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Abstract

Let P, be the set of k-valued logical functions. The functions in a closed subset F' of P
may be classified by their membership in the maximal subsets of F. This also divides
all its bases into finite equivalence classes. This thesis presents classifications and basis
enumerations in the following cases: various functional constructions in P,, the set Ps
and its several maximal sets, the set Piy; of functions which map cartesian power of
k-element set {0,1,...,k — 1} into the two values {0,1}, and its 4 out of all 5 families
of maximal sets.

The formulas for the numbers of n-ary Sheffer functions, functions Sheffer with con-
stants, symmetric Sheffer functions, and symmetric functions Sheffer with constants,
in various functional constructions of P,, are given. The formulas for the number of
bases consisting solely of n-ary symmetric functions in each of the constructions are also
given.

Applications of a subset generating algorithm to efficient base enumeration, knapsack
and minimal covering problems are also described.
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Introduction

In the synthesis of large and complicated electronic instruments such as computers, a
small number of basic primitives are used to compose logic networks in the instruments.
These basic primitives should be, in general, able to compose an arbitrary network.
For example, the NAND primitive is commonly used as one of such primitives. Let us
see an example. A network f(g(z,y,2),y, h(y,2)) is composed of three-primitives f,g
and A and has three inputs z,y and z. Note that neither delay nor synchronization
is considered in this example, and no feed-back connection is allowed (a circuit with
this restriction is called a combinatorial circuit). A set of basic primitives which can
compose any logical network is called a complete set (or a base) of logical functions.
There is a variety of compositions depending on the methods of constructihg a network
from gates, or on restrictions imposed by real circuit requirements. Accordingly, there
are many notions for complete sets.

| Recently, the concept of many-valued logic has been found to be useful in many
areas, such as diagnosis of multiprocessor systems [But86], software (e.g. decision tables
[Miy85b]), pattern recognition [Mic77], signal processing [LiR77], and optoelectronics
[Hur86).

Main expectation in practice for many-valued logic in contrast to two-valued logic
exists in its information density achievable without inc‘reasing the size or complexity
of devices. It is well-known that one of the crucial problems in increasing information
~deﬁsity in VLSI is the “pin” and “line” limitations associated with it (i.e. too large
numbers- of pins and lines to be arranged in a limited area). Many-valued logic allows
each input pin to accept and each output pin to deliver more information, thereby
making the total number of pins required in an integrated circuit chip much less than
the case of binary elements. This eventually extends the line limitation, because the
line density can be kept less in VLSI. A serious effort is being done for developing
optical three-valued devices [WIS86a]. Optical devices are .advantageous since they can
avoid “interconnection delay” limitation; as the lines become very thin, their resistance
increases and the propagation of voltage becomes delayed, so that this eventually limits
the speed of VLSI [GLK84].

The synthesis problem of network can be divided into three major problems. The



first one is to find an efficient criterion, completeness criterion, to determine whether
a given set of functions is complete or not. The second one is to enumerate all bases.
Finally, the third one is to investigate an optimum construction of a network from a
given base. This thesis is mainly devoted to the second problem, and especially, we are
interested in many-valued cases. To be precise, we treat two-valued, three-valued, and
some of general k-valued cases. The enumeration of bases is useful when one needs to
select an appropriate base. Such a situation often arises When by a specific device some
logical functions are difficult to implement while others are easy. The selection of a
simple, reliable and economic base implementable by physical devices is a fundamental
problem in the construction of networks.

Historically, the completeness problem about Boolean functions was first studied.
Although several complete systems were known earlier, a general and most natural cri-
terion is expressed in terms of so-called precomplete or mazimalsets. Such completeness
criterion was given first by Post in [Pos21}, which has been rediscovered many times,
cf. [Jab52,INN63]. As the first step toward many-valued logic, Jablonskij gave the
completeness criterion for 3-valued logic in [Jab58]. For general k-valued logic, it was
given by Rosenberg [Ros65]. The criterion consists of a list of all maximal sets. Let Py
be the set of all k-valued logical functions. There are 5 and 18 maximal sets in P, and
Ps, respectively, and 6 families of them in P;. Some other studies of the completeness
problem can be seen in [Mal76,Ros77,Pok79,Lau84b).

Further in [Jab52] Jablonskij showed a straightforward method for classifying the
whole functions of P, into nonempty equivalence classes in order to determine all its
bases (nonredundant complete sets): one has to investigate the intersections of the
partitions by H; and P, \ H;, where H; (1 <2 < m) are P,-maximal sets. This also
divides all its bases into finite equivalence classes. This was done independently in
[INN63] and [Krn65). It is shown that P; is divided into 15 classes [J ab52), and there
are 42 classes of bases in P, [INN63]. It is also shown that the maximal number of
elements of a base of P; is 4 [Jab52]. The above classification is valid provided the
considered set has a finite base.

Thus the classification and the basis enumeration became the second step of the

functional completeness theory following the completeness criterion. However, this is



often not so simple because of three reasons. Firstly, the number m of the maximal sets
is usually rather large. The possible classes are only 2° = 32 for m = 5 (P, case), while
for m = 18 (P; case) it is 2'® = 262144, and the number m grows very rapidly when &
increases. The second reason is that the descriptions of maximal sets are usually not
easy to handle. Owing to the development of many-valued logic algebras we can now
describe most maximal sets in terms of relations which the functions in the maximal
sets “preserve”. However, the relations are often complex. Lastly, the enumeration of
bases is equivalent to the minimum cover problem, a famous NP-complete problem,
which makes the enumeration extremely difficult in some cases. One has to invent an
efficient algorithm to make the enumeration feasible. We have developed an efficient
algorithm, but even with it, the enumeration of bases which involves about 600 classes

required about 17 hours by FACOM M380 computer (about 16 MIPS).

The first step for the classification and base enumeration of P; was done by the
author in [Miy71] and [Miy79], respectively. There are 406 classes of functions and
6,239,721 classes of bases of P; (the original classification counted some classeg twice;
this was corrected in [Sto84a]). The author showed in [Miy79] that the maximal aumber
of elements of a base of P; is 6, which answered the long-standing problem posed early
in [Jab58] about the bases of Ps. Since there exists an incomplete nonredund%nt set
with 7 elements, the makima,l number of elements of a base of P; had been conj:iéctured
to be greater than or equal to 7. The above answer disproved the conjecture (this result
is confirmed later by another method, not through enumeration, in [Vuk84}).

Recently, Machida [Mac79], Lau [Lau82b] and others determined all submaximal sets
of P;. The author [Miy82,Miy83,Miy84] and Stojmenovié [Sto86a,Sto86b] determined
their classes and bases (this was jointly reported in [MiS87a}). There are few classi-
fication results about closed sets in P;;. The set L of linear functions for the case k
prime number is classified in [Sto86c]. The set of functions Pgp which maps k-values
{0,1, ...,k —1}" to the two values {0,1} and its maximal sets were classified jointly by

the author and Stojmenovic.

The present thesis describes the classifications and basis enumerations done by the
author. We now give a detailed description for each chapter (we also indicate the papers

where the given results were reported).



In Chapter 1 we give basic definitions. From Chapter 2 through Chapter 4 we treat
Boolean cases. We consider 7 different kinds of functional constructions in P,: ordinary
composition, 2-line fixed coding construction, r-line coding construction, uniform com-
position, its Ibuki variation, its Inagaki variation, and sequential circuit construction.

In Chapter 2 we give classes of functions and classes of bases of Boolean functions
under each of these functional constructions [MIS85]. In Chapter 3 we give the formulas
for the numbers of bases consisting solely of symmetric n-ary functions (so called s-bas es)
for each construction. And in Chapter 3 we give formulas for the numbers of Sheffer,
symmetric Sheffer, “Sheffer with constants”, and “symmetric Sheffer with constants”
functions of n-ary functions [MSH87].

In Chapter 5 we show that the set Ps of three-valued logical functions is divided into
406 classes and that the number of its classes of bases is 6,239,721. We also show that,
despite the existence of noncomplete independent sets with 7 elements, the maximal
number of functions of a base of P; is 6. We also give some example of bases and
nonredundant incomplete sets [Miy71,Miy79].

In Chapter 6 we present classes and bases for several maximal sets of Ps: T,L,S
[Miy83], B [Miy82], and Tp [Miy84] (also cf. [MiS87a]).

In Chapter 7 we show that the problem of base enumeration is equivalent to the mini-
mal cover problem (an NP-complete problem). We give an algorithm which enumerates
all bases in lexicographic order. We demonstrate its efficiency on some examples of
real data. We Vz.mlso show that our base enumeration algorithm is applicable with slight
modifications to minimal covering and knapsack problems [Miy85a,5tM86a,5tM87].

In Chapter 8 we present classifications of P;. We show that the number of classes is
13A; —11Ag_;, where Ay is the number of equivalence relations on the set of k elements.
The maximal rank of Py is proved to be k + 2 [MiS87b].

In Chapter 9 we present classifications of 4 families of maximal sets out of all its 5
families, namely Zi, T, L' and S’. We also prove that their maximal ranks are 2k —
2,k + 1,k + 1 and less than 2k, respectively [MSL87]. We also give the numerical data
of the numbers of bases and s-bases for 2 < £ < 10.

In Chapter 10 we state several open problems. All the above mentioned results about

classifications and basis enumerations are also included in the survey paper [MSLRS87]. ‘



Chapter 1

Definitions and Preliminaries

1.1. Functional completeness problem and classification in P

As a motivation we shall consider the following situation arising in the synthesis of
switching functions. We have certain basic elements called gates. Each gate has one
or several inputs and a single output. The gate receives signals on the inputs and
transform them into the output signal. For simplicity’s sake we assume that all the
input and output signals belong to the same finite set (called alphabet) whose elements
(called letters) are denoted by 0,1,...,k—1. Note that it does not matter how thé letters
are denoted; the first k£ natural numbers are as convenient as any other symbols. We
are to describe synthesis of networks constructed from gates by connecting ouﬁputs of
certain gates to inputs of other gates. Variable z; is used to denote the signa,lg feeded
in the input of a gate (or network).

Let k be a fixed positive integer (k > 1), and E; := {0,1,...,k — 1} be the set of k .
integers. An ordered n-tuple of elements from Ej (an element of cartesian product E})
is called a wector and denoted by (a1, az,...,a,). We may delete the commas between
the coordinates as well as parenthesis of the vector when there is no confusion, i.e. a
vector may be represented by @ = a;...a, € Ef. An n-ary k-vaelued function f is a
map from E} to Ej, i.e. f is a function of n variables ranging in Ex with values in Ej.
The functioning of a gate can be described by assigning an output letter fai...a, to
every vector a=a ...a,. Thus the gate realizes a function f. The number n of inputs
corresponds to the arity of the function f. For our purposes the function f completely
describes the functioning of the gate. A function f can be represented by a table shown

in Table 1.1.



Definition 1.1.1. The set of k-valued logical function of n variables is denoted by P,Sn),
le.

P = {f(21,...,2n) | : B = Ei}.

Put P, = U2, P,Sn), the set of k-valued logical functions.

The elements of P, (a special case k = 2) is called Boolean functions.
Two functions f and g (f,g € Pi) is equal, in symbol f = g, if the arities of both

functions are equal (r) and f(ay,...,a,) = g(a1,...,an) for all (as,...,as) € E}.

Definition 1.1.2. f(x) depends on z; iff there exist a1, a2, ..., ai1,8i41,. -+, Gn, b,c €

E., b # ¢, such that

flar,az,...,8i1,b,ai41,. ey @p) # fla1, 89,00y @ic1, € Qig1y- ooy ap)-

If f depends on z; then z; is said to be an essential variable of f. Otherwise it is a

nonessential (fictitious or dummy) variable.

Table 1.1.
1 T Tn—1 T f(.'l}l T cee Tp-i a:n)
0 0 0 0 |f(0 0 0 0)
0 0 o 1 |f( 0 0 1)
6 0 .. 0 Ek—1{f0 0 ... 0 k-1
o o0 .. 1 0 |f(o 0 ... 1 0)
ay Ay .vn Gpoy  Gn | flam ag ... Gpoy an)
k—1 k—1 ... k=1 k—1|f(k—-1 k-1 ... k=1 k-1)

Suppose that we have a collection of gates {G} realizing functions f; € Px. These
gates can be combined into combinatorial switching network by attaching outputs of
certain gates to inputs of certain gates so that the resulting network has a single output .
and no feedback is created. This means that the single output of the network defines a
unique f € Py of inputs of the network which is nothing else than a “composition” of the
f:’s. Note that we automatically assume that we are allowed to reorder or identify the
inputs. Thus, having a gate f € P,Sz) we have at our disposal the gates realizing both
g € P,Sz) and h € P,gl) defined by gajas := fasa; and hay := faya; for every ai, a2 € E,.



The above composition of functions needs a more precisely definition. Operations
over P, means (1) renaming variables of a function (especially,_this includes permuting
variables and equating variables) and (2) substituting a function into an argument
(variable) of a function. This can be defined more formally by introducing the following

elementary operations over Py (represented in basic universal algebra terminology after

Mal’cev [Mal76]).

Definition 1.1.3. The three unary operations (,7,/\,V and a binary operation * we
define by the following equations. Let f € P,§"’ and g € P,Sm). Then (f € P,S"),T f e
P]Sn),Af e P]gmaz(n—l,l)),vf E P]Sn+l) and f * g e P}gn+m—1):

rf=Cf=Of=fforn=1
(Cf)(xlmn) = f(mZ'“mnxl))

(tf)z1...2n) = flz2zi...2n),
(Af)z1...To-1) = fz12Z1...Tp-1),

(VIN&y.. Znp1) = f(Z23...Tn41),
(F*)(@1-  Tpgm-1) = F(9(21-  Tm)Tmt1. . Tngm—1),
for every x1,...,Tnym—-1 € Ek.

The algebra < Py;7,(, A, V,* > is called iterative algebra. A function h is called
a superposition over a set F' of functions if it is obtained from the elements of F' by
applying the above operations (, 7,4,V and * finite times. Note that the operation V
serves to introduce new variables as well as to identify two functions which are different

only in fictitious (nonessential) variables.

Example 1.1.1. A composition h(zy,z;) := f(z1,9(21,72)) can be represented by
the following elementary operations to f(z1,z;) and g(z1, z2); h(z1, z2) = AL(((7f) *
9)(@1,22,23))). Indeed, fi(z1,22) = 7f(21,22) = f(z2,21); halw1, T2, 23) 1= (f1
g1, 22, 23) = fi(g(z1,22),23) = f(z3,9(z1,72)); ho(zy, 22, x3) 1= Thy(z1,29,23) =

h1($2, T3, xl) = f(xlag(mz,fvs))- Finally, h($1,$2) = Ahz(ifl,ﬂ?l,xz) = f($17g(zl,$2))-
O



Definition 1.1.4. A subset of P, is said to be closed if it contains all superpositions of
its members. For F' C P, we define its closure [F] as the least set which is generated by

superpositions from F'.

Thus F C P, is closed if F' = [F.

Additionally, we introduce the following simple n-ary operation e} (1 <7< n)called
projections which are defined by e}(z1,...,2a) = T: (i-th coordinate) for every = € EY.
Thus e! is the identity map on E;. Let E = {e}|l <7 < n,n = 1,2,...} be the
set of all projections. Usually all the projections are also allowed as a basic operation
of “composition” since projection functions are directly obtained from the inputs of
network in practice. A closed set containing the set of projection is called clone in the

terminology of universal algebra. Most of the closed sets treated in this thesis are clones.

Definition 1.1.5. For closed sets F' and H such that F C H (proper inclusion), F' is
H-mazimal if there is no closed set G such that F C G C H.

Equivalently, a subset F' is H-maximal if and only if [FU{f}] = H for evéry fe H\F.

Definition 1.1.6. A subset F C H is complete in H if H is the least closed set

containing F'.

Again, equivalently, a subset F' is H-complete if and only if [F] = H.

In the sequel we always assume that H has the following property: each proper closed
subset of H extends to an H-maximal set, i.e. for each proper closed subset there is an
H-maximal set containing it (this property need not hold in general, in fact there is an
example of such Pg-maximal set [Mik86,Tar86]). Then, it is known that then there are
finitely many H-maximal sets, say Hy, ..., Hm. The following theorem due to Kuznecov

is well-known [Jab58].

Theorem 1.1.1. (Completeness theorem in a general form) [Jab58] Suppose the
number m of H-maximal sets is finite. Then a subset of functions in H is complete in

H if and only if it is contained in no H-maximal set.

This theorem reduces the completeness problem to giving all maximal sets. Inves-

tigations of completeness and related topics, usually called the functional completeness



problems, are mathematically important, and have a wide range of applications including

their direct relationship to logical circuit design.

Example 1.1.2. Let T; be the set of functions such that f(3) =i for i = 0,1, S be the
set of self-dual functions, L be the set of linear functions and M be the set of monotone
functions in P, (see Example 2.1 below for a more detailed description). The five sets
To,Th, L, S, M are all the P,-maximal sets: a subset F' is P,-complete if and only if F

1s not contained in each of the five sets. O

Definition 1.1.7. An H-complete set F is a base of H if no proper subset of F' is

complete in H.

Note that F' is a base of H if and only if 1) F' is H-complete, i.e. [F] = H and 2) F is
not redundant, i.e. [F'\ f] # H for every f € F. The rank of a base is the number of

its elements.

Example 1.1.3. In view of the disjunctive normal form expansion of Boolean functions,
the set {AND,OR,NOT?} is Py-complete but is not a base. It is well-known that
{AND,NOT?} and {OR, NOT} are bases. O

Definition 1.1.8. A function f is Sheffer for H if {f} is a base (of rank 1) of H.

A function f is Sheffer for H if and only if every ¢ € H is a composition of a finite
number of copies of f. Clearly f is Sheffer for H if and only if it belongs to no H-
maximal sets. Typical examples of Boolean two-variable functions that are Sheffer for
P, are the Sheffer (or better Nicode’s) strokes NAND and NOR of the algebra of logic.
A Sheffer stroke describes the “operation” of a two-input one-output gate (or element)
G such that every Boolean function f(zy,...,z,) may be represented by the output of
a combinatorial (i.e. feedback-free) network with inputs z4,...,z, and built solely from
copies of G (however, the number of the gates needed for the representation may be

large).

A comprehensive survey on Sheffer functions can be found in [Ros77]. A variation of
the definition of éompleteness is the concept of “complete with constants”, abbreviated
c-complete, which assumes that for composition besides f one can freely utilize constant-

valued functions. More precisely, let @ denote the set of unary constant functions from



H. A subset F of H is c-complete in H if F'U Q is complete in H. This makes sense
in real combinatorial circuits, since the constant-valued functions (i.e. constant signals)

are usually obtained with no extra cost. In particular, f is c-Sheffer for H means {f}

is c-complete in H.
Classification of P; [Jab52,INN63,Krn64,Miy71]

There is a straightforward method for enumerating all H-bases. The functions from
H may be classified by their membership in the H-maximal sets. Let Hy,...,Hn be
the H-maximal sets. As mentioned above, a subset F of H is complete in H if and only
if for each 1 < i < m thereis f; € Fn(H \ H;) (the f;’s need not be distinct). This
leads to the following;:

Definition 1.1.9. Define the map ¢ : H — {0,1}™ by setting ©(f) := ay...a, where
a; =01 f € Hyand a; = 1 if f ¢ H; (here a;...a,, stands for the more customary
(G1y+ ..y @) OF < G1y...,Gn >). We call o(f) the characteristic vector of f. We put
- =g if f,g € H have the same characteristic vector, i.e. if p(f) = w(9).

Clearly = is an equivalence relation on H (it is the standard kernel of ¢) and so it
partitions H into pairwise disjoint nonempty sets called (equivalence) classes. Note
that for f = g we have either f,g € H; or f,g & H; for all ¢ = 1,...,m. We write
AB for AN B, Al for A and A° for H \ A (A, B subsets of H). Clearly each class is
of the form H ... H% where (1 —aj)... (1 — an) is a characteristic vector (i.e. it is a

non-empty set of the form H{*...H%™ with ay...an € {0,1}™).

Example 1.1.4. The set ToT.LSM is a P,-class, which consists only of the n-ary

constant functions ¢§ for n =1,2,.... U

If f e F C H and f = g, then clearly F is complete (base) in H if and only if
(X \ {f}) U {g} is complete (base) in H. Thus it suffices to study the completeness in
H up to the equivalence =. In other words, we can discuss the completeness in H in
terms of these classes instead of individual functions. If there are m maximal sets, then
the number of possible classes of functions is 2™, each of which being associated with
a unique characteristic vector. However, as we will see throughout this thesis, most of

the classes are empty depending on the structure of the set H.
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Iftoay...an € {0,1}™ weassociate A = {1 : a; = 1} and if Ay,..., A; are the subsets
of {1,...,m} corresponding to the characteristic vectors, the completeness problem
is reduced to the listing of subsets of {4;,...,A;} covering {1,...,m} and the basis
problem to the listing of such coverings Which are irredundant (no proper subset covers
{1,...,m}).

As we have already seen, a set F = {f1,...,fr-} C H is a base of H if and only if
it is complete and nonredundant. It is easy to see that these conditions, respectively,

can be represented in terms of characteristic vectors as follows (from Theorem 1.1.1 and

Definition 1.1.7):

Z o(f) = 1---1(ie. has all coordinates = 1), (1.1)
feF
> oe(f) # Le(f)foralli=1,...,r, (1.2)
FEF\fi feF

where sum is the component-wise logical OR of Boolean m-vectors.
Definition 1.1.10. A set F' of functions is pivotal if it satisfies the condition (1.2).

A pivotal incomplete set is simply called pivbta,l in case of no confusion.

Once we know all the characteristic vectors of a set, we can find all complete sets,
pivotal sets and all bases by a direct combinatorial check (which may be done by a

simple computer program, provided m is not large).

For a given set F C H the classes of F' is the set of classes of functions belonging
to F. All bases and pivotals consisting of the same classes of functions form a class of
bases (or aggregate) and classes of pivotals. The enumeration algorithm of all classes of
bases and pivotals for moderately large m (the number of all maximal sets for H) and
for large number of classes by efficiently checking the above conditions of completeness
and nonredundancy (pivotalness) for all combinations of the characteristic vectors will

be discussed in chapter 7.

The study of classes also provides information on the closed sets which are the inter-
sections of families of H-maximal sets, which is of independent interest (e.g. for H = P3
with one exception the least nontrivial intersections are all minimal clones [Ros87: pri-
vate communication]). The characteristic vectors can also be applied to seek the set of

classes of functions which makes a given incomplete set complete.
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1.2. Functions preserving a relation

For the description of closed sets containing all projections (i.e. clones), we need the
following essential concept of “functions preserving a relation” (cf. [Ros77]).

Let h > 1. An h-ary relation p on Ej is a subset of Ef (i.e. a set of h-tuples over Ej)

whose elements are written as column vectors. Given h row n-vectors a; = (ai, . - -, Gin)
(i = 1,...,h) we write (ay,...,a3)T € p™ to indicate that (ayj,. o ap;)F € p for all
j =1,...,n, where T denotes the transpose (this means that the A X n matrix with

TOWS @,...,a; has all columns in p). We say that an n-ary f € P preserves p if

(f(ay),..., f(ar))T € p whenever (ay,. .., ay)t € p".

The set of functions preserving p is denoted by Pol p.

For a special case h=2, we write apb < (a;, b;) € pforall1 <7 < n. Several examples
are given below in Theorem 2.1. It is known that each Pol p is a clone, and conversely
that to each clone C there are relations py, ps, ... such that Pol py 2 Pol p; 2 ... 2C
and C = 2, Pol p;. In particular, if H is a clone, then all H-maximal sets are of the

form Pol p for some relation p. ‘
Throughout this chapter by z + y and zy we mean z +y (mod k) and zy (mod k),
respectively. Intersection of sets Xj,..., X, will be denoted by X;...X,. Finally, let 2"

denote z ...z (r times) whenever z is a component of a vector.

Example 1.2.1. The P,-maximal sets can be represented as follows.

M

Ty = Pol(0)={f]f(0,...,0) = 0}(set of functions preserving 0),
T, = Pol(1)={f | f(1,..,1) = 1}(set of functions preserving 1),
S = Pol ( (1)(1) ) ={f| flzy +1,.;2n +1) # f(21, -y Tn) for each z; € {0,1},1 < i <n}
(set of selfdual functions),
L = Pol({(a,b,c,d)" € Ej |a+b=c+d})
= {f| f(z1,...,20) = G0+ a1T1 + ... + anZn for some a; € E2,0 <7 <n}
(set of lincar functions).
M = Pol ( 812 ) ={flz1 <A AT <Y = f(T1,--,2n) < f(Y1,-- -, Un)}

(set of monotone non-decreasing functions),

12



1.3. Operations over relations

In the classification we have to use many inclusion relations between functions preserving
relations, such as To;T12 C 11 (see §5.1, Chapter 5). The following binary operations
over relations provide methods to prove such inclusions by showing directly that the
relation on the right may be built from the relations on the left by applying them finite
times.

We define the unary relation ¢,7 and binary relations o (relational product), x

(cartesian product) and N (inclusion) as follows.

po pl = {(ah‘ «e38h—=1,CQhy.s Qpth!—2 I Ju: (ah R ,CLh_]_,U) EpA (uyah)' .. 7ah+h’-—2) €
DX = (s aon) | (@1 oern) € B A (arans - rangn) € o)
pnp ={(a1,...,an) | (@1,...,an) € pA(a1,...,an) € p'}, ~
Cp = {(a’la ce. aah)l(a% cee 7ah’a1) € P},
p:={(a1,...,ap)l(az,a1,...,a1) € p}

The following lemma holds [PokT79].

Lemma 1.3.1.

PolpPolp’ C Polpx*p'
where * is any of o, X and N operations.

Lemma 1.3.2. Let the inverse relation of p be p™' = {(ap,...,a1)|(a1,...,a1) € p}.
Then Polp = Polp™!.

We also note that permuting and duplicating columns of a relation does not change
the set of functions preserving it, i.e. Polp = Polp’, where p’ is a permuted columns of

the relation p.

In addition to these operations, we also use a more general operation, which produce

a relation from a given set of relations.

Definition 1.3.1. [Ros70] Let C = [¢;;] be an m X h matrix with elements from E;

(hym,p > 1). An m-ary operation over relations O&(po,...,pm-1) is a map, which
associate any h-ary po,...,Pm-1 on Fy the following p-ary relation o on Ej:
(agy ..+, 8p-1) € 0 < Jap, Gpt1, .- Qi1

13



such that, for all ¢ = 0,...,m — 1, (@c;py- -5 ¢ ;) € pi-

Example 1.3.1. Let h=m =p=2 and

o-[12]

Then o = O%(po, p1) is a binary relation o on Ei: (ao,a1) € ¢ & 3a, such that
(ao,a2) € po,(az,a1) € p1. Thus O%(po,p1) = po o p1 (a relational product). An

intersection of relations can be expressed as an operation over the relations.

Theorem 1.3.1. [Ros70] Let po, . . ., pm—1 be h-ary relations on Ey, 0 = O%(po, ..., pm-1)

be an operation over the relations. Then

h—1
ﬂ Polp; C Polo.

=0
1.4. Homomorphism and similarity

Definition 1.4.1. Let A,B C P; be closed sets. A and B is homomorphic if there
exists a mapping o : A — B (f — f%) satisfying

CHx=¢f, (f)=rf7,
(Af)r=Af (VH*=VF* and

(Fxg)*=fxg°

If the mapping « is one to one, then A and B is isomorphic (in symbol A = B).

Definition 1.4.2. Let S; be the permutation group (symmetric group) over Ej and
let o = ( 21 ka;_i ) € S;. Let ¢ be the identity permutation. We write permuted
value by o as a; = oi. Define the product of permutations by af(z) = a(f(z))
for each a,8 € S;. For f € P, and 0 € P, we define a similar function of f by
fo = glar...a,) := ocVf(ca;...a,) for any a € Ef. For a set A, its o-similar is

defined by
A% = {f°|f € A}

The mapping o-similar is one-to-one mapping, since Sy is a group. An iteration of

o-similar transformations is represented by a product of permutations as follows.
(F7)72(a) = f72%(a) = (0109) 7" f(o1(02a)).

14



The set of o-transformations for o € S; with the iteration operations is a group which
is isomorphic to S; over P,. Hence, properties of permutation group Sy are preserved
by o-similar transformations. In general, f** # fP* since the symmetric group is not

commutative when k& > 3.

Lemma 1.4.1. [Jab58]
F =2 F° for o € Sy.

Corollary 1.4.1.

ACB= A°C B’ (AUB) =A°UB°,
(ABY = A°B°, (A\BY = A%\ B°,

(A)° = A° where A := P\ A.

Thus, when an inclusion relation holds, for example, AB C C, then its dual A°B? C
C° holds for each o € Si. The latter inclusion relation is a o-similar of the formg_r. The
notion of o-similar is used also for proof procedures. It is an extension of the notion of

“dual” in the usual Boolean logic.
Corollary 1.4.2. The following properties of sets of Py are preserved by o-similar:

1) closed, 2) mazimal, 3) complete and 4) base.

Corollary 1.4.3.

fE'M,'l...Mij ,'J.+1...Mim<=>fUEMg...MgM- .M.

141 "7 tm?

where M;;, 1 <7 <m are mazimal sets of Py, and -M_;J. is the complement of M;,.

Thus o-transformation induces an automorphism of the sets of all classes. This means
that if the class x; exists then the class x7 exists for each o € S;. However, x; and x7
coincide when y; is invariant under o-similar. Corollary 1.4.3 greatly reduces the search

of possible classes.
The next lemma provides a method to find a corresponding o-similar set when a

given set is characterized by a relation.

Lemma 1.4.2. [Miy71] (Polp)’ = Polo~'p, where a7 p = {(c 7 ay,...,07 as)|(a1,...,an) €

p}-
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Corollary 1.4.4. Let p = R, = {(0,00),...,(k — 1,0(k — 1)} be an induced binary
relation by a permutation o € Sy. Then (PolR,)° = PolR,-1. Hence, if 0> = ¢, i.e

o =01, PolR, is o-invariant.

Especially, we note that for k = 3, 09 = (12), 01 = (02) and o3 = (01) are idempotent,

where (ij) denote the transposition of 7 and j.

Example 1.4.1. Assume k = 3 and o3 = ( 2;3 ) , 04 = ( g(lj ) Let p := R,, =

{(0,1),(1,2),(2,0)}. The set of functions S = Polp is a maximal set of P;. We have
o3tp = p, o7'p = p, and o' = o; for i = 0,1,2. Hence from Lemma 1.4.2 and

Corollary 1.4.4 S is o-invariant for any o € Sa.

Example 1.4.2. Let p := {0, 1} be a unary relation and Ty; = Pol(01). Since a;lp =p,
TS = T, i.e. Toy is op-invariant. While o1p = {2,1}. Hence Tg; = Ti,, where T3 is

the set of functions preserving a unary relation {1, 2}.
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Chapter 2

Functional Constructions and their
Bases in P,

The notion of completeness of a set of logical functions depends on the comstruction
method of a network from a given set of logical primitives. The delay caused by func-
tioning of gates which we ignored in the previous definitions also poses restrictions on
the composition of functions and on the logical function the network is intended to
realize. Besides ordinary composition, we consider six ways of various functional con-
structions in this chapter. Our purpose is to present classes of functions and classes of
bases (aggregates) for each of these constructions. Throughout Chapters 2 through 4

we consider in the set of all Boolean functions P,.

2.1. Introduction

We are given certain basic elements (primitives) called gates which are realizations of
certain logical functions. These gates can be combined into a switching circuit called
network. For each network we distinguish inputs and an output (if necessary, primary
inputs and primary output will be used to distinguish from those of the gates). Thus the
network can be represented by f(z1,...,,), which defines output y = f(zy,...,z,) as
a function of the primary input z1,..., z,.

We briefly describe seven different ways of the construction of networks arising in
practical switching circuit designs, giving classes of bases for each of them.

In the next section we give short preliminaries for some subsets of Boolean functions
P, to be used in the completeness criteria described in the later sections. In Section

2.3 we summarize classical Post completeness. In Section 2.4 we treat completeness
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under r-line coding, in Section 2.5 completeness under 2-line fixed coding (both\\with
primitives without delay), in Section 2.6 three completeness under composition with
unit delay primitives (uniform composition and its 2 modifications), and in Section 2.7

sequential circuit completeness (with unit delay primitives).

2.2. Preliminaries on subsets of Boolean functions

For a set F' we denote the number of its elements by |F|. |F(n)| denotes the number
of n-ary functions contained in F. We denote the complement set of F' by F, i.e.

F = P\ F. Let c? and ¢} be the constant-valued functions of n-variables assuming the

values O and 1, respectively. The set of constant functions which takes 0 (1) for arities

n=1,2,... we denote simply by 0 (1).

We give definitions of several subsets of P, which we use for the classifications of P;

[MSHS7].

1) Functions preserving zero.
To = {f1£(0,...,0) = 0},
|To(n)| = 271
2) Functions preserving one.
o= {fIf(1,.., 1) =1},
[Ty (n)| = 2271,
3) Monotone increasing functions. .
M = {f1f (21,0 2n) < F(1, - ¥w) i 2 < g for all i}.
M(n)| = ¥(n).
4) Selfdual functions.
S = {f1F (@1, @n) = F(TT, - T}
|S(n)] = 27"
5) Linear functions.
L = {flf(z1, ..., Tn) = a0 + @121 + ... + a2z, for some a; € E}.
|L(n)| = 2™*1.
6) Conjunctions.

C ={0,1} U {z;...z;, },

18



|C(n)] =27 + 1.

7) Disjunctions.
D={0,1}U{zy V..Va,},
ID(n)| = 2" +1.

8) Notbut-like functions.
No = {f| if f(z1,..,2n) = f(y1,
|No(n)| = ©(n).

9) If-like functions.
Ny = {fl if f(z1, . 20) = f¥1,

[N1(r)| = ©(n).

10) Functions exchanging zero and one.
X = {f|f(=,....,z) =T},
| X(n)] =27""2.

11) Monotone decreasing functions.

wyYn) = 1 then z; = y; = 1 for some 1}.

wyYn) = O then z; = y; = 0 for some 4}.

M' = {flf(z1, -y Tn) = f(Y1, .., Yn) if 23 < y; for all i}.

|M'(n)| = ¥(n).

12) Functions uniting zero and one.

K = {f]f(0,..,0) = (1, .., )}.

|K(n)] = 22"

Note 2.2.1. We give a representation of the sets by relations. Ty = Pol(0), T3

010

01
011>’5=P01(10)’

), N1=Pol(101

Pol(1), M = Pol (

001

010

No'—‘POl( 110

Section 4.1.

L = Pol{(a,b,c,d)|a+b = c+d (mod 2)},

) . The functions ¥(n) and ©(n) we explain in

We list several useful inclusion relations for the classification. We omit the proofs.

Lemma 2.2.1. M(n) N L(n) = L(n) N C(n)
= L(n) N C(n) N D(n) = {c5, <1, P}

= L(n) N D(n) = C(n) N D(n)

L(n) N M'(n) = {c3, ¢, 7}, M(n) N M'(n) = {cg, 7}

Lemma 2.2.2. S Q NON1 U ..ZV()]—V;-;[, NON1 Q
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Lemma 2.2.3. SL = {z + 1 (only forn = 1), a+ =1 + ... + Tamy1,0 € {0,1},
m=1,2,...,},
LNy = {0,z;}, LN; = {1,z;}, SNo € M and SM C Nq.

Lemma 2.2.4. L(DM(1) = {0,1,z,}, L()M'(1) = {0,1, 21 + 1}.
Also we note that

n-ary linear functions (ezcept constants) are selfdual for n odd

(no selfdual function ezists for n even).

2.3. Bases under ordinary composition

The first completeness is one under ordinary composition which we defined in Chapter
1. The composition is defined as an operation of either renaming variables of a function
(permuting variables and equating variables) or substituting a function into an argument
of a function. One can construct a new function from a given set of primitives applying
the composition any finite times. Additionally one is allowed to use any projection
functions p? in the construction.

The following Post’s theorem on the P;-completeness under this composition and the

classification of Boolean functions are most fundamental facts. This is well-known.
Theorem 2.3.1. [Pos21] P, kas ezactly the following 5 mazimal sets: Ty, Ty, L, S, M.
Theorem 2.3.2. [Jab52] There are 15 classes of functions of Ps.

We presents them by their characteristic vectors in Table 2.1. Components of char-
acteristic vectors are given in the order Tp, T3, S, L, M of P,-maximal sets. For instance,
class 6 represents the set ToT} SLM, where X denotes P, \ X. The class 9 (10) consists
only of the constant functions 1 (0), and the class 15 only of the set of all projection
functions p?(zy,...,%,) = i, 1 =1,2,...,n,n = 1,2,..., which is often denoted simply

by z.

Theorem 2.3.3. [INN63] There are 42 classes of bases of P,.
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Table 2.1: P;-classes under ordinary composition.

1.11111 2.11011  3.01111 4. 10111 &5.11001
6.10101 7.01101 8. 00111 9. 10100 10.01100
11. 00110 12. 00011 13. 00010 14. 00001 15. 00000

1 class of rank 1: (1),
17 classes of rank 2: 2 x {3,4,6,7,8,9,10,11},
3 x {4,5,6,9},4 x {5,7,10},5 x {8,11},
22 classes of rank 8: 5 x {6,7,9,10} x {12,13},{6 x {7,10},(9,7)} x {8,11,12,13},
(9,10) x {8,12},
2 classes of rank 4: (9,10,14) x {11,13}.

Note that there are only four classes of bases containing constant functions: (8,9,10),
(9,10,12), (9,10,11,13) and (9,10,13,14).

The number of n-ary functions included in each of the 15 class are given in [Krn65] (for
some classes it is given in terms of ¥(n): the number of monotone Boolean functions).

There are 51 pivotals (13, 31 and 7 with ranks 1,2 and 3, respectively).

2.4. Bases under r-line coding

Freivalds [Fre68] introduced the notion of completeness under r-line coding (which he
called up to coding completeness). In this construction every input and output of the
outermost network consists of “r-lines” and signals 0 or 1 are feeded to each input or
taken out from the output as a length r binary code. While internally these input lines
are treated as usual binary input. So in the internal networks every composition is done
according to ordinary composition. In Fig. 2.1 we show examples of networks of AND
and NAND constructed with AND and OR primitives with the coding 0 — 01 and
1 — 10. Note that in this coding negation of the outermost network is realized simply

by exchanging the output lines, so if f is realizable then its negation is also realizable

in this composition.

Assume a coding

21



X3

Figure 2.1: AND and NAND in double-line logic

0— ag-.. oo,

11— ayy...00,,
where a;; € {0,1}, 0<¢ <1, 1 <5<,

We shall say that a network compute f(zi,...,%,) with the coding, if , to each
argument z; there is associated the r inputs a;; ( = 1,...,r), the network has r output
b (I = 1,...,r) and operates as follows: for the computation of f(m,...,mn,) one
feed in signals am,; (0 or 1) at input line a;;, 1 <4 < n,1 < j < n and the network
produces as output b the results fi = af(m,,..mn), 1 <1 < r. We shall say that F C P,
is complete under a fixed coding if every f € P, is computable with the coding by a
network on F'. We say that a set of function is complete under fized r-line coding if every
function is computable by some network of r-lines under this coding using the functions
in the set. A set of functions is complete under r-line coding (in original term, complete
up to coding) if for every function there exists an r-line coding of 0 and 1 (depending

on the function) under which the function is realizable by the functions in the sets.

Theorem 2.4.1. [Fre68] A set of function is complete under r-line coding if and only
if it is not included in each of the three sets: L,C and D.

We note that the original presentation of the above theorem is not quite correct
(the sets C and D are correct to include the constant functions, while in the original

description they are excluded from the sets C and D, cf. [MSHS8T]).

Theorem 2.4.2. There ezists ezactly 5 classes of functions under r-line coding com-

pleteness.

Proof We have LD C C,LC C D and CD C L, ie. LCD(n) ={0,1,z;,1 < ¢ < n}
(Lemma 2.2.1). The classes are shown in Table 2.2. O
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Table 2.2: Classes of functions under r-line coding completeness

class L CD representatives (symmetric)

000 0.1z

011 a+zy+...4zp,a=00rl, forn>1;1+zforn=1
101 ...zp,n>1

110 z;Vzy...Vzu,,n>1

111 all remaining symmetric functions, e.g. T17»

OU =

Theorem 2.4.3. There are 4 classes of bases: rank 1: (5); rank 2 : (2,3),(2,4),(3,4).
There are 3 classes of pivotals: rank 1: (2),(3) and (4).

Example 2.4.1. We give all bases for 2-ary functions under r-line coding:

{z +y(+1), 29}, {z+y(+1), 2 Vy}, {zy,2Vy}, {NAND(z,y)}, {NOR(z,y)}-

The following bases include a unary function T : {Z,zy}, {T,z V y}. As we show in

Fig. 2.1, AND(z,y) can be composed of {z V y,zy} under the coding 0 — 01,1 — 10.

2.5. Bases under 2-line fixed coding

The completeness problem under a fixed coding 0 — 01 and 1 — 10 (this is so called
double rail logic [Neu56]) was solved by Ibuki [Ibu68]. Karunanithi and Friedman
[KaF'78] also considered this completeness independently, and gave the condition which
are stated in somewhat complex terms but equivalent to the following. This notion
coincides with SP-algebra described in [Gin85]. The classification is done by Ibuki
[Tbu68].

Theorem 2.5.1. A set of functions is complete under 2-line fized coding if and only if
it i3 not contained in each of the following 6 sets: No,Ny,S,L,C and D.

Theorem 2.5.2. [Ibu68] There are 12 classes of functions, 28 classes of bases (1 for
rank 1, 22 for rank 2 and 5 for rank 8) and 20 classes of pivotals (10 classes for each
of ranks 1,2).

The characteristic vectors of these classes are given in Section 3.5.
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Figure 2.2: uniform composition
2.6. Bases under compositions with delayed functions

Usually a gate needs some duration of time to give an output. So it is natural to assume
that each primitive function has certain delay time. In this section we assume that all
primitives have uniform delay (a unit time). Taking the delay time into consideration
various compositions have been proposed. We consider three constructions proposed by

Kudrjavcev, Ibuki and Inagaki, respectively. These are closely related each other.

Uniform composition

The theory of uniform delay composition was initiated by Kudrjavcev [Kud60]. In
this construction every composition is to be done so that for each gate the delays along
all paths from the primary inputs to the inputs of the gate are equal. This means that
the composition should be synchronized. This is imposed even on primitives of constant-
valued functions. Projections can be used freely (which can be used in the first layer
of the composition as primitives with delay zero). Furthermore in this composition it
is assumed that (1) all initial input signals are given only once and simultaneously and
(2) no feedback connections are allowed in compositions.

A set F' C P, is complete under uniform composition if one can realize every function
in some delay (which depends on the realized function) by a network on F' using uniform
composition.

For example, the network in Fig. 2.6 is synchronized, but one in Fig. 2.7 is not

synchronized and have a feedback connection.

The following theorem is proved in [Kud60], but explicit statement in this form is
due to Nozaki [Noz78].

Theorem 2.6.1. [Kud60] A set of functions is complete under uniform composition if

and only if it is not contained in each of the 8 sets: To, Ty, S, L, M, M', X and K.
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Table 2.3: Classes of functions under uniform delay compositions.

ToIZSLMM'XK representative
1. 11111101 1171—(13-2333\/?1,‘-1:-1:-2-.’1—?3
2. 11111001 =57
3. 11011101 T1To V T2T3V T3Zy
4. 11011001 THT,VIT3V I3
5. 01111110 z:7,
6. 10111110 =z,V7Z
7. 11001101 =z14+2z22+473
8 11001001 7
100 01101110 x4+ 2z
11. 00111111 T1ToT3 + T1T2T3
12 10100010 1
13. 01100010 O
14. 00110111 =22, ,
15. 00011111 $1$2V$2§3V53$1
16. 00010111 $1$2V$2$3V$3III1
18. 00000111 =z

Theorem 2.6.2. There are 18 classes under uniform delay composition and they coin-

cide with those under Ibuki’s (Inagaki’s) composition.

Proof. Characteristic vector for these classes has 8 coordinates, which is constructed
by adding K coordinate to Ibuki’s coordinates. We have K = ToT; U ToT} (disjoint),

because f € K & either f(0) = f(1) =0 or f(0) = f(1) = 1. Therefore the values for
the coordinate K is determined by those for Ty and 77. O

In Table 2.3 we give the classes and their representatives. Symmetric representatives

for the classes 1,3,5,6,11 and 15 we mention in Section 3.6.

Theorem 2.6.3. There are exactly 118 classes of bases and 115 classes of pivotals

under uniform delay compositions. They are given below.

Note that no Sheffer class exists in our case as well as in Ibuki’s one.
Ibuki composition
Ibuki [Ibu68] defined a slightly different composition independently, and gave all

7 maximal set, which coincide with above sets except K. The only difference of this
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Table 2.4: Classes of bases under uniform delay compositions.

rank 1 (0):  none;
rank 2 (44): {1,2,3,4} x {5,6,9,10,11}, {1,2} x {15,16,17,18}, {1,3} x {12,13},
{1,2,3,4} x 14, {5,6,11,14} x {7,8},
rank 3 (72): (2,7) x {12,13}, 4 x {12,13} x {7,15,16,17,18},
{5 x {6,9,12},(6,10)} x {11,14,15,16,17,18},
(6,11) x {13,14,15,16,17,18}, {7,8} x {9,10,12,13} x {15,16},
{9 x {10,13},(10,12)} x {11,14,15,16}, (12,13) x {11,15},
rank 4 (2):  (12,13,17) x {14,16}.

Table 2.5: Classes of pivotals under uniform delay compositions.

rank 1 (18): (1) - (18);
rank 2 (79):  (2,3),{2,4} x {7,12,13}, {3,4,5,6,7,8,9,10,12,13} x {15,16,17,18},
(5,6} x {11,14}, {6,9,12} x {5,10,13}, {7,8,11,14} x {9,10,12,13},
14 x {15,17}, (16,17)
rank 3 (18): {8x{12,13},{9,12}x{10,13}}x {17,18}, {{12,13}x17,(12,13)} x {14,16}.

construction from the uniform composition consists in that the constant valued function
with delay zero can be freely used. Thus, for example, a composition f(z,co(y)) is

allowed.

Inagaki composition

Yet another modification was done by Inagaki, who gave 6 maximal sets which coin-
cides with above sets except X and K. He weakened Ibuki’s construction in the following
points: the input paths of the constant valued functions may have non-uniform delays.
He showed an example of such a realization of a constant valued function using NAND
primitives. Feedback loops are still prbhibited. However, it is necessary to feed input
signals in some span of time in order to obtain stable output; thus, for example, feeding

oscillating signals like 0101... to inputs are prohibited.

It turns out that the uniform construction is the most restrictive construction among
the three constructions. That is, if f is complete under uniform composition, then it is

complete in the other constructions. Their classifications are closely related to ours.
Classes and bases of Ibuki and Inagaki compositions

Classes of functions in these cases are the same 18 classes as in the former case
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Figure 2.3: Sequential circuit composition

[Tbu68,Ina82]. The last component and the last two components must be eliminated (K
and X, K are not maximal sets respectively in these cases).

Although the classes of uniform delay case coincides with those under Ibuki’s and
Inagaki’s case, the bases and pivotals are different due to the extra coordinate. There
are 93 classes of bases (49, 42 and 2 with ranks 2,3 and 4 respectively) [Ibu68], and 88
pivotals (18, 58 and 12 with ranks 1, 2 and 3 respectively). There are 82 classes of bases
in Inagaki case (1, 39, 40, and 2 with ranks 1, 2, 3 and 4) [Ina82], and 77 pivotals (17,
48 and 12 with ranks 1, 2 and 3 respectively). Only in Inagaki case there exist Sheffer

class.

2.7. Bases under sequential circuit composition

A composition allowing loops by using unit delay primitives is considered by Nozaki
[Noz82]. He introduced the notion of s-completeness (s for sequential circuit). In Fig.
2.7 we show an example of the network. Note that we don’t require uniform delay any
more. We briefly explain the construction. Assume that in our network there are m
primitives whose output is denoted by u; (1 <4 < m) and n primary inputs denoted by
L1,...,Ln. The output of the first primitive u; is assumed to be the primary output of
the network. Now output of a primitive is determined by the previous states (outputs)
of all the primitives as well as primary inputs. Thus the output of the primitive u; after

unit delay (denoted by u}) is expressed by

*
Uy = Dl(ula"'aumya:l’"',xn)’

= Dm(ul,...,um,a:l,...,a:n).

3*
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For example, in Fig. 2.7 we have u} = add(z1,z2,us) and ul = or(z,,uy). Let
g ={0,1}™ and y = {0,1}" correspond to the sets of states of the primitives and inputs

of the network respectively. Then the network is described by a function
D:QxY —-Q (2.1)

and the first element of Q is the output of the network. For example, in Fig. 2.7
D((1,0),(1,0)) = (1,0). The state transition of D under feeding x(1)...2(t) to an
initial state s(1) is determined successively by s(2) = D(s(1),2(1)), s(3) = D(s(2),
z(2)),..., s(t + 1) = D(s(t),z(t)). The last state s(¢ + 1) is denoted by D*(s(1),a)
and called final state corresponding to the input sequence a = x(1)....2(t), and the
first component of s(¢ + 1) is final output denoted by Df™!(s(1),a). The notion of

realization of function f by a network D is defied as follows.

(1) There exists an initial state s(1) called good state such that there exist some
delay D such that the output y(¢) of the network at time ¢ is the function value
corresponding to the inputs at time ¢ — d, i.e. y(t) = f(=(t — d)).

(2) For any state s there is an input sequence « called an initialize sequence such that

D*(s,a) is a good state.

In'Fig. 2.7 D realizes x+y+1 with initialize sequence (0,1) or (1,0) with delay 1.

We denote the set of all functions realizable with some delay by a network on F' by

[F],. Now F is called s-complete if [F|, = P».

Theorem 2.7.1. [Noz82] There are ezactly 6 mazimal sets under s-completeness. They

are No, N1, S,L, M and M'.

From this and the completeness criteria for Ibuki composition, we have that if F' is

complete under Ibuki construction, then it is s-complete.

Theorem 2.7.2. There are ezactly 16 classes of functions under s-completeness. They

are indicated in Table 2.6.

Proof. To have these classifications we use classes with respect to Tp, T3, S, L, M and M’

given in Table 2.3. Since Ny C Tp and Ny C T, for example, the case TpT) splits into
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Table 2.6: Classes of functions under s-completeness.

NoN{SLMM'

symmetric functions

1. 111111 a:1T2V:'l:'1x2V53,
2. 111110 =%,

3. 111011 1 + T,

4. 110111 T1T9 V T1 T3 V T3y,
5. 101111 V3T,

6. 011111 Ty,

7. 110110 FT;V TTsV a7,
8. 110011 .’L‘1+(L'2+.'173,

9. 101101 $1V$2,

10. 011101 T1Zoq,

11. 110010 1+z

12. 101000 1

13. 011000 0

14. 000101 $1$2V2}2$3\/$3$1,
15. 000001 T

16. 111101 121 V T3T4
the four cases: NoN1, NoNy, NoNy and NoV; (the other three cases are similar):. Thus
it suffices to check each of these classes for each class in Table 2.3. We briefly give how
the above classes are derived from Table 2.3, Chapter 2. Let the class number in Table
2.3 be denoted by prefixing # before the number, e.g. #15 is the class 000111 in the
order of ToTySLM M' coordinates. The classes 1,2,4,5,6,7,8,11,12 and 13 were derived
from #1,#2,#3,#5,#6,#4,#7,#8,#12 and #13, respectively. The class 3 comes from
#9410 and #11 jointly. Class #17 give also the class 8 (we have two possibility: NoN,
and NoN; from Lemma 2.2.2 but the first case gives the class 8 and the second does
not occur from NgN; C S of the same Lemma). The class #15 gives also only the class
4 (the other cases do not occur from Lemma 2.2.2). Finally the class #14 gives three
classes 9, 10 and 16 because NoN; C S prohibit NoN,S case.

Only the class 16 has no symmetric representative (this will be discussed in detail in

Chapter 3). O

Theorem 2.7.3. There are exactly 58 classes of bases and 39 classes of pivotals under

s-completeness. They are indicated in Table 2.7 and 2.8 respectively.
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Table 2.7: Classes of bases under s-completeness.

rank 1 (1):
rank 2 (47):

rank 3 (10):

(1)

{2,3}x {4,5,6,9,10,14}, 2x{3,8,15},(3,7),
{4,5} x {8,10,13}, (4,5), {4,6} x {9,12},
5 x {6,7,11},{6,9,10} x {7,8,11},

{2,3,4,5,6,7,8,11} x 16,

(7x {8+{14,15}} x {12,13}, {8,11}x{12,13}x 14.

Table 2.8: Classes of pivotals under s-completeness.

rank 1 (15): 2 - 16;

rank 2 (20): (7) x {8,12,13,14,15}, (8) x {12,13,14}, (9) x {10,13}, (10,12),
(11) x {12,13,14,15}, (12) x {13,14,15}, (13) x {14,15};
rank 3 (4): (11,15)x{12,13}, (12,13) x {14,15}.

2.8. Concluding remarks

We have described several functional constructions and presented classes of bases for

each of them, using the corresponding classification of P,. They are summarized in Table

2.9. Another modification of the composition can be found in algebra ®° proposed by

Cejtlin [Cej70]. Classifications and base consideration was done for this case by Tosi¢

[Tos81]. Several other modifications of propositional algebras are considered in [Gin85].

Table 2.9: Maximal sets, classes and bases for the 7 constructions in this chapter.

maximal sets | classes | bases | min rank | max rank | pivotals
ordinary composition 5 15 42 1 4 51
r-line 3 5 4 1 2 3
2-line fix 6 12 28 1 3 10
uniform composition 8 18 118 2 4 115
Ibuki composition 7 18 93 2 4 88
Inagaki composition 6 18 82 1 4 T7
sequential 6 16 58 1 3 39
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Chapter 3

Bases Comnsisting of Symmetric
Functions

As an application of the enumeration of classes of bases we give formulas N™ for the
number of bases of P, consisting solely of n-ary symmetfic functions for each functional

construction described in Chapter 2.

3.1. Introduction

Usually primitives are selected from symmetric functions in practice; nonsymmetry of
the input variables complicates the situation, for example, by involving nonsymmetry
of delays. Indeed, almost all bases are symmetric functions in practice. The symmetry
of functions simplifies the synthesis of switching functions. Connecting an output of
a gate to any input of another gate gives shorter length of geometrical connections
and avoids extra intersection of the lines. Both are important issues in VLSI design.
Moreover, symmetric functions have algebraic properties which make it desirable to treat
them as a separate class. Thus we call bases (pivotals) consisting only of symmetric
functions s-bases (s-pivotals). We show that there exists a symmetric representative
in each class under the 7 constructions described in Chapter 2, except one class in

sequential completeness. This gives the following theorem.

Theorem 3.1.1. Classes of bases and classes of s-bases coincide under each of the 6 out
of all 7 constructions described in Chapter 2 (the only exception is the sequential circust
construction). In other words there is a base consisting only of symmeiric functions for

each class of bases under each construction.
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It is worth mentioning that there are several classes having no symmetric represen-
tative in P3. We are going to give formulas for the exact numbers of n-ary and up to
n-ary symmetric functions included in each of the classes. By this we can calculate the
formula for N™ and N<" (the number of bases consisting solely of up to n-ary symmetric
functions). Indeed the number of bases consisting solely of n-ary symmetric functions
in a class of bases can be calculated as a product of the numbers of corresponding func-
tions in each class of functions belonging to the class of base. Summing these numbers
for all classes of bases for rank ¢ we obtain corresponding data N} for bases of rank ¢
and finally summing them for all ranks we have N™. Similarly we can calculate N

Our results in this chapter are the number N™ for each construction.

3.2. Preliminaries on subsets of symmetric Boolean functions

A function f(zy,...,z,) is said to be symmetric if

f(21,-0 s 8n) = F(Zrq)s -+ ) Tn(m))
holds for all z1,...,z, € E; and every permutation 7 on {1,...,n}.
A fundamental symmetric function s? is determined by the number of its variables n
and the number r such that s” takes the value 1 if and only if r of its arguments assume

the value 1.

n
ne

For given n, there exist exactly n+1 fundamental symmetric functions: sg, s7,...,s
Each symmetric function can be uniquely represented as a disjunction of the fundamen-
tal symmetric functions [Sha49]. Hence the number of n-ary symmetric functions in
P, is 2", The above property provides a suitable notation for symmetric functions,

setting

st =s" V...Vl (n>1).

Pyt S Sy :
The constants 0 and 1 are symmetric functions which correspond to s and sg; .,
respectively. Assumethat0 <ry <...<r; < n. Let R:= {r1y...,m} and s} := CL—
Thus s%(21,...,2n) = 1 & z1+...+2, € R, where 2, +22+...+ T, denote the number
of 1’s in the vector (z1,...,Z5).
We give representation of symmetric functions for each of the subsets described in

Section 2, Chapter 2. The indicated number of symmetric functions is easily obtained
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from this. The set of symmetric functions from F' we denote by F°. Let ¢} and ¢} be
the constant-valued functions of n-variables assuming the values 0 and 1, respectively.
Let p*(zy,...,Z,) = z; be the projection function of n variables that returns the value

of the i-th argument; also let p? be the function that returns the dual value of the ¢-th

argument.

1) Tg = {s&l0 ¢ R}.
T3(n)] = 2.

2) Ty = {skln € R}.
T3 ()] = 2™

3) M? = {s}, 8%, 1 ms 572, 561, )
|Ms(n)l=n+2.

4) S*={spli€ Rifandonlyifn —i g Rforalli=0,...,(n—1)/2, n odd}.
|S*(n)| = 2(**1/2 for n odd and 0 for n even [ArH63].

5) L* ={c§, c0,x1+ ... + To(= 8fy 3, for nodd and = sp, 5,43 for n even),

L4214 ...+ za(=8%2, no1y for n odd and = sf,, . for n even)},

|L*(n)| = 4.

8) C° = {cg, 1, 8Ty (= z1...2a)}.

C2(n)| = 3. -
) D* = {c,c}, sTa,.my(= 21 V.. Van)}.
|D*(n)| = 3.

8) N§ = {s®|2r1 > n, where r; is the smallest in R}.
|N3(n)| = 2™2 for n even and 2(*+9/2 for n odd.
9) Ni = {s%|2r < n where r is the greatest in {0,1,...,n} \ R}.
|N3(n)| = 22 for n even and 2™/ for n odd.
10) X* = {s%|0 € R,n ¢ R}.
| X*(n)] =27
11) M” = {0,s%,...,s% . 1,1}
|M*”?(n)| =n+ 2.
12) K* = {s%|0,n € Ror 0,n ¢ R}.
[K*(n)| = 2"
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Example 3.2.1.

S52(3) = {3:{,’3,1};’3%0,23}’ 5%1,3}’ 3?2,3}}7
N3(3) = {33,3{2}733{3} = NLi%is S35
Ni(3) = {3{2,3}7 570,2,3} 3?1,2,3} = Vi zi, 3%0,1,2,3}}~

Table 3.1: Intersections of the subsets of symmetric functions.

Ny S L M M’
No [{z(n=D}[{e(n=1),| {z(n=1),0} |{z(»r=1)0 {0}
S?n-l—l)/?,...,n} 3?n+1)/2,...,n}
(n odd) (n odd)
Ny {r (n=1), {z (n=1), {z (n=1), {1,
33,...,n/2} 1} 1} 50,.... n/2}
(n odd) (n odd)
S {3?,3,...,1;, 38,2,...,77,—1} {S?n+1)/2,...,n} {38,...,(72.—1)/2}
(n odd) (n odd) (r odd)
L {z(n=1), [{z+1(n=1),
0,1} 0,1}
M 10,1}

In the next lemmas we summarize without proofs several results on the sets of sym-
metric functions expressed as intersections of the subsets defined previously. These

results will be used in the argument in the succeeding sections.

Lemma 3.2.1. M?*(n) C NjUN;.
Forn >2,
M*(n)NL*(n) = L*(n)NC*(n) = L*(n)ND*(n) = C*(n)ND*(n) = M*(n)NM"(n) =
= I¥(n) N M*(n) = {5, 1}
And
M¥(n) 0 N3(n) = L°(n) N N§(r) = <,
M"”(n) N N{(n) = L*(n) N N{(n) = cf.
Lemma 3.2.2. Forn even S°(n) = ¢. Forn odd,
S¢(n)N L¥(n) ={a+z; + ... + z,|la = 0,1},
5(n) (1 M*(n) = §°(r) N Ng(n) = §°(7) N V() = N§(n) 1 Ng(n) = Ny(n) 0 M(r)
= N3(n) N M?*(n) = 5°(n) 0 M*(n) N N§(n) 0N N;(n)

= {SFn+1)/2,...,n}7
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and

S*(n) N M"*(n) = {33,1,...,(7»—1)/2}'

Lemma 3.2.3. N;(n)NC*(n) ={0,z, A---Az,}, N(n)NC*(n) ={1,z, V-:-Vz,}

In Table 3.1 we summarize the intersections of the sets.

3.3. S-bases under the ordinary composition

In [Tos72] Tosié characterized the n-ary symmetric functions contained in each of the

15 classes under ordinary composition.

Theorem 3.3.1. [Tos72] The number of n-ary symmetric functions in each class under

ordinary composition is given in Table 3.2.

Table 3.2: Number of n-ary symmetric functions in each class under ordinary composition.

ToTySLM n=1| neven n > 1 odd
1. 11111 o 2nt! on—1 _ o(n—1)/2
2. 11011 0 0 2(n-1)/2 _q
3. 01111 ( 4. 10111) 0f2n1—-2 on-1_1
5. 11001 1 0 1
6. 10101 ( 7. 01101) 0 1 0
8. 00111 0j2rl—p|onl_20-D/2 _pn41
9. 10100 (10. 01100) 1 1 1

11. 00110 0 n n-—1
12. 00011 0 0 2(n=1)/2 _ 9
13. 00010 0 0 1

14. 00001 0 0 1

15. 00000 1 0 0

We briefly summarize it because our classification uses this. In all expression below

we assume {r,...,7} € {1,...,n—1}and 1< <n—-1

1. (Sheffer class) s§,, ,,n > 1, except the case n odd, I = (n—1)/2 and r; € {z,n—1}
forall7,1 < i < (n—1)/2; NOR function s} = 77 and NAND function s3; = ZV7.

.....

except the function z; + ... + Tp+1=58%,, . 1; So1 =IYV JZV Z7.

3. (preserving O class) s}, n > 2, except the constant function 0. For n even the

function z1 + ... + T, + 1 = So2,...n is also excluded; 3§,2 = —~(zyz V TYZ).
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(preserving 1 class) s3, . ., n > 2, except the constant function 1. For n even

also the function 1+ z; + ...+ T, = So2,...» is also excluded; 33,3 = (zyz V TYZ).

5. (linear selfdual class) Only 1+ 21+ ...+ Tn = $53,4,..n—1 for n > 1 odd.

6. (linear preserving 1 class) 1+z1+...+%,88,, ,forneven,n>1; s}, =z+y+1.

7. (linear preserving O class) 1 + ...+ z, = sf3 ,; forn even,n>1; 2=z +vy.

8. (preserving constants class) s, . .,n > 3, except the functions s7,,, . for 1 £
j <n. Forn odd, n > 1, the functions s? . are also excluded if they satisfy the
selfdual condition r; € {i,n — i} forall i, 1 <i < (n—1)/2; i,

9. (constant 1 class) Only the constant function 1.

10. (constant 0 class) Only the constant function 0.

11. (monotone preserving constants class) s?;,; ,forn >1, 1<j<n and j #
(n+1)/2 if n is odd;s3 = zy.

12. (selfdual preserving constants class) s? . . forr € {i,n—d}, 1 <i<(n—1)/2
and n odd, n > 4. The functions S{n+1)/2m and z1+. ..+ T, = 313, are excluded;
75

13. (monotone selfdual class) SCat1)/2smm forn odd, n > 1; 833 =y Vyz V 2z.

14. (linear selfdual class) 21 + ... 4+ Zn = 81,3,...n for n odd, n > 1; .311”,3 =z+y+ 2

15. (identity class) Only the function f(z) =z = s7.

The number of s-bases of P, consisting of n-ary (n > 1) functions is N(n) = 2" +
471 _p — 4 if n is even and N(n) = 2(»"1/2 ;. 47=1 1 3. 8(n-1/2 4 2n=1 _ 6 otherwise
[Tos72]. The formulas for N(<) are also given there.

3.4. S-bases under r-line coding

Theorem 3.4.1. The numbers of n-ary and up to n-ary symmetric functions in each

class under 2-line fized coding are given in Table 3.3.

The proof is obvious from Table 2.2, Chapter 2.

Theorem 3.4.2 S-bases consisting of n-ary functions (n > 2) is: rank 1: Np = 2"*1—6
(Sheffer symmetric functions), rank 2: N =2-1+2-1+1-1=35. Thus there are

Nn — 2n+1 -1
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Table 3.3: Number of symmetric functions in each class under r-line coding.

Number of n-ary functions Number of up to n-ary functions
class | LCD | n=1 n>1 class

1. 000 3 2 1. 2n+1

2. 011 1 2 2. 2n —1

3. 101 0 1 3. n—1

4. 110 0 1 4. n—1

5. 111 0 27t g 5. |22 —6n—2
sum 4 2nrt sum 2"TE — 4

s-bases under r-line coding. Similarly we have the number of s-bases consisting of up to
n-ary functions

NSP =922 4 5n2 — 14n + 1.

3.5. S-bases under 2-line fixed coding

We give the classes [[bu68], where the components are in the order of LDCSN; and Np.

Table 3.4: Classes under 2-line fixed coding

1. 000110 2. 000101 3. 011011 4. 011111 5. 101101 6. 110110
7. 111000 8. 111011 9. 111101 10. 111110 11. 111111 12. 000000

Theorem 3.5.1. [Sto85] The number of symmetric functins in the classes under 2-line
fized coding are given in Table 3.5.

Symmetric representatives in each of the above classes are given in [Sto85]. We
explain it briefly, because the original counting is slightly incorrect. It is easy to see
that only 0,1,a+ X" gz (n=2m+1,m>1l,a=0,ja=1forn=1),a+ XL 2z; (n =
om,m > 0,a = 0,1),VZ,z;, A", z; belong to the first 6 classes, respectively. From
Lemma 3.2.2 only S, 11y/2,..n for n odd and n > 2 is in the class 7. The class 8 contains
the selfdual functions except the intersection with each of the other sets. From Lemma
3.2.2 only the three functions belong to these intersections: s?n +1)/2m € SMNyN,
and $13..n = o 2 and Sy3,.., = 1+ 27 T belong to SL for n odd. The classes

9 and 10 consist of N; and Ny, respectively, except the intersection with each of the
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Table 3.5: Numbers of n-ary symmetric functions under 2-line fixed coding.

class [n =1 n=2m>1 n=2m+1
12 | 1 1 1
3 1 0 2
4 0 2 0
56 | 0 1 1
7 0 0 1
8 0 0 (/2 3
910 O on/2 _ 9 2(nt1)/2 _ 3
11 0 ontl _ 2n/2+1 -9 ontl _ 3. 2(n+1)/2 +2
12 1 0 0
sum 4 2n+1 2n+1

Table 3.6: Numbers of up to n-ary symmetric functions under 2-line fixed coding.

class | n =1 n>1
1,2 1 n
3 1 2[(n —1)/2] +1
4 0 2[n/2]
5,6 0 n—1
7| 0 [(n = 1)/2]
8 0 ol(n+3)/2] _ 3[(n —1)/2] — 4
9,10 | 0 | (34 (14 (=1)™)/2)2lm)/2 —2p —[(n —1)/2] — 4
11 0 or+2 _ 92(2l/2) 1. 3. 2l-1/2) 8 — (1 4+ (—1)")
12 1 1
sum 4 2"TE— 4

other sets. From Lemma 3.2.3 only the following functions belong to these intersections:
801, = 1, 875 o = VE,z; € N1D; further s{, 11y .» € N1NoM S when n odd. The
class 10 is similar; s = 0, s7 = Al z; € NoC and further sy 4y/5 . € NoN1MS when
n > 1 odd. The class 11 contains all the remaining functions (the Sheffer class to be

considered in the next Chapter 4). The class 12 contains only the identity function.

We show the numbers of up to n-ary symmetric functions in each class in Table 3.6

(note that Table 3.5 and 3.6 are corrected slightly: classes 8,9,10 case n odd).

Theorem 3.5.2. The number of s-bases consisting solely of n-ary functions under 2-

line fized coding is given in Table 3.7.
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Table 3.7: Number of s-bases consisting of n-ary functions under 2-line fixed coding.

n even n odd
Nnl3.2n 4 2.272 _g| 2nt3 —9.2(n+1)/2 1 5
NplorHl—2.272 2 | 2t —3.20nH0)/2 19
Np| 20 44.272 7 |3.271 4 6.20n+0)/2 4
N 0 7

Table 3.8: Number of symmetric functions in each class under uniform compositions.

n=1 n even n odd

1,11 0 [2nl—njont 2002 1
2,14 0 n n—1
3,15 0 0 2(n-1)/2 _ 2
4,7,16,17 0 0 1
5,6 0 2t 2 21 -1
8,18 1 0 0
9,10 0 1 0
12,13 1 1 1
sum 4 2n—F1 2n+1

3.6. S-bases under the uniform composition and its variations

Theorem 3.6.1.The number of symmetric functions in each class under uniform com-

position are given in Table 3.8

Proof. Our classification is a subclassification of P;-classes under ordinary composition
(cf. Table 2.1) described in Section 3,. Chapter 2 since 5 sets 1,13, S,L and M are
common to both cases. The only difference between the two classifications consists in
dividing the classes 1,2 and 5 in Table 3.2 into the classes 1,2; 3,4; 7,8 respectively, so
that functions of the set M’ belongs to the classes 2,4,8 and functions from M to the
classes 1,3,7. Let us use a prefix # to denote the classes in Table 3.2 (also in Section 3,
Chapter 2). We divide the classes #1, #2 and #5 by M'.

1. Classification of #1. Casen even. Only the n functions: sg; . 1,501, . n-20---550
belong to M’; the remaining belong to M. Case n odd. Among the functions described
in the case n even, only one 33’1,_“,(,‘_1) /2 € SM' should be deleted from Lemma 3.2.2.
Thus we have n — 1 functions for f € M’; the other 2(*~1/2 — n 41 functions belong to
M.
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Table 3.9: The number of up to n-ary functions in each class under uniform delay composition.

Class | Number of up to n-ary symmetric functions

1,11 27 — 2ln¥1)/21 _ [n? /2]

2, 14 [n2/2]

3,15 2l(+1)/2 _ 2[(n — 1) /2] — 2
4,7,16,17 [(n—1)/2]

5,6 2" —n—1—[n/2]

8,18 1

9,10 [n/2]

12,13 n

sum 27ti — 4

Table 3.10: Number of s-bases consisting of n-ary functions under uniform composition.

n even - n odd

Nn 23(11.—1) + (n + 3)2211—2 23(11.—1) + 25(n—1)/2 + (TL + 1)‘2211—2 -n- 2(371—1)/2
—n(n+3)2"1 4202 —n | +(1 =n?)2" 4+ (2n +3)200 V2 4 n? —n -5
N7 0 0

Nr 3.272 _ 25 3.272 _ 7T _op — 2

Ng" 23(11.—1) +n- 2271.—2 23(71.—1) + 25(11.—-1)/2 + (n _ 2)2211.—2 —n- 2(311—1)/2
—nn+3)2" 122 40| +(2-n?2"1+(2n+3)20 D242 -3
N} 0 n

2. Classification of #2. Only one function sg; (,_1)/2 belongs to SM' from Lemma
3.2.2; the other belong to T

3. Classification of #5. For n even no function exists. Consider n odd. Only one
function s} = z; + 1 belongs to M’ for n = 1. For n odd > 1 only one function

S824,.me1 = 1+ 21+ -z, belongs to M. D

In Table 3.9 the number of up to n-ary functions is given for each class which is easily

verified from the result in [Tos72] and Table 3.8.

Theorem 3.6.2. The number of symmetric functions consisitng solely of n-ary function

is given in Table 3.10.

Ibuki and Inagaki constructions

We give the formula for the number of s-bases consisting of solely n-ary symmetric

functions for each case in Tables 3.11 and 3.12.
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Table 3.11: Number of s-bases consisting of n-ary functions (Ibuki construction).

n even n odd
N 22n + 2n+1 —3n—4 2271. + 2. 2(n+1)/2 —8
Np 0 0
NJ 22" _2n—4 22n _92n—1_9n -3
NP 2t 214 2.2(00/2 4y 3
N7 0 n

Table 3.12: Number of s-bases consisting of n-ary functions (Inagaki construction).

n even

n odd

Nn

22"=2 4 B3n+5)2" 1 —4n -4

277 1 3. 231/ { (3 — 2)271
+H(n +2)2070/% — dn -2

NP
N3

Ny
N

2"l _p
2m=2 4 3n .21 _9on —4

ontl _
0

2n—1 _ 2(11.—1)/2 —n + 1
2%7=2 + 3. 28+ 1/2 4 (3p — 2)27-1
+(n +2)20-0/2 _4pn —2
on-l_9.2(D)/2 _ g
n

3.7. S-bases under sequential circuit composition

In Table 3.13 we show symmetric functions included in each class of s-completeness.

Lemma 3.7.1. There is no symmetric representative in the class 16.

Proof. Assume f € M,ie. f=s7 ., ., 0<m<n (weexclude the constant s} =0

from the consideration). From f ¢ Ny we have 2m < n and from f ¢ N; we have

2(m — 1) > n. That is, m < n/2 and m > n/2 + 1, a contradiction. O

This give the following.

Theorem 3.7.1. There are ezactly 50 classes of s-bases and 38 classes of s-pivotals

under s-completeness.

They are given by deleting the classes of bases and pivotals including the class 16
from those indicated in Tables 2.7 and 2.8, Chapter 2 respectively (we simply delete the

last line of rank 2 bases and one pivotal consisting solely of the class 16).

Theorem 3.7.2. The number of n-ary symmetric functions in each of the 16 classes

under sequential completeness are given in Table 3.14.
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Table 3.13: Symmetric functions in the classes of functions under s-completeness.

NoN;SLMM' symmetric functions
1. 111111  the remaining symmetric functions
2. 111110 8%, ., m#n Exclude m# (n—1)/2 for n odd
3. 111011 at+z1+ ...+ 2, (m>1,a €{0,1})
4. 110111 s  fornodd>1:m=(n—-1)/2,r € {i,n—1}
except @+ T1... + Tam+1; S(np1)/2,0mi S0.1,.(n—1)/2
5. 101111 sk 2r<nandsh¢M
6. 011111 s%2ri>nandskpéM
7. 110110 83y (ney)2: 7 0dd
8 110011 a+z+...+zmu(m>1,a€{0,1})
9. 101101 sp, 4y smS<n/2,m>0

10 011101 8% ..y ;m>n/2neven;m>(n+ 1)/2 n odd
11. 110010 l+z ’

12. 1010060 1

13. 011000 0

14. 000101  s{iyy/z.mn:n odd

15. 000001 T

6. 111101 ¢

Proof. We describe symmetric functions contained in in each class (cf. Table 3.13).

The class 1 is Sheffer class described in Section 5, Chapter 3. It is easy to see the
classes 3,7,8,11,12,12,13,14 and 15 since they are linear functions and SM and SM ’and
other special functions. The class 2 consists of monotone decreasing functions except
one function SM’; the intersections of the other sets and monotone decreasing functions
are constants or the unary function = + 1. Class 3,8: L*(n) C (S*US )No Ny M M".
Class 4: we are to exclude SL, SM=SN;=SN, and SM' from S. Class 5,6: we consider
class 6 (the class 5 is similar). From NoS C NoM, NoL & NoM and NogM' C NoM the

class 6 equals to Ny \ NoM. We have .5 mt1,..n € No & m > n/2,ie. m >n/2+41 for
n even and m > (n +1)/2 for n odd. Thus [NSM*(n)|=n+2—(n/2+1)=n/2+1
for n even and = n+2 — ((n —1)/2 4+ 1) = (n + 3)/2 for n odd. Finally, class 9,10:
From f € MM we have f = s%, .,y .,m >0 (if m = 0 then f € MM'). These do
not belong to L forn > 1. We have f € No & m >n/2and f € N s m< n/2 + 1.
Consider the class 9. Then m < n/2 and m < n/2+ 1. For n even this means m < n/2
and there are all n/2 such functions. For n odd this means m < (n — 1)/2 and there

are all (n — 1)/2 such functions. None of functions in both cases belong to 5. Class 10
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Table 3.14: Number of n-ary symmetric functions in each class under sequential completeness.

class\ |n=1 n even nodd >1
1 0 2n+1 . 2n/2+1 —_—n -2 2n+1 —3. 2(n+1)/2 —-n+ 3
2 0 n n—1
3 0 2 0
4 0 0 2(nt1)/2 _ 4
5,6 0 M2 —pnf2—1 2mt1)/2 _(n +1)/2 -1
7,14 0 0 ‘ 1
8 0 0 2
9, 10 0 n/2 (n—1)/2
11,15 1 0 0
12,13 1 1 1
sum 4 ontl on+l

Table 3.15: Numbers of up to n-ary symmetric functions in each class.

class\ n>1
1 272 (9 + (—1)™)2l+ V2 — [n? /2] 4 2n — 4]n/2] 4- 6
2 [n?/2]
3 2[n/2]
4 oln=1)/2142 _ 4[(n —1)/2] — 4
5,6 | (74 (=1)m2l=02 — (1/2)[n?/2) —n — [(n —1)/2] — 5
7,14 [(n—1)/2] :
8 2[(n—1)/2]
9, 10 [n2/2])/2
11,15 1
12,13 n
sum 2nTe 4

is similar. O

The number of up to n-ary symmetric functions in each class is given in Table 3.15.

Theorem 3.7.3. The number N™ of bases consisting solely of n-ary symmetric func-

tions under sequential completeness is given in Table 3.16.

3.8. Concluding remarks

We have given the numbers of symmetric functions in each class for each construction

described in Chapter 2. By this we have given formulas for the number of bases consist-

ing solely of n-ary functions. The numerical data for the small numbers of n are given
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Table 3.16: Number of s-bases consisting of n-ary functions under sequential completeness.

n even n odd
N™[3-2" + (n+ 1)27F1 3. 271  (Tn — 9)2(»~ /2
-n?/4—2n—7 —n?/4—1Tn/2 + 3/4
{L 2n+1 _ 2n/2+1 —n—2 2'n.+1 —3. 2(n+1)/2 —n+ 3
7| 204 (n42)22 | 2mt2 4 (Tn — 3)2AnD/2
—n?/4—-n—-5 ~n?/4 —15n/2 — 49/4
NZ 0 10
Table 3.17: Numbers of bases consisting solely of n-ary symmetric functions.
n 2 3 4 5 6 7 8 9 10
ordinary composition 2 36 72 446 1,078 5,634 16,628 77,834 263,154
r-line 7 15 31 63 127 255 511 1,023 2,047
2-line fix 7 33 47 189 199 885 791 3,813 3,127
uniform composition | 14 99 764 5,699 40,322 317,613 2,266,232 18,387,347 137,559,230
Tbuki composition 14 66 272 1,034 4,202 16,410 66,020 262,202 1,050,590
Inagaki composition 14 64 180 662 1,732 6,390 20,060 84,362 280,020
sequential 12 45 69 248 276 1,017 1,017 3,840 3,724

in Table 3.17. By the given data for the number of up to n-ary functions contained

in each class we can calculate the formula for the number of bases consisting of up to

n-ary functions.
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Chapter 4

Sheffer and Symmetric Sheffer
functions in P

In this chapter we give the four formulas for the numbers of Sheffer functions, Sheffer
with constant functions, Sheffer symmetric functions and Sheffer symmetric with con-
stant functions under each functional construction which we have seen in the previous

chapters.

4.1. Introduction

A Sheffer Boolean function is a well-known notion which means that it can produce by
itself all Boolean functions through composition. A typical example of such function is
the NAND operation. A variation of the notion of Sheffer functions is that of Sheffer
with constants (in this chapter abbreviated to c-Sheffer), which assumes that one can
freely utilize constant-valued functions (0 and 1). This is a more suitable assumption
in real circuit design, since the constant-valued functions are usually obtained with
no extra cost. A comprehensive survey on the topic of completeness can be found in
[Ros7T].

We show the formulas for the number of n-variable Sheffer functions, for the four
cases: Sheffer, c-Sheffer, symmetric Sheffer, symmetric c-Sheffer. Here some previous
results by other researchers are included in order to achieve completeness of the presen-
tation. The derivations for the formulas are always by the so-called inclusion exclusion
principle (cf. [Vil71]) using the inclusion relations of the sets we have seen in lem-
mas 2.2.1-2.2.4, Chapter 2 and 3.2.1-3.2.3, Chapter 3 freely. Thus the proofs are not

described in detail.
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The subsets of Boolean functions which we have seen in the previous chapters are
used in describing the conditions for Shefferness. From Section 2 through Section 8 we
present the explicit formulas for Sheffer and symmetric Sheffer functions. Finally in
Section 9 tables are shown which exhibit the calculated numbers of Sheffer functions in

each case.

We must note that some cases still remain unsolved because we don’t know the
formula for the numbers of the two subsets of Boolean functions. An explicit for-
mula for the number ¥(n) of monotone increasing Boolean functions is not known (the
Dedekind problem), but a good asymptotic formula has been obtained [Kor81] (see also
[Hro85,K1e69]). The first few values of the function are shown in Table 4.1. Also we
could not find an explicit formula for the function ©(n) (only the shape of the formula
is known very recently [PMN88]), which shows that the number ©(n) increases very
rapidly comparing even with ¥(n)). We calculated first a few values, which are shown
in Table 4.2 (the calculation is possible only up to n = 4 by naive enumeration using

computer).

Table 4.1. Values of ¥(n).

nl1 2 3 4 5 6 7
T(n) |3 6 20 168 7,581 7,828,354 2,414,682,040,998

Table 4.2. Values of ©(n).

n|l1 2 3 4 5
O(n) [2 6 40 1,376 1,314,816

4.2. Sheffer functions under ordinary composition

Our first construction method is the ordinary one. In this construction functions from a
given set of primitives are combined by composition of functions, together with identi-
fication and permutation of variables. Thus the projection functions p} are freely used
in composition.

In this section only the la,st> theorem is new. The first theorem is well-known (see

[Ros77]) and is easily obtained from the Post completeness theorem 2.3.1, Chapter 2: a
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set of functions is complete under ordinary composition if and only if it 13 not included

in each of the 5 sets Ty, Ty, M,S and L.
Theorem 4.2.1. A function f is Sheffer if and only if f € TobUTL U S.
Theorem 4.2.2. The number of n-ary Sheffer functions is T(n) = 22"-2 — 22" -1,

Theorem 4.2.3. [Tos72] The number X°(n) of n-ary symmetric Sheffer functions is

271 for n even and 2" — 20=D/2 for n odd.
Theorem 4.2.4. [Jab52] A function f is c-Sheffer of and only of f ¢ MU L.

Theorem 4.2.5. [Hik82] The number of n-ary c-Sheffer functions is T°(n) = 22" —
2™ 4 n +2 — U(n).

Theorem 4.2.6. The number of n-ary symmetric c-Sheffer functions is £%(n) = 2"+ —

n — 4.

Proof. £%(n) = |P*(n)| — |M*(n)| — |L*(n)| + |[M*(n) N L*(n)| = 2" — (n+2) —4 + 2.
5 :

Thus, when n is large, almost all symmetric Boolean functions are Sheffer with

constants.

4.3. Sheffer functions under r-line coding

All the result about r-line coding completeness is derived from the following Theorem

2.4.1, Chapter 2:

Theorem 4.3.1. A set of functions i3 complete under r-line coding if and only if 1t 1s

not contained in each of the 8 sets L,C and D.

Theorem 4.3.2. A function f is Sheffer and c-Sheffer under r-line coding if and only
ffE€LuUuCuUD.

Proof. The second assertion comes from the fact that {c¢§,c}} CLNCND. O

Thus, the notions of Sheffer and c-Sheffer coincide under r-line coding completeness.
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Theorem 4.3.3. The numbers of n-ary functions Sheffer and c-Sheffer under r-line
coding are Tye(n) = B¢, (n) =27 =22 4+ 2n + 2.

Proof. Ty(n) = B¢, (n) =27 =21 —2(2" + 1)+ 3(n+2) - (n +2). O

Theorem 4.3.4. The numbers of n-ary symmetric functions Sheffer and c-Sheffer

under r-line coding are 25, (n) = T (n) = 2" —6.

Proof. ¥3(n) =28 (n)=2""1-4-3-34+2+2+2-2. 0
4.4. Sheffer functions under 2-line fixed coding

The theorems about Sheffer functions in this section are derived from the following

Theorem 2.5.1, Chapter 2:

A set of functions is complete under the 2-line fized coding if and only if it is not
contained in each of the 6 sets S,L,C,D, Ny and N;.

Theorem 4.4.1. A function f is Sheffer under the 2-line fized coding if and only if
f€SULUCUDUNUN;.

We could not find an explicit formula for the number of functions in the above case.

Theorem 4.4.2. A symmetric function f is Sheffer under the 2-line fized coding if and
only if f € S*UL*UNSUN;.

Proof. C*UD*C NgUN;. O

Theorem 4.4.3. The number 33;,.(n) of n-ary symmetric Sheffer functions under the
2-line fized coding is 2" — 22+ — 2 for n even and 2™ —3- 201)/2 L 9 for n odd.

Proof. When n even, $°(n) = N§(n) N Ni(n) = ¢. Thus 3. (n) = |P*(n)| — |L*(n)| —
IN3(n)| = [N (n)] + |L*(n) A N3(m)] + |E#(n) 0 N3()] = 271 — 22 —27/2 _ 2. When
n Odd, Z;Ifc(n) — ontl _ 2(n+1)/2 _ 2(n+1)/2 —44+54+2— 2(n+1)/2 —1. 0

Theorem 4.4.4. A function f is c-Sheffer under the 2-line fized coding if and only of
fé¢LuCuUD.
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Proof. Because ¢cg € S,c; &€ Ny and ¢co € Ny. O

Thus, from Theorem 4.3..2, the sets of c-Sheffer functions under r-line coding and
the 2-line fixed coding coincide. Hence from Theorems 4.3..3 and 4.3..4 we immediately

have the following theorems.

Theorem 4.4.5. The number of n-ary c-Sheffer functions under the 2-line fized coding
is g (n) = 27" — 272 4 2n + 2.

Theorem 4.4.6. The number of n-ary symmetric c-Sheffer functions under the 2-line

fized coding is X5 (n) = 2" — 6.
4.5. Sheffer functions under uniform delay composition

The following Theorem 2.6.1, Chapter 2 is fundamental for this section.

A set of functions is complete under uniform delay composition if and only if it 1s

not contained in each of the 8 sets: Tp,T1,M,S,L, X, M' and K.

There is no Sheffer function under this construction [Kud60], because ToNT; C. X.

However, in the case of Shefferness with constants, we have the following:

Theorem 4.5.1. [Hik82] A function f is c-Sheffer under uniform delay composition if
and only if fE MUM ' ULUK.

Theorem 4.5.2. [Hik82] The number of n-ary functions Sheffer with constants is
B (n) =22""1-2" 4 2n + 4 — 2¥(n).

Theorem 4.5.3. The number of n-ary symmetric c-Sheffer functions under uniform

unt

delay composition is £ ,(n) =2 —2n — 1 + (—1)™

Proof. Consider the functions outside K*. Note that |M?*(n) N K3(n)| = |M"”(n) N
Ks(n)| = n; and also note that L°(n) N K*(n) = {a + 21 + ... + £,} when n is odd, and

is ¢ when n is even. O

4.6. Sheffer functions under Ibuki construction

Another construction method for unit delay primitives is proposed independently in
Ibuki [Ibu68]. He allows non-uniform composition in some case. His completeness

theorem is.
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Theorem 4.6.1. [Tbu68] A set of functions is complete under Ibuki construction if and
only if it is not contained in each of the 7 sets: T, T1, M, S,L, X and M'.

There is no Sheffer function in this construction by the same reason as the previous

section. From Theorems 4.5.1 and 4.6.1 the following corollary is immediate.

Corollary 4.6.1. If a set of functions is complete under uniform delay composition

then it 1s complete under Ibuki construction.

Theorem 4.6.2. A function f is c-Sheffer under Ibuki construction if and only if
fEMULUM.

Proof. ¢, € Ty, co € Ty, co € S,and o ¢ X. D

Theorem 4.6.3. The number of n-ary c-Sheffer functions under Ibuki construction is
B uki(n) = 22" — 271 4 2n 4 4 — 2¥(n).

Proof. Note that |[M(n) U M'(n)| = 2¥(n) — 2. Also use Lemma 2.1. O

Theorem 4.6.4. The number of n-ary symmeiric c-Sheffer functions under Ibuk: con-

struction 18

Puri(n) =271 —2n — 4.

Proof. From lemmas in Section 3 we have |M*(n) U L*(n) U M"”(n)| =2n+4. O

4.7. Sheffer functions under Inagaki construction

Still another modification to Kudrjavcev’s construction is treated in [Ina82] by Ina-
gaki. He further weakened Ibuki’s restriction, assuming that one is allowed to construct
constant-valued functions with their inputs being nonuniform delays. In this construc-
tion one feeds input signals in some span of time so that one can maintain stable output.

Thus, for example, oscillating input sequence like 0101... is prohibited.

Theorem 4.7.1. [Ina82] A set of Boolean functions is complete under Inagaki con-
struction if and only if it is not contained in each of the 6 sets: To,Ty,M,S,L and
M'.

From Theorems 4.6.1 and 4.7.1 the following corollary is immediate.
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Corollary 4.7.1. If a set of functions is complete under Ibuki construction then it 13

complete under Inagaki consiruction.
There exist Sheffer functions in contrast to the former two cases.

Theorem 4.7.2. A function f is Sheffer under Inagaki construction if and only if
fE€ToUTyUSUM.

Proof. f € ToUTh U S implies fgMUL. O
We could not find an explicit formula for the number X Inagaki(n). But for the sym-

metric case we have the following.

Theorem 4.7.3. The number 23, (1) of n-ary symmetric Sheffer functions under

Inagaki construction is 2"~ —n for n even, and 2" — 2=1/2 _n 41 for n odd.

Proof Only the rough sketch. When n is even, note that the number is |T§(n) N
TE(n)| — |M"(n)] + [(T§(n) UT$(n)) N M (n)|. When n is odd, note that the number is
T N T — [T NI 0 S ()] — [T80) N TER) 1 M ()| + [T5() 0 TE(m)
S*(n) N M"(n)|. O '

Theorem 4.7.4. A function f is c-Sheffer under Inﬁgaki construction if and only if
fEgMULUM.

Hence, from Theorem 4.6.2, the sets of c-Sheffer functions under Ibuki construction
and Inagaki construction coincide. Following theorems are immediately obtained from

Theorems 4.6.3 and 4.6.4.

Theorem 4.7.5. The number of n-ary c-Sheffer functions under Inagaki construction
18

(n) = 22" — 2™ 4 2n + 4 — 2¥(n).

[ .
Inagak:

Theorem 4.7.6. The number of n-ary symmetric c-Sheffer functions under Inagaks
construction 18

(n) = ontl _ 9n — 4.

cs
Inagaki
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4.8. Sheffer functions under sequential circuit construction

We present the result about Sheffer functions based on the following Theorem 2.7.1,
Chapter 2:

Theorem 4.8.1. A4 set of functions is complete under sequential circuit construction if

and only if it is not contained in each of the 6 sets: M, S, L, No, N1 and M'.

Since Ny C Ty and Ny C T, the following corollary is immediate from Theorems

4.7.1 and 4.8.1.

Corollary 4.8.1. If a set of functions is complete under Inagaki consiruction then it

i3 complete under sequential circuit construction.

Theorem 4.8.2. A function f is Sheffer under sequential circuit construction if and

only if f€ MUSULUNGUN, UM

We could not find an explicit formula for Z,.,(n). But in the symmetric case we have

the following.

Theorem 4.8.3. The number £2, (n) of n-ary symmetric Sheffer functions under se-
quential circusit construction is 271 —2"2*1—n—2 for n even and ontl_3.2(1)/2_pn3

for n odd.

Proof. When n is even, M*(n) C N§(n) U Nj(n). When n is odd, note that Ng(n) N
Ni(n) € §*(n), L*(n) A\ Ng(n) = M*(n) N\ N3(n) = {3}, and L*(n) N Ny (n) = M"(m)"
Ni(n) = {c}}. Details omitted. O
Theorem 4.8.4. A function f is c-Sheffer under sequential circuit construction if and
only if fE MULUM'.

From Theorem 4.6.2 and Theorem 4.7.5, c-Shefferness coincides under Ibuki, Inagaki

and sequential. Thus we have the following.

Theorem 4.8.5. The number of n-ary c-Sheffer functions under sequential circust
consitruction s

B¢, (n) = 2% — 271 4 2n + 4 — 2¥(n).

Theorem 4.8.6. The number of n-ary symmetric c-Sheffer functions under sequential

circust construction is Equ(n) =9ontl _on 4,
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4.9. Concluding remarks

As is well-known, the condition for completeness is conveniently expressed by listing all
maximal incomplete sets under each construction. In Table 4.3 the maximal incomplete
sets under the constructions treated in this chapter are summarized. In Tables 4.4 are
shown consditions of Shefferness and c-Shefferness (Table 4.5 presents the same condi-
tions for symmetric functions). Table 4.6 presents essentially 2-ary Sheffer functions.
In Tables 4.7 and 4.8 are shown n-ary functions Sheffer and Sheffer with constants, re-
spectively, for 2 < n < 4, for each case of the constructions. In Tables 4.9 and 4.10 are
shown n-ary symmetric functions Sheffer and Sheffer with constants, respectively, for
2 < n < 6. All the values in the tables are calculated by the formulas given in the paper,

except those marked by (*) in Table 4.7 which are obtained by naive enumeration.

Table 4.3: Maximal incomplete sets under various constructions.

h T1. M S L C D N N X M K
ordinary composition X X X X '

r-line coding

2-line fixed coding
uniform X X
Ibuki construction X X
Inagaki construction X X
sequential construction

"nox

X X
X X X X

Mo MM

MMM oMM

KoM oM MM
]

MoK oMM

ordinary with consts.
r-line with consts.
2-line fixed with consts.
uniform with consts.
Ibuki with consts.
Inagaki with consts.
sequential with consts.

oM oMM ]
MoW oM K M KK
ST ]

Table 4.4: Conditions of Shefferenss and c-Sheferness under various constructions.
h T M S L ¢ D Ny N X M K
ordinary composition X X X

r-line coding X X X

2-line fixed coding x X X X X

Inagaki construction X X X b

sequential construction X X

™

»
™
S
>

ordinary with consts. X
r-line with consts.
2-line fixed with consts.
uniform with consts.
Ibuki with consts.
Inagaki with consts.
sequential with consts.

WM KoM
LI T
HoM oMM

53



Table 4.5: Conditions of symmetric function Shefferenss and c-Sheferness.

s

Iy

MS

SS

L ¢ D

N§ N X*

Mls

K

ordinary composition
r-line coding

2-line fixed coding
Inagaki construction
sequential construction

ordinary with consts.
r-line with consts.

2-line fixed with consts.

uniform with consts.
Tbuki with consts.
Inagaki with consts.
sequential with consts.

X

X

WM oM K

X
X

X

X X X

]

"
»

MoK M oMM MK

MoM MM

Table 4.6: Essentially 2-ary Sheffer functions under various constructions.

TVYy zVy yT y—z T Ty zFEy z=y Ty zy
ordinary composition X X
r-line coding X X X X X X
2-line fixed coding X X
uniform
Ibuki construction
Inagaki construction
sequential construction
ordinary with consts. b< b b'd X bd bd
r-line with consts. X X X X bid X
2-line fixed with consts. X X X X b X
uniform with consts.
Ibuki with consts. b'e bd X b4
Inagaki with consts. X X X X
sequential with consts. b'¢ X x X

Table 4.7: The number of n-ary Sheffer functions.

n 2 3 4 ratio when n — oo
total 16 256 65,536

ordinary composition 2 56 16256 1/4

r-line coding 6 232 65482 1

2-line fixed coding(*) 2 162 62,538 7

uniform delay - - -0

Ibuki - - - 0

Inagaki(*) 0 42 16,102 1/4

sequential composition(*) | 0 148 62,366 7
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Table 4.8: The number of n-ary functions Sheffer with constants.

n 2 3 4 ratio when n — oo
total 16 256 65,536

ordinary composition 6 225 65342 1

r-line coding 6 232 65482 1

2-line fixed coding 6 232 65482 1

uniform delay 0 90 32428 1/2

Ibuki 4 210 65,180 1

Inagaki 4 210 65,180 1

sequential composition | 4 210 65,180 1

Table 4.9: The number of n-ary symmetric Sheffer functions.

n 2 3 4 5 6 ratio whenn — oo
total 8 16 32 64 128

ordinary composition [2 2 -8 12 32 1/4

r-line coding 2 10 26 58 122 1

2-line fixed coding 2 6 22 42 110 1

uniform delay - - - - -0

Tbuki S -0

Inagaki 0 0 4 8 26 1/4

sequential composition {0 4 18 38 104 1

Table 4.10: The number of n-ary symmetric functions Sheffer with constants.

n 2 3 4 5 6 ratio whenn — oo
total 8 16 32 64 128

ordinary composition |2 9 24 55 118 1

r-line coding 2 10 26 58 122 1

2-line fixed coding 2 10 26 58 122 1

uniform delay 0 0 8 20 52 1/2

Tbuki 0 6 20 50 112 1

Inagaki 0 6 20 50 112 1

sequential composition |0 6 20 50 112 1
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Chapter 5

Classification of P;

In this chapter we classify Ps, the set of all three-valued logical functions. In the first
section we state the completeness criterion for P which gives 18 Ps-maximal sets. Then
we present inclusion relations of intersections of the maximal sets as lemmas. These
lemmas are useful not only for the classification of P; but also for understanding the
basic structure of P3;. The study of classes also provides information on the closed sets
which are the intersections of families of maximal sets. This is of independent interest
relating to a further study toward describing all closed sets of P;. In Section 5.2 we
explain a strategy of the classification briefly. After that we proceed to the classification

OfP3.

5.1. Basic structure of P;

In this section intersections of the Ps-maximal sets are investigated. Operations over
relations introduced in Chapter 1 are used to prove basic inclusion relations among
them. In some cases we present the results from [Miy71] omitting the proofs.

The investigation of this chapter is based on the following fundamental result due
to Jablonskij. In the following theorem T is the Stupecki clone (of all essentially unary
or non-surjective functions); L is the clone of all linear or affine (mod 3) functions; S
of all functions selfdual with respect to the cyclic permutation (012); Moy, M;, M, are
determined by linear orders (chains) on Es; Up, Uy, U, by the nontrivial equivalence
relations on E3; By, By, By by the so called central relations and T, ..., T2 by unary
relations (i.e. subsets of E3). Throughout this chapter z 4y and zy denote the element
of E3 congruent (mod 3) to z + y and zy, respectively.
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Theorem 5.1.1. [Jab58] P; has ezactly the following 18 mazimal sets:

T = Pol({(a,b,c)f € E3|la=bora=corb=c}),
L = Pol({(a,b,c)" € B3| c=2(a+D)}),

012

S = Pol<120>,

012220 012001 012112
Mo = Pol 012011)’ My, = Pol 012122)’ My = Pol 012200>’

01212 01202 01201
Vo = Pol 01221)’ Ui = Pol 01220)’ Uz = Pol 0121o>’

0120102 0120112 0120212
Bo = POZ(omozo)’ B o= POZ<0121021)’ By = POZ(0122021)’
To = Pol(0), Ty = Pol(1l), T, = Pol(2),
T01 = POZ(O].), T02 = Pol(02), T12 = POZ(].Z)

Let us call the fﬁnctions of D := {fI[W(f) # Ei} degenerate functions, wher& W(f)
denotes the sets of values of f (range of f). &

Theorem 5.1.2. [Slu39]
T=DuP®.

Another characteristic of T' is the set of functions, substituting any degenerate func;
tions in its all arguments results in a degenerate function (T' may be called semi-
degenerate functions). L is the set of functions which can be expressed as a linear
function of its variables. The set of linear functions is maximal only if k is a prime. S
is the set of functions preserving the mapping ¢ : B3 — E3; ¢(z) =z + 1.

If a binary relation R C Es X E3 contains {(0,0),(1,1),(2,2)} then R is called
reflezive. The sets M;, U;, B; are reflexive.

M;, My, M, are the set of functions preserving the three order relations 2 <o 0 <o
1, 0 <3 1 <4 2,1 <5 2 <5 0 respectively. They are called nondecreasing functions,
respectively with respect to the three orders <o,<;,<; . f € Uy 1s equivalent to : if
(f(a), f(b)) = (0,2) or (1,2) then there is ¢ such that (a;,b;) = (0,2) or (1,2). In the
same manner, f € B; is equivalent to : if (f(a), f(b)) = (0,2) then there is ¢ such that
(a;,0;) = (0,2).
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T, and T, is the set of functions preserving a and {a, b}, respectively. That is, for

f € T, we have f(a) = a, and for f € Ty, we have f(e) € {a,b} for any = € {a,b}".

Let the permutation group (symmetric group) over {0,1,2} be S3 = {¢, 09, 01,02, 03,
o4}; 00 = (12),01 = (02),02 = (01), 05 = (012),04 = (210), where &,(p,q) and (p, q,7)
denote identity, transposition of p and g, and cyclic permutation of p, ¢,r, respectively.
In Table 5.1 we presents the multiplications of the elements of the permutation, where

~ = aff means y(z) = a(B(z)). Note that 07 =¢ (i = 0,1,2).

Since similarity plays an important role in our discussion we present the table of o-
similar of each maximal set for all ¢ € S5 in Table 5.2. These o-similar can be calculated

by Lemma 1.3.2 and Lemma 1.4.2 (Chapter 1).

Table 5.2: o-similar of maximal
sets, where - denotes invariance.

g () g1 g9 g3 T4

T —_— —_ —_ — —

L — — — — —

S — — — — —

Table 5.1: 53 X 53. M, M, - M(} My M,
M, | My My — M, M

O(\ﬂ Og O3y O3 O3 Oy4 Mo - M2 M1 M2 M2
Jp E O3 04 01 O9 U2 U]_ Uo - U1 U()
g1 g4 € O3 09 Oy Uo - U2 U1 U2 Ul
09 O3 04 € Opg 01 U]_ U2 — UO UO Uz
03 g9 Og 01 04 £ Bo it B2 Bl BQ Bl
04 0oy 09 0Og £ O3 Bl B2 - Bo Bo B2
' B2 B1 Bo - Bl Bo

To |- T Th T Ty

T1 T2 - To To Tg

T, Ty To — Tv To

T01 T02 T12 - T20 T12

T12 - TOl T02 T01 T02

T20 TOl - T12 T12 T01

We now proceed to investigate the intersections of the maximal sets.

Theorem 5.1.3.

K = MMM, = {0,1,2 (constant functions), z; (¢ =1,2,...; projection functions)}.
We give the proof after two lemmas.
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Lemma 5.1.1. If f € K then for any i and for any a; (j =1,...,n;j # 1),
g(z:) = flas,- .., qi-1, Ti, Giy1, - . ., On) = T; OF constant.

Proof. Let & = (ay,...,qi-1, i, Git1,...,0s), then 0<1<21<52%,0,2<,
0 <o 1. Hence, if f € K then f(0) = 0,f(1) =1,f(2) =2 or f(0) = f(1) = f(2) =

constant. O
Lemma 5.1.2. If f(z,y) € Péz) depends both on x and y, then f ¢ K.

Proof. Assume f(z,y) € K and f(z,y) depends both on = and y. Then there are
¢,c' (¢ # ¢') and a such that f(c,a) # f(c,a). From Lemma 5.1.1 f(z,a) must be z or
constant, therefore f(z,a) = z. Analogously it should be f(b,y) =y for some b. Hence
f(b,a) = b = a follows. Assume b = a = 0. Then f(z,y) is represented by the following
table:

z\y|0 1 2
0 |01 2
1 1 x =*
2 |12 *x *

Again by Lemma 5.1.1 f(2,y) = constant or y. On the other hand f(2,0) =2 from the
above table. Hence f(2,y) = 2. Analogously we conclude f(z,1) = 1. Accordingly we
have f(2,1) = 2 and f(2,1) = 1, a contradiction. The case b = a =1 or 2 is similar. O

Proof of the theorem. It is easy to see that only the constant functions and projvection
functions belong to K among all functions of P,El). Therefore it suffice to show that, if
f € K then f depends only one variable. We show that if f(z,...2,) € K depends
on at least two variables, say z; and z;, then there is a function in K which depends
just two variables. Since this contradict to Lemma 5.1.2, any f contained in K must
depends at most only one variable.

For simplicity put j := 1. From Lemma 5.1.1,

f(ziag...a,) =z; and f(by...bi1zibipy ... by) = Ty, (5.1)
for some ay,...,an,01,...,b,. Put z; = ¢ for any ¢ € E3. Suppose

for some by and b} (by # b,). Then h(z,y) := f(bizbs...bi_1ybir1...b,) depends on z
and y. In fact, f(bs,c) # h(bl,c) and f(bs,c) # h(bs, ) for ¢ # ¢ from (5.1) and (5.2).
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Table 5.3:
B D0y DD = D@0 D(L2)
p(1,2)| -  D(0,1) D(2,0) D(0,1) D(2,0)
D(Z,O) D(071) - D(172) D(I,Z) D(O,l)

Since K contains constants and K is closed, we have h(z,y) € K. This contradicts to
Lemma. 5.1.2. Thus varying the value of z, does not vary the value of f. Repeating the
same procedure for zs,...,Ti_1, Tit1,. - -, Tn We conclude f(biay...a;1cai41...0,) = c.

Since c is arbitrary, this indicate
f(bray...a;i1Zi0i41 ... Gn) = T4 (5.3)

Let g(z,y) == f(zaa...ai—1Yais1 ... @), then g(z,y) € K depends on z and y from
(5.1) and (5.3). This contradicts to Lemma 5.1.2 and completes the proof. O

Lemma 5.1.3. [Miy71]
MMy C U,, MaMy CU,, and MoM,; C Us.

Corollary 5.1.1.
MMMy C UUgUs.

Lemma 5.1.4. [Miy71]
U2UOU1 - MleMo.

Note 5.1.1. Let D(0,1) := {W(f) C {0,1}} and let D(1,2), D(2,0) be analogously
defined. o-similar of D(p, ¢) is indicated in Table 5.3.

We can show the following relations [Miy71]:
D(0,1)U,U, C My, (5.4)
D(2,0)U,U; C M. (5.5)
Taking o, and cp-similar of (5.4) and (5.5), respectively, we have

D(0,1)Usl; C My, (5.6)
D(0,)U1U, C M. (5.7)
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By (5.4), (5.6) and (5.7),
D(0,1)U Uy C MoM1 M, = K. (5.8)
Hence considering Theorem 5.1.3, we have
D(0,1)UslU; = {0,1} , D(1,2)UhU; = {1,2} and D(2,0)U:U, = {2,0}.

Lemma 5.1.5.

M, M, C By, M2M, C By and MoM; C B,.

Proof. The right-hand side relation can be obtained by the left-hand side relations by

an operation

0

Corollary 5.1.2. MoM; M, C BoB,B,.

Lemma 5.1.6. [Miy71] U,Uo C By, UpUy € By and U U, C B.
Corollary 5.1.3. UgU U, C BB, B;.

Lemma 5.1.7. [Miy71] BeBy C Uy, B1B; € Uy and BBy C Us.
Corollary 5.1.4. ByB{B; C UU,U..

Theorem 5.1.4. K = MoM;M, = ByB;B, = UyUyU,; = {0,1,2 (constant functions),
z; (1 =1,2,...) (projections)}.

Proof. By Corollaries 5.1.1,5.1.3,5.1.4, Lemma 5.1.4 and Theorem 5.1.3. O
Lemma 5.1.8. T, Ths € Ty, Ti2T0 C T and TooToy C To.

Proof. From the relational intersection we have To; N T2 = Ty. O
Corollary 5.1.5. T, 112150 C ToTiT5.

Lemma 5.1.9. M; UM, U My C Ty U Ty U Ty

Proof. Let f € ToTisTho then there are a € {0,1}",b € {1,2}",c € {2,0}" such that
f(a) =2, f(b) =0, f(¢) = 1. This implies f € M, M,M,. O
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Note 5.1.2.

UgUULUU, € ToTi2Tho,
BoUByUBy € TyTi2Th.

Counterexamples of U, C To1Ty2T20 and By € To1T12Tho are any functions in the classes

#10 and #26, respectively (they are given later).
Lemma 5.1.10.

BoB1 C Ty, MoM; C Ty, ezcept constant function f =2,
BBy C Tyy, MiM, C Tio ezcept constant function f =0,

ByBo C To1, MoMy C Tyy except constant function f = 1.

Proof. 1). Assume f ¢ BoB1To1. Then f({0,1}") = 2. Because, since (a,b) € BoB:
for any a,b € {0,1}", assuming f(¢) € {0,1} for some c € {0,1} leads to f({0,1}") €
{0,1}. We show f(a) = 2 for any @ € E™\ {0,1}". Put v; := 0,v; := 1 if a; = 2,
u; = v; = a; otherwise. Then u,v € {0,1}" and (a,u) € Bo and (a,v) € B;. From
f € BoB; we have (f(a), f(w)) € By and (f(a), f(v)) € By. Since f(u) = f(v) =2 we
have f(a) = 2. |

2). Assume f € MiMoTo. There is a € {0,1}" such that f(a) = 2, which implies
f(r) = f(2) = 2 from f € M; and a < 1 £ 2. On the other hand 2 and 1 are
respectively the minimal and maximal elements according to the order 2 <o 0 <o 1.

This implies f =2. O

Lemma 5.1.11.
Uo = M2 on D(O, 1)M1, (59)
U2 = MO on D(2, O)Ml. (5.10)

Proof. First we prove (5.9). 1) Let us show D(0,1)M Uy € M,. Assume f €
D(0,1)M;UoM, then there are @ <; b such that f(a) %, f(b). From f € D(0,1)
we have (f(a), f(b)) = (0,1). Define a’ by

o = { 2, if (a;, 0;) = (1,2) or (1,0),

: a;, otherwise.
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If a = a', then we have b < a and f(b) =1 £ f(a) = 0, contradicting f € M;. If
a # a', then (a,a’) € Uy and hence f(a') =>0. On the other hand, b < a' from the
construction of a’. Again f(b) =1 £ f(a') = 0 contradicts to f € M;.

2) Converse D(0,1)M M, C U, is from Lemma 5.1.3. The proof of (5.10) can be
done analogously (note that (5.9) and (5.10) are not o-simislar). O

Corollary 5.1.6.

Upo=M, on D(0,1)M; (5.11)
Ug=My, Uy =M, on D(0,1)M, (5.12)
Uy=M; on D(0,1)Mo (5.13)
Uy=M, on D(1,2)M, (5.14)
Uy=M,, Uy=M; on D(1,2)M, (5.15)
Uy=M, on D(1,2)M (5.16)
Up=M; on D(2,0)M, (5.17)
Uy=M, Uy=M, on D(2,0)M; (5.18)
Up=M; on D(2,0)M,. (5.19)

Proof. Equation (5.11) is (5.9). The first and the second equations of (5.12).are o4
and og-similar of (5.10), respectively. (5.13) is op-similar of (5.11). The equations
(5.14),(5.15),(5.16) and (5.17),(5.18),(5.19) are o4 and o3-similar of (5.11),(5.12),(5.13),

respectively. O
Note 5.1.3. From Lemma 1.4.2 (Chapter 1) we have the following equations.

M;? = Mg-—l(r), U? = Ua—l(,.), B} = Ba—1(,.) and D(p, q)° = D(O’_lp, a—lq).

7

5.2. Strategy of the classification

The final classification result of Pj is indicated in the Appendix 1, where *no (number
preceded by *) denotes serial identification number of the class (according its order of
appearance), while #no (mirnber preceded by #) denotes the sorted according to the
“degree of completeness” number of the class. All the representatives of the classes are

indicated in Appendix 2 separately.
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The process of classification is as follows. First we classify the functions of T Then
T(L U S) is classified, and after this the remaining functions TLS are classified by M
type, U type, B type, T, type and finally Tp, type maximal sets. It is clear that we
consider the functions which are not yet classified in each stage of the process. After
above process it remains only one class, namely the class of functions which belong to
none of 18 maximal sets. This class consists of so called Sheffer functions or complete
functions.

The process is straightforward and we will identify all 406 classes of P3 among 218 —
262,144 possible classes. The classification process reveals the finite structure of Ps.

We show the correspondence of sections and the functions to be classified.

Section 5.3 T

Section 5.4 T(LN S)

Section 5.5 M = TTS-(MQ U M1 U Mg)
Section 5.6 U :=TLSM(UyU U, UU,)
Section 5.7 B :=TLSMU(ByU B, U By)
Section 5.8 TLSMUB.

5.3. Classification of T

Let PO = {flf € P and f is onto} and D'(0,1) := D(0.1) \ {0,1}, D'(1,2) :=
D(1,2)\ {1,2}, D'(2,0) := D(2,0) \ {2,0}. Then from Theorem 5.1.2 and o-similar,
T = PO 4 {0,1,2} + D'(0,1) + D'(1,2) + D'(2,0) = P4, +{0,1,2} + D'(0,1) +
D'(0,1)°t 4 D’(0,1)°, where “+” denotes direct sum and “{0,1,2}” denotes all constant
functions. As for each function in Po(,lbzo and {0,1,2}, its class is immediately known
(Table 5.4). Hence it is sufficient to consider D'(0,1). Note that we must pay attention
to the classes in D’(0,1) that are invariant under o1 and oo similar in counting the total

number of classes of T'.

First we prepare some lemmas for the classification of D'(0, 1).
Lemma 5.3.1. D(0,1) C 5.

By o-similar we have the following.
Corollary 5.3.1. D C S.

Thus by Theorem 5.1.2 and Corollary 5.3.1 we have the following.
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Table 5.4: Classes of P) + {0,1,2}.

onto

*10 functions TLS M1M2M0 U2 UOU1 A BoBle T0T1T2 T01T12T20 #no
*1 T 000 000 000 000 000 000 #406
x2 jz+1,z+ 2| 000 111 111 111 111 111 # 83
*3 2z 001 111 101 011 011 101 #259
x4 2z 4+ 1 001 111 011 110 110 011 #260
*5 2z 4+ 2 001 111 110 101 101 110 #258
*6 0 001 000 000 000 011 010 #405
*7 1 001 000 000 000 101 001 #404
*8 2 001 000 000 000 110 100 #403

Corollary 5.3.2. TS = {z;,z; + 1,2; +2 (1 =1,2,...)}.
Lemma 5.3.2. D'(0,1) C L.

Proof. Prove that if f € L\ {0,1,2} then f is onto. Assume such f. Then f(z) =
co+ 3 ¢;7; and there is at least a ¢; #0. Put d = f(z +1)— f(z) =X c;=0,1or 2. If
d # 0 then f is onto, because f(), f(x + 1) and f(z + 2) differ one another. Assume
d = 0. Since ¢; # 0 there are @ and &' such that f(a) # f(&'), where two vectors &
and &' differs only at i-th coordinate (a; # a}). Let a” be the remaining element of
E3\{a,a'}. Then we have f(a') = f(a)—ci{a—a’) and f(&") = f(a)—ci(a—a"). This
implies that f is onto, since f(&') # f(a), f(a") # f(a) and f(a") # f(a'). O

By o-similar we have the following corollary.
Corollary 5.3.3. D\ {0,1,2} C L.

Thus by Theorem 5.1.2 and Corollary 5.3;3 we have:
Corollary 5.3.4. TL = ngo = {0,1,2}.
Lemma 5.3.3. D'(0,1) C B3BoB1T:Tn1Ua.

Proof. Suppose f € D'(0,1)Bz, then there are a,b € E7 such that f(a) = 0 and
f(b) = 1 from fve D’(0,1). Considering that (@,2) € B; we have f(2) = 0 since
f(a) = 0 and f € D(0,1). On the other hand. (b,2) € B; leads to f(2) = 1 in the
analogous manner. A contradiction. The remaining assertions are obvious from the

definitions. O
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Note 5.3.1. From this lemma we see that the classes of D’(0,1) are neither oo- nor

oi-invariant.

Now let us introduce a new notation to represent a partition of D'(0,1). We set

- A(, 4, k) = {f1f(0) =1, f(1) = j, f(2) = k}.

Then D'(0,1) can be represented as
1
D'(0,1)= ). A(s,4,k),
1,J,k=0

where the summation is direct sum of sets. It is easy to see that

A(1,1,1) = A(0,0,0)2, A(1,1,0) = A(0,0,1)",

A(0,1,1) = A(0,1,0)2, A(1,0,1) = A(1,0,0)7.
Therefore it suffices to investigate only the four sets (again we must be careful about

that the same class may be included in the different sets of A(z, 7, k)). We prepare some

preliminary lemmas on A(z, 3, k).
Lemma 5.3.4. (A(O, 0, 0) 4+ A(O, 1, 0))U1 g Tzo(MgMO + -Mzﬁo).

Proof. First we show f € Ty Let f € (A(0,0,0) + A(0,1,0))U; then f({2,0}") =0,
hence f € Ty. This is because f(o) = f(2) = 0, (a,0) € Uy, (a,2) € U, for any
a € {2,0}" and f € D(0,1). |

. Next we show D'(0,1)U;TooM, C Mp. Assume f € D'(0, 1)U TooMaM,. There
are a,b such that f(a) <o f(b) and f(a) = 1, f(b) = 0 from f € D’(0,1). Define
b’ in the following: b: = 2 if (a;,b;) = (2,0), b; = b; otherwise for each :. Since,
(b,b") € Uy we have f(b") = 0 (including the case b = b’). From the definition we
have b <, a, and we have f(b') = 0 >; f(a) = 1, a contradiction. Analogously we
can prove D'(0,1)UiTyoMo C M,. Thus f € M; and f € Mo 1s equivalent under
7 € (A(0,0,0) + A(0,1,0))U;. O

Lemma 5.3.5. D'(0, ) UsU; C Ts.

Proof. Assume f € D'(0,1)UoU;. Then there are (a,b) € Uy such that (f(a), f(b)) =
(0,1). Tf b € {2,0}" then f € Ta. Otherwise construct b’ by putting b} = 2 if b; =1,
b, = b; otherwise. Then b’ € {2,0}" and f(b") = 1 from (b, ") € Uo. Hence f € Ty. O
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Lemma 5.3.6. A(0,1,0)T5 C M,Mo,.

Proof. There is a such that f(a) = 1. The results follow from f € 4(0,1,0), 2 <; a <,

oand 2 <, a <;0. O

Lemma 5.3.7.

A(070,0) T0T1T12M1M2M0a

N

N

A(O) 0> 1) TOT1T12T20—M2—M-OT7—071 5
A(O, 1, 0) ToTl_TlgM-l.Uo,

N

A(1,0,0)

N

ToT1T12T2 M M, MU
Proof. The right hand side terms are implied from the definition of A(¢,7,k). O

We now proceed to classify A(0,0,0), A(0,0,1), A(0,1,0) and A(1,0,0) in this order.

(1) Classification of A(0,0,0). From Lemmas 5.3.3 and 5.3.7 the remaining sets are
Us, Uy and Tyy. Since UpU; is impossible from Lemmas 5.1.5 and 5.3.6. We have the

following classifications:

1) ToUiTyo 3.1 (% 9= #349)
2) UgU1 T2 3.2 (%10 = #303)

3) UOUl{ T f3.4 (%12 = #244)

A(0,0,0) =

Proof. 1) and 2) are derived from Lemmas 5.3.4 and 5.3.5, respectively. O

(2) Classification of A(0,0,1). From Lemmas 5.3.3 and 5.3.7 the remaining sets
is M, only. Hence we have the following.

_ 1) M;  f3.5 (%17 = #321)
A(ana 1) = { 2) 'M_l (sa,me class as *12)

(38) Classification of A(0,1,0). From the same lemmas the remaining sets are

M,, My, Ty and U;. We have the following.
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(

1) U,T: M,M, f3.6 (x19 = #367)
1920 Y M,M, 3.7 (%20 = #392)
_ M,M, f3.8 (21 = #346)
A(O’ 1,0) = 2) -[T- T20 MzMO f39 (*22 = #373)
! M,M, f3.10 (%23 = #376)
{ Tao M,Mo f3.11 (%24 = #299)

Lemma Proof. The terms of 1) are derived from Lemma 5.3.4 and the last term of 2) is

derived from Lemma 5.3.6. In 2) the term M;M, is impossible from Lemma 5.1.3. O

Note 5.3.2. The class *24 is oy-invariant.

(4) Classification of A(1,0,0). From Lemmas 5.3.3 and 5.3.7 the remaining set is

U, only. Hence we have the following.

_ [ 1)U, f3.12 (%30 = #248)
A(1,0,0) = { 2) _U_z f3.13 (x31 = #190)

Note 5.3.3. The class *31 is oq-invariant.

Conclusions: Thus we have completed the classification of D’(0,1) and hence of T
Let |D’(0,1)| denote the number of classes of D'(0,1). Paying attention to the two
oq-invariant classes (*24 and *31), we have |[D(0,1) = 2(JA(0,0,0)| + [A(0,0,1) +
|A(0,1,0)] +|A(1,0,0) —2=2(4+1+6+2) -2 =24

Since the classes of D'(0,1) is neither oo nor oy invariant, we have |T| = IPO(EO] +
1{0,1,2} + | D’(0,1)| + |D'(1,2)| + |D'(2,0)| = 5+ 3 + 3 x 24 = 80, of which 44-13=17

classes are o-similar-free.

5.4. Classification of LU S

In this section the structure of L U S is investigate and the set T(L U S) is classified.
First some lemmas will be proved. For the summation (3_;) which appears in a linear

function we always omit indicating the variable : when no confusion is evident.

Lemma 5.4.1. [Ros70] f € L & f(a +b) = f(a)+ f(b) — f(o), where a,b € E} and
o is the identity of the field {0,1,2}.
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This lemma is useful to certify whether a function f belongs to L or not.

Lemma 5.4.2.
f€S= fe&Frifand only if f € Fpyy,
where R+ 1 = o3R = {(a; + 1,b; + 1)|(as, b;) € R}.
Proof. First we note that R+1 = o3R and o4(R+1) = R and further that any function
f € S is both o3 and oy-invariant. Thus f(o3a) = os3f(a) and f(osa) = osf(a) for

f € 5. Since f3(a) = 03 f(os2) and f4(z) = 07! f(o42) we have £ = f* = f.
Thus if f € S belongs to Fg then f* = f € (F,)’ = Fpy; from Lemma 1.4.2. O

Note 5.4.1. The relation R and R+ 1 is os-similar. Lemma 5.4.2 asserts that if f € S
belong to F then f belongs to F'”* (equivalently F°* simultaneously).

Lemma 5.4.3. TS C MUB,
where M = —M_oﬁl_ﬁz, fj = ﬁoﬁlﬁz, and .é = Eoﬁlgg.

Proof. Suppose f € TSM,. Then f € TSM;M;M, C K from Lemma 5.4.2 and
Theorem 5.1.4. However, from Theorem 5.1.2 TK = ¢, a contradiction. With respect

to the remaining U and B the proofs are analogous. O
Lemma 5.4.4. S-TQT]_T2 g To;[-T]_zTgo.

Proof. Let f € STy then we have only two cases: either f(0) =1, f(1) =2, f(2)=0
or f(O) = 2, f(l) = 0, f(2) = 1. In both cases f € TOIT12T20. [

Lemma 5.4.5. TL g -T()1T-12T—20.

Proof. Let f = co + 2 ¢;z;. First we show that if f € TLTy then at least there are
¢; = 1 and ¢; = 2 in the coefficients of f. From f € Ty we haveco =0 or 1. Again from

f €T, f depends on at least two variables. So, for simplicity, assume that f depends

both on z; and z,. First, suppose ¢; = 1 for all nonzero c¢x. Then

f(l,l,O,...,O)=c0+c1+c2=2, if00=0,
f(l,O,...,0)=c0+c1 =2, ifC()z]..
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These contradict to f € Ty;. Analogously, assuming the other case: ¢x = 2 for all
nonzero ¢, leads to a contradiction. Thus assume f € TLTy and assume that ¢; =

1, ¢, = 2 for simplicity. Then

f(O,l,O,...,O) = Co+62=2, ifC():O,
f(l,O,,O) = CQ+C]_=2, ifCo—_—'-]..

These contradict to f € To;. With respect to Ty and Ty the proofs are similar. O

For convenience we divide L and S into several subsets:
L = Lo+ Ly + Ly,

where L, := {f|f = co+ Y ciz; and Ly = a}.

Again we divide each L, into 3 subsets:
La, = LaO + La.l + La.2a

where Lg := {f|f € L, and f(0) = co = b}.

Similarly, we divide S into the following 3 subsets:
S = So+ 51+ 5y,

where S, := {f|f € S and f(o) = a}.
o-similar of each of these subsets is indicated in the Table 5.5. The next Lemma

5.4.6 is used to calculate this table.

Lemma 5.4.6. [Miy71] (Lss)° = Lo tp4m/+ima, where o € Ss, o(z)=lz+m, o7 (z) =

lz +m'.

Lemma 5.4.7. LS = L.

Proof Suppose f € LS, then f(z + 1) = f(x)+ 1. Hence Y¢; = 1,ie f € Ly. The

converse is analogous. O

Due to Lemma 5.4.7, previous lemmas concerning S are also applicable to L;. Next
lemma provides a property of the remaining set of L, i.e. L \ L1 = Lo+ Ly = Loo +
Loo+ Loy + L2z + Loz + Lo1.
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Table 5.5: o-similar of L. and S,.

g g0 (o581 09 g3 T4
LOO - L02 LOl L02 LOl
LOl L02 - LOO LOO L02
L02 LOl LOO - L01 LOO
Lyo - - - -

Lll L12 L12 L12 - -
L12 Lll Lll Lll - -

Lygl{— Lyy Lgy Ly Loy
Loy | Lag Lyg — Loy Loy
Log {Lay — Ly Ly Lo
So |- - - - -
S |- - - - -
S |- - - - -
Lemma 5.4.8.

1) Loo+ Lo C© ToTh Ty,

2) Loy + Loy © ToTiTo,

) Loo+Ln C Tol1T.

Proof. Assume f € Loy + Lag. Then f(0) = ¢o = 0 and f(1) = 1 ¢ =0, f(2) =
2 ¢c;=0 (incase f € Ly) or f(1) =X c; =2, f(2) =2 ¢c; =1 (in case f € Ly).
Hence f € ToT1T,. The cases 2) and 3) are similar of 1). O

Now by a series of lemmas we will prove Corollary 5.4.1 which is an analog inclusion
of Lemma 5.4.3 (we have L in place of S). Lemma 5.4.2 simplified the proof of Lemma
5.4.3. However, we have no corresponding one with respect to L. Thus we must consider
M, U and B separately, although it suffices to consider Ly and L, owing to Lemma 5.4.7.
In fact it is sufficient to consider Lgg and Lo from Table 5.5.

Lemma 5.4.9. TL C M.

Proof. Let us prove T(Lo + L3) C M. Note that f € L, implies f(z + 1) = f(z) + a.
If a = 0 then f(o) = f(1) = f(2). Hence f ¢ M; because f should be an onto function
from f ¢ T. If a = 2, we have f(1) = f(0o) +2, f(2) = f(o)+ 1. Hence f ¢ M,
whichever f(0) =0, 1 or 2. By o-similar we have TL C M. O
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In the following proofs we use the “modular operation” +1 which maps a € {0,1}"
ontoa+1 € {1,2}" and a + 2 € {0,2}". Hence f(a+2)=co+ X cia;+2) c;i= f(a)
if fe Loand fla+1)= f(a)+21if f € L,.

Lemma 5.4.10. TL C U.

Proof. The lemma follows from T-(Lo + L;) C U, and Lemmas 5.4.3 and 5.4.7. Assume
f € TU, then f is onto, hence there is @ € E}n such that f(a) = 2. Define a’ as
follows: a} = 0 if a; = 1, a! = a; otherwise for all i. Then &’ € {2,0}" and f(a') =2
since (a,a’) € U;. Hence a’ +1 =€ {0,1}" and f({0,1}") = 2 since (a’ + 1,b) € U;
for any b € {0,1}". Thus if f € Lo then f({0,1}" = f({1,2}" = 2, and if f € L, then
f({1,2}") = £({0,1}*) + 1 = 1. In both cases f € Ty;, contradicting Lemma 5.4.5. O

Lemma 5.4.11. TL C B.

Proof. Let us prove TL C B,. Suppose f € By. Then f cannot take the values 1 and 2
on {0,1}", because (1,2) € B, and (a,b) € B foe any a, b € {0,1}". Therefore, either
1) £({0,1}") € {0,1} or 2) F({0,1}") C {0, 2} holds exclusively for all f € Bo. In case 1)
f € Ty, results. In case 2), if f € Lo then from f({0,1}") = f({0,2}") we have f € Toy;
if f € L, then we have f € Ty, since f({0,1}") C {0,2} leads to f({1,2}") C {1,2}
by modular operation. These contradict to Lemma 5.4.5. Thus TL C By, and hence
TL'C B by o-similar. O

Corollary 5.4.1. TL C MUBT,,
Proof. From Lemmas 5.4.5, 5.4.9, 5.4.10, and 5.4.11. O

We now proceed to classify T(L U S) = T(LS + LS + LS), considering each subset

separately in this order.

(1) Classification of LS = Lo+ L. The remaining sets are T}, type only from Lemma
5.4.11. Since Lo -+ Lg = Loo + L20 + L(n + L22 + L02 + Lgl; pos&ble classes are restricted
to the following 3 classes by Lemma 5.4.8. Only an example to class *81 is sufficient.
[ D) TTiTe = Loo+ Lao f41  (*81 = #41)
TLSMUBT,{ 2) ToTyT2 = Loy + Lyz f7?4.1 (x82= #40)
3) ToT: T2 = Loa + L1 f714.1 (*83 = #39)
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(2) Classification of LS = Lo+ L;. The remaining sets are T, type only from Lemma
5.4.1. Further from Lemma 5.4.2 only two cases:T, or Tp are possible, where T', =

ToTyT,. Thus L, is divided into the following 2 classes.

DT, f42 (x84 = #42)

LSMUBTy, { 2) T, f4.3 (85 = #187)

(3) Classification of LS. The remaining sets are T, and Ty, types from Lemma 5.4.3.
By Lemmas 5.4.2,5.4.4 and 5.1.5 possible classes are restricted to the following 3 classes,

where T, denotes the intersection To1T12T5%0.

e 1) Tpqu =5+S, f4.4 (%86 =+#11)
TLSMUB{ 2) T, | _ o f45 ($87= 4297)
3) T,T | °° f46 (+88=135)

Conclusions of Section 5.4.

We have completed the classification of T(L U S). |T(LU S)|=8, and 6 classe; out of
them are o-similar free (underline of the class number preceded by * denotes o-similar

class).

5.5. Classification of M

In this section the set M := TSL(M; U M, U M) is classified. For simplicity, we
abbreviate TSL to N. The set M is divide into subsets and they can be represented by

using o-similar as follows:
M — Ml + (M1)01 + (Ml)az + M2 + (M2)a'o + (M2)¢72,

where M := NM;M,My and M? := N M, MyM,. Thus it is sufficient to consider M 1

and M?. Note that no classes from M* (M?)are 0, and 03 (00 and 01) invariant.

5.5.1. Classification of M

First we prepare a lemma for M*. We follow a convention that a suffix pgr represents

any of 012, 120 and 201.
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Lemma 5.5.1. 1) M,T C T,T,
2) MT,T, € T,
-

pg?
3) MT,T. C T,

Proof. 1) Suppose f(p) # p and f € M,T. Then f(p) = q or r. If f(p) = ¢ then
f(a) € D(g,r) for any a € EF, because p <, a implies f(p) = ¢ <, f(a). Thus f €T,
a contradiction. If f(p) = r then analogously f = r, again contradicting to f € T.

With respect to T, the proof is similar. 2) and 3) are obvious. O

From Lemma 5.5.1 we have the following.

Corollary 5.5.1. M1M2-T— _C_ T0T1T2T01T12T20.

Classification of M. From Lemma 5.1.3 and from Lemma 5.1.5 we have
M! C ByU,. (5.20)

Considering Corollary 5.5.1 the remaining sets are now restricted to Uz, Uy, B; and
B,. Let us consider U type first. Following four classes are possible (we call such trivial
classification induced classes): (1) UUs, (2) UsUy, (1) U,U, and (1) UoU;. For each of
these subsets we consider the classification by B type maximal sets subsequently.

(1) U,Uy: Assume f € M U,U;. Then from (5.20) f € M'UU U = M'K. While
M'K CTK = ¢ from Theorem 5.1.4.

(2) U,Uy: Assume f € M,U,U;. Then from (5.20) and Lemma 5.1.6, f € B
is derived. Next we conclude f ¢ B, because assuming f € B, results f € K, a
contradiction. So this case gives one class.

(3) U,U;: This is the oo-similar of the above (2).

(4) U,U;: We conclude f € B,B; from (5.20) and Lemma 5.1.7.

Thus M? is divided into the following three classes.

2) U,U; BB, f5.1 (x90 = #401)

1) UyUB1B;  f5.1  (x89 = #402)
M =
3) U, U BB, f5.2 (%91 = #390)

From above considerations we note that the structure of U type maximal sets deter-

mines the structure of the B type maximal sets in M*. Hence we have the following.

Corollary 5.5.2. U2 = Bl and Ul = .Bz mn M]_MzT.
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5.5.2. Classification of M?

We divide M? = M; M,M, into subsets using o-similar as follows.
M2 :N0+N1+N2 =N0+N1 +Ngl,

where N; = {f|f € M? and f(1) = :}. We classify No and N; in the following subsec-
tions separately.
5.5.2.1. Ny

We prove the following lemma, for No.

Proof Assume f € Ny. Then Lemma 5.5.1 implies f € ToT;. We have f € T:T12To
because f € M, implies f({0,1}*) = 0 since f(1) = 0. We have f € T1T1,To: from
(1,2) € UpB; and (f(1), f(2)) = (0,2). Finally, Let us show f € UB,. By f¢T
there is @ € {01}" such that f(a) = 1. Define a’ as follows: a} =0 if a; = 2, a: = a;
otherwise for each i. Obviously (a,a’) € U1B; and a' € {0,1}", hence f € U, B,,
because (f(a), f(a")) =(1,0). O

We divide Ny into two subsets by T5 as follows:
No = NoTo + NoTo.
Each subset we classify by the remaining sets U; and Bo.

Classification of NyTyo

There is a representative in each induced set by the remaining Us and Bo. Thus,

NoTyo is divided into the following 4 classes.

1) U;By, f5.3 (% 98 = #287)
2)U1By 5.4 (x99 = #234)
3) UsBo 5.5 (x100 = #239)
4) UyBo 5.6 (x101 = #184)

NoTzo =

Lemma 5.5.3. NO-T-20 (_: P-o
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Proof. Let f € NoT9. Then there is @ € {0,2}" such that f(a) = 1. From Lemma

5.5.2 we have f(2) = 2. Thus f ¢ By from (a,2) € Bo and (f(a), f(2)) = (1,2) ¢ Bo.
a

Classification of NoT20

There is a representative in each induced set by the remaining U,. Thus, NoT5 is

divided into the following 2 classes.

1) U;Bo f5.7 (x102 = #186)
2) U;B, f5.8 (%103 = #134)

NoT'20 = {
Thus |No| = |NoTso| + |NoT20| = 4 + 2 = 6, all of which are o-similar free.
5.5.2.2 N;

The classification of Ny is not so simple as that of Nj.
Lemma 5.5.4. N1 Q T0T1T2T01T12

Proof. From {01}* < 1 < {1,2}" and f € M; we have f({01}") < f(1) < f({1,2}").
Thus f({01}") C {0,1}, f({1,2}") C {1,2} since f(1) = 1. From f € T there are a, b
such that f(a) =0, f(b) =2. Hence f(0) =0, f(2)=2. 0

Thus the remaining sets are Ty and U type and B type sets. Let us divide N; into
two subsets by Tho: Ny = N;T20 + N1Ty. Consider the classification of each subset by
the U and B type sets. There exists a simple structure in the case of N1T4. However,
in the other case we must consider the structure of the set M;MoMo.

Classification of N7

Lemma 5.5.5. N]_Tzo Cc ﬁonﬁ2.

Proof. Let f € N1T3. Then there is a € {2,0}" such that f(a) = 1. From (a,2) €

BoUy, f €Ty and (f(a), f(2))=(1,2) € BoU:. By oy-similar we have NyTo0 C BoU;.
a

Note 5.5.1. [M1y71] MlTQOT Q M}Mg.
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Thus f € My belongs to MyM, if f € TaoT.

As for the 8 induced classes by the remaining sets By, U, and Uy, the class U,UpB,
is empty from Lemma 5.1.6. There are representatives in all the other classes. Thus

N1 T4 is divided into the following 7 classes.

(1) UUoB;  f5.9 (%110 = #363)
2) U,U By f5.10  (x111 = #339)
3) UUn By, f°15.10 (%112 = #337)
Nngo =1 4) 7271.31 f511 (*113 = #283)
5) U,Ui By f5.12 (%114 = #286)
6) UU1 B, fo15.12 (x115 = #284)
| ) TU By f5.13  (x116 = #232)

The remaining part of this section is devoted to the classification of N1T5 by U type
and B type maximal sets. '

We call two vectors @ and b are neighbors by the order relation < if @ and b differs
only one coordinate : and there is no ¢ such that a < ¢ < b. Let us introduce the

following notation to represent neighboring vectors (suffix ¢ may be omitted):

al; = (al)'"7ai—170)a'i+l7'°°’an)
al; = (a1,.--,8i-1,1,8it1,-++,08n)
a2; = (al)"°)ai-—1,27ai+1)"'7an)'

Neighboring vectors are useful because of the following lemma.

Lemma 5.5.6. [Miy71] If f € M, then there are neighboring two vectors b and ¢ such
that b <, ¢ and f(b) £, f(c).
Now we prepare a lemma which plays an important role in the classification of N;1T%.

Lemma 5.5.7. If f € MyM,M, then there are sets (set) of neighboring vectors u0,
ul, u and v0, v1, v corresponding to at least one of the cases indicated in the following

Table 5.6.
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Table 5.6:

Table 5.7: .
cases | \& |u0 ul u2|v0 vl v2]|class Possible values of f € My M,.
I |flz){o 0o 2|0 1 1|ThTeB: Caies | f\(Z) I’BO ’61 “12
e Imr | f(e){1 1 2
VI f((l!) 1 2 2 U2U1B0 :

Proof. Assume f € MyM,M, and f depends on at least two variables. From f € M M,,
we show that f has at least one of the set of neighboring vectors indicated in Table 5.7.
From f € M, there are neighboring @ and a' such that f(a) %£; f(a’) from Lemma
5.5.6. Putting @ := u1 and a’ := u2, f(&) has values (1), (2) or (3) of Table 5.8, where
* may be any of 0,1 or 2. While the condition f € M; requires f(u0) < f(ul) < f(u2).
" Hence the case (1) is impossible and * must be 0 for the both cases (2) and (3). Thus
the cases of I and II of Table 5.7 are necessary. The other case of the same table are

derived by taking the neighboring vectors a := 42 and a' := u0.

Table 5.9:

Table 5.8: Possible values of f € M; M.

Possible values of

f € M, and f(ul) £ f(u2).

cases | \&¢ |v0 vl 02

cases z |u0 ul u2

(1) f\(w) * 2 1 III f(=) g 2 1
2 |f®)|* 0 1 o J;E:% 011
@ @102 IV |[f=)|1 2 2

In the same manner from f € MM, we conclude that f must have at least a
construction out of the four cases in Table 5.9. From Table 5.7 and Table 5.9 the lemma

follows. O

In the rightmost column of Table 5.6 the sets are shown to which the corresponding

f(=&) obviously belongs to.

We show lemmas.

Lemma 5.5.8. B1T20M1 C_: UQU().
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Proof. Suppose f € ByTooM1U,;. There are (a,b) € U, such that (f(a), f(b)) = (0,2)
or (1,2). However f € B, requires (f(a), f(b)) = (1,2) since (a,b) € U, implies (a,b) €
B,. From f € Ty thereis a; = 1. Define a’ as follows: a; =0ifa; = 1, a! = a; otherwise.
Then a' € {2,0}" and f(a') = 0 from f € Th. On the other hand, (a/,b) € B, since
if a; = 1 then b; = 0 or 1 from (a;, b;) € U;. Thus (f(a’, f(b)) = (0,2) € B, leads to a

contradiction. With respect to Uy the proof is similar. O

Lemma 5.5.9. U]_ (_-—- —-B—l) U2 Q Fz and Uo g Fo n MIMZ—M—().

Proof. If f € Uy then f have values corresponding to the case I of Table 5.6 from Lemma
5.5.7, hence f € B;. If f € U, then f corresponds to II, IV or V of the same table.
Hence f € B,. If f € Uy then f corresponds to III, IV or VI of the same table. Hence
feB, O '

Lemma 5.5.10. —.B—()B]_P-g = BgBoFl mn M172H0T20-

Proof. 1) Suppose f € BoB1B;. Then f has a cases of IV, V or VI of Table 5.6 from
Lemma 5.5.7. On the other hand, from f € B;T50M; and from Lemma 5.5.8, f € U,Up
is derived. Thus the cases V and VI are impossible. Hence f € U,U,Us from IV of the

table. 2) The converse is obvious from Lemma 5.1.6 and from Lemma 5.5.9. O
Lemma 5.5.11. Uy C B, B, in M;.

Proof. We prove M U; C B;. The other is the oy-similar of this. Assume f € M,U;B,.
There are (a,b) € B, such that (f(a), f(b)) = (0,1). Define a’ as follows: a: =0
if (a;, b)) = (1,2), af = 1 if (a;, b)) = (2,1), a} = a; otherwise. Then a’ < a, hence
f(a') = 0. While by above construction we have (a’,b) € U;. However (f(a), f(b)) =
(0,1) € Uy, a contradiction. O

Note 5.5.2. Combining Lemmas 5.1.7 and 5.1.11 we have
BzBo = U1 m Ml.

We now classify the concerning set N;T5,. First we decide possible classes by U

maximal sets, then each of this class we divide by B maximal sets.
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Consider 8 induced sets by U maximal sets. From Table 5.6, we will conclude neither
class U,UoU; nor U,UpU; exists. First, let us confirm this. Assume f € U,UoU; then
f € By from Lemma 5.1.6. Hence only cases I, I or V of Table 5.6 is possible for
f. While in all these cases either f € U or f € U,, a contradiction. The discussion
is analogous to the second case: U,UgU;. Further, the class UpUpU; Ny is empty from

Theorem 5.1.3 and KT = ¢. We classify the remaining 5 sets by B maximal sets.

Classification of N1y

(1) U2UoU; coincides with BoB1B; from Lemma 5.5.10.
U,UgU1BoB1B, f5.14 (%117 = #388)

(2) T,U,U; coincides with BoByB; from Lemmas 5.5.10, 5.1.4 and 5.1.7
U,UoU.BoB1B, f5.15 (%118 = #399)

(3) U,UoU,. From Lemmas 5.5.8 and 5.5.9 we have B, B,. There exist representatives

for the two induced classes by the remaining set By.

= [ Bo |55 [f5.16 (x119 = #362)
U"U"Ul{ B, }3132 f5.17 (%120 = #:338)

(4)' U,UoU, is the o;-similar of (3).
(5) UyUoU;. The possible classes by B maximal sets are restricted to the following
3 classes by Lemmas 5.5.8 and 5.1.7.

By B, f5.18 (%123 = #335)
TU,UoU,{ By B1{ By  fo15.18 (%124 = $#346)
B, B, f5.19 (%125 = #282)

Conclusions of Section 5.5.

We have completed the classification of M = TLS(M; U M, U M;). We summarize
the classification as follows: M = M+ (M7 4+ (M*)%2 + M2+ (M%) + (M?)2. M is
separated into the three classes. Further M? = No+ Ny + N2 = No+ Ny + Ng'. | Vo|=6.
Ny = NiTao + NiTyo and |NyTao| = 7, |N1Too| = 9, hence |N;| = 16, thus |M?| = 28.
We note that no class is common among Ny, Ny and Ng*.

Therefore |M| = 3| M| + 3| M| = 3 x 3 +3 x 28 = 93, of which o-similar-free classes

are 19.

80



5.6. Classification of U

In this section the set U := {f|f € TLSM(U, U Uy U Uy)} will be classified. Obviously
we can write U = Ul + (U)" + (U)?2 + U? 4 (U?*)* 4 (U?), where

U'1 = TLSMUQU-QUl and U2 = TLSMU2U0-U—]_

Thus it is sufficient to consider U! and U? in subsections 5.6.1 and 5.6.2, respectively.

We note that any class in U and U? is neither o1- nor o-invariant.
5.6.1. U

We prepare several lemmas. The symbol D is used to indicate that we are concerning

onto functions.
Lemma 5.6.1. U2U1 g T01T20T0.Bo.

Proof. From Lemmas 5.1.6 and 5.1.8 it is sufficient to show U, U, € Tp1T50. Suppose
f € UpUy. There is a € {0,1}" such that f(a) = 2. We have f({0,1}") = 2 since
(a,{0,1}") € U,. From f € D there is b such that f(b) = 1. Define b’ as follows: B}, = 0
if b; = 2, b\ = b; otherwise. Obviously (b,b") € U; and hence f(b') =1 and b’ € {0,1}",

contradicting the above assertion. As for T the proof is similar. O

Lemma 5.6.2. If f € M,U,U; then there are vectors u0, ul and u2 such that

(f (w0), f(ul), f(u2)) = (1,0,1) or (2,2,0)
as shown in Table 5.10.

Table 5.11:
Possible values of f € M.

Table 5.10: cases | f\z |u0 ul u2

Possible values of f € MU,Us.

@ 7|0 - 1
a1 IR
o jf=|2 2 0 ) |fl@)y|1 o =

6) | fle)| 1 2 x

Proof. If f € M, then f has at least one of values out of 6 cases indicated in Table 5.11.
This can be easily shown from f € M, analogously as Lemma 5.5.6. Then considering

the additional condition of f € U,U; leads to Table 5.10. O
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Lemma 5.6.3. _M—oUzUl Q T]_g.

Proof Assume f € MoUyU;Ty2. Then there are vectors satisfying (f(u0), f(ul), f(u2)) =
(1,0,1) or (2,2,0) from Lemma 5.6.2. Consider the first case. Define v € E3~1 as fol-
lows: v; = 2 if u; = 0, v; = u; otherwise (we may assume n > 2, since the assertion
holds when n = 1). Obviously (u1,v1) € U; and vl € {1,2}". Hence f(vl) = 2 from
f € Ty, and f(ul) = 0. On the other hand, we have f(v0) = 1 from (u0,v0) € U;.
Thus (f(v0), f(v1)) = (1,2) & Us, contradicting f € U, since (v0,v1) € U,.

For the second case, the proof is similar. O
Lemma 5.6.4. U;T12 C By.

Proof. Suppose f € U;Tq5. Then there is a € {1,2}" such that f(a) = 0. From f € D
there is b such that f(b) = 2. Define b’ as follows: b} = 1 if (a;, b;) = (2,0), b; = b;
otherwise for each i. Then f(b") = 2 from (b,b') € U,. Thus we see that (a,b’) € B,
and (f(a), f(b") & B;. Note that no (a;,8;) = (0,2) occurs because a € {1,2}". O

Taking o¢-similar of this we have the following.
Corollary 5.6.1. U2U1W12 g —B-lﬁz.
Corollary 5.6.2, Ul g To]_ T2A0T12T0B0-§1§2.

Proof. From Lemmas 5.6.1, 5.6.3 and Corollary 5.6.1. O

Classification of U!. Now the remaining sets are only T} and T from Corollary 5.6.2.
There are representatives in all 4 induced classes by these sets. Thus U? is divided into

the following 4 classes.

1) TYT, f6.1  (x182 = #320)
2) T\T, f6.2  (*183 = #267)
3) TiT, £°°6.2 (184 = #266)
4) T\T, f6.3 (*185 = #220)

Ul

5.6.2. U2

For convenience we again follow the convention that the suffix pgr represents 012, 120

and 201. We prepare several lemmas.
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Lemma 5.6.5. If f € U.T,,D then f(a) = r and f(b) = r for some a € {p,r}" and
be{pr}

Proof. From f € DT, there is u such that f(u) = r and there is i such that u; = r.
Define a and b as follows: a; = p, b; = q if u; # r, otherwise a; = b; = u; (= ). Then

f(a) = f(b) = r follows from (a,u) € U, and (b,u) € U,. O

Lemma 5.6.6.

Uerq@org Epa

UT,T,D C B,
Proof. Assume f € U,T,,TpD. Then f(b) = ¢ for some b € {p,r}". On the other
hand, f(a) = r for some a € {p,r}" from Lemma 5.6.5 (a # b). Then f ¢ B, because

(b,a) € B,. The second relation is similar. O

-
C

Lemma 5.6.7. T,T,, C B,.

Proof. From f € T,T,, we have f(p) = p and f(a) = r for some a € {p,q}". Then
f € B, because (p,a) € B,. O

Corollary 5.6.3. T,T,T, C B.,.

Proof. From f € T, and Lemma 5.1.8, either f € T, or f € Ty,. From f € T,T, and
Lemma 5.6.7 we have f € B, in both cases. O

Lemma 5.6.8. T,T,,D C T, B,.

Proof. From f € T,T,, we have f(p) = ¢, hence f € T,,. Further f(a) = r for some a
from f € D. Thus we conclude f € B, from (p,a) € B,. O '

Lemma 5.6.9. T,T,T.Tpe € B,.

Proof. From f € T, I,T.T,, we have f(p) = ¢, f(q) = p, and f(r) = p or g. Hence
f € B, from (p,r) € B, and (¢q,7) € B,. O

We divide U? into two subsets by T}, as follows:
(]2 = U2T12 + U2T12.

Then we classify each subset separately in Subsections 5.6.2.1 and 5.6.2.2 by the re-

maining T, T,, and B type maximal sets.
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5.6.2.1. U%Ty,.
We divide U2T}, further into the following 4 induced subsets by T and Ty: (1) T1 T,
(2) T\T3, (3) ThT; and (4) T1T:. Each subset is classified by the remaining maximal

sets in this order.

(1) U2T12T1T2.
We divide this set by Tp into the two induced subsets, and consider each case sepa-
rately as (1la) and (1b).
(1a) U?T12ToThT: This set is divided into the following 10 classes by the remaining
To1, Too and B type maximal sets.
(1) TuT20 0B

B, f6.4 (%194 = #163)
o == | B2 f6.5 (¥195 = #259)
2) T°‘f2° ez 76.6  (¥196 = #203)
3) ToaT20 = (_'-_11017’20)‘70
U, ToTy Ty = X B,B,B, 6.7 (%199 = #315)
BoB, B, 6.8 (%200 = #353)
4) T01T20 F()Bl_gz f6.9 (*201 = #314)
FO—B-]_.B2 f¢706_9 (*2_0_2. = #.31_3.)
\ B.B.B, £6.10 (%203 = #258)

Proof. 1), 2). From f € ToTyTo; and from Lemma 5.6.7 we conclude f € BoB;. Further
in 1) from f € Ty we have f € B,. 4). Among 8 induced classes by Bo, Bi and By,
three which include BoB; and BoB; are impossible from Lemma 5.1.7 and f e U,U,.
()

(1b) U2T Ty, TiTy: This set is classified into the following 5 classes. Note that from
Corollary 5.6.3 we derive f € Bo. And from Lemma 5.1.8 the class To; T30 is impossible.

- = | B £6.11 (%204 = #207)
1) Ton T B 2{ B, f6.12 (%205 = #160)
2) _1_1_01220 = (Tgl_Tio)ao

3) TorT20 B.B, f6.13 (*206 = #213)

U2T12T0T1T2_50 =

Proof. 1), 2), 3). From Lemma 5.6.6 and f € UoT1T20D results f € By. 3). Further
from Lemma 5.6.7 we have f € By. O

(2) U2T12T1T_2.
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From Lemma 5.6.8 we have f € Tp0B,. Hence the remaining sets are Ty, To1, Bo
and B;. We divide this set into two subsets by Tp, and consider each case separately as
(2a) and (2b).

(2a) U?Ty;T1ToTo: This set is divided into the following 4 classes.

1) ToaBoB:1__ f6.14 (%209 = #116)

2 _— BB, f6.15 (%210 = #210)
Ul Ty = 2) Tm{ BoB, £6.16 (%211 = #208)

BoB: f6.17 (%212 = #162)
Proof. 1). From f € ToyTyTo; and from Lemma 5.6.7 we have f € BoB;. 2). Among 4
induced classes by By and B; we cannot have ByB; from Lemma 5.1.7 and f ¢ U,. O

(2b) U2Ty,T\ToTo: This set is divided into the following 3 classes.

U T, T\ T, = %) TP, B, f6.19 (x214 = #165)
00 B, f6.20 (%215 = #112)
Proof. 1). From Lemma, 5.6.6 we have UoTo1T10D C By and from Lemma 5.6.7 we have

TyT10 C By. 2). From Lemma 5.6.8 we have ToTo1 C By. O

(3) UT1 .11 Ts.

This set is the op-similar of the case (2).

(4) UTy.T1To.
We have B1B1T 01120 from Lemma 5.6.8. Thus the remaining sets are Ty and Bo.
Hence this set is divided into the following 3 classes.

) T Bo  f6.21 (%223 = #118)
1 By f6.22 (x224 = # T4)
2) ToBo f6.23 (x225 = # 32)

Proof. 2). From Lemma 5.6.9 we have ToT ToTi12D C Be. O

U2T12T1-Tz = {

Conclusion of Section 5.6.2.1 We have considered 4 subsets: U*Tyo( Ty o+ 11 To+1T1T%
+Tlﬁ- We have IU2T12T1T2| = 15, IU2T12T1T2I=|U2T12T172| = 7and ‘UlengTgl = 3.

Hence |U%Ty,| = 32, of which o-similar-free classes are 20.

5.6.2.2. UT,.
Now the remaining part of U? is U?T,. First we show two lemmas with respect to

the remaining B, T, and T,, type maximal sets.
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Lemma 5.6.10. T,,U,.D C T,T,B,B,.

Proof. Assume f € T, U, D. Then f(a) =r for some a € {p,q}". Hence f({p,q}") =r
since (a, b) € U, for any b € {p,q}". Thus f € T,T,. Further f(c) = ¢ from f € D.
Since (p,c) € B, and (f(p), f(¢)) = (r,q) € B,, we conclude f € B,. As for B, the

proof is similar. O
Lemma 5.6.11. T,D C B,.

Proof. From f € D we have f(a) =r, f(b) =gq. From f € T, we have f(p) =g or r.
Since (p,a) € B, and (p,b) € B, we conclude f € B,. O

Now we are ready to classify U2T},. Since U?Tyy C T1T2B1B;, we divide U?Ty; by
To]_ and Tgo into 4 induced subsets: (1) T01T20, (2) Tongo, (3) Tngm‘) and (4) T()ngo.
We classify them separately. We have only two remaining sets To and By for each of

above cases.

(1) UZTI2T01 T20°

From Lemma 5.1.8 we have f € Tj. We have the following two classes.

_ B  f6.24 (%226 = #:166)
2 _ 0
UT12T01To0 = To { By, [6.22 (%227 = #114)

(2) UT12T01Ta0.

B 16.26 (%228 = #119)
1 T°{ 79-2 f6.27 (%229 = # 75)

U2T12T01-T—20 = { _ L

Proof. 2). From Lemma 5.6.11 we have ToD C By. O

(3) U2T12701T20°

This case is the og-similar of the case (2).

(4) U*T12T 01 T20-
"This set is divided into the following 3 classes.

1) T Bo f6.29 (%234 = #76)
U T 2T T20 = °1 Bo £6.30 (%235 = #34)
2) ToB, f6.31 (%236 =# 9)
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Proof. 2). From Lemma 5.6.11 we have ToD C By. O

Conclusions of 5.6.2.2. Thus, summing all four cases we have |[U?Ty,| = |U?T1,T01T12]
+ |U2T12T01T12| + |U2T12T01T12l+|U2T12T01le|= 2+ 2x3+ 3= 11, of which ao—free
classes are 8. Thus |U?| = |U?Tis| + |U?T12| = 32 + 11 = 43, of which o-free classes are
28.

Conclusion of Sections 5.6. |U| = 3|U| + 3|U?| =3 x 4+ 3 x 43 = 141, of which

o-free classes are 3+4+28=31.

5.7. Classification of B

In this section the set B := TLSMU(BoUB; U B,) will be classified. Put G := TLSMU
and B := G(B, U B,) for simplicity. Obviously we can represent B as

B = a(BOB1B2 + BoB1B; + BoB1Bs + BoByB; + ByB1B; + BoB1B; + §0317§2)~

However, we have GByB;B; = ¢ from Lemma 5.1.4 and -G—Bqu C GU, = ¢ from
Lemma, 5.1.7. Hence we have B = B! 4 (B!)? + (B)*, where

Thus it is sufficient to consider only B!. We prepare several lemmas.

Lemma 5.7.1. BP_D— C T,.

Proof. . We show a contradiction assuming f(p) = ¢. From f € D we have f(b) =r
for some b. Hence f € B,, since (p,b) € B,. When f(p) = r, a similar contradiction

results. O
Lemma 5.7.2. T,B, C Tj,.

Proof. Assume f € T,B,T,,. Then f(a) = r for some a € {p,¢}". This contradicts to
f € B, since (p,a) € B, and (f(p), f(a)) & B,. O

Now we divide B! into the following 4 subsets by 77 and T, and consider each case

separately:

Bl == Bl(Tng + T]_—T_Q + T1T2 + T—sz).
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(1) B'TLT.
From Lemma 5.7.2 we have BT} T, C T1¢T%. Thus the remaining set is Tj,.

1) Tiz fT.1 (%323 = #254)

1 —_ —_—
B'T\T, = T01T20{ 2) Ty FT.2 (%324 = #194)

(2) B*'TyT..
From Lemma 5.7.2 we have BT} C Ty, and with respect to the remaining Th; and

Tho, the class Ty2T50 is impossible from Lemma 5.1.8 and T,. Thus there are 3 classes.

B1T1T2 = To]_ 2) TlgT—go f74 (*326 = #150)
3) T1oTy0 fT7.5 (%327 = #101)

(3) B'T,T;. This is the oo-similar of (2).

(4) B'TT,.
Among 8 induced classes by Ty, Tiz and Ta, 3 classes which include Ty T12 and

Ty, are impossible from T, T, and Lemma 5.1.8.

1) TnT12To0 f7.6 (%331 = #99)

o 2) TnT1oT20 f7.7 (332 = #64)

B N\T T, =< 3) TaT12To0 fo°7.7 (%333 = #62)
4) Ty TysT20 f7.8 (%334 = #63)

5) ToyT12Too f7.9 (%335 = #26)

Conclusion of Section 5.7. Thus B = B'+(B')*2+(B*)? and |B'| = |B'T1 T3]+
2| B Ty T,| + |B T T,| = 13. Thus, |B| = 3 X 13 = 39, of which 9 are o-similar-free.

5.8. Classification of TLSMUB

In this section all the functions (the complement set of the set of functions so far
classified) will be classified. We put I := TLSMUB. Obviously I can be represented

as

I = TO + Tl + (Tl)a'l + (Tl)az + (T2)a‘1 + (T2)02 + TB,
where T° := IT,T\Ts, T" = IT,T\T,, T? := ITeT,T, and T3 := IT T T;. We are
suffice to consider T°, T%, T? and T°. Now the remaining sets are only Ty, type

sets. In the following classification we will see that the condition TLSMUB does not
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influence the possible classes of T, type maximal sets. We mean that possible classes

by T, maximal sets are restricted only by T, sets through Lemma 5.1.8.

Classification of T°
T° is divided into the following 8 classes (all induced sets by Tgy, Th2 and Thy).

(1) TuT12The f8.1 (%362 = #191)
2) Ty Thy T2 f8.2 (%363 = #138)
3) TaT12Too f728.2 (x364 = #137)
4) TuT12T2 8.3  (x365 = #92)
5) To:T12Too  f7°8.2 (%366 = #136)
6) TorT12To0 f718.3 (%367 = # 91)
7) ToaT12T2 f7°8.3 (%368 = # 90)
8) To1T1zT2o f8.7 (*.3_62 = # Q)

Classification of T"
T! is divided into the following 6 classes. From Lemma 5.1.8 and T, the classes
which include Ty, Tho are impossible.

1) TmleTzo f85 (*370 = #85)
2) ToiT12T20 f708.5 (371 = #92)
3) T01T12T20 f86 (*372 = #47)
4) T T12Too 8.7  (*373 = #46)
5) To1T12T20 fo°8.6 (*ﬂ = #.4_5.)
8) To1T12T20 f8.8 (%375 = #18)

T = ¢

Classification of 77
T? is divided into the following classes. From Lemma 5.1.8 and 77T, the 3 classes
which include T; 112 and 11275 are impossible.

1) ToaT12T30  f8.9 (%388 = #48)
2) T TioT20 8.10 (%389 = #21)
T ={ 3) TuTiTao f811 (%390 = #20)
4) Ty T12Tho  £°°8.10 (x391 = #19)
5) ToT12T20 f8.12 (%392 =#7)

Classification of T°
T3 is divided into the following classes. From Lemma 5.1.8 and ATOTlTZ, the 4 classes

which include Ty T2, and Th.T%e and T0T5; are impossible.

1) To]_leTzo f813 (*403 - #4:)
2) ToiT12T20 f718.13 (%404 = #3)
3) T01_T—12T20 fo°8.13 (*.‘1@_5; = #Z)
4) ToaT12T20 f8.14 (%406 = #1)

T3 =
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Table 5.12: Numbers of the classes of the subsets of Ps.

subsection | considered subset | classes | o-similar-free classes
54T 80 17
55|LUS 8 6

56 M - 93 19

57U 141 31

58| B 39 9

59| TLSMUB 45 14

Total 406 96

Conclusion of 4.8. Thus we have |T°| = 8, |T?| = 6, |T?| = 5 and |T®| = 4. Hence
[TLSMUB| = |T°| + 3|T*| + 3|T?| + |T®| = 45, of which 14 are o-similar free.

5.9. The result of the classification of P;

We have completed the classification of P, investigating the structure of the inter-
sections of the 18 P;-maximal sets. All the classes and representative functions are
presented in Appendix 1 and 2, respectively. Every representative is chosen from the

least arity functions [Miy71].

Thus we have the following theorem.

Theorem 5.9.1. P; s divided into the 406 nonempty classes, of which 96 are o-similar-
free.

In Table 5.12 we show the classes of the set considered in the corresponding sub-
sections 5.4 - 5.9. We note that the origianl classification in [Miy71] counted a few
characteristic vectors twice as different classes, consequently the number of classes re-

ported in [Miy79] is not quite right; this was corrected in [Sto84al.

Further from the fact that all the representative functions of the classes shown in the

Appendix 2 are of not greater than 3 arity, we have the following theorem.

Theorem 5.9.2. Each class of Ps has a representative function of not greater than 3

variables.

Let a closed set F' C P; be finitely generated. The minimal number r such that

every base of F' can be constructed by functions depending on at most r variables (i.e.
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r arity) is called the order of F' [Lau84b]. In case that F' has no finite base the order of
F is set to Ng.
Theorem 5.9.2 states that

Corollary 5.9.1. The order of P; s 3.

We know that the order of P, (under ordinary composition) is also 3.

5.10. Enumerations of bases of P;

The list of 406 characteristic vectors of Ps-classes tells many things. Especially, we will
show that the maximal rank of a pivotal incomplete set is 7, while that of a base is
6. This is a rather unexpected result. Since a base corresponds to a minimum cover
of 1---1 and a pivotal incomplete set corresponds to a minimal cover of some binary
vector in which at least one coordinate should be 0, one may naturally assume that the
maximal rank of a base is greater than or equal to that of a pivotal incomplete set. The
reality is not like this. The number of classes of bases of P; is exactly 6,239,721:'“(reca11
that we have only 42 for P,), in which the number of bases which contain constant
functions is exactly 1,391 .

Let us call a characteristic vector simply a vector. Recall that a set of vector is a
base if it satisfies the following two conditions: 1) bit-wise OR for all the vectors results
in unit vector 1---1 (Equation (1.1)) and 2) for each vector of the set, bit-wise OR for
all the remaining vectors of the set does not equal that for all the vectors (Equation
(1.2)).

The last condition is equivalent to saying that for every class of the set there is at
least one “pivot”, a maximal éet in which all the other classes of the set except the class

are included. Also recall that a set is called pivotal if it satisfies the condition 2).

First, let us see how vectors can be used.

Example 5.10.1. In Table 5.13 we show vectors of the function jo(z), j1(z) and j2(z),
where 7;(z) is defined by ],(z)= 2,7i(z) = 0 for z # 1. Note that max(z,y) = o1-sim. of
min(z,y), 2 = 01-, o3-sim. of 0 and 1 = 03-,04-sim. of 0, where sim. stand for similar.
It is well-known that the set F' = {0,1,2, jo(z), 1(z), jo(z), min(z,y), max(z,y)} is

complete. By examining the vectors of these functions we see that F' is complete but
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Table 5.13: Characteristic vectors of j;(z), max, min and constants.

wi #no TLS M1M2M0 U2UOU1 B()B]_Bg ToT]_Tg T01T12T20 *No representative

12 #242 011 111 100 010 111 110 *718 Jo(z)

11 #306 011 101 110 010 011 110 65 ji(z)

7 #393 011 010 010 010 010 010 %68 ja(x)

6 #400 111 010 001 100 000 000 %92 max (z,Y)
6 #402 111 001 001 001 000 000 %89 min (z,y)
4 #403 001 000 000 000 110 100 8 2

4 #404 001 000 000 000 101 001 % 7 1

4 #405 001 000 000 000 011 010 * 6 0

not a base. It is easily verified that a base from F should contain min(z, y), max(z,y),1,
since these are only elements that cover By, By and Tho-th coordinates, respectively. By
the base criteria we see that the following two sets are only bases that can be composed

from F'

{min(z, y), max(z,y),1, j1(z)} and {min(z,y), max(z,y), 1, jo(z), J2(x)}.

O

The enumerationons of bases of P; can be done by examining the base criteria for all
combinations of the classes. Although the procedure is quite simple, its direct applica-
tion is far from feasibility due to combinatorial difficulty; it has required over 20 hours
to examine the base criteria for 108 combinations of 6 tuples of vectors (by, ba,.. ., bs)
from Ps-vectors by a computer which has about 1 MIPS processing speed (Tosbac 5600
computer). The feasible algorithm to overcome this difficulty we present in Chapter 7.

Here we summarize the enumeration results.

An example of redundant incomplete (actually a pivotal) set with rank 7 is shown in
[Jab58]. It has been a problem whether this is the maximum rank of a pivotal set. We

show that it is true.
Theorem 5.10.1. The mazimal rank of a pivotal incomplete set of Ps 1s 7.

This means that maximal rank of a nonredundant incomplete set is greater than or
equal to 7 (not every nonredundant incomplete set is pivotal incomplete set), and this
tempts us to believe that the maximal rank of a base is also greater than or equal to 7.

However, this does not hold.
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Theorem 5.10.2. The mazimal rank of a base of P3 1s 6.
In Example 5.10.2 we will see these situations in more detail.
Theorem 5.10.3. The number of bases of P; 13 ezactly 6,239,721.

We note that the first report [Miy79] on the number of classes of base was not quite
right and the above number is the corrected result by [Sto84a].

Theorem 5.10.4. The number of bases which contain constant functions 0,1,2 is ez-

actly 1,891.

rank |1 2 3 4 5 6| total
bases |0 0 0 2 633 756 (1,391

5.10.1. Examples of bases and pivotals

The situation which yields an interesting ”gap” between Theorem 5.10.1 and Theorem

5.10.2 can be understood by the following example.

Example 5.10.2. In Table 5.14 and Table 5.15 we list 10 classes with the least degrees
of completeness (i.e. weight) and their representative functions, respectively. By exam-
ining these vectors we can see that the set Y ={ o4-min, oo-min, max, min, 0,1,2} is
pivotal incomplete set with maximal rank 7. Indeed, it is easy to see that Y is co;tained
in the maximal set B and each class has at least a pivot. This example is essentially
the same as one presented by Jablonskij [Jab58, p.136]. J oining ¢s-min or go-min to ¥
yields a complete set, but in both cases the resulting sets are redundant (non-pivotal).
More precisely, by examining the vectors we can see that joining os-min to Y yields
redundancy of o,-min and max, and joining oo-min results redundancy of o4-min and
min. Thus we have only two bases of the maximal rank 6: {o4-min,o3-min, min, 2,1,0}

and {o;-min, max,oo-min, 2,1,0} that can be constructed from these classes. O

Example 5.10.3. The following 9 sets are all pivotal incomplete sets with maximal
rank 7 . Every permutations in {o¢, 01,02} is with even length, while one from {e,03,04}

is with odd length. The following list consists of taking every two functions from each

93



of these categories and adding constant functions.

1) {oo-min, maz, min, oz-min, 0,1,2} C M,
2) {og-min, oy-min, min, o4-min, 0,1,2} C M,
3) {maz, o9-min, oz-min, og-min, 0,1,2} C M,
4) {maz, o0y-min, min, os-min, 0,1,2} C U,
5) {oo-min, maz, min, os4-min, 0,1,2} C Uy
6) {oo-min, o-min, gz-min, o4-min, 0,1,2} C U
7) {oo-min, o3-min, min, oz-min, 0,1,2} C Bp
8) {maz, o2-min, min, o4-min, 0,1,2} C B
9) {oo-min, maz, O3-min, og-min, 0,1,2} C B,

Table 5.14: 10 classes of P which have the least completeness degrees.

wi #no TLS MlMgMo UzUoUl BgBlBg Tof[‘sz T01T12T20 *Nno representative
6 #397 111 100 100 100 000 000 *96 o4-sim. min
6 #398 111 100 010 001 000 000 %95 @9-sim. min
6 #399 111 010 010 010 000 000 *93 o3-sim. min
6 #400 111 010 001 100 000 000 %92 o;-sim. min
6 #401 111 001 100 010 000 000 #90 o0p-sim. min
6 #402 111 001 001 001 000 000 *89 min(z,y) = f.5.1
4 $#403 001 000 000 000 110 100 * 8 2 (consta,nt)
4 4404 001 . 000 000 000 101 001 * T 1 (consta.nt)
4 $#405 001 000 000 000 011 010 * 6 0 (constant)
0 406 000 000 000 000 000 000 %+ 1 z (projections)
Table 5.15: Representatives functions.
f \ TY 00 01 02 10 11 12 20 21 22
o4-min o 1 2 1 1 2 2 1 2
oo-min c 1 06 1 1 1 1 1 2
03-min o 0 2 0 1 2 2 2 2
max=o0,-miny 0 1 2 1 1 2 2 2 2
Oo-min 0 0 0o o 1 2 O 2 2
min o o 0 0 1 1 0 1 2

Example 5.10.4. In Table 5.16 and Table 5.17 we show three classes and their repre-
sentative functions, respectively. The first one is a base with single function (a similar
function of Webb function max(z,y) + 1). The last two are all classes each of which

is complete with constant functions (c-complete). It may have a practical significance
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Table 5.16:

wt #no TLS M1M2M0 U2U0U1 BQB132 T0T1T2 T01T12T20 *no representative

18 #1 111 111 111 111 111 111 *406 f8.14 (Sheffer)
12 #191 111 111 111 111 000 000 *362 f8.1
11 #288 110 111 111 111 000 000 *87 f4.5

Table 5.17: Representatives functions.

f\zy|00 01 02 10 11 12 20 21 22
f8141 0 1 0 2 0 1 0 O
f&1 |0 1 0 0 1 2 0 2 2
fas {0 0 2 0 1 1 2 1 2

that these two representatives depend on two variables, while in two-valued case there
exist only three-variable representatives in the corresponding classes (there exist also

all two classes which are complete with constants in two-valued case). O

5.10.2. Conclusive discussions

We have énumerated all the bases of three-valued logical functions. Now it has be-
come known that three-valued case is far much complex than two-valued case. The
classification approach, originally due to [Jab52], has been proved to be useful also for
three-valued case, but it will be hard to apply for the cases with greater than three.

In the base enumeration a peculiar structure of P; is revealed: the maximal rank of
a base is 6, while that of a pivotal incomplete set is 7. There are a few investigation
on the maximal rank of a base of P; [Krn73]. Another proof that the maximal rank of
bases of P is 6 is presented recently [Vuk84], which does not resort to enumeration of
whole bases directly. It is known that for Py (k > 3) there is a set which has a base with
infinite rank, and a set with no base [JaM59]. Thus a family of the closed sets each of
which is spanned by a pivotal incomplete set is merely a special family of all closed sets

Oka.
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5.11. Classifications and base enumeration results for P; and its
all maximal sets

In this last section we are going to presents classification and enumeration results of all
bases for the set P; and all 18 P;-maximal sets. First we give some historical remarks.
First attempt to derive classes of functions of P; was done in [Miy71]. This paper also
give the notion of pivotal sets as necessary conditions for a set to be base. However,
as we noted before, it counted a few characteristic vectors twice as different classes,
consequently the number of bases reported in [Miy79] was not quite right; this was
corrected in [Sto84a]. The following Table 5.18 presents the numbers of maximal sets
and the numbers of classes of functions for the sets P, Ps; and all P;-maximal sets.

The numbers of classes of bases and pivotal incomplete sets for the same sets as in
the former table are shown in the following two Tables 5.19 and 5.20.

In the table we abbreviated references as follows: [P] for [Pos21], {J1,J2] for [Jab52,Jab58),
[L] for [Lau82b], [Ma] for [Mac79}, [B1,B2] for [BaD78,BaD80], [JIK] for [Jab52,INN63,Krné5],
[M1,M2,M3,M4,M5] for [Miy71,Miy79,Miy82,Miy83,Miy84], [S1] for [Sto84a] and [S2,53,54]
for [Sto84b,Sto86a,5t086b].
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Table 5.18: Numbers of maximal sets and numbers of classes of functions for Pz and its maximal sets.

P, P; By M, To Uy Ta T L S
maximal 5 18 7 13 12 13 15 5 5 2
sets (P] [J2] L] Ma] [L] [L] (L] [L] [B1] [B2]
classes of 15 406 54 88 253 383 607 6 10 4

functions [JIK] [M1,51] [M3] [S2] [M5] [S3] [S4] [M4] [M4] [M4]

Table 5.19: Classes of bases of P3 and of its all maximal sets.

P, P Bi M To Uo Tos T

& S
rank [LK] [S1,M2] [M3] [52]  [M5] [53] [54] [M4] [M4),. [M4]
1 1 1 - - 1 1 1 - - 1
2 17. 8,265 28 - 4,492 4,344 12,259 - 18 1
3 22 794,256 999 1,514 234,031 680,285 2,580,026 6 6 -
4 2 4,612,601 2,831 40,104 552,927 7,300,491 38,508,259 - - -
5 - 810,474 724 75,209 91,377 7,627,060 53,641,851 - - -
6 - 14,124 17 1,916 892 944,257 7,545,748 - - -
7 - - 1 - 15,804 35,616 - - -
b))

42 6,239,721 4,599 118,744 883,720 16,572,242 102,323,760 6 24 2

Table 5.20: Classes of pivotal incomplete sets of Ps and of its all maximal sets.

Py Ps B, M, To Uy T T L S
1 13 404 53 87 251 381 605 5 9 2
2 31 60,335 931 3,163 21,363 57,284 147,266 10 10 -
3 7 1,418,970 3,678 37,946 202,689 1,594,342 6,385,808 - - -
4 - 2,677,899 2,240 96,323 149,804 5,057,975 32,278,690 - - -
5 - 176,187 168 15,087 6,595 1,911,408 18,947,380 - - -
6 - 1,368 1 55 8 96,464 1,198,502 - - -
7 - 9 240 648 - - -
=

51 4,335,172 7,071 152,651 38,0710 8,718,094 58,958,899 15 19 2
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Chapter 6

Classifications of maximal sets of P;

In this chapter we classify the maximal sets of P; : T (semi-degenerate or Stupecki set),
L (linear functions) and S (self-dual functions), B and To (the set of functions preserving
a constant 0). We also presents enumerations of bases and pivotal incomplete sets for

each case.

6.1. T (Stupecki functions or semi-degenerate functions)

In this section we will classify the Ps-maximal clone T = D U [P:,El)], which we call
3emi-degeﬁerate functions or Stupecki functions.

For a unary function f € Pél) we denote it by sso)s)s(2); for example, identity
function is denoted by sg2; for simplicity we use = for identity function also, and also
put co = Sgo0, €1 = S111 and ¢z = Sz23.

The classification is based on the following theorem. In presenting the theorem we

introduce our notations for the submaximal sets.

Theorem 6.1.1. [Lau82b]

T has ezactly the following 5 mazimal clones.

(1) So:= D U [s02].

(2) Sy := D U [s210].

(8) Sg := D U [s102].

(4) Sy := D U [s120, S201]-

(5) Sy = [PPTUUZ,{f™ € Ps|3f; € PV such that f(zy,.....z,) = fo(fa(z1) +
fa(z2) + o + fu(zn) mod 2)}
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We recall that the notation [F] denotes the clone generated from F. For simplicity
we omit set notation; thus [seg;] means [{sez1}]. The identity function s¢, is always
included in all sets by definition. Also note that onto functions that can be generated

by each of the above first four maximal sets are only its own unary onto functions.

Let S; and S; (2 # j) be any of Sy, 51,52 and S,.
Lemma 6.1.1. We have S;S; = D + [so12], hence So51525; = D + [so12].

Proof. [D + so12] C SiS; is obvious. Converse. Suppose f € S;S; and f is onto. Then
there exists an onto function fy € S;S; such that f(zy,...,2,) = fo(...). As we noted

above there exist no such onto function except sg12. O

Lemma 6.1.2. Let S; and S; be as above. Then the set S;S; consists ezactly of those

onto functions in S; ezcluding [so12].

Proof. Obviously every onto function contained in S; does not belongs to S; except so12.

O

Example 6.1.1. S+§0 = {8120, 3201}. O
Lemma 6.1.3. T' = 50 U 51 U 52 U S+

Proof. If f € T is an onto function then f belongs to the right hand side. O

Classification. From Lemma 6.1.1 we have the following 4 classes as for Sy, 51,52 and

S,.
So Sl 52 S+ set
1) 0 0 0 0 =1{DFsm)
2) 0 1 1 1 = {3021}
3) 1 0 1 1 = {3210}
H 1 1 0 1 ={s10;}
5 1 1 1 0 ={s120,5201}

We combine the above classes and the remaining maximal set S;. The class formed
by combining 5 and each of the above 2)- 5) is empty from Lemma 6.1.2, because
combining S, means to exclude all Pa(,l), while only unary onto functions exist in the

above classes. Thus we have the following theorem.
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Theorem 6.1.2. T has the following 6 classes.

Class So S1 S, S, Sp representatives

1) 1 1 1 0 0 {3120, 820]_}
3) 1 0 1 1 0 {3210}
4) 0 1 1 1 0 {3021}
6) 0 0 0 0 0 s030,1,2

where g1 := g(z,y) = 1 if z = y = 2, otherwise g(z,y) = 0.

Note 6.1.1. The class 5) includes functions which depend on 2n variables (we can
easily extend ¢1;. to such functions), and the class 6) which contains DS also includes
functions which depend on n variables, e.g., f(z1,...,%a) = so11(Sco1(z1) + soo1(w2) +

«e -+ 8001 () mod 2).

Since the proof of g11 & Sy is a bit lengthy, we put it separately in the end of this
subsection. We first give bases and pivotals of T

Theorem 6.1.3. T has ezactly the following 6 bases whose rank = 3:
{1,2,5}, {1,3,5}, {1,4,5}, {2,3,5}, {2,4,5}, {3,4,5}.

Thus any base of T' consists exactly of three elements.

Theorem 6.1.4. T has ezactly the following 15 pivotal incomplete sets.

rank = 1: each of 5 classes ezcept null class.

rank = 2: {1,5}, {2,5}, {3,5}, {4,5}, {1,2}, {1,8}, {14}, {2,3}, {24}, {34}

Now we give the proof of g1.1 € Se.

Put g(z,y) := g11 . Recall ¢(2,2) =1, and g(z,y) = 0 for the other values of
z and y. Assume g(z,y) = fo(fi(z) + f2(y) mod 2) for some f; € P{Y . We show a
contradiction.

Since range g = {0,1}, fo should map the subdomain {0,1} onto {0,1}, i.e. fo should
be either sg;. OT S1gx, Where * denote 0,1 or 2 .

1) Case of fo = So1x-

100



We have g(z,y) = sor.(f1(z) + f2(y) mod 2) = fi(z)+ f2(y) mod 2. Hereafter till the
end this section z +y and zy denote the element of E; congruent (mod3) z+y and zy,
respectively. From ¢(2,2) = f1(2)+ f2(2) = 1, we have (f1(2), f2(2)) = (0,1),(1,0),(1,2)
or (2,1) . From the symmetry of f; and f;, it suffices to consider that (f1(2), f2(2)) =
(0,1) or (1,2) .

1.1) Case of f1(2) =0 and f(2) = 1.

We note that f2(2) = 1 and that 1+a = 0leads toa'= 1. Then g(0,2) = f1(0)+f2(2) =0
leads to f3(0) = 1. Thus ¢(0,0) = f1(0) + f2(0) = 0 leads to f2(0) = 1. Hence
9(2,0) = fi(2) + f2(0) = 0 leads to f1(2) = 1. But this contradicts to the assumption
f(2)=0.

1.2) Case of f1(2) =1 and f,(2) = 2.

Then ¢(2,0) = £i(2) + f2(0) = 0 leads to /2(0) = 1. Thus ¢(0,0) = £(0) + £:(0) = 0
leads to f1(0) = 1. Hence ¢(0,2) = f1(0) + f2(2) = 0 leads to f»(2) = 1. But this
contradicts to the assumption f2(2) = 2.

2) Case of fo = 5104

We have

9(z,y) = s10(f1(z) + fa(y) mod 2) = (fu(@) + faoy) mod 2) +1 = fi(2) + foly) + 1.

From ¢(0,0) = f1(0) + £2(0) + 1 = 0 we have fi(0) + f2(0) = 1. Thus from the
symmetry of f; and fz, just like as we already saw for Case 1), it suffices to consider
that (£1(0), f2(0)) = (0,1) or (1,2) .

2.1) Case of f1(0) =0 and f,(0) = 1. ,
We note that f;(0) = 0 and that 1+ a = 0 leads to a = 1. Then ¢(0,2) = f1(0) +
£2(2) +1 = 0 leads to f2(2) = 1. Thus ¢(2,2) = f1(2) + f2(2) +1 =1 leads to f1(2) =1
Hence ¢(2,0) = f1(2) + f2(0) + 1 = 0 leads to f,(0) = 0. But this contradicts to the
assumption f2(0) = 1.

2.2) Case of f1(0) =1 and f3(0) = 2.
Then g(2,0) = f1(2)+f2(0)+1 = 0leads to f1(2) = 1. Thus ¢(2,2) = fi(2)+f2(2)+1 =1
leads to f2(2) = 1. Hence ¢(0,2) = f1(0) + f2(2) + 1 = 0 leads to f1(0) = 0. But this

contradicts to the assumption f1(0) =1. O
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6.2. L (Linear functions)

We will classify the Ps;-maximal set L := {f|f(z) = L%, ¢iz: + co}, which is called
linear functions. All maximal sets of L are given by the following theorem. In [BaD78]
they showed all the closed sets of L for prime valued k. Their notations are slightly
different from ours in the following theorem: they use L, for LT, (o = 0,1,2), LA for
LS, and LW is the same.

Theorem 6.2.1. [BaD78] L has ezactly the following 5 mazimal sets.

(1) LTo = {f|f € L and f(0) =0)}

(2) LTy = {f|f € L and f(1) =1)}

(3) LTo = {f|f € L end f(2) =2)}

(4) LS = {f|f € L and f(x +1) = f(z) +1}

(5) LM =1[0,1,2,z,z + 1,z +2,2z,2z + 1,2z + 2].
Classification goes in the following manner.

First we will classify L) (5 classes), then VnLs (2 classes) ,and finally the remaining
set (3 classes). Thus we will find total 10 classes.

Lemma 6.2.1. -Ob'viously LO s classified by the other mazimal sets into the following

5 classes.

LTy, LTy LT, LS representatives

0 0 0 0 =z

1 1.1 0 z+1,z+2
0 1 1 1 0,2z

1 0 1 1 1,2z +2

1 1 0 1 2,2z +1

Now we divide L into subsets as we did in the previous chapter (Chapter 5).
Put L := Lo + Ly + Lo, where L, := {f|f(2) = co + L%, cizi, 21wy ¢i = a}. Further
each L, is divided into the following three subsets:

La. = LaO + Lal + La2> Where Lab = {flf € La. and f(O) = a'}'

Then we have LS = L; from Lemma 5.4.7, Chapter 5.
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Lemma 6.2.2. From the property of f(® +1) = f(x) + 1, the set % n LS(C L) 13
divided into the following 2 classes.

LTy LTy LT, representatives
0 0 0 2z42y=f4.3
1 1 1 2z4+2y+1=f4.2

where f.4.3 and f4.4 are from the previous chapter (they are given in Appendix 2).

Lemma 6.2.3. f(l)(Lo + Lj) is divided into the following 3 classes.

LTy LTy LT, representatives
0 1 1 z+2y=f41
1 0 1 op-similarof z 4+ 2y (=2 +2y+ 1)
1 1 0 oy-similar of z + 2y (=2 + 2y + 2)

where f4.1 is from the previous chapter.
Proof. This is in fact Lemma 5.4.5. And this can be easily seen Also from the propertieS'
Lo = Loo + Ly2 + L2y and Ly = Loy + L1 + L2 , and f(o) = b, f(3) = a + b and
f(2)=2a+bfor f € Lg. O
From Lemmas 6.2.1,6.2.2 and 6.2.3 we have the following theorem.

Theorem 6.2.2. L s divided into the following 10 classes.

Ly LS LTy, LT\ LT, representatives

1) 1 1 1 1 0 zty+Lz+oy+2
2 1 1 1 0 1 z+y+2z+2y+1
3) 1 1 0 1 1 z+4vy,z+2y

4 1 0 1 1 1 20+2y+1,20+2+2
5 0 1 1 1 0 22 +1

6 0 1 1 0 1 1,2z+2

7% o 1 0 1 1 02

8 0 0 1 1 1 z+lz+2

9% 1 0 0 0 0 20+2

0) 0 0 0 0 0 =

In the above table we listed all n-ary (n < 2) linear functions as representatives.

Theorem 6.2.3. L has ezactly the following 24 bases.

rank = 1 : none.

rank = 2 : 1 x{2,3,4,6,7,8}, 2 x{3,4,5,7,8}, 3 x{4,5,6,8}, 4 x{5,6,7}.
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rank = 8 : {5,6,9},{5,7,9}, {5,8,9},{6,7,9},{6,8,9},{7,8,9}.
Theorem 6.2.4. L has ezactly the following 19 pivotal incomplete sets.

rank = 1: each of 9 classes exzcept null class.
rank = 2: {5,6}, {5,7},{5,8}, {5,9}, {6,7}, {6,8}, {6,8}, {7,8}, {7,9}, {8,9}.

In the linear functions one can see most clearly the relation between pivotal and
nonredundant sets. A nonpivotal incomplete set can be redundant as is seen in the

following example.

Example 6.2.1. 1. F} := {0} is pivotal, and hence nonredundant.

2. Fy := {0,2z} is nonredundant, and not pivotal; as we have seen these functions
have the same characteristic vector (hence F} is not a minimal cover).

3. Fy:= {z + 1,z + 2} is not pivotal and is redundant.

4. Fy := {2z,2z + 2y} is pivotal and noncomplete.

5. Fy := {2z,2z + 2y,z + 1} is pivotal and complete, i.e. it is a base. O

A nonpivotal incomplete set can also be nonredundant.

Example 6.2.2. F = {0, f(z,y) = z + 2y} is not pivotal and incomplete. F' is redun-
dant; indeed f(z,z) =2z +22z =0. O

Example 6.2.3. The set F' of constants and any linear function of two variables, i.e.,
F=1{0,1,2,l(z,y) = az + by + c (a # 0,b # 0)} is complete, but it is redundant; one

or two of constants (depending on [(z,y)) is not necessary to be a base. O

6.3. S (Self-dual functions)

We will classify the set S = {f|f(z+1) = f(®)+1} which are called self-dual functions.

All the submaximal sets of S is given by the following theorem.

Theorem 6.3.1. [DHMS80a] S has ezactly the following 2 mazimal sets.

(1) SL = {f|f€ S and f € L}.
(2) STy, = (fif € S and f(0) =0},
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Thus S is divided into the following four classes, and immediately we have the fol-

lowing classes of bases.

class SL ST, representative
1) 1 1 ja4

2) 1 0 f45
3) 0 1 z+1
4) 0 0 2z+2y

where f4.4 and f4.5 are from the previous chapter.

Theorem 6.3.2. S has ezactly the following 2 bases and 2 pivotal incomplete sets.

bases: 1 (rank = 1), {2,3} (rank = 2).

pivotals: 2, 3 (rank = 1).

It is interesting to note that such a non-trivial function as 2z + 2y belongs to the
null class; thus no incomplete set exists adding to which 2z + 2y becomes complete in
S. For functions in null class no incomplete set of functions can be added so tl}gt the
joined set become complete. Null class containing non-trivial functions is seen iﬁ T,S

and B (to be described in the next section).

6.4. Classification of B;

In this section we classify a Ps-maximal set By = Pol 0120112 ) which is the set of

0121021 )°
functions preserving a so called central relation. We will show 54 classes and prove that

B; has 4,599 classes of bases. We also show that there is no Sheffer function in Bj.

The maximal set B, is the set of functions f: if f ( Z' ) € ( 02 ) then there is ¢

20
a; 02
such that ( b: ) € < 20 )

First we show a completeness theorem for By due to Lau.
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Theorem 6.4.1. [Lau82b] B, has ezactly the following 7 mazimal sets:

(1) T'l = BlﬂPol(l),

(2) To]_ = BlﬂPol(Ol),

(3) T12 = BlﬂPol(IZ),

(4:) T20 = BlﬂPol(20),
01211

(5) Ms = Pol{ p1202 )
01210122

(6) Me = Pol{ (1901910 |

(7) M, = Pol| 2101112121221010100

1210121122120110010
0022111212221101000

Now, we give a few explanations for each submaximal set. M; has the following
property:f € Ms & if f (‘; ) € ( 2; ) then there is 7 such that ( Z’ ) € ( (1); )
Mg has the following property: f € Mg & if f Z ) = g ) then there is ¢ such that
( Z’ > = ( g ) M, is the set of functions preserving the relation p := 3-ary universal

0202 \

relation\p’, where p’ = | 2002 |[. Since My is a subset of By, we have the following
*%20

a 02 a; 02
property: f € M; & if | b | € | 02 | then thereis ¢ such that | b | € | 02 [.
c 20 N\ ¢ 20

The reason of not occurring the first and second columns is that, otherwise f does not

belong to B;. Finally, we note the following inclusion
D(0,1) U D(1,2) C MeMy.

We recall some lemmas from Chapter 5. The following lemma is a corollary of Lemma

5.7.1.
Lemma 6.4.1. f € B, = f € T UD(0,1)U D(1,2).
Corollary 6.4.1. f e T,B, = f € D(0,1)U D(3,2).
The following is the Lemma 5.1.8.
f €TouTi = f €Ty (ToyTioT, is impossible).
The following is the corollary of Lemma 5.7.2.
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Corouary 6.4.2. f € B1—T-01T12 = f €Ty (T—()lTlng is 1mp0331b1e in Bl)

We consider all the possible subsets and classify them separately in the following
subsections: MyMsMs, MyMeMs, My MMy, M, MMs, M, Mes(Ms U Ms), M;MgsMs,
and M,MMs. Since B; is oy-similar invariant, we say simply similar for o;-similar
in this section. Recall that ¢y, 05 and o, are (20), (01) transposition and (210) cyclic

permutation, respectively.

6.4.1. M;M¢Ms;.

Lemma 6.4.2. f € T1T20B;, = f € M5.
Lemma 6.4.3. f € ToyT12B1 = f € M.

From these two lemmas the classes T T30 and T T2 are impossible. We have the

following 8 classes (cf. Lemma 5.1.8).

*no T T Tiz Tao

*T 0 O 0 0 o02-min, o4-min
*2 0 0 0 1 3012,1

*3 0 0 1 0 S010

*4- 0 0 1 1 S110

35 1 0 1 1 0

* 0 1 0 0 similar of *3
*r 0 1 0 1  similar of *4
*® 01 1 0 0 similar of *5

Recall that max = o;-min. These min, max and ¢;-min functions are given in the

previous chapter.
6.4Q2. M?MGM—5~

From Lemma, 6.4.3 the class T 114 is impossible. we have the following 10 classes (cf.

Lemma 5.1.8):

107



*no Ty To Tiz Ty representative
*9 0 0 0 0 o©2-min, o4-min
10 0 0 0 1 f21

11 0 0 1 0 f22

*¥12.0 0 1 1 f23

*13 1 0 1 0 f24

14 1 0 1 1 f25

*I5 0 1 0 0 similar of *11
*16 0 1 0 1  similar of *12
*7 1 1 0 0 similar of *13
18 1 1 0 1 similar of *14

6.4.3. M;M¢Ms;.

Lemma 6.4.4.
fe€B:Ms=feT

Proof. Suppose f(1) = 0. From f € Mg there is f ( 81;23?;(2) ) = ( g ) Since

2
f € Bl) 0
a contradiction. If f(1) = 2 the proof is similar. O

exists in the arguments. Then we have f ( (1)1;1(1)%;(1) ) = ( g ) € By,

By this lemma we can delete all classes of T, in Mg This leads to the following 8
classes (f € Ty).

*no Ty Ti2 Tho representative
¥9 0 0 0 f31
*0 0 0 1 f3.2
*21 0 1 0 f33
*2 0 1 1 f34
*23 1 0 0 similar of *21
*24 1 0 1 similar of *22
*25 1 1 0  s910
*6 1 1 1 f35

6.4.4. M;McMs.

Similarly as the previous case we can delete all classes of f € T,. We have the following

8 classes (f € T3).
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*

no Ty T2 T, representative
37 0 0 0 F4l
*98 0 0 1 f4.2
*20 0 1 0 f43
*30 0 1 1 f44
*31 1 0 0 similar of *29
*32 1 0 1 similar of *30
*33 1 1 0 f45

34 1 1 1 f46

6.4.5. M;Ms(M;U Ms).
Lemma 6.4.5. f € M-/MeBl = f € Th2To:.

We omit a rather complicate proof of this lemma (cf. [Miy82]). This lemma together
with Lemma 5.1.8 and Lemma 6.4.3 reduces the number of classes remarkably. For

M.;MgM; we have only two classes:

*no Ty T Tis The representative
*31 0 0 O O omin, max
*36 0 0 0 1 f51

Similarly, for M;MsM s we have only two classes.

*no T3 Tu Ti2 T representative
37 0 0 0 0 f52
*38 0 0 0 1 f53

6.4.6. M,MgMs.

From Lemma 6.4.4 we have f € T} and 8 classes are possible. There exists a represen-

tative function in each class.

*no Ty Tia T representative

¥39 0 0 0 f6.1

¥40 0 0 1 f6.2

*41 0 1 0 £6.3

42 0 1 1 f6.4

*43 1 0 0 similar of *41
%44 1 0 1 similar of *42

*45 1 1 0 f65

%46 1 1 1 f6.6
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6.4.7. M,M¢Ms.

By the same reason as the former subsection we have the following 8 classes (f € T1).

Tos Tis Ty representative
*47 0 0 0 f7.1
*48 0 0 1 f7.2
*49 0 1 0 f7.3
*50 0 1 1 fr.4
*B1 1 0 0 similar of *49
*52 1 0 1  similar of *50
*53 1 1 0 f75
*54 1 1 1 f16

And this complete our classification of By. The complete classes are shown in Table

6.1.

6.4.8. Results and conclusive discussions

It is a bit surprising that such nontrivial functions as g;-min or ¢4-min have a null
characteristic vector, since this indicates that these functions joined to any subset of
B, effect null concerning generation of a function by superposition. We summarize the

- results as the theorems.
Theorem 6.4.2.B; is divided into 54 nonempty classes.

Since there exists a representative with at least four arguments in every class, we

have:

Theorem 6.4.3. For every base of B, there ezist an equivalent base consisting of at

most 4-ary functions, i.e. the order of By 1s 4.
The classes of bases and pivotals of B; are enumerated.

Theorem 6.4.4. The numbers of classes of bases and pivotals of By are 4,599 and
7,071 respectively.

Corollary 6.4.3. Mazimal rank of bases or pivotals of By 13 6 (there are 17 bases with

the mazimal rank) and there is no Sheffer function in By.

We give several illustrative examples.
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Example 6.4.1. We list all 28 bases of B; with rank 2.

1 x {17,18,30, 31,44, 45}, 2 x {17,18)}, 3 x {18,31,45}, 4 x {17, 30,44},
5 x {17,18,30,31}, 7 x 18, 8 x 17, 10 x {17,18}, 11 x {18,31}, 12 x {17,30}, 17 x 21,
18 x 20. O

Example 6.4.2. There is only one base containing all constants functions among 17

bases with maximal rank 6. One such example is {2,1,0, min, f3.1, f2.1}. O

Example 6.4.3. There is only one pivotal with the maximal rank 6. One such example
is {min, f3.1, f21, $212, 5010, 1} 0

Example 6.4.4. The following set is P; pivotal with a maximal rank 7 [Jab58]:
{max, o,-min, min, o4-min,0,1,2} C B;. It may seem that this set span some maxi-
‘mal set of B;, however actually this spans a smaller set. We show characteristic vectors
of these functions. Thus this set spans some subset of M;Ms. '

wt H#no M; Mg Ms Ty Ty Tia Tho *no representative

(=]

1 #48 1 0 0 0 0 0 0 35 maz, min

0 #54 0 ©0 0 0 0 0 O *1 oy-min, o4-min
2 #45 0 0 0 1 O 1 O x5 0

1 #5 0 0 0 0 0 0 1 %21

2 #44 0 0 0 1 1 0 0 8 2
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Table 6.1: Classes of Bj.

wt  #no M.;MgMs Ty T5Ti:T50 #*no representative
6 (#1) 111 0 111 *b4d  f7.6
5 (F#2) 111 0 110 *53 f7.5
5 (#3) 111 0 101 *52 similar of f7.4
5 (#4) 111 0 011 *50 f7.4
5 (#5) 110 0 111 =46 f6.6
5 (#6) 011 0 111 %34 f4.6
4 (#7) 111 0 100 *51 similar of f7.3
4 (#8) 111 0 010 *49 f7.3
4 (#9) 111 0 001 *48  f7.2
4 (#10) 110 0 110 *45 f6.5
4 (#11) 110 0 101 *44 similar of 6.4
4 (#12) 110 0 011 *42 f6.4
4 (#13) 011 0 110 %33 f4.5
4 (#14) o011 0 101 #32 similar of 4.4
4 (#15) 011 0 011 *30 f4.4
4 (#16) 010 0 111 *26 3.5
4 -(#17) 001 1 101 *18 8121, 8122, $221
4 (#18) 001 1 011 *14 $001, 8100, S101
3 (#19) 111 0 000 *47 f7.1
3 (#20) 110 0 100 *43 similar of 6.3
3 (#21) 110 0 010 x41 6.3
3 (#22) 110 0 001 *40 f6.2
3 (#23) 101 0 001 *38 f5.3
3 (#29) 011 0 100 *31 similar of 4.3
3 (#25) 011 0 010 *29 f4.3
3 (#26) 011 0 001 *28 f4.2
3 (#27) 010 0 110 *25  s910
3 (#28) 010 0 101 %24 similar of £3.4
3 (#29) 010 0 011 ¥22 f3.4
3 (#30) 001 1 100 *17 similar of f2.5
3 (#31) 001 1 010 *13  f2.5
3 (#32) 001 0 101 *16 similar of f2.4
3 (#33) 001 0 011 *12 f2.4
2 (#34) 110 0 000 *x39 f6.1
2 (#35) 101 0 000 *37 5.2
2 (#36) 100 0 001  #36 f5.1
2 (#37) 011 0 000 *27 f4.1
2 (#38) 010 0 100 %23 similar of £3.3
2 (#39) 010 0 010 *21  f3.3
2 (#40) 010 0 001 *20 3.2
2 (#41) 001 0 100 *15 similar of £2.3
2 (#42) 001 0 010 *11 2.3
2 (#43) 001 0 001 %10 2.2
2 (#44) 000 1 100 *8 2
2 (#45) 000 1 010 *5 0
2 (#47) 000 0 011 *4  s119
1 (#48) 100 0 000 *35 min, max
1 (#49) 010 0 000 =19 f3.1
1 (#50) 001 0 000 %9 f2.1
1 (#51) 000 0 100 *6  Sq19
1 (#52) 000 0 010 *3  So10
1 (#53) 000 0 001 *2  So11,1
0 (#54) 000 0 000 *1  09- and o4-similar of min
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Table 6.2: Representatives of classes of B;.

F\zy|00 01 02 10 11 12 20 21 22  f\zy |00 01 02 10 11 12 20 21 22
f22 |1 o 1 1 1 1 1 1 1 f46 |1 1 1 2 1 1 1 1 0
f24 |1 1 1 1 1 1 1 0 1 f63 |0 0 o 1 1 0 2 1 0
f33 o 1 0 1 1 1 2 1 0 f65 |2 1 0 1 1 0 0 0 0
/34 |1 t 1 1 1 1 2 1 0o “~f74 |1 0 1 1 1 0 2 1 1
35 |2 1. 0 1 1 1 1 1 0 f16 |1 2 1 2 1 1 1 1 0
f44 {1 1 1 1 1 o0 2 1 1
£2.1100 01 10 11 12 21 22 20 02 f23[00 01 10 11 12 21 22 20 02
6lo 1 1 1 1 1 2 2 2 0o 1 1 1 1 1 0 0 O
11 1 1 1 1 2 1 1 1 11 1 1 1 1 1 1 1 1
212 1.1 1 1 1 2 2 2 20 1.1 0 1 1 0 0 O
f25]00 01 10 11 12 21 22 20 02  f3.1]00 01 10 11 12 21 22 20 02
6lo 1 1 1 1 1 0 0 0O 00 1 1 1 1 1 0 2 O
1l1 11 0 1 1 1 1 1 1/t 1 1 1 1 1 1 1 1
210 1 1 0 1 1 0 0 O 212 1 2 1 1 1 2 2 0
£32|00 01 10 11 12 21 22 20 02 f42[00 01 10 11 12 21 22 20 02
0o 1 1 1 1 1 0 2 © 0] L 1 1 1 1 1 0 1 1
11 1 1 1 1 1 1 1 1 111 1 1 1 1 1 1 1 2
212 1 2 1 1 1 1 2 0 21 1 1 1 1 1 1 1 1
f43]00 01 10 11 12 21 22 20 02  f45]|00 01 10 11 12 21 22 20 02
0l o 1 1 1 1 1 0 0 2 0] 2 1 1 1 1 1 0 0 2
1{1 1 1t 1 1 0 1 1 1 11 1t 1 1 1 0 1 1 1
20 1 1 1 1 1 0 0 O 202 1.1 1 1 1 0 O 2
f5.1]00 01 10 11 12 21 22 20 02 f£53]00 01 10 11 12 21 22 20 02
0l o0 0 0 06 0 0 0 0 O 0] 0 1 1 o6 1 1 1 1 1
10 o 1 1 1 1 1 1 0 1{1 0 1 1 1 1 1 1 1
210 0o 1 1 1 1 2 1 0 21 111 1 2 1 1 1
F6.1]00 01 10 11 12 21 22 20 02  £62]00 01 10 11 12 21 22 20 02
0ol o 1 1 1 1 1 2 2 2 oo 1 1 1 1 1 2 2 2
1o 1 1 1 1 1 1 1 1 1lo 1 1 1 1 1 1 1 1
210 1.0 1 1 1 2 0 2 20 1 0 1 1 1 2 0 1
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Representatives of classes of By (continued).

f6.4]00 01 10 11 12 21 22 20 02 f6.6]00 01 10 11 12 21 22 20 02
6] 1 1 1 1 2 1 2 1 2 0l 2 1 1 1 2 1 2 1 2
111 1 1t 1 1 1 1 1 2 141 1 1 1 1 1 1 1 2
2{1 1 1 1 1 1 0 1 2 2/1 1 1 1 1 1 0 1 2

f7.1]00 01 10 11 12 21 22 20 02 f7.2]00 01 10 11 12 21 22 20 02
0lo 1 1 1 2 1 2 0 2 00 1 1 1 2 1 2 0 2
111 1 1 1 1 2 1 1 1 11 1 1 1 1 2 1 1 1
210 o 1 1 1 1 2 2 o 20 o 1 1 1 1 2 1 O

f7.3]00 01 10 11 12 21 22 20 02 f41]00 01 10 11 12 21 22 20 02
ol 0o 1 1 1 1 1 0 2 0 owjo 1 1 1 1 1 0 2 2
11 1 1 1 1 2 1 1 1 ot{1 1 1 1 1 1 1 1 1
22 1.1 1 0 1 1 2 o0 w1 1 1 1 1 1 1 1 1

111 1 1 1 1 1 1 1 2
121 1 1 1 1 1 1 1 1
21{1 1 1 1 1 1 1 1 1
22 1 1 1 1 1 2 2 2
20/2 1 1 1 1 1 2 2 2
22 1 1 1 1 1 2 2 2

5200 01 10 11 12 21 22 20 02 f75]00 01 10 11 12 21 22 20 02
00f 0o 1 1 1 1 1 0 0 0 0] 2 1 1 1 1 1 0 2 2
011 1 1 1 1 1 1 1 1 o1{1 1 1 1 1 1 1 1 1
{1 1 1 0 1 1 1 1 1 ‘10f{1 1 2 1 1 1 1 1 1
11{1 o 1 1 1 1 1 1 1 i1f{1 2 1 1 1 1 0 2 2
121 1 1 1t 1 2 1 1 1 1201 11 1 1 1 1 1 1
227/ 1 1 1 1 1 1 1 1 1 211 111 1 1 1 1 1
210 1 1 1 1 1 2 2 0 22 1 1 1 1 1 0 2 2
2010 1 1 1 1 1 0 0 0 2012 1 1 1 1 1 0 2 2
02l o0 1 1 1 1 1 2 2 0 022 1 1 1 1 1 0 2 2
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6.5 Classification of T

The set T of three-valued logical functions preserving 0 is classified into 253 classes

using the known classification of P; (the whole set of three-valued logical functions).
Recall that Tj is the set of all 3-valued logical functions f such that f(0,...,0)=0.

In [Miy84] the classes of functions and bases for T; are given. In this sections we give

much simpler description of it using the classification of P;. We recall:

Theorem 6.5.1. [Laud2b] T has ezactly the following 12 mazimal sets.

Group L

(1) K10=Pol< g;?)

(2) K1y = Pol ( P ) .
)

Group II.

(4) Tty = Po@)Pol ( 12000 ). ,,
(5) ToM, = Pol(0)Pol ( o).

(6) TolUsz = Pol(O)Pol( P ) :

(7) ToBo = Pol(O)Pol( pepe ) .

Group III

(8) ToTy = Pol(0)Pol(1).

(9) ToT, = Pol(0)Pol(2).
(10) ToTy, = Pol(0)Pol(01).
(11) ToTy, = Pol(0)Pol(12).
(12) TyTz = Pol(0)Pol(20).

Note that only the three sets Kjq, K;; and Ki, are not P3-maximal. In Section 2 we
need the following 14 technical lemmas which are of independent interest (as statements
about the lattice of closed sets ordered by C). First we list them together (as Lemmas
1.1-1.14) and then proceed with their proofs.

Lemma 6.5.1. K10K12 g K]_]_.
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Lemma 6.5.2. T1 K, C T, T2 K30 € T1.
Lemma 6.5.3. T5:1 K10 C To2.

Lemma 6.5.4. UgK;; C Kjo.

Lemma 6.5.5. T1 K15 C Top, T2 K12 C T
Lemma 6.5.6. BoTo1T0:Uo C K.
Lemma 6.5.7. KioKyz C Bo.

Lemma 6.5.8. UgK;y2 C Bo.

Lemma 6.5.9. M; K0 C M,.

Lemma 6.5.10. M; K, C U,.

Lemma 6.5.11. Boklg C Ki;.

Lemma 6.5.12. K;;Ti; C B,.

Lemma 6.5.13. K;0By C Kys.

Lemma 6.5.14. M T K2 C Kiy.

Proofs. We must prove inclusions of the form Polp; - -+ Polp; C Polps (where ¢ = 4
in Lemma 6.5.6, ¢ = 3 in Lemma 6.5.14 and ¢ = 2 otherwise). The inclusion holds if we

can express po by a logical formula based on 3, &, = and membership in p; (1 < j <4).

We show what we mean by an example. Let
(012 __( 0010212 __ [ 00102
10 7= 921 |> #12°F | p102021 )’ ®1*°T | 01020 |-

M= {(z,v) : (z,9) € K12, (T, u) € K10,(%,y) € K12 for some u}.

Put

This may be written as A = k32N (K100 £12) Where o denotes the relational (de Morgan)
product or composition.
We prove k11 = ) by a direct check. First clearly A C #12. We have (0,0),(0,1), (0, 2)

€ K100 K12 (choose u = 0 in all 3 cases), (2,0) € k10 (choose u = 1) and (1,0) € K100 K12
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(choose u = 2) and so k13 C A C k2. Next (1,2) & K10 0 k12 (if it were we would need
u = 2 but (2,2) € &12) and similarly (2,1) &€ k100 K12 (We need u = 1 but (1,1) € 2).
It follows that K11 = A

The above fact Polp; - - - Polp; C Polpg is well known ([Ros70, §4], for more informa-
tion cf. [Pok79, §1.1, ch. 2]), and may be proved directly (it has also an interesting and
basic converse called Galois polytheory, cf. ibid).

In the sequel «;; denotes the relation in K;; = Pol «;; (see Theorem 1.2, group I),
similarly U?- = Pol v;, M; = Pol p;, and By = Pol f,.

Lemma 6.5.1. '

k11 = {(z,0)|(z,y) € K12, (z,u) € K10 and (y,u) € K2 for some u} (see above). O

Lemma. 6.5.2. |

{2} = {z|(z,u) € ko for some u € {1}} (as T: = Pol{¢} where {i} is a unary
relation; of course u € {1} means u = 1). Similarly {1} = {z|(z,2) € &10}. O

Lemma 6.5.3.

{0,2} = {z|(z,u) € K10 for some u € {0,1}}. O

Lemma 6.5.4.

K10 = Yo N K12. O

Lemma 6.5.5.

{0,2} = {z|(z,1) € K12}, {0,1} = {z|(x,2) € K12}

Lemma 6.5.6.

kn = {(z,)|(z,y) € Bo,(z,u) € po,(u,v) € Po,(v,y) € vo for someu € {0,1}
and v € {0,2}}. To see C consider the following (z,u,v,y) : (0,0,2,1),(1,1,0,0),
(0,0,2,2),(2,1,0,0) and (0,0,0,0). The inclusion 2 is obtained as follows. If (1,u) € po
and (v,1) € v for some u € {0,1} and v € {0,2}, then u = 1 and v = 2 and hence
(u,v) & Bo proving (1,1) does not belong to the right side. The proof for (2,2) is similar.
As the right side is a subrelation of B this complete the proof.

Lemma 6.5.7.

Bo = {(z,9)|(z,v), (v, y) € K10, (2, V), (¥, y) € K12 for some u and v}. O

Lemma 6.5.8.

Combine Lemmas 6.5.4 and 6.5.7. O

Lemma 6.5.9.
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pe = {(z,y)|(z,u), (v, y) € k1o for some u > v}, O
Lemma 6.5.10.

Vo = {(:I:, y)'(u7v),(wat) €kousc<twIy< U}- a
Lemma 6.5.11.

Let f € K11 Ki3. From f € 11 there are @ € ky1 such that (@)
b (b)

f
f
). However, from f € k12 and k11 € k12 we have ( ];((Z'g ) ( ) Hence

1212
1221
we have f & Bo. O

Lemma 6.5.12.

Bo = {(z,y)|(z,u), (u,y) € k12 for some u € {1,2}}.

Lemma 6.5.13.

k12 = {(z,y) : (z,u),(v,y) € k10, (2,7),(u,y) € Po for someu and v}. To prove C we
take the following quadruples (z,u,v,y) : (0,0,0,0),(0,0,2,1),(0,0,1,2) and (1,2,1,2)
(the right side is obviously symmetric). For 2 note that neither (1,1) nor (2,2) belong
to the right side (if (1,1) would then u = 2 in contradiction to (2,1) € Bo and similarly
for (2,2)).

Lemma 6.5.14.

ki1 = {(2,9) € k12 : = < u,v > y,(z,v),(v,y) € K1z for some u,v € {0,2}}.
To see C note that the right side is symmetric and take the quadruples (z,u,v,y) :
(0,0,0,0),(0,2,2,1) and (0,0,2,2,). For 2 note the following. First the right side is
symmetric. If (1,2) belongs to the right side then v > 1,u € {0,2} means u = 2 in
contradiction to (2,2) ¢ k2.

Lemma 6.5.15. UoBo Q T01 U T02 U Kll'

Proof. Suppose there exists an n-ary f € UoBoT o1 T02K 11. Then there are Z’ > € kY
f(a) . 1212 f(a) 12 ..

such that ( £(b) g Ky, l.e € 1991 |- Were £(b) € | 5, |» in view of

k11 C Bo we would have f ¢ By. Next suppose f(a) = f(b) = 1. Define a vector ¢

a 01020 a
sothat { b | € | 00102 { . Now ( c ) € v and f € Up imply f(c) # 0. Next
c 01010

( lc) ) € (¢ and f € B imply ( f(lc) ) € Bo and therefore together we have f(c) # 2
and f(c) # 1. Since f ¢ Tu, there is a vector d € {0,1}" such that f(d) = 2. From
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0011
if f(a) = f(b) = 2 the proof is quite similar. O

fle) =1,f(d) =2 and ( ccl ) € ( 0110 ) we conclude f € By, a contradiction. Finally

Lemma 6.5.16. The set MT, Ty, consists of constant functions with value 0 only and

s0 MszToz C Ki0K11 Ko

Proof. From f € TyTy, follows f(2) € {0,2} and f(2) # 2 i.e. f(2)=0. From f € M;
andy <2forally € E weget f=0 f(z) <0 for all # € E™ i.e. which is an element
of K10K11K;1,. O

6.5.1. Classification of T

The sets Ty, Ts, To1, Toz, Tiz, Uo, Bo, M1 and M, are P;-maximal sets. Among the 406
classes of P; exactly 248 classes are subsets of Tp. However, only 93 classes are obtained
from the above nine Ps-maximal sets (as intersections of the sets or their complements).
The interchange 1 and 2 in the definition of each maximal set Ty, T3, To1, Loz, T12, Vo,
Bo, My, M3, Ko, Kir and Ky yields T3, Th, Tos, To1, T12, Uo, Bo, M,, M, Kio, Ky
and Kj, respectively. The class T, is mapped onto itself. Two classes are similar
if the characteristic vectors are obtained by one from the other by applying the above
mapping to all coordinates of the vector, i.e., a} = ay, where ' denote the above mapping
of maximal sets. Among the 93 classes (the sum of the fourth column in Table 6.3), 58
are pairwise nonsimilar.

The complete classification of Ty is obtained by checking all 8 possible cases with
respect to the sets Kjg, K11 and K, for each of the above 93 classes. From Lemmas 1 - -
16 we can show that many classes are empty. In Table 6.3 for each of the 58 nonsimilar
classes with respect to the first 9 maximal sets we give the ordinal number of one of the
corresponding classes of P; from [Sto84a,Miy71] (the second and the third column of the
table). In the next to the last column we give the number of corresponding classes of the
set T, obtained by concatenating the characteristic vectors corresponding to Kio, K3
and K. In the last column we indicate the lemmas, on the basis of which some of the
8 cases do not occur.

For each of the remaining 169 (the sum of the numbers of the next to the last

column) classes, a representative function is shown in Table 6.5 (163 representatives,

119



the 6 representatives are unary, which are shown in the table). Counting the similarity

(summing s-column multiplied by c-column for all rows), we have:
Theorem 6.5.2. [Miy84]| The number of the classes of Ty is 253.

The classes are listed in Table 6.4 and there representatives in Table 6.5.
6.5.2. Enumeration of bases of T

Using the list of 353 characteristic vectors the Ty-bases and Ty-pivotal incomplete sets
are computed [Miy84]: they are 883,720 and 380,710, respectively. The maximal rank
of a base of T is 6. The detailed data are shown in Chapter 5.

6.6. Concluding remarks

The classifications for the other maximal sets of P; were done by Stojmenovié as we
have seen in Chapter 5. The maximal sets My, Uy and T; have 88, 383 and 607 classes
and their bases are 118,744, 16,572,242 and 102,323,760. Maximal rank of a base of
each set is 7. All the results were reported in [MiS87b] jointly with Stojmenovié.
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Table 6.3:

no Piclass sim. MiM2 Uo Bo TiT: TnTi2T20 gen. classes lemma
1 T 1 11 1 1 11 111 6 L7

2 20 1 1 1 1 11 101 4 IL12
3 21 2 11 1 1 11 011 4 I3

4 23 2 1 1 1 01 111 2 L2,5
5 26 1 11 1 o6 11 111 4 [11,13
6 34 1 1 0 1 11 111 4 I8

7 48 1 11 1 1 1 010 6 L7

8 52 2 11 1 1 o1 110 4 I2

9 53 2 11 1 1 o1 101 2 I2,5
10 54 2 1 11 01 011 2 I2,5
11 55 1 1 1 1 00 111 4 I5
12 63 1 1 1 0o 11 101 4 IL11,13
13 64 2 11 1 o0 11 011 3 IL3,11
14 74 1 11 o 1 11 101 4 I8
15 75 2 11 o0 1 1 011 2 L3,8
16 76 11 0 0 11 111 2 [4,13,15
17 88 2 11 1 1 o1 010 4 L2
18 89 2 11 1 1 o1 001 2 I2,5
19 91 111 1 1 00 101 4 L5
20 92 2 11 1 1 00 011 2 I3,5
21 99 1 11 1 0o 11 010 4 [11,13
22 101 2 1 1 0 01 011 2 2,5
23 114 1 1 6 1 11 010 4 I8
24 116 2 1 0 1 o1 101 2 I2,5
25 118 1 1 o o0 11 101 2 I4,13,15
26 119 2 11 0 0 11 011 2 I3,4
27 133 2 01 1 1 10 101 2 IL2,5
28 134 2 0 i1 10 011 4 I2
29 137 1 11 1 1 00 010 6 L7
30 138 2 11 11 00 001 2 3,5
31 149 2 11 1 0 o1 010 3 IL2,11
32 150 2 1 i 0 01 001 2 L2,5
33 162 2 11 0 1 01 001 2 IL2,5
34 163 1 1 0 1 00 101 4 I3

35 166 1 11 0 o0 11 010 2 L4,6,13
36 183 2 01 1 1 10 100 2 I2,5
37 184 2 0 1 1 10 010 3 I2,14
38 185 2 o1 6 1 10 101 2 IL2,5
39 191 1 11 1 1 00 000 4 IL12
40 194 1 11 1 0 00 010 4 [L11,13
41 204 2 1 0 1 00 001 2 IL3,5
42 210 2 1 0 o0 o1 001 2 IL2,5
43 232 2 01 1 1 00 001 2 I3,5
44 234 2 o0l 1 0 10 010 3 I2,11
45 235 2 o0 0 1 10 100 2 IL2,5
46 254 1 11 1 0 00 000 4 [11,13
47 258 111 6 1 00 000 4 I8
48 282 2 0 1 1 00 000 2 [L10,12
49 284 2 01 0 1 00 001 2 IL3,5
50 309 2 0 1 0 11 011 3 IL3,11
51 315 1 1 0 0 00 000 2 I4,6,13
52 335 2 01 1 0 00 000 3 L10,11
53 336 2 0 0 1 00 000 2 8,9
54 378 2 0 10 10 100 2 I2,5
55 381 2 o 1 0 01 001 2 I2,5
56 390 1 00 g 0 00 000 2 I4,6,13
57 396 2 00 0 o 01 001 2 I2,5
58 405 1 00 0 0 11 010 1 L16
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Table 6.4: Classes of Tg
coordinates are: K10K11I{12M1MzUoBoT]_Tg%]_TmTzo.

wt no simslar wt no stmilar

12 1 111111111111 9 51 111110101101
11 2 111111111110 4’4 9 52 111110011110
11 3 111111111101 9 53 111110011011 g'52
11 4 111111111011 9 54 111101101110 g'58
11 5 111111110111 9 55 111101101101 g’'57
11 6 111111101111 9 56 111101011110 g'59
11 7 111111011111 9 57 111011110101
11 8 111110111111 9 58 111011110011
11 9 110111111111 9 59 111011011011
11 10 101111111111 9 60 110111111010
11 11 011111111111 9 61 110111110011 g'62
10 12 111111111010 9 62 110111101110
10 13 111111110110 9 63 101111111010
10 14 111111110101 9 64 101111110110
10 15 111111110011 g¢'16 9 65 101111110101
10 16 111111101110 9 66 101111110011 g'67
10 17 111111101101 9 67 101111101110
10 18 111111101011 g'13 9 68 101111101101
10 19 111111100111 9 69 101111101011 g'64
10 20 111111011110 9 70 101111100111
10 - 21 111111011101 9 71 101111011110
16 22 111111011011 g¢'20 9 72 101111011101
10 23 111110111110 9 73 101111011011 g'71
10 24 111110111101 9 74 101110111110
10 25 111110111011 g'23 9 75 101110111101
10 26 110111111110 9 76 101110111011 g'74
10 27 110111111011 g¢'26 9 77 101110011111
10 28 101111111110 9 78 100111111110
10 29 101111111101 9 79 100111111011 g'78
10 30 101111111011 g'28 9 80 100111011111
10 31 101111110111 9 81 011111111010
10 32 101111101111 9 82 011111100111
10 33 101111011111 9 83 011110111101
10 34 101110111111 9 84 001111111101
10 35 100111111111 9 85 001110111111
10 36 011111111101 8 86 111111100100 g'88
10 37 011110111111 8 87 111111100010
10 38 001111111111 8 88 111111100001
9 39 111111110100 g'42 8 89 111111010100 g'92
9 40 111111110010 8 90 111111010010
9 41 111111101010 8 91 111111001010
9 42 111111101001 8 92 111111001001
9 43 111111100110 8 93 111110110100 g'94
9 44 111111100101 8 94 111110101001
9 45 111111100011 ¢'43 8 95 111110100101
9 46 111111011010 8 96 1111011010190 g'100
9 47 111111010110 8 97 111101101001 g'99
9 48 111111001011 g'47 8 98 111100101101 g'101
9 49 111110111010 8 99 111011110100
9 50 111110110101 8§ 100 111011110010
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123

wt no similar wt no similar
8 101 111010110101 7 151 111011100001
8 102 110111110010 g’'103 7 152 111011010100
8 103 110111101010 7 153 111011010010
8 104 110101101110 7 154 111011001001
8 105 110011110011 g'104 7 155 111010110100
8 106 101111110100 g'109 7 156 110111100010
8 107 101111110010 7 157 101111100100 g'159
8 108 101111101010 7 158 101111100010
8 109 101111101001 7 159 101111100001
8 110 101111100110 7 160 101111010100 g'163
8 111 101111100101 7 161 101111010010
8 112 101111100011 ¢'110 7 162 101111001010
8 113 101111011010 7 163 101111001001
8 114 101111010110 7 164 101110110100 g'165
8 115 101111001011 g'114 7 165 101110101001
8 116 101110111010 7 166 101110100101
8 117 101110110101 7 167 101110011010
8 118 101110101101 7 168 101101101010 g'172
8 119 101110011110 7 169 101101101001 g'171
8 120 101110011101 7 170 101100101101 g'173
8 121 101110011011 g'119 7 171 101011110100
8§ 122 101101101110 g'126 7 172 101011110010
8 123 101101101101 y'125 7 173 101010110101
8 124 101101011110 g'127 7 174 100111110010 g'175
8 125 101011110101 7 175 100111101010
8 126 101011110011 7 176 100111011010
8 127 101011011011 7 177 100101101110
8 128 100111111010 7 178 100101011110 3020
8 129 100111110011 g'130 7T 179 100011110011 g'177
8 130 100111101110 7 180 100011011011 Sb2o
8 131 100111011110 7 181 011111100010
8 132 100111011101 7 182 011110100101
8 133 100111011011 g'131 7 183 001111100101
8 134 011111100101 7T 184 001110111010
8 135 011110111010 7 185 000111011101
8 136 001111111010 7 186 000110011111
8 137 - 001111100111 6 187 111111000000
8 138 001110111101 6 188 111110100000
8 139 000111011111 6 189 111101100000 g'191
7 140 111111100000 6 190 111100100100 §'192
7 141 111111000010 6 191 111011100000
7 142 111110100100 g'142 6 192 111010100001
7 143 111110100001 6 193 101111100000
7 144 111110010100 g'145 6 194 101111000010
7 145 111110001001 6 195 101110100100 g'196
7 146 111101100100 g'151 6 196 101110100001
7 147 111101010100 g'154 6 197 101110010100 g'198
7 148 111101001010 ¢'153 6 198 101110001001
7 149 111101001001 g'152 6 199 101101100100 g'204
7 150 111100101001 ¢'155 6 200 101101010100 4’207



wit no K10K11K12M1M2U0B0T1T2To1 leTgo similar
6 201 101101001010 g'206
6 202 101101001001 g'205
6 203 101100101001 g'208
6 204 101011100001
6 205 101011010100
6 206 101011010010
6 207 101011001001
6 208 101010110100
6 209 100111100010
6 210 100111010010 g'211
6 211 100111001010
6 212 100101101010
6 213 100011110010 g'212
6 214 011111106000
6 215 001111100010
6 216 001110100101
6 217 000111011010
6 218 000110011101 8021
5 219 111101000000 g'221
5 220 111100100000 g'222
5 221 111011000000
5 222 111010100000
5 223 111000010100 g'224
5 224 111000601001
5 225 101111000000
5 226 101110100000
5 227 101101100000 §'229
5 228 101100100100 4’230
5 229 101011100000
5 230 101610100001
5 231 100111000010
5 232 100101001010 So010
5 233 100011610610 $hio
5 234 011110100000
5 235 001111100000
5 236 000110011010
4 237 101110000000
4 238 101101000000 g'240
4 239 101100100000 g'241
4 240 101011000000
4 241 101010100000
4 242 101000010100 Shi1
4 243 101000001001 S011
4 244 100111000000
4 245 001110100000
4 246 000111000010
3 247 100101000000 g'248
3 248 100011000000
3 249 000111000000
3 250 000000011010 0
wit no K10K11K12M1M2U0B0T1T2T01T12T20 simila.'r
2 251 101000000000
2 252 000110000000
0 253 000000000000 S012
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Table 6.5: Representatives of classes of T (163 functions).

m1201._101021220112220012021012210001002112
ﬂ1111120201012111222220101012111001020102
nm0000000222202121210000000001002000200000
mu2011100102012121221212101012110002010201
.1I...1122222012111111..221111021022000122001221
m0000000111010012011000000000000002100001
m0101201211212011210000001200110000221100
m220011012211..0112112112002200000220112201
m0000000000000000000000000000000000000000
I
8 14890348905678012567890
\8012580123781245900001111122222333333334
67.77778888889999911111111111111111111111
:Jgggggggggggggggggggggggggggggggggggggggg
nnM1111101002012010100111001012202102210020
mﬁ_1120201100011010120100000220110102110000
0042001010100001212200000010020102121110000
m0100200210..210010101102200212110102110102
H2201002002111020222210202111102102001021
w1212210211222002110000020102210220001000
m2021012120011212200010112020102122110200
m1212221211222201121222021112010222002112
m0000000000000000000000000000000000000000
Y
P 0123679013468923578123467127892347
13467811111112222222333334.44444555556666
...Jgggggggggggggggggyggggggggggggygggggyggg
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Representatives of classes of 7}, (continued).

f\zy |00 01 02 10 11 12 20 21 22 f\zy |00 01 02 10 11 12 20 21 22
gl4dl o 0 2 0 1 0 2 0 2 g206 o 0 2 o0 6 2 0 2 2
g151 o 0 1 o0 1 1 1 1 2 9207 o 0o 1 o0 1 1 0 1 1
g152 o 0 2 0 2 2 2 2 2 9208 o 1 2 0 2 2 0 2 2
g153 o 0 2 0o 0 2 2 2 2 9209 o 0 2 0o 1 1 0 06 2
gl154 o o0 1 o0 1 1 1 1 1 g211 0o 1T 0 0o 1 0 0 0 O
g155 o 1 2 1 2 2 2 2 2 g216 o 2 1 0 1 1 0 2 2
gl62 0o 0 2 o 1 0 O 2 O 9217 o 0 0 0 0 2 0 1 O
g163 6o o 0o o 1 2 1 1 1 9221 6 0 2 o0 1 2 2 2 2
gl66 o 0 0 2 1 1 1 1 2 9222 o 1 2 1 1 2 2 2 2
gl73 6o 1.1 0 2 2 0 2 2 9224 ¢ 1.1 1 1 1 1 1 1
gl7s 0 0 2 0 1 1 0 0 O 9230 0 1 1 o0 1 1 o0 1 2
gl76 6 0 0 O O 0 0 1 0 9231 0o 0 2 0 1 O0 O 0 2
g177 o 2 6 0 1 0 O 2 0 9234 o0 1 2 1 1 2 2 1 2
g182 o 2 1 1 1 2 2 1 2 9236 o 1 2 0 0 0 0 0 O
g186 6 2 1 0 0 0 0 0 O 9240 6 0 2 0 1 2 0 2 2
g191 o 6o 2 1 1 2 2 2 2 g241 o 1 2 0 1 2 0 2 2
g192 o 1 1 1 1 1 1 1 2 g245 6 1 2 o0 1 1 0 2 2
9193 o 1 0 0 1 1 0 2 2 g246 o 0 0 O 1 0 0 0 2
9204 0o 0 1 o0 1 1 0 1 2 9248 6o 0 2 o0 1 2 o0 1 2
9205 o 6 2 0 2 2 0 2 2 g251 o 0o 0 0 1 1 0 1 2
g9 g34 936 949 g60 gr4
000200000 001211110 000200100 011111222 000100000 002000020
000060000 000000000 100212100 000000000 000000000 001000020
100000000 000000000 200212100 000000000 200000000 001000020
g77 g84 ¢85 g100 gl03 gl1l
000211100 000012000 002121210 000011200 000100000 006200000
000000000 000211100 000000000 000022211 000100000 000121100
000000000 000222100 000000000 222222222 200000000 000111210
gl16 gl34 g143 g145 g156 g158
010000002 000200100 010000001 010000001 000100000 000020000
010000001 100112100 001111110 001111110 000100000 000101000
010000002 200212200 001111210 001111110 200000200 000010200
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g159

000100000
000121100
000111210

g183

002012010
000122100
000211200

gl96

001112110
000111100
000111200

9226

001000020
000111100
000111200

Representatives of classes of Tj, (continued).

gi65

001112110
000111100
000111100

gl84

010112202
000000000
000000000

g198

001000010
000111100
000111100

9229

000020200
001121210
001122220

9167 g171
000000000 000010200

010000001 000222200
(010000002 000222200

gl85 g187
000012000 000020000

000212100 000121100
000212100 200222200

g212 g214

000120000 001021020
001111000 000111101

000120000 020222200

g235 9237
000021000 000000000

000112111 000112200
022212200 000111200

g252
001000020

000112200
000112200
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gl72

000000000
000022200
001222220

g188

000111200
100111100
200111200

9215

000112200
000101200
000120200

g244

000010000
000112100
000212200

g181

011000022
000100000
000000200

g194

000000000
000101000
000010200

9225

000100000
000121100
000111200

9249

001100220
000112200
000112200



Chapter 7

Applications of a Subset Generating
Algorithm to Base Enumeration,
Knapsack and Minimal Covering
Problems

On the basis of a backtrack procedure for lexicographic enumeration of all subsets of
a set of n elements we give an algorithm for both determining of all bases consisting
of functions from a given complete set in a considered subset of the set of k-valued
logical functions and for enumeration of all classes of bases in the subset. We use the
lexicographic algorithm also for solving knapsack and minimal covering problems. A
cut technique is described which is used in these algorithms to reduce the number of
examined subsets of {1,...,n}. Some computational data upon the classes of P; are

also given.

7.1. Generating all subsets of {1,...,n} in lexicographic order

In this Section we consider the problem of generating all r-subsets (subsets containing r
elements) of the set {1,2,...,n}for1<r<nandforl <r<m=<n. We assume that
each subset will be represented as a sequence aiay...a, where1 < a1 < ... <a, < n.
Recall definition of lexicographic order of subsets. For two subsets a = (as,.. -, ap)
and b = (by,...,b,), @ < b is satisfied if and only if there exists ¢ (1 <1 < ¢) such that
a; = b; for 1 < j < i and either a; < b; or p = ¢ — 1. This order has an important
property that enables simple calculation with r-subsets. Ehrlich [Ehr73] described a

loopless procedure for generating of subsets of a set of n elements. A procedure based
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on Gray code for the same problem is given in [NIW78]. Also, in [NiW78] an algorithm
for generating all r-subsets (1 < r < m < n) in lexicographic order is proposed. Semba
[Sem84] improved the efficiency of the algorithm. We will modify his algorithm by
presenting it in PASCAL-like notation without goto statements. Application of the

algorithm for minimal covering problem results in another modification of the algorithm

inthecase 1 <r<m<n.

The lexicographic enumeration of r-subsets goes in the following manner (for exam-

ple, let n = 5):

1, 12, 123, 1234, 12345,
1235,
124, 1245,
125,
13, 134, 1345,
135,
147 145, it
15,
2, 23, 234, 2345,
235,
24, 245,
25,
3, 34, 345, Y
35,
4, 45,
5.

The algorithm is in “extend” phase when it goes from “left” to “right” staying ina
row. If the last element of a subset is n then algorithm shifts to the next row. We call
this phase “reduce” phase. Every subset of {1,...,n} is represented in the algorithm
below by a sequence jy,...,Jr L <7 <n, 1< <...<jr S

First we give an algorithm for generating all r-subsets for 1 < r < n. This algorithm

will be used in base enumerations.

begin
read(n); 7 := 0; j i= 0
repeat
if j, < n then extend else reduce;
print out j1,...,Jr
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until j; =n
end;
extend= begin j..; (=, +1;r:=r+1end
reduce= beginr:=r—-1;j,:=j,+1end.

Note that between any two printed subsets exactly two conditions are checked: j, < n
and j; = n.
The algorithm for generating all r-subsets for 1 < r < m < n we modify with respect

to its use in minimal covering problem.

begin
read(n); r :=0; j, := 0;
repeat
if . < n and r < m then extend else cut;
print out J1,...,7, ‘
until j; =n
end;
extend= begin j,4;:=j, +1;r:=r+1end
reduce= beginr :=r —1;j,.:= 5.+ 1 end
cut= if j, < n then j, := j. + 1 else reduce .

Besides “extend” and “reduce” phases we use in the algorithm a new phase called
“cut” phase. The phase will be used when algorithm goes from some subset to some
subset in a lower row (not necessarily in the subsequent row) skipping several subsets

(when the number 7 of elements in these subsets is greater than m).

7.2. Functional completeness and enumeration of bases

In this Section we describe an application of our lexicographic algorithm to base enu-
meration for a subset of the set of k-valued logical functions.
We call nonredundant incomplete sets simply addable. The rank of a base (addable

set) is the number of its elements. Here we recall some definitions. The characteristic

vector of f € H is ¢;...¢cq, where ¢; = 0 if f € H; and ¢; = 1 otherwise (1 <1 < d).
Whenever it is possible to avoid confusion we call characteristic vectors simply vectors.

All functions f € H with the same (characteristic) vector form a class of functions. For
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a base its class of bases is the set of classes of functions for functions belonging to the
base.

The conditions of completeness and nonredundancy of a set of (classes of) functions
F can be conveniently expressed by using characteristic vectors of (classes of) functions
belonging to F. We can say that a base corresponds to a minimal cover of 1...1 (unit
vector), and nonredundant set corresponds to a minimal cover of some non-unit vector

(in which some 0’s may occur; we except null vector).

We define bitwise OR operation V for characteristic vectors in the following way:
(a)y...,a) vV (al,...,a]) = (a1 Vayi,...,a;V ay).

Criteria for the completeness and nonredundancy of a set a4, ..., a, of characteristic

vectors are respectively in the following (the two equations are shown in Chapter 1):

aV...Va, = 1...1 (completeness) (1.1)
a1V...VajaVajuV...Va, # amV...Va,
foreach j=1,...,r (nonredundancy). (1.2)

Thus any set containing null class (whose vector is 0...0) is redundant. Addable sets
are nonredundant, but not conversely.
If we have a complete list of characteristic vectors for nonempty classes of functions

of a set, we can enumerate all its classes of bases.

As an example, assume a set M contains 4 maximal sets My, M, M3, M4 and 6 ¢classes

of functions:

1.0011 2.0100 3.1000 4.0010 5.0001 6.0000 .

For instance, class 1 is the set MM, MsM,, where X = M \ X (complement set).

M has exactly two classes of bases: {1,2,3} and {2,3,4,5}. We consider the class
{1,2,3}. Bitwise OR for the set results 1111 (completeness). Bitwise OR for the set
{1,2} results 0111, for the set {1,3} results 1011 and for the set {2,3} results 1100
(nonredundancy). The set {1,3,4} is redundant, because bitwise OR for the sets {1,3,4}
and {1,3} are equal (to 1011).

7.3. The lexicographic enumeration of bases and classes of bases

Let d and n denote the numbers of maximal sets and functions or classes of functions

respectively. Then we are given n vectors with length d, indexed by 1,...,n.
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To perform an exhaustive enumeration of classes of bases we should enumerate every
r-tuple of vectors ay,...,a, for each r = 2,...,d (for r = 1 it is trivial) and check
the completeness (2.1) and redundancy (2.2) conditions for them (rank r base criteria).
However this direct method does not work, because of too many r-tuples to be generated.
Suppose we are enumerating r vectors ay, ..., a, for checking the base criteria. Instead
of enumerating whole r vectors and checking criteria for them, we will inspect i-tuple
of vectors ay, .. .,a; incrementary for ¢ = 1,...,r, and at each :-th stage we will certify
(by examining simple conditions) that this i-tuple can or cannot be included in a rank
r base (addable set). This idea of incremental check can be conveniently implemented
in the lexicographic enumeration of subsets. |

The lexicographic algorithm enumerates classes of bases and addable sets for every
rank at the same time. Moreover the maximal ranks of bases and addable sets are
automatically given as a result.

Suppose we are enumerating taken r elements out of n object stored in an array
consecutively, i.e. a(l),...,a(n). The selected indexes are to be stored in an array j as
Giyeeerdr, 1< ji<nforeachi, 1 <<,

Suppose we are examining taken r-subset a(ji),...,a(jr), where selected indexes
are stored in an array j as ji,...,0r 1 < j1 < ... < jr < n and a(¢) denotes a;.
There are three possible cases after the examination: redundant, base and addable set
(i.e. nonbase-nonredundant). The enumeration of subsets in lexicographic order can be
controlled in the following manner.

If a r-tuple is either redundant or base then it is unnecessary to “extend” it to r+1-
tuple, since adding a new vector to them will result in “redundancy”; in the former case
the r-tuple is already redundant and in the latter it is already “complete”. Hence in
these cases we can bypass the lexicographic enumeration of subsets to an appropriate
point. The next subset is ji, ja, - . ., Jr — 1, Jr +1 if jr # n; otherwise it is the next subset
in lexicographic order and the bypass effects nothing. Thus only the remaining addable

case can be extended.

As an example we consider the same set M as before. The class 6 (null class) is omit-
ted. In this case n = 5 and d = 4. The notions “extend”, “reduce”, “cut”, “redundant”,

“base” and “addable” we denote simply by “e”,“r”,%c”,“n”,“b”,“a” respectively.
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1-a,e; 1,2-a,e; 1,2,3-b,c;
1,2,4-n,c;

1,2,5-n,c,1;

1,3-a,e; 1,3,4-n,c;
1,3,5-n,c,1;5

1,4-n,c;

1,5-n,c,r;

2-a,e; 2,3-a,¢; 2,3,4-a,¢; 2,3,4,5-b,c,r;
2,3,5-a,r;

2,4-a,e; 2,4,5-a,T;
2,5-a,r;

3-a,e; 3,4-a,e; 3,4,5-a,r;
3,5-a,r;

4-a.e; 4,5-a,T;

5-a.

We can write our algorithm as follows. Let b, be the number of (classes of) bases of

rank r.

begin
read n,d,a(i),i 1= 1,n;r:=1;51 := 15
repeat
if a(51),...,a(J-) is addable
then if j, <n
then extend
else reduce
else begin
if a(41),...,a(jr) is a base then b, := b, + 1;
cut;
end
until j; = n;
print out b;,1 <z < d
end.

In the algorithm “extend”, “reduce” and “cut” are defined as before. Note that the

last set n are not checked in the algorithm. It can be easily done before printing results.
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7.4. Redundancy checks

We describe a technique (called bitwise pivotality checks) to reduce the computation in
redundancy checks.

Suppose we are checking redundancy of ay, . . ., a, (for simplicity we write a; for a(J;)).
For every redundancy check we know that a4,..., ar_i are included in the tuple which
we examined just before (only a, is a newly added vector). Thus we can assume that
we already have Ry = a; V...V ag for 1 <k <r —1in an array R (for a convenience
we add Ry and assume Ry = 0).

The redundancy condition for the r-tuple can be formulated in the following way (we

use a variable B to reduce the number of bitwise OR operations).

For r > 2.
R,=R,_1Va,and R._; # R,, (7.1)
B = BV agy; (initial B=0) and R,_1 VB # R, fork=r—-1,...,1 (7.2)
Forr=1.

a; is addable if it is neither null vector nor unit vector

(if @1 is a unit vector then it is a base)

The program checks (7.1) and (7.2) for k = r,...,1; k > 2 in this order, and whenever
a condition is not satisfied the check ends immediately with redundancy result.

For a rank r redundancy check we need at most r comparisons and at most 2r-1
bitwise OR operations.

If the number of components d in vectors a; is less than the number of bits (usually
16 or 32) of given computer then it is possible to represent a vector a; by an integer
number ¢; + 2 cg + ... + 2% . ¢4, where ¢jc;. .. ¢y are the components of the vector
a; in the redundancy check we can treat these vectors as integer numbers because OR
operation between integer numbers is defined as a machine instruction OR between
corresponding components of their binary notations. Otherwise bitwise OR can be
realized with (characteristic) vectors as an array of d elements. However, in this case
there are another technique called counter redundancy check which is proved faster as

well.

134



In the check of redundancy we use two auxiliary sequences s;(1 < i < d) and p; (1 <
i < 7). s; is the number of units in the ¢-th position in the vectors p(71)y -« s P(Jr=1)-
The sequence py, . .., p, has the following property: p;-th position of each vector is equal
to 1 only for p(j;) (it is equal to O for the vectors p(j;), 1 <t <t #1).

The presented lexicographic algorithm can be supplemented also with this technique.
Note that algorithm with bitwise redundancy check using machine command is proved
as about twice faster (when n is about 500 and d is about 15) than one with counter
redundancy check.

Applying this algorithm classes of bases for several subsets of Py are determined
(cf. [MiS87a]). P; has exactly 18 maximal sets [Jab58] and 406 classes of functions
[Miy71,Sto84a]. We present the numbers of classes of bases of P; of each rank in the
following table:

rank 1 2 3 4 5 6 ]
bases 1 8,265 794,256 4,612,601 810,474 141,124 6,239,721

The lexicographic enumeration algorithm with this bitwise redundancy check requires
about 16 minutes computer time (the computer FACOM M380 is used). The total
number of examined tuples is N=194759642 for the classes of functions sorted according
first to the number of units in the vector and then sorted lexicographically within the
same group. Bearing in mind the total number of subsets 2406 we can calculate efficiency
of cut technique in this case. The program generates in the average 4.41-tuple and
consume in the average 2.17 bitwise OR operations to recognize whether it is a base,
addable or redundant (bitwise redundancy check is used). Note that computer time

depends on the order of characteristic vectors.

7.5. Application of the base enumeration algorithm

Kabulov [Kab82] considered the following problem: Given a complete set F' of functions
from Pj together with the Boolean matrix displaying the relation “e” between the
members of F and maximal sets in P; (i.e. with characteristic vectors of functions in
F), determine all bases composed from functions of the set F. He described a method,

using Boolean expressions, to solve this problem.
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We can apply the same algorithm described in Section 3 to this problem, because
each function is represented by their class of functions. The output in this case are
exactly bases instead of classes of bases. Note that in the considered application several
function may have the same characteristic vector. However, they compose different
bases.

Our algorithm can be used to calculate the number of (classes of) bases composed
from vectors m 4+ 1,...,n at the same time (for a given m < n), because in the lexico-
graphic order we examine first all subsets containing vector 1, then all subsets containing
vector 2, ....

In [KuO66,PeS68,Wer42| procedures for determining the number of bases of P, con-
sisting of n-ary functions are described and computational results for n=2 and n=3 are
obtained. There exist no formulae for numbers of n-ary functions in some classes of
functions of P,, because the number of n-ary monotone functions in P; is not known.

We present another approach to this problem. It is divided into several subproblems.

1) determination of classes of functions for considered set (not Limited to P),
2) determination of the number of n-ary functions in each class,
3) determination of all classes of bases,

4) determination of numbers of bases containing n-ary functions (or functions with at

most n variables).

The methods presented in [KuO66,PeS68,Wer42)] use only step 4) for P,. Our method
can be applied for solving 3) assuming that 1) is already solved. Also, our algorithm can
be applied for solving 4) assuming that 2) is solved by applying another procedure. Note
that 2) can be done without solving 1) because for each function f we can determine
corresponding class of functions. It is sufficient to check inclusion of f in each maximal
set of considered closed set; such procedure can be easily written using description of
maximal sets [Ros77]. In this manner we can determine classes of functions containing
n-ary functions. We can apply our algorithm to count bases. We obtain the number
of bases containing n-ary functions in a class of bases by multiplying the numbers of

n-ary functions in the classes of functions which compose the base, whenever a class of
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bases is found. During this procedure we can also enumerate classes of bases consisting
of classes of n-ary functions.

Following this description we determined the number of bases of Boolean functions
composed from n-ary functions for n < 4. Obtained data are presented in the fol-
lowing table. For n = 2 this result is derived by Wernick [Wer42] and for n = 3 by
Kudielka and Oliva [KuO66]. Note that the set P, of Boolean functions contains 5 max-
imal sets [Pos21], 15 classes of functions [Jab52,INN63,Krn65] and 42 classes of bases
[INN63,Krn65).

n 2 3 4
Dases 32 6,664 275,790,502

7.6. Minimal covering problem

Minimal covering problem is one of famous combinatorial problems and there .exist a
list of solutions for this problem (cf. [Rot69,YoM85]). We will give a solution using the
lexicographic enumeration of subsets. N

The minimal covering problem is the problem of minimizing the objective function

z1+ ...+ z,, subject to constraints

(z1,-.-,22)A 2 (1,...,1) (7.3)

where A = [a;;] isann x d coefﬁcier;t matrix with a;; = 0 or 1, and each variable z;
is 0 or 1 for each j.

We will introduce some new notions in order to give a new solution for the problem
and to show connection between minimal covering problem and base enumeration.

A vector (zy,...,T,) satisfying (7.3) is called complete for A. We call a vector

(z1,...,T,) nonredundant in A if

(T1y- - Tn)A > (Y1, .1 Yn)A

is valid for each vector (y1,...,yn) for whichy; < z; foreach¢,1 <:<nandy; +...+
Yn < Ty + ...+ T, is satisfied.
A vector (24,...,%,) is called base in A if it is complete and nonredundant in A.

Nonredundant noncomplete vectors we call simply addable. The rank of a base (addable
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set) (z1,...,Zy,) is the sum 2y +...+ z,. Thus minimal covering problem is problem of
finding a base in A with minimal rank.

There is another definition of minimal covering problem [Kar72): For a given collec-
tion C of subsets of a finite set and positive integer r < |C| decide whether C contains
a cover for S of size r or less, i.e. a subset C' C C with |C’| < r such that every element
of S belongs to at least one member of C’. This problem is exactly to find a base with
rank r or less, if we represent a subset by n bits characteristic vector. Karp [Kar72]
proved that this problem is NP-complete.

The notions of addable sets, bases and rank have almost the same meaning in both
base enumeration and minimal covering problem. Minimal covering problem corre-
sponds directly to finding a base with minimal rank. Thus we can modify our algorithm
so that once we find a base with rank r then no subsets of rank > r will be considered
further.

In the presented branch and bound algorithm a(¢) denotes the ¢-th row of matrix
A (1 €1 < n),ie a(i) = (ay,...,a;,). We suppose that minimal rank -of bases
(solution of our problem) is between 2 and n-1 to make our algorithm shorter. It is easy
to improve our algorithm to deal with these cases. Also some techniques for eliminating

some rows or columns (cf.[Rot69]) can be applied before running the algorithm.

begin
read n,d, a(i), 1 := 1,n;minrank :=d;r:=1;5; := ;T := {1};
repeat
if a(1),...,a(j,) is addable in A
then if j, < n and r < minrank —1
then extend
else cut
else begin
if a(j1),.-.,a(jr) is a base in A then
begin
minrank =1,
T :={j1,--,Jr};
end; :
cut
end
until j; = n or minrank = 2;
printout minrank, T’
end.
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The two procedures “extend” and “cut” are defined as before. Note that T' corre-

sponds to a solution (21, .. ., ,) of minimal covering problem so that z; = 1 if and only
ifjeT.

7.7. Knapsack problem

An input for the knapsack problem are integer numbers ay,...,@s,C. The problem
is to find a subset T of {1,...,n} to maximize Z;cra; subject to the requirement that
Tiera; < C. A more general formulation of the knapsack problem has more applications
than this. Namely the input consists of C and two sequences ay, ...,a, and pi, ..., Pn.
The problem is to maximize Z;erp; subject to the restraint Yjera; < C where T, as
before, is a subset of the indexes. _

We give a solution for more general knapsack problem based on the lexicographic
order of subsets. Elements 7 that are a; greater than C should be eliminated. In the

presented algorithm a(y;) denotes aj.

begin
read n,d,a;, pi,t = 1, n;
r:=1;4; 1= 1l;mazsum = py; T := {1};

repeat
S :=a(5h)+...+a(s-);
ifs<cC

then begin
P :=p(j1) + ...+ p(ir);
if P > mazsum then begin
mazsum = P;

T := {jl,...,j.,-}
end;
if j, < n then extend else reduce
end
else cut;

until j; = n;
printout maxsum, T
end.
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In the algorithm “extend”, “reduce” and “cut” are defined as before. The set {n}

should be examined before printing,.

7.8. Concluding remarks

In this chapter we modified backtrack procedures for lexicographic enumeration of sub-
sets and applied the procedure to the base enumeration, knapsack and minimal covering
problems. Several variational uses of base enumeration algorithm are presented. The
presented “cut” techniques use special properties of bases and addable sets, owing to
which, for instance, base enumeration were possible for about n=600 (for the case n=605,
d=15 it took about 8 hours using bitwise redundancy check by FACOM 380 computer
with 16 MIPS).

Karp [Kar72] proved that the problem of determining of a covering set with rank
< r for given r is NP-complete. Our algorithms are directly related to the problem.
Thus any algorithm for solving these problems takes exponential time according to
numbers of rows and columns n and d. There exist a number of algorithms for exact

and approximate solution of knapsack and minimal covering problems (see, for example,

[BaaT78,Rot69,YoM85}).
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Chapter 8

Classification of P

The set of functions of Py (mapping the set {0,1,...,k — 1} into {0,1}, n =1,2,.. )
is divided into equivalence classes so that two functions are in the same class if their
membership in the maximal subclones of Py coincides. This also leads to a natural
classification of the set of bases (i.e. nonredundant complete subsets) of Pry. We
determine all nonempty classes of functions of Pi; and show that the number of tbem is
134 —11A4,_y, where Ay is the number of equivalence relations on the set of k& elg;{ﬁents.
The maximal number of elements in a base of Py, is proved to be k +2. Comput;ltional

results for the numbers of classes of bases are also presented for k = 3 and 4.

8.1. Introduction

The algebra P, of all functions whose domain is a Cartesian power of E; and whose
range is E, was considered in [Bur73,HaF84,Lau75,Lau82b,Sas84]. Every n-ary func-
tion of Pi, may be interpreted as an n-ary predicate, or, equivalently, f ~1(1) is an n-ary
relation on Ep. We mention some applications. Functions of Ps; permit the descrip-
tion of a decision (the values 0, 1) with abstention from voting (the value 2). Special
functions of Ps; are of interest in the theory of noncorrect algorithms [Zur78,BDHLT79].
In [EFR74] it is mentioned that functions of Py, may be used to describe logical and
arithmetical branchings in programs where the arithmetical constants are arguments
and the two logical constants form the range. In [Sas84] a minimum sum-of-products
expression for the functions of P, is used to get a minimum PLA (programmable logic
array) with decoders (actually, k = 4 for PLA with two-bit decoders).

In this chapter we determine classes of functions for the set Piy. The maximal number
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of elements in a base of Py, is also determined to k + 2.

8.2. Definitions and notations

In this chapter we are interested in the set

Po={f:E} - B}

n>1

We recall the following theorem.

Theorem 8.2.1. [Pos21] P; has ezactly the following 5 Py-mazimal sets:
01
T0=POZ(0), T1=POI(1), S=P0l( 10 ),

L = Pol({(a,b,c,d)T € Ef |a+b=c+d (mod 2)}), M = Pol ( 812 ) .
Here T} consists of Boolean functions f such that f(z,...,7) =4 (1 =0,1), S is the set
of selfdual Boolean functions (satisfying f(Z1,...,Za) = f(1,...,%a)), L is the set of

linear Boolean functions and M is the set of monotone (or isotone) Boolean functions.

The 15 nonempty classes of functions of P, are shown in the Table 8.1. We remark
that the classes 10100, 01100 and 00000 consist only of functions {constant 0 function},
{constant 1 function} and {z; (function depending only one variable)}, respectively. We
also remark that the set of classes {01100, 10100,00110,00001} is a class of basis with a

maximum rank 4; for example, a base {0,1, zy,z + y + 2} belong to this class of basis.

In this chapter H is the set Py of all f : Ef — E, (n = 1,2,...). It is clear that Py,
is closed. Let pr: Py, — P, be defined by setting pr f := g where g(a) = f(a) for all
a € E? (the restriction of f to Ej).

We denote the intersection of sets Xi,...,X, by Xi...X,. For X C Py, put X =
Pi;\ X and for z € Ey, 27 = (z...z) (j times). For X C P, the inverse image of X is
X' =pr Y (X)={f € Py |pr f € X}. Fori,t € Ey, put Z;; = ProPol ( 81; ) Note
that Z;; = Zy.

Theorem 8.2.2. [Bur73,Lau75,Lau82b,Lau84b] The set Pi; has the following 54+(1/2)-
(k — 2)(k + 1) mazimal sets:
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T T, ' L', M'and Zy (k>i>t>0, i>1).
8.3. Classification of P,

We denote the characteristic vector of a function f of Py, by

€1€2€3C4C5C02 - + « Co(k—-1)C12 - - - C1(k—1) « - - C(k~2)(k-1)

with respect to the order of the Py;-maximal sets in Theorem 8.2.2. Note that the values
of ¢4, ¢a, 3, C4, c5 coincide with the corresponding characteristic vector for pr f € P

For each n-ary f € Py, define a relation Q; on the set E; by setting (¢,t) € Q; if

f(a) = f(b) whenever “le 01z . Clearly the binary relation Q; on Ej is
b 01t d

reflexive and symmetric. Now we prove several lemmas needed for the description of

the equivalence classes (=) on Pis.

Lemma 8.3.1. Let f € Piy. Then f € Z;; if and only if (3,t) € Q5.

0134 a 013 \" 014
Proof. (#)LethZ,-tPol<01t)and(b)e(01t>.AstPol(Olt)

we have (];((zg ) € (811) However f(a) # i as f € Pi; and 7 > 2, hence

we have f(a) = f(b). Therefore (i,t) € Q. (<) Let f & Z;;. It follows that there

are vectors @ and b such that (Z) € (81;) and(ft((zg) ¢(81;) This

implies f(a) # f(b), because f(a) and f(b) take only values 0 or 1. Hence we conclude
(iat) ¢ Qf .o

Lemma 8.3.2. Let f € Piy. Then (0,1) € Qs if and only if the function pr f is

constant.

Proof. (<) Let pr f be constant and let ( Z’ ) € ( 8 i (1) ) . Then f(a) = f(b).

Therefore (0,1) € Q. (=) Suppose pr f not constant. Then there is a vector a € Ef

such that f(o) # f(a). Since ( :: ) € g 1 (1) ) , we conclude (0,1) & Q. O

Lemma 8.3.3. The relation Qs is an equivalence relation.

b

Proof. As mentioned before the reflexivity and symmetry follow from the definition.
( 01

For transitivity let (i,t) € Qy,(¢,5) € Q5 and ¢ ) € ( 01v ) . Put ¢; = a; if
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a; = b; and ¢; = t otherwise. Then ¢ = (¢y,...,¢,) satisfies ( Z’ ) € ( g i ; ) and

(5) (015 T ft@) = 5(e) nd 7(e) = £ shows f(a) = 50). ©

Lemma 7.3.4. Let f,g € Py and x5 = (c1,..+, C-2)(k-1))> Xg = (€15- ..,c(k_z)(k__l)).
Then Qs = Qq if and only if

(1) cu=cly forallk>i>1t>0, i >1 and (it) pr f constent & pr g constant.
Note that (i1) is equivalent to (cy,...,cs) and (cf,...,¢5) = (0,1,1,0,0) or (1,0,1,0,0),

Proof. Assume (i) and (ii). By Lemma 7.3.2 we have (0,1) € Q;Q,, since pr f and pr g
are constant. Consider k > ¢ >1>0, 1 > 1 and (3,) € Qs. By Lemma 7.3.1 f € Z;
and ¢y = ¢}, = 0 and so g € Z;. According to Lemma 7.3.1 we conclude (2,t) € Q.
Together @; C Q,. By symmetry Q, C Qy and so Q; = Q,. Conversely, assume
Q; = Q, = Q. From Lemma 7.3.1 we have ¢;; = ¢;; forallk >4 > ¢ > 0,2 > 1. Next,
(0,1) € Q if and only if pr f is constant and pr g is constant from Lemma 7.3.2. O

Note that the map f — @y is not injective, i.e. several classes of functions can
correspond to the same equivalence relation Q. Next theorem determines these classes
of functions and gives their number. We show that the map f — Q; maps P, onto

the set of equivalences on Ej.

Theorem 7.3.1. Let Q be an equivalence relation on the set Ex. Let n > max(2,k)
and let g be an n-ary Boolean function such that g is constant ezactly if (0,1) € Q.
Then there ezists f € Pry such that pr f = g and Q@ = Q.

Proof Forl=2,...,k—1put 4;:={0,1,1}*\ E}. Let Cy,...,C, be the equivalence
classes of Q and let i; denote the least element of C; (j = 1,...,7). Let L< <7 and
(i;,1) € Q. Tox = (z1,...,Ta) € A; assign &' = (z1,...,2,) defined by z; =1; if , = {
and z! = z, otherwise (i.e. if z, € E3), 1 < s < n. We have two cases:

1). Let (0,1) ¢ Q. We may assume that ¢; = 0 and i, = 1. By assumption g is
non-constant. For simplicity assume that ¢g(0®) = 0 (if not, replace g by §). By an
appropriate exchange of variables we may obtain g(1°0™~*) = 1 for some a (1 < a <n).

Define an n-ary f € Py, as follows:
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a) For ¢ € E} put f(x) := g(e).
b) For 2 < p <r put

F(30%Y) = ... = FEETIOMPH) = 0, F(207F) = ... = (i) = 1,

f(5,1°710"?) := 0 (where a is defined above) and f(x) := 1 elsewhere on 4, .
¢)For1<p<r, (i,l) € Q and © € A; put f(z) := f(x') and finally
d) put f(x) := 1 otherwise.

The part ¢) assures that Q@ C Qy. For 2 < p < ¢ < r, we have

F3071) =140 = F(30"7%),

hence (ip,7,) & Q;. Let 2 < p < r. We show that (0,%,) € Q. Indeed f(0") = ¢(0™) =0
while f(i50"77) =1 (here we need r < n which follows from r < k < n). Similarly from
F(19072) = (170%) = 1 £ 0 = F(5,170"%) we get (1,,) & Q.

Finally (0,1) & Q; as f(0") = g(0™) = 0 # 1 = g(1°0"*) = f(1°0""*). Together with
¢) this shows that @; C Q and Q; = Q. *

2). The case (0,1) € Q is similar but simpler (note that g is constant by assumption).
a

Actually the characteristic vectors for all nonempty classes of functions of :P; can

be determined by using Theorem 8.3.1. This is shown simply by an example.

Example 8.3.1. The following table presents the 15 equivalence relations on E4 and
the components ¢y, czi, C30, €31 and cag of the corresponding characteristic vector. These
classes are divided into two groups. The one includes {0, 1} in an equivalence class (the
first 5 cases) and the other not. Exactly in the first group we have czcqcs = 100 and
¢rcy € {01,10}. Note that within each of these two groups no {c;;} part of the vector

appears twice. The complete list of classes of P,z is shown in Table 8.1. O
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Equivalence classes on B4 ¢y €31 €30 Ca1  Ca2
{0,13, {21, 37 T 1 1 1 1
{0,1}, {2,3} 1 1 1 1 0
{0,1,3}, {2} 1 1 0 0 1
{0,1,2}, {3} 0o 0o 1 1 1
{0,1,2,3} 0 0 0 0 O
{0}, {1}, {2}, {3} 1 1 1 1 1
{0}, {1}, {2,3} 1 1 1 1 0
{0}, {1,3}, {2} 1 1 1 0 1
{03}, (1}, {2} 11 0 1 1
{0}7 {172}’ {3} 1 0 1 1 1
{0}, {1,2,3} 1 0 1 0 0
{0,3}, {1,2} 1 0 0 1 1
{0,2}, {1}, {3} o 1 1 1 1
{0,2}, {1,3} o 1 1 o0 1
{0,2,3}, {1} 0o 1 0 1 0
The number of equivalence relations on an k-element set is Ax = k_ A(k,r), where

A(k,r) = (1/r) T o(—1) ( : ) (r — 1)F are the well-known Stirling numbers of the
second kind [Liu68].

Theorem 7.3.2. The number of classes of functions of Pry ts 13Ax — 11A4,_4.

Proof. In respective case of (0,1) € @ and (0,1) ¢ Q our characteristic vector induced
by Q is uniquely determined up to {c;:} part. There are A;_; of equivalence classes
Q of the first type because in this case the number of equivalence relations @ on Ej
satisfying (0,1) € Q is Ax—1. Accordingly the number of equivalence relation of the
second type is Ag — Ag—1. O

In the following table we give the numbers Ay and the numbers p(k2) of Piy-maximal

sets and y(k2) of classes of functions of Py, for 1 < k < 10.

k 1 2 3 4 5 6 7 8 9 10
awk2) - 5 7 10 14 19 25 32 40 49
A, 1 2 5 15 52 203 877 4,140 21,147 115,975
+(k2) - 15 43 140 511 2,067 9,168 44,173 229,371 1,275,058

Theorem 7.3.3.
T(;T{Ziozil = SIZiOZil = ¢
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Proof. Let g € ZjoZy. Then (0,1),(4,0) € Qg and so (0,1) € Q, by Lemmas 7.3.1 and
7.3.3. Together with Lemma 7.3.2 this proves pr g constant; however, then g g T(TJUS".
O

Corollary 7.3.1. The intersection of all Piy-mazimal sets is empty.

The numbers of classes of bases and pivotal incomplete sets for the sets P32 and Py
are shown in the following table. They were obtained by one of the algorithms described

in [StM8T].

Rank 1 2 3 4 5 6 >
bases Ps2 1 160 804 272 8 - 1245
pivotals P;, 42 440 435 38 - - 955
bases Py2 1 1,572 42,822 56,228 6,284 64 106971

pivotals P,» 139 6,336 30,660 10,798 314 - 48,247
7.4. Maximal rank of a base of P,

We are going to determine the maximal rank of a base of Py,. First we show two

combinatorial lemmas. Let 7,% € E; and 7 # t. The set {z,t} we call ¢ pair set.

Lemma 7.4.1. For every k' > k (> 2) different pair-sets {i,t} such that 0 <1,t,. < k—1
and i # t there ezists a circular sequence {i1,%2},{%2,%3},. .., {fs=1,%s}, {is,%1} (0 <

tpytqg < k—1and i, # iy for p#q, 1 < p,q < s) consisting of s > 3 different pair-sets.

Proof. The assertion of Lemma can be interpreted as a lemma from graph theory by
mapping elements 0,...,%k — 1 onto vertices and &’ pair sets {4,%} as only edges of the
graph. It is well-known that each graph with n vertices and at least n edges has a

circuit. O

Lemma 7.4.2. If for a given set T of k—1 different pair-sets {i,t} (0 <¢,t < k—1,1 %
t,{i,t} # {0,1}) there exzists no circular sequence (with the definition from Lemma
7.4.1), then there is a sequence which leads from 0 to 1 through at least two pair sets,
i.e. there is a sequence {0,i3}, {32,433}, -, {ts—1,%s}, {ts, 1}, where s > 2,{i,,5p1a} € T
for1<p<sandi; =0,1541 = 1.
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Proof. It is well-known that a graph with k vertices and k£ — 1 edges and without circuit

is a tree. Thus every two vertices are connected, especially 0 and 1. O

Let F C Pyy be pivotal. To f € F assign 'y := {{i,j} : Zi; pivot of f} (recall
that Z;; is a pivot of f if f ¢ Z;; while F'\ {f} C Zi;). Put Gg := (E,T) where
T ={Ty: f € F}. We call Gr pivot graph for F.

Lemma 7.4.3. The pivot graph G s acyclic.

Proof. Let {41,%2}, {22,%3},---,{%, tig1} € T where ¢;;; = 1;. Here {i1,42} € 'y for some
f€Fie f¢Z,;, whief € Z;,, forj=2,...,1 (by the pivot condition). Now
by Lemma 7.3.1 we have (3;,%;41) € Qf for y = 2,...,l. In view of Lemma 7.3.3 the
relation Q) is transitive and so (¢,22) € Q5 and again by Lemma 7.3.1 we get f € Z,,,,,

a contradiction. O
Lemma 7.4.4. The mazimal rank of a base of Py 13 at most k + 2.

Proof. Let F be a base of P; and G the subset of F' such that pr G is a base in P;.
Let Y = {T4,T¢,S',L',M'}. Assume |[F\G|>k—1and HC F\G, |[Hl=k—1. The
functions from H cannot have a pivot (in Py) from Y. (If f € H has a pivot P € Y,
then G C P in contradiction to pr G basis of P;). Consider the graph Gpg. By Lemma
7.4.3 it is acyclic and so has at most k — 1 edges. However, |I'y| > 1 for each h € H
and so Gy has exactly kK — 1 edges. It follows that Gy is a tree. In particular, there
is a unique path {41,452}, {22, %3},-..,{fs-1,%s} in Gy with ¢; = 0 and i, = 1. The set
G contains a function f such that f € M'. Clearly f is nonconstant on E; and hence
we have (0,1) € Q. Therefore, there exists 1 < j < s — 1 such that {i;,i;11} € Q;
(otherwise we have (0,1) € Q; because Q; is a transitive relation). We have f € Z;;,,,

from Lemma 7.3.1. However, Z; is a pivot of some h € H and so f € Z;;,,,, a

ji5+1
contradiction. Thus we conclude that H contains at most & — 2 functions, But, G
contains at most four functions [Jab52,INN63,Krn65,LoW65]. Therefore, F' contains at

most k& + 2 functions. O
Theorem 7.4.1. The mazimal rank of a base of Py 1s k + 2.

Proof. Let Q; (1 £ i < k — 1) be the equivalence relations with the two equivalence
classes: {1,...,i},{i +1,...,k —1,0}. A base of rank k + 2 is the set {fi,..., fr+2},
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defined by

Qn = Qi(1<i<k—-1),Qs5 =01,Q4,, =Qs.,,:=E}
fi € TIT'L'S'IT,
fi € T\TL'S'M' (2<i<k-1),
fr € TITTT M,
£i41(0,...,0) = 0,
Fer2(0,...,0) = 1.

We note that pr f; (2 < ¢ < k — 1) depends only of one variable and pr fi(0) =
0, pr f{(1) = 1 from f; € TgT{L’S’M’'. Thus, for example, we can take f; as unary -
functions. Then the requirement f; € Q; determines f; completely, since Z;0 = 1 and
Z;3 =0lead fi(j) = 1for 2 < j <iand Z;0 =0 and Z;; = 1 lead fi(y) = 0 for
t+1<j5<k-—1. It is easy to see that the functions {fi,..., fe+2} actually cover all:
Z;: as well as Ts, Ty, L', S’, M'. The pivots of fi, fr, fe+1 and frys are cs,c3 and c4,c; and.

.(2<i<k-1).0

c1 respectively. The pivots of f; is Z, +1mod &)

Example 7.4.1. Let k =3. Put @, = {{1},{2,0}},Q: = {{1,2}, {0}}. The following

is the characteristic vectors of a base {fi,..., fs} constructed as in the theorem with
rank £+ 2 = 5.
€1 C C3 C4 C5 C20 C21

70 0 0 0 1 0 1

£ 0 0 0 0 0 1 0

/0 0 1 1 0 0 1

/40 1.0 1 0 0 0

/1 0 0 1 0 0 O
a

7.5. Concluding remarks

The composition of functions in Py, is closely related to the composition in P;. Indeed, in
a composition of Py,-functions, only the elements in the first layer work as Py, functions;

those in the remaining layers work merely as P, functions. The proof given in Lemma
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7.4.4 indicates that a base needs at most k¥ —2 elements from P, and at most 4 elements
from P, for the first layer and for the remaining layers, respectively.

The completeness theory of logical functions leads té the classification problems of
closed sets by their maximal sets. These has been done for P;, P; and for some other
sets [MiS87a], but very little is done in general [Sto86¢,Sto85b]. In this chapter we
have determined classes of functions of Py, and their exact number. Although the
numbers of maximal sets and classes of functions of Py, grow rapidly as O(k?) and
O(k!) respectively, maximal rank of bases of Pi; has been proved to be k + 2. There

remains an open problem about the maximal rank of Pj.
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1111111
1111110
1111101
1101111
1101110

1111111111
1111111110
1111111101
1111111011
1111110111
1111110100
1111110011
1111101111
1111101101
1111101010
1101111111
1101111110
1101111101
1101111011
1101110111
1101110100
1101110011
1101101111
1101101101
1101101010

Table 8.1:

Classes of functions of P, = P, 5

(with respect to the coordinates T§, 77, 5’, L', M’ [Jab52,INN63,Krn65]

11111

11011

01100 00111

1101101

1100111
1100110
1100101
1011111

1011110
1011101
1010111
1010110
1010101

11001
00110 00011

10111

10101

Classes of functions of P;,
(with respect to the coordinates T3, 17, S’, L', M', Z3 3, Z2 1)

1010011
1010000
0111111
0111110
0111101

1100111111
1100111110
1100111101
1100111011
1100110111
1100110100
1100110011
1100101111
1100101101
1100101010
1011111111
1011111110
1011111101
1011111011
1011110111
1011110100
1011110011
1011101111
1011101101
1011101010

0110111
0110110
0110101
0110011
0110000

0011111
0011110
0011101
0011011
0011010

10100 01111
00010 00001

00000

0011001
0001111
0001110
0001101
0001011

01101

0001010
0001001
0000111
0000110
0000101

Classes of functions of Py
(with respect to the coordinates T3, 1Y, 5', L', M', Z20, Z2,1, Z3,0, Z31, Z3,2)

1010111111
1010111110
1010111101
1010111011
1010110111
1010110100
1010110011
1010101111
1010101101
1010101010
1010011111
1010011110
1010011001
1010000111
1010000000
0111111111
0111111110
0111111101
0111111011
0111110111

0111110100
0111110011
0111101111
0111101101
0111101010
0110111111
0110111110
0110111101
0110111011
0110110111
0110110100
0110110011
0110101111
0110101101
0110101010
0110011111
0110011110
0110011001
0110000111
0110000000
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0011111111
0011111110
0011111101
0011111011
0011110111
0011110100
0011110011
0011101111
0011101101
0011101010
0011011111
0011011110
0011011101
0011011011
0011010111
0011010100
0011010011
0011001111
0011001101
0011001010

0001111111
0001111110
0001111101
0001111011
0001110111
0001110100
0001110011
0001101111
0001101101
0001101010
0001011111
0001011110
0001011101
0001011011
00010160111
0001010100
0001010011
0001001111
0001001101
0001001010

0000011
0000010
0000001

0000111111
0000111110
0000111101
0000111011
0000110111
0000110100
0000110011
0000101111
0000101101
0000101010
0000011111
0000011110
0000011101
0000011011
0000010111
0000010100
0000010011
0000001111
0000001101
0000001010



Chapter 9

Classifications of Maximal Sets of
Pro

In the previous chapter the set of functions of Py, mapping the set {0,1,...,k—1}" into
{0,1} has been classified. It is shown that the number of Pp,y-classes is 134, — 11444,
where A; is the number of equivalence relations on the set of k elements. The maximal
number of elements in a base of P, has been also proved to be & + 2.

In this chapter we consider maximal sets of Py,. We determine classes of functions
for all Pyy-maximal sets T, Ty, S, L' and Z;; (0 <t <t <k —1,7 > 2) except M'. We
also give maximal number of elements in a base (maximal rank f a base) for each of
these sets (for S’ we prove its upper bound to be 2k).

We also classify the symmetric functions of Py, and its maximal sets. In the last
section we give numerical data for the respective numbers of classes of functions and
classes of symmetric functions of Z;, Ty, S’ and L’ for 2 < k < 10. We also give
numerical data for bases, pivotals, S-bases, S-pivotals for each of the Py,-maximal sets

Zy, Ty, L' and S’ for k up to 4.

9.1. Classification of Z;

All the maximal sets of the Pyy-maximal set Z;; are given by the following theorem.

Recall that ZL, := Py, Pol ( o).

Theorem 9.1.1. [Lau84b] Mazimal sets of the set Z;; (0<t<i<k—1, 2< 1) are
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Z;'l:=ZitZﬂa OSl<jSk-1, ZSja l#tori7éj7 {0,1}#{t,l}f07‘i=]’;

01z . .,
Rj:=Pol(01t;.), 2<7<k—-1, j#1 fort € E,

Zy pr'B, Be {I,,T1,L,S, M}.

As we will see below all the above {R;} and Z}; = Z;,Z; are not necessarily distinct.

Note 9.1.1. R; = Z; for t € E,. This is easily seen from that f(a) = f(b) for
a 01z

( b ) € ( 014 ) and for f € Zy,t € E,.
Next lemma shows that R; coincides with R; in Z,;.

Lemma 9.1.1. R;=R;in Z; for 0<t<:<k-1, 2<1:.

Proof. Let f € R; and (Z) € ( 01zt ) If there is no j such that a; = b; = ¢

01#t
a 01zt
then obviously f(a) = f(b). Otherwise let ¢ be | b | € | 01¢¢t |{. Then we have
c 012

f(a) = f(c) since f € R; and f(c) = f(b) since f € Z;;. Hence f(a) = f(b). O’

Thus we have to skip R; in counting maximal sets of Z;; all the time (not only in the
case of t € E3). In the proof of the next theorem we show that several sets among above
{Z};} also coincide. Thus the numbers of the maximal sets of Z;; reported in [Lau84b]
as k(k+1)/2+1 for t > 2 and k(k+1)/2 — 1 for ¢t = 0 or 1, are not correct.

Theorem 9.1.2. The number of the mazimal sets of Z;; 1s k(k—1)/2+2 (k > 3).

Proof. It follows from relational product that Z;;Z;s C Z;s (¢,t,s € Ex). Therefore, we
conclude

Zz{s = ZitZ‘is = itZst - Z;t' (91)

Thus, several maximal sets of the type {Z;} coincide in Z;;. For ¢ > 2 (9.1) is
meaningful for s € Ey,s # t,s # 1 (k — 2 values). For t =0 or ¢t =1 (9.1) is meaningful
for s € Ei,s# 0,5 # 1,5 # ¢ (k — 3 values). Hence, the number of maximal sets in Z;
isk(k+1)/2+1~(k—2)—1=k(k—1)/2+42 for t > 2 (from Lemma 9.1.1 together)
and k(k+1)/2—-1—(k—-3)=k(k—1)/2+2fort=00rt=1. 0

Theorem 9.1.3. The number of classes of functions of Z; is 25 3(13A5_1 — 11A45_,).
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Proof. Consider an equivalence relation Qs defined as in the case of Pjy:

1LDheQe feZ

Then (z,t) € Q always holds, because f € Z;. The number of such relations Q is
Ai_i. Similarly as in the case of Py (Theorem 8.3.2) we can prove that there are
13(Ag-1 — Ak-2) + 244, classes of functions of Z;;, according to the maximal sets
{Z4Z4} and {Z;pr~'B | B maximal set in P,}. Now consider R; (2 < j < k—1,7 #1).
We show that a representative exists in each of both cases of R; and R; for each j and
for each such class. For f € Rj we put f(zy,...,2,) = f(y1,-..,Yn), Where each of
T1,...,2n € {0,1,%,7}, y; = z;forz; € {0,1,j} and y; = tforz; = ¢. For f € R; (n > 2)
we put

£(,4,0,...,0) # f(4,,0,...,0). (9.2)

All the considered conditions of type (9.2) are independent, because only values
£(5,0,...,0) (for t = 0) can be fixed with respect to other maximal sets from {R;}.
Therefore, there are 252 possibilities with respect to the sets {R;}. Hence the number

of classes of functions of Z;; is 2F"3(13A,_; — 1144_2). O
Example 9.1.1. Classes of Z;4 and Z,; in P32 are isomorphic to those of P,. O

Example 9.1.2. We consider classes of Z3g in Ps2. The maximal sets are intersections
Z3opr~'B (B is one of the five maximal sets of E3), Z30Z;, 2 <t <3,0<t < 2
i # 3fort =0 (ie. Z20and Zy3; Zsp is omitted since Z30Z20 = Z3 0232 as indicated in

0132 0133 013
Theorem 9.1.2), and R; = Pol ( 0102 ) Note that R3 = Pol ( 0103 ) = Pol ( 010 )

We show all the equivalence relations on E4 which include {0,3}.

Equivalence class c¢20C21

{07173}7 {2} 1 1
{0,1,2,3} 00
{0,3}, {1}, {2} 11
{0,3}, {1,2} 10
{0,2,3}, {1} 01

It is easy to check that c3, coincides with ¢z 0. This confirms that Z3 coincides with
Z20 in Zzo. To demonstrate our construction of a representative for each of the above

classes, let our example equivalence relation @ on E; be {0,3},{1},{2}. We proceed
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analogously as the steps of Theorem 8.3.1 for f(zy, ;) for a given g(z;,22) € P,. 1)
pr f = g and g(z,z,) is an arbitrary nonconstant function on E, since {0,1} ¢ Q.
2) Only {0,3} € Q. So f(z1,22) = f(y1,y2), where zy,z, € {0,1,3},y; = z; for
z; € BEpand y; =0 forz; = 3,1 < j <2 4){2,0} € Q and {2,1} ¢ Q. We put
f(0,2) # f(0,0) and f(1,2) # f(1,1). As for R; we construct two cases. Case of
f € Ry. f(z1,22) = f(y1,y2) where z1,2; € {0,1,2,3},y; = z; for z; € {0,1,2} and
y; = 0 for z; = 3. Case f & R,. We put f(2,3) # f(2,0). Thus we can see that our

construction for f in Theorem 9.1.3 is compatible with that in Theorem 8.3.1. O
Maximal rank of a base of Z;;

As we have seen in the previous chapter, an equivalence relation on Ex induced by
f € Py, by setting (4,1)inQ; & f € Z;; restricts the number of functions in a base. This

can be summarized in the following lemma.

Lemma 9.1.2. The number of pivots from the sets Z; in any pivotal set of any closed

set containing some of sets Z;; as its mazimal sets is <k —1.

Proof. Suppose a pivotal set contains at least k functions which give pivots from the
sets {Z;}. Then from Lemma 8.4.1 follows that there is a circular sequence. Then
from Lemma 8.4.3 follows that circular sequence cannot be in a set of pivots for a set

of pivotal functions. A contradiction. O
Theorem 9.1.4. Mazimal rank of a base of Z;; is 2k — 2.

Proof. According to the maximal sets Z; and Tj, Ty, L', S', M’ there exists a base with
a maximal rank k + 1, because (i,t) € @ for every @ and we consider the equivalence
relation on the set with in fact k—1 elements (the proof is similar to that of Pr;). The sets
R; can give k —3 new functions for a base. Hence maximal rank is k+1+k—3 = 2k—2.

We are to give an example of a base with the maximal rank. Let ¢ = 3,t = 2
for simplicity (examples for ¢ € E, and any ¢ can be constructed similarly). A base

{fill <3 <2k—1,j# k+ 3} and corresponding relations Q; for f; are defined as

follows:
Ql = {1}3{2)3"-'ak—1’0},
Qj—l = {17273.7}7{]+17’k—170}’ 3_<_.7Sk_1a
Qro1=0Q, = Q1 (k+2<r<2k-2, r#k+3),
Qr = Qi1 = Ef;
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fi e TITIL'S'?T,

fro1 e TVT'TS M,

f(0,...,0)=0 € T,T,LS M,

fer1(0,...,0)=1 € ToLS' M,

fi € Ri(1<i<k+1,2<j<k~1, j#3),

£ € TIMLS'M' 2<r<k-2,k+2<r<2—1,r#k+3),
fr € R._iR,, s#tr—k3fork+2<r<2k—1,r#k+3.

We note that Zj3 = Zi2, 0 <1< k-1, [ #2, [ #3. Pivots for fi, fi—1, fr and fi1

are cs, Cs, ¢z and ¢y, respectively, and pivots for f; are Zj +2mod k),i+1 for2<j<k-2.

Finally, pivots for f, is R, for k+2 < r < 2k—1, r # k+3. We remark that functions
fr € TYTIL'S'M' (k+2 <r <2k —1,r # k + 3) cannot be unary (unary functions lead
to f € R;). O

Example 9.1.3. We give an example of the above base for Z35 in Py, (k = 4,1 = 3,t =
2) Note that Z3’0 = Zg’o, Z3,1 = Zg’l and R3 = Rg in Z3,2 (1n P4,2).

ToTLLSM  Z20Zs1 R,
f 00001 01 0O
/o 00000 10
f5 00110 01
f. 01010 00
fs 10010 00
fs 00000 01

= OO OO0

Q1= {{1}7{27310}}; Q2 = {{17273}7 {0}} L

9.2. Classification of the maximal set Tj: the functions preserv-
ing 0

Theorem 9.2.1. [Laud4b] The mazimal set T§ of Pys has 4+ (k+1)(k —2)/2 mazimal

sets:
TQ,]. = T(;T{,
Ly = T.L,
My, = TiM,
o 001
No = T4Pol < 010 |
T4 Z: for1<t<k-2 2<i<k-—1, t<i,
Toi = PkgPOl(Oi), ZSZSk—l
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Note 9.2.1. The first four sets are the intersections with the maximal sets of T} in
P,. We note that respective cases of ¢ = 1 and ¢ = 0 are not included in the above
list. It is easy to see that Ty, = Pol(0:) = {f | f({0,:})* = 0forn = 1,2,...} for
2 €1 £ k—1 (we write simply Pol(0¢) for Py Pol(07)). For ¢ = 1 this does not
hold, because we have Ty = Pol(01) = P, = Py,. Putting t = 0 for T§Z;;, we have

T!Z:0 C ToZi0 = Pol(0)Pol ( o ) Ty, 2<i<k—1.

Since the sets {Z; o} do not appear as maximal sets, our equivalence relation induced
by f € T, is on the k — 1 elements of {1,...,k — 1} (i.e. 0 is excluded). We give several

lemmas for the classification.

Lemma 9.2.1. [Sto85] There are exactly 10 classes of functions of Ty:

1111, 1110, 1011, 1000, 0111, 0110, 0101, 0100, 0011, 0000,

where the coordinates are in the order of Ty, L, M and Pol ( 8(1)(1) )

The maximal rank of a base of Tj is 3. The set {(0100), (0011),(1000)} is an example
of base. The class 1000 consists only of the constant function 0. The set of Tj-functions
corresponding to this class is called 0-class in the classification below (functions constant

0 on {0,1}"). The next lemma includes an assertion on this 0-class as the case : = 1.
Lemma 9.2.2. f € Z;; and f({0,1}*)=0= f({0,5}") =0 for 1 <4, < k—1.

-Proof. Suppose f € Z;; and f(a) =0 for a € (07). Then f(b) = 0 for b € (05) because

fEZ,-jand(Z

Corollary 9.2.1. Z;;Ty; CTy; for2<:i: <k —1.

) EZ,']'. ]

Theorem 9.2.2. The number of classes of functions of T4 is 10 -5 A(k —1,r)27 1.

- Proof. As we have seen in the prévious chapter the equivalence relation Qs on the sets
{1,2,...,k—1} induced by a function f € T, determines the characteristic vector of f for
{Z;;} by the rule (z,7) € Qs & f € Z;;. Let Qy divide {1,...,k — 1} into r classes. Let
one of these classes be {iy,...,1,}. For these numbers we have Z; ; =0 (1 < s,t < p).

If 1 is included in the set {4;,...,%,} (p > 1), we have f € Z,,; for any suchm :=1¢, > 1,

ie. fe Pol(O)Pol( 01m

o1l - Further, assume that f is from O-class (i.e. f(a) = 0 for
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any a € (01)), then from f € Pol( %11? ) we have f({0,m}") = 0, i.e. f € Top;

0lm

assume otherwise, then from f € Pol(0)Pol ( 011

) we conclude f & To,. Thus we

distinguish two cases.

Casel. 1 ¢ {i1,...,%,}. FromLemma 9.2.2 only the two possibilities exist for Ty;,,,m =
1,...,p, namely f € Toy, ... Ty, or f € Toi, ...Tin.

Case 2. 1 € {i1,...,i,}. There exists exactly one possible case depending on the values

of f on {0,1}™

f € Toi ... Ty, for f from O-class (f({0,1}") =0) or

f € Toi...To, for f not from O-class.

So, if Q; divide {1,...,k — 1} into r classes (one of them includes 1 as its member),
there are 27! classes of functions with respect to the sets {Z;;} and {To;}. Further, 10
classes will be derived for each of these vectors if we add first 4 coordinates. We show
that these classes are actually nonempty by giving a representative for each class.

Let g be a function with n > 2 variables in P, such that ¢ is a function of the
corresponding class with respect to Tpo-maximal sets. Let @ be an equivalence relation

induced by Z;;. Conditions for f are as follows:
1) flzi,... 2n) = g(z1,...,%,) for z1,...,2, € Es.

2) (5,8) € Q & F(T1y-- oy Tjm1, by Tjg1se -1 8n) = f(T1y. oo, o1yt g1y ooy Tn)

for each z1,...,2-1,Zj41,-..,Zn € Erand 1 <t < < k-1,

3) (5,0 ¢Q(2<i<k—1,1<t<i)and f(i,...,5) = F(t,.--,?)
= {f(t,i,...,1), f(G,i,...,i)} = Ea.

4) Let {41,%2,...,u} be a class included in Q. In the case f € To; ... To; let f(z)=0
for @ € (0i;) (1 < j <1). In the case f € To;y ... Toi, let f(ij,...,%;)=1. O

Example 9.2.1. For k = 3 all maximal sets of T§ in Py are To1, Lo, Mo, No, Z21 and

Toz. The vectors for Z;; are determined by an equivalence relation on {1,2} as follows.
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Equivalence class Z;3T52  To1LoMoNo

{1}, {2} 11  for each of 10 Tj classes,
10 for each of 10 T} classes,
{1,2} 01  for each of 9 T, classes except O-class,

00 for 0-class.

We give all its 30 classes (the coordinates are in the order of Ty, Lo, Mo, Vo, Z2, and
Toz2)- In the table of characteristic vectors * at the end of the vector denotes the class

having no symmetric representative (cf. Section 9.5).

111111 111110 111101 111011 111010 111001
101111 101110 101101 100011 100010 100000
011111 011110 011101 011011 011010 011001
010111 010110 010101 010011 010010 010001
001111 001110 001101 000011* 000010 000001

a

Example 9.2.2. Classes of T} in P,;. Equivalence classes are on {1,2,3}. Maximal

sets are Zgyl, Z3,1, Z3’2, Toz and T03.

Equivalence class 231731232 To0;Tos number of classes
{1},{2},{3} 111 11  for each of 10 Tj classes,
10  for each of 10 T classes,
01 for each of 10 Tj classes,
00 for each of 10 T classes,

{1},{2,3} 110 11  for each of 10 Tj classes,
00 for each of 10 T classes,
{1,2},{3} 011 10 for each of 9 Tj classes except O-class,

11 for each of 9 Tj classes except 0-class,
01 for O-class,
00 for O-class,
{1,3},{2} 101 11 for each of 9 T} classes except O-class,
01 for each of 9 Ty classes except O-class,
10  for O-class,
00 for O-class,
{1,2,3} 000 11 for each of 9 T classes except O-class,
00 for O-class.

All 110 classes are listed in Table 9.4. O

We are going to determine the maximal rank of a base of Tj.

Theorem 9.2.3. The mazimal rank of bases of T§ is k + 1.
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Proof. We note that Z;o = Tp; in Tp for 2 < ¢ < k — 1. We can consider sets Z

L 2L
120 [
1<k—1,0<j<k—2, j<i Rank of a base for these sets is greater than rank of
a base for T (the proof is analogous to that of Pyp). Let P = {fi,..., f,} be a base
with respect to considered sets, V' be a subsets of P which is a base with respect to the
sets Y = {To1, Lo, Mo, No} and W =Y \ V. The set V contains at most 3 elements from
Lemma 9.2.1. The set W contains at most k£ — 2 functions (the same proof as in Py,).
Thus the rank of a base is less than or equals to3+k —2 = k4 1. We show an example
of a base with the rank &k + 1.

Let Q; (1 < ¢ < k—1) be equivalence relations defined by {1,..,4}, {i+1,...,k—1,0}.
Put Q; := Q, and Q41 := EZ. The base of rank k + 1 is the set {f1,..., fr+1} defined
by @y, = Q; and in the following way.

fi € To,'@(o,i)EQf‘.forlSiSk—l,
f € TouLMN,,

fk € TOILMN07

fi € TauLMN, (2<i<k-1),

fis1 € Ty LMN,.O

9.3. Classification of L': the set of functions from P, that are
linear on {0,1}

Theorem 9.3.1. [Lau84b] There are (k—1)(k—2)/2+4 mazimal sets in L' := Pr~*(L):

I, = L'T,

I = L'T,

I = LS,

L(l)' = [CLO + a\r I Qop, A1 € {0, 1}]',

L, := PipPol{(e,9,9,9),(a,b,c,d)]|(a,d,ec,d) € E3, a+b=c+d(mod 2)},
2 S q S k- la

2. = ZyPr-lL 2<t<i<k—Ll.

We show lemmas for the classification and determine the number of classes of L. For

simplicity we write Z;; for Z/, in this section.
Lemma 9.3.1. [Sto85] There are 8 classes of functions in L of Py:
0000,0001,0110,1010,1100,0111,1011,1101,

where the coordinates are Lo, Ly, Ls and L.
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The maximal rank of a base of L in P, is 3. An example of a base with the maximal

rank is {(0110), (1010),(0001)}.
Lemma 9.3.2. Z3L; C L, and ZyL; C Ly, 2<i, t<k—1.

Proof. For convenience let Z;;, L; and L; denote the relations instead of the functions
preserving these relations. It is easy to see that we can construct L; by repeated
applications of relational product and permutations of rows of the relation from Z;; and
L;; we use that the relation L = {(a, b,¢,d)T € Ef, a+b = c+d (mod 2)} is invariant

under permutations of rows. Thus the lemma is proved. O

Theorem 9.3.2. The number of classes of functions of L' is 85 =% A(k —2,r)2".

r=1

Proof. If  and t are in the same equivalence class induced by Q = Qy, i.e. f € Zj,
then there are only two possibilities from Lemma 9.3.2: f € L;L; or f € L;L;. Let Q
divide {2,...,k — 1} into r equivalence classes and {¢1,...,%;} be one such class. For
each equivalence class there are only two possibilities by Lemma 9.3.2: f € Ly, --- L; or
f € L, --- L,. Hence there are 27 possible classes corresponding to a Q with respect to
the sets {L,}U{Z:}, and for each of this class there are 8 different prefixes corresponding
to the maximal sets of L in P,. We are to give a representative for each possible class
of L.

Let g(z1,..-,Z.) € P; be a function of one of the 8 classes with respect to the first
4 maximal sets (n > 3). Let @ be an equivalence relation on {2,...,%k — 1} defined
by {Zs}. Put f(z1,...,2.) = g(z1,...,2n) for z1,...,2, € {0,1}. Further, define
F(z1,...,z,) in the following way.

If (¢,t) € Q then set

F(Z1ye e ey i1y Titts e - Tn) = F(@1y -0y Tjm1s by Tjg1y- -+, Tn)

for eachi,t, 2<4,t<k—1, i#tand 1 <j<n and for each z, € Ex (1 <m < n).
F(i,H)gQ (2<i<t<k—1)and f(s,...,5) = f(%,...,%) then set

£(£,3,0,...,0) £ £(i,i,0, ..., 0).

Let an equivalence class induced by @ be {i1,...,i}.
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If feL; - L; then set

f(@1, ey, ¢, g1, o, 80) = f(Z1,000,2521,0, 8541, . o o, T)

for each ¢ € {t1,...,%}, 1 <j <nandforz,,...,z, € B, U {q}.
If f €L, ---L; then set

f(Qa0707$4a°"7$n) =

f(Q70717x4a°"7xn)

f(q,1,0,24y...,2,) =
f(Q71a17x47°°-7xn) =

for each z4,...,2, € Ey and ¢ € {%1,...,%}. That is, f(q,z2,...,2,) = 0 for each

-

|
O OO

?

Ty...,2Tn € Ep except f(g,1,...,1) = 1. Thus the result of the theorem follows. O

Example 9.3.1. Classes of L' in P3,. All its maximal sets are L), L}, L%, L() and

Lo, which are the coordinates from left to right.

11011 11010 10111 10110 11001* 11000 10101* 10100
01111 01110 01101* 01100 00011 00010 00001* 00000

The intersection of all maximal sets contains a unary function sg19 and in this case the

intersection is nonempty. O

Example 9.3.2. Classes of L’ in Py, . All its maximal sets are L), L}, L%, L' Ly,

L3 and Z3, , which are the coordinates from left to right.

1101111 1101101 " 1101011 1101001 1101110 1101000
1011111 1011101 1011011 1011001 1011110 1011000
1100111* 1100101* 1100011* 1100001 1100110* 1100000
1010111* 1010101* 1010011* 1010001 1010110* 1010000
0111111 0111101  O111011 0111001 0111110 0111000
0110111* 0110101* 0110011* 0110001 0110110* 0110000
0001111 0001101 0001011 0001001 0001110 0001000
0000111* 0000101* 0000011* 0000001 0000110* 0000000

We are going to determine the maximal rank of a base of L.
Theorem 9.3.3. Mazimal rank of a base of L' is k + 1.

Proof. Let P be a base for L', and A C P be a subset which is a base for the set

LY, LY, L and LY. The set A contains at most three functions from Lemma 9.3.1.
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Let B be a subset of P\ A which is a base for {Z;;}. We know that B contains at
most k — 3 functions; if there are k — 2 functions then a circular sequence results, which
contradicts to a base (the discussion is analogous to Py, case). Let C:= P\ A\ B. C
covers sets {L,}. We will show that C and B together contain at most k — 2 functions.
Let Ziir, Zigityy- - -5 Digiy (I € k — 3) be pivots for functions in B. Let 2,3,...,k —1 be
k — 2 nodes of a graph constructed in such a way that a pair : and j is connected if
and only if Z;; is a pivot for a function in B. Let the graph obtained has s connected
components (s > 1). As an elementary property of graph, the number [ of the pivots
is | = k — 2 — s, since there is no isolated point in the graph. Now, let f be a function
from C whose pivot in L' is Ly, i.e. f € L;,. From f € Z;,;,L;, follows f € L;,. Hence
f covers all L; for each node 7 in the same connected component containing 2;. In other
words, there is at most one pivot in L; for each of the s connected components of the
graph. Thus the number of the pivots in B and C together is at most s+k—2—s = k—2.

We show a base with rank & 4+ 1 in L'. We take maximal 3 functions for A, k — 3
functions for B and a function for C. These k — 3 .functions for B are defined by the

equivalence relations
Qi:{2,...3}, {i+1,...,k—1}, 2<i<k—2

One function for C should be f € Z33Z34... Zr—24-1 and f & L; for exactly one ¢ (the

construction is similar to Pgp). O

9.4. Classification of S’

Theorem 9.4.1. [Lau84b] There are 2 + (k — 2)(k — 1) mazimal sets of the set S':

ST, = S'L,
Sa = ST (=5'T),
S'Zs, 0<t<i<k,1>2,
. 012 .
(¢t) —
S : Pol(mt),2§t<z<k.

We need the following property of P;-maximal set S.

Lemma 9.4.1. [Sto85] There are 4 classes of functions of S in FPp: 11, 10, 01, 00,
where the coordinates are Sy, and Sop in this order. The mazimal rank of a base of S is

2.
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Lemma 9.4.2. f € Z;; = f ¢ S(9),

Proof. From f € Z;; follows f(3,...,%) = f(j,...,7). Then immediately f ¢ S, O
Lemma 9.4.3. f € Z;; = f € SG95t) y THZH),

Proof. 1t is sufficient to prove 3 g(t9) C Z;;. From f ¢ S follows that there are a, b

) a
such that ( Z ) € ( 2(1); ) and f(a) = f(b). Let ¢ be a vector such that ( b ) €
c

012
( 10¢ ) . From f € S follows {f(d), f(¢)} = E;. Therefore {f(a), f(¢)} = E; and
015

a 01z
from ( c ) € ( 01; ) we conclude f ¢ Z;;. O
Lemma 9.4.4. SIS C 7.
Proof. The relational product of ¢ and S*) equals to Z;;. O

Theorem 9.4.2. The number of classes of functions of S’ is

4zk:(A(k —2,r—=2)B,2+2(r —1)A(k— 2,7 — 1)B,_; + r(r — D)A(k — 2,7)B,),

r=1

where B, = EE;Q% 2:n (2m)!/(2™m!) is the number of possible choices of several

pairs in the set of r elements.

Proof. There are 4 classes with respect to Sj; and S;. Let @ be an equivalence relation
on {0,1,...,k — 1} and let cqy,cr,cit and c(iyy denote components corresponding to
Sy, Sh, S'Z; and S0, respectively, of a characteristic vector of a function f. Then
(0,1) € @ (constant functions are not elements of S’).

From (¢,7) € Q follow ¢;; = 0 and c(;;y = 1 (Lemma 9.4.2). Let K;,..., K, be
equivalence classes defined by Q (1 < r < k). Suppose (i1,i2) € Q@ and (51,72) €
Q. From Lemma 9.4.3 we conclude ¢, ;) = C(ij2) = C(jniz) = C(izjz)- 1herefore we
can consider ¢(x;x;) instead of individual components c(;;;. From Lemma 9.4.4 we get
ciiky =0 = cu;) = 1fori # ¢, t # 3, j # i. So the set of pairs {Kj, K;} from
{Ki,..., K,} such that ¢(x;x;) = 0 has no member K; in common between any of two
pairs. The number of such possible choices for these pairs are B, (the numbers B, are
given in Table 9.1 for 1 < r < 10). We have 2 £ t < ¢ < k — 1 for the maximal sets

S, So we must omit 0 and 1 from above consideration. There are three cases:
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1) {0} and {1} are two equivalence classes in Q. Then after removing them we consider
the equivalence relation Q” on the set {2,...,k — 1} with r — 2 equivalence classes

(member A(k —2,r — 2)B,_,),

2) {0} is an equivalence class in Q and 1 is one of the members of a class with > 2
elements. There is r — 1 possibilities for position of 1 in one of the remaining r — 1
classes of @” and the number of such equivalence relations Q" is (r —1)A(k — 2,7 —
1) with B,_; possible choices of pair-classes. Similarly we can consider the case

interchanging 0 and 1.

3) 0 and 1 are members of two different equivalence classes in @ with > 2 elements (0
and 1 do not enter into the same equivalence class). There still remain r equivalence

classes in @” and number of positions of 0 and 1 in these classes is r(r — 1) (third

member r(r — 1)A(k — 2,r)B,).

We sketch construction of a representative function for each possible class. Let n > &.

1) f(z1,...,20) := g(21,...,2x) for z1,...,2, € E,, where g is a function on F; from

one of the 4 possible classes of S.

2) f € Zu = f(z1,.--52n) = f(Y1,-.+sYn), where {z4,...,2,} C {0,1,¢}, y; = z; for

z; € E5 and y; = t otherwise.

3) f € Zyor f & Z; we can realize as before.

4) f € S = f(zy,...,2,) # f(Y1,---,Yn), Where {zy1,...,z,} C {0,1,¢}, y; =
z;+ 1 (mod 2) for z; € E, and y; = t otherwise.

5) f ¢ S, If (4,2) € Q then f & S is satisfied from Lemma 9.4.2.

Now, consider r equivalence classes K;, 1 < j < r, defined by Q. We can divide
them into two groups such that if ¢(x; x;) = 0 then K; and K are in different groups.
We can define 7(0,%,...,:) = f(1,¢,...,%) = 0 for all numbers 7 in the first group and

f(0,4,...,4) = f(1,%,...,7) = 1 for all numbers : in the second group. O

Example 9.4.1. Classes of functions of S’ in P;,. In this case we have no S (#) maximal

sets. The coordinates are in the order of S}, To1, Z2p and Zy;.
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1111 1011 0111 0011
1116 1010 0110 0010
1101 1001 0101 0001

a

Example 9.4.2. Classes of functions of S’ in Ps;. There are 17 - 4 = 68 classes
of functions of S’ in P,3. We show only 17 classes with respect to S’-maximal sets
Za2.0y D21, B30y D31, Z32, S, which are determined by an equivalence relation Q on
{0,1,2,3}. Each of these vectors becomes a class of S’ by appending each of two-
component vectors 11, 10, 01 and 00 (corresponding S7 and Sf;). We also show the

corresponding relation @ for each of these classes.

Zoo Zay Zap Zsy Zzz SGY Q
1 1 1 1 1 1 {0}, {1}, {2}, {3}
1 1 1 1 1 0
1 1 1 1 o 1. {o}, {1}, {23}
1 1 1 0o 1 1 {o} {13}, {2}
1 1 1 0 1 0
1 1 o0 1 1 1 {03}, {1} {2)
1 1 0 1 1 0 :
1 0 1 1 1 1 {0} {12}, {3}
1 0 1 1 1 0
1 0o 1 0o o0 1 (o}, {1,2,3)
i1 0 o 1 1 1 {0,3}, {1,2}
1 0 0 1 1 0
o 1 1 1 1 1 {02}{1},{3)
0 1 1 1 1 0
o 1 1 o 1 1 0,2}, {1,3}
0 1 1 0 1 0
6 1 o 1 o0 1 {0,2,3}, {1}

For a relation @, for example, if (2,3) € Q is satisfied then ¢(32) = 1 is uniquely possible
for $(32), Otherwise both 0 and 1 are possible for ¢(s,z2), because in this case (2,3) € Q
and we can choose pairs from classes {2},{3} € E;\ E; in two ways: take one pair

{{2},{3}} (value 0) or take no pair (value 1). O

Maximal rank of a base of S’

Lemma 9.4.5. Let Qy,...,Q, be equivalence relations on Ej each of which consists
ezactly of 2 equivalence classes and satisfying the property that for each i (1 < ¢ < r)
there exist two elements j,1 € Ey such that (5,]) € Q; and (j,1) ¢ Qs (1 < s < r,s8 #1).
Then r < k.
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Proof. Let us call such (j,1) as indicated in Lemma pivot induced by Q; (recall that
(5,1) € Q; implies f g S for any f induced by Q;). Let U; and V; denote two classes
on Ej defined by Q; and assume 0 € U;. Suppose r > k and consider k relations
@1, .., Qr. There is a circular sequence in the set of pair sets {(,1)}, where (5,0) is a
pivot induced by Q;. -We denote this sequence by (0,1),(1,2),...,(m—1,m),(m,0) and
assume (J,7+1) € Qj41, 0 < j <m—1; (m,0) € Q41 (because of isomorphism we can
do this). Consider Qx4+1. Then0,2,4,...,m—1 € Ugy1and 1,3,...,m € Viyq. So,if mis
even then we have a contradiction. Thus m is odd. Consider Q,. 0 € U,, 1€V, 2€ 14
(because (1,2) is a pivot of Q2), 4 € V, (because (3,4) is a pivot of Q4). Thus for 7 > 3
odd number belongs to U; and even number to V3. Som — 1 € V3 and m € U,. Since

(m,0) is a pivot of Q41 We get 0 € V5. Again this is a contradiction. O
Theorem 9.4.3. Mazimal rank of a base of S’ 1s < 2k.

Proof. We know that rank of a base for S7 and Sg, is < 2 (Lemma 9.4.1), and for {Z;;}
is < k —1 (Lemma 9.1.2). Assume that a base for {Z;;} has rank k¥ — 1. Then there
is a sequence {0,%1}, {%1,%2},..., {r—2,1}} of pivots Z;;,, for fi, 1 =0,...,k —2;
i = 0,241 = 1 from Lemma 8.4.2. But from (0,1) ¢ Qy for every Q; there exists
1 (0 <1< k—2)such that (3,25141) € Qy, ie. f & Z; Thus Z;;,,

of fi for {St,So1,Zij, 0 < 4,4 < k—1,1 > 2}. (similar proof as in Py). Thus S}, S5,

Yitpr - is not a pivot
and {Z;;} have maximal rank k (for £ = 3 there exists no S maximal set and hence
maximal rank of a base is ¥ = 3, which can also be seen from the computational data
in Table 9.3).

Consider sets SU9). Let fi,..., fr be functions which have a pivot from S¢9) in S’
We prove r < k. Let Qq,...,Q, be equivalence relations for fi,..., f.. The condition
ciyj) = 0 can be satisfied for [ € K, and j € K;, where K, and K; (C Eg, s # t)
are different equivalence classes of a relation Q;. The set of pairs of such different
equivalence classes {{K,,, K, },...,{Ks,, K: }} are mutually disjoint, as it has been
proved in the proof of Theorem 9.4.2. fi,..., fr will again be pivots for the same sets
{SUN} if we replace every cuj) = 1 by cqj = 0 for any function except when cgj ) is a
pivot. Some “1” among ¢(;;) will became 0 by this replacement. This corresponds that
we consider new equivalence relations Q7,..., QY such that Q! consist exactly of two

equivalence classes on Ey. Let f{,..., f/ be new functions taken out from these new
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classes. Since the replacement of the values does not effect the pivotality, new pivot
of f coincides with that of f;. If S™) is a pivot of f! then cy; = 1 for f. Since QY
has only two equivalence relations and since ¢;) = 0 is satisfied only for (I, j) & @7, we
have (I,5) € QY. From the property of pivot, c¢(;) = 0 is satisfied for other functions £,
hence (1,7) & QY for s # . From Lemma 9.4.5 we conclude r < k. O

9.5. Classifications of Symmetric Functions of Py,

In this section we determine classes of functions for the set of symmetric functions in
Py, and its all maximal sets except M’. The problem in the classification of symmetric
functions of Py, is mainly related to the fact that there exists only one representative
f(z) = z (identity function) in the ToTyLSM-class (“identity class”) of symmetric
functions of P,. Since we used n-ary functions of P, for n > 2 (cf. Theorem 8.3.1) in
the construction of representatives of the classes of functions of Pi,, we need a separate
consideration for the set of symmetric Pyo-functions corresponding to this identity class.

First we recall some notions about symmetric functions. A function f(zy,...,z,) is
said to be symmetric if f(z1,...,2n) = f(Zrqa),- .., Tr(n)) holds for all z,,...,z, € Ep
and every permutation 7 of {1,...,n}.

S-base (S-pivotal set) is a base (pivotal set) consisting solely of symmetric functions.
Hence a class of S-base (S-pivotal) is a set of classes of functions each of which contains
a symmetric function. Thus we need to determine classes of functions for the set of

symmetric functions. We use the following fact (this is a corollary of Theorem 3.3.1).

Lemma 9.5.1. [Tos72] Each of 15 classes of functions of Py contain a symmetric func-
tion. Unary function f(z) := z i3 a unique symmetric function of the class ToTYLSM.

The other 14 classes contain symmetric functions of n variables for any given n (n > 1).

9.5.1. Classification of symmetric functions of P,

Theorem 9.5.1. The number of classes of symmetric functions in Py 1s
124; — 104, + 272

Proof. As we have seen in Theorem 8.3.2, classes with respect to {Z;;} are determined by

an equivalence relation on Fj (numbers of the classes are Ax_1 if (0,1) € Q and Ap—Ag-1
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if (0,1) € Q). Further, there are two P;-classes (corresponding to constant functions)
for each former class and 13 P,-classes for each latter class. However, among these 13
classes, the class ToTy.SLM contains only a unary symmetric function (f(z) := z). We
can show that there is a symmetric representative in each Pp,-class corresponding to
the other 14 classes, because they contain n-ary symmetric functions for any n > 1.
Thus consider the set of symmetric functions in Py, defined by {pr='(f(z) := z)}. It is
easy to see that f € Zi; & (3,t) € @5 & f(¢) = f(t). Thus in this case an equivalence
relation Q is defined exactly by two equivalence classes: Ip := {¢ | f({) = 0} and
I := {i | f(3) = 1}. The number of such equivalence classes is 272, because f(0) = 0

and f(1) = 1. The assertion of the theorem follows from this and Theorem 8.3.2. O

Note 9.5.1. The number of classes ofv functions of P, which contain no symmetric

function is Ay — Ax_q — 2572,
9.5.2. Symmetric functions of Z;

Theorem 9.5.2. The number of classes of symmetric functions of Z; is
2F=3(12 A5, — 104;_) + 272,

Proof. Again, consider symmetric functions of P, corresponding to unary function
f(z) == z of the set TeTYLSM. Let Iy = {5 | f(j) =0} and I, = {j | f(j) = 1}.
Obviously 0 € Iy and 1 € I;. From f € Zj, eitheri,t € Iy or¢,t € I is satisfied, because
f(@) = f(t). Further, f € Zj if either j,I € I, or j,l € I;. It follows immediately
that f € R; for every j. The assertion of the theorem follows obviously from these

considerations and Theorem 9.1.3. O

Note 9.5.2. The number of classes of functions of Z;; which contain no symmetric

function is 25 3( A1 — Ak—2) — 2k=3,
9.5.3. Symmetric functions of T in Py,

Theorem 9.5.3. The number of classes of symmetric functions in Ty is

k-1
93 A(k—1,r)2mt + 2572,

r=1
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Proof. Classes of T, which contain symmetric functions with n > 2 variables can
correspond to classes of symmetric functions of Ty in sz by the same constfuc_:tion as
in Theorem 9.2.2. However, in case of the class with only one variable we need another
construction. Only the class 0000 contains no symmetric function with n > 2 variables;
the identity function f (z) := z € P, is a unique symmetric functic;n in this class. Again
let Iy ={:| f(:) =0} and I = {¢ | f(¢) = 1} (JoU I = E). The induced equivalence
relation Q; divides Ej \ {0} into exactly two classes and in this case there are 25=2 such
Qs (0 € Iy and 1 € I). The assertion of the theorem follows from this and Theorem
9.22. 0

Note 9.5.3. The number of classes of functions of T} which contain no symmetric

function is YF- A(k — 1,7)27 1 — 282 = TR2 Ak — 1,7)27 1.

r=1 r=1
9.5.4. Symmetric functions of L’

Theorem 9.5.4. The number of classes of symmetric functions of L' is

43_:2 A(k —2,7)(27 + 1).

r=1

Proof. The following classes of L in P,: 0001, 0111, 1011 and 1101 contain symmetric

k-2

functions with n > 3 variables, hence 43 "]

A(k — 2,7)2" classes contain symmetric
functions. The other classes 0000, 0110, 1010 and 1100 contains only symmetric func-
tions {0,1,z,z + 1} of only one variables. Hence f must have only one variable because
f =g on{0,1} for g € P,. In this case f € LyL3...L;_;. Hence the number of sym-
metric class in this case is 452 A(k —2,r). The assertion of the theorem follows from

this and Theorem 9.3.2. O

Note 9.5.4. The number of classes of functions of L’ which contain no symmetric

function is 4 522 A(k — 2,7)(27 — 1).

r=1
9.5.5. Symmetric functions of S’

All classes of S’ contain a symmetric function, because all classes of functions with
respect to S; and Sj; contain symmetric functions with n variables for any n > 1
[Sto85). Hence the classes of functions and the classes of symmetric functions coincide

in this case (the number of them is given in Theorem 9.4.2).
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8.6. Concluding remarks

Classifications are done for a few general cases of closed sets of P, [Sto86¢] (also cf.
[MSLRS87]). In [MiS87b] classes of functions of Py, and their exact number is deter-
mined. In this chapter we have determined classes of functions and classes of symmetric
functions for maximal sets of P, (all except M’). We have seen that although the
numbers of maximal sets and the numbers of classes of functions for both P, and its
maximal sets grow rapidly as O(k?) and O(k!), respectively, maximal ranks of a base

for both P, and its maximal sets have been proved to be O(k).

In the following Table 9.2 we give the numbers u(X) of X-maximal sets, v(X) of
classes of functions of X and o(X) of classes of functions of X containing symmetric
functions, where X denote P, Pi, and some maximal sets of P, for 1 < k < 10.
We note that these numbers of the maximal sets of P, are given in [Ros73,Ros77], the
number of classes of functions of P, in [INN63,Krn65], the number of classes of functions
of P in [Miy71,Sto84a], the numbers of the classes of symmetric functions of P, and P
in [Tos72] and [Sto85], respectively.

The numbers A; and B; needed for the computation of these data are given in Fig,
9.1.

The numbers of classes of bases, pivotal incomplete sets, S-bases and S-pivotal in-
complete sets for the sets P3, and P, , and for some their maximal sets are shown in the
following Table 9.3. One of the algorithms described in [StM86a] is used. The symbol
* in the table denotes that S-bases (S-pivotals) and bases (pivotals) coincide on the set
marked by it.

In the last Table 9.4 we give the characteristic vectors of the classes of maximal sets

Z3,0 and Té both in the set P4’2.
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Table 9.1: A and By, (0 < k < 10).

10

E 01 2 3 4 5 6 7 8 9
A - 1 2 5 15 52 203 877 4,140 21,147 115,975
B, 1 1 2 4 10 26 76 232 764 2,620 9,496

Table 9.2: Numbers of maximal sets, classes and classes of symmetric functions.

k 1 2 3 4 5 6 7 8 9 10
wW(P,) - B 18 82 643 7,848,984

vP) - 15 406 7 7 ? ? ? ? ?
o(P) - 15 394 7 7 ? ? ? ? ?
p(Pee) - 5 7 10 14 19 25 32 40 49
v(Py) - 15 43 140 511 2,067 9,168 44,173 229,371 1,275,058
o(Py2) - 15 42 134 482 1,932 8526 40,974 212,492 1,180,486
wZyy - - 5 8 12 17 23 30 38 47
vZy) - - 15 86 560 4,088 33,072 293,376 2,827,072 29,359,488
o(Zy) - - 15 82 524 3,800 30,672 271,840 2,618,304 27,182,720
w(sh - 2 4 8 14 22 32 44 58 74
¥S) - 4 12 68 388 2,492 17,676 136,500 1,138,916 10,203,420
o(S) - 4 12 68 388 2,492 17,676 136,500 1,138,916 10,203,420
wTh - 4 6 9 13 18 24 31 39 48
¥T}) - 10 30 110 480 2,270 12,150 71,070 449,590 3,050,910
o(T)) - 10 29 103 440 2,059 10,967 64,027 404,759 2,746,075
WL - 4 5 7T 10 14 19 25 32 40
«L) - 8 16 48 176 752 3,632 19,440 113,712 719,344
o(L') - 8 12 32 108 436 2,024 10,532 60,364 376,232
w(MD - 4 7T 13 22 34 49 67 88 112
oMy - 2 77 ? ? ? ? ?

a(M")
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Table 9.3: Numbers of bases, pivotals, S-bases and S-pivotals.

rank 1 2 3 4 5 6 D
bases Py, 1 17 22 2 - - 42
pivotals PJ, 13 31 7 - - - 51
bases Pj 1 160 804 272 g8 - 1,245
S-bases Ps, 1 158 770 228 4 - 1,161
pivotals P; 42 440 435 38 - - 955
S-pivotals P3, 41 416 374 24 - - 855
bases Py2 1 1572 42822 56228 6284 64 106,971
S-bases Py, 1 1,533 39,501 42652 3,132 16 86,835
pivotals P,, 139 6,336 30,660 10,798 314 - 48,247
S-pivotals Py, 133 5,721 24,293 6,202 126 - 36,475
Psz

bases Z3 1 17 22 2 - - 42
pivotals Z3, 13 31 7 - - - 51
bases Tp 1 98 217 30 - - 346
S-bases T 1 96 198 18 - - 313
pivotals Ty 29 174 73 - - - 276
S-pivotals Tp 28 158 53 - - - 239
bases L’ - 27 45 3 - - 75
S-bases L' - 15 12 - - - 27
pivotals L’ 15 46 9 - - - 70
S-pivotals L' 11 21 3 - - - 35
bases S™ 1 20 4 - - - 25
pivotals S™ 11 13 - - - - 24
Py

bases Z3¢ 1 522 8,506 9,314 932 8 19,283
S-bases Zs 0 1 509 7,733 6508 280 - 15,031
pivotals Zso 85 2,181 6,780 1,938 40 - 11,024
S-pivotals Z3o 81 1,963 5,171 874 4 - 8,093
bases T 1 1,174 19,253 16,013 952 - 37,398
S-bases Tp 1 1,127 16,436 8656 392 - 26,610
pivotals Tp 109 3,600 10,802 1,016 S - 16,427
S-pivotals T, 102 3,061 7,219 967 - - 11,349
bases L' - 171 1,845 912 33 - 2,961
S-bases L’ - 75 393 96 - - 564
pivotals L’ 47 648 938 96 - - 1,729
S-pivotals L' 31 243 198 3 - - 475
bases 5™ 1 639 3,430 400 2 - 4,472
pivotals S™ 67 1,140 762 10 - - 1,979
Py

bases 5™ 1 10,246 1,083,933 1,102,264 47,832 118 2,253,394
pivotals $'* 387 49,740 371,903 71,650 519 - 494,199
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Table 9.4:
(* at the end of the vector denotes that the class has no symmetric representative.)

Classes of functions of Z3g in P,
(coordinates are T§,TY,S', L', M', Z5 0, Z31, R).

10111101
10111100
10111011
10111010
10101111
10101110
10101101
10101100
10101011
10101010

11111111
11111110
11111101
11111100
11111011
11111010
11011111
11011110
11011101
11011100

11011011
11011010
11001111
11001110
11001101
11001100
11001011
11001010
10111111
10111110

10100111
10100110
10100001
10100000
01111111
01111110
01111101
01111100
01111011
01111010

01101111
01101110
01101101
01101100
01101011
01101010
01100111
01100110
01100001
01100000

00111111
00111110
00111101
00111100
00111011
00111010
00110111
00110110
00110101
00110100

00110011
00110010
00011111
00011110
00011101
00011100
00011011
00011010
00010111
00010110

00000111*
00000110*
00000101*
00000100
00000011*
00000010

00010101
00010100
00010011
00010010
00001111
00001110
00001101
00001100
00001011
00001010

Classes of functions of Tj in Py,
(coordinates are Toy, L', M', Ny, Z21, Z31, Z32, Tos and Toy).

111111111
111011111
101111111
100011111
011111111
011011111
010111111
010011111
001111111
000011111*

111111110
111011110
101111110
100011110
011111110
011011110
010111110
010011110
001111110
000011110*

111111101
111011101
101111101
100011101
011111101
011011101
010111101
010011101
001111101
000011101*

111111100
111011100
101111100
100011100
011111100
011011100
010111100
010011100
001111100
000011100*

111111011
111011011
101111011
100011011
011111011
011011011
010111011
010011011
001111011
000011011*

111111000
111011000
101111000
100011000
011111000
011011000
010111000
010011000
001111000
000011000

111101110
111001110
101101110
100001101
011101110
011001110
010101110
010001110
001101110
000001110

111101111
111001111
101101111
100001100
011101111
011001111
010101111
010001111
001101111
000001111%*

111110111
111010111
101110111
100010110
011110111
011010111
010110111
010010111
001110111
000010111*
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111110101
111010101
101110101
100010100
011110101
011010101
010110101
010010101
001110101
000010101

111100011
111000011
101100011

100000000

011100011
011000011
010100011
010000011
001100011
000000011



Chapter 10

Concluding discussions, an overview
and some open problems

The number of P,-maximal sets was approximated in [ZKJ69,ZKJ71] and the exact

formula for it was determined in [Ros73]:

k 12 3 4 5 6 7
maximal sets | 5 18 82 643 15,182 7,848,984

Classification of P} is barely possible for & = 4.

There are several classification results for subsets in Py, [Sto86¢,Sto85,MiS87h,MSL87].
A function is linear if there are aq, . . ., a, € Ef so that, under a certain abelian structure
on Ei,

f(@1y- o yZn) = a0+ a1y + ... + GpTy

holds for all zq,...,2, € E;. The set of linear functions has been investigated (cf.
[BaD78,BaD80,Lau84b]). It is P;-maximal if and only if k is a prime power [Jab58].
Let L denote the set of linear functions of P, and T, = {f | f(m,...,m) = m} the set

of functions preserving m (0 <m < k —1).

Theorem 10.1. [BaD78,BaD80] There are ezactly p + 2 mazimal sets of L in prime-
valued logic Pp:

LTm, OSmSP—la
LS={ac+az1+... +ay2n |1 +...+a,=1}
(the set of linear selfdual functions),

L(l) = {ao + a12; l ag, A1 € Ep, > 0}

(the set of essentially unary linear functions).

o

L,
Ls
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There are exactly 2p+4 classes of functions of the set L [Sto86c]. Their characteristic

vectors listed with respect to the above order of maximal sets are:

1: - opt? (i.e. p+ 2 zeros)
2: 0711
3<r<p+3: 17-301P+3-rg

p+4<r<2p+4: 177PH012PH5T,

Let f(z1,...,%n) = o+ a1Z1+...+an®y be a linear function in P,. The function z is
in class 1, and the function a;z;+. . .+a,z, isin the class 2 forn > 2and a1 +...+a, = 1.
The functions ao+ z are in class p+ 3 for ag # 0, and the functions ap+a1z1+. ..+ arTx
for ap # 0 and a3 + ...+ a, = 1, n > 2 are in class 2p+ 4. The constant function f =:
belongs to class ¢ +3 (0 < : < p—1). Let a; + ...+ a, # 1 and let a be the number
determined uniquely by a(1—a; —... —an) = ag, 1.e. ag+a1a+...+aa=a (a € E,).
Then the function f(z1,...,Zn) = o + @121 + ... + @xT, belongs to class p + 4 + g,
because it preserves {a}.

No Sheffer function for L exists. However, each f € L\L® is c-Shefferas 0 ¢ T, (m >
1),1 &€ To,0 € S. The number of such n-ary functions is p"*' —np(p—1)—p (n > 2). As
n — oo the proportion of c-Sheffer n-ary linear functions (among n-ary linear functions)
goes rapidly to 1.

Bases of rank 2 are composed of any two functions of classes ¢ and j, where ¢ and j

satisfy the condition

a) p+4<i<3j<2p+4, or
b) 3<i<p+3<j<2p+4andjFi+p+1.

Bases of rank 3 contain a function of class 2 and two functions, each from classes ¢ and

4, where 3 < ¢ < j < p+3. Thus L contains exactly 4 ( p;— 1 ) aggregates; 3 ( p—;— 1 )

2
The H-maximal sets for the above p+ 2 L-maximal sets H (p prime) are determined

in [BaD78] and their classification is in [Sto86c].

01 ... k=2 k—1
Let S=Pol{ y 5 ~ t_1 o

functions in k-valued logic (i.e. f such that f(z; +1,...,2, + 1) = f(21,...,2,) + 1).
Note that there are other types of selfdual functions (cf. [Ros70]).

of rank 2 and ( p+l ) of rank 3. The maximal rank of a base of L is 3.

) . It is easy to verify that S is a set of selfdual
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Theorem 10.2. [Sze82] There are ezactly two S-mazimal sets in prime-valued logic
P,:
Sy = SL and Sy = ST,.

A linear function ag + @121 + ... + a2z, is selfdual if a; + ... + a, = 1. When this
holds, the function a1z1 +. ..+ a,z, belongs to the set S5 (class 00) and the functions
ao + a1z + ... + anz, for ag # 0 belong to the set S50 (class 01).

1 —1). Note that the

notions of c-Shefferness and Shefferness coincide, because no constant function belongs

n—1__

The number of n-ary Sheffer functions in S is (p—1)p™~*(p?

to S. There are exactly two aggregates for S; each for ranks 1 and 2.

An overview and some open problems

We gi\}e some subsets of P, whose maximal sets are known. Perhaps the most inter-
esting P,-maximal set is the set L of linear functions for k not prime. Let k = pi* ... p5m,
Q1yeers 0y > 1,D1, ..., P prime numbers (p; # p; for 7 # 7). All the maximal sets of
L are described as follows [Lau84b}:

1) 2™ — 1 maximal sets

Ty:=LqgUUp>1{f € L|3b,a0,...,an: bld A b#1 A f(z) = ao+ b i, awwi},
where & = (1,...,,) and

Ly:=Upsi{f € L|3ao,...,an,5 : f(&)= a0+ a;z; +dTy iz, i%i},

d=pi1 o+ Pis {pi17-"7pit} C {ph"-’pm}’ 1<t<m.

2) m maximal sets of type

L*,p,- = UnZl{f €L I Bao, Jeyan € By
fle)=ap+XtaziAar+...+a, =1 (mod p;)}, 1 <i<m.

3) ;1 + ... + pm maximal sets

LnPol(j,pi+ 4,2pi+ 3,..-, k—pi+J) forall j
satisfying 0 < j<p;—1, 1 <1< m.

The special case of k=p™ ork=2-p (m > 1, p > 2,p: prime) is also investigated
in [Lau84b] and [Schr87].

Another interesting maximal set is the set of special selfdual functions S for k not
a prime number [Lau84b] (for the case k prime number we have the simple result as

described above [Sto85b]). All 2T]%,(a; + 1) — 3 maximal sets of S are described as

{SNPol~, SNPolp; | reT\{1}, t € T\{1,k}},
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where T := {z | k = 0 (mod 2)}, 7, := {z € Ex | z = 0 (mod r)} and p, := {(z,y) €
E?|y—1z =0 (mod t)}.

Some cases of selfdual functions are also described in [Mar79].

Compositions of partial k-valued functions are investigated in [Fre66,Lou84,Rom80].
Define Py := Up>1{f|f : B} — Ei}, 1 > k, with the operation of composition defined

by:
fog={ frg ¥W(9) C{0,...,k—1},

f otherwise,
where W(g) denotes the range of g. Py, is a generalization of the partial k-valued logic.

P,; has exactly the following 8 maximal sets [Lau77,Fre66]:

{f € Py | [W(f)] <1—1}, Pol(0), Pol*(1),

(o . o1 . { 001
Pol(l),Pol(lo),Pol<011>,

000111 00011011
.| oo1101 _| oo110101
Pol" | 10011 |» £ | 01001101 |
011001 01100011

where

Pol*p := {f € Py
(a1,...,an)T € p" = (f(ar), .-, flan))T € pU{0,..., 1= 1}*\ {0,1}*)T}.

The set Py is being classified [LMS87]. Besides, it is known that Py, [ > 3, has exactly
58 maximal sets ([Lau77], a slightly different number of the maximal sets is reported in

[Rom80]).

Define Py(2) := Ups1{f(21,...,2n) € Ps| [W(f)| £ 2}. P5(2) has exactly the follow-
ing 13 maximal sets [Fre66,Lau77]:

Unsilf | 3fo,-- o  fr € P}(2)(the set of unary functions) :
f(@1, -, za) = fo(fi(z1) + fa(z2) + ... + fa(zn) mod 2)}

and the classes P5(2) N Polp where p €
{ 012001 012112 012220 01201
012122 /> \ 012200 /’ \ 012011 /’ \ 01210 /’

01202 01212 0120102
( 01220 ) ’ ( 01221 ) , (01),(02), 12), ( 0121020 ) ’
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0120121 0120212 }

0121012 )° 0122021 )
Define P01} ,40,3} := Unma1 {f™™ | ™ : {0,1}" x {a,3}™ — {0,1}}, a € {0,2}, and
with a similar generalization of superposition. Pjo1},(s,33 has exactly 10 maximal sets

for @ = 0 and 21 maximal ones for a = 2 ([BBK73] also cf. [Lau80]). The maximal sets
for Pol (0) are also known [Lau82a].

Finding maximal sets for other subsets of P}, and under various modifications of com-
position are open problems. Among them we find part of automata theory [Das81,Kud60],
where some maximal sets are given. Uniform delay composition- with unit-delay for
P; was solved in [Noz70], and with positive-integer-delays for P; in [Hik78] (30 and
49 maximal sets). Cofnposition with delay was also treated in the general case in
[MRR83,RoHS83].

The enumeration of Sheffer functions as well as c-Sheffer may be considered in many
of the above cases (cf. [Ros77]). For example, the number of n-ary 3-valued c-Sheffer
functions is known only for n=2 [Muz75].

Maximal rank of a base is an open problem in many cases. The problem is mentioned
early in [Jab58,But60], especially for P;. It is known that some closed subsets of Py, k >
3 have an infinite base or no base [JaM59]. It is also known that for & > 8 some P;-
maximal sets have no finite basis [Mik86,Tar86].

Classification and basis enumeration can be used to calculate the number of n-ary
bases [StM&6a, Wer42,Ku066,PeS68,Ber80,Ber83]. In many cases, this has not yet been
done. The corresponding classifications and basis enumerations for symmetric functions
are surveyed in [StM86b]. The classification of P; may be shortened if one uses relational

calculation extensively as we had done for the maximal set Tj in Section 6.5.
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Appendix 1. Classes of Ps.

wt F#no TLS MMMy UUgU; BeB1Ba ToTiT; To1T12T59 *no representative

18  #1 111 111 111 111 111 111 *406 f8.14 (Sheffer)

17 #2 111 111 111 111 111 110 %405 og-similar of f8.13
17 #3 111 111 111 111 111 101 *404 oq-similar of f8.13
17 #4 111 111 111 111 111 011 *403 f8.13

17 #5 111 111 111 111 110 111 %397 o1-similar of f8.12
17  #6 111 111 111 111 101 111 402 o3-similar of f8.12
17 #7111 111 111 111 011 111 *392 f8.12

17 #8 111 111 110 111 111 111 %322 oo-similar of f6.31
17 #9 111 111 101 111 111 111 *236 f6.31

17 #10 111 111 011 111 111 111 %279 op-similar of f6.31
17 #11 110 111 111 111 111 111 *86 f4.4

16 #12 111 111 111 111 110 110 *396 og-similar of £8.10
16 #13 111 111 111 111 110 101 %394 oy-similar of f8.10
16 #14 111 111 111 111 110 011 %395 o1-similar of f8.11
16 #15 111 111 111 111 101 110 *400 o3-similar of f8.11
16 #16 111 111 111 111 101 101 %401 o 4-similar of f8.10
16 #17 111 111 111 111 101 011 %399 op-similar of f8.10
16 #18 111 111 111 111 100 111 *375 f8.8

16 #19 111 111 111 111 011 110 %391 og-similar of £8.10
16 #20 111 111 111 111 011 101 %390 f8.11 -

16 #21 111 111 111 111 011 011 *389 f8.10 SR

16 #22 111 111 111 111 010 111 %387 og-similar of-f8.8
16 #23 111 111 111 111 001 111 %381 oq-similar of 8.8
16 #24 111 111 111 110 110 111 *348 oy-similar of -f7.9
16 #25 111 111 111 101 101 111 *361 og-similar of 7.9
16 #26 111 111 111 011 011 111 *335 f7.9

16 #27 111 111 110 111 111 110 *311 og-similar of .f6.23
16 #28 111 111 110 111 111 101 %319 o4-similar of f6.28
16 #29 111 111 110 111 111 011 *316 oq-similar of f6.28
16 #30 111 111 110 111 101 111 %321 o©g-similar of £6.30
16 #31 111 111 101 111 111 110 %233 oo-similar of f6.28
16 #32 111 111 101 111 111 101 %225 f6.23

16 #33 111 111 101 111 111 011 *230 [6.28

16 #34 111 111 101 111 011 111 %235 f6.30

16 #35 111 111 011 111 111 110 *276 o3-similar of f6.28
16 #36 111 111 011 111 111 101 *273 o1-similar of £6.28
16 #37 111 111 011 111 111 011 *268 ¢y-similar of £6.23
16 #38 111 111 011 111 110 111 *278 o1-similar of 6.30
16 #39 101 111 111 111 110 111 *83 o1-similar of f4.1
16 #40 101 111 111 111 101 111 x82 oq-similar of f4.1
16 #41 101 111 111 111 011 111 *81 f4l=z+2y

16 #42 100 111 111 111 111 111 %84 f42=2z+2y+1
15 #43 111 111 111 111 110 100 %393 oj-similar of 8.9
15 #44 111 111 111 111 101 001 *398 oo-similar of f8.9
15 #45 111 111 111 111 100 110 %374 og-similar of 8.6
15 $#46 111 111 111 111 100 101 *373 f8.7

15 #47 111 111 111 111 100 011 *372 f8.6

15 #48 111 111 111 111 011 010 %388 f8.9

15 #49 111 111 111 111 010 110 %385 og-similar of f8.7
15 #50 111 111 111 111 010 101 %386 o 4-similar of f8.6
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wt F#no TLS M MyMy UyUgU; BoyB1B: ToyNh'Ds To1T12T5¢ *no representative
15 #51 111 111 111 111 010 011 *384 oo-similar of 8.6
15  #52 111 111 111 111 001 110 +*380 o3-similar of £8.6
15 #53 111 111 111 111 001 101 *378 oy-similar of f8.6
15 #54 111 111 111 111 001 011 *379 oy -similar of f8.7
15 #5655 111 111 111 111 000 111 *369 f8.4
15 #56 111 111 111 110 110 110 346 og-similar of f7.7
15 #57 111 111 111 110 110 101 %345 oy-similar of f7.7
15 #58 111 111 111 110 110 011 %347 oy-similar of f7.8
15 #59 111 111 111 101 101 110 %360 og-similar of f7.8
15 #60 111 111 111 101 101 101 %359 o 4-similar of f7.7
15 #61 111 111 111 101 101 011 *358 oo-similar of f7.7
15 #62 111 111 111 011 011 110 %333 og-similar of f7.7
15 #63 111 111 111 011 011 101 *334 f7.8
15 #64 111 111 111 011 011 011 *332 f1.7
15 #65 111 111 110 111 110 110 %306 o4-similar of £6.18
15 #66 111 - 111 110 111 101 110 %310 og-similar of f6.22
15  #67 111 111 110. 111 101 101 %318 o4-similar of f6.27
15 #68 111 " 111 110 111 101 011 %315 og-similar of f6.27
15 #69 111 111 110 111 011 110 %299 oo-similar of 6.18
15 #70 111 111 110 101 101 111 *320 0oq-similar of f6.29
15  #71 111 111 101 111 110 101 %220 op-similar of f6.18
15 #72 111 111 101 111 101 101 *x213 f6.18
15  #73 111 111 101 111 011 110 %232 op-similar of f6.27
15  #74 111 111 101 111 011 101 %224 [f6.22
15  #75 111 111 101 111 011 011 *229 f6.27
15 #76 111 111 101 011 011 111 *234 f6.29
15 #77 111 111 011 111 110 110 %275 o3z-similar of f6.27
15 #78 111 111 011 111 110 101 *272 oy-similar of f6.27
15  #79 111 111 011 111 110 011 %267 oq-similar of f6.22
15 #80 111 111 011 111 101 011 %256 oq-similar of f6.18
15 #81 111 111 011 111 011 011 %263 o3-similar of f6.18
15 #82 111 111 011 110 110 111 *277 oq-similar of f6.29
15 #83 000 111 111 111 111 111 *2 z+lz42
14  #84 111 111 111 111 100 100 x371 op-similar of f8.5
14 #85 111 111 111 111 100 001 *370 f8.5
14 #86 111 111 111 111 010 100 %383 oy4-similar of f8.5
14 #87 111 111 111 111 010 010 %382 0q-similar of f8.5
14 #88 111 111 111 111 001 010 377 og-similar of f8.5
14 #89 111 111 111 111 001 001 %376 oy-similar of f8.5
‘14 #90 111 111 111 111 000 110 %368 og-similar of f8.3
14  #91 111 111 111 111 000 101 %367 oy-similar of £8.3
14  #92 111 111 111 111 000 011 *365 f8.3
14 #93 111 111 111 110 110 100 *x344 oq-similar of f7.6
14 #94 111 111 111 110 100 101 %340 oq-similar of f7.5
14  #95 111 111 111 110 010 110 %343 og-similar of f7.5
14  #96 111 111 111 101 101 001 %357 og-similar of f7.6
14  #97 111 111 111 101 100 101 %356 o4-similar of f7.5
14 #98 111 111 111 101 001 011 %353 o9-similar of f7.5
14 #99 111 111 111 011 011 010 *331 f7.6
14 #100 111 111 111 011 010 110 x330 og-similar of f7.5



wt #no TLS MMMy UsUglU, BoB1B; ToThTy To1T12Toy  #no  representative

14 #101 111 111 111 011 001 011 *327 f71.5

14 #102 111 111 110 111 110 100 +308 o 4-similar of 6.20
14 #103 111 111 110 111 101 001 %313 og-similar of f6.25
14 #104 111 111 110 111 100 110 %302 o4-similar of f6.14
14 #105 111 111 110 111 011 010 301 oq-similar of f6.20
14 #106 111 111 110 111 010 110 #2902 (og-similar of f6.13
14 #107 111 111 110 111 001 110 *205 og-similar of f6.14
14 #108 111 111 110 101 101 110 %309 og-similar of f6.21
14 #109 111 111 110 101 101 101 %317 o4-similar of f6.26
14 #1100 111 111 110 101 101 011 314 op-similar of f6.26
14 #111 111 111 101 111 110 100 %222 og-similar of 6.20
14 #112 111 111 101 111 101 001 *215 f6.20

14 #113 111 111 101 111 100 101 %206 f6.13

14 #114 111 111 101 111 011 010 %227 [6.25

14 #115 111 111 101 111 010 101 %216 og-similar of f6.14
14 #116 111 111 101 111 001 101 %209 f6.14

14 #117 111 111 101 011 011 110 %231 og-similar of f6.26
14 #118 111 111 101 011 011 101 - %223 f6.21

14 #119 111 111 101 011 011 011 %228 f6.26

14 #120 111 111 011 111 110 100 %270 ©o;-similar of f6.25
14 #121 111 111 o1l 111 101 001 %258 o-similar of £6.20
14 #122 111 111 011 111 100 011 *252 op-similar of f6.14
14 #123 111 111 011 111 011 010 265 o3-similar of £6.20
14 #124 111 111 011 111 010 011 *259 o3-similar of f6.14
14 $#125 111 111 011 111 001 011 %249 o-similar of f6.13
14 #126 111 111 011 110 110 110 274 og-similar of f6.26
14 #127 111 111 011 110 110 101 *271 o1-similar of £6.26
14 #128 111 111 011 110 110 011 %266 o3-similar of f6.21
14 #129 111 110 111 111 100 110 %165 os-similar of 5.8
14 #1306 111 110 111 111 100 011 %159 oo-similar of 5.8
14 #131 111 101 111 111 001 110 *131 og-similar of 5.8
14 #132 111 101 111 111 001 101 %137 og4-similar of f5.8
14 #133 111 011 111 111 010 - 101 x109 oq-similar of f5.8
14 $#134 111 011 111 111 010 011 %103 f5.8

14 $#135 110 111 111 111 000 111 *88 f4.6

13 #136 111 111 111 111 000 100 %366 og-similar of 8.2
13 #137 111 111 111 111 000 010 *364 oo-similar of f8.2
13 #138 111 111 111 111 000 001 %363 f8.2

13 #139 111 111 111 110 100 100 %338 oi-similar of 7.3
13 #140 111 111 111 110 100 001 %339 op-similar of 7.4
13 #1141 111 111 111 110 010 100 %341 o3-similar of f7.3
13 #142 111 111 111 110 010 010 %342 o3-similar of 7.4
13 #143 111 111 111 101 100 100 %355 o4-similar of f7.4
13 #144 111 111 111 101 100 001 354 o4-similar of 7.3
13 #145 111 111 111 101 001 010 %352 op-similar of f7.4
13 #146 111 111 111 101 001 001 %351 oo-similar of 7.3
13 #1147 111 111 111 011 010 100 %329 og-similar of f7.4
13 #1148 111 111 111 011 010 010 %328 og-similar of f7.3
13 #149 111 111 111 011 001 010 %325 f7.3

13 #150 111 111 111 011 001 001 f7.4
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wt f##no TLS MiM;M, UsUgUy BoBiBy ToTiTs To1T12T20  *no representative
13 #151 111 111 110 111 100 100 %305 o4-similar of f6.17
13 #152 111 111 110 111 010 100 %294 o4-similar of £6.12
13 #153 111 111 110 111 010 010 %291 oo-similar of f6.12
13 #154 111 111 110 111 001 010 *298 og-similar of f6.17
13 #155 111 111 110 111 000 110 %280 oy-similar of f6.4
13 #156 111 111 110 110 110 100 307 o4-similar of £6.19
13 #157 111 111 110 101 101 001 %312 og-similar of f6.24
13 #158 111 111 110 011 011 010 *300 oo-similar of f6.19
13 #159 111 111 101 111 100 100 #208 og-similar of f6.12
13 #160 111 111 101 111 100 001 *205 f6.12
13 #161 111 111 101 111 010 100 %219 og-similar of f6.17
13 #162 111 111 101 111 001 001 %212 f6.17
13 #163 111 111 101 111 000 101 *194 f6.4
13 #164 111 111 101 110 110 100 %221 op-similar of £6.19
13 #165 111 111 101 101 101 001 *214 f6.19
13 #166 111 111 - 101 011 011 010 %226 f6.24
13 #167 111 111 011 111 100 001 255 oi-similar of f6.17
13 #168 111 111 011 111 010 010 *262 o3-similar of f6.17
13 #169 111 111 011 111 001 010 %251 o3-similar of f6.12
13 #170 111 111 011 111 001 001 %248 oy-similar of £6.12
13 #171 111 111 011 111 000 011 %237 o-similar of f6.4
13 #172 111 111 011 110 110 100 *269 o-similar of f6.24
13 #173 111 111 011 101 101 001 *257 oq-similar of £6.19
13 #174 111 111 011 011 011 010 #264 o3-similar of f6.19
13 #175 111 110 111 111 100 100 %163 o3-similar of f5.6
13 #176 111 110 111 111 100 001 *157 og-similar of £5.6
13 #177 111 110 110 111 100 110 %164 o3-similar of f5.7
13 #178 111 110 011 111 100 011 %158 oo-similar of f5.7
13 #179 111 101 111 111 001 010 %129 og-similar of f5.6
13 #180 111 101 111 111 001 001 %135 o4-similar of f5.6
13 #181 111 101 110 111 001 110 %130 og-similar of £5.7
13 #182 111 101 101 111 001 101 %136 o4-similar of f5.7
13 #183 111 011 111 111 010 100 %107 o;-similar of £5.6
13 #184 111 011 111 111 0io 010 *101 f5.6
13 #185 111 011 101 111 010 101 #108 o-similar of f5.7
13 #186 111 011 011 111 010 011 *102 f5.7
13 #187 100 111 111 111 000 111 *85 f4.3=2z+ 2y
13 #188 011 111 110 010 111 110 *79 og-similar of f3.13
© 13 #1899 011 111 101 100 111 101 *55 oq-similar of f3.13
13 4190 011 111 011 001 111 011 *31  f3.13
12 #191 111 111 111 111 000 000 +362 f8.1
12 #192 111 111 111 110 000 100 %337 oy-similar of f7.2
12 #4193 111 111 111 101 000 001 %350 og-similar of f7.2
12 #194 111 111 111 011 000 010 %324 f7.2
12 #195 111 111 110 111 000 100 %282 o9-similar of f6.6
12 #1996 111 111 110 111 000 010 %284 o4-similar of f6.6
12 #197 111 111 110 110 100 100 *304 o 4-similar of f6.16
12 #198 111 111 110 110 010 100 %293 oy4-similar of f6.11
12 #199 111 111 110 101 100 100 %303 o4-similar of £6.15
12 #200 111 111 110 101 001 010 %296 op-similar of f6.15



wt F#no TLS MMM, UyUgU, BoBiBy, ToTiTo Tp1TisTh *no representative

12 #201 111 111 110 011 010 010 %290 oo-similar of f6.11
12 #202 111 111 110 011 001 010 #297 os-similar of £6.16
12 #203 111 111 101 111 000 100 %196 f6.6

12 #204 111 111 101 111 000 001 *198 og-similar of f6.6
12 #205 111 111 101 110 100 100 *207 og-similar of f6.11
12 #206 111 111 101 110 010 100 *218 op-similar of £6.16
12 #207 111 111 101 101 100 001 *204 f6.11

12 #208 111 111 101 101 001 001 *211 f6.16

12 #209 111 111 101 011 010 100 %217 og-similar of £6.15
12 #210 111 111 101 011 001 001 %210 f6.15

12 #211 111 111 100 110 110 100 %189 o-similar of £6.3
12 #212 111 111 011 111 000 010 %239 ¢;-similar of £6.6
12 #213 111 111 011 111 000 001 %241 o3-similar of f6.6
12 #214 111 111 011 110 100 001 %2563 o-similar of f6.15
12 #215 111 111 011 110 010 010 *260 o3-similar of f6.15
12 #216 111 111 011 101 100 001 %254 o, -similar of f6.16
12 #217 111 111 011 101 001 001 *247 oy-similar of f6.11
12 #218 111 111 011 011 010 010 %261 o3-similar of f6.16
12 #219 111 111 011 011 001 010 %250 o3-similar of f6.11
12 #220 111 111 010 011 011 010 *185 6.3

12 #221 111 111 001 101 101 001 %193 o5-similar of £6.3
12 #222 111 110 111 111 000 010 *172 oy-similar of f5.13
12 #223 111 110 111 110 100 100 *161 os-similar of f5.4
12 #224 . 111 110 111 101 100 001 %155 oo-similar of f5.4
12 #225 111 110 110 111 100 100 %162 o3-similar of f5.5
12 #226 111 110 011 111 100 001 *156 oo-similar of 5.5
12 #227 111 101 111 111 000 100 %144 og-similar of f5.13
12 #228 111 101 111 101 001 001 %133 o4-similar of f5.4
12 #229 111 101 111 011 001 010 *127 oo-similar of f5.4
12 #230 111 101 110 111 001 010 *128 og-similar of f5.5
12 #231 111 101 101 111 001 001 %134 o4-similar of f5.5
12 #232 111 011 111 111 000 001 %116 f5.13

12 #233 111 011 111 110 010 100 %105 o;-similar of f5.4
12 #234 111 011 111 011 010 010 *99 f5.4

12 #235 111 011 101 111 010 100 %106 o-similar of f5.5
12 #236 111 011 011 111 010 010 *100 f5.5

12 #237 011 111 110 010 110 110 *64 og-similar of f3.4
12 #238 011 111 110 010 011 110 *60 oo-similar of 3.4
12 #239 011 111 101 100 110 101 *36 op-similar of f3.4
12 #240 011 111 101 100 101 101 %40 o4-similar of f3.4
12 #241 011 111 100 100 111 101 *56  o4-similar of £3.12
12 #242 011 111 100 010 111 110 £78  jo = og-similar of £3.12
12 #243 011 111 011 001 101 011 %16 oo-similar of f3.4
12 #244 011 111 011 001 011 011 *12 f3.4

12 #245 011 111 010 010 111 110 *80 o3-similar of £3.12
12 #246 011 111 010 001 111 - 011 *32 oo-similar of £3.12
12 #247 011 111 001 100 111 101 *54 oy-similar of £3.12
12 #248 011 111 001 001 111 011 *30  £3.12 = 5190

12 #249 001 111 110 101 101 110 %5 22+ 2 = 09-, 04-sim. 2z
12 #250 001 111 101 011 011 101 *3 2z
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12 #251 001 111 011 110 110 011 *4 2z +4+1=o01-, o3-sim. 2z
11 #252 111 111 111 110 000 000 %336 op-similar of f7.1
11 #253 111 111 111 101 000 000 %349 og-similar of 7.1
11 #254 111 111 111 011 000 000 %323 fT7.1

11 #255 111 111 110 111 000 000 *289 og-similar of f6.10
11 #256 111 111 110 110 000 100 *281 o2-similar of f6.5
11 #257 111 111 110 011 000 010 *283 o4-similar of f6.5
11 #258 111 111 101 111 000 000 *203 f6.10

11 #259 111 111 101 110 000 100 *195 f6.5

11 #260 111 111 101 101 000 001 *197 og-similar of 6.5
11 #261 111 111 100 110 100 100 *187 oy -similar of 6.2
11 #262 111 111 100 110 010 100 188 os-similar of f6.2
11 #263 111 111 011 111 000 000 %246 o-similar of £6.10
11 #264 111 111 011 101 000 001 %240 og-similar of f6.5
11 #265 111 111 011 011 000 010 %238 o©-similar of f6.5
11 #266 111 111 010 011 010 010 %184 og-similar of f6.2
11 #267 111 111 010 011 0oL 010 *x183 f6.2

11 #268 111 111 001 101 100 001 %192 o 4-similar of 6.2
11 #269 111 111 001 101 001 001 *191 og-similar of 6.2
11 #270 111 110 111 111 000 000 %181 ©og-similar of £5.19
11 #271 111 110 111 011 000 010 *169 o4-similar of f5.11
11 #272 111 110 110 111 000 010 %171 o3-similar of £5.12
11 #273 111 110 110 110 100 100 %160 o3-similar of 5.3
11 #274 111 110 011 111 000 010 *170 og-similar of £5.12
11 #275 111 110 011 101 100 001 *x154 oo-similar of 5.3
11 #276 111 101 111 111 000 000 %153 o¢-similar of f5.19
11 #4277 111 101 111 110 000 100 *#141 og-similar of f5.11
11 #278 111 101 110 111 000 100 %142 og-similar of f5.12
11 #279 111 101 110 011 001 010 %126 og-similar of £5.3
11 #280 111 101 101 111 000 100 %143 o 4-similar of £5.12
11 #281 111 101 101 101 001 001 %132 o 4-similar of £5.3
11 #282 111 011 111 111 000 000 *125 £5.19

11 #283 111 011 111 101 000 001 *113  f5.11

11 #284 111 011 101 111 000 001 *115 oy-similar of £5.12
11 #285 111 011 101 110 010 100 %104 o;-similar of f5.3
11 #286 111 011 011 111 000 001 x114  f5.12

11 #287 111 011 011 011 010 010 *98 5.3

11 #2838 110 111 111 111 000 000 *87 f4.5

11 #289 011 111 110 010 110 100 *63 os-similar of 3.3
11 #2900 011 111 110 010 011 010 *59  op-similar of 3.3
11 #291 o011 111 110 010 010 110 *72 og-similar of f3.11
11 #292 011 111 101 100 110 100 %35 op-similar of 3.3
11 #293 011 111 101 100 101 001 *39  og-similar of 3.3
11 #294 011 111 101 100 100 101 %48  o-similar of f3.11
11 #295 011 111 100 100 101 101 %38 o4-similar of 3.2
11 #296 011 111 100 010 011 110 *58  oo-similar of 3.2
11 #297 011 111 011 001 101 001 %15  og-similar of £3.3
11 #298 011 111 011 001 011 010 *11 f3.3

11 #299 011 111 011 001 001 011 %24 f3.11

11 #300 011 111 010 010 110 110 %62 o3-similar of 3.2
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11 #301 011 111 010 001 101 011 %14 o2-similar of £3.2
11 #302 011 111 001 100 110 101 *34 ¢-similar of £3.2
11 #303 011 111 001 001 011 011 *10 f3.2

11 #304 011 110 110 010 110 110 *66 o3-similar of £3.5
11 #305 011 110 011 001 101 011 *18 oy-similar of £3.5
11 #306 011 101 110 010 011 110 %65 j; = op-similar of 3.5
11 #307 011 101 101 100 101 101 %42 o 4-similar of £3.5
11 #308 011 011 101 100 110 101 *41 oy-similar of £3.5
11 #309 011 011 011 001 011 011 *17 3.5 = sg01

10 #310 111 111 110 110 000 000 *288 o 4-similar of f6.9
10 #311 111 111 110 101 000 000 %285 og-similar of f6.7
10 #312 111 111 110 011 000 000 %287 og-similar of £6.9
10 #313 111 111 101 110 000 000 %202 og-similar of £6.9
10 #314 111 111 101 101 000 000 *201 f6.9

10 #315 © 111 111 101 011 000 000 *199 f6.7

10 #316 111 111 100 110 000 100 *186 oy-similar of f6.1
10 #317 111 111 011 110 000 000 %242 op-similar of £6.7
10 #318 111 111 011 101 000 000 %244 oy-similar of f6.9
10 #319 111 111 011 011 000 000 245 oa-similar of f6.9
10 #320 111 111 010 011 000 010 x182 f6.1

10 #321 111 111 001 101 000 001 *190 oy-similar of f6.1
10 #322 111 110 111 110 000 000 %180 og-similar of £5.18
10 #323 111 110 111 101 000 000 *179 oo-similar of f5.18
10 #324 111 110 110 111 000 000 %178 o3-similar of f5.17
10 #325 111 110 110 011 000 010 *168 o3-similar of £5.10
10 #326 111 110 011 111 000 000 *176 oo-similar of f5.17
10 #327 111 110 011 011 000 010 *167 oo-similar of £5.10
10 #328 111 101 111 101 000 000 *152 o4-similar of f5.18
10 #329 111 101 11 011 000 000 *151 og-similar of f5.18
10 #330 111 101 110 111 000 000 %148 og-similar of f5.17
‘10 #331 111 101 110 110 000 100 *139 og-similar of £5.10
10 #332 111 101 101 111 000 000 *150 o4-similar of £5.17
10 #333 111 101 101 110 000 100 %140 o 4-similar of f5.10
10 #334 111 011 111 110 000 000 %124 o-similar of £5.18
10 #335 111 011 111 011 000 000 %123  f5.18

10 #336 111 011 101 111 000 000 122 oy -similar of £5.17
10 #337 111 011 101 101 000 001 x112 oq-similar of f5.10
10 #338 111 011 011 111 000 000 *120 f5.17

10 #339 111 011 011 101 000 001 *111  f5.10

10 #340 011 111 110 010 010 100 *75 o3-similar of f3.8
10 #341 011 111 110 010 010 010 %69 gg-similar of 3.8
10 #342 011 111 101 100 100 100 %45 o-similar of f3.8
10 $#343 011 - 111 101 100 100 001 %51 o 4-similar of f3.8
10 #344 011 111 100 100 110 100 %33 oy-similar of £3.1
10 $#345 011 111 100 010 110 100 *#61 o3-similar of f3.1
10 #4346 011 111 011 001 001 010 *21 f3.8

10 #347 011 111 011 001 001 001 *27 oo-similar of 3.8
10 $#348 011 111 010 010 011 010 *57 og-similar of f3.1
10 #349 011 111 010 001 011 010 *9  f3.1

10 #350 011 111 001 100 101 001 *37 o4-similar of 3.1



#no
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10 #351 011 111 001 001 101 001 *13  oy-similar of 3.1
9 #352 111 111 110 010 000 000 *286  oro-similar of £6.8
9 #353 111 111 101 100 000 000 *200 f6.8
9 #354 111 111 011 001 000 000 %243 o;-similar of f6.8
9 #355 111 110 110 110 000 000 *177 oz-similar of £5.16
9 #356 111 110 011 101 000 000 *175 o9-similar of £5.16
9 #357 111 110 010 011 000 010 %166 oo-similar of £5.9
9 #358 111 101 110 011 000 000 *147 og-similar of £5.16
9 #359 111 101 101 101 000 000 %149 o 4-similar of £5.16
9 #360 111 101 100 110 000 100 *138 og-similar of £5.9
9 #361 111 011 101 110 000 000 *121 oy-similar of £5.16
9 #362 111 011 011 011 000 000 *119 f5.16
9 #363 111 011 001 101 000 001 *110 £5.9
9 #364 011 111 100 100 100 100 *43 o1-similar of £3.6
9 #365 011 111 100 010 010 100 *73 ogz-similar of £3.6
9 366 011 111 010 010 010 010 *67 og-similar of £3.6
9 #367 011 111 010 001 001 010 *x19 f3.6
9 #3638 011 111 001 100 100 001 *49 o 4-similar of f3.6
9 $#369 011 111 001 001 001 001 *25 oo-similar of f3.6
9 #3700 011 110 110 010 010 010 *70 og-similar of 3.9
9 #371 011 110 101 100 100 100 *47 oy -similar of £3.10
9 #372 011 110 101 100 100 001 %53 o04-similar of £3.10
9 #373 011 110 011 001 001 010 *22 f3.9
9 #374 011 101 110 010 010 100 *76 oz-similar of £3.9
9 #375 011 101 101 100 100 100 #46 ¢oy-similar of £3.9
9 #376 011 101 011 001 001 010 %23 f3.10
9 #377 011 101 011 001 001 001 %29 o9-similar of £3.10
9 #378 011 011 110 010 010 100 *77 os-similar of £3.10
9 #379 011 011 110 010 010 010 *71 og-similar of £3.10
9 $#380 011 011 101 100 100 001 *52 og-similar of 3.9
9 #381 011 011 011 001 001 001 *28 oo-similar of 3.9
8 #382 111 110 101 100 000 000 *174 oy-similar of f5.15
8 #383 111 110 010 011 000 000 *173 oy-similar of f5.14
8 #384 111 101 100 110 000 000 *145 og-similar of f5.14
8 #385 111 101 011 001 000 000 *146 og-similar of £5.15
8 #386 111 100 110 101 000 000 *97 og-similar of £5.2
8 #387 111 011 110 010 000 000 %118 f5.15
8 #3888 111 011 001 101 000 000 *117 f5.14
8 #389 111 010 011 110 000 000 *94 oj-similar of £5.2
8 #390 111 001 101 011 000 000 ¥91  f5.2
7 #391 o011 100 100 100 100 100 *44 ©oy-similar of f3.7
7 #392 011 100 010 001 001 010 *20 f3.7 = so10
7 4393 011 010 010 010 010 010 *68 jy = og-similar of f3.7
7 #394 011 010 001 100 100 001 *#50 o4-similar of £3.7
7 F#395 011 001 100 010 010 100 *74 o3-similar of f3.7
7 #396 011 001 001 001 001 001 *26 op-similar of £3.7
6 #397 111 100 100 100 000 000 *96 o 4-similar of 5.1
6 #398 111 100 010 001 000 000 *95  og-similar of f5.1
6 #399 111 010 010 010 000 000 *93 o3-similar of f5.1
6 #400 111 010 001 100 000 000 *92 op-similar of f5.1
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6 #401 111 001 100 010 000 000 *90 og-similar of 5.1
6 #402 111 001 001 001 000 000 *89 5.1 = min(z, y)
4 #403 001 000 000 000 110 100 *8 2= 0y-, o3-similar of 0
4 #404 001 000 000 000 101 001 *7 1= 03-, 04-similar of 0
4 #405 001 000 000 000 011 010 *6 0 (constant)
0 #406 000 000 000 000 000 000 *1 z (projection functions)



Appendix 2. Representatives of classes of P; (f3.1-f8.14).
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Representatives of classes of P; (continued) £3.6-f7.1
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Appendix 3. List of basic inclusions in Ps.

Lemma 5.1.3.
MM, C Uy, MM, C Up, and MoM; C U;.

Corollary 5.1.1.
MMMy C UUgUs.

Lemma 5.1.4.
U, UU; C My MyM,.

Note 5.1.1.
D(0,1)U,Uy C My, (5.4)
D(2,0)U,U; C My, (5.5)
D(0,1)UgU; C M,, (5.6)
D(0,1)U1 Uy, C M, (5.7)

.D(O, l)UoU]_ = {0,1} ,D(1,2)U1U2 = {1,2} and D(Z, 0)U2U0 = {2,0}

Lemma 5.1.5.
MM, C By, M;M, C B, and MM, C B,.

Corollary 5.1.2.
MyM, M, C BoB; B;.

Lemma 5.1.6.
U,Uy € By, UgU; € By and U, U; C Bo.

Corollary 5.1.3.
UoU U, C BoB1 Bs.

Lemma 5.1.7.
BoBy C Uy, B1B; € Ug and B,B, C U;.

Corollary 5.1.4.
BOB1B2 Q UoUlUg.

Theorem 5.1.4

K= MOM1M2 = 303132 = UOU1U2 = {0, 1,2, ZT; (Z = 1,2, .o )}

Lemma 5.1.8.
ToaTis C Ty, T12To0 € T and ToTy; € To.

Corollary 5.1.5.
TnTho Ty C ToTh To.

Lemma 5.1.9.
M1 U M2 U Mo C_; T01 U T12 U Tgo.
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Note 5.1.2.

UgUU,UU, € TnTixTho,
By UB,UB; € TyTi2T.

Lemma 5.1.10.
.B()B]_ Q T017 MQMl g T01 except constant function f = 2,
BBy C Tyy, MiM,; C Ty, except constant function f =0,
ByBy C Ty, MyMy C Ty  except constant function f=1
Corollary 5.1.6 (Lemma 5.1.11).
Uo M2 o1 D(O, 1)M1 (511)
U() Ml, U1 Mo on D(O, 1)M2 (59), (512)
U1 M2 ‘ o1 D(O, 1)M0 (513)
U1 = Mo : on D(1,2)M2 (514)
U1 Mg, U2 = M1 on .D(]., 2)M0 (515)
U2 Mo on - D(l, 2)M]_ (516)
U2 M]_ on D(2, O)Mo (517)
Ug = Mo, Ug = M2 on D(Z, O)Ml (518), (518)
Uo = M1 on D(2, O)Mg. (519)

Let PO) = {fIf € Pél) and f is onto} and D'(0,1) := D(0,1) \ {0,1}, D'(1,2) :=
D(1,2)\ {1,2}, D'(2,0):= D(2,0)\ {2,0}. Let D := P;\ D(0,1) U D(1,2) U D(2,0).

Lemma 5.3.1.
D'(0,1)C S.
Corollary 5.3.1.
DC?S.
Corollary 5.3.2.
TS = {m,-,a:,-—}- 1,.’17,'+ 2 (Z = 1,2,. )}
Lemma 5.3.2. _
D'(0,1) C T.
Corollary 5.3.2. _
D\ {0,1,2} C L.
Corollary 5.3.4.
TL = P3), +1{0,1,2}.
Lemma 5.3.5. L
D'(0,1)UsUy C T2.

Lemma 5.4.3.

TS C MUB, where I = M MMy, U = ToU:Ts, and B = BB, Bs.
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Lemma 5.4.4. o
5T0T1T2 Q T01T12T20-

Lemma 5.4.5. _ o
TL C ToT12T%.

Let Ly := {f|f = co+ X c;z; and 3%, = a} and Ly := {f|f € L, and f(0) = ¢co =
b} (La = La.O + La.l + LaZ)-

Lemma 5.4.7.
LS = L,.
Lemma 5.4.8.
1) Loo+ Lo € ToT:Ts,
2) Loy + Loy € ToThTo,
3)Log+ Ly € ToT1Ts.
Lemma 5.4.9. .
TLCM
Lemma 5.4.10. ~
TLCU
Lemma 5.4.11. B
TLCB
Lemma 5.5.1. .
1) M,T c T,T,,
2) M\T, T, C Ty,
3) M,T,T, C T,.

Corollary 5.5.1. .
MIM,T C ToTh 15Ty Th2T.

Corollary 5.5.2.

U2 = B]_ and U]_ = B2 in M1M2T.

Lemma 5.5.8.
By T2oMy C UpU,.

Lemma 5.5.9. _ _ _ o
Ul g Bl, U2 _C_ B2 and Uo _C_ Bo in MleMo.

Lemma 5.5.10. o _ o
BoBle = BzBoBl in MlMgMoTzo.

Lemma 5.5.11.
U1 Q B2B0 in Ml.
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Note 5.5.2.

Lemma 5.6.1.

Lemma 5.6.3.

Lemma 5.6.4.

Corollary 5.6.1.

Lemma 5.6.6.

Lemma 5.6.7.

Corollary 5.6.3.

Lemma 5.6.8.

Lemma 5.6.9.

Lemma 5.6.10.

Lemma 5.6.11.

Lemma 5.7.1.

Lemma 5.7.2.

-BZBO = U1 in Ml'

UUs € T TaoToBo.

—M—0U2U1 g T12-

tol &l

INiN
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