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1. Preliminaries

Let Ga denote the additive group of complex numbers, X a variety over C and σ
:Ga x X —)> X a regular (sometimes referred to as rational, polynomial, or algebraic)
action of Ga on X. The action is said to admit an equivariant trivialization if there
is a variety Y and a Ga equivariant isomorphism X = Y x C, with the group acting
trivially on Y and by addition on the second factor. In that case, the action is conjugate
to a global translation and Y is a geometric quotient.

If X is quasiaffine, then σ induces a Ga action on the ring C[X] of globally
defined regular functions on X. This action can be "differentiated" to obtain a locally
nilpotent derivation of C[X]. Conversely a locally nilpotent derivation of an affine C
algebra can be exponentiated to a Ga action on C[X] .

It has been shown by several people [12, 11, 2, 6] that every fixed point free

triangular Ga action on complex affine three space is conjugate to a translation, indeed
there is an gquivariant isomorphism C3 = C2 x C as above. For affine spaces of
higher dimension, the situation is not as nice. Winkelmann [13] and the authors [3]
gave examples of fixed point free triangular actions on C4 which are not proper and
the authors gave an example of a proper action on C5 which isn't even locally trivial
[4]. In each of those cases, the ring of Ga invariants happened to be an affine C
algebra, hence the coordinate ring for an affine variety Y. The aforementioned results
could be obtained by observing bad behavior of fibers of the morphism π:Cn —»• Y over
singular points of Y. The goal of this work is to present evidence that singularities of
the variety associated to the ring of invariants may be the critical factor determining
local triviality of fixed point free Ga action.

The main technical tool involves the concept of geometric irreducibility in codi-
mension one (GICO ) of a morphism of algebraic schemes. This concept was in-

troduced by Miyanishi and was instrumental in proving some of his deep results on
algebraic characterizations of affine three space [9, 10]. Since our concern is with mor-

phisms of complex affine varieties, GICO can be expressed as follows:

DEFINITION 1. Let φ : X -> Y be a morphism of affine varieties with coordinate
rings C[X] and C[Y] respectively. Then φ is GICO over Y provided that for any height
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one prime ideal p of C[Y] and prime ideal P of C[X] minimal over pC[X] defining a
codimension one subvariety T of X, the field C(φ(T)) is algebraically closed in C(Γ).

In the above definition φ(T) denotes the Zariski closure of the image of φ(T).
This concept will be applied in the context of a Ga actions on X = C4 with Y the

affine variety with coordinate ring C[Y] = C[X]Ga, the ring of Ga invariants. In the
cases we consider, the ring of invariants will turn out to be finitely generated. In general
however, rings of Ga invariants on a factorial affine variety X are always factorially
closed subrings of C[X], so that we need be concerned only with the relation between
the quotient field of C[X]G«/(p) and the quotient field of C[X]/pC[X] for principal
prime ideals (p) of C[X]Ga. Let D denote the locally nilpotent derivation of C[X]
generating the action and ft G im(D) Π C[X]Gα. if ft e (p) it is immediate that GICO
will not be violated at p.Thus there are only finitely many prime ideals of C[X]Ga that
could cause problems. We will call a Ga action GICO if the morphism π : X -» Y is
GICO .

A derivation D of C[x, ?/, z, ω] will be called twin triangular if:

D(ω) = Q,D(z) € C[ω],D(y) e C[z,ω],D(x) e C[z,ω]

The examples of badly behaved Ga actions on C4 mentioned previously are all
generated by simple cases of twin triangular derivations.

If the Ga action induced by a twin triangular derivation D is fixed point free
and D(z) has no multiple roots, then the action will be shown to be GICO (provided
of course the ring of invariants is finitely generated). It then follows from a result
of Miyanishi that the only obstructions to local triviality of the action are C[Y] not
finitely generated or singularities in Y when C[y] is finitely generated. In two special
situations, D(z) = ω, or D(x),D(y) G C[z],C[F] is shown to be generated by four
elements, so that Y is isomorphic to a hypersurface in C4.

In these cases, an explicit polynomial defining the hypersurface is given and an
elementary method is presented to distinguish the following two possibilities:

1. If Y is singular, then the topological orbit space is not Hausdorff, and hence
the action is not proper (and not locally trivial).

2. If Y is smooth, then Y = C3 and the action is conjugate to a global translation.

2. Lemmas about plane curves

Some possibly well known facts about plane curves parametrized by polynomials
are collected here for later use.

Lemma 2.1. Let /, g E C[z] have no common zero and set

F= Γ f(t)dt,G= Γg( t )d t .
JQ JO
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ΊΊιenC(F,G) = C(z).

Proof. Since the subfield of C(z) generated by F and G contains nonconstant
polynomials in z, [8, Proposition, p.50] forces C(F, G) = C(h) for some polynomial

h <G C[z]. Moreover,F,G G C[ft]. Writing F = Pι(ft(z)),G - P*(h(z)), the chain
rule shows that any root of h1 is a common root of / and g. Thus h1 is a constant, so
that C(F, G) = C(h) = C(z). Π

Lemma 2.2. Let F, G G C[z] define a morphism (F, G) from C1 to the plane
curve X. If (F, G) is birational, then it is surjective.

Proof. Let X be the closure of image of (F, G), and ~X its normalization. We
obtain a morphism h : C1 — )• X factoring (F, G) which by hypothesis is birational,
hence an open immersion. But X, being smooth and rational, is isomorhpic to C1

with finitely many points deleted, so that h is an isomorphism. Since h and the natural
map X — > X are surjective, so is (F, G). Π

The conclusion of Lemma 2.2 holds under the hypothesis of Lemma 2.1.

Lemma 2.3. Let (/, g),(F, G), αra/ X be as above. If x is a singular point of
X, there are distinct t\,t<ι € C1 so that (F, G?)(ί») = x.

Proof. By the implicit function theorem, for each t G C1, there is a neighborhood
Bt so that (F, G)\βt is a diffeomorphism onto its image. As a consequence, if z is any
point in X for which (F, G)~lz is single valued, X is nonsingular at z. Π

3. Twin triangular actions are GICO

Theorem 3.1. Let D be a locally nilpotent derivation of C[x, y, z, w] defined by

D(ω) = 0, D(z) = r(ω), D(y) = p(z, ω), D(a?) = φ, ω).

Assume that the kernel of D is finitely generated and r,p,q have no common zeros in
C4 (i.e. that the associated Gα action is fixed point free and the ring of Ga invariants
is finitely generated). If r(ω) has no multiple roots then the action is GICO .

Proof. Denote by G the polynomial ring C[x,y,z,w] and by GO the ring of Ga

invariants in G. Let p be a height one prime ideal of G0. If p does not contain ω — c for
any root c of r(ω), let 5 = GO — p, and note that S~1C is isomorphic to a one variable
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polynomial ring over 5~1C'o. Since taking residues mod (p) preserves the polynomial-

ity of the extension, we may assume that p= (ω-c) and, for simplicity, that p = (ω).

It remains to show that the quotient field of C0/(ω) is algebraically closed in C/(ω).

Since ω is an invariant, D induces a locally nilpotent derivation on A = C/(ω)

with ring of constants AQ isomorphic to a polynomial ring in two variables generated

by z and xp(z,Q) — yq(z,Q). Note that the quotient field of AQ is algebraically closed
in C(x,?/, z), and that Co/(ω) is isomorphic to a subring of AQ. We show that this
ring extension is birational.

A calculation shows that CQ contains ω, c2 = r(ω)y - f* p(t,ω)dt, and c3 =

r(ω)x - $* q(t,ω)dt. By hypothesis and the assumption that r(0) = 0, we have

that p ( z , Q ) and q(z,Q) have no common zeros. By Lemma 2.1, f* p(t,ω)dt\ω=Q

and JQ

Z q(t,ω)dt\ω=Q generate the field C(z). But these are just the negatives of the
residues mod(α ) of c2 and c3.

The algorithm of [7] produces another invariant in CQ as follows. Let £7, V be

indeterminants and R(U,V) a polynomial relation of minimal total degree satisfied by

the residues mod (ω) of c2,c3. Another invariant is obtained by dividing Λ(c2,c3) by

the highest possible power of ω. We claim that ω is that highest power. Consider the

coefficient of y. A typical term \ΌnVrn of R(U, V) evaluated at c2 and c3 yields

Γ Γ I71"1 Γ fz lm

\n\-\ p(t,ω)dt\ \- q(t,ω)dt\ r(ω)y
I Jo 1 L JQ J

as its only term involving only the first power of y. It follows from this that the

coefficient of y in ^(c2, c3) is

dR
r(ω).

J=- f* p(t,ω)dt,V=- f* q(t,ω)dtdU

The first factor can be neither 0 nor a multiple of ω since either of these cases

would show that |̂  is a relation of lower total degree. Since α; is a simple root of

r(α ) by hypothesis, ω is the highest power dividing the coefficient of y. Similarly ω is

the highest power dividing the coefficient of x.

Any term which has total degree greater than one in x and y will be divisible by

r2(ω). Thus, dividing by ω and setting ω = 0 in the result, yields an expression of the

form h(z)y + j(z)x + k(z) which corresponds to an element in AQ. Note that if

Det h(z)

p(z,0)

is unequal to 0, then both x and y would lie in the quotient field of AQ, which is

obviously false. Thus C(z, h(z)y 4- j ( z ) x ) = C(z,p(z, 0)x - q(z, 0)y). Π



TWIN TRIANGULAR DERIVATIONS 19

4. Special twin trianglar actions

This section is concerned with the following two special types of twin triangular
actions generated by derivations

• A :D(ω) = 0, D(z] = ω, D(y) = p(z, ω), D(x) = q(z,ω) and

• B :D(ω) = 0, D(z) = r(ω), D(y) = p ( z ) , D(x) = q(z)

This class of actions generalizes all of the badly behaved triangular Ga actions men-

tioned in the introduction. In fact all of those are special cases of type B

Proposition 4.1. If D is of type A or B and the associated Ga action is fixed
point free, then the ring of invariants Co is generated by four polynomials.

Proof. Following the algorithm of [7], we show that the four invariants c\ —
ω,c2,C3, and c4 = R(C^C3\ described in Theorem 3.1, generate the ring of inbariants.

In case A it is clear that C\ = C[cι,C2,c3,c4] C Co C C[cι,C2,c3,c4, ^-]. To con-
struct new invariants one looks for the ideal /i of all polynomials P(ί7, V, Z, W) such
that -P(cι,c2,c3,c4) £ ωC[cι,c2,c3,c4],(i.e. for relations among the Q modulo ω.

For each generator <2;, 1 < i < m, of /i, we have Q(cι,C2,C3,c4) = faω,fa 6
C[x,y,z,w], and the so determined fa are new invariants. The algorithm continues

with 62 = CΊ[{/j|l < i < m}] and terminates when no new relatinos mod ω are
obtained.

Writing P(U, V, Z, W) in the initial step as a polynomial in C7, it is clear that new
invariants can be obtained only from the constant term. But writing the constant term

as a polynomial in W', we see that each coefficient must be a multiple of Λ(V, Z)9

since c4|ω=0 is transcendental over C^lu^o^slα^o Thus no new invariants are ob-
tained after the first step.

Case B follows from case A by considering the restriction of the derivation D to

C[x,ί/,z,r(α;)]. Π

Denote /Q

s D(y)dz\ω=0 by P(s) and /Q

s D(x)dz\ω=0 by Q(s).

Corollary 4.2. Given a fixed point free Ga action generated by a derivation of

type A or B , denote by R(V, Z) a relation of minimal total degree satisfied by P(z)

and Q(z). Then the ring of invariants CQ is isomorphic to C[xι, #2? #3> #4]/(jR(#2? £3) —
r(#ι):r4), with r(x\) = Xι in case A.

Proof. The four invaiants c», = 1 < i < 4 satisfy the relation. Π

For the twin triangular actions of type A and B, the affine variety with coordinate

ring CQ is thus isomorphic to a hypersurface Y in C4.
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Corollary 4.3. With notations as in the previous corollary, Y is singular at and

only at points (Q,b,cyQ) where (b,c) are singularities of the plane curve defined by R.

Proof. This follows from examining the differential of R(x<2,x3) — r(xι)#4 and

the hypothesis that r(ω) has only simple roots. Π

Theorem 4.4. Let σ:Ga x C4 — > C4 be a twin triangular action of type A or B.
Then either

I. The action is conjugate to a translation with quotient isomorphic to C3 or

2.The action is not proper and therefore not even locally trivial.

Proof. If the plane curve X defined by R is smooth, then X = C1 by Lemma

2.2. By the Abhyankar-Moh-Suzuki theorem [1] R(x2,xz) is a variable of C [2:2, 0:3],

and therefore by [10, theorem 2], Co is isomorphic to a polynomial ring in three vari-

ables. Since, by Theorem 3.1, the action is GICO , it is locally trivial [9, Theorem 2].

But a locally trivial Ga action Cn with ring of invariants isomorphic to a polynomial

ring in n — 1 variables is equivariantly trivial [5, Theorem 3].

Assume now that X is singular at (α, b) and that ω = 0 is a root of r(ω). Accord-

ing to Lemma 2.3 there are complex numbers n\ ^ n<2 with (α,ό) = (P(ni),Q(rii)).

The Ga orbits of the two points (d, c, n;,0) are (d + tq(rii,ϋ),c -f tp(n;,0),n;,0) in

case A and (d + ίgr(ra f), c + tp(rii), n;, 0) in case B . Therefore they are disjoint in both

cases. But for c / 0 the orbit of (0, 0, n«, e) is,in case B ,

f t 2 t2

tq(m) + W(nι)r(e) + ..., tp(m) + ̂ (n^rie) + ..., m + ίr(c)
\ z z

Recall that each application of the derivation to z contributes a factor of r(e).

Set t = n 1 to get the followig point in the orbit:

/ N / x ™2 — ^l / / N
— -(n2 - nι)p(m) + ~ τ - - - p (nι) + ..., n2, e

Recall that q = Q' and p — P' and observe that the first two coordinates in the orbit

above are, respectively, the Taylor expansions of ^y[Q(^2)~Q(^ι)] and ^y[F(n2) —
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P(nι)] centered at z — n\. Thus (0,0,nι,e) and (0,0,n2,e) lie in the same orbit. In
particular, the topological orbit space is not Hausdorff in the natural topology on C4,
and the action is not proper.

The argument for case A is the same, expect that we must consider the Taylor

expansions for Q(n2,0) - Q(raι, 0) and P(n2,0) - P(ΠI, 0) centered at z = rai, ω = e.

D
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