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Zeeman and Armstrong [1], [2], [4] introduced the notion of transversality
for the intersection of two manifolds or two polyhedra and proved some results.
This notion can be considered as a refinement of general position. In this
paper we extend this to the self-intersection of an piecewise linear immersion

between manifolds.
The main result of this paper (Theorem) says that any locally flat

immersion of a closed manifold into a manifold without boundary can be
approximated by a transversal immersion.

It will be assumed, without further mention, that all manifolds have a
piecewise linear structure and that all maps are piecewise linear immersions
of a closed (i.e. compact and without boundary) manifold into a manifold
without boundary.

Definitions and Theorem

Let M be a closed m-manifold and Q be a <?-manifold without boundary.
Let/:M-^ζ) be an immersion. Let A be the barycenter of a simplex A. We
denote Eq the ^-dimensional euclidean space.

DEFINITION 1. Let /, K be triangulations of M, Q such that f:J-+K is
simplicial. If (Lk(fx> K), f(Lk(x, /))) is unknotted sphere pair for any x^M,
we say that / is a locally flat immersion. This definition is independent of the

triangulation of M, Q. Let Sf= {xe M \ f~lf(x) Φ {x}}. Then Sf=Sf where Sf

is the closure of Sf since/ is an immersion. And let Sf(r)={xί^M\ f~*f(Xτ}
= {χ19 , xn}, n >r}. Hence Sf= Sf(2).

DEFINITION 2. Let/"1/^)—{x^ , xn} for some x^Sf. If the following
diagram commutes for any i (1 <ί <ri) except j, we call/ transversal to fM at x.
where φJ9 φ^ ψ* are homeomorphism onto some neighborhoods of x^ xi9 f(x^)
respectively.

I x l x O 1x0x1
", 0x0 >D2tn~gxDg~mxD9~'n, O x O x O < D2tn~9xDg~m, 0x0

f f

M, x. J- ->ρ, f(Xl)*- J- M, a,
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And we simply call / transversal to fM at /(# J if for any j ( 1 < j < n) f is transversal

to fM at Xj.
Furthermore we define /transversal immersion if /is transversal to/M at any

DEFINITION 3. An immersion / of M into Q is in general postition itself if

dim Sf(r)<rm—(r—l)q for all r.

Theorem. If f is a locally flat immersion of M™ into Q9, then we can homo-
tope f into a locally flat transversal immersion g by an arbitrarily small homotopy.
Furthermore if f is in general position itself, then g is also in general position itself.

REMARK 1. The above theorem still holds for an immersion / such that /

is locally flat at any point of St(Sf9 M) although g is a transversal immersion

such that g is locally flat at any point of St(Sg, M).

REMARK 2. Conversely if / is a transversal immersion of M into Q, f is

locally flat at any point of Sf. For it is obvious by the left half or the right half
of the above diagram.

REMARK 3. When m=q, theorem is obvious. So we shall prove it for

m<q.

Corollary 1. If g is a transversal immersion and Sg consists only on double
points, then Sg is a closed locally flat (2m—q)-submanifold of M.

If the codimension of M and Q is greater than 3, any immersion is locally
flat [4]. Hence we obtain the following Cor. 2.

Corollary 2. If w+3<<?, any piecewίse linear immersion of Mm into Qq is

arbitrarily approximated by an transversal immersion. The approximation is
made to be homotopic.

Corollary 3. 'Iff is any pίecewίse linear immersion of M2 into Q4, then f is
approximated by an transversal immersion. The approximation can be chosen so
near and to be homotopic.

DEFINITION 4. Let / be an immersion of M into Q and J, K be simplicial
subdivisions of M, Q respectively. We call / in general position with respect to

J and K at x if for any simplexes Δ'e T and Δk^K such that x^ A* and

dim

For any x^M let A be a simplex of K such that /(#)eA. Choose a vertex
v of A, let L=Lk(A, K), and s:AL-*vL the simplicial map defined as the
join of A-*v to the identity on L.
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DEFINITION 5. (Armstrong, Zeeman [1], [2]) Let the map / be an im-
mersion of M into Q and be in general position with respect to / and K where
|/ 1 =M, I K I =Q. The map / is transimplίcίal to K at the point x<=M if there
exists a neighborhood N of v in vL, and a commutative diagram

. =
St(x, J) Π f~lAL-^AL - >vL

where a is the dimension of A, k is a proper embedding Z)w+β~*— >Z)α, p is a pro-
jection and α, /3 are embeddings onto neighborhoods of #, /(#) respectively.

REMARK 4. The definition is independent of the choice of v.

REMARK 5. If/ is transimplicial to K at x and #e A'* (i<m), then m-{-a>
g. For since /is in general position and/(#)eA,

— q<m+a— q.

Hence fΔ*Γ}A=φ if ra+fl— <?<0. This contradicts ^eA*' and /
If /is transimplicial to ̂ at x and #e Aw, then/w+#><?. For dim(/Δmn-4)

— g. Hence /Δmn^4— φ if m-\-a<q. This is contradiction.

REMARK 6. Let If' be a subdivision of K. If /is transimplicial to 7£' at
(hence/ is in general position with respect to K'), then/ is also trans-

implicial to K at x (see [2]).

DEFINITION 6. Let K be a combinatorial manifold of dimension q. Then
K is called a Brouwer manifold if

(i) For each v^K there is a linear embedding

(ii) For each v^K there is a linear embedding
Sf(ι>, K), St(v, K)-+E*, E«-\

REMARK 7. Not all combinatorial manifolds are Brouwer, [3].

REMARK 8. Any subdivision of a Brouwer is Brouwer.

Lemma 0 (Zeeman [2]). Any combinatorial manifold has a Brouwer
subdivision.

Lemmata

When m=q, theorem is obvious. So we assume m<q throughout this
section.
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Now let f:M->Q be an immersion and /, K be subdivision of M, Q such
that /is simplicial with respect to/, K and such that K is Brouwer subdivision.
And we may suppose /is in general position itself by [4, Chap. 6]. Let

We suppose x^BΪ, /(xJ^A where B{ (ί=l, 2, , n) and A are simplexes
of/ and K respectively.

Let X~Stφiy /')> W=St(A, Kr).
We construct approximating maps gb

t(i=l, 2, , w— 1) of / inductively as
follows. First take v1 in W such that v1^f(M) and ^ is in general position
with respect to the vertices of W. Then we define g* as follows

and for *ny yς=St(619J') if y=(l-

Obviously gl is not simplicial with respect to /' and K'. We take sub-
divisions /Ί, ̂  of/', '̂ such that they are subdividing the parts /~1(ϊr) and
ϊί̂  and such that gl:Jl-^K1 is simplicial.

Next take v2 in ^(^4, K\) satisfying v2^g\(M) and z;2 is in general
position with respect to the vertices of the subcomplex W1 of K\ covering W.
And we define g\ satisfying

gl I M-St(£2, J')=g\ \ M-Stφ2y f)

v and

for any y^St(£2, J') it maps linearly same as g\. We take subdivisions
/2, K2 of J'19 K\ such that they are subdividing the parts (^ϊ)"1^ and Wl

and such that g\' J2-+K2 is simplicial. We construct g* (?><i<n— 1) in the
same way. Furthermore we similarly construct approximating maps of /for any
other point x^Sf such that x^Bb.

And we again put the maps g].
Obviously g\ \ X{ is in general position with respect to ](_^ and K(_λ (i=l, 2, ,
n— 1) at any point x^%t where JQ=Jy K0=K and g\ is in general position
itself.

Lemma 1. For all i(i=l, 2, , n— 1) the map g* constructed above is
transimplicial to K(_^ at any point of %f where K0=K.

Proof. First we show g\ transimplicial to K' at any point of J^.

For any y^St(βιy Jf) let C, D be simplexes of /', K' respectively such that

y^C, giy^D. Since K is Brouwer triangulation, we may suppose St(A, K)
embedded linearly in Eg. If D is a principal simplex of K', gl is obviously trans-
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implicial to K' at y. Hence we may suppose dim D<q. g\C is the linear
join in Eq of vl to some simplex of W by the construction of g\. And since

vl is in general position with respect to the vertices of W, g\C and D span Eq.
g\C[\Ό is a (c+d— ̂ -linear convex cell. Let (gl)~l(gϊCΓ\D)Γ\C=E and

F a (q—rf)-cell through y that is perpendicular to E in C. Let C* be a simplex of

]' having C as a face and E*=(g\yι(g\C* ΓΊZ>)ΓΊ C*. Then although E* is
not necessarily perpendicular to F in C*, it has the property that any (q—rf)-cell

parallel to F in C*, and sufficiently close to F, meets it in exactly one point.
Therefore for some sufficiently small neighborhood U of y in St(^ιy J f ) we

can define a map ρί:U-*(gl)~1D by projecting U Π C* parallel to F onto the
corresponding £"*. Now return to EQ. Since we defined F perpendicular to

E in C, we know that the linear subspace [g*F] and [Z>], spanned by g\F and fl,
are complementary in E9. Hence we define the map

p2: E*-*[D] parallel to [g\F] .

Then p2£?=£?Pl on U.

Choose a vertex v of D and let L=lk(D, K'), s:DJL^>vL and define

: st(D, K')-»vLx[D] .

We can check that a and β are both piecewise linear embeddings onto neigh-

borhoods of (vy y), (v, g\y) respectively. Choose ball neighborhoods N of v in

vLy

jyn+d-q of y in )̂-ι β

Dd ofglymD

such that NxDm+d~g image of α

NxDd image of /8, and

Hence the following diagram commutes

NxDm+d~g

lc

vL

This complete the proof for g\.

Next we show g\ transimplicial to K{ at any point of X2. The main part
of the proof is equally for g\ and we shall not repeat all, but give the difference

part of gl. Since g\ is simplicial with respect to J' and v2 * W on St(A2, /'),

if C2 is the simplex of /' such that y2^C2 where y2 is any point of ^2, g\C2 is
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the linear join of vz and some simplex of W. Let D2 be the simplex of K{ such

that gly2&D2. Since v2 is in general position with respect to the vertices of
Wιy g\C2 and D2 span E«. Hence (g\Y\glC2^ £>2)Π C2 is the (c+d-q)-
linear convex cell E2. We define .F2 the (<?— rf)-cell through ^2 that is perpendi-
cular to £"2. Let Cf be a simplex of J' having C2 as a face. In the same way as

gii gz is transimplicial to K{ at any point of X2. We can prove the lemma
similarly for gb

{ (3<i<n—l).

Lemma 2. I f f is a locally flat immersion, gb (ί=l, 2, , n — 1) are also
a locally flat immersion.

Proof. By the construction of gb

ίy it is sufficiently to show that g\ is

locally flat. Since g\ is different from / only on St(β19 J') and since / is locally
flat, (Lk(fβιy K'\ f(Lk(β19 J')) is the unknotted (?— 1, m— l)-sphere pair.
Hence

is an unknotted (qy τw)-ball pair.

Therefore g\ is locally flat at x<=St(βιy J'). Obviously gl is locally flat at the
point x^M—St^!, J'). Let u be a vertex in L&($,, /'). Since / is locally
flat, (Lk(f(u), K')> f(Lk(u, /')) is an unknotted sphere pair.

Case 1. If u is a vertex of J in Lk(βιy J'),

(Lk(f(u), K'),f(Lk(u,J')) « 9(Π,/V)

where V is the dual cell of u in J and where [J is the dual cell off(u) in K. And

3(D, /V)n5ί(/(A), ίΓ/)=(3, /(V)) where V = Sί(Aι 9V) and where

Π = Sί(/(J01), 3D). Since/is locally flat, (D,/(V)) is the unknotted (^—1, m— 1)

-ball pair. Hence 8(Π, /V)-Int(Π, /(V)) is the unknotted ball pair (D, C)
by [5. Cor. 8] and

J')) « (A C) U v8(A C)

is the unknotted sphere pair. Therefore g\ is locally flat at M.
Case 2. If M is a vertex of/' not / in Lk(^, J'),

(Lk(f(u), K'),f(Lk(u,J')))^St(f^ K')

= (St(f^), Lk(f(u)), /(Stφ,, Lk(u, /'))))

And since/ is locally flat, it is the unknotted (<?—!, m— l)-ball pair (Ey F).
Hence (Lk(f(u), K')J(Lk(u, J')))-Int(E, F) is the unknotted (q-1, m-l)-ball
pair (D, C). Therefore gl is locally flat at u as Case 1.

Lemma 3. If a locally flat immersion f:M-*Q is transimplicial to K at



TRANSVERSAL IMMERSION 415

j j where f^f(Xj)={x^-, *,,-, XH} and \K\=Q and if f\M-St(x,,J)
is simplicial with respect to J and K where \J\=M, then f is transversal to f(M)
at Xj.

Proof. Since / is a locally flat immersion, g\ is also by Lemma 2. Let
A be the simplex of K satisfying /(#,-) e A and L=Lk(A, K). Choose a vertex
v of Ay let s:AL-*vL the simplicial map as defined before. Since / is trans-
implicial to K at xjtf\ Sΐ(Xj, J) is in general position with respect to K and there
exists a neighborhood N of v in vL such that the following diagram commutes
(see Remark 5),

1 v & Y>
TV

c

St(xJ9 J) — —->AL — ϋL

where k:DM+a~^-^Da is a proper embedding. Furthermore as /is locally flat,
the pair (NxDa, Nxk(Dm+a~9)) is unknotted (q, m)-ball pair. Hence we can
write the diagram (0) as follows,

1x1x0

ΓAL n St(xJ9 J), *j -- - --- - AL, f(xj

On the other hand / 1 M— St(x^ J) is simplicial, there exist simplexes Bf of /

such that ύf^Xf and/Bί= A (ί=l, 2, — ,/•-, n). Let L1=/(Lft(Bί, J)) and
be a neighborhood of v in ϋLj, then Nl= N Γ\vLlt And since / is locally
flat, (N, Nj) is an unknotted (q—a, m— 0)-ball pair. Thus there exists an
unknotting homeomorphism

h:D«-mxDm-*, QxDm~a, 0x0 -> TV, Nί9 v .

Hence the following diagram commutes.

a - m m - " 1 x ! x ! χO -*» m-a w ^ - Q x l x l x l M-ama-

xD*~"*, 0 x 0 x 0

hx\\ l A x l x l
* x ^I x l x O c x l x l

ΓAL St(Xj, J), Xj - —^ ALJ(Xj) < -- ί - ΓAL n St(Xi, J),

From the top and the bottom of the diagram,/ is transversal to f(M) at x..
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Lemma 4. // y^Sgϊ-Sg^ and (gb)-\gb)(yk)={... yk ... ym} where

j, J') and Bf^xi9 then g\ is transversal to g\M at y{ (\<i<k).

Proof. We shall prove the lemma by induction on k. Since gb is trans-
implical to K 'Λ-1 at 3̂  by Lemma 1, g\ is transversal to^M aϊyk by Lemma 3.
We suppose^* transversal to g\M atj;. (1 <j <k). Next we shall showg* trans-
versal to g\M at yt where /' is the largest number satisfying /'</. Since

g\ I St(0l9 /')=£?' I St(6ξ', J') and g\ is transimplicial to K'{ at jy (£</'), g\ \ St

Φι', J') is transversal to gb

k(St(βίy J')) at y/', (i<ϊ) by Lemma 3. And g\ is

transversal to gb

k(St(UJ9 J')) (ί<j<k) at jy by inductive hypothesis. For j<k,

since gb

k does not effect on St(£Jy J'), gb

k(St(Oj, J')) is embedded as a subcom-
plex of K/ for any ί. Hence ̂  is transversal to gl(St(Oj, J')) (j<k) atjy
because g\ is transimplicial to K( (i<Γ) at jy/. Therefore gb is transversal to
g\M at j;/.

We denote the last map like g^ for all other point x^Sf such that x

Proof of Theorem.
We order Λ-simplexes of J containing the point of Sf such Δ*j that if /(Δ?j)

=f(Δmn)> ί=m and that the set of Λ-simplexes of f~lf(Δtj) is properly numbered
for the second suffix j. We number point contained | Δίj | Γ\Sf as x*j.

We perform the shift g\} for every xb

tj^Sf such that xb

l}^B\5 and in order
to decreasing dimension of έ. Since J is a finite dimensional finite complex, the
time of shifts is finite.

First perform on m-shift gfs for xf5<=Sf (/=!, 2, , /; ̂ '=1, 2, , 5) where
/ is the number of m-simplexes such that |Δϊ j | Π^Φφ, |Δ? f | Π*SyΦφ and

-φ and where /-1/(Δ?J)={ΔίI,-, Δj,}. We denote ̂ =5*
— y*"'1 is non-singular. Next perform on(m— IJ-shift^f1 for x^^Sf

(z=l, 2, •••, ρ\j=\, 2, , r) where ^> and r are same as above. We denote ^JJΓ1

=^m"1. Then jcΓj-1^^*-! for ί=l, 2, , p;j=l, 2,- , r. For any point 3;̂

Sgm-i—Sf such that y eSί^TΓ1, /')» ί"""1 is transversal to^M at ̂ "'(j) by
Lemma 4.

Furthermore since for any ̂ -simplex Δ* e /' whose interior is contained in

St(Om-\ J')nSt(Om, J'), Δ^Λ^-^Δ*-1 where A^'1 is the opposite face of

ύm~l in ΔΛ and since £w~1=£m at M-U St(ύm~\ /), 5m-1(Δ*)=v*5l>i(A*"1)
Λe7

where ^ is a point of St(f(Bm x), /£') satisfying the conditions 1) v^f(M) and
2) T; is in general position with respect to the vertices of the complex covered by
St(f(ύm~l)9 K'). Hence it is obviously that if gm is transversal to gmM at
St(0m, J') Π St(0m, J'), gm~l is also transversal to gm~lM at there. Therefore
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gm~l is transversal to gm~lM at every point of \J—Jm~2\. In this way any

singular point of Sf become non-singular point one time, and if y^St(βb, J')
become again a singular point by gb

y thent g
b is transversal to gbM at y by

Lemma 4.

Furthermore for any point y<=St(βb, J'}{}St(βb+\ J') gb is transversal
to gbM at y as above. Hence gb is transversal to gbM at every point of | J—Jb~l \
Therefore, in final, g° is transversal to g°M at all points of M particularly of
5^o. Then g° is the required g.

And i f/ is in general position itself, g is obviously in general position itself
by construction. Complete the proof.

Proof of Corollary 1.
By the hypothesis if x£ΞSg, g~1g(x)=x(Jy and the following diagram

commutes

k k
D2m-qxDq-m, 0x0 -^D2m~qxDq-mxDq-m, 0 x 0 x 0 ̂ ~D2m-qxDq-m, 0x0

<P*\ V \Φy
v σ * σ >r

M, x * ρ, g(x) * M, y

where ^=1x1x0, ^=1x0x1 and where φχy φyί ψ are homeomorphism
onto some neighborhoods of #, ^y, ^(ΛJ) respectively.

Since St(x, Sg)^St(kx(QxO), kx(D2tn-«xD('-'n)f\ky(D2'n-''xD'1-m})=
Sf(OxOxO, D"*-*)^!!"*-*, Sg is a closed (2τw-^)-manifold. And in the left
side of the above'diagram (St(x, M), St(x, Sg))^(D2tn-«χDg-m, D2tn~9) since
φx: (D2m-«xD«-m, D2m-«xO, OxO)->(M, Sβ, x).

Hence Sg is a closed locally flat (2m—<?)-submanifold of M.

Proof of Cor. 3.
Let JQ and K0 be the subdivisions of M, Q and / be in general position

with respect to/0, K0. Let/, K be the subdivisions of/0, K0 such that f:J->K
is simplicial.

Then 5̂  consists only of the vertices of J and the local knotness rises only
on the vertices of /. Hence if yk^Sgk — Sgk-ι, yk&J° where yk, gk are same
as Lemma 3.

Then gk is locally flat at yk and gk is transversal to gkM at yk as the proof
of theorem.
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