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0. Introduction

In this paper we shall present a differential extension field which is wider
than Liouville's one and contains elliptic functions. The irreducibility of
ordinary differential operators over our field will be investigated.

Liouville proved in [6] that if a linear homogeneous differential equation
of the second order over the rational function field C(x) admits a non-trivial
solution which is liouvillian over C(x) then it admits a non-trivial solution whose
logarithmic derivative is algebraic over C(x) (cf. Ritt [11, chapter 4]). In his
[13], Rosenlicht extended this result to the case of general order. As was men-
tioned there, the theorem of his can be obtained through Picard-Vessiot theory
(confer with Kolchin [3]). We shall further extend this.

In [14], Siegel proved a similar theorem. That is to say, if a linear homo-
geneous differential equation of the second order over C(x) admits a non-trivial
solution which satisfies an algebraic differential equation over C(x) then it ad-
mits a non-trivial solution whose logarithmic derivative is algebraic over C(x).
This result was generalized by Goldman [1] in the case of general order, and
further by Singer [15] in the non homogeneous case. Their methods depend
upon respectively the Low Power Theorem of Ritt and the valuation theory.
The latter was utilized effectually first by Rosenlicht [Publ. Math. Inst. HES.,
36 (1969), 15-22]. Another generalization was established by Oleinikov [9]:
Let F be a differential field consisting of meromorphic functions in some do-
main. If a linear homogeneous differential equation of order n over F admits
a non-trivial solution which satisfies an algebraic differential equation over F
of order less than n, then it admits a non-trivial solution which satisfies a homo-
geneous differential equation over F of order less than n. His method is aa-
alytical. We shall give a differential-algebraic proof of this theorem through
considering formal infinite series in an arbitrary constant (cf. Ritt [12, chapter
3]).

Let K be an ordinary differential field of characteristic 0 with a differentia-
tion D. Throughout this paper we fix a universal differential field extension
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U of K and assume that every differential subfield of U discussed below has
U as a universal differential field extension. For a differential subfield F of U
we denote by CF the field of constants of F and by F the algebraic closure of
F in U. Let F be a differential field extension of K. As usual F{Y} indicates
the differential polynomial algebra in a differential indeterminate Y, and F[D]
indicates the algebra of differential operators with coefficients in F. In F[D]
each element LΦO will be written in the form

and we denote n=άεgD L. The multiplication is determined by

D f = jD+(Df)

for any /in F.

Let F be an intermediate differential field between K and U, and LΦO be
an element of F[D]. The minimal admissible order μF(L) over F for the equa-
tion LY=0 is defined to be the minimum among trans.deg F(x)/F, where x runs
through all elements of U which are transcendental over F and satisfy Lx=0.
Immediately we see that μF(L) does not exceed degp L. We call the equation
LY=Q differentially irreducible over F if μF(L)=degD L and LyΦO for any non-
zero y in F.

As usual an element LΦO of F[D] is called reducible over F if it is the pro-
duct of two elements of F[D] with positive degrees in D, or else irreducible over F.

The following notion was suggested by Hardy [2, p. 62] (cf. Kolchin [4,

p. 809]).
A differential subfield F of U will be called an H-extension of K if there

exists a finite chain of differential subfields of U: K=FQ^F1^ ••• ^Fm=F

such that for each j (l^j^m) F} is finitely algebraic over -Fy-iOyX where tj
is primitive, exponential or weierstrassian over Fj^.

Then we shall prove the following:

Theorem 1. Suppose that an element L of K[D] satisfies LyΦO for any
non-zero y in K. Then we have

for any H-extension W of K.

Corollary. // L in K[D] is differentially irreducible over K then so is it
over any H-extension of K.

The proof of Theorem 1 will be divided into two parts. The first part
relates to primitive and exponential elements, the second relates to weierstras-
sian elements and needs the following theorem which is due to Rosenlicht
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[13].

Lemma 1. Let F be a differential sub field of U and E be a differential

field extension of F which is finitely algebraic over a Pίcard-Vessiot extension of F.
Then any weierstrassian element of E over F is algebraic over F.

For a nonhomogeneous differential equation LY=f over F, we define
the minimal admissible order μF(L\f) over F as the minimal among trans. deg

FζxyiF, where x runs through all elements of U that are transcendental over
F and satisfy Lx=f. Then Oleinikov's theorem can be stated in the following
form:

Lemma 2. Let F be a differential subfield of U, L^F be an element ofF[D]

and f be an element of F. Then there exist a non-zero element x of U and a homo-
geneous differential polynomial H in F{Y} such that Lx=H(x)—Q and 0<ordr/f

From this it is derived that μF(L)^μF(L\f) for any/ in F and L in F[D]

such that Z/yΦO for any non-zero y in F. Lemma 2 contains Singer's theorem.
Combining Theorem 1 and Lemma 2, we have the following:

Corollary. Let L be in K[D] and k be in K. Suppose that there is a solu-
tion of LY=k which belongs to some H-extensίon of K but not to K. Then there
is a non-zero solution of LY—Q whose logarithmic derivative is algebraic over K.

This contains Rosenlicht's theorem mentioned above.
For the irreducibility of differential operators, a similar fact to Corollary

to Theorem 1 holds.

Theorem 2. Suppose that an element L of K[D] is irreducible in R[D].
Then it is irreducible over any H-extensίon of K.

REMARK. For details about elliptic functions or rather weierstrassian

elements, refer to Kolchin [4], Rosenlicht [13], Nishioka [8], Otsubo [10] and
§§7-13 of Matsuda [7]. In particular it is a well-known fact that elliptic
functions are not liouvillian over the complex number field. This is found
from Lemma 1 as well.

We shall prove Theorem 1 together with Lemma 1 in §2, Lemma 2 in

§1, Theorem 2 in §3 and the second corollary in §4.
The author wishes to express his sincere gratitude to Professor M. Matsu-

da who made a number of suggestions.

1. Proof of Lemma 2

Before proceeding we note two facts.
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Let E> F and G be differential subfields of U such that E and G are differ-
ential field extensions of F with transcendence degrees over F being finite.
Then there exists a differential subfield E* of U such that £* is a differential
field extension of F differentially isomorphic to E over F and £"* and G are
linearly disjoint over F. For by defining D(a®b)=(Dd)®b-{-a®(Db)9 we can
make G(£)E into a differential integral domain. Hence the quotient field /

of G®E is considered as a differential field extension of G with the transcend-
F

ence degree over G being finite. Since U is also universal over G, there is
a differential subfield /* of U which contains G and is differentially isomorphic
to / over G. As £* we may take the image of E.

Let C be an algebraically closed field of characteristic 0 and B be a finitely
generated field extension of C. Suppose that we have an element b of B which
is transcendental over C. Then B can be embedded into the field C((t)) of
formal power series in t subject to z>(i)<0, where v indicates the order function
with respect to t. This is implied by the fact that the field of Puiseux series
has the infinite transcendence degree over the coefficient field.

Lemma 2 is proved in the following form.

Proposition 1. Let F be a differential subfield of U, L be an element of
F[D] and f be an element of F. Let E be a differential subfield of U which con-
tains F, a fundamental system of zeroes of LY and a zero of LY—f. Assume
we have an A in F{Y} and a y in U which is transcendental over F and satisfies
A(y)=Ly—f=Q. Then there exists a non-zero element x of E with Lx=H(x)=09

where H indicates the portion of highest degree included in A.

Proof. To prove this it is sufficient to consider the case where E and F
are both algebraically closed in U. Let xl9 x2, •••, xn be elements of E con-
stituting a fundamental system of zeroes of LY" and g be a zero of LY—f in E.

From the above note we may assume that E and Fζy> are linearly disjoint over
F. Since L(y— #)=0, we have n elements cl9 c2, •••, cn of CE(yy with

y = g+ Σ

It follows that Eζyy=E(cl9 c2, ••-, cn) because the determinant of the matrix
(DfXj) is not zero. Noting CE is algebraically closed and

trans, deg OE(cl9 c2y — , cn)/CE

= trans, deg E(cly c2> — , cn)/E

= trans, deg E<^y}\E

= trans, deg F<y>/F

is positive since E and F^y) are linearly disjoint over F9 we may consider CE(cl9
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C2> •**> cn) as a differential subfield of the field CE((t)) of formal power series
in t with z/(c1)<0. Since CE<y>=CE(cl9 c2, —9cn)=CE(cl9 c2, ••-, cn), £<» is a
regular extension of CE(cl9 c2, •••, cn). We regard the quotient field of the differ-
ential integral domain Eζyy<S)CE((t)) as a differential subfield of E((t)), where
the differentiation D operates as D Σ ait

t=^ (Da^t\ Thus Eζy> becomes a
differential subfield of E((t)). Since y=g+*Σ ^Λ and we may express as

it follows that

where the δ's are in E with i^φO. Denoting by v the order function of E((t))

with respect to t, we find ^> to be negative. For by our assumption ΛIV(CI) is
non-zero and xly x2, •••, #n are linearly independent over constants, hence έV(Cl)

^Σ Λivfcj)^- is non zero and /> does not exceed z^). Let ίί be the portion
of highest degree in A. From

D"y = D"g+ Σ (D^t* ,
j=P

it is derived that H(bp)=Lbp=Oy because p is negative. This completes the
proof.

2. Proof of Theorem 1

Let L be an element of K[D] such that Ly ΦO for any non-zero y in .̂

Then we show that μκ(L) ̂  μw(L) for any ίf-extension W of .̂ In fact let

x be an element of U with L#=0 and trans.deg Kζxy/K=μκ(L). By the fact
noted in § 1 we have an element y of U such that .AΓ<(#> and ^<J;)> are differ-

entially isomorphic over K and .STF and J^^y^ are linearly disjoint over K.
Our assertion is justified by the following:

trans.deg

= trans.

= trans,

= trans, deg K^x

= μκ(L) .

Thus for the proof it remains that μκ(L)^μw(L). We shall prove this by the

induction on the transcendence degree of W over K. In the following the
notations of [7] are used.

Proposition 2. Let F be a differential subfield of U being algebraically

closed in U and E be a differential algebraic function field of one variable over F.
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Suppose that we have an F-place of E with vP(Dtp)>Q, where ip in E indicates

a unif ot mixing variable at P and VR the order function with respect to tp. Let L

be in F[D] such that LyΦO/αr any non-zero y in F. Then

Proof. Let y be an element of U with Ly— 0 and trans.deg Eζyy/E=μE(L).

Let r in F be a constant term of DtP/tP in F((tP)). It may happen to be zero.

Bring a differential subfield J of U which is algebraically closed in U and con-

tains F, a fundamental system of zeroes of L Y and an elements of U with Ds
=rs. In addition we may consider that / and !?<_)>> are linearly disjoint over F.

According to Proposition 1 we obtain an element x of Ef and a homogeneous
differential polynomial H in E{Y} such that x is non-zero and satisfies Lx
=H(x)=0 and 0<ordr H^μE(L). Let / be a finitely algebraic extension of

EJ containing x and all the coefficients of H. Then / is a differential algebraic

function field over /. A /-place Pl of EJ lying above P is determined uniquely

through the coefficient extension. Let P2 be an arbitrary /-place of / lying

above Pl and e be the ramification index of Px with respect to P2. An element
t—tpjs of/ can be taken as a uniformizing variable at Pλ. Let T be a uniformiz-
ing variable at P2 satisfying τe= t. By v{ we denote the order functions at
Pi respectively. Then

Vι(Dt/t) = v^

is positive, therefore

P^DT/T) = v2(Dt/t) = ev^Dtjt)

is positive. Since /((T)) is the completion of / at P2, we have an expression

We may express

and so in /((T))

From Lx=H(x)= 0 and for each/

D3x = (D3uP)τp+ (terms of order at least p+l in r)

since v2(Dτ/τ)>Q, it follows that Lup=HQ(up)=0. The element w^ of/ does not

belong to F. Thus we have μF(L)^μE(L).

Proof of Lemma 1. Here we use the notations of [4], It is sufficient to
prove this in the case where F=F. Let / be a Picard-Vessiot extension of F
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over which E is finitely algebraic. Take a normal extension N of J containing
E. Let w be an element of E which is weierstrassian over F, that is, a solu-
tion of the equation over F

(Dw)2 = a2(4w*-g2w-g3) ,

where a is a non-zero element of F and g2 and gz are in CF with 27gl—gl^=0.
Let w=w1, w2, •••, wr be all conjugates of w. Then those are contained in N
and satisfy

Since w^Wj for /Φ/, we have elements bjy Cj (/— 2, •••, r) of C# such that

(1: wy: a-*Du>j) = (l:w: a~lDw) (1: iy: <τy) .

Multiplying these we obtain an element v of / satisfying

Π (1: W y: α"1 )̂ = (1: w: α-'fla;) Π (1: 6y: <:,)

because the left hand side is left invariant under any automorphism of N over
/ and therefore rational over /. The differential field Jζv^ is a strongly normal

extension of F and contained in a Picard-Vessiot extension / of F. Then by

Kolchin's theorem [5], it is a Picard-Vessiot extension of F. Suppose that
v is transcendental over F. Then the Galois group of differential automor-
phisms of Fζvy over F is an aίfine group over CF and an abelian variety over
Op, hence being trivial. This is a contradiction. Thus v lies in F. The

point ( I : w: a~lDw) is an w-division point of (1: v: (nά)~lDv), hence w lies in F.

Proposition 3. Let F be a differential subfield of U being algebraically
closed in U and E be a differential algebraic function field of one variable over F.

Suppose that E contains an element w which is weierstrassian over F and not in
F. Let L be in F[D] such that LyΦO for any non-zero y in F. Then μF(L)^

μE(L).

Proof. Bring a zero y of LY with trans.deg EζyyiE=μE(L). Let / be

a Picard-Vessiot extension of F generated by a fundamental system of zeroes
of LY. We may assume that/ and Eζy^ are linearly disjoint over F. Accord-

ing to Proposition 1, we have an element #ΦO of EJ and a homogeneous differ-
ential polynomial H in E{Y} such that Lx=H(x)=Q and 0<ordr H

First consider the case where x is algebraic over /. Since

trans.deg F^/F = trans.deg E(xyiE<^orάγ H
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it follows that μF(L)^μE(L). Next consider the case where x is transcendental
over J. Then x and w are algebraically dependent over / since both are in

Ef, hence trans.deg /<X>//— 1 Let P be a /-place of /<X> which is a pole
of x. Then vP(DtP)>Q, where tp is a uniformizing variable at P and z>/> is the

order function with respect to tp of /<(#>• I*1 fact assume the converse. Then
nP=l—vP(Dtp/tp) is a positive integer and vP(D]x}=vP(x)—jnP holds for each
non-negative j. Hence vP(Lx)=vP(x) — nPdegD L. But this contradicts Lx=0.

Let Q be a /-place of /<«£> which lies below some /-place of /<(#, w)> lying
above P, % be a uniformizing variable at Q and z>ρ indicate the order function
with respect to UQ. The inequality vQ(DuQ)>0 holds because of vP(Dtp)>0.

We show that VQ(W)^O. In fact assume the converse. Then

vQ(Dw/w) —

that is, vQ(Dw)>vQ(w}. Since 20 is weierstrassian over F, it satisfies

where a is a non-zero element of F and £2

 an(i gs are i*1 CF with 27gl— gl ΦO.
Considering the orders of both sides,

we have a contradiction to ^Q(zϋ)<0. Thus we obtain an element z of / with
Z>Q(&;— #)>0, which satisfies

(Dzf = β -̂ftβ-ft) ,

that is to say, being weierstrassian over F. According to Lemma 1, it belongs
to F but not to Op, since pQ(DuQ)>0. This implies that the F-place of .F<«/>
lying below Q fulfils the condition of Proposition 2. Consequently we have

Let us turn to the proof of Theorem 1. We work it by the induction
on the transcendence degree of W over K. There is nothing to say when W
is algebraic over K. Suppose that the theorem is true for any Jϊ-extension
with the transcendence degree less than m over K and let W be an /f-exten-
sion of K with ra=trans.deg WjK>Q. There is a differential subfield Wl

of fFwith trans.deg W1/K=m—l such that W is finitely algebraic over Wl(w)y

where w is primitive, exponential or weierstrassian over Wλ. Put F=Wl

and E=WW1. Then they satisfy the conditions of Propositions 2 and 3 re-

spectively in the first two cases of w and in the last one (cf. Otsubo [10]). From
this it follows that either there is an element y of Wl with Ly=0 or μWl(L)^
μw(L). In the latter case by induction hypothesis we have the required result.

In the former case by our assumption on L we see that y is transcendental over
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K. Since W^y) is an ίf-extension of Ky we have two ίf-extensions W2 and W3

of K such that W2 contains y and W3, y is transcendental over W3 and trans.deg

W2/W3=1. We see /^(Z,) !̂ because trans.deg W3/K<m and μW9(L)=l.

Since μ^L^μ^L^μ^L)^! we have μw(L)=μκ(L)—l. This completes

the proof.

3. Proof of Theorem 2

Proposition 4. L<tf Z?, F αwrf an F-place P be the same as in Proposition 2.

Let L be an element of F[D] which is reducible in E[D]. Then L is reducible in

F[D}.

Proof. Let Ll be an element of E[D] which is a right divisor of L and set

H=L1Y^E{Y}. By the proof of Proposition 2, we obtain a non-zero ele-

ment u of U and a homogeneous differential polynomial HQ in F{Y} such that

Lu=HQ(u)=0 and tot.deg ί/o^tot.deg H. In the present case H0 is linear and

can be expressed as H0—L0Y with L0 in F[D]. We get L0u=Q. Bring an

element M of F[D] with the least degree in Z), MΦO and Mu=Q. Then Λf

is a right divisor of L. For we have an expression L=L2M-^-L3> where either

L3=Q or degp L3<degz? M. Then

0 = Lu = L2Mu+L3u = L3u ,

and so L3=0 by the minimality of deg^ M. This shows that L is reducible

in F[D].

Proposition 5. Let E and F be the same as in Proposition 3. Let L be

an element of F[D] which is reducible in E[D]. Then L is reducible in F[D].

Proof. Let M be a right divisor of L in E\D\. Take a zero y of LY such

that trans.deg EζyyiE=degDM. We have a Picard-Vessiot extension / of F

with generators consisting of a fundamental system of zeroes of LY such that

Eζyy and/ are linearly disjoint over F. By Proposition 1, there is a non-zero

element x of EJ with Mx=Q. First suppose that x is algebraic over J. By

linearly independent elements a{ of £ over F we represent M=Σ tf» £;> where
Li is in F[Z)]. Then

0 = MX = Σ aJLiX

and noting each Ltx is algebraic over /, we get LiX=0. Hence there is a non-

zero element N of F[D] with Nx=0 and similarly to the proof of Proposition

4 we find that L is reducible in F[D], Next suppose that Λ? is transcendental

over J. Then by the same argument as in the proof of Proposition 3 we ob-

tain an jF-place P of E satisfying the condition of Proposition 2. According to

Proposition 4; L is seen to be reducible in F[D].
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Let us prove Theorem 2. We shall show that if L in K[D] is reducible
in W[D] for some /f-extension W of K then it is reducible in K[D]. When
W is algebraic over K there is nothing to show. Suppose that our assertion

is true for /^-extensions of K with the transcendence degree less than m over
K and let W be an //-extension of K such that trans.deg W/K—mX) and L
is reducible in IF[Z)]. By the definition, there is a differential subfield Wl

of W such that W is finitely algebraic over W^w) with trans.deg W/W1=19

where w is primitive, exponential or weierstrassian over Wλ. Setting F=Wl

and E= WWλ and applying Propositions 2 and 3, we see that L is reducible
in tVΊfZ)]. Since we obtain an //-extension W2 which is finitely algebraic

over Wλ and over which L is reducible, by the induction hypothesis we con-

clude L is reducible in

4. Proof of Corollary to Theorem 1

If we have a non-zero solution of LY=0 which is algebraic over K, then

its logarithmic derivative is of course algebraic over K. Hence we assume
in the following that LAΦO for any non-zero h in R. By the supposition there
is an ίί-extension of K which contains a solution y of LY=k not lying in K.
If y is algebraic over K, let z be another conjugate of y in K. Then y—z satis-
fies L(y— %)— 0 and it is a non-zero element of K. This implies a contradiction

to our assumption. Hence y is transcendental over K. As the preceding there
exists an //"-extension Wof J^such that trans, deg Wζyy/W=l. This shows μw

(L; k)=l and according to Lemma 2 there exist a non-zero solution x of LY
=0 and a homogeneous differential polynomial H in W{Y} such that H(x)
=0 and ordjp H=l. Since x is not in K, we have μw(L)=l. Theorem 1 yields
μκ(L)=l and again Lemma 2 gives us a non-zero solution w of Z/Y— 0 and
a homogeneous differential polynomial G in K{Y} such that G(zo)=0 and
ordr G=l. The logarithmic derivative Dwjw is algebraic over ̂  and this com-
pletes the proof.
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