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Abstract

In this paper we consider an integro-differential systemsisiing of a parabolic
and a hyperbolic equation related to phase transition msodélhe first equation
is integro-differential and of hyperbolic type. It des@ibthe evolution of the
temperature and also accounts for memory effects througrermary kernelk via
the Gurtin-Pipkin heat flux law. The latter equation, governing the evolutidrihe
order parameter, is semilinear, parabolic and of the foortter (in space). We prove
a local in time existence result and a global uniquenesdtrémuthe identification
problem consisting in recovering the memory kerkelppearing in the first equation.

Introduction

In order to introduce our mathematical problem, let us atgrsa smooth bounded
containerQ c RY, 1 <d < 3, occupied by the substance undergoing the phase tran-
sition. Name6é and y the basic state variables of the process, correspondinpeto t
relative temperature and to the order parameter, respectively. ,Tthen energy bal-
ance equation, describing the evolution&f can be written, under th&urtin-Pipkin
heat flux law (cf. [11]), in the form

(0.1) D@ +1x) — A(k%0) = f,

where x stands for the standard time convolution product for fuorddi with their sup-
ports in R:, k: [0, T] - R, k(0) > O, is the so-called heat conductivity relaxation
kernel, f is a heat source also incorporating an additional term d#pgron the past
history of & up tot = 0, which is assumed to be given, ahds a positive constant
accounting for the latent heat.

Then, this first equation—of hyperbolic type after diffeiation—, ruling the evo-
lution of 0, is coupled with thekinetic equationfor the phase variable, which is of
parabolic type. We will consider theeonservedcase

(0.2) Dix —Aw =0, w=—Ayx+8(x)—16.
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580 D. QUIDETTI AND A. LORENZI

We stress that system (0.1), (0.2)—of mixed hyperboliabalic type—was studied in
the paper [4].

We recall thatg in (0.2) is usually assumed to be the sum of a general, pgssibl
multivalued, maximal monotone graphrepresenting the derivative of the convex part
of a double wellfree energy potential, and of the derivative of a smooth fioncac-
counting for its non-convex part. However, in the presergepao solve our problem
we will need to consider only sufficiently regular functiofis

Moreover, relations (0.1) and (0.2) are assumed to be congpitzd by homo-
geneous Neumann boundary conditions bothépry, and for the auxiliary unknown
w, generally callecchemical potential and by the Cauchy conditions férand yx:

(03) 9(0! X) = 90(X)! X(O’ X) = XO(X)1 X e Q;
(0.4) ke 20 20X 0 N B 16120, on (0.7) x 9%,
v dv  dv

where d/dv indicates the normal derivative dit2.

Actually, on account of the boundary condition en it is straightforward to check
that the average of is constant in time.

The main task of this paper concerns the identification of kbmel k entering
equation (0.1) under the following additional informatiowolving the temperaturé:

(0.5) o[a(t, )] ::/Q<p(x)9(t,x)dx:g(t), telo, 7].

We stress that, to derive a fixed point equation Kprwe need to differentiate (in
time) equations (0.1) and (0.2) and working on the resulémgression. Further, to
perform rigorously such a procedure, however, we need tbwli#ga smooth solutions
to problem (0.1)—(0.5). Consequently, we must first obtaigliminary regularity re-
sults for the solutions to hyperbolic and parabolic iniad boundary value problems.
We point out that these regularity and continuous deperedeesults for such direct
problems, beyond acting as a basis for the subsequent enafythe inverse problem,
might have some independent interest.

In the latter part of our paper, we will proceed to solving ddentification prob-
lem for k.

Let us note that identifyingnemory kernelin systems of partial integro-differential
equations (PIDE) related to transition models is a quite mpeablem, mainly when
they are ofmixed type A pioneering paper on this subject is [5] where the author
uses analytic semigroup theory to study (locally in timedhbihe direct and the inverse
problems for anon-conservedparabolic) system of PIDE’s (cf. [3, 2, 7]), which cou-
ples (0.1)—provided with an additional termkoAf, ko > 0—, with a second-order
parabolic equation for the phase variable.

As far as theconserved modetonsidered in this paper is concerned, let us quote
the papers [6] and [14], where the authors (using semigreapniques) study thiecal
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(in time) identification of a kernel for system (0.1), (0.2), when fiirst equation is
provided with an additional term-koA#.

We give now the plan of our paper.

In Section 1 we introduce some notation and recall some basidts used through-
out the paper.

In Section 2 we present some higher-order regularity resudhcerning the abstract
hyperbolic problem

u//(t) + Au(t) = f(t), te [0, T],
(0.6) {u(O) =Uuy, UW(0)=uy

where A is a self-adjoint lower bounded operator in the Hilbert spbic In the study

of inverse problems, one often needs to work in spaces o€ gedgular functions. Sec-
tion 2 is devoted to proving the regularity results given mogdsition 2.9 and Corol-
lary 2.11, which are both used in the final Section 5. In Rentafl? we apply our

abstract results to the particular case appearing in thersavproblem.

In Section 3 we study the higher-order regularity of the 8ofuto an abstract
parabolic system in ahP-setting with values in a Hilbert space. Of course, the tesul
obtained are applied in Section 5.

In Section 4 we present a careful study of the nonlinear termurr problem. Here
also we have to work in spaces of quite regular functions.

Finally, Section 5 is devoted to solvinipcally in time our identification prob-
lem (0.1)—(0.5) as well as to provingg@obal in time uniqueness result.

1. Notation

We introduce some notations we shall use in the sequel.

We shall indicate withN the set of strictly positive integers, whilg will stand
for N U {0}.

R* will denote the set of strictly positive real numbers.

If pe[l, +too[, we shall indicate withp’ the dual indexp/(p — 1), with p’ = oo
if p=1.

The notationW™P(0, T; X), where X is a Banach spacel € R*Y, me N, p e
[1, +oo[, will denote the space of all measurable functions fromT{P,into X whose
distributional derivatives up to the orden belong to LP(0, T; X). Such a space is
normed by

m-1
1) 1 llwme.rx) = D I FOO)x + 1™ Lo 1x)-
k=0
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We note that this norm is equivalent to the usual one

k=0

m—1 1/p
(1.2) I lwmeo.1:%) = (Z I f<k>||Ep(o,T;x)> :

but the constants yielding the equivalence may burstdo as T — 0+.

Since in some fundamental estimates in this paper occursterroh ag| f ©(0)| x
and we are going to prove an existence regulthe little with respect to time, it will
be more appropriate to make use of definition (1.1).

Finally, we norm in a similar wayC™([0, T]; X), m € N\{O}:

m—1

(1.3) Il fllcmqo, Ty;x) == Z I FOO)x + I F ™l co.my:%)-
k=0

It is easily seen that, iff € C1([0, T]; X) and f(0) =0, then
(1.4) I fllcqo,mx) < Tl fllcio, )
and, if f e C([0, T]; X),

(1.5) Il < TYPIfllcqo,m:%)-

If €2 is an open subset iR", s> 0, p,q € [1, +oo], we shall indicate withB} ,(<2)
the corresponding Besov space (see, for example, [9], .[19])

If X(R2) is a space of functions of domai, with 2 open andd2 smooth, we
shall put, whenever the expression has a meaning,

(1.6) Xo(Q) = {f € X(9): % _ o},
(L.7) Xos(Q) = {f e X(Q): % — aaAUf _ o}.

If (Xo, X1) is a pair of compatible Banach spacése (0, 1) andp € [1, oo], we
shall indicate with Ko, X1)s,p the real interpolation space (see [15]).

We shall indicate withC(A, B, ...) positive constants depending g B,.... In
a sequence of estimates, we shall often wGt€A, B, ...), Cz(A, B, ...), etc.

2. Hyperbolic problems

We introduce the following basic assumption:
(A1) V and H are Hilbert spacesy € H andV is dense inH.

We indicate with [, -] the scalar product iH, with (-, -)y the scalar product in
V, with | - |lv and || - |4 the norms inV and H respectively, and withvV’ the space
of antilinear bounded functionals M. We assume that
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(A2) [lvlln < llvllv, Yo eV
in such a way tha¥ is continuously embedded intd.

Using Riesz theorem, one can easily verify that the natusain| - ||y, in V' can
be obtained from a scalar product, so thétis by itself a Hilbert space. Ih € H,
we identify it with the elementH, -] of V'. From (A2) it follows immediately that

(2.1) [hilv: < Ilhly  Yhe H.
If €V andv e V, we set
(2.2) [, v] := @(v).

(2.2) is consistent with the previous identification ldf with a subspace of/’.

Let now a be a sesquilinear, Hermitian continuous functional of dioma x V,
such that, for certain > 0 andu > 0, the estimate
(A3) a(v, v) = v[[vlIZ — vl Yv eV
holds (observe that, aa is hermitian, a(v, v) € R). We indicate with.A the linear
operator fromV to V'’ such that

(2.3) [Av, w] = a(v, w), VYv,w e V.
Finally, we introduce the following operatok in H:

D(A)={veV: Av e H},
(24 {Av = Av, v e D(A).

It is convenient to consider also the following opera®in H:
(2.5) Si=A+pu.

Observe that we should obta® instead ofA if we replaceda with a+u[-, -]. The
following properties ofS are well known (see, for example, [18], Section 2.2):

Theorem 2.1. Assume that the assumptio(&1)—(A3) hold. Then if A and S
are the operators defined if2.4) and (2.5), we have
() D(A) is dense in H
(I) S is a positive self-adjoint operator in ;H
() Vv = D(SY?), with equivalent norms

Lemma 2.2. The operator 82 can be extended by a linear isomorphism from
H to V.

Proof. Ifhe H andv €V, define

(2.6) [Th, u] := [h, S¥2u].
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If {E(2) | » € R} is the spectral resolution o8, we haveSY2 = [ AY2dE(), so
that S¥2 is an isomorphism fronV to H with inverse S /2 = [ A~ Y2dE(x). So
it is clear that the operatof defined in (2.6) is an extension &/2? to an element of
L(H,V"), as

Ith, SY20]l < Ihlla 11ISY2v )l < 1SY2ll cov.my DTk Ty -

Moreover, if ¢ € V', the equationTh = ¢ has a unique solutiomm € H: h is the
element ofH satisfying

[h, Kl =[¢, SY?%k], VkeH. O

REMARK 2.3. In the following, we shall indicate witl$/? the operatorT in-
troduced in Lemma 2.2.

Proposition 2.4. Set X:=V x H. Define the following operator G in X

27 {D(G) = D(A) x V,

G(u, v) = (v, —Au), (u, v) € D(G).
Then G is the infinitesimal generator of a semigroup in X

Proof. With the method developed in the proof of Theorem Zhapter 5 in
[13], if (ug, vo) € D(A) x V, the problem

u”(t) + Au(t) =0, t>0,
(2.8) {u(O) =Ug, U(0)=ug

has a unique solutiom in C?([0, +oo[; H) N CX([0, +oo[; V) N C([0, +oo[; D(A)). If
t > 0, we define

(2.9) S(t)(uo, vo) = (u(t), U'(t)).

From Theorem 8.2 in [12] we have also that for evdry> O there existsC(T) > O
such that, if 0<t < T, the estimate

(2.10) lu@®llv + U @Ol < C(T)(Iollv + llvollm)

holds. AsD(A) x V is dense inX, we conclude from (2.10) that for artye [0, +oo[
S(t) is extensible to an element af(X), which we continue to indicate witl$(t).
From the uniqueness of the solution, it is not difficult toifsethat {S(t): t > 0} is a
strongly continuous semigroup of linear bounded operaitorX.
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Now we show that its infinitesimal generator@ We indicate for a moment this
generator withG’. Then it is clear thatG’ is an extension ofG, as, if o, vo) €
D(G), then S(-)(ug, vo) € C([0, +oo[; X) and S(0)(ug, vo) = G(Ug, vg). On the other
hand, from }-oo, —u] € p(A) it follows easily [/, +oo[ € p(G). So, if we pick
A € R sufficiently large in such a way that € p(G) N p(G’), we obtain easily that
(A —G)t=( - G)L, implying immediatelyG = G'. O

Lemma 2.5. Let G be the infinitesimal generator of a strongly continusesi-
group {S(t): t > 0} in the Banach space X and let&WYY(0,T; X). Then the function

t
u(t) ::/O St —s)F(s)ds, te]0,T],

belongs toe C([0, T]; X)NC([0, T]; D(G)) and u(t) = Gu(t) + F(t) for any te [0, T].

Proof. It is well known (see, for example, [16], Corollary5p.that, if F €
CY([0, T]; X), thenu e CY([0, T]; X)NC([0, T]; D(A)). Moreover, for anyt € [0, T],

2.11) U (t) = S(F(0) + / 'St 9F(9)ds
0
2.12) Aut) = U'(t) — F(b).

Fix a sequenceFy)ken in CY([0, T]; X), converging toF in W0, T; X) and indicate
with uk the function obtained replacing with F¢. Then, from (2.11)—(2.12), we de-
duce that @k (t))ken, UE(t))ken, (Auk(t))ken converge, uniformly in [0T], respectively
to u(t), S(t)F(O)+f(§ St —s)F'(s)ds and S(t)F (0) +fé St —s)F'(s)ds— F(t). From
this the conclusion easily follows. U

Corollary 2.6. Consider the problem

(2.13) {U”(t) +Aut) = f(t), telo, T,

u(0) =ug, Uv(0)=u;

under the assumptiofAl)—(A3), where A is the operator defined i{2.4). If f €
WLY0, T; H), up € D(A), u; € V, then there exists a unique solution u belonging to
C2([0, T]; H) N CY([0, T]; V) N C([0, T]; D(A)).

Moreovey if f e WhP(0, T;V’), with 1< p <+oo, then u belongs also to
W3P, T; V'); if f e CY([0, T]; V'), then u belongs also to {0, T]; V').

Finally, for any Tp > O there exists CTg) > 0 such thatif 0 < T < Ty,

lullczqo,11:Hy + lUllcyqo, T1:vy + lUllcqo, T1;D(AY)
< C(To)(lluollipay + llully + Il fllweioT:H))s

(2.15)  Jlullwse,T;v7) < C(To)(luolioay + ludllv + Il Fllweao,;my + I Fllwee,iv7)-

(2.14)
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Proof. Puttingv := U/, the problem (2.13) is equivalent to the system

u'(t) = o(t), O0<t=<T,
(2.16) v(t)=—Ault)+ f(t), 0<t<T,
u(0) =ug, v(0)=us.

As the functiont — (0, f(t)) belongs toW'(0, T;V x H) and (o, u;) € D(G), G
being defined in (2.7), by Lemma 2.5, problem (2.16) has ausmgplutionU = (u, v)
belonging toC*([0, T]; V x H)NC([0, T]; D(A) x V). This impliesu € C([0, T]; V)N
C([0, T]; D(A)). As v € C([0, T]; H) andv =/, we conclude thati € C?([0, T]; H).
Estimate (2.14) can be obtained by the following argumertere f to an element

f e WLY(0, To; H) setting f(t) = f(T) if T <t < To. Next, consider the problem (2.13)
in [0, To] replacing f with f. If @i is its solution, evidentlyu is the restriction offi
to [0, T]. So we have

lullczqo,73;1y + lUllcrqo,13:v) + IIUllc(o, T3 0(A))

< lTllczo, 111y * 10l crqo, 75 vy + 101l o, o) D(AY)

< C(To)(lIuollogay + lually + I fllweio, 1))

= C(To)(lluolloeay + lullv + Il f llweo,1:H))-
Assume now thatf € WLY(0, T; H) N WLP(0, T;V’). Asu e CYX[0, T]; V), Au=
Au e CY[0, T]; V). Asu’ = —Au+ f, we obtain immediately the conclusiane

W3P(0, T; V') and the estimate (2.15). The same argument works in dase
CY([0, T]; V). O

Ift>0,ueV, u; € H, set
(2.17) S(t)(up, uy) = (Sua(t)uo + Sia(t)ur, Sa(t)ug + So(t)ua).
S, Si2, S1, S are strongly continuous with values 8XV), £(H, V), £(V, H),

L(H), respectively.
Moreover, for anyup € D(A), for anyu; € V,

t
(2.18) Sua()uo + Sia(t)us = g + /O [Sa(S)o + Sea(s)ua] ds.

By continuity, (2.18) can be extended tg € V, u1 € H. So §};(t)ug = Su(t)uo for
any ug € V, S,(t)uy = Sp(t)ug for anyu; € H.

Finally, S12(0) = lv, $2(0) = I, Si2(0)u; =0 for anyu; € H, $1(0)up = 0 for
anyup e V.
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The solutionu of the problem (2.13) under the assumptions of Corollary ca6
be represented in the form

t
(2.19) U(t) = Sa(t)uo + Siat)uy + /O St — 9)F(9) ds.

We consider the functiow given by (2.19) under conditions amy, u;, f which are
less restrictive if compared with those of Corollary 2.6.

Proposition 2.7. Consider the function u defined i{2.19) assuming that fe
L0, T; H), up € V, u; € H. Then u belongs to &[0, T]; H) N C([0, T]; V).

Moreovey if f € LP(0,T;V’) (1< p < +00), then u belongs also to ¥(0,T;V’),
if f eC([0, T]; V'), ueC?J0, T]; V).

Finally, for any Tp > 0 there exists CTy) > 0 such thatif 0 < T < Ty,

(2.20) lullcaqo, 131y + Ullcqo, vy < C(To)(IUollv + lusllm + 1l FllLz0,7:H))s

(2.21) lullwzreo,m;vy < C(To)(luollv + Ul + I fll o,y + 1 FllLe,T:vr)-

Proof. AsS;; and S;; are strongly continuous with values V) and £L(H, V)
respectively,u € C([0, T]; V). Moreover, fromS;; = $1, S, = S and $5(0) =0, we
obtain thatu € C*([0, T]; H) and

t
U(t) = Su(t)uo + Spat)us + /O St —9)f(9)ds vte [0, T

Consider now a sequenaay)ken in D(A), converging talg in V, a sequenceug k)ken
in V, converging tou; in H and a sequencef)en in WHY(0, T; H), converging to
f in L0, T; H). Call ux the solution of (2.13) obtained replacing with ug., U1
with uzx, f with fy. Thenuy € C?([0, T]; H)NC([0, T]; V) and the sequencei(ken
converges tas in CY([0, T]; H)NC([0, T]; V). As uy = —Aug+ fy, the sequenceuf)ken
converges to—Au + f in L0, T;V’). Sou’ =—Au+ f, whereu” is the second
derivative ofu in the sense of distributions with values . As Au e C([0, T]; V'),
if feLPO,T;V’), thenu € W?P(0,T;V’). In the same way, it follows that, if
f e C([0, T]; V'), thenu e C?([0, T]; V).

Estimates (2.20) and (2.21) can be obtained with the argtemesed to prove es-
timate (2.14), extending to T, To] by O. ]

DEFINITION 2.8. Leta € [-1/2, O[. We set
D(S*):={p € V':3Jve D(Sl/z"'“); ¢ = Sl/zv},

where S'/2 is defined inH (see Lemma 2.2 and Remark 2.3).is obviously unique
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and coincides withS1/2p, where S %2 is assumed to be extended Y. If ¢ €
D($"), we set

(2.22) lellp) = I1S Y20l psvz.

Corollary 2.6 and Proposition 2.7 admit the following exems, which can be
easily obtained using the fractional powes$ of S

Proposition 2.9. Consider the problent2.13), under the assumptiofA1l)—(A3),
where A is the operator defined i(2.4). Let o € [0, too[. Assume that fe
W0, T; D(S¥)), up € D(S'*), u; € D(SY?*). Then the solution u belongs to
C2([0, T]; D(S*) N CY([0, T]; D(SY?*)) n C([0, T]; D(S'™*)). Moreovey if f ¢
WLP(0, T; D(S*¥?)) (1 < p < +00), then u belongs also to WP(0, T; D(S*/?)); if
f e C1([0, T]; D(S*~%2)), then u belongs also to O, T]; D(S*~1/?)).

Finally, for any Ty > O there exists CTy) > 0 such thatif 0 < T < Ty,

lullczqo, T1:0(54)) * lUllcyqo, T1: D(sv2y) *+ IUllc(o,T1; (St
(2.23) ([0, TI;D(8M) ([0, T];D( ) ([0, TI; D(S"*))

< C(To)(luoll p(st) + llusllp(svzwy + 1| f llwrio,1:0(57))

(2.24 lullwe.po,T;D(5-1/2))

< C(To)(luollp(st#y + llusllpesvzrey + 1| Fllwrio,1;0(s) + I Fllweeo,m;0(5-12))-

Proposition 2.10. Leta € [0, +oo[. Consider the function u defined {2.19) un-
der the assumptions & L1(0, T; D(SY)), Up € D(S**¥/?), u; € D(S?). Then u belongs
to C1([0, T]; D(S¥))NC([0, T]; D(S**¥/?)). Moreoverif f € LP(0, T;D(S*%?)), (1<
p < +o0) then u belongs also to WP(0, T; D(S*~1/?)); if f € C([0, T]; D(S*~1?)),
then u belongs also to 40, T]; D(S*%/?)). Finally, for any T, > O there exists
C(Tp) > 0 such thatif 0 < T < T,

lullcyqo, 73 p(s7)) * IUllc(o, T1: D(s7+112)

(2.25)

< C(To)(lluollp(sr+r2y + llusllpesy + Il FllLro,m:p(s))s
and
(2.26) lullwzr(,T;D(s-v2)

< C(To)(llugllp(g+rzy + lutlipesey + Il FllLo1:p(sy) + I FllLe(o,1:D(5-112)))-
In Section 5 we shall need the following further regularigsuilt:

Corollary 2.11. Consider problen(2.13),with f ¢ W%-P(0,T;V’)NnC([0,T];V)N
LP(0, T; D(S¥?)), ugp = u; = 0. Then the function u defined i(2.19) belongs to
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WS3P(0, T; V') N C4([0, T]; V) N CL([0, T]; D(S*?)). Moreover if T < Ty, there ex-
ist C(Tp) > 0, such that
lullwar@ ;v t llUllczo,1:v) *+ lUllcio,T;D(s%/2))
< C(To)(Il fllwreovy + Il Fllcqo, vy + Il T llLe,:0(272))-
Proof. By Proposition 2.10, withx =3/2, u e C([0, T]; D(S*?)), so thatAue
CY([0, T]; V). Again by Proposition 2.10, witlx =0, u e C?([0, T]; V'). As u” =

—Au+ f € C([0, T]; V), ue C?%[0, T]; V). As —Au+ f € W-P(0,T; V'), u e
W3P(0, T; V’). Moreover, by Proposition 2.10,

(2.27)  lullerqo sy < Ca(To)l FllioT:psv2y < Co(To)TYP I FllLnoT:0(s5%2),

so that
lullczqo. vy = IDEulleqoTiv) < I Aulleqo, vy + 1l Flleqo.iv)
= Tl AUllc:qo, vy * I lleqo, Triv)
= CTllullexqo, o) * 1 Flleqo.iv)
< T2 YPCy(To)ll fllLw.mipieay + I Fllcqo.1iv)-
Finally,

Iullwer,rvy = IDEUNwee, vy < IAUIwesTv) * Il FllwieTivy
< CllAullwre,:vy + Il fllwe.1:v1)
< CTYP| Aullcyo, vy + Il f llweeo vy

< Co(To)(Il T llLeo,T:D(s72)) + Il T llwreo,m:v7))- l

REMARK 2.12. OperatorS is self adjoint and positive. So, for artye R*, St
is an isometry inH. It follows from Theorem 1.15.3 in [19] that, for any € ]0, 1],
D(S”) coincides with the complex interpolation spacH,[D(S)],, with equivalent
norms.

We apply the previous result to a specific case useful in tigeede For this pur-
pose we introduce the following condition:
(B1) © is an open bounded subsetRf, lying on one side of its bounda@f2, which
is a submanifold oR" of classC*.

Under assumption (B1), we set

(2.28) V= HY(Q), H :=L%Q).
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If v andw are elements oV, we set
(2.29) a(v, w) = /Q Vu(x) - Vw(x) dx.
Observe that, for any € V,

a(v, v) = vl — vl

so that (A3) is satisfied. It is well known that, under the aggtion (B1),

(2.30) D(A)=D(S) = {v e H¥(Q): g—z =0 in asz}
and
(2.31) Au=—Au VYue D(A).

Owing to Remark 2.12 and Theorem 4.1 in [17], we have, for any ]O, 1[, with
o % 3/4,

H2(Q) if0<a<§,
(2.32) D(SY) = 3 4
Hé"‘(Q) if 2 <a<l,

where H2*(Q2) denotes the space defined by (1.6) with= H(<).

Owing to the regularity ofd2 and known results of regularity for solutions of
elliptic boundary value problems (see, for example, [9] as&p = q = 2), we have
also, for anya €10, 1], with o # 3/4,

. 3
Hé(lm)(Q) ifo<a< -,
(2.33) D(SH*) = 3 4
Hes (@) if 7 <o <1,

where, ifa > 3/4, HZ*)(Q) denotes the space defined by (1.7) with= H2(*)(Q).

3. Parabolic problems

We start with the following result, due to De Simon (see [8]):

Theorem 3.1. Let B be the infinitesimal generator of an analytic semigroup
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(€'B)=0 in the Hilbert space X Let T e R*, pe]l, +oof, f € LP(0, T; X). Set for
t [0, T],

t
u(t) ::/ 9B f(s) ds.
0
Thenv € WEP(0, T; X) N LP(0, T; D(B)).

Corollary 3.2. Let B be the infinitesimal generator of an analytic semigroup
(€'B)=o in the Hilbert space X Let T e R*, pe]l, +oof, f € L0, T; X), v € X.
Then the Cauchy problem

v'(t) = Bu(t) + f(t), te[0, T],
Gy .
has a solutionw in WP(0, T; X)N LP(0, T; D(B)) if and only if fe LP(0,T; X) and
vo € (X, D(B))1/p,p- In this case the solution with such regularity is unique arh c
be represented in the form

t
(3.2) u) =+ [ eI 19 ds

0
Finally, for any T € R*, there exists CTpg) > 0, such thatif 0 < T < Ty, f €
Lp(O, T; X) and Vg € (X, D(B))l/p’,py

(3.3) lvllwer,1:x) * VliLee,T:0e8) < C(To)lllvoll(x,p(B)),y., + Il FllLeo,T:x)]-

Proof. The conditionf € LP(0, T; X) is clearly necessary to get a solution
with the required regularity. Moreovefp(0) | v € WP(0, T; X) N LP(0, T; D(B))} =
(X, D(B))1/p,p (see [15], Proposition 1.2.10).

On the other hand, assume thate LP(0, T; X) and vg € (X, D(B))y/p,p. Let
v be the function defined in (3.2). Then, by Theorem 31> [i et"9Bf(s)dse
WLP(, T; X) N LP(0, T; D(B)). Moreover, by Proposition 2.2.2 in [15}, — €'Bug
belongs to LP(0, T; D(B)). As its derivative is B€Bvy, we conclude thatv e
WP, T; X) N LP(O, T; D(B)).

If f e C¥(0, T]; X), for somea € R*, and vy € D(B), it is well known that
v e CY([0, T]; X) N C([0, T]; D(B)). Moreover, v'(t) = Bu(t) + f(t) for all t € [0, T].
Approximating f by a sequencef()xen With values inCY([0, T]; X), converging tof
in LP(0, T; X), and vy with a sequenceuvf)ken With values inD(B), converging tovg
in (X, D(B))1/p,p (Which exists, owing to Proposition 1.2.12 in [15]), we clhuue that

V(1) — Bu(t) = f(t)

almost everywhere in JOT[ and in the sense of vector valued distributions.
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To show the uniqueness, lete WXP(0, T; X)NLP(0,T;D(B)) be such thav(0) =
0 andv’(t) = Bu(t) almost everywhere in JOT[. Set, fort € [0, T],

V(t) := /: v(s) ds.

ThenV e CY([0, T]; X) N C([0, T]; D(B)). Moreover, for allt € [0, T],

t
V(1) = u(t) = /0 Bu(s) ds = BV(t).

Owing to well known properties of semigroups, we concludat ¥ = 0, and sov =
V' =0.

To prove estimate (3.3), one can argue as in the proof of thimae (2.14), ex-
tending f to the elementf of LP(0, Tp; X) such thatf(t)=0if t € ]T, To]. O

Lemma 3.3. Let B be the infinitesimal generator of an analytic semigroup
('B)=o in the Hilbert space X Let T € R*, p €]1, +oof, f € L0, T; X), vp € X.
Then
() the Cauchy probleng3.1) has a solutionv in W2P(0, T; X) N WLP(0, T; D(B)) if
and only if fe WhP(0, T; X), vo € D(B) and vy := Bug + f(0) € (X, D(B))1/p.p;

() the Cauchy problen§3.1) has a solutionv in W3P(0, T; X) N W%P(0, T; D(B)) if
and only if fe W2P(0, T; X), vo, v1 € D(B) and vz := Buy + f'(0) € (X, D(B))1/pp-

Moreovey for any Ty € R, there exists CTp) > 0, such that in case(l) with 0 <
T <To feWP(O,T;X), voe D(B), v1 € (X, D(B))y/p,ps

||v||W2v’J 0,T; X + ||v||W1,p 0,T:D(B
(3.4) 0.T:X) (0.T:D(B))

< C(To)lllvollpee) + lvallx, p(@yyy p + Il Fllwre %],
in case(ll), withO<T <Tp, f € Wz'p(O, T; X), vg, v1 € D(B), vz € (X, D(B))]_/pfyp,

lvllwer@,T:x) + Ivllwzr,T;0(8
(3.5) 0.T:X) (0.T:D(B))

< C(To)lllvollpee) + llvalioge) + lvallx,pB)),p., + I Fllwzr1:30]-
Proof. AsWXP(0,T;D(B)) € C([0,T];D(B)), if v € W2P(0,T;X)NW*P(0,T;D(B))
and solves (3.1), themy € D(B) and f € WP(0, T; X). Moreover, w := v belongs
to W-P(0, T; X) N LP(0, T; D(B)) and solves the problem

w'(t) = Bw(t) + f'(t), telo,T],
(3.6) {w(o) o

So, necessarily; € (X, D(B))y/p, p-
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On the other hand, ifv € WYP(0, T; X)NLP(0, T; D(B)) and solves (3.6), setting
v(t) := vo + 1x w, we getv € W2P(0, T; X) N WLP(0, T; D(B)). Moreover, for any
te]0, TJ,

V(1) = w(t) = vy + /t(Bw(s) + f/(s)) ds
0
= vy + Bu(t) — Bug+ f(t) — f(0) = Bu(t) + f(t).

Thus (1) is proved.
(I) can be shown with similar arguments.
The final estimates can be proved applying (3.3) to the d@ras of v. U

We consider now operatdB := —A?, with A defined in (2.30)—(2.31), under as-
sumption B1), in the spaceX = H = L%(Q). So, from well known results concern-
ing the regularity of solutions of elliptic problems, its rdain is Hgg(). It is well
known thatB is the infinitesimal generator of an analytic semigroupHn Next, we
setV := H}(Q) and consider the following operatdt in V' of domain H3(%):

3.7) Bv, w) = /Q V(Av)(X) - Vw(X)dX, ve HS(Q), weV.

Owing to the isomorphisnsY2, even B is the infinitesimal generator of an analytic
semigroup inV’. The following result holds:

Proposition 3.4. Consider the Cauchy problem
v'(t) = Bu(t) + f(t), tel0, T],
(3.8) {U(O) = vy.

Let p € ]1, +too[. Then the following conditions are necessary and sufficient i
order that there exist a unique solutionm € W3P(0, T; V') N W2P(0, T; H3(R)) N
WLP(0, T; His(2)):
() feW?P0, T;V)NWLPO, T; L3RQ));
(1) vo € Hgg(R));
(1) vy :=Bug + f(0) € (H3(R), Has(2)1/p.p:
(IV) vz := Bvg + £/(0) € (V/, H3(2))1/p.p-

Moreovey for any T € R* there exists CTp) > 0, such thatif 0 < T < Ty and
the conditions(l)—(IV) are satisfied

lvllwero,T:vy) + IV llwzeT;H3 @) T IVlIwieoT;H4Q)
(3.9) < C(To)[Il f llwar,:vyy + Il fllwreo,T:12(2)) * lvollnace)

+]

+ Vil g, Hag@nuy 1020l 0vr H2@)y 0, )-



594 D. QUIDETTI AND A. LORENZI

Proof. Clearly the only possible solution is

t t
(310)  w(t)=ePuo+ / =98  (5) ds = etB g + / =95 {(5) ds
0 0
Owing to Lemma 3.3, necessary and sufficient conditions 308)(to have a solution
with the desired regularity are:
(@) f eW2P0,T;V)NWLPO, T; LAR));
(b) vo € Hgg(R));
(©) v1 e (LX), Hga(R)1/p,p N HE(R);
(d) vz € (V, H3()1/p.p-
So (I)—(ll) and (IV) are necessary. Ag € WEP(0, T; H3(22)) N LP(O, T; His(2))
and v’(0) = vy, even (lll) is necessary, again by [15], Proposition 1.2.10
On the other hand, ()—(1V) imply (a)—(d).
(3.9) follows from (3.4) and (3.5). U

Proposition 3.5. Let p> 2. Then
W3P(0, T; V)N W2P(0, T; H3(Q)) € C?([0, T]; HY()).

In particular, if assumptiongl)—(1V) of Proposition 3.4are fulfilled the solutionv of
problem (3.8) belongs to G([0, T]; H(R)). Moreover for any Ty € R*, there exists
C(Tp) € R*, such thatif T €]0, Tq],

lvilczqo, T Hi@
(3.11) (0, T HY ()

< C(To)[ Il f llwzeo,mvy *+ lvollnaey + llvallwsy + 1vzll v, m3@yye oo -

Proof. Letv € W3P(0, T; V') N W2P(0, T; H3(Q)). Then we have thaD?v
WLP(0, T; V)N LP(O, T; H3()) € W20, T; V') N L2(0, T; H3(R)). So, by Theo-
rem 3.1 in Chapter 1 of [12]D2v is continuous with values in the complex interpo-
lation space Y’, H3(Q)]1/2, coinciding with H(2). As v(0) and D;v(0) are elements
of H3(Q), v e C?([0, T]; HY(R)).

Let now v be the solution of (3.8), witil € ]0, Tp]. If the conditions (I)—(IV) are
satisfied andp > 2, from the first part of the statement, we have C2([0, T]; HX(Q)).
Then, employing again the argument used to show estimafel)(2we obtain esti-
mate (3.11). O

REMARK 3.6. It is well known (see, for example, [10], Theorem 3.3jatt
, , By (Q) ifl<p<2
(3.12) HE($2), Hga())y/p.p =

B;‘jp,lgg(sz) if 2 < p < +o0.

A more involved characterization is known in cape= 2 (see [10]).
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Proposition 3.7. Under the assumptio(B1), we have that

/' . 8
S2(BY/PAQ) if 1<p< =
/ 3 _ 3-4/p . 4 8
(3.13) V', He(@)1pp = 1By, () it 3<pP<3
B () if g < p < +oc.

Proof. Owing to Theorem 3.5 in [10], we have

4 3
4/P e 0 _ 2
p () if > <2
. 3 4 5
(3.14) LX), HgB(Q))l/p’,p = 2 P, B(Q) if 5= a <5
. 4 5
g/;BB(Q) if H > E

As H() = D(S?) and H3(R2) = D(S¥?) (see (2.33)),5%2 is an isomorphism between
Haa(2) and H3(R2). So, by Lemma 2.2,

(V' H3@)yp.p = SY2(LARQ), Hia(@)/p.p) = S¥3(BSF ()

if 1 < p<8/5.
Moreover, as

(LA(Q), Haa(R)1/4,1 S HY(RQ) S (LARQ), Hia()1/4.00

(by Theorem 3.5 and Proposition 1.6 in [10]), using again ifzenorphismSY/?, we
can say that

(V' H3(@)y/a1 € LAQ) S (V' HE( Q)40
So, by the reiteration theorem, g > 4/3 (so that ¥p’ > 1/4), we have
(V') H3()y/p.p = (LA(RQ), H3(Q))1-a/3p.p-
So we can get the result applying again Theorem 3.5 in [10]. ]
4. An auxiliary nonlinear operator

In this section we study the nonlinear operatbr> (xo+1%V)V, whereS R —
R is appropriately smoothy is a suitably regular function of domain [0] x 2 and

(4.1) (1% V)(t, X) := /OtV(s, x)ds, telo, T].
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We introduce the following conditions:
(C1) (B1) holds;
(C2)n<7.

Lemma 4.1. Under the conditiongC1)—(C2), H4(2) is continuously embedded
in C(Q) and is a space of pointwise multipliers forsgR), for any se [0, 4].

Proof. The first statement follows from Sobolev embeddirgpthm.

The embedding oH*(R2) into C(R2) implies also thatH*(Q) is a space of point-
wise multipliers forL2(2). By Theorem 5.23 in [1],H*(R2) is also a Banach algebra.
So the second statement follows by complex interpolatiee (49], Theorem 2 in Sec-
tion 4.3.1). L]

Lemma 4.2. Assume thatC1)—(C2)hold. Let je Z, 0< j <4, and Se CI(R).
Then for any ue H4(S2), Sou is a pointwise multiplier for H(Q). Moreover if
[ullhag) < R andv € HI(Q),

4.2) [S(Wvlhi) < C(RIVIHI)-

Finally, if S e CI*Y(R), uo, u; belong to H(R), max||uolln+g), lUillHaey)} < R and
v belongs to H(R)

(4.3) [ S(Uog)v — S(ur)vllnie) < C(R)IUo — Uzllnsg)lIvlini)-

Proof. First of all, ifu e H4(Q) andv € HI(Q), then S(u)v € HI(). In fact, it
is easily seen that, i8 € Nj and |8| < j, 3#(S(u)v) is a linear combination of terms
of the form S¥(u)afu-- - .- %udrv, with k < j, Bl +---+1Bl+1yl < | (here we
use the convention that there are no derivatives df k = 0). Now, S¥(u) e L>(),
while 3%u - - - - - d%ud”v e L%(R). To verify this fact, observe that, i8] < 4—n/2,
3Pu e L>®(Q), if |y] < —n/2, 37v e L®(Q). So it suffices to show that the two
following products are inL%(Q):

() products of the formdfiu - ... . 8fu with 1 <k < 4, |Bi| = 4 — n/2 for each
e {1, kL X I8 <0
() products of the formd#u .- - .. 8Pud”v with 1 < k < 4, || = 4—n/2 for each

e (L. k) Iyl=§—n/2, T Bl +Iy] < .
We consider the case (). By the Sobolev embedding theoreenhave, if|8i| >
4—n/2, 9hu e LAVO-21AD(Q), while, if [Bi] =4—n/2, 3PU € (Nypose, LP(RQ).

So, by Hélder's inequality, we have to show thE:‘:l(n —2(4—16i1))/(2n) < 1/2
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and Zikzl(n —2(4—16i))/(2n) < 1/2, when|Bi| =4 —n/2 for somei. Recalling that
n—8 <0, we get

X 24— 1B1)\ _ k(n —8)+ 23K |5
Z(n— 2n )_ 2n :

i=1

k
- n—8+2) 16 -
< o <

1
5
We observe, moreover, that we have equality only in dasel and|B:| = 4. This can
occur only whenj = 4. So (l) is completely treated.
We consider (II). Arguing as in the first case, we have to shbat E!‘zl(n —

24— 1B11)/(20) + (0 — 2(j — Iy1))/(2n) < 1/2 and Y1y (n — 2(4— |A1))/(2n) + (0 —
2(j — ly1)/(2n) < 1/2, when|gi| =4 — n/2 for somei, or |y| = —n/2. We have:

i(n B 2(4;n|ﬂi|)> . (n 2 ;nwo)

i=1

_ k(- 8)+ 23 1A +Iyl) +n - 2]
2n

n—8+n 1
< < —

- 2n 2

Estimate (4.2) follows from the previous considerationsl &obolev embedding theo-
rem, implying, fork < j,

IS¥oullieg < sup  ISME) < C(R).

[E1=ullLoe ()

Finally, estimate (4.3) is a consequence of the fact thag 4¢fCI*(R), k < j and
max{||UollHs(ey, U1llHa@)} < R, then max|[uollL=(e), llUillLx)} < C1(R), so that

1S% 6 ug — S o Uyl L@y < Ca(R)lIUg — UglL(gy- ([

In the future we shall need the following simple lemma, theogprof which can
be obtained by using Hoélder and Young’s inequalities.

Lemma 4.3. Let X be a Banach space € R*, p € ]1, +oo[, ze WYP(0, 7; X),
with z(0) = 0. Then

(4.9 IZllL~,:%) < TP 1Zllwir(.c:%)s

and

(4.5) l1ZllLr,e;x) < TlZllwep@,2;x)-
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Lemma 4.4. Assume tha(C1)—(C2)are satisfied S e C*(R), xo € H*(Q). Let
ReR*, 0<1 <T, V; and \b be elements of WP(0, t; H*(2)) " W?P(0, 7; L3(Q)),
V1(0) = V,(0), maX e,z IVjllwee,c:né@) < R, xo € WHP(Q). Then

[1S(x0 + 1% V1)Vi — S(x0 + 1% V2)Vallwreo,r:H2(e)
< C(R, T)T¥@P( V1 — Vallwasor:he) + V1 — Vallwes(.r:L2@y)-

Proof. We begin with some useful estimates.
First of all,

(4.6) IVillL~©z:Hae) < C(R, T).
In fact, employing (4.4)

IVjllL.2:n4)) < IVj(O)lna) + 11 % DeVjllLe(o,r:H4)
< Vi)l nag) + T 115 DeVj lwee(o,.c:m4e))
= [IVj O)llna + TP ID Vi s rmeey < LV TYP)R.

Next,
4.7) l%0 + 1% VjllLe(o,r;H4@) < C(R, T).
In fact,

X0+ 1% VjllLo,r:He@) < lIxollHe@) + 11 VjllL=© 1)

=< lIxollH4@) + Tl VjllL~o;H4@) < R+ TIVjllL=©:H4<)-
We show that
(4.8) 11 % (Vi — Vo)llLeo.e:mé@y < TP VL — Vallweso:he@))-
In fact, using (4.4), we have

11 % (V1 — V2)llLee(o,r:H4(e)) < TIVL — VallLo(,r:H4()

< TP VL — Vallwee(o,rhé@)-
We show that

[ Dt (V1 — V2)llLr(o,r;H2()

(4.9
< C(R, T)T¥@P (VL — Vallwero.e:Lz@) + V1 — Vallwee(o,e:Ha@y)-
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In fact, asH%(Q) € J2(L4(R2), H*()), by Hélder’s inequality,

T 1/p
() 1oetva = Va0l )

i 1/p
: C(/ 1D1(Va = V2)(O) | gy | De(V2 = V2O dt)
0

H4(Q)
1/2 1/2
< CIIDi(Va = Vo) I oo 2:12gap I DtV = Vo)l sy

Moreover, by Minkowski’'s inequality,
[ De(V1 — Vo)l Le(o,z;L2()

< TVPID (V1 — V2)(0)ll L2y + 11 % DE(V1 — Vo)l Le(o.r:L2@)
< TVPID (V1 — V2)(0)ll L2y + TIIDE(V1 — V)l Lo(o.r:L2(e))
< max{1, TYP}eYPVy — Vallwee.r:12()
so that

Dt (V1 — Vo)l Le(o,r;H2())

1/2 1/2
< C(T)TY®PV1 = Vallyi2 oo 2:2iap I DtV = V)l rio coviscay
< C(T)TY@P(Vy — Vallwero:Lz@) + VL — Vallwee,c:Hé@y)-

Now we prove the lemma.
As V1(0) = V,(0), we have

1S(x0 + 1% V1)Vi — S(x0 + 1% V2)Vallwre,r:H2(e)
= 1S (xo + 1% V1)V + S(x0 + 1 V1) Dt Vy
— S(xo + 1% Vo)V — S(x0 + 1% V2) Dt Vall Le(0,1:H2()-
For almost evenyt € [0, ], employing Lemmata 4.1, 4.2, 4.3, (4.7), (4.8), we get

IS (xo + L Va(t))Va(t)® + S(xo + L Va(t)) Dy Va(t)

— S(xo0+ L Va(t)Va(t)* — S(xo + L Va(t)) Dt Va(t) | 2oy
< IVi[S (xo0 + 1% V(1)) — S(xo + 1 * Vo)) Vi)l Hee)

+ [ (Va(t) + Va(1))S (xo + 1% Vo)) (Va(t) — Va(t) [l Hze)

+I[S(x0 + 1 % Vi(t)) — S(xo + 1 Va(t))] D¢ Vi(t) I He(e)
+[1S(x0 + 1% Va(t))[ Dt Va(t) — Dt Va(t)] 2o

< C(R, TIL* (V1 — V2)(O)llhaey (X + 1D Vi)l H2(e))

+[IVa(t) — Vo)l e + 1Dt (V1 — V2) () [ 2]
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< C(R T[eH*¥P V1 = Vallwaoo,e;meep(L + | De V)l eey)
+ [[Va(t) — Vo)l hzee) + 1D (V1 — V2) (D)1l He(e)]-
We conclude, applying (4.5) and (4.9), that
S(xo + L% V1)Vi — S(xo + L% V2)Vallwre,r;H2(e)
< C(R, MI¥¥P V1 — Vallweoo.r:m#@) (TP + I DeVall Lo, He()
+ V1 — VallLo,e;n2@)) + 11De(V1 — V2)llLe,z;H2(e))]
< Cu(R T)eCP (V1 — Valweso ey * Vi — Vallwee(o,rmecay)- O
In the following, we shall use without comment the elementact that, if 0<
T<Tand O<a <8,
¥ < Cr?,

with C € R*, depending only o8 —« andT.

Lemma 4.5. Assume tha{C1)—(C2) are satisfied and 8 C*({R). Let Re R*,
0<t<T, Vi and \b be elements of WP(0,7; H4(Q)) N W2P(0, 7; H3(R)) N
W3P(0,7;V’), such that ¥(0) =V5(0), D;V1(0) =Dt V2(0), max ez (IIVj llwze(o,r;n3@y*
Vi lwer,r;H4@))) < R Then

1S(x0 + 1% V1)V1 — S(x0 + 1 V2)Vallwze(,r:H1(e)
< C(R)T WPV — Vsl wano :Heey)

+ V1 = Vallwze,;130) + I1IVL — Vallware,r;v1)-
Proof. We start with a couple of useful estimates. First ¢f al

(4.10) Dt (V1 — Vo)l Le(o,r;H())
< Vi — Vallwzr(,:;:H3(@)-
In fact, asD¢(V: — V,)(0) =0,
IDe(Vs = V2)llLoo,mi@y = 11 % DE(VL = V2)llLno, @)
< 7| DA(V1 — Vo)l Le(o,c:Hx@)) < TIIVL — Vallwee,e:Ha)-

Next,
(4.11)
IDA(V1 — V2)llLro.r:m@) < CTYCP(IVL — Vallwsso,evy + V1 — Vallwze(,.c:H3@y)-

This estimate can be obtained with the same method used ve p4®), using the fact
that HY(Q) € JY2(V/, H3(Q)).
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We pass to prove the stated result. Xg(0) = V»(0) and D;V1(0) = D;V»(0),
we have
1S(x0 + 1% V1)Vi — S(x0 + 1% V2)Vallwzr(,c;H1(2)
= ID[S(xo0 + 1 V1)V1 — S(x0 + 1 % V2)Va] [l Le(0,c:H1@))
= 11S (o + L V))VE — S'(xo + 1% Vo)V5
+3[S(xo + 1% V1)ViDtVi — S(xo + 1% V2)Va Dy Vo
+ S(x0 + 1% V1) DZVi — S(x0 + 1% V2) DAVall Le(0,c:H1(e))-
For almost everyt in [0, ] we have, employing Lemma 4.1, Lemma 4.2, (4.6), (4.8),
(4.9), (4.4),
I1S"(xo + L% VA(O)Va(1)® = S"(x0 + 1 V2() Va(t)?
+3[S(xo + 1* Va(t))Va(t) D Va(t) — S(xo + 1 # Vo(t))Va(t) Dt Va(t)]
+ S(xo + 1% Va()) DVa(t) = S(xo + 1 Va()) DEV2(t) 1)
< IVA(t)’[S"(xo + 1 Va(t)) — S'(xo + 1% Va()IVa(t) 12y
+ (VA0 + VO V(1) + Va()2)S (o + 15 V2)(Va(t) = Va(t) i)
+3IIV1(t)[S (xo + 1 Va(t)) — S(xo + L Vo(t))] D Va(t) (e
+ 3| (Va(t) — Va(t))S (xo + 1 % Vo(t)) Dt Vi (t) I He)
+ 3| V2(t) S (xo + 1 Vo(t)) De (Vi — V2)(1) I H1(y
+I1S(x0 + 1 Va(t)) — S(x0 + 1% Vo(t)]) DEVA(t) I hie)
+11S(x0 + 1% Va(£)) DE(V1 — Vo) ()l i)
< C(R, T[T (Vi — Vo))l negey(L + 1 DeVa(t) sy + I DEVA) ()
+ [[Va(t) — Vo)l Haey + IVA(t) — Vo)l He@) I De VIO Ty
+IDe(Va = Vo) ®) Iy + I DE(VA = Vo) (1) 1))
< C(R, IV — Vallwas(o,ess@nle P (L + IDNVI®) 1@y + IDEVA) ] Hiqey)
+ TP L+ DV )]
+IDe(V1 — V2)(O) 1oy + 1DE(V1 — V2)() iy -

So, using (4.10)—(4.11), we get

1S(xo + 1% V1)Vi — S(xo + L V2)Vallwzeo,r;H1(e)
< Ci(R, TH{TYP V1 = Vallwro.r:me@) + I1De(Va — Vo))l Lo(o,c:Hxe)
+[[DE(VL — V2)(O) | Le(o,e:H2())
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< Co(R, THTYP IV — Vallwro.e:me@) + TIVL — Vallwero.-:h3@))

+ 7Y@ (V) — Vallwar(o,evy + IV1 — Vallweso.c:ha@y))s
which implies the conclusion. O

5. The inverse problem

In this section we will be concerned with the identificatidnttoe kernelk entering
in the boundary value problem (0.1)—(0.4).

We start by introducing some notations, which will be uséfuthe following. As
in the previous sections, we indicate witH the dual space oH(RQ).

Let se NU({0},p € [2, +oo[. We set:

XETP(r) ;= WEP(0, 73 V') N C=([0, 7]; HY(R)) N C*H(O, 7]; HE(<)
N C([0, 7J; Hg(%),
(5.2) YS3P(r) =WS3P(0, 7; V) N WS2P(0, 7; H3(R)) N WS™P(0, 75 HEg(R)),

(5.1)

(5.3) Z5"3P(7) := XS*3P(1) x YS*3P(7) x WSHLP(0, 1)

endowed with their natural norm: [ xs=e), || - llys2ee), |l - llzs20() defined by
3

(5.4) lwlixsspery = lwllwsarorvy + D llwllcssiqo,eg i@y
=1

(5.5) lvllyssapey = lvllwsarE,vy + 1V ws2p©,7:H3()

* lvllwste,:H4@) + 1Vlles2(o, o] H(@)

(5.6) (U, v, )lIzs:3p(r) = Ul xswape) + 1V llysape) + [Tllwsp(,r)-

The norm (5.5) is motivated by the fact that, owing to Proposi3.5, in the case
p =2, YS'3P(r) € C¥¥([0, o], HY(R2)).

Explicitly we will search for a solutiond x, k) € Z*P(z) to the following prob-
lem, wheret € (O, T]:

De(8 +1x)(t, X) — (K * A)(t, X) = f(t, X),  (t,x) €[0, 7] x €,
DtX(tr X) - AX[_AXX +:B(X) - IG](t! X) = 01 (t, X) € [O, ‘L’] X Q,

9(01 X) = GO(X)v X(01 X) = XO(X)! X e Qn
(57) %(t’x):a_x(tyx): 0Axx (t,X):O, (t,X) € [O, ‘L’] X 02,
av av av
| o000t 9 dx= 900, tefo
Q

As far as the data are concerned, we shall make the followdsgraptions:
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(D1) © is an open bounded subset Bf, n < 7, lying on one side of its boundary
982, which is a submanifold oR" of classC*;

(D2) B € C3(R), ¢ € HX(SQ);

(D3) f e W3P(0, T; HY(R)), g € W*P(0, T), T e R*, p e [2, +oo[;

(D4) 6o € H3(2), X0 € Hgg(2);

(D5) vo := —AZx0 + Ax[B(x0) — 160] € Hg(Q);

(D6) up := (0, -) —lvg € HE();

(D7) vy := —AZvg + Ax[B'(x0)vo — IUg] € (H3(R), Haa(R))1-1/p.pi

(D8) [q (X)Axbo(x) dx # O;

(D9) ko := {g"(0) + [ 9()[1va(x) — Dt £(0, )] dx}{ [ e(x)Axfo(x) dx} " € R*;
(D10) ug = KoAxbp + Dy F(0, ) —lvg € H3(R);

(D11) [, ¢(X)0o(x) dx = 9(0), [, ¢(X)uo(x) dx = g'(0), [, p(x)us(x) dx = g"(0);
(D12) vz := Buy + A [B"(x0)v3 + B (xo)va] — 1 Axus € (V/, H3()1/p.p0 P = p/(P—1).

REMARK 5.1. Observe that the more complex boundary conditions) (6ah
be replaced with the simpler ones in (5.7) under the assomii0) > O (cf. (D9)
and (5.19). Indeed, since,(x, k) € Z*P(r), the following relations hold:

20 00 20
(5.8) k(0)— +k'* — =0, on (0,7) x 4R, &= — =0, on (0,7) x 9%,
ov av av

(5.9) %(:() = ,8’()()2—)5 =0, on (0,7) x 0%2.

Consequently, from (5.7), (5.8), (5.9) we easily deduce stmepler boundary condi-
tions in (5.7).

Assume now that a solutiord(x, k) € Z*P(r) does exist. Then, differentiating
with respect tot the first equation in (5.7), we obtain, for, ) € [0, 7] x €,

(5.10) D26(t, X) +IDZx (t, x) = k(0)AxA(t, X) + (K % AxH)(t, X) + D¢ f (t, X).
Differentiating again (5.10) and the second equation i@)(and setting
(5.11) u:=D08, v:=Dix, h:=Dk,

we get

(5.12)

D2u(t, x) +ID2u(t, x)

= K(0)AxU(t, X) + h(t) AxBo(X) + (h % Axu)(t, ) + D2F(t, X), (t, X) € [0, 7] x 2,
(5.13) Dt X) — Ax[=Axv + B/ () —Iu](t, X) =0, (¢, X) €0, 7] x Q.
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Moreover,

(514) U(O, ) - DtX(O' ) = Vo, U(O, ) ) = f(O, : ) —1 DtX(O, ) = Ug,
D2 (0, ) = Dw(0, -) = vs.
If weV’, we set

(5.15) o[w] = [w, @],

wherep denotes the function conjugate ¢go Therefore the last condition in (5.7) can
be written in the form

(5.16) d[O(t, -)=9(t), te]0, ]
Applying ¢ to (5.10), we obtain

g"(t) +1e[Dix (t, )]

(5.17)

=k(O)2[AXO(t, )]+ @[(h+ AxO)(t, - )]+ @[D: f(t, )], te][0, 7],
implying
(5.18) g”(0) +1®[v1] = kK(0)P[Axbo] + [ D f (0, -)].

It follows from (D8) and (D9) that

9"(0) +1®[vy] — @[D: f(O, -)]

(5.19) k(0) = O[AG] = ko.

Next,

(5.20) D:u(0, -) = D26(0, -) =k(0)Axbp + Dy (0, -) —1D2x(0, -)
= koAybHg + th(O, -)—lUJ_: uj.

Finally,

(5.21) g—:j(t, X) = g—z(t, X) = aﬁsv(t, x)=0, ( x) €0, 7] x 9.

From these considerations, if,(x, k) € Z*P(r) solves (5.7), then tripletu( v, h) €
Z3P(1). Moreover, if A is the operator defined in (2.30)—-(2.3B,= —A? andS:= g/,
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then @, v, h) € Z%P(7) solves the problem

(5.22)

D2u(t, -)+ID2v(t, -) = —koAu(t, ) — h(t) Ady teo. 1]
— (h* Au)t, )+ D2f(t, -), T

Diu(t, -) — Bu(t, )+ A[S((xo + 1% v)(t, )ov(t, )] —1Au(t, -) tepo. 1

= 0,

u(0, -)=ug, Diu(0, -)=uy, v(0, -)=vo,

g®(t) +1®[DZv(t, -)] = —ko®@[Au(t, -)] — h(t) D[ Adq] telo 1]
— ®[(h = Au)(t, -)]+ ®[DZf(t, -)I, o

Lemma 5.2. Let assumption§D1)—(D12) be satisfied Let (u, v, h) € Z3P(r)
solve systen{5.22) and set ;=6 +1* U, x := xo+1xv, K:=ky+1xh. Then
@, x, k) € Z*P(r) and solves problen(5.7).

Proof. Sincedu/ov =0 anddv/dv = dAv/dv =0 on 92, we deduce that alsé
and x satisfy such boundary conditions according to (D4). Thigplies that ¢, x,Kk)
Z4P(7) according to definitions (5.1)—(5.3). Moreover, it is easycheck that the ini-
tial conditions@(0, -) =6, x(0, -) = xo in (5.7) are satisfied.

Since the second equation in (5.22) can be rewritten in the fo

De{Dux (t, x) — Ax[—Axx + B(x) — 16](t, x)} =0,

by virtue of (D5), the second equation in (5.7) is satisfied.
Next, we have

(5.23) D2(K * Ax8) = Dy(KoAxO +h % Ax0) = KoAxU + hAxH + h * Ayu.
Hence, the first equation in (5.22) can be rewritten in thenfor

D2(Dy(6 +1x) — (k * AxH)(t, X)} = D?f.
Owing to (D6), (D7) and (D10), we get

5 24 Di(D(0 +1x) — (k* Ax0)}(0, -) = Deu(0, ) +1Dw(0, -) — koAxbo
(5-24) =up +lvy — koA = D £ (O, -),

i.e. even the first equation in (5.7) is satisfied.
Finally, applying @ to the first equation in (5.22) and comparing the result with
the final equation, we get, for alle [0, T],

o[DPo(t, -)] = P[D{u(t, )] = g().

Thus the final equation in (5.7) follows from (D11). ]
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REMARK 5.2. If (u, v, h) is a solution of the system, from the last equation
in (5.22) we get

(5-25) () =ho = 217127 kOAUOq:[EéZO; 0, )1 - )

Lemma 5.3. Let X be a Banach space and lete R*, p € [1, +¢[, h €
WLP(0, 1), z € C([0, 7]; X). Then hxz e WP(0, ; X) and

(5.26) Ih Zlwaoorix) < (2P v 2)lIhllwee.o 1Zlicgo, -
Proof. As f%2)(0)=0 and
Ih" s Z||Le0,e;x) < 1N ILr0,0) 12l L2(0,2:%)
we get

Ih * Zllwee,e:x) = 10 2)'llLe,r:x) = 1K(0)Z + W * Z||Leo,r;x)
< 1hO)Il1ZllLr,7;x) + 1N llLe0,) 121l L2(0,7:%)
< (7Ph(0)] + T[N [[Lr0.)) IZllc o, %)

< (P v 1) hllwer,o)lZllcgo. o x)- O

(5.27)

Lemma 5.4. Let assumptiongD1)—(D12) be satisfied and let U be the solution
to the Cauchy problem

(5.28) {DtZU(t’ ) +koAU(t, -)=0,  tel0,T],

U@, -)=uy, DUQO, -)=us.
Then Ue (5., C3([0, T]; HI(Q)).
Proof. It follows from Proposition 2.9, witke = 1/2, p = +oo. U

Lemma 5.5. Let assumptionD1) be satisfied Let vo € Hgg(S2), v1 € (H3(Q),
Has(2)1/p.py v2 € (V/, H3(2))1/p,p- Then there exists \& Y3P(T) (cf. (5.2)) such
that V(0) = vo, D;V(0) = vy, D3V(0) = vs.

Proof. Aswvy — Bvy € (V/, L%())1-1/p,p, by virtue of Proposition 1.2.10 in [15]
there existsg € W-P(0, T; V') N LP(0, T; L?(R)), such thatg(0) = v, — Bv;. Then
we set

f::vl—Bvo+1*g
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and consider the solutioV to problem (3.8). It is easily seen that all conditions
()—(1V) in Proposition 3.4 are fulfilled. Sov/ € Y*P(T) and it is easily seen that
DtV(O) =1, DtZV(O) = V2. O

Now we are able to state and prove the first of the main res@ltsup paper.

Theorem 5.6. Let assumptiongD1)—(D12) be fulfiled Then there existg <
]0, T] such that the problen5.7) has a solution(@, x, k) € Z*P(7).

Proof. We define

5 29 Z3P() == {(u, v, h) € X>P(z) x Y3P(r) x WP(0, ):
( . ) U(O) = Uo, DtU(O) = Uy, U(O) = Vo, Dtv(O) =1, D,[ZU(O) =y, h(O) = ho}

Observe first that, owing to Lemmata 5.4 and 575;°(z) is a nonempty closed subset
of Z3P(z). N

Then, for any fixedy, V, H) € Z*P(r) we consider the problem
(5.30)

D2u(t, -)+koAu(t, -)=D2f(t, -) — H(t)Ag te [0, 1]
— (H % AU)(t, -) —ID2V(t, -), T
Dro(t, -) — Bu(t, ) =IAU(t, -) — A[S((xo + 1 V)(t, -)V(L, -],
u@, -)=uo, Deu(0, -)=u1, v(0, -)=vo,
h(t)@[Ado] = —g(t) + P[DZ f(t, -)] — ko®[AU(t, -)]
) t €0, t].
— O[(H = AU)(t, -)] —T@[DyV(t, -],

It is easily seen that, for any fixedJ( V, H) € Z3P(z), problem (5.30) has a unique
solution @1, v, h) in Z3P(z). In fact, owing to (D3), (D4) and Lemma 5.B2f(t, -)—
H(-)AB —H AU € WP(0,7; H(R)). So, by virtue of Proposition 2.9, witla = 1/2,
the problem

D2z(t, -) +koAz(t, -) = D2f(t, -) — H(t)Ab

(5.31) — (H = AU)(t, -),
Z(O! ) = Uo, th(01 : ) =us

t €0, 7],

has a unique solutioz € C([0, t]; H(2)) N C([0, ]; H2(2)) N C([0, t]; H3()) N
W3P(0, 7; L%(RQ)). Moreover, by Proposition 3.5 and Corollary 2.11, the peob

(5.32) {thn(t, ) +koAn(t, ) =—ID3V(, -), tel0,1],

77(01 '):Ov Dtn(O, )=O

has a unique solution belonging tow?P(0,7;V")NC2([0,7]; H(2)) N C([0,7]; H3(2)).
Moreover,| AU € C2([0,7];V)NC([0,7];L?(R2)), so thatl AU — A[S((xo+1xV))V(t,")] €
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W2P(0, 7;V)YNWLP(0, 7; L(R2)) due to Lemmata 4.4 and 4.5. So, owing to assump-
tions (D5), (D7) and (D12), Proposition 3.4 allows to comduthat the second equa-
tion in (5.30) has a unique solutionm € Y3P(r). Finally, asg € H(Q) and AU ¢
CY([0, z]; V'), —g® +®[D2f] — ko®[AU] — ®[H x AU] — I ®[DZV] € WLP(0, ), ow-

ing to (D3) and Lemma 5.3. So problem (5.30) has a uniqueisalih Z3P(z). It is

not difficult to check that it belongs, in fact, t63P(r). We denote this solution by

SU, V, H)=(5(U, V, H), S(U, V), SU, V, H),

and stress thaf, is independent oH. We observe thaS is a (nonlinear) operator
from Z3P(7) into itself. Clearly, to solve our identification problerf.22) we have to
look for a fixed point ofS.

Let Re R* and Uj, Vj, Hj) € Z>P(z), j € {1, 2} and O< t < T, be such that

(5.33)

max ||(U;, Vj, H; o) < R.
jell g ||( j j J)||Z3p(r) .

Taking Proposition 2.9, Corollary 2.11 and Lemma 5.3 intcoamt, we get

[51(Us1, Vi, H1) — S1(Uz, V2, Ha)llxze(r)
< C(ll(H1 — H2) Abollwrp(o,7;H1(e)) + I1H1 % A(Ur — U2)llwre(o,r:H1@)
+[|(H1 — Ha) % AUz llwas(o,e:h3() + 1DV — Vo) llLo(0.r:H3())
+IDE(V1 — Vo) llweeorivy + 1DE(VA — Va)lleqo. o) o)
< Ci(R)TYP(U1 — Uzllxanery + 1H1 — Hallweeo, o))
+ C1(lIV1 — Vallysey + 1H1 — Hallweeo,))-

(5.34)

Next, from Propositions 3.4 and 3.5, Lemmata 4.4 and 4.5 waitb

[S2(U1, V1) — S2(Uz, Vo)llyse(r)
< C(llU1 = Uzllwzr,r;Hy@) * 1U1 — Uzllwrre(o,r;H2(e)
+[|S(xo + 1% V1)V1 — S(xo + 1% Vo)Vallwar(o,r:H1(e)
(5.35) +[1S(x0 + 1% V1)Vi — S(x0 + 1% V2)Vallwrr(o,r;H2(0)))
< Co(IDE(U1 — Up)llLo(o.r:Hi(y) + I1De(Us — U2)llLe(o,c:H2e))
+ Co(R)T P IV1 = Valyasgr)
< CorV/P||U1 — Uzl xen(ey + Co(R)TYEP V1 — Vallyan(r).
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Finally, asg € H(Q), using again Lemma 5.3, we get
1S3(U1, V1, Hi) — S3(Uz, V2, Ho)llwere(o,7)
< C3(IlA(U1 — U2)llwre,z;vry + IT1H1 % AU — Ha s AUollweo,z:v1

+ V1 — Vallwsr(,r:v7))

(5.36)

< C4(llUr — Uzllwre(o,r:Hy@) *+ 1H1 * A(U1 — U2)llwee(o,z:v7

+[[(H1 = H2) * AUz[lwrre(o,r:vy + IVL = Vallyas))

< C3(RT™¥P(JlU1 — Uallxer(ey + IIH1 — Hallwaeo1)) + Cal Vi — Vallyaigo).
Now we set
(5.37) MU, V, H)=8(U, S(U, V), S, S(U, V), H)),
(5.38) N2(U, V) =S;(U, V),
(5.39) N3(U, V, H) = 83U, S2(U, V), H),
(5.40) N(U,V, H)= WU, V, H), N\2(U, V), N3(U, V, H)).

It is straightforward to check that a fixed point &f in Z3-P(r) is also a fixed point
of S. From (5.34), (5.35), (5.36), we easily deduce that, for &g R* there exists
C(R) > 0 such that

IV (U1, V1, H1) — N(Uz, Va2, Ho)llz3s(r)

(541) < C(R)tY@P)||(U; — Uz, Vi — Vs, H; — H
< 1 2, Vi — Vo, Hy 2)lzap(z)

for all T € (0, T] and all Us, Vi, Hi), (Us, Vs, Hy) € Z3P(r) with
Ui, Vi, Hi o) < R.
jmax IUj, Vi, Hllzerg

Fix now (U*,V*, H*) in Z3P(T) and set§,V, H) := N'(U*,V* H*). Let p € R,
v €(0,TI. Then, if Uj, V}, Hj) € 23°(¢), j € (1, 2}, and

(5.42) naxi(U;. Vi, Hj) - U, V, A)lizerq) < p,
we obtain
(5.43) IN (U1, Vi, H1) = N (U2, V2, Ha)ll zs0(r)
< C(Ru(0))tY@P||(Us — Uz, Vi — Vi, Hi — Ho)ll z3s(e)
with

(5.44) Ri(p) = (U, V, H)lizso(r) + -
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Moreover, if
(5.45) Ra(p) := max{Ru(p), (U*, V*, H*)llz3.s(m)},

we have
IN(Us, Vi, Hy) = (0, V, H)llzas(r)
(5.46) < C(Ra(p))t¥@P | (Uy, V1, H1) — (U™, V¥, H")ll 22001y
< C(R(p))T"®P(p + (T, V, H) — (U™, V*, H") I zsp(7y).

Choose nowr € (0, t(p)), wherez(p) satisfies the inequalities
1
(547)  C(R)T(n)"® =3
(548)  C(Ra(p)T(0)®P(p + (U, V, H) — (U*, V*, H)llzzo(m) < p-

Then, from the contraction mapping theorem we deduce Mahas a unique fixed
point in {(U, V, H) € Z3P(2): [(U, V, H) = (U, V, H)llzang) < o} O

We conclude our paper with a result of global uniqueness.

Theorem 5.7. Let t € (0, T], (6, x, k) and (9, %, k) be solutions of (5.7) in
Z*P(t). Then (@, x, k) = @, %, k).

Proof. Set

(5.49) h:=Dk, u:=D, v:=Dix, h:=Dk, @:=D#f, 7:=Dj}.

Then @, v, h) and @, 7, h) belong toZ3P(r). Moreover, (1, v, h) and (i, 7, h) are both
solutions of (5.22). We assume, by contradiction, that ttleynot coincide in [OT].
Consequently, we set

(5.50) 71 :=inf{t € [0, z]. flu(t, -)—0(t, )l L2 *+lv(t, -)—v(t, -)||Lz(9)+|h(t)—ﬁ(t)| > 0}.

Of course, 0< 11 < T andu(t, -) = {(t, -), v(t, -) = 8(t, -), h(t) =h(t) for all t € [0, r1].
We set now, fort € [0, T — 11],

(5.51) n(t, -)=u(ry +t, ) =01 +t, ),
(5.52) ¢ty ) =v(m+t, ) —v(r+t, ),
(5.53) i(t) ;= h(zy +t) — h(ry +1).
From

hs Au— hx Al = h % A(u — @) + (h — h) % Al



PHASE FIELD IDENTIFICATION PROBLEM 611

we get, for allt € [0, T — 1q],

[hx A(u —0)](z1 +t, ) = o h(ry +t — s)A(u — Q)(s) ds
(5.54) ”

= /t h(t —s)An(s) ds = (h* An)(t, -).
0
Analogously,

t
(5.55) [(h =) = Al(ra + 1, ')=f0 [h(r1 +t —5) — h(rs +t — S)] Al(s, -)ds

= (0 * AT)(, ).

So, the triplet 4, ¢, ) solves the problem
(5.56)
DZn(t, -)+ID(t, -) = —koAn(t, -) — u(t) Ao
. te[0, T — mrl,
—(h= Ap)(t, -)— (* AD)(L, -),
Dis(t, -) —Be(t, -)
+ A[S(Oa + 1 (s +r, ) vt +1, -) tel0, r -1l
= S((xa +1x0(- +1, ), )t +71, )] —1An(, -)=0,
n(©, -)=0, Dm0, -)=0, ¢, -)=0,
1O[DE(t, )] = —ko®[An(t, -)] — t)P[ Ao
— ®[(h* An)(t, -)+ (L Al)(t, -)],

te[0,t— 1],

with
T 1
=0+ [ ot ddt= o [ )t
0 0
From the last equation in (5.56), using Lemma 5.3, we obtfine € (0, T — 1],

lellwee,0) < Calll lwar,0:vry + Inllweeo:Hi@) + 1N * nllwee,0;H1(e)

+ ||t Tllwer(,0;H1(0)))

(5.57) )
< CillIg lwsr,ovy + I llwee.o:nie) + (0P v o)llhllweeee)
x Inllcqo.ornie) + (@ P Vv o)lltlwieo,e) 1Tllcgo,of: Hi@y]-
Set now
(5.58) p = maxX{|hllweee), 101xzoe) TVIvapey, [10llyaee)}

and choose, from now org satisfying

(5.59) Cip(c¥Pvo) <

NI =
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Then, sincen(0, -) = Din(0, -) =0, from (5.57) we obtain

lelwr,0) < Co(llg lwar,ovy + 10 llwee,0;H1(@))

(5.60) i
< Ca(l¢llwerovy * O 71l x30(0))s

for suitable positive constants, and C; independent ob < 7 — 13.
Moreover, from Proposition 2.9, Corollary 2.11, Lemma 5.8t $ome constant
C4 € R* independent ob < 7 — 13, we get
Inllxzp@) < Calllh * Anllwero;Hy@) + It * Alllwiro,0;H1(@) * IItlwieo,o)
(5.61) + | DZ¢ waro,0:v) + 1 DEC llco.01 Hig) + IDEC IILp(o.01: H3@))
< Cs[a™Pplnlixarey + (0 + Dlltllwre,e) + 1Z vare)]-

If 0 <0o1:=(2Cs50) P and (5.59) holds, we get

(5.62) Inllxzee) < Colo + LIS lyarey + oY Plnlixan(s)),
implying
. 1
(5.63) Inlixap@y < C7(p + D¢ lyaney, if  Colp + Lo P < >
Finally, as

(5.64) Il Anllwzeo,0:v) + 1 ARllwee0:L2@) < Cr(Inllwer@o:Hi@) + I1llwie@.0:H2(@))

< Caa"Plnllxape),

from Proposition 3.4 and 3.5 and Lemmata 4.4 and 4.5,0fetr o(p), we obtain

(5.65) 1 llvaney < C()o Y PlInll xape)-
Hence
(5.66) Inllx2p@y < Colo + Lo Plinllxare),

implying that n vanishes in some right neighbourhood of 0. From (5.65) an@0}5
we obtain also that and ¢ vanish in some right neighbourhood of 0. Seo,= Q,
v =19 andh = h in some right neighbourhood af,, contrarily to the definition ofr;.
Therefore we conclude that= i, v =% andh = h, implying § =6, x = ¥ and
k=k. O
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