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Abstract
In this paper we consider an integro-differential system consisting of a parabolic

and a hyperbolic equation related to phase transition models. The first equation
is integro-differential and of hyperbolic type. It describes the evolution of the
temperature and also accounts for memory effects through a memory kernelk via
the Gurtin-Pipkin heat flux law. The latter equation, governing the evolution of the
order parameter, is semilinear, parabolic and of the fourthorder (in space). We prove
a local in time existence result and a global uniqueness result for the identification
problem consisting in recovering the memory kernelk appearing in the first equation.

Introduction

In order to introduce our mathematical problem, let us consider a smooth bounded
container� � Rd, 1 � d � 3, occupied by the substance undergoing the phase tran-
sition. Name� and � the basic state variables of the process, corresponding to the
relative temperature and to the order parameter, respectively. Then, the energy bal-
ance equation, describing the evolution of� , can be written, under theGurtin-Pipkin
heat flux law (cf. [11]), in the form

(0.1) Dt (� + l�)�1(k � �) = f ,

where� stands for the standard time convolution product for functions with their sup-
ports in R+, k : [0, T ] ! R, k(0) > 0, is the so-called heat conductivity relaxation
kernel, f is a heat source also incorporating an additional term depending on the past
history of � up to t = 0, which is assumed to be given, andl is a positive constant
accounting for the latent heat.

Then, this first equation—of hyperbolic type after differentiation—, ruling the evo-
lution of � , is coupled with thekinetic equationfor the phase variable, which is of
parabolic type. We will consider theconservedcase

(0.2) Dt� �1w = 0, w = �1� + �(�)� l� .

2000 Mathematics Subject Classification. 35R30, 45K05, 35M10.
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We stress that system (0.1), (0.2)—of mixed hyperbolic-parabolic type—was studied in
the paper [4].

We recall that� in (0.2) is usually assumed to be the sum of a general, possibly
multivalued, maximal monotone graph, representing the derivative of the convex part
of a double wellfree energy potential, and of the derivative of a smooth function ac-
counting for its non-convex part. However, in the present paper to solve our problem
we will need to consider only sufficiently regular functions�.

Moreover, relations (0.1) and (0.2) are assumed to be complemented by homo-
geneous Neumann boundary conditions both for� , � , and for the auxiliary unknownw, generally calledchemical potential, and by the Cauchy conditions for� and � :

�(0, x) = �0(x), �(0, x) = �0(x), x 2 �,(0.3)

k � ���� =
���� =

��� [�1� + �(�)� l� ] = 0, on (0,� )� ��,(0.4)

where�=�� indicates the normal derivative on��.
Actually, on account of the boundary condition onw, it is straightforward to check

that the average of� is constant in time.
The main task of this paper concerns the identification of thekernel k entering

equation (0.1) under the following additional informationinvolving the temperature� :

8[�(t , � )] :=
Z
� '(x)�(t , x) dx = g(t), t 2 [0, � ].(0.5)

We stress that, to derive a fixed point equation fork, we need to differentiate (in
time) equations (0.1) and (0.2) and working on the resultingexpression. Further, to
perform rigorously such a procedure, however, we need to deal with smooth solutions
to problem (0.1)–(0.5). Consequently, we must first obtain preliminary regularity re-
sults for the solutions to hyperbolic and parabolic initialand boundary value problems.
We point out that these regularity and continuous dependence results for such direct
problems, beyond acting as a basis for the subsequent analysis of the inverse problem,
might have some independent interest.

In the latter part of our paper, we will proceed to solving ouridentification prob-
lem for k.

Let us note that identifyingmemory kernelsin systems of partial integro-differential
equations (PIDE) related to transition models is a quite newproblem, mainly when
they are ofmixed type. A pioneering paper on this subject is [5] where the author
uses analytic semigroup theory to study (locally in time) both the direct and the inverse
problems for anon-conserved(parabolic) system of PIDE’s (cf. [3, 2, 7]), which cou-
ples (0.1)—provided with an additional term�k01� , k0 > 0—, with a second-order
parabolic equation for the phase variable.

As far as theconserved modelconsidered in this paper is concerned, let us quote
the papers [6] and [14], where the authors (using semigroup techniques) study thelocal
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(in time) identification of a kernel for system (0.1), (0.2), when thefirst equation is
provided with an additional term�k01� .

We give now the plan of our paper.
In Section 1 we introduce some notation and recall some basicresults used through-

out the paper.
In Section 2 we present some higher-order regularity results concerning the abstract

hyperbolic problem

(0.6)

�
u00(t) + Au(t) = f (t), t 2 [0, T ],
u(0) = u0, u0(0) = u1

where A is a self-adjoint lower bounded operator in the Hilbert space H . In the study
of inverse problems, one often needs to work in spaces of quite regular functions. Sec-
tion 2 is devoted to proving the regularity results given in Proposition 2.9 and Corol-
lary 2.11, which are both used in the final Section 5. In Remark2.12 we apply our
abstract results to the particular case appearing in the inverse problem.

In Section 3 we study the higher-order regularity of the solution to an abstract
parabolic system in anL p-setting with values in a Hilbert space. Of course, the results
obtained are applied in Section 5.

In Section 4 we present a careful study of the nonlinear term in our problem. Here
also we have to work in spaces of quite regular functions.

Finally, Section 5 is devoted to solvinglocally in time our identification prob-
lem (0.1)–(0.5) as well as to proving aglobal in timeuniqueness result.

1. Notation

We introduce some notations we shall use in the sequel.
We shall indicate withN the set of strictly positive integers, whileN0 will stand

for N [ f0g.
R+ will denote the set of strictly positive real numbers.
If p 2 [1, +1[, we shall indicate withp0 the dual indexp=(p� 1), with p0 =1

if p = 1.
The notationWm, p(0, T ; X), where X is a Banach space,T 2 R+, m 2 N, p 2

[1, +1[, will denote the space of all measurable functions from (0,T) into X whose
distributional derivatives up to the orderm belong to L p(0, T ; X). Such a space is
normed by

(1.1) k f kWm, p(0,T ;X) :=
m�1X
k=0

k f (k)(0)kX + k f (m)kL p(0,T ;X).
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We note that this norm is equivalent to the usual one

(1.2) k f kWm, p(0,T ;X) :=

 
m�1X
k=0

k f (k)kp
L p(0,T ;X)

!1=p

,

but the constants yielding the equivalence may burst to +1 as T ! 0+.
Since in some fundamental estimates in this paper occur terms such ask f (k)(0)kX

and we are going to prove an existence resultin the little with respect to time, it will
be more appropriate to make use of definition (1.1).

Finally, we norm in a similar wayCm([0, T ]; X), m 2 Nnf0g:
(1.3) k f kCm([0,T ];X) :=

m�1X
k=0

k f (k)(0)kX + k f (m)kC([0,T ];X).

It is easily seen that, iff 2 C1([0, T ]; X) and f (0) = 0, then

(1.4) k f kC([0,T ];X) � Tk f kC1([0,T ];X)

and, if f 2 C([0, T ]; X),

(1.5) k f kL p(0,T ;X) � T1=pk f kC([0,T ];X).

If � is an open subset inRn, s> 0, p,q 2 [1, +1], we shall indicate withBs
p,q(�)

the corresponding Besov space (see, for example, [9], [19]).
If X (�) is a space of functions of domain�, with � open and�� smooth, we

shall put, whenever the expression has a meaning,

XB(�) :=

�
f 2 X (�) :

� f�� � 0

�
,(1.6)

XBB(�) :=

�
f 2 X (�) :

� f�� � �1 f�� � 0

�
.(1.7)

If ( X0, X1) is a pair of compatible Banach spaces,� 2 (0, 1) and p 2 [1,1], we
shall indicate with (X0, X1)� , p the real interpolation space (see [15]).

We shall indicate withC(A, B, : : : ) positive constants depending onA, B, : : : . In
a sequence of estimates, we shall often writeC1(A, B, : : : ), C2(A, B, : : : ), etc.

2. Hyperbolic problems

We introduce the following basic assumption:
(A1) V and H are Hilbert spaces,V � H and V is dense inH .

We indicate with [� , � ] the scalar product inH , with ( � , � )V the scalar product in
V , with k � kV and k � kH the norms inV and H respectively, and withV 0 the space
of antilinear bounded functionals inV . We assume that
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(A2) kvkH � kvkV , 8v 2 V
in such a way thatV is continuously embedded intoH .

Using Riesz theorem, one can easily verify that the natural norm k � kV 0 in V 0 can
be obtained from a scalar product, so thatV 0 is by itself a Hilbert space. Ifh 2 H ,
we identify it with the element [h, � ] of V 0. From (A2) it follows immediately that

(2.1) khkV 0 � khkH 8h 2 H .

If ' 2 V 0 and v 2 V , we set

(2.2) [', v] := '(v).

(2.2) is consistent with the previous identification ofH with a subspace ofV 0.
Let now a be a sesquilinear, Hermitian continuous functional of domain V � V ,

such that, for certain� > 0 and� � 0, the estimate
(A3) a(v, v) � �kvk2V � �kvk2H 8v 2 V
holds (observe that, asa is hermitian, a(v, v) 2 R). We indicate withA the linear
operator fromV to V 0 such that

(2.3) [Av, w] = a(v, w), 8v, w 2 V .

Finally, we introduce the following operatorA in H :

(2.4)

�
D(A) = fv 2 V : Av 2 Hg,
Av = Av, v 2 D(A).

It is convenient to consider also the following operatorS in H :

(2.5) S := A +�.

Observe that we should obtainS instead ofA if we replaceda with a +�[ � , � ]. The
following properties ofS are well known (see, for example, [18], Section 2.2):

Theorem 2.1. Assume that the assumptions(A1)–(A3) hold. Then, if A and S
are the operators defined in(2.4) and (2.5), we have:
(I) D(A) is dense in H;
(II) S is a positive self-adjoint operator in H;
(III) V = D(S1=2), with equivalent norms.

Lemma 2.2. The operator S1=2 can be extended by a linear isomorphism from
H to V0.

Proof. If h 2 H and v 2 V , define

(2.6) [T h, v] := [h, S1=2v].
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If fE(�) j � 2 Rg is the spectral resolution ofS, we haveS1=2 =
R +1� �1=2 d E(�), so

that S1=2 is an isomorphism fromV to H with inverse S�1=2 =
R +1� ��1=2 d E(�). So

it is clear that the operatorT defined in (2.6) is an extension ofS1=2 to an element of
L(H , V 0), as

j[h, S1=2v]j � khkH kS1=2vkH � kS1=2kL(V ,H )khkH kvkV .

Moreover, if ' 2 V 0, the equationT h = ' has a unique solutionh 2 H : h is the
element ofH satisfying

[h, k] = [', S�1=2k], 8k 2 H .

REMARK 2.3. In the following, we shall indicate withS1=2 the operatorT in-
troduced in Lemma 2.2.

Proposition 2.4. Set X:= V � H . Define the following operator G in X:

(2.7)

�
D(G) := D(A)� V ,
G(u, v) = (v, �Au), (u, v) 2 D(G).

Then G is the infinitesimal generator of a semigroup in X.

Proof. With the method developed in the proof of Theorem 2.1,Chapter 5 in
[13], if (u0, v0) 2 D(A)� V , the problem

(2.8)

�
u00(t) + Au(t) = 0, t � 0,
u(0) = u0, u0(0) = v0

has a unique solutionu in C2([0, +1[; H ) \ C1([0, +1[; V) \ C([0, +1[; D(A)). If
t � 0, we define

(2.9) S(t)(u0, v0) := (u(t), u0(t)).
From Theorem 8.2 in [12] we have also that for everyT � 0 there existsC(T) > 0
such that, if 0� t � T , the estimate

(2.10) ku(t)kV + ku0(t)kH � C(T)(ku0kV + kv0kH )

holds. As D(A)� V is dense inX, we conclude from (2.10) that for anyt 2 [0, +1[
S(t) is extensible to an element ofL(X), which we continue to indicate withS(t).
From the uniqueness of the solution, it is not difficult to verify that fS(t) : t � 0g is a
strongly continuous semigroup of linear bounded operatorsin X.
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Now we show that its infinitesimal generator isG. We indicate for a moment this
generator withG0. Then it is clear thatG0 is an extension ofG, as, if (u0, v0) 2
D(G), then S( � )(u0, v0) 2 C1([0, +1[; X) and S0(0)(u0, v0) = G(u0, v0). On the other
hand, from ]�1, ��] � �(A) it follows easily [

p�, +1[ � �(G). So, if we pick� 2 R sufficiently large in such a way that� 2 �(G) \ �(G0), we obtain easily that
(�� G)�1 = (�� G0)�1, implying immediatelyG = G0.

Lemma 2.5. Let G be the infinitesimal generator of a strongly continuoussemi-
group fS(t): t � 0g in the Banach space X and let F2W1,1(0,T ; X). Then the function

u(t) :=
Z t

0
S(t � s)F(s) ds, t 2 [0, T ],

belongs to2 C1([0, T ]; X)\C([0, T ]; D(G)) and u0(t) = Gu(t)+ F(t) for any t2 [0, T ].

Proof. It is well known (see, for example, [16], Corollary 2.5) that, if F 2
C1([0, T ]; X), thenu 2 C1([0, T ]; X)\C([0, T ]; D(A)). Moreover, for anyt 2 [0, T ],

u0(t) = S(t)F(0) +
Z t

0
S(t � s)F 0(s) ds,(2.11)

Au(t) = u0(t)� F(t).(2.12)

Fix a sequence (Fk)k2N in C1([0, T ]; X), converging toF in W1,1(0, T ; X) and indicate
with uk the function obtained replacingF with Fk. Then, from (2.11)–(2.12), we de-
duce that (uk(t))k2N, (u0k(t))k2N, (Auk(t))k2N converge, uniformly in [0,T ], respectively

to u(t), S(t)F(0) +
R t

0 S(t � s)F 0(s) ds and S(t)F(0) +
R t

0 S(t � s)F 0(s) ds� F(t). From
this the conclusion easily follows.

Corollary 2.6. Consider the problem

(2.13)

�
u00(t) + Au(t) = f (t), t 2 [0, T ],
u(0) = u0, u0(0) = u1

under the assumption(A1)–(A3), where A is the operator defined in(2.4). If f 2
W1,1(0, T ; H ), u0 2 D(A), u1 2 V , then there exists a unique solution u belonging to
C2([0, T ]; H ) \ C1([0, T ]; V) \ C([0, T ]; D(A)).

Moreover, if f 2 W1,p(0, T ; V 0), with 1� p � +1, then u belongs also to
W3,p(0, T ; V 0); if f 2 C1([0, T ]; V 0), then u belongs also to C3([0, T ]; V 0).

Finally, for any T0 > 0 there exists C(T0) > 0 such that, if 0< T � T0,

kukC2([0,T ];H ) + kukC1([0,T ];V) + kukC([0,T ];D(A))

� C(T0)(ku0kD(A) + ku1kV + k f kW1,1(0,T ;H )),
(2.14)

kukW3,p(0,T ;V 0) � C(T0)(ku0kD(A) + ku1kV + k f kW1,1(0,T ;H ) + k f kW1,p(0,T ;V 0)).(2.15)
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Proof. Puttingv := u0, the problem (2.13) is equivalent to the system

(2.16)

8<
:

u0(t) = v(t), 0� t � T ,v0(t) = �Au(t) + f (t), 0� t � T ,
u(0) = u0, v(0) = u1.

As the functiont ! (0, f (t)) belongs toW1,1(0, T ; V � H ) and (u0, u1) 2 D(G), G
being defined in (2.7), by Lemma 2.5, problem (2.16) has a unique solutionU = (u, v)
belonging toC1([0, T ]; V�H )\C([0, T ]; D(A)�V). This impliesu 2 C1([0, T ]; V)\
C([0, T ]; D(A)). As v 2 C1([0, T ]; H ) and v = u0, we conclude thatu 2 C2([0, T ]; H ).

Estimate (2.14) can be obtained by the following argument: extend f to an element
f̃ 2W1,1(0,T0; H ) setting f̃ (t) = f (T) if T < t � T0. Next, consider the problem (2.13)
in [0, T0] replacing f with f̃ . If ũ is its solution, evidentlyu is the restriction ofũ
to [0, T ]. So we have

kukC2([0,T ];H ) + kukC1([0,T ];V) + kukC([0,T ];D(A))

� kũkC2([0,T0];H ) + kũkC1([0,T0];V) + kũkC([0,T0];D(A))

� C(T0)(ku0kD(A) + ku1kV + k f̃ kW1,1(0,T0;H ))

= C(T0)(ku0kD(A) + ku1kV + k f kW1,1(0,T ;H )).

Assume now thatf 2 W1,1(0, T ; H ) \ W1,p(0, T ; V 0). As u 2 C1([0, T ]; V), Au =
Au 2 C1([0, T ]; V 0). As u00 = �Au + f , we obtain immediately the conclusionu 2
W3,p(0, T ; V 0) and the estimate (2.15). The same argument works in casef 2
C1([0, T ]; V 0).

If t � 0, u0 2 V , u1 2 H , set

(2.17) S(t)(u0, u1) = (S11(t)u0 + S12(t)u1, S21(t)u0 + S22(t)u1).

S11, S12, S21, S22 are strongly continuous with values inL(V), L(H , V), L(V , H ),
L(H ), respectively.

Moreover, for anyu0 2 D(A), for any u1 2 V ,

(2.18) S11(t)u0 + S12(t)u1 = u0 +
Z t

0
[S21(s)u0 + S22(s)u1] ds.

By continuity, (2.18) can be extended tou0 2 V , u1 2 H . So S011(t)u0 = S21(t)u0 for
any u0 2 V , S012(t)u1 = S22(t)u1 for any u1 2 H .

Finally, S11(0) = IV , S22(0) = I H , S12(0)u1 = 0 for any u1 2 H , S21(0)u0 = 0 for
any u0 2 V .
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The solutionu of the problem (2.13) under the assumptions of Corollary 2.6can
be represented in the form

(2.19) u(t) = S11(t)u0 + S12(t)u1 +
Z t

0
S12(t � s) f (s) ds.

We consider the functionu given by (2.19) under conditions onu0, u1, f which are
less restrictive if compared with those of Corollary 2.6.

Proposition 2.7. Consider the function u defined in(2.19) assuming that f2
L1(0, T ; H ), u0 2 V , u1 2 H . Then u belongs to C1([0, T ]; H ) \ C([0, T ]; V).

Moreover, if f 2 L p(0,T ;V 0) (1� p� +1), then u belongs also to W2,p(0,T ;V 0),
if f 2 C([0, T ]; V 0), u 2 C2([0, T ]; V 0).

Finally, for any T0 > 0 there exists C(T0) > 0 such that, if 0< T � T0,

kukC1([0,T ];H ) + kukC([0,T ];V) � C(T0)(ku0kV + ku1kH + k f kL1(0,T ;H )),(2.20)

kukW2,p(0,T ;V 0) � C(T0)(ku0kV + ku1kH + k f kL1(0,T ;H ) + k f kL p(0,T ;V 0)).(2.21)

Proof. As S11 and S12 are strongly continuous with values inL(V) andL(H , V)
respectively,u 2 C([0, T ]; V). Moreover, fromS011 = S21, S012 = S22 and S12(0) = 0, we
obtain thatu 2 C1([0, T ]; H ) and

u0(t) = S21(t)u0 + S22(t)u1 +
Z t

0
S22(t � s) f (s) ds 8t 2 [0, T ].

Consider now a sequence (u0,k)k2N in D(A), converging tou0 in V , a sequence (u1,k)k2N

in V , converging tou1 in H and a sequence (fk)k2N in W1,1(0, T ; H ), converging to
f in L1(0, T ; H ). Call uk the solution of (2.13) obtained replacingu0 with u0k, u1

with u1,k, f with fk. Thenuk 2 C2([0, T ]; H )\C1([0, T ]; V) and the sequence (uk)k2N

converges tou in C1([0, T ]; H )\C([0, T ]; V). As u00k =�Auk + fk, the sequence (u00k)k2N

converges to�Au + f in L1(0, T ; V 0). So u00 = �Au + f , where u00 is the second
derivative ofu in the sense of distributions with values inV 0. As Au 2 C([0, T ]; V 0),
if f 2 L p(0, T ; V 0), then u 2 W2,p(0, T ; V 0). In the same way, it follows that, if
f 2 C([0, T ]; V 0), then u 2 C2([0, T ]; V 0).

Estimates (2.20) and (2.21) can be obtained with the arguments used to prove es-
timate (2.14), extendingf to ]T , T0] by 0.

DEFINITION 2.8. Let � 2 [�1=2, 0[. We set

D(S�) := f' 2 V 0 : 9v 2 D(S1=2+�) : ' = S1=2vg,
where S1=2 is defined inH (see Lemma 2.2 and Remark 2.3).v is obviously unique
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and coincides withS�1=2', where S�1=2 is assumed to be extended toV 0. If ' 2
D(S�), we set

(2.22) k'kD(S�) := kS�1=2'kD(S1=2+�).

Corollary 2.6 and Proposition 2.7 admit the following extensions, which can be
easily obtained using the fractional powersS� of S:

Proposition 2.9. Consider the problem(2.13), under the assumption(A1)–(A3),
where A is the operator defined in(2.4). Let � 2 [0, +1[. Assume that f2
W1,1(0, T ; D(S�)), u0 2 D(S1+�), u1 2 D(S1=2+�). Then the solution u belongs to
C2([0, T ]; D(S�)) \ C1([0, T ]; D(S1=2+�)) \ C([0, T ]; D(S1+�)). Moreover, if f 2
W1,p(0, T ; D(S��1=2)) (1� p � +1), then u belongs also to W3,p(0, T ; D(S��1=2)); if
f 2 C1([0, T ]; D(S��1=2)), then u belongs also to C3([0, T ]; D(S��1=2)).

Finally, for any T0 > 0 there exists C(T0) > 0 such that, if 0< T � T0,

kukC2([0,T ];D(S�)) + kukC1([0,T ];D(S1=2+�)) + kukC([0,T ];D(S1+�))

� C(T0)(ku0kD(S1+�) + ku1kD(S1=2+�) + k f kW1,1(0,T ;D(S�))),
(2.23)

kukW3,p(0,T ;D(S��1=2))

� C(T0)(ku0kD(S1+�) + ku1kD(S1=2+�) + k f kW1,1(0,T ;D(S�)) + k f kW1,p(0,T ;D(S��1=2))).
(2.24)

Proposition 2.10. Let � 2 [0, +1[. Consider the function u defined in(2.19) un-
der the assumptions f2 L1(0, T ; D(S�)), u0 2 D(S�+1=2), u1 2 D(S�). Then u belongs
to C1([0, T ]; D(S�))\C([0, T ]; D(S�+1=2)). Moreover, if f 2 L p(0, T ; D(S��1=2)), (1�
p � +1) then u belongs also to W2,p(0, T ; D(S��1=2)); if f 2 C([0, T ]; D(S��1=2)),
then u belongs also to C2([0, T ]; D(S��1=2)). Finally, for any T0 > 0 there exists
C(T0) > 0 such that, if 0< T � T0,

kukC1([0,T ];D(S�)) + kukC([0,T ];D(S�+1=2))

� C(T0)(ku0kD(S�+1=2) + ku1kD(S�) + k f kL1(0,T ;D(S�))),
(2.25)

and

kukW2,p(0,T ;D(S��1=2))

� C(T0)(ku0kD(S�+1=2) + ku1kD(S�) + k f kL1(0,T ;D(S�)) + k f kL p(0,T ;D(S��1=2))).
(2.26)

In Section 5 we shall need the following further regularity result:

Corollary 2.11. Consider problem(2.13),with f 2W1,p(0,T ;V 0)\C([0, T ]; V)\
L p(0, T ; D(S3=2)), u0 = u1 = 0. Then the function u defined in(2.19) belongs to
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W3,p(0, T ; V 0) \ C2([0, T ]; V) \ C1([0, T ]; D(S3=2)). Moreover, if T � T0, there ex-
ist C(T0) > 0, such that

kukW3,p(0,T ;V 0) + kukC2(0,T ;V) + kukC1(0,T ;D(S3=2))

� C(T0)(k f kW1,p(0,T ;V 0) + k f kC([0,T ];V) + k f kL p(0,T ;D(S3=2))).

Proof. By Proposition 2.10, with� = 3=2, u 2 C1([0, T ]; D(S3=2)), so that Au2
C1([0, T ]; V). Again by Proposition 2.10, with� = 0, u 2 C2([0, T ]; V 0). As u00 =�Au + f 2 C([0, T ]; V), u 2 C2([0, T ]; V). As �Au + f 2 W1,p(0, T ; V 0), u 2
W3,p(0, T ; V 0). Moreover, by Proposition 2.10,

(2.27) kukC1([0,T ];D(S3=2)) � C1(T0)k f kL1(0,T ;D(S3=2)) � C1(T0)T1=p0k f kL p(0,T ;D(S3=2)),

so that

kukC2([0,T ];V) = kD2
t ukC([0,T ];V) � kAukC([0,T ];V) + k f kC([0,T ];V)

� TkAukC1([0,T ];V) + k f kC([0,T ];V)

� CTkukC1([0,T ];D(S3=2)) + k f kC([0,T ];V)

� T2�1=pC1(T0)k f kL p(0,T ;D(S3=2)) + k f kC([0,T ];V).

Finally,

kukW3,p(0,T ;V 0) = kD2
t ukW1,p(0,T ;V 0) � kAukW1,p(0,T ;V 0) + k f kW1,p(0,T ;V 0)

� CkAukW1,p(0,T ;V) + k f kW1,p(0,T ;V 0)
� CT1=pkAukC1([0,T ];V) + k f kW1,p(0,T ;V 0)
� C2(T0)(k f kL p(0,T ;D(S3=2)) + k f kW1,p(0,T ;V 0)).

REMARK 2.12. OperatorS is self adjoint and positive. So, for anyt 2 R+, Si t

is an isometry inH . It follows from Theorem 1.15.3 in [19] that, for any� 2 ]0, 1[,
D(S�) coincides with the complex interpolation space [H , D(S)]�, with equivalent
norms.

We apply the previous result to a specific case useful in the sequel. For this pur-
pose we introduce the following condition:
(B1) � is an open bounded subset ofRn, lying on one side of its boundary��, which
is a submanifold ofRn of classC4.

Under assumption (B1), we set

(2.28) V := H1(�), H := L2(�).
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If v andw are elements ofV , we set

(2.29) a(v, w) :=
Z
� rv(x) � rw(x) dx.

Observe that, for anyv 2 V ,

a(v, v) = kvk2V � kvk2H ,

so that (A3) is satisfied. It is well known that, under the assumption (B1),

D(A) = D(S) =

�v 2 H2(�) :
�v�� = 0 in ���(2.30)

and

Au = �1u 8u 2 D(A).(2.31)

Owing to Remark 2.12 and Theorem 4.1 in [17], we have, for any� 2 ]0, 1[, with� 6= 3=4,

(2.32) D(S�) =

8><
>:

H2�(�) if 0 < � < 3

4
,

H2�
B (�) if

3

4
< � < 1,

where H2�
B (�) denotes the space defined by (1.6) withX = H2�(�).

Owing to the regularity of�� and known results of regularity for solutions of
elliptic boundary value problems (see, for example, [9] in case p = q = 2), we have
also, for any� 2 ]0, 1[, with � 6= 3=4,

(2.33) D(S1+�) =

8><
>:

H2(1+�)
B (�) if 0 < � < 3

4
,

H2(1+�)
BB (�) if

3

4
< � < 1,

where, if� > 3=4, H2(1+�)
BB (�) denotes the space defined by (1.7) withX = H2(1+�)(�).

3. Parabolic problems

We start with the following result, due to De Simon (see [8]):

Theorem 3.1. Let B be the infinitesimal generator of an analytic semigroup
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(et B)t�0 in the Hilbert space X. Let T 2 R+, p 2 ]1, +1[, f 2 L p(0, T ; X). Set, for
t 2 [0, T ],

v(t) :=
Z t

0
e(t�s)B f (s) ds.

Thenv 2 W1,p(0, T ; X) \ L p(0, T ; D(B)).

Corollary 3.2. Let B be the infinitesimal generator of an analytic semigroup
(et B)t�0 in the Hilbert space X. Let T 2 R+, p 2 ]1, +1[, f 2 L1(0, T ; X), v0 2 X.
Then the Cauchy problem

(3.1)

�v0(t) = Bv(t) + f (t), t 2 [0, T ],v(0) = v0

has a solutionv in W1,p(0, T ; X)\ L p(0, T ; D(B)) if and only if f 2 L p(0, T ; X) andv0 2 (X, D(B))1=p0, p. In this case the solution with such regularity is unique and can
be represented in the form

(3.2) v(t) := et Bv0 +
Z t

0
e(t�s)B f (s) ds.

Finally, for any T0 2 R+, there exists C(T0) > 0, such that, if 0 < T � T0, f 2
L p(0, T ; X) and v0 2 (X, D(B))1=p0, p,

(3.3) kvkW1,p(0,T ;X) + kvkL p(0,T ;D(B)) � C(T0)[kv0k(X,D(B))1=p0 , p
+ k f kL p(0,T ;X)].

Proof. The condition f 2 L p(0, T ; X) is clearly necessary to get a solution
with the required regularity. Moreover,fv(0) j v 2 W1,p(0, T ; X) \ L p(0, T ; D(B))g =
(X, D(B))1=p0, p (see [15], Proposition 1.2.10).

On the other hand, assume thatf 2 L p(0, T ; X) and v0 2 (X, D(B))1=p0, p. Letv be the function defined in (3.2). Then, by Theorem 3.1,t ! R t
0 e(t�s)B f (s) ds 2

W1,p(0, T ; X) \ L p(0, T ; D(B)). Moreover, by Proposition 2.2.2 in [15],t ! et Bv0

belongs to L p(0, T ; D(B)). As its derivative is Bet Bv0, we conclude thatv 2
W1,p(0, T ; X) \ L p(0, T ; D(B)).

If f 2 C�([0, T ]; X), for some� 2 R+, and v0 2 D(B), it is well known thatv 2 C1([0, T ]; X) \ C([0, T ]; D(B)). Moreover, v0(t) = Bv(t) + f (t) for all t 2 [0, T ].
Approximating f by a sequence (fk)k2N with values inC1([0, T ]; X), converging to f
in L p(0, T ; X), andv0 with a sequence (vk)k2N with values inD(B), converging tov0

in (X, D(B))1=p0, p (which exists, owing to Proposition 1.2.12 in [15]), we conclude that

v0(t)� Bv(t) = f (t)

almost everywhere in ]0,T [ and in the sense of vector valued distributions.
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To show the uniqueness, letv 2W1,p(0,T ; X)\L p(0,T ; D(B)) be such thatv(0) =
0 andv0(t) = Bv(t) almost everywhere in ]0,T [. Set, for t 2 [0, T ],

V(t) :=
Z t

0
v(s) ds.

Then V 2 C1([0, T ]; X) \ C([0, T ]; D(B)). Moreover, for allt 2 [0, T ],

V 0(t) = v(t) =
Z t

0
Bv(s) ds = BV(t).

Owing to well known properties of semigroups, we conclude that V � 0, and sov =
V 0 � 0.

To prove estimate (3.3), one can argue as in the proof of the estimate (2.14), ex-
tending f to the elementf̃ of L p(0, T0; X) such that f̃ (t) = 0 if t 2 ]T , T0].

Lemma 3.3. Let B be the infinitesimal generator of an analytic semigroup
(et B)t�0 in the Hilbert space X. Let T 2 R+, p 2]1, +1[, f 2 L1(0, T ; X), v0 2 X.
Then:
(I) the Cauchy problem(3.1) has a solutionv in W2,p(0, T ; X)\W1,p(0, T ; D(B)) if
and only if f 2 W1,p(0, T ; X), v0 2 D(B) and v1 := Bv0 + f (0) 2 (X, D(B))1=p0, p;
(II) the Cauchy problem(3.1) has a solutionv in W3,p(0, T ; X)\W2,p(0, T ; D(B)) if
and only if f 2 W2,p(0, T ; X), v0, v1 2 D(B) and v2 := Bv1 + f 0(0) 2 (X, D(B))1=p0, p.

Moreover, for any T0 2 R+, there exists C(T0) > 0, such that, in case(I) with 0<
T � T0, f 2 W1,p(0, T ; X), v0 2 D(B), v1 2 (X, D(B))1=p0, p,

kvkW2,p(0,T ;X) + kvkW1,p(0,T ;D(B))

� C(T0)[kv0kD(B) + kv1k(X,D(B))1=p0 , p
+ k f kW1,p(0,T ;X)],

(3.4)

in case(II), with 0< T � T0, f 2 W2,p(0, T ; X), v0, v1 2 D(B), v2 2 (X, D(B))1=p0, p,

kvkW3,p(0,T ;X) + kvkW2,p(0,T ;D(B))

� C(T0)[kv0kD(B) + kv1kD(B) + kv2k(X,D(B))1=p0 , p
+ k f kW2,p(0,T ;X)].

(3.5)

Proof. AsW1,p(0,T ;D(B))� C([0,T ];D(B)), if v 2W2,p(0,T ;X)\W1,p(0,T ;D(B))
and solves (3.1), thenv0 2 D(B) and f 2 W1,p(0, T ; X). Moreover,w := v0 belongs
to W1,p(0, T ; X) \ L p(0, T ; D(B)) and solves the problem

(3.6)

�w0(t) = Bw(t) + f 0(t), t 2 [0, T ],w(0) = v1.

So, necessarilyv1 2 (X, D(B))1=p0, p.
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On the other hand, ifw 2W1,p(0, T ; X)\ L p(0, T ; D(B)) and solves (3.6), settingv(t) := v0 + 1 � w, we getv 2 W2,p(0, T ; X) \ W1,p(0, T ; D(B)). Moreover, for any
t 2 ]0, T [,

v0(t) = w(t) = v1 +
Z t

0
(Bw(s) + f 0(s)) ds

= v1 + Bv(t)� Bv0 + f (t)� f (0) = Bv(t) + f (t).

Thus (I) is proved.
(II) can be shown with similar arguments.
The final estimates can be proved applying (3.3) to the derivatives of v.

We consider now operatorB := �A2, with A defined in (2.30)–(2.31), under as-
sumption (B1), in the spaceX = H = L2(�). So, from well known results concern-
ing the regularity of solutions of elliptic problems, its domain is H4

BB(�). It is well
known that B is the infinitesimal generator of an analytic semigroup inH . Next, we
set V := H1(�) and consider the following operatorB in V 0 of domain H3

B(�):

(3.7) (Bv, w) =
Z
� r(1v)(x) � rw(x) dx, v 2 H3

B(�), w 2 V .

Owing to the isomorphismS1=2, evenB is the infinitesimal generator of an analytic
semigroup inV 0. The following result holds:

Proposition 3.4. Consider the Cauchy problem

(3.8)

�v0(t) = Bv(t) + f (t), t 2 [0, T ],v(0) = v0.

Let p 2 ]1, +1[. Then the following conditions are necessary and sufficient in
order that there exist a unique solutionv 2 W3,p(0, T ; V 0) \ W2,p(0, T ; H3

B(�)) \
W1,p(0, T ; H4

BB(�)):
(I) f 2 W2,p(0, T ; V 0) \W1,p(0, T ; L2(�));
(II) v0 2 H4

BB(�));
(III) v1 := Bv0 + f (0) 2 (H3

B(�), H4
BB(�))1=p0, p;

(IV) v2 := Bv1 + f 0(0) 2 (V 0, H3
B(�))1=p0, p.

Moreover, for any T0 2 R+ there exists C(T0) > 0, such that, if 0 < T � T0 and
the conditions(I)–(IV) are satisfied,

kvkW3,p(0,T ;V 0) + kvkW2,p(0,T ;H3(�)) + kvkW1,p(0,T ;H4(�))

� C(T0)
�k f kW2,p(0,T ;V 0) + k f kW1,p(0,T ;L2(�)) + kv0kH4(�)

+ kv1k(H3
B(�),H4

BB(�))1=p0 , p
+ kv2k(V 0,H3

B(�))1=p0 , p

�
.

(3.9)
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Proof. Clearly the only possible solution is

(3.10) v(t) = et Bv0 +
Z t

0
e(t�s)B f (s) ds = etBv0 +

Z t

0
e(t�s)B f (s) ds.

Owing to Lemma 3.3, necessary and sufficient conditions for (3.8) to have a solution
with the desired regularity are:
(a) f 2 W2,p(0, T ; V 0) \W1,p(0, T ; L2(�));
(b) v0 2 H4

BB(�));
(c) v1 2 (L2(�), H4

BB(�))1=p0, p \ H3
B(�);

(d) v2 2 (V 0, H3
B(�))1=p0, p.

So (I)–(II) and (IV) are necessary. Asv0 2 W1,p(0, T ; H3
B(�))\ L p(0, T ; H4

BB(�))
and v0(0) = v1, even (III) is necessary, again by [15], Proposition 1.2.10.

On the other hand, (I)–(IV) imply (a)–(d).
(3.9) follows from (3.4) and (3.5).

Proposition 3.5. Let p� 2. Then

W3,p(0, T ; V 0) \W2,p(0, T ; H3(�)) � C2([0, T ]; H1(�)).

In particular, if assumptions(I)–(IV) of Proposition 3.4are fulfilled, the solutionv of
problem (3.8) belongs to C2([0, T ]; H1(�)). Moreover, for any T0 2 R+, there exists
C(T0) 2 R+, such that, if T 2 ]0, T0],

kvkC2([0,T ];H1(�))

� C(T0)
�k f kW2,p(0,T ;V 0) + kv0kH3(�) + kv1kH3(�) + kv2k(V 0,H3

B(�))1�1=p, p

�
.

(3.11)

Proof. Let v 2 W3,p(0, T ; V 0) \ W2,p(0, T ; H3(�)). Then we have thatD2
t v 2

W1,p(0, T ; V 0) \ L p(0, T ; H3(�)) � W1,2(0, T ; V 0) \ L2(0, T ; H3(�)). So, by Theo-
rem 3.1 in Chapter 1 of [12],D2

t v is continuous with values in the complex interpo-
lation space [V 0, H3(�)]1=2, coinciding with H1(�). As v(0) and Dtv(0) are elements
of H3(�), v 2 C2([0, T ]; H1(�)).

Let now v be the solution of (3.8), withT 2 ]0, T0]. If the conditions (I)–(IV) are
satisfied andp� 2, from the first part of the statement, we havev 2 C2([0, T ]; H1(�)).
Then, employing again the argument used to show estimate (2.14), we obtain esti-
mate (3.11).

REMARK 3.6. It is well known (see, for example, [10], Theorem 3.5), that

(3.12) (H3
B(�), H4

BB(�))1=p0, p =

8<
:

B4�1=p
2,p,B (�) if 1 < p < 2,

B4�1=p
2,p,BB(�) if 2 < p < +1.

A more involved characterization is known in casep = 2 (see [10]).
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Proposition 3.7. Under the assumption(B1), we have that

(3.13) (V 0, H3
B(�))1=p0, p =

8>>>>>><
>>>>>>:

S1=2�B4(1=p0)
2,p (�)

�
if 1< p < 8

5
,

B3�4=p
2,p (�) if

4

3
< p < 8

3
,

B3�4=p
2,p,B (�) if

8

3
< p < +1.

Proof. Owing to Theorem 3.5 in [10], we have

(3.14) (L2(�), H4
BB(�))1=p0, p =

8>>>>>><
>>>>>>:

B4=p0
2,p (�) if

4

p0 < 3

2
,

B4=p0
2,p,B(�) if

3

2
< 4

p0 < 5

2
,

B4=p0
2,p,BB(�) if

4

p0 > 5

2
.

As H4
BB(�) = D(S2) and H3

B(�) = D(S3=2) (see (2.33)),S1=2 is an isomorphism between
H4

BB(�) and H3
B(�). So, by Lemma 2.2,

(V 0, H3
B(�))1=p0, p = S1=2((L2(�), H4

BB(�))1=p0, p) = S1=2�B4=p0
2,p (�)

�
if 1 < p < 8=5.

Moreover, as

(L2(�), H4
BB(�))1=4,1� H1(�) � (L2(�), H4

BB(�))1=4,1
(by Theorem 3.5 and Proposition 1.6 in [10]), using again theisomorphismS1=2, we
can say that

(V 0, H3
B(�))1=4,1� L2(�) � (V 0, H3

B(�))1=4,1.

So, by the reiteration theorem, ifp > 4=3 (so that 1=p0 > 1=4), we have

(V 0, H3
B(�))1=p0, p = (L2(�), H3

B(�))1�4=3p, p.

So we can get the result applying again Theorem 3.5 in [10].

4. An auxiliary nonlinear operator

In this section we study the nonlinear operatorV ! S(�0+1�V)V , whereS: R!
R is appropriately smooth,V is a suitably regular function of domain [0,T ] �� and

(4.1) (1� V)(t , x) :=
Z t

0
V(s, x) ds, t 2 [0, T ].
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We introduce the following conditions:
(C1) (B1) holds;
(C2) n � 7.

Lemma 4.1. Under the conditions(C1)–(C2), H4(�) is continuously embedded
in C(�) and is a space of pointwise multipliers for Hs(�), for any s2 [0, 4].

Proof. The first statement follows from Sobolev embedding theorem.
The embedding ofH4(�) into C(�) implies also thatH4(�) is a space of point-

wise multipliers forL2(�). By Theorem 5.23 in [1],H4(�) is also a Banach algebra.
So the second statement follows by complex interpolation (see [19], Theorem 2 in Sec-
tion 4.3.1).

Lemma 4.2. Assume that(C1)–(C2)hold. Let j 2 Z, 0� j � 4, and S2 C j (R).
Then, for any u 2 H4(�), S Æ u is a pointwise multiplier for Hj (�). Moreover, ifkukH4(�) � R andv 2 H j (�),

(4.2) kS(u)vkH j (�) � C(R)kvkH j (�).

Finally, if S 2 C j +1(R), u0, u1 belong to H4(�), maxfku0kH4(�), ku1kH4(�)g � R andv belongs to Hj (�)

(4.3) kS(u0)v � S(u1)vkH j (�) � C(R)ku0� u1kH4(�)kvkH j (�).

Proof. First of all, if u 2 H4(�) and v 2 H j (�), then S(u)v 2 H j (�). In fact, it
is easily seen that, if� 2 Nn

0 and j�j � j , ��(S(u)v) is a linear combination of terms
of the form S(k)(u)��1u � � � � � ��k u�
 v, with k � j , j�1j + � � � + j�kj + j
 j � j (here we
use the convention that there are no derivatives ofu if k = 0). Now, S(k)(u) 2 L1(�),
while ��1u � � � � � ��k u�
 v 2 L2(�). To verify this fact, observe that, ifj�j < 4� n=2,��u 2 L1(�), if j
 j < j � n=2, �
 v 2 L1(�). So it suffices to show that the two
following products are inL2(�):
(I) products of the form��1u � � � � � ��k u with 1 � k � 4, j�i j � 4 � n=2 for each
i 2 f1, : : : , kg, Pk

i =1 j�i j � j ;
(II) products of the form��1u � � � � � ��k u�
 v with 1� k � 4, j�i j � 4� n=2 for each
i 2 f1, : : : , kg, j
 j � j � n=2,

Pk
i =1 j�i j + j
 j � j .

We consider the case (I). By the Sobolev embedding theorem, we have, if j�i j >
4� n=2, ��i u 2 L2n=(n�2(4�j�i j))(�), while, if j�i j = 4� n=2, ��i u 2 T1�p<+1 L p(�).

So, by Hölder’s inequality, we have to show that
Pk

i =1(n � 2(4� j�i j))=(2n) � 1=2
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and
Pk

i =1(n� 2(4� j�i j))=(2n) < 1=2, when j�i j = 4� n=2 for somei . Recalling that
n� 8< 0, we get

kX
i =1

�
n� 2(4� j�i j)

2n

�
=

k(n� 8) + 2
Pk

i =1 j�i j
2n

� n� 8 + 2
Pk

i =1 j�i j
2n

� 1

2
.

We observe, moreover, that we have equality only in casek = 1 andj�1j = 4. This can
occur only whenj = 4. So (I) is completely treated.

We consider (II). Arguing as in the first case, we have to show that
Pk

i =1(n �
2(4� j�i j))=(2n) + (n � 2( j � j
 j))=(2n) � 1=2 and

Pk
i =1(n � 2(4� j�i j))=(2n) + (n �

2( j � j
 j))=(2n) < 1=2, when j�i j = 4� n=2 for somei , or j
 j = j � n=2. We have:

kX
i =1

�
n� 2(4� j�i j)

2n

�
+

�
n� 2( j � j
 j)

2n

�

=
k(n� 8) + 2

�Pk
i =1 j�i j + j
 j� + n� 2 j

2n

� n� 8 + n

2n
< 1

2
.

Estimate (4.2) follows from the previous considerations and Sobolev embedding theo-
rem, implying, fork � j ,

kS(k) Æ ukL1(�) � supj� j�kukL1(�)

jS(k)(� )j � C(R).

Finally, estimate (4.3) is a consequence of the fact that, ifS2 C j +1(R), k � j and
maxfku0kH4(�), ku1kH4(�)g � R, then maxfku0kL1(�), ku1kL1(�)g � C1(R), so that

kS(k) Æ u0� S(k) Æ u1kL1(�) � C2(R)ku0� u1kL1(�).

In the future we shall need the following simple lemma, the proof of which can
be obtained by using Hölder and Young’s inequalities.

Lemma 4.3. Let X be a Banach space, � 2 R+, p 2 ]1, +1[, z 2 W1,p(0, � ; X),
with z(0) = 0. Then

kzkL1(0,� ;X) � � 1=p0kzkW1,p(0,� ;X),(4.4)

and

kzkL p(0,� ;X) � �kzkW1,p(0,� ;X).(4.5)



598 D. GUIDETTI AND A. L ORENZI

Lemma 4.4. Assume that(C1)–(C2) are satisfied, S2 C4(R), �0 2 H4(�). Let
R 2 R+, 0< � � T , V1 and V2 be elements of W1,p(0, � ; H4(�)) \W2,p(0, � ; L2(�)),
V1(0) = V2(0), maxj2f1,2g kVj kW1,p(0,� ;H4(�)) � R, �0 2 W4,p(�). Then

kS(�0 + 1� V1)V1� S(�0 + 1� V2)V2kW1,p(0,� ;H2(�))

� C(R, T)� 1=(2p)(kV1� V2kW1,p(0,� ;H4(�)) + kV1� V2kW2,p(0,� ;L2(�))).

Proof. We begin with some useful estimates.
First of all,

(4.6) kVj kL1(0,� ;H4(�)) � C(R, T).

In fact, employing (4.4)

kVj kL1(0,� ;H4(�)) � kVj (0)kH4(�) + k1 � Dt Vj kL1(0,� ;H4(�))

� kVj (0)kH4(�) + � 1=p0k1 � Dt Vj kW1,p(0,� ;H4(�))

= kVj (0)kH4(�) + � 1=p0kDt Vj kL p(0,� ;H4(�)) � (1_ T1=p0 )R.

Next,

(4.7) k�0 + 1� Vj kL1(0,� ;H4(�)) � C(R, T).

In fact,

k�0 + 1� Vj kL1(0,� ;H4(�)) � k�0kH4(�) + k1 � Vj kL1(0,� ;H4(�))

� k�0kH4(�) + �kVj kL1(0,� ;H4(�)) � R + TkVj kL1(0,� ;H4(�)).

We show that

(4.8) k1 � (V1 � V2)kL1(0,� ;H4(�)) � � 1+1=p0kV1� V2kW1,p(0,� ;H4(�)).

In fact, using (4.4), we have

k1 � (V1 � V2)kL1(0,� ;H4(�)) � �kV1� V2kL1(0,� ;H4(�))

� � 1+1=p0kV1� V2kW1,p(0,� ;H4(�)).

We show that

kDt (V1 � V2)kL p(0,� ;H2(�))

� C(R, T)� 1=(2p)(kV1� V2kW2,p(0,� ;L2(�)) + kV1� V2kW1,p(0,� ;H4(�))).
(4.9)
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In fact, asH2(�) 2 J1=2(L2(�), H4(�)), by Hölder’s inequality,

�Z �
0
kDt (V1� V2)(t)kp

H2(�) dt

�1=p

� C

�Z �
0
kDt (V1� V2)(t)kp=2

L2(�)kDt (V1 � V2)(t)kp=2
H4(�) dt

�1=p

� CkDt (V1� V2)k1=2L p(0,� ;L2(�))kDt (V1� V2)k1=2L p(0,� ;H4(�)).

Moreover, by Minkowski’s inequality,

kDt (V1 � V2)kL p(0,� ;L2(�))

� � 1=pkDt (V1 � V2)(0)kL2(�) + k1 � D2
t (V1 � V2)kL p(0,� ;L2(�))

� � 1=pkDt (V1 � V2)(0)kL2(�) + �kD2
t (V1� V2)kL p(0,� ;L2(�))

� maxf1, T1=p0g� 1=pkV1� V2kW2,p(0,� ;L2(�)),

so that

kDt (V1� V2)kL p(0,� ;H2(�))

� C(T)� 1=(2p)kV1� V2k1=2W2,p(0,� ;L2(�))kDt (V1 � V2)k1=2L p(0,� ;H4(�))

� C(T)� 1=(2p)(kV1� V2kW2,p(0,� ;L2(�)) + kV1� V2kW1,p(0,� ;H4(�))).

Now we prove the lemma.
As V1(0) = V2(0), we have

kS(�0 + 1� V1)V1 � S(�0 + 1� V2)V2kW1,p(0,� ;H2(�))

= kS0(�0 + 1� V1)V2
1 + S(�0 + 1� V1)Dt V1

� S0(�0 + 1� V2)V2
2 � S(�0 + 1� V2)Dt V2kL p(0,� ;H2(�)).

For almost everyt 2 [0, � ], employing Lemmata 4.1, 4.2, 4.3, (4.7), (4.8), we get

kS0(�0 + 1� V1(t))V1(t)2 + S(�0 + 1� V1(t))Dt V1(t)

� S0(�0 + 1� V2(t))V2(t)2� S(�0 + 1� V2(t))Dt V2(t)kH2(�)

� kV1(t)[S0(�0 + 1� V1(t))� S0(�0 + 1� V2(t))]V1(t)kH2(�)

+ k(V1(t) + V2(t))S0(�0 + 1� V2(t))(V1(t)� V2(t))kH2(�)

+ k[S(�0 + 1� V1(t))� S(�0 + 1� V2(t))]Dt V1(t)kH2(�)

+ kS(�0 + 1� V2(t))[Dt V1(t)� Dt V2(t)]kH2(�)

� C(R, T)[k1 � (V1� V2)(t)kH4(�)(1 +kDt V1(t)kH2(�))

+ kV1(t)� V2(t)kH2(�) + kDt (V1 � V2)(t)kH2(�)]
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� C(R, T)[� 1+1=p0kV1� V2kW1,p(0,� ;H4(�))(1 +kDt V1(t)kH2(�))

+ kV1(t)� V2(t)kH2(�) + kDt (V1� V2)(t)kH2(�)].

We conclude, applying (4.5) and (4.9), that

kS(�0 + 1� V1)V1 � S(�0 + 1� V2)V2kW1,p(0,� ;H2(�))

� C(R, T)[� 1+1=p0kV1� V2kW1,p(0,� ;H4(�))(� 1=p + kDt V1kL p(0,� ;H2(�)))

+ kV1 � V2kL p(0,� ;H2(�)) + kDt (V1� V2)kL p(0,� ;H2(�))]

� C1(R, T)� 1=(2p)(kV1� V2kW2,p(0,� ;L2(�)) + kV1� V2kW1,p(0,� ;H4(�))).

In the following, we shall use without comment the elementary fact that, if 0<� � T and 0< � � �,

� � � C� �,

with C 2 R+, depending only on� � � and T .

Lemma 4.5. Assume that(C1)–(C2) are satisfied and S2 C4(R). Let R2 R+,
0 < � � T , V1 and V2 be elements of W1,p(0, � ; H4(�)) \ W2,p(0, � ; H3

B(�)) \
W3,p(0,� ;V 0), such that V1(0) =V2(0), Dt V1(0) = Dt V2(0), maxj2f1,2g(kVj kW2,p(0,� ;H3(�))+kVj kW1,p(0,� ;H4(�)))� R. Then

kS(�0 + 1� V1)V1 � S(�0 + 1� V2)V2kW2,p(0,� ;H1(�))

� C(R)� (1=p0)^1=(2p)(kV1� V2kW1,p(0,� ;H4(�))

+ kV1� V2kW2,p(0,� ;H3(�)) + kV1� V2kW3,p(0,� ;V 0)).
Proof. We start with a couple of useful estimates. First of all,

kDt (V1� V2)kL p(0,� ;H1(�))

� �kV1� V2kW2,p(0,� ;H3(�)).
(4.10)

In fact, asDt (V1 � V2)(0) = 0,

kDt (V1 � V2)kL p(0,� ;H1(�)) = k1 � D2
t (V1 � V2)kL p(0,� ;H1(�))

� �kD2
t (V1� V2)kL p(0,� ;H1(�)) � �kV1� V2kW2,p(0,� ;H3(�)).

Next,
(4.11)kD2

t (V1 � V2)kL p(0,� ;H1(�)) � C� 1=(2p)(kV1 � V2kW3,p(0,� ;V 0) + kV1� V2kW2,p(0,� ;H3(�))).

This estimate can be obtained with the same method used to prove (4.9), using the fact
that H1(�) 2 J1=2(V 0, H3

B(�)).
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We pass to prove the stated result. AsV1(0) = V2(0) and Dt V1(0) = Dt V2(0),
we have

kS(�0 + 1� V1)V1 � S(�0 + 1� V2)V2kW2,p(0,� ;H1(�))

= kD2
t [S(�0 + 1� V1)V1 � S(�0 + 1� V2)V2]kL p(0,� ;H1(�))

= kS00(�0 + 1� V1)V3
1 � S00(�0 + 1� V2)V3

2

+ 3[S0(�0 + 1� V1)V1Dt V1� S0(�0 + 1� V2)V2Dt V2]

+ S(�0 + 1� V1)D2
t V1� S(�0 + 1� V2)D2

t V2kL p(0,� ;H1(�)).

For almost everyt in [0, � ] we have, employing Lemma 4.1, Lemma 4.2, (4.6), (4.8),
(4.9), (4.4),

kS00(�0 + 1� V1(t))V1(t)3� S00(�0 + 1� V2(t))V2(t)3

+ 3[S0(�0 + 1� V1(t))V1(t)Dt V1(t)� S0(�0 + 1� V2(t))V2(t)Dt V2(t)]

+ S(�0 + 1� V1(t))D2
t V1(t)� S(�0 + 1� V2(t))D2

t V2(t)kH1(�)

� kV1(t)2[S00(�0 + 1� V1(t))� S00(�0 + 1� V2(t))]V1(t)kH1(�)

+ k(V1(t)2 + V1(t)V2(t) + V2(t)2)S00(�0 + 1� V2(t))(V1(t)� V2(t))kH1(�)

+ 3kV1(t)[S0(�0 + 1� V1(t))� S0(�0 + 1� V2(t))]Dt V1(t)kH1(�)

+ 3k(V1(t)� V2(t))S0(�0 + 1� V2(t))Dt V1(t)kH1(�)

+ 3kV2(t)S0(�0 + 1� V2(t))Dt (V1� V2)(t)kH1(�)

+ k[S(�0 + 1� V1(t))� S(�0 + 1� V2(t)])D2
t V1(t)kH1(�)

+ kS(�0 + 1� V2(t))D2
t (V1 � V2)(t)kH1(�)

� C(R, T)[k1 � (V1� V2)(t)kH4(�)(1 +kDt V1(t)kH1(�) + kD2
t V1(t)kH1(�))

+ kV1(t)� V2(t)kH1(�) + kV1(t)� V2(t)kH4(�)kDt V1(t)kH1(�)

+ kDt (V1� V2)(t)kH1(�) + kD2
t (V1� V2)(t)kH1(�)]

� C(R, T)fkV1 � V2kW1,p(0,� ;H4(�))[� 1+1=p0 (1 +kDt V1(t)kH1(�) + kD2
t V1(t)kH1(�))

+ � 1=p0(1 +kDt V
1(t)kH1(�))]

+ kDt (V1� V2)(t)kH1(�) + kD2
t (V1� V2)(t)kH1(�)g.

So, using (4.10)–(4.11), we get

kS(�0 + 1� V1)V1� S(�0 + 1� V2)V2kW2,p(0,� ;H1(�))

� C1(R, T)f� 1=p0kV1� V2kW1,p(0,� ;H4(�)) + kDt (V1 � V2)(t)kL p(0,� ;H1(�))

+ kD2
t (V1 � V2)(t)kL p(0,� ;H1(�))g
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� C1(R, T)f� 1=p0kV1� V2kW1,p(0,� ;H4(�)) + �kV1� V2kW2,p(0,� ;H3(�))

+ � 1=(2p)(kV1� V2kW3,p(0,� ;V 0) + kV1� V2kW2,p(0,� ;H3(�)))g,
which implies the conclusion.

5. The inverse problem

In this section we will be concerned with the identification of the kernelk entering
in the boundary value problem (0.1)–(0.4).

We start by introducing some notations, which will be usefulin the following. As
in the previous sections, we indicate withV 0 the dual space ofH1(�).

Let s 2 N [ f0g, p 2 [2, +1[. We set:

Xs+3,p(� ) := Ws+3,p(0, � ; V 0) \ Cs+2([0, � ]; H1(�)) \ Cs+1([0, � ]; H2
B(�))

\ Cs([0, � ]; H3
B(�)),

(5.1)

Ys+3,p(� ) := Ws+3,p(0, � ; V 0) \Ws+2,p(0, � ; H3
B(�)) \Ws+1,p(0, � ; H4

BB(�)),(5.2)

Zs+3,p(� ) := Xs+3,p(� )� Ys+3,p(� )�Ws+1,p(0, � )(5.3)

endowed with their natural normsk � kXs+3,p(� ), k � kYs+3,p(� ), k � kZs+3,p(� ) defined by

kwkXs+3,p(� ) := kwkWs+3,p(0,� ;V 0) +
3X

j =1

kwkCs+3� j ([0,� ];H j (�)),(5.4)

kvkYs+3,p(� ) := kvkWs+3,p(0,� ;V 0) + kvkWs+2,p(0,� ;H3(�))

+ kvkWs+1,p(0,� ;H4(�)) + kvkCs+2([0,� ];H1(�)),
(5.5)

k(u, v, h)kZs+3,p(� ) := kukXs+3,p(� ) + kvkYs+3,p(� ) + khkWs+1,p(0,� ).(5.6)

The norm (5.5) is motivated by the fact that, owing to Proposition 3.5, in the case
p � 2, Ys+3,p(� ) � Cs+2([0, � ]; H1(�)).

Explicitly we will search for a solution (� , � , k) 2 Z4,p(� ) to the following prob-
lem, where� 2 (0, T ]:

(5.7)

8>>>>>>>>><
>>>>>>>>>:

Dt (� + l�)(t , x)� (k �1x�)(t , x) = f (t , x), (t , x) 2 [0, � ] ��,
Dt�(t , x)�1x[�1x� + �(�)� l� ](t , x) = 0, (t , x) 2 [0, � ] ��,�(0, x) = �0(x), �(0, x) = �0(x), x 2 �,���� (t , x) =

���� (t , x) =
�1x��� (t , x) = 0, (t , x) 2 [0, � ] � ��,Z

� '(x)�(t , x) dx = g(t), t 2 [0, � ].

As far as the data are concerned, we shall make the following assumptions:
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(D1) � is an open bounded subset ofRn, n � 7, lying on one side of its boundary��, which is a submanifold ofRn of classC4;
(D2) � 2 C5(R), ' 2 H1(�);
(D3) f 2 W3,p(0, T ; H1(�)), g 2 W4,p(0, T), T 2 R+, p 2 [2, +1[;
(D4) �0 2 H3

B(�), �0 2 H4
BB(�);

(D5) v0 := �12
x�0 +1x[�(�0)� l�0] 2 H4

BB(�);
(D6) u0 := f (0, � )� lv0 2 H3

B(�);
(D7) v1 := �12

xv0 +1x[� 0(�0)v0� lu0] 2 (H3
B(�), H4

BB(�))1�1=p, p;
(D8)

R� '(x)1x�0(x) dx 6= 0;

(D9) k0 :=
�
g00(0) +

R� '(x)[lv1(x)� Dt f (0, x)] dx
	� R� '(x)1x�0(x) dx

	�1 2 R+;

(D10) u1 := k01x�0 + Dt f (0, � )� lv1 2 H2
B(�);

(D11)
R� '(x)�0(x) dx = g(0),

R� '(x)u0(x) dx = g0(0),
R� '(x)u1(x) dx = g00(0);

(D12) v2 := Bv1 +1x[� 00(�0)v2
0 +� 0(�0)v1]� l1xu1 2 (V 0, H3

B(�))1=p0, p, p0 = p=(p�1).

REMARK 5.1. Observe that the more complex boundary conditions (0.4) can
be replaced with the simpler ones in (5.7) under the assumption k(0)> 0 (cf. (D9)
and (5.19). Indeed, since (� , � , k) 2 Z4,p(� ), the following relations hold:

k(0)
���� + k0 � ���� = 0, on (0,� )� ��, () ���� = 0, on (0,� )� ��,(5.8)

��(�)�� = � 0(�)
���� = 0, on (0,� )� ��.(5.9)

Consequently, from (5.7), (5.8), (5.9) we easily deduce thesimpler boundary condi-
tions in (5.7).

Assume now that a solution (� , � , k) 2 Z4,p(� ) does exist. Then, differentiating
with respect tot the first equation in (5.7), we obtain, for (t , x) 2 [0, � ] ��,

(5.10) D2
t �(t , x) + l D2

t �(t , x) = k(0)1x�(t , x) + (k0 �1x�)(t , x) + Dt f (t , x).

Differentiating again (5.10) and the second equation in (5.7) and setting

u := Dt� , v := Dt� , h := Dtk,(5.11)

we get

D2
t u(t , x) + l D2

t v(t , x)

= k(0)1xu(t , x) + h(t)1x�0(x) + (h �1xu)(t , x) + D2
t f (t , x), (t , x) 2 [0, � ] ��,

(5.12)

Dtv(t , x)�1x[�1xv + � 0(�)v � lu](t , x) = 0, (t , x) 2 [0, � ] ��.(5.13)
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Moreover,

(5.14)
v(0, � ) = Dt�(0, � ) = v0, u(0, � ) = f (0, � )� l Dt�(0, � ) = u0,

D2
t �(0, � ) = Dtv(0, � ) = v1.

If w 2 V 0, we set

(5.15) 8[w] := [w, ' ],

where' denotes the function conjugate to'. Therefore the last condition in (5.7) can
be written in the form

(5.16) 8[�(t , � )] = g(t), t 2 [0, � ].

Applying ' to (5.10), we obtain

g00(t) + l8[D2
t �(t , )]

= k(0)8[1x�(t , � )] + 8[(h �1x�)(t , � )] + 8[Dt f (t , � )], t 2 [0, � ],
(5.17)

implying

g00(0) + l8[v1] = k(0)8[1x�0] + 8[Dt f (0, � )].(5.18)

It follows from (D8) and (D9) that

(5.19) k(0) =
g00(0) + l8[v1] �8[Dt f (0, � )]8[1x�0]

= k0.

Next,

Dtu(0, � ) = D2
t �(0, � ) = k(0)1x�0 + Dt f (0, � )� l D2

t �(0, � )
= k01x�0 + Dt f (0, � )� lv1 = u1.

(5.20)

Finally,

�u�� (t , x) =
�v�� (t , x) =

�1xv�� (t , x) = 0, (t , x) 2 [0, � ] � ��.(5.21)

From these considerations, if (� , � , k) 2 Z4,p(� ) solves (5.7), then triplet (u, v, h) 2
Z3,p(� ). Moreover, if A is the operator defined in (2.30)–(2.31),B =�A2 and S := � 0,
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then (u, v, h) 2 Z3,p(� ) solves the problem
(5.22)8>>>>>>>>>><

>>>>>>>>>>:

D2
t u(t , � ) + l D2

t v(t , � ) = �k0Au(t , )� h(t)A�0� (h � Au)(t , � ) + D2
t f (t , � ), t 2 [0, � ],

Dtv(t , � )� Bv(t , � ) + A[S((�0 + 1� v)(t , �))v(t , �)] � l Au(t , � )
= 0,

t 2 [0, � ],

u(0, � ) = u0, Dtu(0, � ) = u1, v(0, � ) = v0,
g(3)(t) + l8[D2

t v(t , �)] = �k08[ Au(t , �)] � h(t)8[ A�0]

�8[(h � Au)(t , � )] + 8[D2
t f (t , � )], t 2 [0, � ].

Lemma 5.2. Let assumptions(D1)–(D12) be satisfied. Let (u, v, h) 2 Z3,p(� )
solve system(5.22) and set� := �0 + 1 � u, � := �0 + 1 � v, k := k0 + 1 � h. Then
(� , � , k) 2 Z4,p(� ) and solves problem(5.7).

Proof. Since�u=�� = 0 and�v=�� = �1v=�� = 0 on ��, we deduce that also�
and� satisfy such boundary conditions according to (D4). This implies that (� ,� , k) 2
Z4,p(� ) according to definitions (5.1)–(5.3). Moreover, it is easy to check that the ini-
tial conditions�(0, � ) = �0, �(0, � ) = �0 in (5.7) are satisfied.

Since the second equation in (5.22) can be rewritten in the form

Dt fDt�(t , x)�1x[�1x� + �(�)� l� ](t , x)g � 0,

by virtue of (D5), the second equation in (5.7) is satisfied.
Next, we have

(5.23) D2
t (k �1x�) = Dt (k01x� + h �1x�) = k01xu + h1x�0 + h �1xu.

Hence, the first equation in (5.22) can be rewritten in the form

D2
t fDt (� + l�)� (k �1x�)(t , x)g � D2

t f .

Owing to (D6), (D7) and (D10), we get

Dt fDt (� + l�)� (k �1x�)g(0, � ) = Dtu(0, � ) + l Dtv(0, � )� k01x�0

= u1 + lv1� k01x�0 = Dt f (0, � ),(5.24)

i.e. even the first equation in (5.7) is satisfied.
Finally, applying8 to the first equation in (5.22) and comparing the result with

the final equation, we get, for allt 2 [0, T ],

8[D3
t �(t , � )] = 8[D2

t u(t , � )] = g(3)(t).

Thus the final equation in (5.7) follows from (D11).
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REMARK 5.2. If (u, v, h) is a solution of the system, from the last equation
in (5.22) we get

h(0) = h0 :=
8[�lv2� k0Au0 + D2

t f (0, � )] � g(3)(0)8[ A�0]
.(5.25)

Lemma 5.3. Let X be a Banach space and let� 2 R+, p 2 [1, +1[, h 2
W1,p(0, � ), z 2 C([0, � ]; X). Then h� z 2 W1,p(0, � ; X) and

kh � zkW1,p(0,� ;X) � (� 1=p _ � )khkW1,p(0,� )kzkC([0,� ];X).(5.26)

Proof. As (h � z)(0) = 0 and

kh0 � zkL p(0,� ;X) � kh0kL p(0,� )kzkL1(0,� ;X),

we get

(5.27)

kh � zkW1,p(0,� ;X) = k(h � z)0kL p(0,� ;X) = kh(0)z + h0 � zkL p(0,� ;X)

� jh(0)jkzkL p(0,� ;X) + kh0kL p(0,� )kzkL1(0,� ;X)

� (� 1=pjh(0)j + �kh0kL p(0,� ))kzkC([0,� ];X)

� (� 1=p _ � )khkW1,p(0,� )kzkC([0,� ];X).

Lemma 5.4. Let assumptions(D1)–(D12) be satisfied and let U be the solution
to the Cauchy problem

(5.28)

�
D2

t U (t , � ) + k0AU(t , � ) = 0, t 2 [0, T ],
U (0, � ) = u0, DtU (0, � ) = u1.

Then U2T3
j =0 C3� j ([0, T ]; H j (�)).

Proof. It follows from Proposition 2.9, with� = 1=2, p = +1.

Lemma 5.5. Let assumption(D1) be satisfied. Let v0 2 H4
BB(�), v1 2 (H3

B(�),
H4

BB(�))1=p0, p, v2 2 (V 0, H3
B(�))1=p0, p. Then there exists V2 Y3,p(T) (cf. (5.2)) such

that V(0) = v0, Dt V(0) = v1, D2
t V(0) = v2.

Proof. As v2 � Bv1 2 (V 0, L2(�))1�1=p, p, by virtue of Proposition 1.2.10 in [15]
there existsg 2 W1,p(0, T ; V 0) \ L p(0, T ; L2(�)), such thatg(0) = v2 � Bv1. Then
we set

f := v1� Bv0 + 1� g
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and consider the solutionV to problem (3.8). It is easily seen that all conditions
(I)–(IV) in Proposition 3.4 are fulfilled. SoV 2 Y3,p(T) and it is easily seen that
Dt V(0) = v1, D2

t V(0) = v2.

Now we are able to state and prove the first of the main results of our paper.

Theorem 5.6. Let assumptions(D1)–(D12) be fulfilled. Then there exists� 2
]0, T ] such that the problem(5.7) has a solution(� , � , k) 2 Z4,p(� ).

Proof. We define

(5.29)
Z̃3,p(� ) := f(u, v, h) 2 X3,p(� )� Y3,p(� )�W1,p(0, � ) :

u(0) = u0, Dtu(0) = u1, v(0) = v0, Dtv(0) = v1, D2
t v(0) = v2, h(0) = h0g.

Observe first that, owing to Lemmata 5.4 and 5.5,Z̃3,p(� ) is a nonempty closed subset
of Z3,p(� ).

Then, for any fixed (U , V , H ) 2 Z̃3,p(� ) we consider the problem
(5.30)8>>>>>>>><
>>>>>>>>:

D2
t u(t , � ) + k0Au(t , � ) = D2

t f (t , � )� H (t)A�0� (H � AU)(t , � )� l D2
t V(t , � ), t 2 [0, � ],

Dtv(t , � )� Bv(t , � ) = l AU (t , � )� A[S((�0 + 1� V)(t , � ))V(t , � )],
u(0, � ) = u0, Dtu(0, � ) = u1, v(0, � ) = v0,
h(t)8[ A�0] = �g(3)(t) +8[D2

t f (t , � )] � k08[ AU(t , � )]
�8[(H � AU)(t , � )] � l8[D2

t V(t , � )], t 2 [0, � ].

It is easily seen that, for any fixed (U , V , H ) 2 Z̃3,p(� ), problem (5.30) has a unique
solution (u, v, h) in Z̃3,p(� ). In fact, owing to (D3), (D4) and Lemma 5.3,D2

t f (t , � )�
H (�)A�0�H �AU 2W1,p(0,� ; H1(�)). So, by virtue of Proposition 2.9, with� = 1=2,
the problem

(5.31)

8><
>:

D2
t z(t , � ) + k0Az(t , � ) = D2

t f (t , � )� H (t)A�0� (H � AU)(t , � ), t 2 [0, � ],

z(0, � ) = u0, Dt z(0, � ) = u1

has a unique solutionz 2 C2([0, � ]; H1(�)) \ C1([0, � ]; H2
B(�)) \ C([0, � ]; H3

B(�)) \
W3,p(0, � ; L2(�)). Moreover, by Proposition 3.5 and Corollary 2.11, the problem

�
D2

t �(t , � ) + k0A�(t , � ) = �l D2
t V(t , � ), t 2 [0, � ],�(0, � ) = 0, Dt�(0, � ) = 0

(5.32)

has a unique solution� belonging toW3,p(0,� ;V 0)\C2([0,� ];H1(�))\C1([0,� ];H3
B(�)).

Moreover, l AU 2C2([0,� ];V 0)\C1([0,� ];L2(�)), so thatl AU�A[S((�0+1�V))V(t ,�)] 2



608 D. GUIDETTI AND A. L ORENZI

W2,p(0,� ; V 0)\W1,p(0,� ; L2(�)) due to Lemmata 4.4 and 4.5. So, owing to assump-
tions (D5), (D7) and (D12), Proposition 3.4 allows to conclude that the second equa-
tion in (5.30) has a unique solutionv 2 Y3,p(� ). Finally, as' 2 H1(�) and AU 2
C1([0, � ]; V 0), �g(3) +8[D2

t f ]� k08[ AU]�8[H � AU]� l8[D2
t V ] 2W1,p(0, � ), ow-

ing to (D3) and Lemma 5.3. So problem (5.30) has a unique solution in Z3,p(� ). It is
not difficult to check that it belongs, in fact, tõZ3,p(� ). We denote this solution by

S(U , V , H ) = (S1(U , V , H ), S2(U , V), S3(U , V , H )),

and stress thatS2 is independent ofH . We observe thatS is a (nonlinear) operator
from Z̃3,p(� ) into itself. Clearly, to solve our identification problem (5.22) we have to
look for a fixed point ofS.

Let R 2 R+ and (U j , Vj , H j ) 2 Z̃3,p(� ), j 2 f1, 2g and 0< � � T , be such that

(5.33) max
j2f1,2g k(U j , Vj , H j )kZ3,p(� ) � R.

Taking Proposition 2.9, Corollary 2.11 and Lemma 5.3 into account, we get

kS1(U1, V1, H1)� S1(U2, V2, H2)kX3,p(� )

� C(k(H1� H2)A�0kW1,p(0,� ;H1(�)) + kH1 � A(U1 �U2)kW1,p(0,� ;H1(�))

+ k(H1� H2) � AU2kW1,p(0,� ;H1(�)) + kD2
t (V1 � V2)kL p(0,� ;H3(�))

+ kD2
t (V1 � V2)kW1,p(0,� ;V 0) + kD2

t (V1� V2)kC([0,� ];H1(�)))

� C1(R)� 1=p(kU1 �U2kX3,p(� ) + kH1� H2kW1,p(0,� ))

+ C1(kV1� V2kY3,p(� ) + kH1� H2kW1,p(0,� )).

(5.34)

Next, from Propositions 3.4 and 3.5, Lemmata 4.4 and 4.5 we obtain

kS2(U1, V1)� S2(U2, V2)kY3,p(� )

� C(kU1 �U2kW2,p(0,� ;H1(�)) + kU1 �U2kW1,p(0,� ;H2(�))

+ kS(�0 + 1� V1)V1 � S(�0 + 1� V2)V2kW2,p(0,� ;H1(�))

+ kS(�0 + 1� V1)V1 � S(�0 + 1� V2)V2kW1,p(0,� ;H2(�)))

� C2(kD2
t (U1 �U2)kL p(0,� ;H1(�)) + kDt (U1 �U2)kL p(0,� ;H2(�)))

+ C2(R)� 1=(2p)kV1� V2kY3,p(� )

� C2� 1=pkU1 �U2kX3,p(� ) + C2(R)� 1=(2p)kV1� V2kY3,p(� ).

(5.35)
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Finally, as' 2 H1(�), using again Lemma 5.3, we get

kS3(U1, V1, H1)� S3(U2, V2, H2)kW1,p(0,� )

� C3(kA(U1 �U2)kW1,p(0,� ;V 0) + kH1 � AU1 � H2 � AU2kW1,p(0,� ;V 0)
+ kV1� V2kW3,p(0,� ;V 0))

� C4(kU1 �U2kW1,p(0,� ;H1(�)) + kH1 � A(U1 �U2)kW1,p(0,� ;V 0)
+ k(H1� H2) � AU2kW1,p(0,� ;V 0) + kV1� V2kY3,p(� ))

� C3(R)� 1+1=p(kU1 �U2kX3,p(� ) + kH1� H2kW1,p(0,� )) + C4kV1� V2kY3,p(� ).

(5.36)

Now we set

N1(U , V , H ) = S1(U , S2(U , V), S3(U , S2(U , V), H )),(5.37)

N2(U , V) = S2(U , V),(5.38)

N3(U , V , H ) = S3(U , S2(U , V), H ),(5.39)

N (U , V , H ) = (N1(U , V , H ), N2(U , V), N3(U , V , H )).(5.40)

It is straightforward to check that a fixed point ofN in Z̃3,p(� ) is also a fixed point
of S. From (5.34), (5.35), (5.36), we easily deduce that, for anyR 2 R+ there exists
C(R) > 0 such that

kN (U1, V1, H1)�N (U2, V2, H2)kZ3,p(� )

� C(R)� 1=(2p)k(U1 �U2, V1 � V2, H1� H2)kZ3,p(� )

(5.41)

for all � 2 (0, T ] and all (U1, V1, H1), (U2, V2, H2) 2 Z̃3,p(� ) with

max
j2f1,2g k(U j , Vj , H j )kZ3,p(� ) � R.

Fix now (U�, V�, H�) in Z̃3,p(T) and set (̃U , Ṽ , H̃ ) := N (U�, V�, H�). Let � 2 R+,� 2 (0, T ]. Then, if (U j , Vj , H j ) 2 Z̃3,p(� ), j 2 f1, 2g, and

(5.42) max
j2f1,2g k(U j , Vj , H j )� (Ũ , Ṽ , H̃ )kZ3,p(� ) � �,

we obtain

kN (U1, V1, H1)�N (U2, V2, H2)kZ3,p(� )

� C(R1(�))� 1=(2p)k(U1 �U2, V1 � V2, H1� H2)kZ3,p(� )

(5.43)

with

R1(�) := k(Ũ , Ṽ , H̃ )kZ3,p(T) + �.(5.44)
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Moreover, if

(5.45) R2(�) := maxfR1(�), k(U�, V�, H�)kZ3,p(T)g,
we have

kN (U1, V1, H1)� (Ũ , Ṽ , H̃ )kZ3,p(� )

� C(R2(�))� 1=(2p)k(U1, V1, H1)� (U�, V�, H�)kZ3,p(� )

� C(R2(�))� 1=(2p)(� + k(Ũ , Ṽ , H̃ )� (U�, V�, H�)kZ3,p(T)).

(5.46)

Choose now� 2 (0, � (�)), where� (�) satisfies the inequalities

C(R1(�))� (�)1=(2p) � 1

2
,(5.47)

C(R2(�))� (�)1=(2p)(� + k(Ũ , Ṽ , H̃ )� (U�, V�, H�)kZ3,p(T)) � �.(5.48)

Then, from the contraction mapping theorem we deduce thatN has a unique fixed
point in f(U , V , H ) 2 Z̃3,p(� ) : k(U , V , H )� (Ũ , Ṽ , H̃ )kZ3,p(� ) � �g.

We conclude our paper with a result of global uniqueness.

Theorem 5.7. Let � 2 (0, T ], (� , � , k) and (�̃ , �̃ , k̃) be solutions of (5.7) in
Z4,p(� ). Then (� , � , k) = (�̃ , �̃ , k̃).

Proof. Set

(5.49) h := Dtk, u := Dt� , v := Dt� , h̃ := Dt k̃, ũ := Dt �̃ , ṽ := Dt �̃ .

Then (u, v, h) and (̃u, ṽ, h̃) belong toZ3,p(� ). Moreover, (u, v, h) and (̃u, ṽ, h̃) are both
solutions of (5.22). We assume, by contradiction, that theydo not coincide in [0,T ].
Consequently, we set

(5.50) �1 := infft 2 [0, � ]: ku(t , �)�ũ(t , �)kL2(�)+kv(t , �)�ṽ(t , �)kL2(�)+jh(t)�h̃(t)j> 0g.
Of course, 0� �1 < � andu(t , �) = ũ(t , �), v(t , �) = ṽ(t , �), h(t) = h̃(t) for all t 2 [0, �1].
We set now, fort 2 [0, � � �1],

�(t , � ) := u(�1 + t , � )� ũ(�1 + t , � ),(5.51)

� (t , � ) := v(�1 + t , � )� ṽ(�1 + t , � ),(5.52)

�(t) := h(�1 + t)� h̃(�1 + t).(5.53)

From

h � Au� h̃ � Aũ = h � A(u� ũ) + (h� h̃) � Aũ



PHASE FIELD IDENTIFICATION PROBLEM 611

we get, for all t 2 [0, � � �1],

[h � A(u� ũ)](�1 + t , � ) =
Z �1+t

�1

h(�1 + t � s)A(u� ũ)(s) ds

=
Z t

0
h(t � s)A�(s) ds = (h � A�)(t , � ).

(5.54)

Analogously,

[(h� h̃) � Aũ](�1 + t , � ) =
Z t

0
[h(�1 + t � s)� h̃(�1 + t � s)] Aũ(s, � ) ds

= (� � Aũ)(t , � ).(5.55)

So, the triplet (�, � , �) solves the problem
(5.56)8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

D2
t �(t , � ) + l D2

t � (t , � ) = �k0A�(t , � )� �(t)A�0� (h � A�)(t , � )� (� � Aũ)(t , � ), t 2 [0, � � �1],

Dt� (t , � )� B� (t , � )
+ A[S((�1 + 1� v( � + �1, � ))(t , � ))v(t + �1, � )
� S((�1 + 1� ṽ( � + �1, � ))(t , � ))ṽ(t + �1, � )] � l A�(t , � ) = 0,

t 2 [0, � � �1],

�(0, � ) = 0, Dt�(0, � ) = 0, � (0, � ) = 0,
l8[D2

t � (t , � )] = �k08[ A�(t , � )] � �(t)8[ A�0]

�8[(h � A�)(t , � ) + (� � Aũ)(t , � )], t 2 [0, � � �1],

with

�1 := �0 +
Z �1

0
v(t , � ) dt = �0 +

Z �1

0
ṽ(t , � ) dt.

From the last equation in (5.56), using Lemma 5.3, we obtain,for � 2 (0, � � �1],

k�kW1,p(0,� ) � C1(k�kW3,p(0,� ;V 0) + k�kW1,p(0,� ;H1(�)) + kh � �kW1,p(0,� ;H1(�))

+ k� � ũkW1,p(0,� ;H1(�)))

� C1[k�kW3,p(0,� ;V 0) + k�kW1,p(0,� ;H1(�)) + (� 1=p _ � )khkW1,p(0,� )

� k�kC([0,� ];H1(�)) + (� 1=p _ � )k�kW1,p(0,� )kũkC([0,� ];H1(�))].

(5.57)

Set now

� := maxfkhkW1,p(0,� ), kũkX3,p(� ), kvkY3,p(� ), kṽkY3,p(� )g,(5.58)

and choose, from now on,� satisfying

C1�(� 1=p _ � ) � 1

2
.(5.59)
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Then, since�(0, � ) = Dt�(0, � ) = 0, from (5.57) we obtain

k�kW1,p(0,� ) � C2(k�kW3,p(0,� ;V 0) + k�kW1,p(0,� ;H1(�)))

� C3(k�kW3,p(0,� ;V 0) + � 1+1=pk�kX3,p(� )),
(5.60)

for suitable positive constantsC2 and C3 independent of� � � � �1.
Moreover, from Proposition 2.9, Corollary 2.11, Lemma 5.3, for some constant

C4 2 R+ independent of� � � � �1, we get

k�kX3,p(� ) � C4(kh � A�kW1,p(0,� ;H1(�)) + k� � AũkW1,p(0,� ;H1(�)) + k�kW1,p(0,� )

+ kD2
t �kW1,p(0,� ;V 0) + kD2

t �kC([0,� ];H1(�)) + kD2
t �kL p([0,� ];H3(�)))

� C5[� 1=p�k�kX3,p(� ) + (� + 1)k�kW1,p(0,� ) + k�kY3,p(� )].

(5.61)

If � � �1 := (2C5�)�p and (5.59) holds, we get

k�kX3,p(� ) � C6(� + 1)(k�kY3,p(� ) + � 1+1=pk�kX3,p(� )),(5.62)

implying

k�kX3,p(� ) � C7(� + 1)k�kY3,p(� ), if C6(� + 1)� 1+1=p � 1

2
.(5.63)

Finally, as

kA�kW2,p(0,� ;V 0) + kA�kW1,p(0,� ;L2(�)) � C7(k�kW2,p(0,� ;H1(�)) + k�kW1,p(0,� ;H2(�)))

� C8� 1=pk�kX3,p(� ),
(5.64)

from Proposition 3.4 and 3.5 and Lemmata 4.4 and 4.5, for� � � (�), we obtain

(5.65) k�kY3,p(� ) � C(�)� 1=pk�kX3,p(� ).

Hence

(5.66) k�kX3,p(� ) � C9(� + 1)� 1=pk�kX3,p(� ),

implying that � vanishes in some right neighbourhood of 0. From (5.65) and (5.60),
we obtain also that� and � vanish in some right neighbourhood of 0. So,u � ũ,v � ṽ and h � h̃ in some right neighbourhood of�1, contrarily to the definition of�1.
Therefore we conclude thatu � ũ, v � ṽ and h � h̃, implying � � �̃ , � � �̃ and
k � k̃.
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