 

 0  2  1  2  1  1  1  1  1 

 0  2  2  2  0  0  2  0  0 

 0  2  2  0  2  2  1  2  2 

 0  0  1  0  0  1  1  1  2 

 0  0  1  0  0  1  1  1  1 

 0  2  0  1  1  0  0  0  0 

 0  1  2  0  0  1  0  0  0 

 0  1  0  0  2  0  0  0  2 

 0  2  0  0  1  2  0  0  0

g68 

g70 

g71 
g72 

g75 

g78 

g80 

g81 

g82 

g83 

g87 

g88 

g91 
g92 

g94 

g95 

g99 

 g101 

g104 

g108 

g109 
 g110 

 g113 

 g114 

 g118 

 g119 

g120 

g125 
g126 

g127 

g128 

g130 

g131 

g132 

g135 

g136 

 g137 

g138 
g139 

 g140

 0  2  0  0  1  2  0  1 

 0  2  1  0  1  0  0  1 

 0  0  0  0  2  1  0  1 

 0  0  1  0  2  1  0  1 

 0  1  2  0  2  1  0  1 

 0  1  0  0  2  0  0  2 

 0  0  1  0  2  0  0  0 

 0  1  2  1  0  1  2  2 

 0  2  1  1  1  0  2  0 

 0  2  1  1  2  2  2  1 

 0  1  2  0  1  0  2  0 

 0  1  1  1  1  1  0  1 

 0  0  2  0  1  2  2  2 

 0  1  0  0  1  1  1  1 

 0  1  1  1  1  2  2  1 

 0  2  1  2  1  1  1  1 

 0  1  2  0  2  2  2  2 

 0  1  1  1  2  2  1  2 

 0  2  0  1  1  1  0  2 

 0  1  0  0  1  2  0  2 

 0  1  0  0  1  1  0  2 

 0  2  0  0  1  2  0  0 

0 0 0 0 0 1  0. 1 

 0  0  0  0  2  0  0  0 

 0  2  1  0  1  1  0  1 

 0  2  2  0  0  0  0  0 

 0  0  0  0  2  1  0  1 

0 0 0 0 2 2 1  2. 

 0  0  1  0  0  1  0  1 

 0  0  1  0  0  1  0  1 

 0  0  0  0  0  0  2  1 

 0  2  0  0  1  0  0  0 

 0  2  0  0  2  0  0  0 

 0  0  0  2  2  2  0  1 

 0  1  2  1  0  0  2  0 

 0  1  2  0  0  1  0  2 

 0  2  1  0  1  0  0  0 

 0  2  1  0  2  2  0  1 

 0  0  0  0  2  0  0  0 

 0  1  0  1  1  1  0  2

1 

2 

0 

1 

1 

0 

1 

0 

2 

1 

2 

2 

0 

1 

1 

2 

2 

2 

0 

0 

1 

2 

0 

2 

1 

0 

1 

2 

2 

1 

0 

0 

0 

1 

0 

0 

2 

1 

1 

2

125



Representatives of classes of  To (continued).

 f  \  xy
g141 

g151 

g152 

g153 

g154 

g155 
g162 

g163 

g166 

g173 

g175 

g176 

g177 

g182 
g186 

g191 

g192 
g193 

g204 

g205

00 01 02 10 11 12 20 21 22  f\xy
 0  0  2  0  1  0  2  0  2 

 0  0  1  0  1  1  1  1  2 

 0  0  2  0  2  2  2  2  2 
 0  0  2  0  0  2  2  2  2 

 0  0  1  0  1  1  1  1  1 

 0  1  2  1  2  2  2  2  2 

 0  0  2  0  1  0  0  2  0 

 0  0  0  0  1  2  1  1  1 

 0  0  0  2  1  1  1  1  2 

 0  1  1  0  2  2  0  2  2 

 0  0  2  0  1  1  0  0  0 

 0  0  0  0  0  0  0  1  0 

 0  2  0  0  1  0  0  2  0 
 0  2  1  1  1  2  2  1  2 

 0  2  1  0  0  0  0  0  0 

 0  0  2  1  1  2  2  2  2 

 0  1  1  1  1  1  1  1  2 

 0  1  0  0  1  1  0  2  2 

 0  0  1  0  1  1  0  1  2 

 0  0  2  0  2  2  0  2  2

g206 

g207 

g208 

g209 

g211 

g216 

g217 

g221 
g222 

g224 

g230 

g231 

g234 

g236 
g240 

g241 

g245 

 g246 

g248 

g251

00 01 02 10 11 12 20 21 22

 0  0  2  0  0  2  0  2  2 

 0  0  1  0  1  1  0  1  1 

 0  1  2  0  2  2  0  2  2 

 0  0  2  0  1  1  0  0  2 
 0  1  0  0  1  0  0  0  0 

 0  2  1  0  1  1  0  2  2 

 0  0  0  0  0  2  0  1  0 

 0  0  2  0  1  2  2  2  2 

 0  1  2  1  1  2  2  2  2 

 0  1  1  1  1  1  1  1  1 

0 1 1 0 1 1 0 1 2 

 0  0  2  0  1  0  0  0  2 

 0  1  2  1  1  2  2  1  2 
 0  1  2  0  0  0  0  0  0 

 0  0  2  0  1  2  0  2  2 

 0  1  2  0  1  2  0  2  2 

 0  1  2  0  1  1  0  2  2 

 0  0  0  0  1  0  0  0  2 

 0  0  2  0  1  2  0  1  2 

 0  0  0  0  1  1  0  1  2

g9

000200000 

000000000 

100000000

g34

001211110 

000000000 

000000000

g36

000200100 

100212100 

200212100

g49

011111222 

000000000 

000000000

g60

000100000 

000000000 

200000000

g74

002000020 

001000020 

001000020

g77

000211100 

000000000 

000000000

g84

000012000 

000211100 

000222100

g85

002121210 

000000000 

000000000

 g100

000011200 

000022211 

222222222

g103

000100000 

000100000 

200000000

gill

000200000 

000121100 

000111210

g116

010000002 

010000001 

010000002

g134

000200100 

100112100 

200212200

g143

010000001 

001111110 

001111210

 g145

010000001 

001111110 

001111110

 g156

000100000 

000100000 

200000200

g158

000020000 

000101000 

000010200
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          Representatives of classes of  To (continued). 

 g159 g165 g167 g171 g172 g181 

000100000 001112110 000000000 000010200 000000000 011000022 

000121100 000111100 010000001 000222200 000022200 000100000 

000111210 000111100 010000002 000222200 001222220 000000200 

 g183 g184 g185 g187 g188 g194 

002012010 010112202 000012000 000020000 000111200 000000000 

000122100 000000000 000212100 000121100 100111100 000101000 

000211200 000000000 000212100 200222200 200111200 000010200 

 g196 g198 g212 g214 g215 g225 

001112110 001000010 000120000 001021020 000112200 000100000 

000111100 000111100 001111000 000111101 000101200 000121100 

000111200 000111100 000120000 020222200 000120200 000111200 

 g226 g229 g235 g237 g244 g249 

001000020 000020200 000021000 000000000 000010000 001100220 

000111100 001121210 000112111 000112200 000112100 000112200 

000111200 001122220 022212200 000111200 000212200 000112200 

                          g252 

                        001000020 

                         000112200 

                         000112200 
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Chapter 7 

Applications of a Subset Generating 

Algorithm  to Base Enumeration, 

Knapsack and Minimal Covering 

Problems 

On the basis of a backtrack procedure for lexicographic enumeration of all subsets of 

a set of n elements we give an algorithm for both determining of all bases consisting 

of functions from a given complete set in a considered subset of the set of k-valued 

logical functions and for enumeration of all classes of bases in the subset. We use the 

lexicographic algorithm also for solving knapsack and minimal covering problems. A 

cut technique is described which is used in these algorithms to reduce the number of 

examined subsets of  {1, ,  n}. Some computational data upon the classes of P3 are 

also given. 

 7.1. Generating all subsets of  {  1  7  • n} in lexicographic order 

In this Section we consider the problem of generating all r-subsets (subsets containing r 
elements) of the set  {1,  2,  ...  ,  n} for 1  < r  < n and for 1  < r  <  m  < n. We assume that 

each subset will be represented as a sequence  a1a2  ... a,. where 1  <  al <  <  a,.  < n. 

  Recall definition of lexicographic order of subsets. For two subsets a  =  (al, ,  ap) 

and b =  (b1,...,bq), a < b is satisfied if and only if there exists i (1  <  i  < q) such that 

a .; =  bi for 1  < j < i and either  at <  bi or p = i —  1. This order has an important 

property that enables simple calculation with r-subsets. Ehrlich  [Ehr73] described a 

loopless procedure for generating of subsets of a set of  n elements. A procedure based 
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on Gray code for the same problem is given in  [NiW78]. Also, in  [NiW78] an algorithm 

for generating all r-subsets (1  < r  <  m  <  n) in lexicographic order is proposed. Semba 

 [Sem84] improved the efficiency of the algorithm. We will modify his algorithm by 

presenting it in PASCAL-like notation without goto statements. Application of the 

algorithm for minimal covering problem results in another modification of the algorithm 

in the  case  1  <  r  <  m  <  n. 

  The lexicographic enumeration of r-subsets goes in the following manner (for exam-

ple, let n = 5): 

1, 12, 123, 1234, 12345, 

        1235, 

     124, 1245, 

     125, 

  13, 134, 1345, 

     135, 

  14, 145, 

15,  

2, 23, 234, 2345, 

     235, 

  24, 245, 

  25, 

3, 34, 345, 

  35, 

4, 45, 

 5. 

   The algorithm is in "extend" phase when it goes from "left" to "right" staying in a 

row. If the last element of a subset is  n then algorithm shifts to the next row. We call 

this phase "reduce" phase. Every subset of  {1,  ,  n} is represented in the algorithm 

 below  by  a  sequence  ji,  ,  1  <  r  <  n,  1  <  ji  <  <  j,.  <  n. 

   First we give an algorithm for generating all r-subsets for 1  < r  < n. This algorithm 

 will be used in base enumerations. 

 begin 
   read(n); r :=  0;  := 0; 
   repeat 

       if  jr  <  n then extend else reduce; 

       print out  ji,  , 
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  until j1 =  n 
end; 
 extend begin  jr+i  :=  j,  + 1; r := r 1 end 
reduceF.. begin r := r — 1;  j,  :=  j, + 1  end  . 

  Note that between any two printed subsets exactly two conditions are checked: j,.  <n 

and j1 = n. 

  The algorithm for generating all r-subsets for 1  < r  < m  < n we modify with respect 

to its use in minimal covering problem. 

begin 
  read(n); r :=  0;  jr  := 0; 
  repeat 

    if  jr <  n and r < m then extend else cut; 

 print  out  ji,  ,  j, 
 until  ji  =  n 

end; 
 extend= begin  jr+1 :=  j,.+  1;  r := r  1 end 

 reduce-F_, begin r := r — 1;  :if:.  jr  + 1 end 
cut= if  jr  <  n then  jr  :=  jr  +1 else  reduce  . 

  Besides "extend" and "reduce" phases we use in the algorithm a new phase called 
"cut" phase . The phase will be used when algorithm goes from some subset to some 

subset in a lower row (not necessarily in the subsequent row) skipping several subsets 

(when the number r of elements in these subsets is greater than m). 

7.2. Functional completeness and enumeration of bases 

In this Section we describe an application of our lexicographic algorithm to base enu-

meration for a subset of the set of k-valued logical functions. 

  We call nonredundant incomplete sets simply addable. The rank of a base (addable 

set) is the number of its elements. Here we recall some definitions. The characteristic 

vector of f E H is  c1...  cd, where  ci = 0 if f E  Hi and  ci = 1 otherwise (1  < i  < d). 

Whenever it is possible to avoid confusion we call characteristic vectors simply vectors. 

All functions f  E H with the same (characteristic) vector form a class of functions. For 
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a base its class of bases is the set of classes of functions for functions belonging to the 

base. 

  The conditions of completeness and nonredundancy of a set of (classes of) functions 

F can be conveniently expressed by using characteristic vectors of (classes of) functions 

belonging to F. We can say that a base corresponds to a minimal cover of  1  ...  1 (unit 

vector), and nonredundant set corresponds to a minimal cover of some non-unit vector 

(in which some  0's may occur; we except null vector). 

  We define bitwise OR operation V for characteristic vectors in the following way: 

                    ,aid) V (4,,=(aii.Va';.,,aidV4). 

  Criteria for the completeness and nonredundancy of a set , a,. of characteristic 

vectors are respectively in the following (the two equations are shown in Chapter 1): 

 al V  ... V a,.  =  1  .  .  .  1 (completeness) (1.1) 
 al  V  ...  V  aj_i  V  ai+i  V  ...  V  a,.  0  al  V  ...  V  a,. 

        for each j =  1, , r (nonredundancy). (1.2) 

Thus any set containing null class (whose vector is  0  ...  0) is  redundant. Addable sets 

are nonredundant, but not conversely. 

  If we have a complete list of characteristic vectors for nonempty classes of functions 

of a set, we can enumerate all its classes of bases. 

   As an example, assume a set M contains 4 maximal sets  M1,  M2,  M3, M4 and 6 classes 

of functions: 

                 1.0011 2.0100 3.1000 4.0010 5.0001 6.0000 . 

   For instance, class 1 is the set  M1M2M3M4, where  X = M \ X (complement set). 

   M has exactly two classes of bases: {1,2,3} and {2,3,4,5}. We consider the class 

 {1,2,3}. Bitwise OR for the set results 1111 (completeness). Bitwise OR for the set 

 {1,2} results 0111, for the set {1,3} results 1011 and for the set {2,3} results 1100 

(nonredundancy). The set {1,3,4} is redundant, because bitwise OR for the sets {1,3,4} 
and {1,3} are equal (to 1011). 

 7.3. The lexicographic enumeration of bases and classes of bases 

 Let d and n denote the numbers of maximal sets and functions or classes of functions 

 respectively. Then we are given  71 vectors with length d, indexed by 1, , n. 
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  To perform an exhaustive enumeration of classes of bases we should enumerate every 

r-tuple of vectors  al, , a,. for each r =  2,  ... , d (for r = 1 it is trivial) and check 

the completeness (2.1) and redundancy (2.2) conditions for them (rank r base criteria). 

However this direct method does not work, because of too many r-tuples to be generated. 

Suppose we are enumerating r vectors  al,  ,  a,. for checking the base criteria. Instead 

of enumerating whole r vectors and checking criteria for them, we will inspect i-tuple 

of vectors ,  ai incrementary for i = 1, , r, and at each i-th stage we will certify 

(by examining simple conditions) that this i-tuple can or cannot be included in a rank 
r base (addable set). This idea of incremental check can be conveniently implemented 

in the lexicographic enumeration of subsets. 

  The lexicographic algorithm enumerates classes of bases and addable sets for every 

rank at the same time. Moreover the maximal ranks of bases and addable sets are 

automatically given as a result. 

  Suppose we are enumerating taken r elements out of  n object stored in an array 

consecutively, i.e.  a(1), , a(n). The selected indexes are to be stored in an array j as  

•  -  •  ,jr,  1  <j,<  n  for  each  i,  1  <  i  <  r. 

  Suppose we are examining taken r-subset  a(ji), ,  a(j,.), where selected indexes 

are stored in an array j as  ji, , 1  < < < j,.  < n and a(i) denotes  at. 

There are three possible cases after the examination: redundant, base and addable set 

(i.e. nonbase-nonredundant). The enumeration of subsets in lexicographic order can be 
controlled in the following manner. 

   If a r-tuple is either redundant or base then it is unnecessary to "extend" it to  r+1- 

tuple, since adding a new vector to them will result in "redundancy"; in the former case 

the r-tuple is already redundant and in the latter it is already "complete". Hence in 

these cases we can bypass the lexicographic enumeration of subsets to an appropriate 

point. The next subset is  .,1,,2,  •  •  •  ,  ir  17  jr + 1 if j,. n; otherwise it is the next subset 

in lexicographic order and the bypass effects nothing. Thus only the remaining addable 

 case can be extended. 

   As an example we consider the same set M as before. The class 6 (null class) is omit-

 ted. In this case n = 5 and d = 4. The notions "extend", "reduce", "cut",  "redundant", 

 "base" and "addable" we denote simply by  "e"  ,"r"  ,"c","n"  ,"b"  ,"a" respectively. 
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1-a,e; 1,2-a,e; 1,2,3-b,c; 

 1,2,4-n,c; 

 1,2,5-n,c,r; 

1,3-a,e; 1,3,4-n,c; 

1,3,5-n,c,r; 

1,4-n,c; 

1,5-n,c,r; 

2-a,e; 2,3-a,e; 2,3,4-a,e; 2,3,4,5-b,c,r; 

2,3,5-a,r; 

2,4-a,e; 2,4,5-a,r; 

2,5-a,r; 

3-a,e; 3,4-a,e; 3,4,5-a,r; 

3,5-a,r; 

4-a,e; 4,5-a,r; 

5-a. 

  We can write our algorithm as follows. Let  1),. be the number of (classes of) bases of 

rank r. 

begin 

  read  n, d, a(i), i := 1, n; r := 1; ji := 1; 
   repeat 

     if  a(ji), ,  a(jr) is addable 
       then  if  jr  <  n 

               then extend 
                else reduce 

        else begin 
              if  a(ji),  •  •  •  a(jr) is a base then  br  :=  br + 1; 

                cut; 
              end 

   until ji = n; 

   print out  b;,1  < i  < d 
 end. 

   In the algorithm "extend", "reduce" and "cut" are defined as before. Note that the 

 last set n are not checked in the algorithm. It can be easily done before printing results. 
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7.4. Redundancy checks 

We describe a technique (called bitwise pivotality checks) to reduce the computation in 

redundancy checks. 

  Suppose we are checking redundancy of  al, , a,. (for simplicity we write  at for  a(  ji)). 

For every redundancy check we know that  al, ,  ar_i are included in the tuple which 

we examined just before (only a,. is a newly added vector). Thus we can assume that 

we already have Rk  =  a1 V ... V ak for 1  < k  < r — 1 in an array R (for a convenience 

we add  Ro and assume  Ro = 0). 

  The redundancy condition for the r-tuple can be formulated in the following way (we 

use a variable B to reduce the number of bitwise OR operations). 

For r  > 2. 

 R,. = R,._1 V a,. and  R,._1  Rr, (7.1) 

 B  =  B  V  ak÷i  (initial  B=0)  and  Rk_i  V  B  R,.  for  k  =  r  —  1,  ,1 (7.2) 

 For  r  =  1.. 

 a1 is addable if it is neither null vector nor unit vector 

   (if  a1 is a unit vector then it is a base) 

  The program checks (7.1) and (7.2) for k =  r,  .  ,  1; k  > 2 in this order, and whenever 

a condition is not satisfied the check ends immediately with redundancy result. 

  For a rank r redundancy  check we need at most r comparisons and at most 2r-1 

bitwise OR operations. 

  If the number of components d in vectors  ai is less than the number of bits (usually 

16 or 32) of given computer then it is possible to represent a vector  ai by an integer 

number  c1 + 2  • c2  2d-1  •  cd, where  c1c2  cd are the components of the vector 

 ai in the redundancy check we can treat these vectors as integer numbers because OR 

operation between integer numbers is defined as a machine instruction OR between 

corresponding components of their binary notations. Otherwise bitwise OR can be 

realized with (characteristic) vectors as an array of d elements. However, in this case 

there are another technique called counter redundancy check which is proved faster as 

 well. 
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  In the check of redundancy we use two auxiliary sequences  si(1  < i  < d) and  pi (1  < 

i < r).  si is the number of units in the i-th position in the vectors  P(j1),  •  •  • ,P(.17.-1). 

The sequence  pi, has the following property:  pi-th position of each vector is equal 

to 1 only for  p(ji) (it is equal to 0 for the vectors  p(jt), 1  < t  <  r,t i). 

  The presented lexicographic algorithm can be supplemented  also with this technique. 

Note that algorithm with bitwise redundancy check using machine command is proved 

as about twice faster (when  n is about 500 and d is about 15) than one with counter 

redundancy check. 

  Applying this algorithm classes of bases for several subsets of Pk are  deteitained 

(cf.  [MiS87a]). P3 has exactly 18 maximal sets [Jab58] and 406 classes of functions 

 [Miy7l,Sto84a]. We present the numbers of classes of bases of P3 of each rank in the 
following table: 

  rank 1 2 3 4 5 6 E. 

       bases 1 8,265 794,256 4,612,601 810,474 141,124 6,239,721  - 

  The lexicographic enumeration algorithm with this bitwise redundancy check requires 

about 16 minutes computer time (the computer FACOM M380 is used). The total 

number of examined tuples  is  N=194759642 for the classes of functions sorted according 

first to the number of units in the vector and then sorted lexicographically within the 

same group. Bearing in mind the total number of subsets  2406 we can calculate efficiency 

of cut technique in this case. The program generates in the average 4.41-tuple and 

consume in the average 2.17 bitwise OR operations to recognize whether it is a base, 

addable or redundant (bitwise redundancy check is used). Note that computer time 

 depends on the order of characteristic vectors. 

7.5. Application of the base enumeration algorithm 

 Kabulov  [Kab82] considered the following problem: Given a complete set F of functions 

 from Pk together with the Boolean matrix displaying the relation "E" between the 

 members of F and maximal sets in Pk (i.e. with characteristic vectors of functions in 

 F), determine all bases composed from functions of the set F. He described a method, 

 using Boolean expressions, to solve this problem. 
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  We can apply the same algorithm described in Section 3 to this problem, because 

each function is represented by their class of functions. The output in this case are 

exactly bases instead of classes of bases. Note that in the considered application several 

function may have the same characteristic vector. However, they compose different 

bases. 

  Our algorithm can be used to calculate the number of (classes of) bases composed 

from vectors  771  +  1, , n at the same time (for a given m  <  n,), because in the lexico-

graphic order we examine first all subsets containing vector 1, then all subsets containing 

vector  2,  .... 

  In  [Ku066,PeS68,Wer42] procedures for determining the number  of bases of P2 con-

sisting of  n-ary functions are described and computational results for n=2 and n=3 are 

obtained. There exist no formulae for numbers of n-ary functions in some classes of 

functions of  P2 because the number of n-ary monotone functions in P2 is not known. 

We present another approach to this problem. It is divided into several subproblems. 

 1) determination of classes of functions for considered set (not limited to  P2), 

 2) determination of the number of n-ary functions in each class, 

 3) determination of all classes of bases, 

 4) determination of numbers of bases containing n-ary functions (or functions with at 

    most n variables). 

  The methods presented in [Ku066,PeS68,Wer42] use only step 4) for  P2. Our method 

can be applied for solving 3) assuming that 1) is already solved. Also, our algorithm can 

be applied for solving 4) assuming that 2) is solved by applying another procedure. Note 

that 2) can be done without solving 1) because for each function f we can determine 

corresponding class of functions. It is sufficient to check inclusion of f in each maximal 

set of considered closed set; such procedure can be easily written using description of 

maximal sets [Ros77]. In this manner we can determine classes of functions containing 

n-ary functions. We can apply our algorithm to count bases. We obtain the number 

of bases containing n-ary functions in a class of bases by multiplying the numbers of 

n-ary functions in the classes of functions which compose the base, whenever a class of 
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bases is found. During this procedure we can also enumerate classes of bases consisting 

of classes of n-ary functions. 

  Following this description we determined the number of bases of Boolean functions 

composed from n-ary functions for n  < 4. Obtained data are presented in the fol-

lowing table. For n = 2 this result is derived by Wernick  [Wer42] and for n = 3 by 

Kudielka and Oliva  [Ku066]. Note that the set P2 of Boolean functions contains 5 max-

imal sets  [Pos21], 15 classes of functions  [3ab52,INN63,Krn65] and 42 classes of bases 

 [INN63,Km65]. 

       n 2 3 4 
                    bases 32 6,664 275,790,502 

7.6. Minimal covering problem 

Minimal covering problem is one of famous combinatorial problems and there  .exist a 

list of solutions for this problem (cf.  [Rot69,YoM85]). We will give a solution using the 

lexicographic enumeration of subsets. 

  The minimal covering problem is the problem of minimizing the objective function 

 xi  xn, subject to constraints 

 (x1,...,xn)A  > (1, , 1) (7.3) 

  where A  =  [aii] is an n x d coefficient matrix with  aii = 0 or 1, and each variable  xi 

is 0 or 1 for each  j. 

  We will introduce some new notions in order to give a new solution for the problem 

and to show connection between minimal covering problem and base enumeration. 

  A vector  (xi, ,  xn) satisfying (7.3) is called complete for A. We call a vector 

 (x1,  ,  xn)  nonredundant in A if 

 (xi,  ,  xn)A  >  yn)A 

is valid for each vector  (yi, ,  yn) for which  yi <  xi for each  i,  1  <  i  <  71 and yi 

Yn  <  x1 +  •  •  • +  xn is satisfied. 

   A vector  (x1, ,  xn) is called base in A if it is complete and nonredundant in A. 

Nonredundant noncomplete vectors we call simply addable. The rank of a base (addable 
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set)  (x1, ,  xn) is the sum x1  xn. Thus minimal covering problem is problem of 

finding a base in A with minimal rank. 

  There is another definition of minimal covering problem  [Kar72]: For a given collec-

tion C of subsets of a finite set and positive integer r  <  ICI decide whether C contains 

a cover for S of size r or less, i.e. a subset C'  C C with  IC'l  < r such that every element 

of S belongs to at least one member of C'. This problem is exactly to find a base with 

rank r or less, if we represent a subset by n bits characteristic vector. Karp [Kar72] 

proved that this problem is NP-complete. 

  The notions of addable sets, bases and rank have almost the same meaning in both 

base enumeration and minimal covering problem. Minimal covering problem corre-

sponds directly to finding a base with minimal rank. Thus we can modify our algorithm 

so that once we find a base with rank r then no subsets of rank  > r will be considered 

further. 

  In the presented branch and bound algorithm a(i) denotes the i-th row of matrix 

A  (1.  < i  < n), i.e. a(i) =  (at„  ,  aim). We suppose that minimal rank -of bases 

(solution of our problem) is between 2 and  n-1 to make our algorithm shorter. It is easy 
to improve our algorithm to deal with these cases. Also some techniques for eliminating 

some rows or columns (cf.[Rot69]) can be applied before running the algorithm. 

begin 

  read  n,  d,  a(i), i :=  1,  n;  minrank :=  d;r :=  1;  ji :=  1;T :=  {1}; 
   repeat 

    if  a( j1), ,  a(  j  r) is addable in A 
       then if  ir.  <  n and r < minrank  —1 

              then extend 
              else cut 

       else begin 
             if  a( j1), ,  a(j,.) is a base in A then 

              begin 

 minrank = r; 

                 T  :=  •  •  • .ir}; 
                end; 

               cut 
             end 

   until j1 =  n or minrank = 2; 

   printout  minrank,  T 
 end. 
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  The two procedures "extend" and "cut" are defined as before. Note that T corre-

sponds to a solution  (x1,  ..  ,  xn) of minimal covering problem so that  xj = 1 if and only 

 if  j  E  T. 

7.7. Knapsack problem 

An input for the knapsack problem are integer numbers  al,  ,  an, C. The problem 

is to  find a subset T of  {1,  ,  n} to maximize  EiETai subject to the requirement that 

 EiETai  < C. A more general formulation of the knapsack problem has more applications 

than this. Namely the input consists of C and two sequences  al, ,  an and  pi,  ,  pn. 

The problem is to maximize  EiETpi subject to the restraint  EiETai  < C where T, as 

before, is a subset of the indexes. 

  We give a solution for more general knapsack problem based on the lexicographic 

order of subsets. Elements i that are  ai greater than C should be eliminated. rn the 

presented algorithm  a(ji) denotes  aji. 

begin 

  read  n,  d,  ai,  pi,  i = 1, n; 

  r  := 1;  jl  := 1;  maxsum :=  pi;  T :=  {1}; 
 repeat 

     S  :=  a(i) a(jr); 
 if  S  <  C 

        then begin 

             P  :=  P(j1)  -F  •  •  •  +  Air); 
              if  P  >  maxsum then begin 

 maxsum :=  P; 

 T  :=  •  •  •  jr} 
                                 end; 

               if  jr <  n then extend else reduce 
              end 

         else cut; 
  until  j1 = n; 

   printout maxsum, T 
 end. 
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  In the algorithm "extend", "reduce" and "cut" are defined as before. The set {n} 

should be examined before printing. 

7.8. Concluding remarks 

In this chapter we modified backtrack procedures for lexicographic enumeration of sub-

sets and applied the procedure to the base enumeration, knapsack and minimal covering 

problems. Several variational uses of base enumeration algorithm are presented. The 

presented "cut" techniques use special properties of bases and addable sets, owing to 

which, for instance, base enumeration were possible for about n=600 (for the case n=605, 

d=15 it took about 8 hours using bitwise redundancy check by FACOM 380 computer 

with 16 MIPS). 

  Karp  [Kar72] proved that the problem of determining of a covering set with rank 

< r for given r is NP-complete. Our algorithms are directly related to the problem. 

Thus any algorithm for solving these problems takes exponential time according to 

numbers of rows and columns n and d. There exist a number of algorithms for exact 

and approximate solution of knapsack and minimal covering problems (see, for example, 

 [Baa78,Rot69,YoM85]). 
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Chapter 8 

Classification of  Pk2 

The set of functions of Pk2 (mapping the set  10, 1, ..., k —  1}' into  {0,  1}, n =  1,2,  ...) 

is divided into equivalence classes so that two functions are in the same class if their 

membership in the maximal subclones of Pk2 coincides. This also leads to a natural 

classification of the set of bases (i.e. nonredundant complete subsets) of  Pk2. We 

determine all nonempty classes of functions of Pk2 and show that the number of them is 

 13Ak  —11Ak_i, where Ak is the number of equivalence relations on the set of k elements. 

The maximal number of elements in a base of Pk2 is proved to be k  +2. Computational 

results for the numbers of classes of bases are also presented for k = 3 and 4. 

8.1. Introduction 

The algebra Pk2 of all functions whose domain is a Cartesian power of  Ek and whose 

range is E2 was considered  in  [Bur73,HaF84,Lau75,Lau82b,Sas84]. Every n-ary func-

tion of Pk2 may be interpreted as an n-ary predicate, or, equivalently,  1-1(1) is an  n-ary 

relation on Ek. We mention some applications. Functions of P3,2 permit the descrip-

tion of a decision (the values 0, 1) with abstention from voting (the value 2). Special 

functions of P3,2 are of interest in the theory of noncorrect algorithms [Zur78,BDHL79]. 

In  [EFR74] it is mentioned that functions of Pk2 may be used to describe logical and 

 arithmetical branchings in programs where the arithmetical constants are arguments 

 and the two logical constants form the range. In  [Sas84] a minimum sum-of-products 

 expression for the functions of Pk2 is used  .to get a minimum PLA (programmable logic 

 array) with decoders (actually, k = 4 for PLA with two-bit decoders). 

   In this chapter we determine classes of functions for the set  Pk2. The maximal number 
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of elements in a base of Pk2 is also determined to k + 2. 

8.2. Definitions and notations 

In this chapter we are interested in the set 

 Pk2  =  U  If  —>  E2}• 
                                       n>1 

  We recall the following theorem. 

Theorem 8.2.1.  [P  0S21] P2 has  exactly the following 5 P2-maximal sets: 

                    (01  To = Pol(0),  T1  = Pol(1), S = Pol                            10)' 
            ( 

                                             0 

     L =  Pol({(a,b,c,d)T EI a -I-b=d (mod 2)}),114.Pol010 

                                                  1 Here  Ti consists of Boolean functions f such that f(i,...  ,  i)  =  i  (i =  0,1), S is the set 

of selfdual Boolean functions (satisfying  f('±-1, • • • , fl) =  f(xi,...,  xn)),  L is the set of 

linear Boolean functions and M is the set of monotone (or isotone) Boolean functions. 

  The 15 nonempty classes of functions of P2 are shown in the Table 8.1. We remark 

that the classes 10100, 01100 and 00000 consist only of functions {constant 0 function}, 

{constant 1 function} and  {xi (function depending only one variable)}, respectively. We 
also remark that the set of classes  {01100,10100, 00110, 00001} is a class of basis with a 

maximum rank 4; for example, a base  {0,1, xy, x y z} belong to this class of basis. 

  In this chapter H is the set Pk2 of all f :  Ek  --+ E2 (n =  1,2,  ...). It is clear that Pk2 

is closed. Let  pr  : Pk2  —4' P2 be  defined by setting  pr f := g where g(a) =  f(a) for all 

a E  E2 (the restriction of f to E2). 

  We denote the intersection of sets  X1, ,  X„, by X1  Xn. For X  C Pk2 put X = 

 Pk2  \ X and for x  e Ek,  Xj =  (x  .  .  .  x) (j times). For X  C  P2, the inverse image of X  is 

X' =  pr-1(X) =  ff E Pk2Ipr f01i•                             X}. For  i,  t E Ek, put  Zit  = Pk2Po/Note                                                   Olt 

that  Zit = Zti-

Theorem 8.2.2.  [Bur73,Lau75,Lau82b,Lau84b] The set Pk2 has the following  5+(1/2)-

(k — 2)(k  +  1) maximal sets: 
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 T0',  Ti', 5', L',  M'  and  Zit  (k  >  i  >  t  >  0,  i  >  1). 

8.3. Classification of Pk2 

We denote the characteristic vector of a function f of Pk2 by 

 c1c2c3c4c5c02  ..  •  co(k_1)c12  •  •  •  c1(k-1)  •  •  •  C(k-2)(k-1) 

with respect to the order of the Pk2-maximal sets in Theorem 8.2.2. Note that the values 

of  c1, c2, c3, c4, c5 coincide with the corresponding characteristic vector for pr f E P2. 

For each  n-ary f E Pk2 define a relation  Qf on the set Ek by setting (i, t)  E  Qf if 

 f(a) =  f(b) wheneveraE0 1 i(-. Clearly the binary relation  Qf on Ek is              b0 1 t 

reflexive and symmetric. Now we prove several lemmas needed for the description of 

the equivalence classes  (r-2) on  Plc2  • 

Lemma 8.3.1.  Let  f E  Pk2. Then f E  Zit if and only  if  (i,  t) E  Q  f. 
 0  1  i 0 1 i r Proof  ()  Let  f  E  ZitPol  ( and As f E Pol 0° il t)                                a

b E 1t j°  Olt   

we have ( ffib)) e0 1 t  . However  f(a) 0 i as f E Pk2 and  i> 2, hence   f( 

we have  f  (a) =  f(b). Therefore  (i,  t) E  Q.  (-) Let f  0  Zi,t. It follows that there 

              (a)E(01it)f(a)                                 b) Olt . are vectors a and b such thatbandThis                   01f() 
implies  f  (a)  0  f  (b), because  f  (a) and  f  (b) take only values 0 or 1. Hence we conclude 

 (i,  t)  1%  Q  f.  ^ 

Lemma 8.3.2. Let f E Pk2. Then (0,1) E  Q  f if and only if the function pr f is 

constant. 

                       r 

                                    00 Proof. (-) Let pr f be constant and leta-). Then  f  (a) =  f(b).                        bE1(011) 
Therefore (0,1) E  Qf.  (=) Suppose pr f not constant. Then there is a vector a E  E2 

                           010 

     ( 

 such  that  f(o)  0  f(a). SinceoEwe conclude (0,1) 0 Q f.  ^                a 011} 
                                                                 ' Lemma 8.3.3. The relation Q  f is  an equivalence relation. 

Proof As mentioned before the reflexivity and (symmetry follow from the definition.
b                                        a For transitivity let  (i,  t)  E  Qf,(t,i) E Qf and-)                                              01

jE01  . Put  ci =  ai if 
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                                               01i ai = bi and ci =  t otherwise. Then c =  (ci,...,cn) satisfies (a)E(0 1 t)nand 
                    n (c)E0 1(01t).              Thusf(a) =  f  (c) andf(c) =  f  (b) shows  f  (a) =  f  (b).  ^        j 

Lemma 7.3.4. Let  f,  g E Pk2 and  xf  =  (c1)  •  •  •  c(k-2)(k—i)),  X9  =  (ci,  •  c(ic--2)(k-1)). 

Then  Qf  = Qg if and only if 

  (1)  cit  =  4t for all k > i > t  > 0, i > 1 and (ii) pr f constant  <#- pr g constant. 

Note that (ii) is equivalent to  (c1,...,c5) and  (4,...,c'5) =  (0,1,1,0,0) or  (1,  0,1,0,0), 

Proof. Assume (i) and (ii). By Lemma 7.3.2 we have  (0,1) E  Q  fQ9, since pr f and pr g 

are constant. Consider k > i > t  > 0, i > 1 and (i, t) E  Qf. By Lemma 7.3.1 f E  Zit 

and  cit  =cat = 0 and so g E  Zit. According to Lemma 7.3.1 we conclude  (i,  t)  E  Q9. 

Together  Qf  C Qg. By symmetry  Q9  C  Qf and so  Qf  = Q9. Conversely, assume 

 Qf =  Q9 = Q. From Lemma 7.3.1 we have  cit =  git for all k > i > t  >  0,  i > 1. Next, 

(0,1) E Q if and only if pr f is constant and pr g is constant from Lemma 7.3.2.  ̂  

  Note that the map f  Q  f is not injective, i.e. several classes of functions can 

correspond to the same equivalence relation Q. Next theorem determines these classes 

of functions and gives their number. We show that the map f Q  f maps Pk2 onto 

the set of equivalences on Ek. 

Theorem 7.3.1. Let Q be an equivalence relation on the set Ek. Let n  > max(2, k) 

and let g be an n-ary Boolean function such that g is constant exactly if  (0,1) E Q. 

Then there exists f E Pk2 such that pr f  = g and Q =  Q  f. 

Proof. For  1  =  2,  ... ,  k — 1 put  AI:.  {0, 1,  l}n  E. Let C1, , Cr be the equivalence 

classes of Q and let denote the least element of  C, (j =  1,... , r). Let 1 <  /  <  r and 

 (ii,  /)  E  Q.  To  x  =  (xi,  ,  xn)  E  A1 assign  x'  =  .  •  •  ,  x„) defined  by  x's  =  if  xs  =  / 
and  x's =  x3 otherwise (i.e. if  x, E E2), 1  < s  < n. We have two cases: 

  1). Let (0,1)  ,0 Q. We may assume that  it = 0 and i2 = 1. By assumption g is 

non-constant. For simplicity assume that  g(0n) = 0 (if not, replace g by  g). By an 

appropriate exchange of variables we may obtain  g(1a0n-a) = 1 for some a (1  < a  <  n). 

Define an n-ary f E Pk2 as follows: 
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 a) For x  E  Eli put  f  (x) := g(x). 

 b)  For  2  <  p  <  r  put 

 f(ipon-i) = =  077.-p+i) = 0,  f(i7,e-p) = = 1, 

f(ipia-i0n- a) := 0 (where a is defined above) and  f  (x) := 1 elsewhere on Aip. 
 c) For 1  _< p  < r,  (ip,  1) E Q and  x  E  Al put  f(x) :=  f  (x') and  finally 

  d) put  f(x) := 1 otherwise. 

The part c) assures that Q  C  Qf. For 2  <  p < q  < r, we have 

 f  (iPn—q) = 1  0 =  f(egon-q), 

hence  (4,4)  Q  f. Let 2  <  p  < r. We show that (0,  ip)  Q  f. Indeed  f(On) =  g(On) = 0 

while  f(if,On-P) = 1 (here we need r  <  n which follows from r  < k  < n). Similarly from 

 Ala  on—a) =  g(ia  on—a) = 1 0 = f(ipia—lon—a)we get  (1,  ip)Cdf. 
Finally  (0,  1) 0 Qf as  f(On) =  g(On) = 0 1=  g(ron—a) = f(r0n—c0.                                                    ) Together with 

c) this shows that  Q  f  C Q and  Q  f= Q. 

  2). The case (0, 1) E Q is similar but simpler (note that g is constant by assumption). 

  Actually the characteristic vectors for all nonempty classes of functions  of  ;Pk2 can 

be determined by using Theorem 8.3.1. This is shown simply by an example. 

Example 8.3.1. The following table presents the 15 equivalence relations on E4 and 

the components c20, C21, c30, c31 and c32 of the corresponding characteristic vector. These 

classes are divided into two groups. The one includes {0, 1} in an equivalence class (the 

first 5 cases) and the other not. Exactly in the first group we have c3c4c5 = 100 and 

 cic2 E  {01,  10}. Note that within each of these two groups no  {cit} part of the vector 

appears twice. The complete list of classes of P4,2 is shown in Table 8.1.  ^ 
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               Equivalence classes on E4 C20 C21 C30 C31 C32  

 {0,1}, {2}, {3} 1 1 1 1 1 
 {0,1}, {2,3} 1 1 1 1 0 
 {0,1,3}, {2} 1 1 0 0 1 
 {0,1,2}, {3} 0 0 1 1 1 
 {0,1,2,3} 0 0 0 0 0  
 lob {1}, {2}, {3} 1 1 1 1 1 
 {O}, {1}, {2,3} 1 1 1 1 0 
 {0}, {1,3}, {2} 1 1 1 0 1 
 {0,3}, {1}, {2} 1 1 0 1 1 
 {0}, {1,2}, {3} 1 0 1 1 1 
 {0}, {1,2,3} 1 0 1 0 0 
 {0,3}, {1,2} 1 0 0 1 1 
 {0,2},  {1}, {3} 0 1 1 1 1 
 {0,2}, {1,3} 0 1 1 0 1 
 {0,2,3}, {1} 0 1 0 1 0 

  The number of equivalence relations on an k-element set is Ak  =  Erk  A(k,  r), where 

 A(k,  r) =  (1/r!) (r — i)k are the well-known Stirling numbers of the 

second kind  [Liu68]. 

Theorem 7.3.2. The number of classes of  functions of  Pk2 is  13Ak —  11Ak-1-

Proof. In respective case of (0, 1) E Q and  (0,  1) Q our characteristic vector induced 

by Q is uniquely determined up to  {ci,t} part. There are  Ak_i of equivalence classes 

Q of the first type because in this case the number of equivalence relations Q on Ek 
satisfying  (0,1) E Q is  Ak—i. Accordingly the number of equivalence relation of the 

second type is Ak —  Ak-1- 

  In the following table we give the numbers Ak and the numbers p(k2) of Pk2-maximal 

sets and  -y(k2) of classes of functions of Pk2 for 1  < k  < 10. 

 k 1 2 3 4 5 6 7 8 9 10  

 p(k2) - 5 7 10 14 19 25 32 40 49 
   Ak 1 2 5 15 52 203 877 4,140 21,147 115,975 

 -y(k2) - 15 43 140 511 2,067 9,168 44,173 229,371 1,275,058 

Theorem 7.3.3. 

 210T1'ZioZi1 = = 
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Proof. Let g  E  Z=oZtii. Then (0, i), (i, 0) E Qg and so (0,1)  E Q9 by Lemmas 7.3.1 and 

7.3.3. Together with Lemma 7.3.2 this proves pr g constant; however, then g  TgYU  S'. 

0 Corollary 7.3.1. The intersection of all Pk2-maximal sets is empty. 

  The numbers of classes of bases and pivotal incomplete sets for the sets P3,2 and P4,2 

are shown in the following table. They were obtained by one of the algorithms described 

in  [StM87]. 

   Rank 1 2 3 4 5 6 
      bases P3,2 1 160 804 272 8 - 1245 

     pivotals P3,2 42 440 435 38 955 
        bases P4,2 1 1,572 42,822 56,228 6,284 64 106971 

        pivotals P4,2 139 6,336 30,660 10,798 314 - 48,247 

7.4. Maximal rank of a base of Pk2 

We are going to determine the maximal rank of a base of  Pk2. First we show two 

combinatorial lemmas. Let i, t E Ek and i t. The set  {i, t} we call  a, pair set. 

Lemma 7.4.1. For every k'  > k  (>  2)  different pair-sets  {i,t} such that 0  <  i,  t,  <  k  —1 

and i t there exists a circular sequence  {i1,  i2},  {i2,  i3},  •  •  • ,  {23_1,  i3},  {i3,  i1} (0  < 

 ip,  q  < k  —1 and  ip  iq for p q, 1  <  p,  q  < s) consisting of  s  > 3 different pair-sets. 

Proof. The assertion of Lemma can be interpreted as a lemma from graph theory by 

mapping elements  0, , k — 1 onto vertices and k' pair sets {i, t} as only edges of the 

graph. It is well-known that each graph with  77. vertices and at least  n edges has a 

circuit.  ^ 

Lemma 7.4.2. If for a given  set  T of  k  —1 different pair-sets  {i,  t} (0  <  i,  t  <  k  —1,  i 

t, {i, t}  {0,1}) there exists no circular sequence (with the definition from Lemma 

 7.4.1), then there is a sequence which leads from 0 to  1 through at least two pair sets, 

i.e. there is a sequence  {0,  i2}, {i2, i3},  •  •  • ,  is},  {is, 1}, where  s  > 2,  -tip,  4+11 E T 

 for  1  <  p  <  s  and  =  0,is+i=  1. 
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Proof. It is well-known that a graph with k vertices and  k  —1 edges and without circuit 

is a tree. Thus every two vertices are connected, especially 0 and 1.  ^ 

 Let F  C Pk2 be pivotal. To f  E F assign  rf : pivot of  f} (recall 

that  Zii is a pivot of f if f  ¢  Z .; while F \  {f}  C  Zii). Put GF := (Ek,T) where 
T =  u{rf : f E F}. We call GF pivot graph for F. 

Lemma 7.4.3. The pivot graph GF is acyclic. 

Proof Let  {i1, i2},  {i2,i3},...  , {i1,  i1+1} E T where  i1+1 Here  {i1, i2} E  rf for some 

f  E F i.e. f  Zi1j2 while f E  Ziii3+1 for j =  2,  ...  ,1 (by the pivot condition). Now 
by Lemma 7.3.1 we have  (ii,  ii+i) E  Qf for j =  2,  ...  ,1. In view of Lemma 7.3.3 the 

relation Q  f is transitive and so  (i1,  22) E  Q  f and again by Lemma 7.3.1 we get f E Ziii2, 

a contradiction.  ^ 

Lemma 7.4.4. The maximal rank of a base of Pk2 is at most k + 2. 

Proof. Let F be a base of Pk2 and G the subset of F such that pr G is a base in P2. 

Let  Y  =  {4711,  S',L',Mq. Assume  IF  \  Gi  >  k  —1  and  H  C  F\G,  IH1=  k  —  1. The 

functions from H cannot have a pivot (in Pk2) from Y. (If f E H has a pivot P E Y, 

then G  C P in contradiction to pr G basis of P2). Consider the graph GH. By Lemma 

7.4.3 it is  acyclic and so has at most k  —1 edges. However,  irhl  > 1 for each h  E H 

and so GH has exactly k  —1 edges. It follows that GH is a tree. In particular, there 

is a unique path  {i1, i2}, {i2,  i3}, ,  {i3_1,  i3} in GH with  i1 = 0 and  i3 = 1. The set 

G contains a function f such that f 0 M'. Clearly f is nonconstant on E2 and hence 

we have  (0,1)  0  Qf. Therefore, there exists 1  < j  < s — 1 such that  {ii,  ij+i}  0  Qf 

(otherwise we have  (0,1)  E  Q  f because  Q  f is a transitive relation). We have f 
from Lemma 7.3.1. However,  ZiA+, is a pivot of some h E H and so f E  Zi3ii+„ a 

contradiction. Thus we conclude that H contains at most k — 2 functions, But, G 

contains at most four functions  [Jab52,INN63,Krn65,LoW65]. Therefore, F contains at 

most k  +  2 functions.  ^ 

Theorem 7.4.1. The maximal rank of a base of Pk2  is k + 2. 

Proof. Let  Qi (1  <  i  < k  —  1) be the equivalence relations with the two equivalence 

classes:  {1,  , +  1,  ,  k  —1,  0}. A base of rank k + 2 is the set  {fi,  •  .  •  fk+2}, 
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 defined by 

 QA =  Q2 (1  5_ i  <  k  —1),Qh, = =  Qfk+2:= EZ; 

 E  T4TIL'sV, 

             fi  E  T4TIL'S'Mi  (2  <  i  <  k  —1), 

 fk E  TgrerM', 

 fk4.1(0,  ,  0) = 0, 

                    = 1. 

We note that pr  fi (2  < i  <  k — 1) depends only of one variable and pr  fi(0) = 

0, pr  fi(1) = 1 from  fi  E  2.142-1L'S'AP. Thus, for example, we can take  h as unary 

functions. Then the requirement  f2 E  Qi determines  h completely, since  Zi,0  = 1 and 

   = 0 lead  fi(j) = 1 for 2  < j  < i and  Zi,0 = 0 and  Zio. = 1 lead  fi(j) = 0 for 
i 1  < j  < k  —1. It is easy to see that the functions  {fi, ,  fk+2} actually cover  all 

Zit as well as  To,  Ti, L', S', M'. The pivots of  fii fk,  fk-F1 and  fk+2 are c5,c3 and c4,c2  and, 

c1 respectively. The pivots of  h is  zi+i(mod  km (2  <  i  <  k — 1). ^ 

Example 7.4.1. Let k = 3. Put Q1 = {{1}, {2,  0}}, Q2 = {{1,  2}, {0}}. The  following" 

is the characteristic vectors of a base  {fi, ,  f5} constructed as in the theorem  with 

rank  k  +  2 = 5. 

                          C1 C2 C3 C4  C5 C2 ,0 C2,1  

 h 0 0 0 0 1 0 1 
             f2 0 0 0 0 0 1 0 
 h 0 0 1 1 0 0 1 
 h 0 1 0 1 0 0 0 
 h 1 0 0 1 0 0 0 

7.5. Concluding remarks 

The composition of functions in Pk2 is closely related to the composition in P2. Indeed, in 

a composition of Pk2-functions, only the elements in the first layer work as Pk2 functions; 

those in the remaining layers work merely as P2 functions. The proof given in Lemma 
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    7.4.4 indicates that a base needs at most  k  —2 elements from Pk2 and at most 4 elements 

   from P2 for the first layer and for the remaining layers, respectively. 

      The completeness theory of logical functions leads to the classification problems of 

   closed sets by their maximal sets. These has been done for  P2, P3 and for some other 

• sets  [MiS87a], but very little is done in general  [Sto86c,Sto85b]. In this chapter we 

    have determined classes of functions of Pk2 and their exact number. Although the 

    numbers of maximal sets and classes of functions of Pk2 grow rapidly as 0(k2) and 

 0(k!) respectively, maximal rank of bases of Pk2 has been proved to be k  + 2. There 

    remains an open problem about the maximal rank of Pk. 

                                                                                                                                                         • 
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                                Table 8.1: 

                        Classes of functions of P2 = P2,2 
        (with respect to the coordinates  4,  Ti, L',  [Jab52,INN63,Krn65] 

         11111 11011 11001 10111 10101 10100 01111 01101 
         01100 00111 00110 00011 00010 00001 00000 

                          Classes of functions of P3,2 
             (with respect to the coordinates  7'4,  Tl,  S',  L',  Z2,0,  Z2,1) 

1111111 1101101 1011110 1010011 0110111 0011111 0011001 0001010 0000011 
1111110 1100111 1011101 1010000 0110110 0011110 0001111 0001001 0000010 
1111101 1100110 1010111 0111111 0110101 0011101 0001110 0000111 0000001 
1101111 1100101 1010110 0111110 0110011 0011011 0001101 0000110 
1101110 1011111 1010101 0111101 0110000 0011010 0001011 0000101 

                          Classes of functions of P4,2 
        (with respect to the coordinates  T4,  Ti,  S',  L',  M',  Z2,0)  Z2,1,  Z3,0)  Z3,1) Z3,2) 

1111111111 1100111111 1010111111 0111110100 0011111111 0001111111 0000111111 

1111111110 1100111110 1010111110 0111110011 0011111110 0001111110 0000111110 

1111111101 1100111101 1010111101 0111101111 0011111101 0001111101 0000111101 

1111111011 1100111011 1010111011 0111101101 0011111011 0001111011 0000111011 

1111110111 1100110111 1010110111 0111101010 0011110111 0001110111 0000110111 

1111110100 1100110100 1010110100 0110111111 0011110100 0001110100 0000110100 

1111110011 1100110011 1010110011 0110111110 0011110011 0001110011 0000110011 

1111101111 1100101111 1010101111 0110111101 0011101111 0001101111 0000101111 

1111101101 1100101101 1010101101 0110111011 0011101101 0001101101 0000101101 

1111101010 1100101010 1010101010 0110110111 0011101010 0001101010 0000101010 

1101111111 1011111111 1010011111 0110110100 0011011111 0001011111 0000011111 
1101111110 1011111110 1010011110 0110110011 0011011110 0001011110 0000011110 

1101111101 1011111101 1010011001 0110101111 0011011101 0001011101 0000011101 

1101111011 1011111011 1010000111 0110101101 0011011011 0001011011 0000011011 

1101110111 1011110111 1010000000 0110101010 0011010111 0001010111 0000010111 

1101110100 1011110100 0111111111 0110011111 0011010100 0001010100 0000010100 

1101110011 1011110011 0111111110 0110011110 0011010011 0001010011 0000010011 

1101101111 1011101111 0111111101 0110011001 0011001111 0001001111 0000001111 

1101101101 1011101101 0111111011 0110000111 0011001101 0001001101 0000001101 

1101101010 1011101010 0111110111 0110000000 0011001010 0001001010 0000001010 
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Chapter 9 

Classifications of Maximal Sets of 

 Pk2 

In the previous chapter the set of functions of Pk2 mapping the set  {0,1,  ,  k—  l}n into 

 {0,1} has been classified. It is shown that the number of Pk2-classes is  l3Ak —  llAk_i, 
where Ak is the number of equivalence relations on the set of k elements. The maximal 

number of elements in a base of Pk2 has been also proved to be k + 2. 

  In this chapter we consider maximal sets of Pk2. We determine classes of functions 

for all Pk2-maximal sets  To,  211, S',  L' and  Zit (0  < t < i < k  —1,i  > 2) except M'. We 

also give maximal number of elements in a base (maximal rank f a base) for each of 

these sets (for S' we prove its upper bound to be 2k). 

  We also classify the symmetric functions of Pk2 and its maximal sets. In the last 

section we give numerical data for the respective numbers of classes of functions and 

classes of symmetric functions of  Zit,  2-14, S' and L' for 2  < k  < 10. We also give 

numerical data for bases, pivotals, S-bases, S-pivotals for each of the Pk2-maximal sets 

 Zit,  2•1, L' and S' for k up to 4. 

9.1. Classification of Zit 

All the maximal sets of the Pk2-maximal set  Zit are given by the following theorem. 

Recall thatZft:=Pk2PolOli               Olt )• 
Theorem 9.1.1.  [Lau84b] Maximal sets of the set  Zit (0 < t < i <  k — 1, 2 <  i) are 
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 Z"ii  :=  ZitZji,  0  /  <  j  <  k  —  1,  2  <  j,  1  0  t  or  i  0  j,  {0,1}  0  {t,1}  for  i  =  i; 

  Ri := Pol  ( Olt 3.), 2 <3•< k —1, j 0 i for t E E2) 
 Zit  pr-1  B  ,  B  E  {To,  Ti,  L,  S,  M}  . 

  As we will see below all the above  {Ri} and Z'il =  ZitZji are not necessarily distinct. 

Note 9.1.1.  Ri  .  Zit for t E E2. This is easily seen from that  f(a) =  f(b) for 

(b)E(0011tiii)               and for f E Zit, t  E E2. 

  Next lemma shows that  Ri coincides with  Rt in Zit. 

Lemma 9.1.1.  Ri  =  Rt in  Zit  for  0  <  t  <  i  <  k  —1,  2  <  i. 

          ( . Proof.Let f E Ri andaE0011titt If  there  is  no  j  such  that  ai  =  bi  =  t 

                        a Olit 
then obviously  f(a) =  f(b). Otherwise let c be b E OW . Then we have 

      ( 

 c  Olii 

 f  (a) =  f  (c) since f E  Ri and  f(c) =  f(b) since f E  Zit. Hence  f  (a)  =  f  (b).  ^ 

  Thus we have to skip  Ri in counting maximal sets of  Zit all the time (not only in the 

case of t E E2). In the proof of the next theorem we show that several sets among above 

 {Z'i} also coincide. Thus the numbers of the maximal sets of  Zit reported in  [Lau84b] 
as k(k + 1)/2  + 1 for t  > 2 and k(k  +  1)/2 — 1 for t = 0 or 1, are not correct. 

Theorem 9.1.2. The number of the maximal sets of  Zit is k(k — 1)/2 + 2  (k  > 3). 

Proof. It follows from relational product that  ZitZts  C  Zis (i, t, s E Ek). Therefore, we 

conclude 

 ZL  =  ZitZis =  ZitZst =  Z. (9.1) 

  Thus, several maximal sets of the type  {Zt} coincide in  Zit. For t  > 2 (9.1) is 

meaningful for s E  Ek,  S  0  t,  S  0 i (k  —  2 values).  For  t = 0 or t = 1 (9.1) is meaningful 

for s E Ek,  s  0 0, s  0  1,  s  0 i (k — 3 values). Hence, the number of maximal sets in Zit 

is k(k  +  1)/2 + 1 —  (k — 2) — 1 = k(k  —  1)/2 + 2 for t  > 2 (from Lemma 9.1.1 together) 

 and  k(k  +  1)/2  —  1  —  (k  —  3)  =  k(k  —1)12+  2  for  t  =  0  or  t  =  1.  ̂  

Theorem 9.1.3. The number of classes of functions of  Zit is  2k-3(13Ak_1 —  11A-k-2). 
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Proof Consider an equivalence relation  Qf defined as in the case of Pk2: 

 (j,1)EQ•<*fEZj1. 

Then (i, t) E Q always holds, because f E  Zit. The number of such relations Q  is 

Ak_i. Similarly as in the case of Pk2 (Theorem 8.3.2) we can prove that there are 

13(Ak_i — Ak_2) 2Ak_2 classes of functions of  Zit, according to the maximal sets 

 {ZitZji} and  {Zitpr-1B  I B maximal set in P2}. Now consider  Rj (2  <  j  <  k-1,j i). 
We show that a representative exists in each of both cases of Rj and  Rj for each j and 

for each such class. For f E  Rj we put f(xi, ,  xn) =  yr,), where each of 

 xi,  ,  xn E  {0,1,  i,  j},  yi =  xi  for  xi E  {0,1,  j}  and  yi =  t  for  xi  = i.  For  f  E  Rj  (n  > 2) 

we put 

 f(j,i,  0,  ,  0)  f(j,t,  0,  .  ,  0). (9.2) 

  All the considered conditions of type (9.2) are independent, because only values 

 f(j,  0,  .  . 0) (for t = 0) can be fixed with respect to other maximal sets from  {Ri}. 
Therefore, there are  2'3 possibilities with respect to the sets  {Rj}. Hence the number 

of classes of functions of  Zit is  21/-3(13Ak-i —  11A  k-2)• ^ 

Example 9.1.1. Classes of  Z2,0 and Z2,1 in P3,2 are isomorphic to those of P2.  ^ 

Example 9.1.2. We consider classes of  Z3,0 in P4,2. The maximal sets are intersections 

 Z3,0pr-1B (B is one of the five maximal sets of E2),  Z3,0Zit, 2  <  i  < 3, 0  < t  < 2, 
i  0 3 for t  = 0 (i.e. Z2,0 and  Z2,1; Z3,2 is omitted since  Z3,0Z2,o =  Z3,OZ3,2 as indicated in 

            (0132(0133)(013 Theorem 9.1.2), and R2 = PolNote that R3= Pol =Pol            01020103010 ) • 
We show all the equivalence relations on  E4 which include {0, 3}. 

                           Equivalence class  c2,oc2,1 

 {0,1,3}, {2} 1 1 
 {0,1,2,3} 0 0 
                  {0,3}, {1}, {2} 1 1 
                   {0,3}, {1,2} 1 0 
                   {0,2,3}, {1} 0 1 

 It is easy to check that c3,2 coincides with  c2,0. This confirms that Z3,2 coincides with 

Z2,0 in Z3,0. To demonstrate our construction of a representative for each of the above 

classes, let our example equivalence relation Q on  .E4 be {0,3},{1},{2}. We proceed 
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analogously as the steps of Theorem 8.3.1 for  f(xi, x2) for a given  g(xi, x2) E P2. 1) 

pr f  = g and  g(xi,  x2) is an arbitrary nonconstant function on E2 since  {0,1}  0 Q. 
2) Only  {0,3} E Q. So  f(xi,x2) =  f(n.,  Y2), where  xi, x2  E  {0,1,3},yi =  xi for 

xi E E2 and  yj = 0 for  xj = 3,1  <  j  < 2. 4)  {2,  0} Q and  {2,1}  0  Q. We put 

 AO, 2)  0  AO, 0) and  1(1,2)  #  f(1,1). As for R2 we construct two cases. Case of 

f E  R2.  f  (X1  X2) =  f(yi,  y2) where  xi,  x2 E  {0,1,2,3},yj =  xj for  xj E  {0,1,2} and 

yj = 0 for  xj = 3. Case f R2. We put  f(2,3)  f(2,  0). Thus we can see that our 
construction for f in Theorem 9.1.3 is compatible with that in Theorem 8.3.1. ^ 

  Maximal rank of a base of  Zit 

  As we have seen in the previous chapter, an equivalence relation on EK induced by 

f E Pk2 by setting (i, t)inQ  p f E  Zit restricts the number of functions in a base. This 

can be summarized in the following lemma. 

Lemma 9.1.2. The number of pivots from the sets  Zit in any pivotal set of any closed 

set containing some of sets  Zit as its maximal sets is  < k  —1. 

Proof. Suppose a pivotal set contains at least k functions which give pivots from the 

sets  {Zit}. Then from Lemma 8.4.1 follows that there is a circular sequence. Then 

from Lemma 8.4.3 follows that circular sequence cannot be in a set of pivots for a set 

of pivotal functions. A contradiction.  ^ 

Theorem 9.1.4. Maximal rank of a base of  Zit is 2k — 2. 

Proof. According to the maximal sets  Z31 and  4,T1,  L',  S', M' there exists a base with 

a maximal rank k + 1, because (i, t) E Q for every Q and we consider the equivalence 

relation on the set with in fact  k  —1 elements (the proof is similar to that of Pk2). The sets 

Ri can give k  —3 new functions for a base. Hence maximal rank is k  +1+k  —3 = 2k  —  2. 

  We are to give an example of a base with the maximal rank. Let i = 3, t = 2 

for simplicity (examples for t  E  E2 and any i can be constructed similarly). A base 

 {fill  < j  < 2k — 1, j k + 3} and corresponding relations  Qj for  fj are defined as 
follows: 

 Qi :=  {1},{2,3,...,k  —1,0}, 
 Qi-i :=  {1,2,...,  j},{j  +1,...,k  —1,0},  3<  j  <  k  —1, 

 Qk-i := Qi  (k  +  2  <  r  <  2k  —  2, r  k  +  3), 
 Q  k  =  Q  k+1 
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 1]. E  T4T;L'Srict, 
 A-1 E  7'471r3'/W, 
 ik(0,  •  •  •  ,  0)  =  0 E  ToTiLSIM, 
 /k+1(0,  •  •  •  ,  0)  =  1 E  ToTiLrM, 
 fi E  Ri  (1  <  i  <  k  +  1,  2  <  j  <  k  -1,  j  0  3), 

 fr E  7141Y.L'S'M'  (2  <  r  <  k  -  2,  k  +  2  <  r  <  2k  -  1,r  0  k  +  3), 
  fr E  RT_kR,,  s  0  r  -  k,  3  for  k  +  2  <  r  <  2k  -  1,  r  0  k  +  3. 

  We note that Z1,3 = Z1,2, 0  <  1  <  k  -1, l  0 2, l  0 3. Pivots for  fi,  fk-i,  A and  fk+i 

are c5,  c3, c2 and  c1, respectively, and pivots for  h are  Zj+2(mod  k),i-Ei for 2 -. i k - 2. 
Finally, pivots for  fr  is Rr_k for  k  +2  < r  <  2k  -1, r  0  k  +3. We remark that functions 

fr E  T4T1'L'S'M' (k  +  2  < r  < 2k  -  1,r  0 k  +  3) cannot be unary (unary functions lead 
to f E  Ri).  ^ 

Example 9.1.3. We give an example of the above base for Z3,2 in  134,2 (k = 4, i = 3, t = 

2). Note that Z3,0 =  Z2,0, Z3,1 = Z2,1 and R3 = R2 in Z3,2 (in  -P472)• 

 ToTiLSM Z2,0Z3,1  R2  
 A  00001  01  0 
                f2  00000 10 0 

 ic3  00110  01  0 

 h 01010  00  0 
 h  1  0  0  1  0  00 0 
 16 00000  01 1 

 Qi={{1},{2,3,0}};  Q2  =  {{1,2,3},{0}}.  ^ 

9.2. Classification of the maximal set  4: the functions  preserv-
    ing 0 

Theorem 9.2.1.  [Lau84b] The maximal  set  2'4 of Pk2 has  4+  (k  +1)(k  -2)/2 maximal 

sets: 

             Too. := T4T3', 
             Lo  :=  T4L', 
 Mo  := T4/1r, 

 No := 7,4poi(ool                 010 )' 
            T4Zit  for  1  <  t  <  k  -  2,  2  <  i  <  k  -  1,  t  <  i, 

 Toi  :=  Pk2Pol  (0i),  2  <  i  <  k  -1. 
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Note 9.2.1. The first four sets are the intersections with the maximal sets of  To in 

P2. We note that respective cases of i  = 1 and t = 0 are not included in the above 

list. It is easy to see that  To=  =  Po/(0i) =  {f  f({0,  inn  = 0 for n =  1,2,  ...} for 

2  <  i  <  k — 1 (we write simply  Po/(0i) for  Pk2Po/(0i)). For i = 1 this does not 

hold, because we have  T01 = Pol(01) == Pia. Putting t = 0 for T1Zit, we have 
                   Oli 

T,rZi,o c  Tozi,o =  Pol(0)Pol010 Toi, 2  <i < k  —1. 

  Since the sets  {Zi,0} do not appear as maximal sets, our equivalence relation induced 

by f E  To is on the k  —1 elements of  {1, ,  k  —  1} (i.e. 0 is excluded). We give several 

lemmas for the classification. 

Lemma 9.2.1.  [Sto85] There are exactly 10 classes of functions  of  To: 

          1111, 1110, 1011, 1000, 0111, 0110, 0101, 0100, 0011, 0000, 

          (  

 where the coordinates are in the order of Ti.,L,M and Pol001                              010)* 
  The maximal rank of a base of  To is 3. The set  1(0100),  (0011),  (1000)} is an example 

of base. The class 1000 consists only of the constant function 0. The set of  7,-functions 

corresponding to this class is called 0-class in the classification below (functions constant 

0 on  {0,1}n). The next lemma includes an assertion on this 0-class as the case i  = 1. 

Lemma 9.2.2. f  E  Zij and  f({0,1}n)  =  0  j}n)=0  for  1  <  j  <k—l. 

Proof. Suppose f E  Zij and  f  (a) = 0 for a E  (0i). Then  f  (b) = 0 for b E  (OD because 

f E Zii and(ab E  Zij.  ^ 
Corollary 9.2.1.  ZjiToi  C  To; for 2  <  i  <  k —  1. 

Theorem 9.2.2. The number of classes of functions of  T4 is  10Erk=1  A(k  —  1,02'. 

 Proof.  As we have seen in the previous chapter the equivalence relation Q  f on the sets 

 {1,  2, ,  k-1} induced by a function f  E  To determines the characteristic vector of f for 

 {Zii} by the rule  (i,  j)  E  Qf  <#' f  E  Zij. Let  Q  f divide  {1,  ,  k —  1} into r classes. Let 
one of these classes be  {il, ,  i2}. For these numbers we have  Zis,i, = 0 (1  <  s,  t  < p). 

If 1 is included in the set  {il,  . ,  i,}  (p  > 1), we have f E  Zin,l for any such m  :=  is > 1, 

i.e. f E  Pol(0)Pol 011Olm. Further, assume that f is from 0-class (i.e.  f  (a) = 0 for 
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             ( 01m ) any a E (01)), then from f E Pol 011we haveMO, m}") = 0, i.e. f E Tom; 

                                  Olm 
assume otherwise, then from f E  Pol(0)Pol 011we conclude f  Tom. Thus we 

distinguish two cases. 

Case 1. 1  0  {i1, ,  ip}. From Lemma 9.2.2 only the two possibilities exist for  To=m,  m = 

 1,  ,  p, namely f ET011Toil, or f E  Toil  ...Toip. 

Case 2. 1 E  {i1,...,i2}. There exists exactly one possible case depending on the values 

   of f on  {0,  1}n: 

              f ETo~1...  Toil, for f from 0-class  (f  ({0,1}n) = 0) or 

               f E  Toil  ...  Toip for f not from 0-class. 

  So, if  Q  f divide  {1, , k — 1} into  r classes (one of them includes 1 as its member), 

there are  2' classes of functions with respect to the sets  {Zit} and  {Toi}. Further, 10 

classes will be derived for each of these vectors if we add  first 4 coordinates. We show 

that these classes are actually nonempty by giving a representative for each class. 

  Let g be a function with n  > 2 variables in P2 such that g is a function of the 

corresponding class with respect to  To-maximal sets. Let Q be an equivalence relation 

induced by  Zij. Conditions for f are as follows: 

 1)  f  (xi,  .  ,  xTh) =  g(x  1,  .  ,  xn) for  xl,  ,  x7, E E2. 

2)  (i,  t) E Q  <#.  f  (x  1,  ,  x  x  j+i,  , =  f  (xi,  ,  xj_1,t,  x  j+i,  ,  x 

 for  each  xi,  ...,  xj_i,xj+1,...  ,  x7,  E  Ek  and  1  <  t  <  i  <  k  —  1. 

 3)  (i,  t)  Q  (2  <  i  <  k  —  1,1  <  t  <  i)  and  f(i,...,i)  =  f  (t,  ,t) 

 {f(t,i,  ,  f  (i,i,  ,i)}  =  E2. 

 4) Let  i2)  •  •  •  i1} be a class included in  Q  f. In the case f E  Toil.  .  .  Toi, let  f  (x) = 0 

   for x E  (Oij) (1  < j  <  1). In the case f E let  f(ij,  ij) = 1.  ̂  

Example 9.2.1.  For  k = 3 all maximal sets of  T4 in P3,2 are  T01,L0,Mo,  No,  Z2,1 and 

 T02. The vectors for  Z2,1 are determined by an equivalence relation on  {1,2} as follows. 
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     Equivalence class  Z2,1  TO2  T0,1LOMON0  

 {1}, {2} 1 1 for each of 10  To classes, 
                       1 0 for each of 10  To classes, 

 {1,2} 0 1 for each of 9  To classes except 0-class, 
                         0 0 for 0-class. 

  We give all its 30 classes (the coordinates are in the order of  Tol,  Lo,  Mo,  No, Z2,1 and 

T02). In the table of characteristic vectors * at the end of the vector denotes the class 

having no symmetric representative (cf. Section 9.5). 

           111111 111110 111101 111011 111010 111001 

           101111 101110 101101 100011 100010 100000 

           011111 011110 011101 011011 011010 011001 

           010111 010110 010101 010011 010010 010001 

           001111 001110 001101 000011*  000010 000001 

Example 9.2.2. Classes of  T,E; in P4,2. Equivalence classes are on  {1,2,3}. Maximal 

sets are Z2 ,1,  Z3,1, Z3,2, T02 and T03. 

   Equivalence class Z2,1 Z3,1 Z3,2  TO2T03 number of classes 

    {1},{2},{3} 1 1 1 1 1 for each of 10  To classes, 
                             1 0 for each of 10  To classes, 

                             0 1 for each of 10  To classes, 

                             0 0 for each of 10  To classes, 

     {1},{2,3} 1 1 0 1 1 for each of 10  To classes, 
                             0 0 for each of 10  To classes, 

 {1,2},{3} 0 1 1 1 0 for each of 9 To classes except 0-class, 
                              1 1 for each of 9  T0 classes except 0-class, 

                               0 1 for 0-class, 

                               0 0 for 0-class, 

 {1,3},{2} 1 0 1 1 1 for each of 9 To classes except 0-class, 
                              0 1 for each of 9  To classes except 0-class, 

                               1 0 for 0-class, 

                               0 0 for 0-class, 

       {1,2,3} 0 0 0 1 1 for each of 9  To classes except 0-class, 
                               0 0 for 0-class. 

All 110 classes are listed in Table 9.4. ^ 

  We are going to determine the maximal rank of a base of  T. 

Theorem 9.2.3. The maximal rank of bases of  71; is k  +1. 

                                 159



Proof. We note that  Zi,0 =  TN in  To for 2  <  i  < k — 1. We can consider sets 2 < 

i  <  k  —1, 0  < j  < k — 2, j <  i. Rank of a base for these sets is greater than rank of 

a base for  T(', (the proof is analogous to that of Pk2). Let P ,  fp} be a base 

with respect to considered sets, V be a subsets of P which is a base with respect to the 

sets Y =  {T01,  Lo,  Mo,  No} and W = Y \ V. The set V contains at most 3 elements from 

Lemma 9.2.1. The set W contains at most k — 2 functions (the same proof as in Pk2). 

Thus the rank of a base is less than or equals to  3  + k  —  2 = k  +1. We show an example 

of a base with the rank k 1. 

  Let  Qi  (1 < i <  k  —1)  be  equivalence  relations  defined  by  {1,  ..,i},  +1,  ,  k  —1,  0}. 

Put  Q  := Qi and  Qk+1 :=  E. The base of rank k  +1 is the set  •  •  • ,  fk+i} defined 

by  Q  Qi and in the following way. 

              fi E Toi(0, i)QA for 1 <i< k —1, 
               fiE  Toi  LMN0, 

              fk E  ToiTmNo, 
 fi  E T01LMN0 (2 <i< k —1), 

 fk+i E  r01LMN0.^ 

9.3. Classification of  L': the set of functions from Pk2 that are 
    linear on  {0,1} 

Theorem 9.3.1.  [Lau84b] There are  (k  —1)(k  —2)/2+4 maximal sets in L' :=  Pr'(L): 

  4 :=  L'714, 

  L's  •= L'S', 

  L(1)' := [ao  aix  I ao,  a1 E  {0,  1}]', 
  Lq  :=  Pk2Pol{(q,  q,  q,  q),  (a,  b,  c,  d)  I (a, b, c, d) E  E2,  a-l-b=c+d (mod 2)}, 

 2  <  q  <  k  —1, 

 Zt  :=  ZitPr-1L,  2  <  t  <  i  <  k  —  1. 

  We show lemmas for the classification and determine the number of classes of L'. For 

simplicity we write  Zit for  Zit in this section. 

Lemma 9.3.1.  [Sto85] There are 8 classes of functions in L of  -132: 

 0000,0001,  0110,1010,1100,  0111,1011,1101, 

where the coordinates are  Lo, L1, Ls and L(1). 
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  The maximal rank of a base of L in P2 is 3. An example of a base with the maximal 

rank is  1(0110), (1010), (0001)}. 

Lemma 9.3.2.  ZitLi  C  Lt and  ZtiLi  C  Lt, 2  <  i, t  < k  —1. 

Proof. For convenience let  Zit,  Li and  Lt denote the relations instead of the functions 

preserving these relations. It is easy to see that we can construct  Lt by repeated 

applications of relational product and permutations of rows of the relation from  Zit and 

Li; we use that the relation L =  {(a,  b,  c, d)T E  E2,  a-l-b=c+d (mod 2)} is invariant 

under permutations of rows. Thus the lemma is proved.  ^ 

                                              rtl! A(  k — 2,  r)2r. Theorem 9.3.2. The number of classes of  functions of L'is 8 E 

Proof. If i and t are in the same equivalence class induced by Q  =  Qf, i.e. f E Zit, 

then there are only two possibilities from Lemma 9.3.2: f E  LiLt or f E  LiLt. Let Q 

divide  {2, , k — 1} into r equivalence classes and  {i1, ,  il} be one such class. For 

each equivalence class there are only two possibilities by Lemma 9.3.2: f E  Li,  •  •  •Lit or 

f E  Li,  •  Li,. Hence there are  2' possible classes corresponding to a Q with respect to 
the sets {Lq}U{Zit}, and for each of this class there are 8 different prefixes corresponding 

to the maximal sets of L in P2. We are to give a representative for each possible class 

of L'. 

  Let  g(xi, ,  xn) E P2 be a function of one of the 8 classes with respect to the first 

4 maximal sets  (n  > 3). Let Q be an equivalence relation on {2, , k — 1} defined 

by  {Zit}. Put  f(xi,...  ,  xn) =  g(Xl,  .  .  xn) for  xl,  ,  xn E  {0,  1}. Further,  define 

f(xi, • •  xn) in the following way. 

 If  (i,  t)  E  Q then set 

 f(xi,...,xj—i,i,x;+1,...,xn)=  f(xi,...,xj—i,t,xj+1,...,xn) 

 for  each  i,  t,  2  <  i,  t  <  k  —1,  i  t  and  1  <  j  <  n  and  for  each  sm,  E  Ek  (1  <  Tit  <  n). 

 If  (i,  t) Q  (2  <  i  <  t  <  k  —  1)  and  f  (i,  ,i)  =  f  (t,  ,t)  then  set 

 fit,  i,  0,  ,  0)  f(i,i3O,...,0). 

  Let an equivalence class induced by Q be  {i1,  •  •  •  '0. 
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 If  f E  Li,  •  •  •  Li, then set 

 f(x1,•  •  •  ,xj-1,q,xj+1,•  •  •  ,  xn) =  f  (X1.1  •  •  •  j-17  0,  xj+i,  •  •  •  ,  xn) 

 for  each  q  E  {ii,  •  •  •  ,ii},  1  <  j  <  n  and  for  xi,  •  •  •  ,  xn  E  E2  {q}  • 

  If f E  Lii  •  Lit then set 

 f(q,  0,  0,  x4,  xn) = 0, 
 f(q,  0,  1,  x4,  •  •  ,xn) = 0, 
 f(q,1,0,x4,•  •  •  ,x„) =  0, 

                                         = 1, 

for each  x4,  ,  xn E E2 and q E  0. That is,  f  (q,  x2,  .  ,  xn) = 0 for each 

x2,  •  •  • ,  xryy E E2 except  f(q,1,...  ,1)  =  1. Thus the result of the theorem follows.  ̂  

Example 9.3.1. Classes of L' in P3 ,2. All its maximal sets are  L'o,  L',  L's,  L(1)' and 

L2, which are the coordinates from left to right. 

       11011 11010 10111 10110 11001* 11000 10101* 10100 

       01111 01110 01101* 01100 00011 00010 00001* 00000 

The intersection of all maximal sets contains a unary function  solo and in this case the 

intersection is nonempty.  ^ 

Example 9.3.2. Classes of L' in P4,2 . All its maximal sets are  L'o,  Li,  L's,  LO-)', L2, 

L3 and Z3,2 , which are the coordinates from left to right. 

       1101111  1101101  1101011 1101001 1101110 1101000 
       1011111 1011101 1011011 1011001 1011110 1011000 
       1100111* 1100101* 1100011* 1100001 1100110* 1100000 
       1010111* 1010101* 1010011* 1010001 1010110* 1010000 
       0111111 0111101 0111011 0111001 0111110 0111000 
       0110111* 0110101* 0110011* 0110001 0110110* 0110000 
       0001111 0001101 0001011 0001001 0001110 0001000 
       0000111* 0000101* 0000011* 0000001 0000110* 0000000 

  We are going to determine the maximal rank of a base of L'. 

Theorem 9.3.3. Maximal rank of a base of  L' is k  +1. 

Proof. Let P be a base for L', and A  C P be a subset which is a base for the set 

 L'o,  Li,  L's and  L(1)'. The set A contains at most three functions from Lemma 9.3.1. 
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Let B be a subset of P \ A which is a base for  {Zia. We know that B contains at 

most k — 3 functions; if there are k — 2 functions then a circular sequence results, which 

contradicts to a base (the discussion is analogous to Pk2 case). Let C  := P \  A\ B. C 

covers sets  {4}. We will show that C and B together contain at most k  —  2 functions. 

Let Z.nzi722%27•••7Z.  (1 < k  —  3) be pivots for functions in B. Let  2,  3,  ... , k  —  1 be 

                 — k — 2 nodes of a graph constructed in such a way that a pair i and j is connected if 

and only if  Zij is a pivot for a function in B. Let the graph obtained has s connected 

components (s  >  1). As an elementary property of graph, the number  1 of the pivots 

is  1 = k — 2 — s, since there is no isolated point in the graph. Now, let f be a function 

from C whose pivot in L' is  Li„ i.e. f E  Li,. From f E  Zii,i2Lii follows f E  Tii2. Hence 

f covers all  Li for each node i in the same connected component containing  i1. In other 
words, there is at most one pivot in  Li for each of the s connected components of the 

graph. Thus the number of the pivots in B and C together is at most  s  +  k  —2—s = k  —2. 
  We show a base with rank  k  +1 in L'. We take maximal 3 functions for A, k — 3 

functions for B and a function for C. These  k — 3 functions for B are defined by the 

equivalence relations 

 Qi  {i  1,...,k  —  1},  2  <  i  <  k  —  2. 

One  function  for C should be f  E  Z2,3Z3,4  •  •  •  Zk-2,k-1 and f  Li for exactly one i  (the 

construction is similar to Pk2). ^ 

9.4. Classification of S' 

Theorem 9.4.1.  [Lau84b] There are 2 +  (k  —  2)(k  —  1) maximal sets of the set S': 

 := S'L', 

 SL  :=  S'17, (=  S'TD, 
 S'Zit,  0  <  t  <  i  <  k,  i>  2, 

                 S(it):=PolOli10t2 < t << k. 

                                                              ' 

  We need the following property of  P2-maximal set S. 

Lemma 9.4.1. [Sto85] There are 4 classes of functions of S in  /32: 11, 10, 01, 00, 

where the coordinates are  SE, and S01 in this order. The maximal rank of a base of S is 

 2. 
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Lemma 9.4.2. f E  Zji f ¢ SW). 

Proof From f E  Zi; follows  f  (i,  ,  i) =  f  (j,  .  .  . ,  j). Then immediately f  S(ij).  ̂  

Lemma 9.4.3. f E  Zji f E  S(it)S(ti)  U 

Proof. It is sufficient to prove  7.5(MS(ta)  C From f  S(it) follows that there are a, b 

                                                              a such thata E01i(and  f  (a) =(b). Let c be a vector such that b E 
               10t 

(01i  10t . From f E S(ti) follows  {f(b),  f(c)} = E2. Therefore  ff  (a),  f  (c)} = E2 and 
 01j 

from ( a ) E OljOli                   we conclude f  Z&i. ̂

Lemma 9.4.4.  S(it)S(t?) C Zii. 

Proof. The relational product of  S(it) and  SW) equals to  Za,.  ^ 

Theorem 9.4.2. The number of classes of functions of S' is 

     k 

  4  E(A(k - 2, r —  2).13,_2 + 2(r —  1)A(k — 2, r — r(r  —  1)A(k — 2,  r)B,), 
      r=1 

        =Em[r/21 where Br6 2r
m(2m)!/(2mm!) is the number of possible choices of several 

pairs in the set of r elements. 

Proof There are 4 classes with respect to  SL and  Si,. Let Q be an equivalence relation 

on {0,  1, , k —  1} and let  c01, cL,  cit and  c(it) denote components corresponding to 

 SL,  SL,  S'Zit and  S(it), respectively, of a characteristic vector of a function  f. Then 

 (0,  1) Q (constant functions are not elements of S'). 
  From (i,  j) E Q follow  cad = 0 and  c(ii)  = 1 (Lemma 9.4.2). Let  K1, , Kr be 

equivalence classes defined by Q (1  < r  < k). Suppose  (i1,  i2) E Q and  (ii,j2) E 

Q. From Lemma 9.4.3 we conclude  c(i,j1) =  c(i1i2) = =  c(i2j2). Therefore we 

can consider  C(KiKA instead of individual components  c(o. From Lemma 9.4.4 we get 

 c(KiKt) = 0  =  c(K,K;) = 1 for i t, t j, j i. So the set of pairs  {Ka,  K;} from 

 {K1, , Kr} such that  C(KiKi) = 0 has no member  Ka in common between any of two 

pairs. The number of such possible choices for these pairs are Br (the numbers Br are 

given in Table 9.1 for 1  < r  < 10). We have 2  <t<i<k— 1 for the maximal sets 
 S(at). So we must omit 0 and  1. from above consideration. There are three cases: 

                                164



1)  {0} and {1} are two equivalence classes in Q. Then after removing them we consider 

   the equivalence relation Q" on the set  {2, ,  k  —  1} with r — 2 equivalence classes 

   (member A(k — 2, r —  2).13,-2), 

2)  {0} is an equivalence class in Q and 1 is one of the members of a class with  > 2 

   elements. There is r  —1 possibilities for position of 1 in one of the remaining r  —1 

   classes of Q" and the number of such equivalence relations Q" is (r  —1)A(k — 2, r  — 

   1) with  B„.1 possible choices of pair-classes. Similarly we can consider the case 

   interchanging 0 and 1. 

3) 0 and  1 are members of two different equivalence classes in Q with  > 2 elements (0 

   and 1 do not enter into the same equivalence class). There still remain r equivalence 

   classes in Q" and number of positions of 0 and 1 in these classes is r(r — 1) (third 

   member r(r — 1)A(k — 2,  r).139.). 

  We sketch construction of a representative function for each possible class. Let n  >  k. 

1)  f  (xi, ,  xn) :=  g(xi,...,  xn) for  x1,  ,  xn E E2, where g is a function on E2 from 

   one of the 4 possible classes of S. 

2) f E  Zit  =  f(xi,...,xn)  =  f  .  .  ,  y7,), where  {x1,  .  ,  xn}  i},  yj =  xj for 

 xi E E2 and  yi = t otherwise. 

3) f E  Zit or f  Zit we can realize as before. 

4) f E S(it)  f(xi,...,x„)  f(yi,...,y„), where  {xi,  ,  xn}  yj = 

 xj  + 1 (mod 2) for  xi E E2 and  y  j= t otherwise. 

5) f  S(it). If (i, t)  E Q then f  S(it) is satisfied from Lemma 9.4.2. 

  Now, consider r equivalence classes  Ki, 1  < j  < r, defined by Q. We can divide 

them into two groups such that if  C(Ki,K3) = 0 then  Ki and  Ki are in different groups. 

We can define  f  (0,i,  ...  ,i) =  f  (1,  i,  ,i) = 0 for all numbers i in the first group and 

 f  (0, , i) =  f  (1, , i) = 1 for all numbers i in the second group.  ̂  

Example 9.4.1. Classes of functions of S' in P3,2. In this case we have no  S(it) maximal 

sets. The coordinates are in the order of  SL,  T01,  Z2,0 and Z2,1. 
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                    1111 1011 0111 0011 
                    1110 1010 0110 0010 
                    1101 1001 0101 0001 

Example 9.4.2. Classes of functions of  S' in P4,2. There are 17  • 4 = 68 classes 
of functions of  S' in P4,2. We show only 17 classes with respect to S'-maximal sets 

 Z2,0,  Z2,1, z3,0, z3,1,  z3,2,  S(3'2), which are determined by an equivalence relation Q on 

 {0,1,2,3}. Each of these vectors becomes a class of  S' by appending each of two-
component vectors 11, 10, 01 and 00 (corresponding  s/,, and  SL). We also show the 

corresponding relation Q for each of these classes. 

         z2,0 z2,1 z3,0 z3,1 z3,2  S(3,2)  
         1 1 1 1 1 1  {0}, {1},  {2}, {3} 

      1 1 1 1.1  0 

        1 1 1 1 0  1  {o}, {1}, {2,3} 
         1 1 1  0 1 1 {0}, {1,3}, {2} 

      1 1 1 0 1 0 

         1  1 0 1 1 1  {0,3}, {1}, {2} 
      1 1 0 1 1 0 

         1 0 1 1 1 1 {0}, {1,2}, {3} 
      1 0 1 1 1 0 

        1 0 1 0 0 1 {0}, {1,2,3} 
        1 0 0 1 1 1 {0,3}, {1,2} 

      1 0 0 1 1 0 

         0 1 1 1 1  1. {0,2}, {1}, {3} 
     0 1 1 1 1 0 

        0 1 1 0 1 1 {0,2}, {1,3} 
     0 1 1 0 1 0 

        0 1 0 1 0 1 {0,2,3}, {1} 

For a relation Q, for example, if  (2,3) E Q is satisfied then  c(3,2) = 1 is uniquely possible 

for  5(3,2). Otherwise both 0 and 1 are possible for  c(3,2), because in this case  (2,3)  0 Q 

and we can choose pairs from classes {2}, {3} E E4 E2 in two ways: take one pair 

 {{2},  {3}} (value 0) or take no pair (value 1).  ̂  

  Maximal rank of a base of S' 

Lemma 9.4.5.  Let be  equivalence relations on Ek each of which consists 

exactly of 2 equivalence classes and satisfying the property that for each i (1  < i  < r) 

there exist two elements  j,  1 E Ek such that  (j,  1) E  Qi and (j,  Q, (1  <  s  < r,s i). 

Then r < k. 
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     Proof Let us call such  (j,1) as indicated in Lemma pivot induced by  Qi (recall that 

 (j,  l) E  Qi implies f  SCil) for any f induced by  Qi). Let  Ui and  Vi denote two classes 
     on Ek  defined by  Qi and assume 0 E  Ui. Suppose r > k and consider k relations 

 Qi, Qk. There is a circular sequence in the set of pair sets {(j,  l)}, where  (j,  l) is a 

     pivot induced by  Qi. We denote this sequence by (0, 1),  (1,  2),  .  . , (m  —  1, m), (m, 0) and 
     assume (j,  j  +1) E  Qi+i, 0  < j  <  m-1; (m, 0) E  Qm+i (because of isomorphism we can 

      do this). Consider  Qk+1• Then  0,  2,  4,  ...  ,  m-1 E  Uk+l and  1,  3,  ... , m E  VI,+1. So,  if  m is 

     even then we have a contradiction. Thus m is odd. Consider Q2. 0 E U2, 1 E  V2, 2 E V2 

     (because (1,2) is a pivot of Q2), 4 E V2 (because (3,4) is a pivot of  Q4). Thus for  i  > 3 
      odd number belongs to U2 and even number to  V2.  So  m  —  1  E V2 and m E  U2. Since 

     (m, 0) is a pivot of  Qm.+1 we get 0 E  V2  .  Again this is a contradiction.  ^ 

     Theorem 9.4.3. Maximal rank of a base of S' is  <  2k. 

     Proof We know that rank of a base for  SL and  SL is  < 2 (Lemma 9.4.1), and for  {Zia} 

     is < k  —1 (Lemma 9.1.2). Assume that a base for  {Zij} has rank k  —1. Then there 

     is a sequence {0, i1}, {i1,  i2},  ,  {ik_2,1}} of pivots for  fi,  1 =  0, , k — 2; 

 i0 = 0,  ik_1 = 1 from Lemma 8.4.2. But from (0, 1)  cZ  Qf for every  Qf there exists 

 1 (0  <  1  <  k — 2) such that  (ii, i14.1)  Qf, i.e. f  Ziiii+,  . Thus  Ziiii+, is not a pivot 

     of fi for  {SL,  501,  Zij, 0  <  j,  i  < k  —1,i  > 2}. (similar proof as in Pk2). Thus  S'L,So'i 

     and  {Zij} have maximal rank k (for k = 3 there exists no  SCO maximal set and hence 

     maximal rank of a base is k = 3, which can also be seen from the computational data 

     in Table 9.3). 

       Consider sets  SW). Let  fr be functions which have a pivot from  S(Ij) in S'. 

      We prove r < k. Let  Qi,...,Q,. be equivalence relations for , f,.. The condition 

 c(ii) = 0 can be satisfied for  1 E  K3 and j E  Kt, where  K, and  Kt  (C Ek,  3 t) 

     are different equivalence classes of a relation  Qi. The set of pairs of such different 

     equivalence classes  {{K31,  Kt,  },  {K„  KO} are mutually disjoint, as it has been 

     proved in the proof of Theorem 9.4.2. ,  fr will again be pivots for the same sets 

 {S(1j)} if we replace every  c(ij) = 1 by  c(ij) = 0 for any function except when  c(ij) is a 

     pivot. Some "1" among  c(ii) will became 0 by this replacement. This corresponds that 

     we consider new equivalence relations  , such that consist exactly of two 

     equivalence classes on Ek. Let  f  , ,  f" be new functions taken out from these new 
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classes. Since the replacement of the values does not effect the  pivotality, new pivot 

of coincides with that of  L. If  s(s) is a pivot of then  c(lj) = 1 for  g. Since  Q7 

has only two equivalence relations and since  c(lj) = 0 is satisfied only for  (1, j)  0  Q7, we 

have  (1,  j) E  Q7. From the property of pivot,  c(lj) = 0 is satisfied for other functions  fs", 

hence  (/,  j)  Q's' for s i. From Lemma 9.4.5 we conclude r  < k.  ̂  

9.5. Classifications of Symmetric Functions of  Pk2 

In this section we determine classes of functions for the set of symmetric functions in 

Pk2 and its all maximal sets except M'. The problem in the classification of symmetric 

functions of Pk2 is mainly related to the fact that there exists only one representative 

 f  (x) := x (identity function) in the  ToTiLSM-class ("identity class") of symmetric 
 functions of P2. Since we used n-ary functions of P2 for n > 2 (cf. Theorem 8.3.1) in 

the construction of representatives of the classes of functions of Pk2, we need a separate 

consideration for the set of symmetric  Pk2-functions corresponding to this identity class. 

  First we recall some notions about symmetric functions. A function  f  (xi, ,  x is 

said to be symmetric if  f  (xi, ,  xn) =  f  (x,(1), ,  x  ir(n)) holds for all  xl, ,  xn E Ek 

and every permutation  7r of  {1,  ,  n}. 

  S-base (S-pivotal set) is a base (pivotal set) consisting solely of symmetric functions. 

Hence a class of S-base (S-pivotal) is a set of classes of functions each of which contains 

a symmetric function. Thus we need to determine classes of functions for the set of 

symmetric functions. We use the following fact (this is a corollary of Theorem 3.3.1). 

Lemma 9.5.1. [Tos72] Each of 15 classes of functions  of  P2 contain a symmetric func-

tion. Unary function  f  (x) x is a unique symmetric function of the class  ToTiLSM 

The other 14 classes contain symmetric functions  ofrt variables for any given n  (n > 1). 

9.5.1. Classification of symmetric functions of Pk2 

Theorem 9.5.1. The number of classes of symmetric functions in Pk2 is 

 12Ak — +  2k-2 

Proof As we have seen in Theorem 8.3.2, classes with respect to  {Zit} are determined by 

an equivalence relation on Ek (numbers of the classes are  Ak_i  if  (0, 1) E Q and  Ak—Ak_i 
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if  (0,1)  ¢ Q). Further, there are two P2-classes (corresponding to constant functions) 

for each former class and 13 P2-classes for each latter class. However, among these 13 

classes, the class  ToTiSLM contains only a unary symmetric function (f(x) := x). We 

can show that there is a symmetric representative in each Pk2-class corresponding to 

the other 14 classes, because they contain n-ary symmetric functions for any  n > 1. 

Thus consider the set of symmetric functions in Pk2 defined by  {pr-1(f (x):= x)}. It is 

easy to see that f E  Zit  <#. (i, t)  E  Qf  <=>.  f  (i) =  f  (t). Thus in this case an equivalence 

relation Q is defined exactly by two equivalence classes:  .1-0  :=  f(i) = 0} and 

 :=  I  f(i) =  1}. The number of such equivalence classes is  2k-2, because  f(0) = 0 

and  f(1) = 1. The assertion of the theorem follows from this and Theorem 8.3.2.  ̂  

Note 9.5.1. The number of classes of functions of Pk2 which contain no symmetric 

function is Ak —  Ak_i —  2k-2. 

9.5.2. Symmetric functions of Zit 

Theorem 9.5.2. The number of classes of symmetric functions of  Zit is 

 2k-3(12Ak_i  —10Ak_2)  +2k-3. 

Proof. Again, consider symmetric functions of Pk2 corresponding to unary function 

 f(x) := x of the set  ToTiLSM. Let  10 =  {j  f(j) = 0} and  I1 =  fj  f(j) = 11. 

Obviously 0 E  Io and 1 E  I. From f E  Zit, either i, t E  10 or i, t E  I1 is satisfied, because 

 f(i) =  f(t). Further, f E  ZJI if either  j,  I E  Io or  j,  1  E  I1. It follows immediately 

that f  E  Ri for every j. The assertion of the theorem follows obviously from these 

considerations and Theorem 9.1.3.  ̂  

Note 9.5.2. The number of classes of functions of  Zit which contain no symmetric 

function is  2k-3(Ak_i —  Ak-2) —  2k-3. 

9.5.3. Symmetric functions of  4 in Pk2 

Theorem 9.5.3. The number of classes of  symmetric functions in  4  is 

 k-1 

 9  E  A(k -  1,02r-1 +  2k-2. 
                                         r=1 
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Proof. Classes of  To which contain symmetric functions with  n  > 2 variables can 

correspond to classes of symmetric functions of  To in Pk2 by the same construction as 

in Theorem 9.2.2. However, in case of the class with only one variable we need another 

construction. Only the class 0000 contains no symmetric function with n  > 2 variables; 

the identity function  f(x) := x E P2 is a unique symmetric function in this class. Again 

let  /0  = I  f(i) = 0} and  1.1. =  I  f(i) = 1}  (1.0 U  I1 = Ek). The induced equivalence 

relation  Qf divides  Ek  \ {0} into exactly two classes and in this case there are  2k-2 such 

 Qf (0 E  10 and 1 E  Ii). The assertion of the theorem follows from this and Theorem 

9.2.2.  ^ 

Note 9.5.3. The number of classes of functions of  21( which contain no symmetric 

function is  Erk=1 A(k — 1,  r)2r-1  — 2k-2  =  Ertl! A(k — 1,  r)2r-1. 

9.5.4. Symmetric functions of L' 

Theorem 9.5.4. The number of classes of symmetric functions of L' is 

 k-2 

 4  E  A(k  -  2,  r)(2r  +  1). 
                                        r=1 

Proof. The following classes of L in  132: 0001, 0111, 1011 and 1101 contain symmetric 

functions with n  > 3 variables, hence  4  Ertl A(k —  2,  r)2r classes contain symmetric 

functions. The other classes 0000, 0110, 1010 and 1100 contains only symmetric func-

tions  {0,1,  x,  x  +1} of only one variables. Hence f must have only one variable because 

f = g on {0, 1} for g E P2.  In this case f E  L2L3  Lk-1. Hence the number of sym-
metric class in this case is 4  Erk=1 A(k  —  2, r). The assertion of the theorem follows from 

this and Theorem 9.3.2.  ^ 

Note 9.5.4. The number of classes of functions of  L' which contain no symmetric 

function is  4  A(k  —  2,  r)(2r  —  1). 

9.5.5. Symmetric functions of S' 

All classes of  S' contain a symmetric function, because all classes of functions with 

respect to  SL and  S01 contain symmetric functions with n variables for any n  > 1 

 [Sto85]. Hence the classes of functions and the classes of symmetric functions coincide 
in this case (the number of them is given in Theorem 9.4.2). 
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8.6. Concluding remarks 

Classifications are done for a few general cases of closed sets of Pk  [Sto86C] (also cf. 

 [MSLR87]). In  [MiS87b] classes of functions of  Pk2 and their exact number is deter-
mined. In this chapter we have determined classes of functions and classes of symmetric 

functions for maximal sets of Pk2 (all except M'). We have seen that although the 

numbers of maximal sets and the numbers of classes of functions for both Pk2 and its 

maximal sets grow rapidly as 0(k2) and 0(k!), respectively, maximal ranks of a base 

for both Pk2 and its maximal sets have been proved to be 0(k). 

  In the following Table 9.2 we give the numbers  ,u(X) of X-maximal sets,  ,y(X) of 

classes of functions of X and  o(X) of classes of functions of X containing symmetric 

functions, where X denote Pk, Pk2 and some maximal sets of Pk2 for 1  < k  < 10. 

We note that these numbers of the maximal sets of Pk are given in [Ros73,Ros77], the 

number of classes of functions of P2 in  [INN63,Krn65], the number of classes of functions 

of P3 in  [Miy71,Sto84a], the numbers of the classes of symmetric functions of P2 and P3 

in [Tos72] and  [Sto85], respectively. 

  The numbers Ak and Bk needed for the computation of these data are given in Fig. 

 9.1. 

  The numbers of classes of bases, pivotal incomplete sets, S-bases and S-pivotal in-

complete sets for the sets P3,2 and P4,2 and for some their maximal sets are shown in the 

following Table 9.3. One of the algorithms described in [StM86a] is used. The symbol 
* in the table denotes that S-bases (S-pivotals) and bases (pivotals) coincide on the set 

marked by it. 

  In the last Table 9.4 we give the characteristic vectors of the classes of maximal sets 

 Z3,0 and  Tc; both in the set  P4,2. 
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                 Table 9.1: Ak and Bk (0 < k < 10). 

    k  0  1  2  3  4  5 6 7 8 9 10 

       Ak - 1 2 5 15 52 203 877 4,140 21,147 115,975 

       Bk 1 1 2 4 10 26 76 232 764 2,620 9,496 

 Table 9.2: Numbers of maximal sets, classes and classes of symmetric functions. 

k 1 2 3 4 5 6 7 8 9 10  

 IL(Pk) - 5 18 82 643 7,848,984 
-y(Pk) - 15 406 ? ? ?  ? ?  ? ? 

 0(Pk) - 15 394 ? ?  ?  ? ? ? ? 

 1-t(Pk2) - 5 7 10 14 19 25 32 40 49 
 'y(Pk2) - 15 43 140 511 2,067 9,168 44,173 229,371 1,275,058 

 o(Pk2) - 15 42 134 482 1,932 8,526 40,974 212,492 1,180,486 

p(Zit) - - 5 8 12 17 23 30 38  47 
 -y(Zit) - - 15 86 560 4,088 33,072 293,376 2,827,072 29,359,488 

 Q(Zit) - - 15 82 524 3,800 30,672 271,840 2,618,304 27,182,720 

p(S') - 2 4 8 14 22 32 44 58 74 
 y(S') - 4 12 68 388 2,492 17,676 136,500 1,138,916 10,203,420 

 o(S') - 4 12 68 388 2,492 17,676 136,500 1,138,916 10,203,420 

 ,u(271) - 4 6 9 13 18 24 31 39 48 
 -y(TT) - 10 30 110 480 2,270 12,150 71,070 449,590 3,050,910 

 o-(T0) - 10 29 103 440 2,059 10,967 64,027 404,759 2,746,075 

 p.(L') - 4 5 7 10 14 19 25 32 40 
 -y(L') - 8 16 48 176 752 3,632 19,440 113,712 719,344 

 o-(L') - 8 12 32 108 436 2,024 10,532 60,364 376,232 

p(M9 - 4 7 13 22 34 49 67 88 112 
 -y(M9  - ? ? ? ?  ?  ?  ? ? ? 

 0(M9  - ? ? ? ? ? ? ? ? ? 
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      Table 9.3: Numbers of bases, pivotals, S-bases and S-pivotals. 

rank 1 2 3 4 5 6 E  

bases  /12 1 17 22 2 - - 42 
pivotals  P1,2 13 31 7 - - - 51 
bases P3,2 1 160 804 272 8 - 1,245 
S-bases P3,2 1 158 770 228 4 - 1,161 
pivotals P3,2 42 440 435 38 - - 955 
S-pivotals P3,2 41 416 374 24 - - 855 
bases P4,2 1 1,572 42,822 56,228 6,284 64 106,971 
S-bases P4,2 1 1,533 39,501 42,652 3,132 16 86,835 
pivotals P4,2 139 6,336 30,660 10,798 314 - 48,247 
S-pivotals P4,2 133 5,721 24,293 6,202 126 - 36,475 

 P3,2 
bases  Z2,0 1 17 22 2 - - 42 
pivotals  Z2,c, 13 31 7-- - 51 
bases  To 1 98 217 30 - - 346 
S-bases  To 1 96 198 18 - - 313 
pivotals  To 29 174 73-- - 276 
S-pivotals  To 28 158 53-- - 239 
bases L' - 27 45 3 - - 75 
S-bases  L' - 15 12 - - - 27 
pivotals  L' 15 46 9 - - - 70 
S-pivotals L' 11 21 3 - - - 35 
bases  S' 1 20 4 - - - 25 
pivotals  S' 11 13 - - - - 24 

P4,2 
bases Z3,0 1 522 8,506 9,314 932 8 19,283 
S-bases Z3,o 1 509 7,733 6,508 280 - 15,031 
pivotals  Z3,o 85 2,181 6,780 1,938 40 - 11,024 
S-pivotals Z3,0 81 1,963 5,171 874 4 - 8,093 
bases  To 1 1,174 19,253 16,013 952 - 37,398 
S-bases  To 1 1,127 16,436 8,656 392 - 26,610 
pivotals  To 109 3,600 10,802 1,916 - - 16,427 
S-pivotals  To 102 3,061 7,219 967 - - 11,349 
bases L' - 171 1,845 912 33 - 2,961 
S-bases L' - 75 393 96 - - 564 
pivotals L' 47 648 938 96 - - 1,729 
S-pivotals L' 31 243 198 3 - - 475 
bases  51* 1 639 3,430 400 2 - 4,472 
pivotals  S' 67 1,140 762 10 - - 1,979 

P5,2 
bases  SF* 1 19,246 1,083,933 1,102,264 47,832 118 2,253,394 
pivotals 51* 387 49,740 371,903 71,650 519 - 494,199 
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                           Table 9.4: 

(* at the end of the vector denotes that the class has no symmetric representative.) 
                   Classes of functions of  Z3,0 in P4,2 

              (coordinates are  T4,  Ti, S',  M'  Z2,01.02,1)  R2). 
11111111 11011011 10111101 10100111 01101111 00111111 00110011 00010101 00000111* 

11111110 11011010 10111100 10100110 01101110 00111110 00110010 00010100 00000110* 

11111101 11001111 10111011 10100001 01101101 00111101 00011111 00010011 00000101* 

11111100 11001110 10111010 10100000 01101100 00111100 00011110 00010010 00000100 

11111011 11001101 10101111 01111111 01101011 00111011 00011101 00001111 00000011* 

11111010 11001100 10101110 01111110 01101010 00111010 00011100 00001110 00000010 

11011111 11001011 10101101 01111101 01100111 00110111 00011011 00001101 

11011110 11001010 10101100 01111100 01100110 00110110 00011010 00001100 

11011101 10111111 10101011 01111011 01100001 00110101 00010111 00001011 

11011100 10111110 10101010 01111010 01100000 00110100 00010110 00001010 

                   Classes of functions of  To in P4,2 
          (coordinates are  T01,  L',  M',  N0,  Z2,1,  Z3,11Z3,21163 and  TO4). 

 111111111 111111110 111111101 111111100 111111011 111111000 

 111011111 111011110 111011101 111011100 111011011 111011000 

 101111111 101111110 101111101 101111100 101111011 101111000 

 100011111 100011110 100011101 100011100 100011011 100011000 

 011111111 011111110 011111101 011111100 011111011 011111000 

 011011111 011011110 011011101 011011100 011011011 011011000 

 010111111 010111110 010111101 010111100 010111011 010111000 

 010011111 010011110 010011101 010011100 010011011 010011000 

 001111111 001111110 001111101 001111100 001111011 001111000 

 000011111* 000011110* 000011101* 000011100* 000011011* 000011000 

       111101110 111101111 111110111 111110101 111100011 

       111001110 111001111 111010111 111010101 111000011 

       101101110 101101111 101110111 101110101 101100011 

       100001101 100001100 100010110 100010100 100000000 

       011101110 011101111 011110111 011110101 011100011 

       011001110 011001111 011010111 011010101 011000011 

       010101110 010101111 010110111 010110101 010100011 

       010001110 010001111 010010111 010010101 010000011 

       001101110 001101111 001110111 001110101 001100011 

       000001110 000001111* 000010111* 000010101 000000011 
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Chapter  10 

Concluding discussions, an overview 

and some open problems 

The number of Pk-maximal sets was approximated in  [ZKJ69,ZKJ71] and the exact 

formula for it was determined in [Ros73]: 

          2 3 4 5 6 7 

            maximal sets 5 18 82 643 15,182 7,848,984 

Classification of Pk is barely possible for k = 4. 

  There are several classification results for subsets in Pk  [Sto86c,Sto85,MiS87b,MSL87]. 

A function is linear if there are  ao,  . ,  an E Ek so that, under a certain abelian structure 

on Ek, 

 f(xi,  -  •  •  ,xn)=  ao  aixi anxn 

holds for all  x1, ,  xn E Ek. The set of linear functions has been investigated (cf. 

 [BaD78,BaD80,Lau8413]). It is Pk-maximal if and only if k is a prime power  [Jab58]. 
Let L denote the set of linear functions of Pk and  Trr, =  If  f(m,...  ,m) = m} the set 

of functions preserving  m (0  <  m  < k  —  1). 

Theorem  10.1.  [BaD78,BaD80] There are exactly  p+ 2 maximal sets of L in prime-

valued logic  Pp: 

 Lm=  L117,„  0  <  m  <  p  —1, 

 Ls=  LS  =  {ao  +  aixi  anxn  I  a1+...+an=1} 
                 (the set of linear selfdual functions), 

 L(1)  {ao  +  aixi  I  ao,cti E  Ep, i > 0} 
                 (the set of essentially unary linear functions). 
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    2 3 4 5 6 7 

maximal sets 5 18 82 643 15,182 7,848,984



    There are exactly  2p+4 classes of functions of the set L  [Sto86c]. Their characteristic 

  vectors listed with respect to the above order of maximal sets are: 

 1  :  0P+2 (i.e.  p  +  2 zeros) 
 2  :  0P+11 

                   3  < r  <  p  +  3  :  1r-301P+3-r0 

 p+ 4 < r  <  2p  +  4  :  1r-P-40122'F5'. 

    Let  f  (xi,  .  •  xn)  =  ao  +  aixi  +  +  anxn be a linear function in  P. The function x is 

   in class 1, and the function  aixi+...+anxn is in the class 2 for  n  > 2 and  al  +...+an = 1. 

  The functions  ao  +  x are in class  p+  3 for  ao  0 0, and the functions  ao  +  a1x1  + + anxn 

  for  ao  0 0 and  al + +  an = 1, n  > 2 are in class  2p+ 4. The constant function f = i 

  belongs  to  class  i  +  3 (0  < i  <  p  —  1). Let  al  +  an  0  1  and let a be the number 

   determined uniquely by  a(1  —  al — —  an) =  ao, i.e.  ao +  aia  + +  ana = a (a E Er). 

  Then the function  f  (xi, ,  xn) =  ao  aixi  anxn belongs to class p + 4 + a, 

   because it preserves {a}. 

     No Sheffer function for L exists. However, each f E L\L(1) is  c-Sheffer as 0  0  Tn., (m  > 

 1),1  To, 0  0 S. The number of  such  n-ary functions is  pn+1—  np(p  —1)  —  p (n  > 2). As 

   n  co the proportion of c-Sheffer n-ary linear functions (among  n-ary linear functions) 

   goes rapidly to 1. 

     Bases of rank 2 are composed of any two functions of classes i and  j, where i and j 

   satisfy the condition 

               a)  p  +  4  <  i  <  j  <  2p  +  4,  or 
              b)  3  <  i  <  p  +  3  <  j  <  2p  +  4  and  j  i  +  p  +  1. 

   Bases of rank 3 contain a function of class 2 and two functions, each from classes i and 

 ())   j, where  3< i< j< p+3. Thus L contains exactly 4 p+1aggregates; 3(+1        22 

    ()  of  rank  2 andp+1 of  rank 3.  The  maximal  rank  of  a  base  of  L is 3.               2 

     The H-maximal sets for the above  p+2 L-maximal sets H (p prime) are determined 

   in  [BaD78] and their classification is in  [Sto86c]. 

       ) 

     Let S = Pol2k — 1k01•  It  is  easy  to  verify  that  S  is  a  set  of  selfdual 
        ... 

   functions in k-valued logic (i.e. f such that  f  (xi +  1, ,  xn + 1) =  f  (xi, ,  xn) + 1). 

   Note that there are other types of selfdual functions (cf.  [Ros70]). 
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Theorem 10.2. [Sze82] There are exactly two S-maximal sets  in prime-valued logic 

Pp: 

 SL, = SL and  So =  STo. 

  A linear function  ao +  aixi +  •  .. +  anxn is selfdual if  al + +  an = 1. When this 

holds, the function  al  x1  +...+anxn belongs to the set  SLS0 (class 00) and the functions 

 ao +  aixi + +  anxn, for  ao  0 0 belong to the set  SE,30 (class 01). 

  The number of n-ary Sheffer functions in S is  (p-1)pn-1(pPn-1-1  —  1). Note that the 

notions of  c-Shefferness and Shefferness coincide, because no constant function belongs 

to S. There are exactly two aggregates for S; each for ranks 1 and 2. 

  An overview and some open problems 

  We give some subsets of  Pk whose maximal sets are known. Perhaps the most inter-

esting  .Pk-maximal set is the set L of linear functions for k not prime. Let k = 

 

.  . ,  am,  > 1,  pi., , pm: prime numbers  (pi  0  pi for i j). All the maximal sets of 

L are described as follows [Lau84b]: 

 1)  2' — 1 maximal sets 
 Td  :=  LdUUn>iff  E  L  I  3b,  ao,...,  an  : bid  A  b  1 A f(x) = ao + aixil, 

     where x =  (x1,...  ,x,,) and 
    Ld  :=Un>i{f E L I Sao, • • • ,an,jf(x) a0 + aixi +aixi}, 

     d =  pi1.  •  •  Pit,  {Pii,  •  •  pit}  g  .  ,  pm}, 1  < t  <  m. 

 2) m maximal sets of type 
     L*,pi  •=  Un>ilf  E  L  3ao,  ,  an E  Ek 

 f(x)=  ao  aixi  A  al.  +  +  a,  =  1 (mod  pi)}, 1  <  <  m. 

 3)  Pi +  •  .. +  pm maximal sets 
 n  P  ol(j  ,  pi  j,  2pi  +  j,  ,  k  —  pi  +  j) for  all  j 

    satisfying 0  <  j  <  pi — 1, 1  < i  < m. 

  The special case of k =  pm or k = 2  • p  (m  > 1,  p  >  2,p  : prime) is also investigated 

in [Lau84b] and  [Schr87]. 

  Another interesting maximal set is the set of special selfdual functions S for k not 

a prime number  [Lau84b] (for the case k prime number we have the simple result as 

described above [Sto85b]). All  2  1-17.1,  (a + 1) — 3 maximal sets of S are described as 

 {SnPol-yr,  S  n  Pol  pt  I  rET\  {1},  t  E  T\  {1,  k}}, 
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where T :=  I k 0 (mod x)},  := E Ek  EE 0 (mod  r)} and  Pt  {(x,  y) E 

 E?  I  y  —  x  0  (mod  t)}. 

  Some cases of selfdual functions are also described in  [Mar79]. 

  Compositions of partial k-valued functions are investigated in  [Fre66,Lou84,Rom80]. 

Define Pk,1  Un>l{f  If : E1},  1> k, with the operation of composition defined 

by: 

 fog— f  *g if W(g) ck — 1},                          f otherwise, 

where  W(g) denotes the range of g.  Pk,1 is a generalization of the partial k-valued logic. 

P2,1 has exactly the following 8 maximal sets [Lau77,Fre66]: 

 ff E P2,1  I  IW  (f  )1  5_1-11,  Pol*(0),  Pol*(1), 

 por  (0),poi*(oi),poi*(             1)10)001                             011 ) ' 
                   / 000111 \ 00011011 \ 

                   00110100110101 

                                                        , 

         Poi*Pol*                    01001101001101 ' 

                    011001 / 01100011  / 

where 

 Pol*p :=  ff E P2,1 
 (al,  •  •  • , ah)T E  Pn  (f  (al),  f(ah))T  E p U  ({0,...,1-1}h \  {0,1}hy}. 

The set P2,1 is being classified  [LMS87]. Besides, it is known that  P3,1, 1 > 3, has exactly 

58 maximal sets  ([Lau77], a slightly different number of the maximal sets is reported in 

 [Rom80]). 

  Define P3(2) :=  Un>iff(xi,  xn) E P3  IW  (f)I<  2}. P3(2) has exactly the follow-

ing 13 maximal sets [Fre66,Lau77]: 

 Un>iff I 3f0,..., fn E  P3  (2)(the set of unary functions) : 
 f(xi,  •  .  • ,  xn)  =  fo(fi.(xi)d- f2(x2)  +  •  •  .  fn(x,,,) mod  2)} 

and the classes P3(2)  fl Polp where p E 

        1(012001.)(012112 012220)(01201            012122 ' 012200)(012011' 01210)' 

      ( 01202 ) ( 01212 ) 0120102                         "(1 2)(           01220 ' 01221"(0 1),(0 2)  0121020  ' 
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                (0120121 0120212 I                0121012)'(0122021) 
  Define  P{0,1},{a,3}  :=  Un,m>iffTh'm  (f  n'm :  {0,1}n  x  {CO}m  —*  {0,1}}, a  E  {0,2}, and 
with a similar generalization of superposition.  P{o ,1},{„,3} has exactly 10 maximal sets 

for a = 0 and 21 maximal ones for a = 2 ([BBK73] also cf.  [Lau80]). The maximal sets 

for Pol (0) are also known  [Lau82a]. 

  Finding maximal sets for other subsets of Pk and under various modifications of com-

position are open problems. Among them we find part of automata theory  [Das81,Kud60], 
where some maximal sets are given. Uniform delay composition with unit-delay for 

P3 was solved in  [Noz70], and with positive-integer-delays for P3 in [Hik78] (30 and 

49 maximal sets). Composition with delay was also treated in the general case in 

 [MRR83,RoH83]. 
  The enumeration of Sheffer functions as well as c-Sheffer may be considered in many 

of the above cases (cf.  [Ros77]). For example, the number of n-ary 3-valued c-Sheffer 

functions is known only for n=2  [Muz75]. 

  Maximal rank of a base is an open problem in many cases. The problem is mentioned 

early in  Pab58,But601, especially for Pk. It is known that some closed subsets of Pk,  k> 

3 have an infinite base or no base [JaM59]. It is also known that for k  > 8 some Pk-

maximal sets have no finite basis [Mik86,Tar86]. 

  Classification and basis enumeration can be used to calculate the number of n-ary 

 bases  [StM86a,Wer42,Ku066,PeS68,Ber80,Ber83]. In many cases, this has not yet been 

done. The corresponding classifications and basis enumerations for symmetric functions 

are surveyed in  [StM8613]. The classification of P3 may be shortened if one uses relational 

calculation extensively as we had done for the maximal set  To in Section 6.5. 
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                     Appendix 1. Classes of P3. 

wt #no TLS  MI  M2  MO  U2  U0  Ul  B0B1B2  ToZ.  T2  TO  1  T12  T2  0 *no representative 
18 #1 111 111 111 111 111 111 *406  f8.14 (Sheffer) 
17 #2 111 111 111 111 111 110 *405  co-similar  of  f8.13 
17 #3 111 111 111 111 111 101 *404  a1-similar of f8.13 
17 #4 111 111 111 111 111 011 *403  f8.13 
17 #5 111 111 111 111 110 111 *397  a1-shnilar  of  f8.12 
17 #6 111 111 111 111 101 111 *402  cr2-similar  of  f8.12 
17 #7 111 111 111 111 011 111 *392 f8.12 
17 #8 111 111 110 111 111 111 *322  a2-simi1ar  of  f6.31 
17 #9 111 111 101 111 111 111 *236 f6.31 
17 #10 111 111 011 111 111 111 *279  a1-similar  of  f6.31 
17 #11 110 111 111 111 111 111 *86  f4.4 
16 #12 111 111 111 111 110 110 *396  a3-similar  of  f8.10 
16 #13 111 111 111 111 110 101 *394  a1-similar  of  f8.10 
16 #14 111 111 111 111 110 011 *395  a1-similar of  f8.11 
16 #15 111 111 111 111 101 110 *400  cr2-similar  of  f8.11 
16 #16 111 111 111 111 101 101 *401  (34-similar  of  f8.10 
16 #17 111 111 111 111 101 011 *399  cr2-similaz  of  /8.10 
16 #18 111 111 111 111 100 111 *375  f8.8 
16 #19 111 111 111  111 011 110 *391  a0-similar  of  f8.10 
16 #20 111 111 111 111 011 101 *390  f8.11 - 
16 #21 111 111 111 111 011 011 *389  f8.10 : 
16 #22 111 111 111 111  . 010 111 *387  o2-similar  of  f  8.8 
16 #23 111 111 111 111 001 111 *381  a1-similar  of  f8.8 
16 #24 111 111 111 110 110 111 *348  a1-similar  of-f7.9 
16 #25 111 111 111 101 101 111 *361  (3-2-similar  of  f7.9 
16 #26 111 111 111 011 011 111 *335  f7.9 
16 #27 111 111 110 111 111 110 *311  a2-similar  of  f  6.23 
16 #28 111 111 110 111 111 101 *319  a4-similar  of  f6.28 
16 #29 111 111 110 111 111 011 *316  a2-similar  of  f6.28 
16 #30 111 111 110 111 101 111 *321  v2-similar  of  f6.30 
16 #31 111 111 101 111 111 110 *233  a0-similar  of  f6.28 
16 #32 111 111 101 111 111 101 *225  f6.23 
16 #33 111 111 101 111 111 011 *230  f6.28 
16 #34 111 111 101 111 011 111 *235  f6.30 
16 #35 111 111 011 111 111 110 *276  a3-similar  of  f6.28 
16 #36 111 111 011 111 111 101 *273  a1-similar  of  f6.28 
16 #37 111 111 011 111 111 011 *268  a1-similar  of  f6.23 
16 #38 111 111 011 111 110 111 *278  a1-similar  of  f6.30 
16 #39 101 111 111 111 110 111 *83  al-similar  of  f4.1 
16 #40 101 111 111 111 101 111 *82  a2-similar  of  f4.1 
16 #41 101 111 111 111 011 111 *81  f4.1  =  x  +  2y 
16 #42 100 111 111 111 111 111 *84  f4.2  =  2x  +  2y  +1 
15 #43 111 111 111 111 110 100 *393  (3-1-similar  of  f8.9 
15 #44 111 111 111 111 101 001 *398  a2-similar  of  f8.9 
15 #45 111 111 111 111 100 110 *374  c0-similar  of  f8.6 
15 #46 111 111 111 111 100 101 *373  f8.7 
15 #47 111 111 111 111 100 011 *372  f8.6 
15 #48 111 111 111 111 011 010 *388  f8.9 
15 #49 111 111 111 111 010 110 *385  v2-similar  of  f8.7 
15 #50 111 111 111 111 010 101 *386  (3-4-similar of  f8.6 
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wt  no TLS  Ail  M2  MO  U2  U0  Ul  BO  B1  B2  TO  T1  T2  T0171272  0 *no representative 
15 #51 111 111 111 111 010 011 *384  a2-similar  of  f8.6 
15 #52 111 111 111 111 001 110 *380  0-3-similar  of  f8.6 
15 #53 111 111 111 111 001 101 *378  a1-similar  of  f8.6 
15 #54 111  111. 111 111 001 011 *379  a1-similar  of  f8.7 
15 #55 111 111 111 111 000 111 *369  f8.4 
15 #56 111 111 111 110 110 110 *346  a3-simi1ar  of  f7.7 
15 #57 111 111 111 110 110 101 *345  a1-similar  of  f7.7 
15 #58 111 111 111 110 110 011 *347  a1-similar  of  f7.8 
15 #59 111 111 111 101 101 110 *360  a2-similar of  f7.8 
15 #60 111 111 111 101 101 101 *359  (74-similar  of  f7.7 
15 #61 111 111 111 101 101 011 *358  a2-similar  of  f7.7 
15 #62 111 111 111 011 011 110 *333  a0-similar  of  f7.7 
15 #63 111 111 111 011 011 101 *334  f7.8 
15 #64 111 111 111 011 011 011 *332  f7.7 
15 #65 111 111 110 111 110 110 *306  a4-similar  of  f6.18 
15 #66 111 111 110 111 101 110 *310  a2-similar  of  f6.22 
15 #67 111 111  110 111 101 101 *318  mrsirnilar  of  f6.27 
15 #68 111 111 110 111 101 011 *315  a2-similar  of  f6.27 
15 #69 111 111 110 111 011 110 *299  a2-similar  of  f6.18 
15 #70 111 111 110 101 101  111 *320  (72-similar  of  f6.29 
15 #71 111 111 101 111 110 101 *220  a0-similar  of  f6.18 
15 #72 111 111 101 111 101 101 *213  f6.18 
15 #73 111 111 101 111 011 110 *232  c0-similar  of  f6.27 
15 #74 111 111 101 111 011 101 *224  f6.22 
15 #75 111 111 101 111 011 011 *229  f6.27 
15 #76 111 111 101 011 011 111 *234  f6.29 
15 #77 111 111 011 111 110 110 *275  a3-similar  of  f6.27 
15 #78 111 111 011 111 110 101 *272  a1-similar  of  f6.27 
15 #79 111 111 011 111 110 011 *267  a1-similar of  f6.22 
15 #80 111 111 011 111 101 011 *256  a1-similar  of  f6.18 
15 #81 111 111 011 111 011 011 *263  a3-similar  of  /6.18 
15 #82 111 111 011 110 110 111 *277  a1-similar  of  f6.29 
15 #83 000 111 111 111 111 111 *2  x+1,x+2 
14 #84 111 111 111  111 100 100 *371  a0-similar  of  f8.5 
14 #85 111 111 111 111 100 001 *370  f8.5 
14 #86 111 111 111 111 010 100 *383  (74-similar  of  f8.5 
14 #87 111 111 111 111 010 010 *382  (72-similar  of  f  8.5 
14 #88 111 111 111 111 001 010 *377  (73-similar  of  f8.5 
14 #89 111 111 111 111 001 001 *376  a1-similar of  f8.5 
14 #90 111 111 111 111 000 110 *368  a0-similar  of  f8.3 
14 #91 111 111 111 111 000 101 *367  a1-similar  of  f8.3 
14 #92 111 111 111 111 000 011 *365  f8.3 

 14 #93 111 111 111 110 110 100 *344  a1-similar  of  f7.6 
 14 #94 111 111 111 110 100 101 *340  a1-similar of  f7.5 
 14 #95 111 111 111 110 010 110 *343  (73-similar of  f7.5 
 14 #96 111 111 111 101 101 001 *357  a2-similar of  f7.6 
 14 #97 111 111 111 101 100 101 *356  a4-similar  of  f7.5 
 14 #98 111 111 111 101 001 011 *353  (72-similar  of  f7.5 

14 #99 111 111 111 011 011 010 *331  f7.6 
 14 #100 111 111 111 011 010 110 *330  a0-similar  of  f7.5 
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 wt  no TLS  Mi  M2  MO  U2  UO  U1  BO  B1  B2  TO  T1  T2  TO  1  T12  T2  0 *no representative 
14 #101 111 111 111 011 001 011 *327 f7.5 
14 #102 111 111 110 111 110 100 *308  a4-similar  of  f6.20 
14 #103 111 111 110 111 101 001 *313  a2-similar  of  f6.25 
14 #104 111 111 110 111 100 110 *302  a4-similar  of  f6.14 
14 #105 111 111 110 111 011 010 *301  a2-similar  of  f6.20 
14 #106 111 111 110 111 010 110 *292  a2-similar  of  f6.13 
14 #107 111 111 110 111 001 110 *295  o-2-similar  of  f  6.14 
14 #108 111 111 110 101 101 110 *309  a2-similar  of  f6.21 
14 #109 111 111 110 101 101 101 *317  a4-similar  of  f6.26 
14 #110 111 111 110 101 101 011 *314  o-2-similar  of  f6.26 
14 #111 111 111 101 111 110 100 *222  c0-similar  of  16.20 
14 #112 111 111 101 111 101 001 *215  f6.20 
14 #113 111 111 101 111 100 101 *206 f6.13 
14 #114 111 111 101 111 011 010 *227 f6.25 
14 #115 111 111 101 111 010 101 *216  cr0-similar of  f6.14 
14 #116 111 111 101 111 001 101 *209 f6.14 
14 #117 111 111 101 011 011 110 *231  cr0-similar  of  f6.26 
14 #118 111 111 101 011 011 101 *223  16.21 
14 #119 111 111 101 011 011 011 *228 16.26 
14 #120 111 111 011 111 110 100 *270  a1-similar  of  f6.25 
14 #121 111 111 011 111 101 001 *258  a1-similar  of  16.20 
14 #122 111 111 011 111 100 011 *252  a1-similar  of  f6.14 
14 #123 111 111 011 111 011 010 *265  a3-similar  of  f6.20 
14 #124 111 111 011 111 010 011 *259  o-3-similar  of  f6.14 
14 #125 111 111 011 111 001 011 *249  a1-similar  of  f6.13 
14 #126 111 111 011 110 110 110 *274  o-3-similar  of  f6.26 
14 #127 111 111 011 110 110 101 *271  a1-similar  of  f  6.26 
14 #128 111 111 011 110 110 011 *266  a1-similar  of  f6.21 
14 #129 111 110 111 111 100 110  *165  a3-similar  of  f5.8 
14 #130 111 110 111 111 100 011 *159  a2-similar  of  f5.8 
14  #131 111 101 111 111 001 110  *131  cr0-similar  of  f5.8 
14 #132 111 101 111 111 001 101 *137  o-4-similar  of  f5.8 
14 #133 111 011 111 111 010 101 *109  a1-similar  of  f5.8 
14 #134 111 011 111 111 010 011 *103 f5.8 
14 #135 110 111 111 111 000 111 *88  f  4.6 

 13 #136 111 111 111 111 000 100 *366  o-0-similar  of  f8.2 
 13 #137 111 111 111 111 000 010 *364  o-2-similar  of  f8.2 

13 #138 111 111 111 111 000 001 *363  f8.2 
 13 #139 111 111 111 110 100 100 *338  a1-similar  of  f7.3 

 13 #140 111 111 111 110 100 001 *339  cr1-similar  of  f7.4 
 13 #141 111 111 111 110 010 100 *341  o-3-similar  of  f7.3 
 13 #142 111 111 111 110 010 010 *342  a3-similar  of  f7.4 
 13 #143 111 111 111 101 100 100 *355  o-4-similar  of  f7.4 
 13 #144 111 111 111 101 100 001 *354  o-4-similar  of  f7.3 
 13 #145 111 111 111 101 001 010 *352  (72-similar  of  f7.4 
 13 #146 111 111 111 101 001 001 *351  a2-similar  of  f7.3 
 13 #147 111 111 111 011 010 100 *329  cr0-similar  of  f7.4 
 13 #148 111 111 111 011 010 010 *328  o-o-similar  of  f7.3 
 13 #149 111 111 111 011 001 010 *325 f7.3 

 13 #150 111 111 111 011 001 001 *326 f7.4 
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wt #no TLS  M1M2Mo  U2UoU1  Bo  B1  B  2  TO  21  T2  TO  1  T1  2  T2  0 *no representative 
13 #151 111 111 110 111 100 100 *305  o-4-similar  of  f6.17 
13 #152 111 111 110 111 010 100 *294  cr4-simi1ar  of  f6.12 
13 #153 111 111 110 111 010 010 *291  o2-similar  of  f6.12 
13 #154 111 111 110 111 001 010 *298  o2-similar  of  f6.17 
13 #155  111 111 110 111 000 110 *280  a2-similar  of  f6.4 
13 #156 111 111 110 110 110 100 *307  o4-similar  of  f6.19 
13 #157 111 111 110 101 101 001 *312  o2-similar  of  f6.24 
13 #158 111 111 110 011 011 010 *300  o2-similar  of  f6.19 
13 #159 111 111 101 111 100 100 *208  o0-similar  of  f6.12 
13 #160 111 111 101 111 100 001 *205  f6.12 
13 #161 111 111 101 111 010 100 *219  o0-similar  of  f6.17 
13 #162 111 111 101 111 001 001 *212  f6.17 
13 #163 111 111 101 111 000 101 *194 f6.4 
13 #164 111 111 101 110 110 100 *221  o0-similar  of  f6.19 
13 #165 111 111 101 101 101 001 *214  f6.19 
13 #166 111 111 101 011 011 010 *226  f6.24 
13 #167 111  111 011 111 100 001 *255  cri-similar  of  f6.17 
13 #168 111 111 011 111 010 010 *262  a3-similar  of  f6.17 
13 #169 111 111 011 111 001 010 *251  o-3-similar  of  f6.12 
13 #170 111 111 011 111 001 001 *248  a1-similar  of  f6.12 
13 #171 111 111 011 111 000 011 *237  a1-similar  of  f6.4 
13 #172 111 111 011 110 110 100 *269  cr1-similar  of  f6.24 
13 #173 111 111 011 101 101 001 *257  a1-similar  of  f6.19 
13 #174 111 111 011 011 011 010 *264  o-3-similar  of  f6.19 
13 #175 111 110 111 111 100 100 *163  o3-similar  of  f5.6 
13 #176 111 110 111 111 100 001 *157  o2-similar  of  f5.6 
13 #177 111 110 110 111 100 110 *164  a3-similar  of  f5.7 
13 #178 111 110 011 111 100 011 *158  o-2-similar  of  f5.7 
13 #179 111 101 111 111 001 010 *129  cr0-similar  of  f5.6 
13 #180 111 101 111 111 001 001 *135  a4-similar  of  f5.6 
13 #181 111 101 110 111 001 110 *130  ac-similar  of  f5.7 
13  #182 111 101 101 111 001 101  *136  0-4-similar  of  f5.7 
13 #183 111 011 111 111 010 100 *107  a1-similar  of  f5.6 
13 #184 111 011 111 111 010 010 *101 f5.6 
13 #185 111 011 101 111 010 101 *108  a1-similar  of  f5.7 
13 #186 111 011 011 111 010 011 *102 f5.7 
13 #187 100 111 111 111 000 111 *85  f4.3  =  2x  +  2y 
13 #188 011 111 110 010 111 110 *79  o0-similar  of  f3.13 
13 #189 011 111 101 100 111 101 *55  cr1-similar  of  f3.13 
13 #190 011 111 011 001 111 011 *31  f3.13 
12 #191 111 111 111 111 000 000 *362  f8.1 
12 #192 111 111 111 110 000 100 *337  arsimilar  of  f7.2 
12 #193 111 111 111 101 000 001 *350  a2-similar  of  f7.2 
12 #194 111 111 111 011 000 010 *324  f7.2 
12 #195 111 111 110 111 000 100 *282  o-2-similar  of  f6.6 
12 #196 111 111 110 111 000 010 *284  a4-similar  of  f6.6 
12 #197 111 111 110 110 100 100 *304  o4-similar  of  /6.16 
12 #198 111 111 110 110 010 100 *293  o4-similar  of  f6.11 
12 #199 111 111 110 101 100 100 *303  (74-similar  of  f6.15 

 12 #200 111 111 110 101 001 010 *296  o-2-similar  of  f6.15 
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wt #no TLS  Mi  M2  M0  U2  U0  U1  B0  B1  B2  TO  T1  T2  TO  1  T1  2  T2  0 *no representative 
12 #201 111 111 110 011 010 010 *290  c2-similar  of  f6.11 
12 #202 111 111 110 011 001 010 *297  o2-similar  of  f6.16 
12 #203 111 111 101 111 000 100 *196  f6.6 
12 #204 111 111 101 111 000 001 *198  go-similar  of  f6.6 
12 #205 111 111 101 110 100 100 *207  cro-similar  of  f6.11 
12 #206 111 111 101 110 010 100 *218  go-similar  of  f6.16 
12 #207 111 111 101 101 100 001 *204  f6.11 
12 #208 111 111 101 101 001 001 *211 16.16 
12 #209 111 111 101 011 010 100 *217  cro-similar  of  f6.15 
12 #210 111 111 101 011 001 001 *210 f6.15 
12 #211 111 111 100 110 110 100 *189  a1-similar  of  f6.3 
12 #212 111 111 011 111 000 010 *239  a1-simi1ar  of  f6.6 
12 #213 111 111 011 111 000 001 *241  o3-similar  of  f6.6 
12 #214 111 111 011 110 100 001 *253  o1-similar  of  f6.15 
12 #215 111 111 011 110 010 010 *260  o3-similar  of  f6.15 
12 #216 111 111 011 101 100 001 *254  a1-similar  of  f6.16 
12 #217 111 111 011 101 001 001 *247  cr1-simi1ar  of  f6.11 
12 #218 111 111 011 011 010 010 *261  o3-similar  of  f6.16 
12 #219 111 111 011 011 001 010 *250  o-3-similar  of  f6.11 
12 #220 111 111 010 011 011 010  *185  f6.3 
12 #221 111 111 001 101 101 001 *193  o-2-similar  of  f6.3 
12 #222 111 110 111 111 000 010 *172  o2-similar  of  f5.13 
12 #223 111 110 111 110 100 100  *161  o-3-simi1ar  of  f5.4 
12  #224 111 110 111 101 100 001 *155  o-2-simi1ar  of  f5.4 
12 #225 111 110 110 111 100 100 *162  0-3-similar of f5.5 
12 #226 111 110 011 111 100 001 *156  o2-similar  of  f5.5 
12 #227 111 101 111 111 000 100 *144  cr0-similar  of  f5.13 
12 #228 111 101 111 101 001 001 *133  o4-similar  of  f5.4 
12 #229 111 101 111 011 001 010 *127  cro-simi1ar  of  f5.4 
12 #230 111 101 110 111 001 010  *128  c0-similar  of  f5.5 
12 #231 111 101 101 111 001 001 *134  0.4-similar  of  f5.5 
12 #232 111 011 111 111 000 001 *116 f5.13 
12 #233 111 011 111 110 010 100 *105  a1-similar  of  f5.4 
12 #234 111 011 111 011 010 010 *99  f5.4 
12 #235 111 011 101 111 010 100 *106  a1-similar  of  f5.5 
12 #236 111 011 011 111 010 010 *100  f5.5 
12 #237 011 111 110 010 110 110 *64  o3-similar  of  f3.4 
12 #238 011 111 110 010 011 110 *60  c0-similar  of  f3.4 
12 #239 011 111 101 100 110 101 *36  a1-similar  of  f3.4 
12 #240 011 111 101 100 101 101  *40  o4-similar  of  f3.4 
12 #241 011 111 100 100 111 101 *56  o4-similar  of  f3.12 
12 #242 011 111 100 010 111 110 *78  jo  =  cro-similar  of  f3.12 
12 #243 011 111 011 001 101 011 *16  o2-similar of f3.4 
12 #244 011 111 011 001 011 011 *12 f3.4 
12 #245 011 111 010 010 111 110 *80  o3-similar  of  f3.12 
12 #246 011 111 010 001 111 011 *32  o2-similar  of  f3.12 
12 #247 011 111 001 100 111 101 *54  a1-similar  of  f3.12 
12 #248 011 111 001 001 111 011 *30  f3.12  =  sioo 
12 #249 001 111 110 101 101 110 *5  2x  +  2  =  02-,  mrsim. 2x 
12 #250 001 111 101 011 011 101 *3 2x 
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wt #no TLS  Mi  M2  MO  U2  UO  Ul  BO  B1  B2  TO  T1  T2  To  1112  T2  0  *110 representative  
12 #251 001 111 011 110 110 011 *4  2x  +  1  =  al-,  cro-sim. 2x 
11 #252 111 111 111 110 000 000 *336  a1-similar  of  /7.1 
11 #253 111 111 111 101 000 000 *349  a2-similar  of  f7.1 
11 #254 111 111 111 011 000 000 *323  f7.1 
11 #255 111 111 110 111 000 000 *289  (72-similar  of  f6.10 
11 #256 111 111 110 110 000 100 *281  (72-similar  of  f6.5 
11 #257 111 111 110 011 000 010 *283  c4-similar  of  f6.5 
11 #258 111 111 101 111 000 000 *203  f6.10 
11 #259 111 111 101 110 000 100 *195 f6.5 
11 #260 111 111 101 101 000 001 *197  cro-similar  of  f6.5 
11 #261 111 111 100 110 100 100 *187  a1-similar  of  f6.2 
11 #262 111 111 100 110 010 100 *188  c3-similar  of  f6.2 
11 #263 111 111 011 111 000 000 *246  a1-similar  of  f6.10 
11 #264 111 111 011 101 000 001 *240  v3-similar  of  f6.5 
11 #265 111 111 011 011 000 010 *238  a1-similar  of  f6.5 
11 #266 111 111 010 011 010 010 *184  cro-similar  of  f6.2 
11 #267 111 111 010 011  001 010 *183  f6.2 
11 #268 111 111 001 101 100 001 *192  o4-similar  of  f6.2 
11 #269 111 111 001 101 001 001 *191  cr2-simi1ar  of  f6.2 
11 #270 111 110 111 111 000 000  *181  (72-similar  of  f5.19 
11 #271 111 110 111 011 000 010  *169  Q2-similar  of  f5.11 
11 #272 111 110 110 111 000 010 *171  (73-similar  of  f5.12 
11 #273 111 110 110 110 100 100 *160  cr3-similar  of  f5.3 
11 #274 111 110 011 111 000 010 *170  o2-similar  of  f5.12 
11 #275 111 110 011 101 100 001  *154  v2-similar  of  f5.3 
11 #276 111 101 111 111 000 000  *153  a0-similar  of  f5.19 
11 #277 111 101 111 110 000 100 *141  a0-similar  of  f5.11 
11 #278 111 101 110 111 000 100 *142  cr0-similar  of  f5.12 
11 #279 111 101 110 011 001 010  *126  a0-similar  of  f5.3 
11 #280 111 101 101 111 000 100 *143  v4-similar  of  f5.12 
11 #281 111 101 101 101 001 001  *132  v4-similar  of  f5.3 
11 #282 111 011 111 111 000 000  *125  f5.19 
11 #283 111 011 111 101 000 001 *113  f5.11 
11 #284 111 011 101 111 000 001 *115  o-1-simi1ar  of  f5.12 
11 #285 111 011 101 110 010 100 *104  a1-similar  of  f5.3 
11 #286 111 011 011 111 000 001 *114 f5.12 
11 #287 111 011 011 011 010 010 *98  f5.3 
11 #288 110 111 111 111 000 000 *87  f4.5 
11 #289 011 111 110 010 110 100 *63  T3-similar  of  f3.3 
11 #290 011 111 110 010 011 010 *59  a0-similar  of  f3.3 
11 #291 011 111 110 010 010 110 *72  g0-similar  of  f3.11 
11 #292 011 111 101 100 110 100 *35  a1-similar  of  f3.3 
11 #293 011 111 101 100 101 001 *39  a4-similar  of  f3.3 
11 #294 011 111 101 100 100 101 *48  a1-similar  of  f3.11 
11 #295 011 111 100 100 101 101 *38  mrsimilar  of  f3.2 
11 #296 011 111 100 010 011 110 *58  cro-similar  of  f3.2 
11 #297 011 111 011 001 101 001 *15  v2-similar  of  f3.3 
11 #298 011 111 011 001 011 010  *11  f3.3 
11 #299 011 111 011 001 001 011 *24  f3.11 
11 #300 011 111 010 010 110 110 *62  o3-similar  of  f3.2 
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 wt  no TLS  M1  M2  MO  U2  UO  Ul  110111  B2  101  '1.-1  '2  1011  i  2  1  0 *no representative 
11 #301 011 111 010 001 101 011  *14  cr2-simi1ar  of  f3.2 
11 #302 011 111 001 100 110 101 *34  al-similar  of  f3.2 
11 #303 011 111 001 001 011 011 *10  f3.2 
11 #304 011 110 110 010 110 110 *66  c3-similar  of  f3.5 
11 #305 011 110 011 001 101 011 *18  v2-similar  of  f3.5 
11 #306 011 101 110 010 011 110 *65  ji =  co-similar of  f3.5 
11 #307 011 101 101 100 101 101 *42  c4-similar  of  f3.5 
11 #308 011 011 101 100 110 101 *41  o-i-similar  of  f3.5 
11 #309 011 011 011 001 011 011 *17  f3.5  =  sow. 
10 #310 111 111 110 110 000 000 *288  c4-similar  of  f6.9 
10 #311 111 111 110 101 000 000 *285  c2-similar  of  f6.7 
10 #312 111 111 110 011 000 000 *287  cr2-simi1ar  of  f6.9 
10 #313 111 111 101 110 000 000 *202  c0-similar of  f6.9 
10 #314 111 111 101 101 000 000 *201  f6.9 
10 #315 111 111 101 011 000 000 *199  f6.7 
10 #316 111 111 100 110 000 100 *186  a1-similar  of  f6.1 
10 #317 111 111 011 110 000 000 *242  a1-simi1ar  of  f6.7 
10 #318 111 111 011 101 000 000 *244  al-similar  of  f6.9 
10 #319 111 111 011 011 000 000 *245  v3-similar of  f6.9 
10 #320 111 111 010 011 000 010 *182  f6.1 
10 #321 111 111 001 101 000 001 *190  v2-similar  of  f6.1 
10 #322 111 110 111 110 000 000 *180  v3-similar  of  f5.18 
10 #323 111 110 111 101 000 000 *179  v2-similar  of  f5.18 
10 #324 111 110 110 111 000 000 *178  cr3-simi1ar  of  f5.17 
10 #325 111 110 110 011 000 010  *168  cr3-similar of  f5.10 
10 #326 111 110 011 111 000 000 *176  c2-similar  of  f5.17 
10 #327 111 110 011 011 000 010  *167  cr2-similar  of  f5.10 
10 #328 111 101 111 101 000 000  *152  c4-simi1ar of  f5.18 
10 #329 111 101 111 011 000 000 *151  c0-similar  of  f5.18 
10 #330 111 101 110 111 000 000 *148  c0-similar of f5.17 
10 #331 111 101 110 110 000 100 *139  c0-similar  of  f5.10 
10 #332 111 101 101 111 000 000 *150  a4-similar  of  f5.17 
10 #333 111 101 101 110 000 100 *140  v4-similar  of  f5.10 
10 #334 111 011 111 110 000 000 *124  a1-similar  of  f5.18 
10 #335 111 011 111 011 000 000 *123 f5.18 
10 #336 111 011 101 111 000 000 *122  arsimilar  of  f5.17 
10 #337 111 011 101 101 000 001 *112  cr1-similar  of  f5.10 
10 #338 111 011 011 111 000 000 *120 f5.17 
10 #339 111 011 011 101 000 001 *111  f5.10 
10 #340 011 111 110 010 010 100 *75  cr3-similar  of  f3.8 
10 #341 011 111 110 010 010 010 *69  c0-similar  of  f3.8 
10 #342 011 111 101 100 100 100 *45  a1-similar  of  f3.8 
10 #343 011 111 101 100 100 001 *51  c4-similar of  f3.8 
10 #344 011 111 100 100 110 100 *33  a1-similar  of  f3.1 
10 #345 011 111 100 010 110 100 *61  o-3-similar  of  f3.1 
10 #346 011 111 011 001 001 010 *21  f3.8 
10 #347 011 111 011 001 001 001 *27  c2-similar  of  f3.8 
10 #348 011 111 010 010 011 010 *57  cro-similar  of  f3.1 
10 #349 011 111 010 001 011 010 *9  f3.1 
10 #350 011 111 001 100 101 001 *37  c4-similar  of  f3.1 
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 wt #no TLS  Mi  M2  MO  U2  U0  U1  BO  B1  B2  TO  T1  T2  TO1  TI.  2  T2  0 *no representative 
10 #351 011 111 001 001 101 001 *13  cr2-simi1ar  of  f3.1 
9 #352 111 111 110 010 000 000 *286  a2-similar  of  f6.8 
9 #353 111 111 101 100 000 000 *200  f6.8 
9 #354 111 111 011 001 000 000 *243  cr1-simi1ar  of  f6.8 
9 #355 111 110 110 110 000 000 *177  cr3-similar  of  f5.16 
9 #356 111 110 011 101 000 000 *175  v2-similar  of  f5.16 
9 #357 111 110 010 011 000 010 *166  a2-similar  of  f5.9 
9 #358 111 101 110 011 000 000 *147  o-o-similar  of  f5.16 
9 #359 111 101 101 101 000 000 *149  a4-similar  of  f5.16 
9 #360 111 101 100 110 000 100 *138  ao-similar  of  f5.9 
9 #361 111 011 101 110 000 000 *121  a1-similar  of  f5.16 
9 #362 111 011 011 011 000 000 *119  f5.16 
9 #363 111 011 001 101 000 001 *110  f5.9 
9 #364 011 111 100 100 100 100 *43  al-similar of  f3.6 
9 #365 011 111 100 010 010 100 *73  a3-similar  of  f3.6 
9 #366 011 111 010 010 010 010 *67  °o-similar  of  f3.6 
9 #367 011 111 010 001 001 010 *19  f3.6 
9 #368 011 111 001 100 100 001 *49  o-4-similar  of  f3.6 
9 #369 011 111 001 001 001 001 *25  a2-simi1ar  of  f3.6 
9 #370 011 110 110 010 010 010 *70  ao-similar  of  f3.9 
9 #371 011 110 101 100 100 100 *47  a1-similar  of  f3.10 
9 #372 011 110 101 100 100 001 *53  a4-similar  of  f3.10 
9 #373 011 110 011 001 001 010 *22  f3.9 
9 #374 011 101 110 010 010 100 *76  a3-similar  of  f3.9 
9 #375 011 101 101 100 100 100 *46  al-similar of  f3.9 
9 #376 011 101 011 001 001 010 *23  f3.10 
9 #377 011 101 011 001 001 001 *29  a2-similar  of  f3.10 
9 #378 011 011 110 010 010 100 *77  a3-similar  of  f3.10 
9 #379 011 011 110 010 010 010 *71  co-similar  of  f3.10 
9 #380 011 011 101 100 100 001 *52  cr4-simi1ar  of  f3.9 
9 #381 011 011 011 001 001 001 *28  o-2-simi1ar  of  f3.9 
8 #382 111 110 101 100 000 000 *174  cr2-simi1ar  of  f5.15 
8 #383 111 110 010 011 000 000 *173  cr2-simi1ar  of  f5.14 
8 #384 111 101 100 110 000 000 *145  °o-similar  of  f5.14 
8 #385 111 101 011 001 000 000 *146  ao-similar  of  f5.15 
8 #386 111 100 110 101 000 000 *97  a2-similar  of  f5.2 
8 #387 111 011 110 010 000 000 *118 f5.15 
8 #388 111 011 001 101 000 000 *117 f5.14 
8 #389 111 010 011 110 000 000 *94  cri-similar  of  f5.2 
8 #390 111 001 101 011 000 000 *91  f5.2 
7 #391 011 100 100 100 100 100 *44  al-similar of  f3.7 
7 #392 011 100 010 001 001 010 *20 f3.7 = sow 
7 #393 011 010 010 010 010 010 *68  j2  =  co-similar  of  f3.7 
7 #394 011 010 001 100 100 001 *50 cr4-similar of  f3.7 
7 #395 011 001 100 010 010 100 *74  a3-similar of  f3.7 
7 #396 011 001 001 001 001 001 *26 cr2-similar of  f3.7 
6  #397 111 100 100 100 000 000 *96  a4-similar of  f5.1 
6 #398 111 100 010 001 000 000 *95  a2-similar of  f5.1 
6  #399 111 010 010 010 000 000 *93  a3-similar  of  f5.1 
6 #400 111 010 001 100 000 000 *92  al-similar of  f5.1 
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wt #no TLS  M1.M2Mo  U2UoU1  BoB1B2  T0ZT2  To1T12T20 *no representative 
6 #401 111 001 100 010 000 000 *90  alp-similar  of  f5.1 
6 #402 111 001 001 001 000 000 *89  f5.1  =  min(x,  y) 
4 #403 001 000 000 000 110 100 *8 2 =  cri-,  o3-similar of 0 
4 #404 001 000 000 000 101 001 *7 1 =  cr2-,  cr4-similar of 0 
4 #405 001 000 000 000 011 010 *6 0 (constant) 
0 #406 000 000 000 000 000 000 *1 x (projection functions)
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        Appendix 2. Representatives of classes of P3  (  f3.1-f 8.14). 

              f3.5  0 1 2 f3.7 0 1 2  f3.12  I 0 1 2  
 f(x)  0 0 1  f(x) 0 1 0  f(x)  I 1 0 0 

 f  \xy 00 01 02 10 11 12 20 21 22   f  \  xy 00 01 02 10 11 12 20 21 22  
f3.1 0 0 0 1 0 1 0 0 0                           f6.16 0 1 1 1 1 2 1 2 1 f3.2 0 1 1 0 0 0 0 0 0                           f6.17 0 1 1 0 1 2 0 2 1 f3.3 0 0 0 0 0 1 0 1 0  f6.18 2 2 1 0 1 2 0 2 1 f3.4 0 0 1 0 0 0 1 0 0  f6.19 1 1 1 0 1 2 0 1 1  f3.8 0 1 0 0 1 1 0 0 0  f6.20 1 0 0 1 1 2 2 1 1 f3.9 0 1 0 1 1 0 0 0 0  f6.21 0 0 0 0 2 2 0 1 1  f3.10 0 1 0 0 1 1 0 1 0  f6.22 0 0 0 2 2 2 1 2 1  f3.11 0 0 1 0 1 0 0 0 0  f6.23 2 1 2 0 2 1 0 2 1  f3.13 1 1 0 1 0 0 0 0 0  f6.24 0 1 2 0 0 0 0 0 0  f4.1 0 2 1 1 0 2 2 1 0                           f6.25 0 1 2 1 0 0 2 0 0 f4.2 1 0 2 0 2 1 2 1 0  f6.27 0 1 2 1 0 0 1 0 0  f4.3 0 2 1 2 1 0 1 0 2  f6.28 1 1 2 1 0 0 1 0 0 f4.4 1 0 0 1 2 1 2 2 0  f6.29 0 2 1 0 0 0 0 0 0 f4.5 0 0 2 0 1 1 2 1 2  f6.30 0 2 1 2 0 0 1 0 0 f4.6 0 0 1 2 1 1 2 0 2                           f6.31 2 2 1 2 0 0 1 0 0  f5.1 0 0 0 0 1 1 0 1 2  f7.2 0 0 2 0 1 0 0 1 2 f5.2 0 0 0 0 1 1 0 2 2  f7.3 0 1 0 0 1 2 0 0 0 f5.3 0 0 0 0 0 1 0 1 2  f7.4 0 0 0 0 1 2 1 1 1 f5.4 0 0 0 0 0 1 0 2 2  f7.5 0 0 1 1 1 0 0 2 1 f5.7 0 0 1 0 0 1 1 1 2  f7.6 0 0 0 0 0 1 0 2 0 f5.8 0 0 1 0 0 1 0 2 2  f7.7 0 0 0 0 0 2 1 1 1 f5.9 0 1 1 1 1 1 1 1 2  f7.8 0 0 1 0 2 1 0 1 1  f5.10 0 0 1 0 1 1 1 1 2  f7.9 0 2 1 0 0 1 0 2 0 f5.11 0 0 1 1 1 1 1 2 2  18.1 0 1 0 0 1 2 0 2 2  f5.12 0 1 1 0 1 1 2 2 2 

 f5.13 0 0 1 0 1 2 1 2 2f8.2 0 0 1 1 1 2 0 1 2 
f5.15 0 0 0 0 1 2 2 2 2 f8.3 0 0 1 1 1 0 1 2 2 
f5.16 0 0 0 0 1 1 2 2 2f8.4 0 1 1 2 1 0 0 1 2                          f 
f6.2 0 0 2 0 1 2 0 0 0f8.5 1 0 1 0 1 1 0 2 2                          f 
f6.3 0 0 0 1 0 1 2 2 0f8.6 1 0 0 0 1 0 1 2 2                          f 
f6.4 0 2 2 2 1 1 1 1 28.7 1 0 1 2 1 1 0 2 2                          f 

 16.5 0 2 2 1 1 2 2 2 2f8.8 2 0 1 0 1 0 1 0 2 
f6.10 0 0 0 1 1 2 2 1 2f8.9 0 0 2 0 0 1 2 2 0                         f 
f6.11 1 0 0 1 1 1 2 1 2f8.10 0 1 1 0 0 2 1 2 0                         f 
f6.12 1 0 0 1 1 2 2 1 28.11 0 0 1 0 2 2 0 2 1                         f 
f6.13 2 2 1 0 1 2 0 2 28.12 0 2 1 1 0 2 1 1 0                         f 
f6.14 0 2 1 2 1 1 1 1 18.13 1 1 0 1 0 2 0 2 0                         f 
f6.15 0 0 0 0 1 2 0 2 18.14 1 0 1 0 2 0 1 0 0 
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         Representatives of classes of P3 (continued)  f3.6—f 7.1 

 f3.6 00 01 10 11 12 21 22 20 02  f5.5 00 01 10 11 12 21 22 20 02  
 0  0  1  0  1  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0 
 1  1  0  1  1  1  0  1  1  1  1  0  0  0  0  1  1  1  1  1 
 2  0  1  0  1  0  1  0  0  0  2  0  0  1  1  2  2  2  2  2 

 f5.6 00 01 10 11 12 21 22 20 02 15.14 00 01 10 11 12 21 22 20 02  
 0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  1  1  2  0  0 
 1  0  0  0  0  1  1  1  1  1  1  1  1  1  1  1  1  2  1  1 
 2  0  1  1  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2 

 f5.17 00 01 10 11 12 21 22 20 02  f5.18 00 01 10 11 12 21 22 20 02  
 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 
 1  0  1  0  1  1  1  1  0  1  1  0  0  0  1  1  2  2  0  0 
 2 0 1 0 1 2 2  .2 2 2 2 0 0 2 2 2 2 2 2 2 

15.19 00 01 10 11 12  21- 22 20 02  f6.1 00 01 10 11 12 21 22 20 02  
 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  2  2  2  0 
 1  0  0  0  1  1  1  2  1  0  1  0  0  1  1  1  2  2  2  0 
 2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  0  2  0  2 

 f6.6 00 01 10 11 12 21 22 20 02  f6.7 00 01 10 11 12 21 22 20 02  
 0  0  2  0  2  1  1  2  0  2  0  0  0  0  0  0  0  0  0  0 
 1  1  1  1  1  1  1  1  1  1  1  0  0  0  1  2  2  2  0  0 
 2  2  2  2  2  2  2  2  2  2  2  0  0  0  1  1  2  2  0  0 

f6.8 00 01 10 11 12 21 22 20 02 f6.9 00 01 10 11 12 21 22 20 02 
 0  0  1  1  1  1  1  2  2  2  0  0  0  1  1  1  1  2  2  0 
 1  1  1  1  1  1  2  1  1  1  1  1  1  1  1  1  2  1  1  1 
 2  2  1  1  1  2  1  2  2  2  2  2  1  1  1  2  1  2  2  2 

f6.26 00 01 10 11 12 21 22 20 02 f7.1 00 01 10 11 12 21 22 20 02  
 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0 
  1 0 1 0 0 0 0 0 0 2  .1 0 0 1 1 1 2 1 0 0 
 2  0  2  0  0  0  0  0  0  1  2  0  0  0  2  1  1  2  0  0 
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                Appendix 3. List of basic inclusions in P3. 

Lemma 5.1.3. 
               M1  M0  C  U2,  M2  M1  C Uo, and  MoM2  C 

Corollary 5.1.1. 
 M1  M2  MO  C  U2  U0  Ul  • 

Lemma 5.1.4. 
 U2UoU1  C  M1  M2  MO  • 

Note 5.1.1. 
 D(0,1)U2Uo  C  MI, (5.4) 

 D(2,0)U2U1  C M1, (5.5) 
 D(0,1)UoU1  C  Mo, (5.6) 
 D(0,1)U1U0  C M2. (5.7) 

 D(0,  1)UoUi =  {0,1}  ,D(1,2)U1U2 =  {1,2}  and  D(2,0)U2Uo  =  {2,0}. 

Lemma 5.1.5. 

 M1M2  C  Bo,  M2Mo  C B1 and  MoMi  C  B2  • 

Corollary 5.1.2. 

 MoMi  M2  C  BO  B1  B2  • 

Lemma 5.1.6. 

                   U2  Up  C  B1,  U0  U1CB2andU1U2CB0. 

Corollary 5.1.3. 

 UoUi  U2  C BOB1B2. 

Lemma 5.1.7. 

 B0B1  C  U2,  B2  C Uo and B2B0  C U1. 

Corollary 5.1.4. 

 BoBi  B2  C  U0  Ul  U2  • 

Theorem 5.1.4 

         K =  Molt11212 =  BoB1B2 =  UorliU2 =  {0,1,2,  xi  1,2,•  •  •)}. 

Lemma 5.1.8. 
 To1T12  C T1,  Ti2T2o  C T2 and  T20To1  C  To. 

Corollary 5.1.5. 
 Z17122120  C  ToT1T2. 

Lemma 5.1.9. 
 M1UM2UM0  C  TO  1  U  T1  2  U  T2  0  • 
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Note 5.1.2. 
 UoUU1UU2  g  To1z2T20, 

 Bo  u  B1  u  B2  T01712120- 

Lemma 5.1.10. 

 BoBi  C  T01,  MoMi  C  Tot except constant function f = 2, 
 B1B2 C  T12, M1M2  C T12 except constant function f = 0, 
          B2B0  C  T01,  M2M0  C  T20 except constant function f  =  1. 

Corollary 5.1.6 (Lemma 5.1.11). 
 Uo  = M2 on  D(0,  1)M1 (5.11) 

            U0 =  M1,  U1 = M0 on  D(0,  1)M2 (5.9), (5.12) 
         U1  = M2 on  D(0,  1)M0 (5.13) 
         U1 =  MO on  D(1,  2)M2 (5.14) 
            •= M2, U2 = M1 on  D(1,  2)Mo (5.15) 
         U2 =  MO on  D(1,  2)M1 (5.16) 
         U2  =M1 on D(2, 0)M0 (5.17) 
            U2 =  M0,  UO = M2 on D(2, 0)M1 (5.18), (5.18) 
          U0 =  M1 on  D(2,  0)M2. (5.19) 

  Let  Pa  :=  E  e) and f is onto} and  D'(0,  1) :=  D(0,  1) \  {0,  1}, D'(1, 2)  := 
D(1, 2) \ {1, 2}, D'(2, 0) := D(2, 0) \ {2,  0}. Let D := P3 \  D(0,1)U D(1, 2) U D(2, 0). 
Lemma 5.3.1. 

 D'(0,  1) C S. 

Corollary 5.3.1. 
 D  c  75. 

Corollary 5.3.2. 
                   TS =  {xi,  xi  +  1,  xi  + 2 (i =  1,2,...)}. 

Lemma 5.3.2. 

 D'(0,  1)  C  L. 

Corollary 5.3.2. 

 D\{0,1,2}  c  T. 

Corollary 5.3.4. 

                      TL =  41110+  {0,1,2}. 

Lemma 5.3.5. 

 IY(0,1)U0rr1  C  T20. 

Lemma 5.4.3. 

 TS  C  MUB, where  M = TF10/171M2,  U =  710[7172, and  t = .130N1732. 
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Lemma 5.4.4. 
 SToT1T2  C To1T12T20. 

Lemma 5.4.5. 
 TLC  To1T12T20. 

 Let La :=  If  If =  co  +  E  cixi and  E:L/ = a} and Lab :=  Ulf E La and  f(0) = co = 
b} (La =  Lao + Lai + La2). 

Lemma 5.4.7. 

 LS  =  L1. 

Lemma 5.4.8. 

                      1) Loo + L20  C  T0T1T2, 
                      2) L01 + L22  C  T0T1T2, 
 3)  L02  +  L21  C  TOT1T2• 

Lemma 5.4.9. 
                                TL C/1-4-'. 

Lemma 5.4.10. 
 TL  C  O. 

Lemma 5.4.11. 
 TL  C  B. 

Lemma 5.5.1. 
 1)  MqT  C  TpT,., 

                          2)  MqTpTg,  C  TN  , 
 3)  MqTql;  C  Tv.. 

Corollary 5.5.1. 
                       M1M2T C  T0T1T2To1li2T20. 

Corollary 5.5.2. 
                      U2 = B1 and U1 = B2 in  M1M2T. 

Lemma 5.5.8. 
 B1T20M1  C U2U0. 

Lemma 5.5.9. 
                U1  C7271,  U2  C  T32  and  U0  C  F0  in  MiM2Mo. 

Lemma 5.5.10.                     -
-troBiR2 =  B2B0R1 in  M1M2M0T20. 

Lemma 5.5.11. 
 U1  C  B2B0  in  M1. 
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Note 5.5.2. 
 B2B0 =  Ui in M1. 

Lemma 5.6.1. 
 U2U1  C  ToiT2oToBo• 

Lemma 5.6.3. 
 MoU2U1  C  T12. 

Lemma 5.6.4. 
 U2712  C 

 Corollary 5.6.1. 
                        U2U1DT12  C 

Lemma 5.6.6. 

 UrTpqTp7.17  c Tip, 
 urTpqTy.75  c Bq. 

Lemma 5.6.7. 
 TpTpq  Cffp. 

Corollary 5.6.3. 
 TpTqZ.  C 

Lemma 5.6.8. 
                            TpTpqr5cT-tp rT3p 

Lemma 5.6.9. 
 T  pT  gT  rTpq  C  B. 

Lemma 5.6.10. 
 Tpg  Urr  C  T  pT  g 

Lemma 5.6.11.                                 -
2--;17 

Lemma 5.7.1. 
 Bpri  C  Tp. 

Lemma 5.7.2. 
                                  TpBq  C Tpq. 

                                    201




