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0. Introduction

In this paper we shall present a differential extension field which is wider
than Liouville’s one and contains elliptic functions. The irreducibility of
ordinary differential operators over our field will be investigated.

Liouville proved in [6] that if a linear homogeneous differential equation
of the second order over the rational function field C(x) admits a non-trivial
solution which is liouvillian over C(x) then it admits a non-trivial solution whose
logarithmic derivative is algebraic over C(x) (cf. Ritt [11, chapter 4]). In his
[13], Rosenlicht extended this result to the case of general order. As was men-
tioned there, the theorem of his can be obtained through Picard-Vessiot theory
(confer with Kolchin [3]). We shall further extend this.

In [14], Siegel proved a similar theorem. That is to say, if a linear homo-
geneous differential equation of the second order over C(x) admits a non-trivial
solution which satisfies an algebraic differential equation over C(x) then it ad-
mits a non-trivial solution whose logarithmic derivative is algebraic over C(x).
This result was generalized by Goldman [1] in the case of general order, and
further by Singer [15] in the non homogeneous case. Their methods depend
upon respectively the Low Power Theorem of Ritt and the valuation theory.
The latter was utilized effectually first by Rosenlicht [Publ. Math. Inst. HES.,
36 (1969), 15-22]. Another generalization was established by Oleinikov [9]:
Let F be a differential field consisting of meromorphic functions in some do-
main. If a linear homogeneous differential equation of order # over F admits
a non-trivial solution which satisfies an algebraic differential equation over F
of order less than #, then it admits a non-trivial solution which satisfies a homo-
geneous differential equation over F of order less than #. His method is aa-
alytical. We shall give a differential-algebraic proof of this theorem through
considering formal infinite series in an arbitrary constant (cf. Ritt [12, chapter
3D.

Let K be an ordinary differential field of characteristic 0 with a differentia-
tion D. Throughout this paper we fix a universal differential field extension
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U of K and assume that every differential subfield of U discussed below has
U as a universal differential field extension. For a differential subfield F of U
we denote by Cjy the field of constants of F and by F the algebraic closure of
Fin U. Let F be a differential field extension of K. As usual F{Y} indicates
the differential polynomial algebra in a differential indeterminate Y, and F[D]
indicates the algebra of differential operators with coefficients in F. In F[D]
each element L0 will be written in the form

L = EfiDn_i;ﬁEF,fO:FO )
and we denote n=deg, L. 'The multiplication is determined by
D- f = fD+(Df)

for any f in F.

Let F be an intermediate differential field between K and U, and L=0 be
an element of F[D]. The minimal admissible order pp(L) over F for the equa-
tion LY =0 is defined to be the minimum among trans.deg F<{x)/F, where x runs
through all elements of U which are transcendental over F and satisfy Lx=0.
Immediately we see that up(L) does not exceed deg, L. We call the equation
LY=0 differentially irreducible over F if pp(L)=deg, L and Ly=0 fcr any non-
zero y in F.

As usual an element L=0 of F[D] is called reducible over F if it is the pro-
duct of two elements of F[D] with positive degrees in D, or else irreducible over F.

The following notion was suggested by Hardy [2, p. 62] (cf. Kolchin [4,
p- 809)).

A differential subfield F of U will be called an H-extension of K if there
exists a finite chain of differential subfields of U: K=F,CF,< :-- CF,=F
such that for each j (1< j=<m) F; is finitely algebraic over F;_<¢;>, where ¢;
is primitive, exponential or weierstrassian over F;_,.

Then we shall prove the following:

Theorem 1. Suppose that an element L of K[D] satisfies Ly=0 for any
non-zero y in K. Then we have

nx(L) = pw(L)
for any H-extension W of K.

Corollary. If L in K[D] is differentially irreducible over K then so is it
over any H-extension of K.

The proof of Theorem 1 will be divided into two parts. The first part
relates to primitive and exponential elements, the second relates to weierstras-
sian elements and needs the following theorem which is due to Rosenlicht
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[13].

Lemma 1. Let F be a differential subfield of U and E be a differential
field extension of F which is finitely algebraic over a Picard-Vessiot extension of F.
Then any weierstrassian element of E over F is algebraic over F.

For a nonhomogeneous differential equation LY=f over F, we define
the minimal admissible order pp(L;f) over F as the minimal among trans.deg
F{x>|F, where x runs through all elements of U that are transcendental over
F and satisfy Lx=f. 'Then Oleinikov’s theorem can be stated in the following
form:

Lemma 2. Let F be a differential subfield of U, L& F be an element of F[D]
and f be an element of F. Then there exist a non-zero element x of U and a homo-
geneous differential polynomial H in F{Y} such that Lx=H(x)=0 and 0<ordy H
= ur(L; f)-

From this it is derived that p (L)< pg(L;f) forany f in F and L in F[D]
such that Ly=0 for any non-zero y in F. Lemma 2 contains Singer’s theorem.
Combining Theorem 1 and Lemma 2, we have the following:

Corollary. Let L be in K[D] and k be in K. Suppose that there is a solu-
tion of LY=Fk which belongs to some H-extension of K but not to K. Then there
is a non-zero solution of LY =0 whose logarithmic derivative is algebraic over K.

This contains Rosenlicht’s theorem mentioned above.

For the irreducibility of differential operators, a similar fact to Corollary
to Theorem 1 holds.

Theorem 2. Suppose that an element L of K[D] is irreducible in K[D).
Then it is irreducible over any H-extension of K.

RemARk. For details about elliptic functions or rather weierstrassian
elements, refer to Kolchin [4], Rosenlicht [13], Nishioka [8], Otsubo [10] and
§§7-13 of Matsuda [7]. In particular it is a well-known fact that elliptic
functions are not liouvillian over the complex number field. This is found
from Lemma 1 as well.

We shall prove Theorem 1 together with Lemma 1 in §2, Lemma 2 in
§1, Theorem 2 in §3 and the second corollary in §4.

The author wishes to express his sincere gratitude to Professor M. Matsu-
da who made a number of suggestions.

1. Proof of Lemma 2

Before proceeding we note two facts.
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Let E, F and G be differential subfields of U such that E and G are differ-
ential field extensions of F with transcendence degrees over F being finite.
Then there exists a differential subfield E* of U such that E* is a differential
field extension of F differentially isomorphic to E over F and E* and G are
linearly disjoint over F. For by defining D(a®b)=(Da)Qb+aQ(Db), we can
make G?E into a differential integral domain. Hence the quotient field I

of G@E is considered as a differential field extension of G with the transcend-

ence degree over G being finite. Since U is also universal over G, there is
a differential subfield I* of U which contains G and is differentially isomorphic
to I over G. As E* we may take the image of E.

Let C be an algebraically closed field of characteristic 0 and B be a finitely
generated field extension of C. Suppose that we have an element b of B which
is transcendental over C. Then B can be embedded into the field C((¢)) of
formal power series in ¢ subject to »(b)<<0, where » indicates the order function
with respect to . This is implied by the fact that the field of Puiseux series
has the infinite transcendence degree over the coefficient field.

Lemma 2 is proved in the following form.

Proposition 1. Let F be a differential subfield of U, L be an element of
F[D] and f be an element of F. Let E be a differential subfield of U which con-
tains F, a fundamental system of zeroes of LY and a zero of LY—f. Assume
we have an A in F{Y} and a y in U which is transcendental over F and satisfies
A(y)=Ly—f=0. . Then there exists a non-zero element x of E with Lx=H(x)=0,
where H indicates the portion of highest degree included in A.

Proof. To prove this it is sufficient to consider the case where E and F
are both algebraically closed in U. Let x,, x, ---, x, be elements of E con-
stituting a fundamental system of zeroes of LY and g be a zero of LY—f in E.
From the above note we may assume that E and F<y) are linearly disjoint over
F. Since L(y—g)=0, we have z elements ¢,, ¢,, -+, ¢, of Cr¢,> with

y=g+§c,~x.~.

It follows that E<{y>=E(c, ¢, -+, ¢,) because the determinant of the matrix
(Dix;) is not zero. Noting Cy is algebraically closed and

trans. deg Cz(cy, ¢p ***, ¢,)/Ck
= trans.deg E(c,, ¢, **+, ¢,)|E
= trans.deg E{y>/E
= trans.deg F{y)/F

is positive since E and F{y) are linearly disjoint over F, we may consider Cx(c,,
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€3 ***y C4) as a differential subfield of the field Cy((#)) of formal power series
in ¢ with »(¢;,)<0. Since Cy¢,y=Cg(cy, 3 **, €)=Cr(Cs, € *++, €y), E<yD is 2
regular extension of Cy(cy, ¢, **+, ¢,). We regard the quotient field of the differ-
ential integral domain E{y>®Cg((?)) as a differential subfield of E((f)), where
the differentiation D operates as D 3} q;t'=3] (Da,)t. Thus E{y> becomes a
differential subfield of E((#)). Since y=g+>i¢;»; and we may express as
;=231 a;;t, it follows that

y=g+ z,: (2 a; )t

where the &’s are in E with 5,40. Denoting by » the order function of E((t))
with respect to £, we find p to be negative. For by our assumption a, is
non-zero and ¥, %, -+, ¥, are linearly independent over constants, hence by
=21 @;p%; is non zero and p does not exceed »(c;). Let H be the portion
of highest degree in 4. From

D'y = D'g+ jz; (D*b))¢

it is derived that H(b,)=Lb,=0, because p is negative. This completes the
proof.

2. Proof of Theorem 1

Let L be an element of K[D] such that Ly=0 for any non-zero y in K.
Then we show that ug(L)=uw(L) for any H-extension W of K. In fact let
x be an element of U with Lx=0 and trans.deg K{x>/K=pny(L). By the fact
noted in §1 we have an element ¥ of U such that K{x> and K{y)> are differ-
entially isomorphic over K and KW and K<y)> are linearly disjoint over K.
Our assertion is justified by the following:

trans.deg W<y>|W
= trans.deg KW<y>|KW
= trans. deg K<{y>/K
= trans. deg K<{x>/K
= px(L) .
Thus for the proof it remains that ux(L)=< uy(L). We shall prove this by the

induction on the transcendence degree of W over K. In the following the
notations of [7] are used.

Proposition 2. Let F be a differential subfield of U being algebraically
closed in U and E be a differential algebraic function field of one variable over F.
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Suppose that we have an F-place of E with vp(Dtp)>0, where ip in E indicates
a uniformizing variable at P and vy the order function with respeci to tp. Let L
be in F|D] such that Ly=0 for any non-zero y in F. Then pp(L)=pgy(L).

Proof. Let y be an element of U with Ly=0 and trans.deg E<y>/E= pz(L).
Let r in F be a constant term of Dtpftp in F((tp)). It may happen to be zero.
Bring a differential subfield J of U which is algebraically closed in U and con-
tains F, a fundamental system of zeroes of LY and an elements of U with Ds
=vrs. In addition we may consider that J and E<{y) are linearly disjoint over F.
According to Proposition 1 we obtain an element x of EJ and a homogeneous
differential polynomial H in E{Y} such that x is non-zero and satisfies Lx
=H(x)=0 and 0<ordy H<puy(L). Let I be a finitely algebraic extension of
E] containing x and all the coefficients of H. Then I is a differential algebraic
function field over J. A J-place P, of EJ lying above P is determined uniquely
through the coefficient extension. Let P, be an arbitrary J-place of I lying
above P, and e be the ramification index of P, with respect to P,. An element
t=tp[s of J can be taken as a uniformizing variable at P,. Let T be a uniformiz-
ing variable at P, satisfying 7°=¢. By »; we denote the order functions at
P; respectively. Then

v)(Dt[t) = v,(Dtp/tp—Ds]s)
T
is positive, therefore
vy(D7[1) = v)(Dt[t) = ev,(Dt|t)

is positive. Since J((7)) is the completion of I at P, we have an expression

x= % wr € J, u,£0.
We may express i

H =3\ Ht}; HieF{Y}, Hy+0,
and so in J((7))
H = 2 sSH .
From Lx=H(x)=0 and for each j i
D’x = (D'up)r’+(terms of order at least p+1 in 7)

since v,(D7[7)>0, it follows that Lu,=Hu,)=0. The element u, of J does not
belong to F. Thus we have pp(L)=< pg(L).

Proof of Lemma 1. Here we use the notations of [4]. It is sufficient to
prove this in the case where F=F. Let J be a Picard-Vessiot extension of F
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over which E is finitely algebraic. Take a normal extension NV of J containing
E. Let w be an element of E which is weierstrassian over F, that is, a solu-
tion of the equation over F

(Dw)* = (4o’ —gw—gy)

where a is a non-zero element of F and g, and g; are in Cp with 27g5—g3=0.
Let w=w,, w,, ---, w, be all conjugates of w. Then those are contained in N
and satisfy

(Duw,)* = a*(4wj—gw;—gs) -
Since w;=w; for /= j, we have elements b;, ¢; (=2, -+, 7) of Cy such that
(1: w;: a™'Dw;) = (1: w: a™'Dw) (1: b;: ¢}) .
Multiplying these we obtain an element » of J satisfying

]_f[ (1: w;: a'Dw;) = (1: w: a™'Dw) ﬁ (1:8;: ¢c;)

= (1: v: (na)~'Dv) 12[2(13 b ¢;),

because the left hand side is left invariant under any automorphism of N over
J and therefore rational over /. The differential field J<v) is a strongly normal
extension of F and contained in a Picard-Vessiot extension J of F. Then by
Kolchin’s theorem [5], it is a Picard-Vessiot extension of F. Suppose that
v is transcendental over F. Then the Galois group of differential automor-
phisms of F{v)> over F is an affine group over Cy and an abelian variety over
Cr, hence being trivial. This is a contradiction. Thus v lies in F. The
point (1: w: a~'Dw) is an n-division point of (1: v: (na)~*Dv), hence w lies in F.

Proposition 3. Let F be a differential subfield of U being algebraically
closed in U and E be a differential algebraic function field of one variable over F.
Suppose that E contains an element w which is weierstrassian over F and not in
F. Let L be in F[D] such that Ly=0 for any non-zero y in F. Then pp(L)<
P’E(L)'

Proof. Bring a zero y of LY with trans.deg E<y)/E=py(L). Let J be
a Picard-Vessiot extension of F generated by a fundamental system of zeroes
of LY. We may assume that J and E<y) are linearly disjoint over F. Accord-
ing to Proposition 1, we have an element x+0 of EJ and a homogeneous differ-
ential polynomial H in E{Y} such that Lx=H{(x)=0 and 0<ordy H =< uz(L).
First consider the case where x is algebraic over J. Since

trans.deg F<x>/F = trans.deg E<{x>/E <ord, H

é ME(L) ’
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it follows that pr(L)<puz(L). Next consider the case where x is transcendental
over J. Then x and w are algebraically dependent over J since both are in
E]J, hence trans.deg J<x>/J=1. Let P be a J-place of J<x> which is a pole
of x. Then vp(Dtp)>0, where ¢, is a uniformizing variable at P and v, is the
order function with respect to ¢, of J<x>. In fact assume the converse. Then
np=1—vp(Dtp[tp) is a positive integer and vp(D’x)=vp(x¥)—jn, holds for each
non-negative j. Hence vp(Lx)=vp(x)—npdeg, L. But this contradicts Lx=0.
Let @ be a J-place of J<w)> which lies below some J-place of J{x, w> lying
above P, uo be a uniformizing variable at @ and v, indicate the order function
with respect to uo. The inequality vo(Dug)>>0 holds because of vp(Dtp)>0.
We show that vo(w)=0. In fact assume the converse. Then

VQ(D‘ZU/ZU) - VQ(D”Q/UQ)>O ,
that is, vo(Dw)>ve(w). Since w is weierstrassian over F, it satisfies
(Dw)® = a¥(4w'—g,w—gs) ,

where a is a non-zero element of F and g, and g; are in Cr with 27g5—g3=0.
Considering the orders of both sides,

3vq(w) = 2vg(Duw) 2 20(w),

we have a contradiction to ve(w)<<0. Thus we obtain an element z of J with
vo(w—2)>0, which satisfies

(D2)* = a’(4=z°—g2—gs) »

that is to say, being weierstrassian over F. According to Lemma 1, it belongs
to F but not to Cp, since vo(Dug)>0. This implies that the F-place of F{w)>
lying below @ fulfils the condition of Proposition 2. Consequently we have
L) S (L),

Let us turn to the proof of Theorem 1. We work it by the induction
on the transcendence degree of W over K. There is nothing to say when W
is algebraic over K. Suppose that the theorem is true for any H-extension
with the transcendence degree less than m over K and let W be an H-exten-
sion of K with m=trans.deg W/K>0. There is a differential subfield W,
of W with trans.deg W;/K=m—1 such that W is finitely algebraic over W,(w),
where w is primitive, exponential or weierstrassian over W;. Put F= W,
and E=WW,. Then they satisfy the conditions of Propositions 2 and 3 re-
spectively in the first two cases of w and in the last one (cf. Otsubo [10]). From
this it follows that either there is an element y of W, with Ly=0 or puy (L)<
pw(L). In the latter case by induction hypothesis we have the required result.
In the former case by our assumption on L we see that y is transcendental over
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K. Since W(y) is an H-extension of K, we have two H-extensions W, and W,
of K such that W, contains y and W, y is transcendental over W, and trans.deg
W,/W;=1. We see puy,(L)=1 because trans.deg W,/K<m and py(L)=1.
Since uy, (L)< pw(L)< px(L)=1 we have pp(L)=pg(L)=1. This completes
the proof.

3. Proof of Theorem 2

Proposition 4. Let E, F and an F-place P be the same as in Proposition 2.
Let L be an element of F[D] which is reducible in E[D]. Then L is reducible in
F[D].

Proof. Let L, be an element of E[D] which is a right divisor of L and set
H=L,YEE{Y}. By the proof of Proposition 2, we obtain a non-zero ele-
ment % of U and a homogeneous differential polynomial H, in F{Y} such that
Lu=H(u)=0 and tot.deg H,=tot.deg H. In the present case H, is linear and
can be expressed as Hy=L,Y with L, in F[D]. We get Lu=0. Bring an
element M of F[D] with the least degree in D, M#0 and Mu=0. Then M
is a right divisor of L. For we have an expression L=L,M-}L,, where either
L;=0 or degp, Ly;<<deg, M. Then

O = Lu = LzM”"‘Lau = L3u y

and so L;=0 by the minimality of deg, M. This shows that L is reducible
in F[D].

Proposition 5. Let E and F be the same as in Proposition 3. Let L be
an element of F[D] which is reducible in E[D]. Then L is reducible in F[D].

Proof. Let M be a right divisor of L in E[D]. Take a zero y of LY such
that trans.deg E<{y>/E=deg,M. We have a Picard-Vessiot extension J of F
with generators consisting of a fundamental system of zeroes of LY such that
E<{y> and ] are linearly disjoint over F. By Proposition 1, there is a non-zero
element x of EJ with Mx=0. First suppose that x is algebraic over J. By

linearly independent elements a; of E over F we represent M=3 a;L;, where
L;isin F[D]. Then

0= Mx= ZaiL,‘x

and noting each L;x is algebraic over J, we get L;x=0. Hence there is a non-
zero element N of F|D] with Nx=0 and similarly to the proof of Proposition
4 we find that L is reducible in F[D]. Next suppose that x is transcendental
over J. Then by the same argument as in the proof of Proposition 3 we ob-
tain an F-place P of E satisfying the condition of Proposition 2. According to
Proposition 4; L is seen to be reducible in F[D].
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Let us prove Theorem 2. We shall show that if L in K[D] is reducible
in W[D] for some H-extension W of K then it is reducible in K[D]. When
W is algebraic over K there is nothing to show. Suppose that our assertion
is true for H-extensions of K with the transcendence degree less than m over
K and let W be an H-extension of K such that trans.deg W/K=m>0 and L
is reducible in W[D]. By the definition, there is a differential subfield W,
of W such that W is finitely algebraic over W) (w) with trans.deg W/W,=1,
where w is primitive, exponential or weierstrassian over W,. Setting F=W,
and E=WW, and applying Propositions 2 and 3, we see that L is reducible
in W[D]. Since we obtain an H-extension W, which is finitely algebraic
over W, and over which L is reducible, by the induction hypothesis we con-

clude L is reducible in K[D].

4. Proof of Corollary to Theorem 1

If we have a non-zero solution of LY=0 which is algebraic over K, then
its logarithmic derivative is of course algebraic over K. Hence we assume
in the following that Lz=0 for any non-zero # in K. By the supposition there
is an H-extension of K which contains a solution y of LY=k not lying in K.
If y is algebraic over K, let z be another conjugate of ¥ in K. Then y—=z satis-
fies L(y—=)=0 and it is a non-zero element of K. This implies a contradiction
to our assumption. Hence y is transcendental over K. As the preceding there
exists an H-extension W of K such that trans. deg W<{y>/W=1. This shows puy
(L; k)=1 and according to Lemma 2 there exist a non-zero solution x of LY
=0 and a homogeneous differential polynomial H in W {Y} such that H(x)
=0 and ord, H=1. Since x is not in K, we have uy(L)=1. Theorem 1 yields
ug(L)=1 and again Lemma 2 gives us a non-zero solution w of LY=0 and
a homogeneous differential polynomial G in K{Y} such that G(w)=0 and
ordy G=1. The logarithmic derivative Dw/w is algebraic over K and this com-
pletes the proof.
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