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1. Introduction

Let (M, g) be a compact Riemannian manifold, Δ the Laplacian of (M, g) and
Spec(M,g) := {0 = λ0 < λi < λ2 < •} the spectrum of Δ of {M,g).

It is an important problem in geometry to find lower bounds for the eigenvalues
of Δ of (M, g) in terms of the given geometric data and characterize those Rieman-
nian manifolds (M,g) for which these lower bounds are attained. Lichnerowicz
proved in [8] that if(M,g) is a complete Riemannian manifold of dimension n > 2
with Ricci curvature RicM > I, where I is a positive constant, then the first eigen-
value λi satisfies the inequality λi > n/(n — 1)1. Later Obata proved in [9] that
equality is attained only for the round sphere of radius yj(n — 1)//. Antonio Ros
studied this problem for P-manifolds. Let us recall that a manifold (M, g) is called
a P-manifold, if all the geodesies of(M,g) are periodic. It is well known that these
geodesies admit a minimum common period. By normalising the metric we may as-
sume that the period is 2π and call the manifold (M,g) a P27r-manifold (See [2]
for a detailed study of P-manifolds). Antonio Ros proved in [12] that if(M,g) is
a P2π-manifold of dimension n > 2 with Ricci curvature RicM > I, then the first
eigenvalue λx satisfies the inequality λi > (1/3)(2Z + n + 2) and equality is attained
iff for any first eigenfunction f we have that f(ηu{t)) = Au cost + Bu sinί + Cu for
u G UM. He further remarked that in view of Obata's theorem, this should happen
only for a small class of manifolds.

In this paper we substantiate his claim by proving

T h e o r e m 1. Let (M,g) be a P2π-manifold of dimension n>2 with Ricci cur-

vature RicM > / andλλ = (1/3)(2Z + n + 2). Then
1. (a) λi = (k(m + l))/2 = λi(M) and I = Ric^ where M is a sim-

ply connected compact rank-1 symmetric space (CROSS) of dimension
n = km with sectional curvature 1/4 < KJJ < 1 and k = 1, 2, 4,
8 orjn is the degree of the generator of H* (M, <Q>) = H* (M, <Q>) and
H*(M, Z2) = H*(M, Z2) where M is the universal cover ofM.

(b) Ifk>4 then M is simply connected and the integral cohomology ring
ofM is same as that ofM.
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(c) Ifk = 2 then either M is simply connected or M is non-orientable and
it has a two sheeted simply connected cover M. Moreover H*(M, Z) =
H*(M,Z).

2. Ifk = 1 then (M,g) is isometric to Sn with constant sectional curvature 1/4.
3. Ifk — n then (M,g) is isometric to Sn with constant sectional curvature 1

(Lichnerowicz-Obata theorem).
4. ifk — 2, 4 or 8 and if there is a first eigenfunction f without saddle points

then the universal cover (M, #) of(M,g) is isometric to M of dimension km.

REMARKS.

1. In lc) it should be noted that, if (1/2) dimM is even then M is forced to be
simply connected (See Lemma 2.12 and Proposition 2.16).

2. In CROSSes there are first eigenfunctions admitting saddle points. For instance
on CPn, consider the function defined by

|2 0 | 2 +αi | z i | 2 + . . . + αnf([zo,zi,...,zn]) =

in homogeneous co-ordiantes. This function has as many critical values as
there are distinct α '̂s; if there are p distinct α '̂s and each α̂  occurs rrii times
then the number of eigenvalues of hessian of the function / on each critical
submanifold is p and the multiplicity of the z-th eigenvalue is 2rrii. In this
example, we get a first eigenfunction without saddle points, only if these α '̂s
take exactly two values as i runs from 0 to n.
In fact a generic first eigenfunction is a Morse function.

The main step in the proof of Theorem 1 is the following

Theorem 2. Let (M,g) be a P2π -manifold of dimension n > 2 and λ be an
eigenvalue of A with an eigenfunction f such that f(ηu{t)) = Au cost+Bu sin£ + Cn

for u e UM. Then λ = (k(m + l))/2 = Xι(M) where Ή is as in Theorem 1.

REMARK. That the behaviour of / is strikingly similar to that in the model
CROSSes is also borne out by the auxiliary results proved in this paper.

We refer to [2] and [6] for definitions, basic tools and results used in this paper.

2. Preliminaries

In this section we study the topology of critical sets of the function / of the
form /(7u(t)) = Aucost + Busmt + Cu for u G UM on a P2π-manifold (M,g).

DEFINITION. Let (M, g) be a complete Riemannian manifold. A subset B C M
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is called totally a-convex if for any pair of points αi, a2 G 5 and any geodesic

7 : [0, r] —• M with 7(0) = aλ, j(r) = α2 and r < α, we have 7Q0, r]) C B (See [7]).

Theorem 3. Let (M,g) be a P2π -manifold and f G C°°(M) be such that

f(lu(t)) = Au cost + Businί + Cu for u G UM. Then

1. Fo/ eαcA critical value a of the function f, the set D& := {x G M : /(x) =

α and V/(x) = 0} is α totally 2π-convex, totally geodesic submanifold of

(M, flf) without boundary.

2. d{Da,Dβ) = πfora^β.

3. The function f has only finitely many critical values.

2.1. Proof of Theorem 3

Let x G M. Then f{ηu{t)) — Aucost + £?nsint + C u for every w G UXM, the

unit sphere in TXM. If a: is a critical point of the function /, then, since V/(x) = 0,

we have that

Jt

= 0

Therefore if x is a critical point of the function /, then f(p(u{t)) — Aucost + Cu for

every u G UXM.

To prove Theorem 3(1) we will first prove some lemmas.

Lemma 2.1. Let x G Da, u a unit vector at x and ηu the corresponding

geodesic. If Jv is a normal Jacobi field along ηu such that Jv(0) = 0 and J'v(ύ) = υ,

then (JV/)(7«W) = -2(V2f(u),v)(cost - 1).

Proof. Without loss of generality we may assume that υ is a unit vector orthog-

onal to u. Let UQ := cosθu + sin#i> in UXM. Then f(juθ(t)) = AUΘ(costt— 1) + α,

where

AUΘ = -(V2f(uθ),uθ)

= -cos2 ΘAU - sin2 ΘAV - 2sinθcosθ(V2f (u),v)

Hence

= dθ

θ=0

[Aue (cos t
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= -2(V2f(u),v)(cost-l) D

Corollary 2.2. If u is an eigenvector ofV2f in Lemma 2.1, then V/ is tan-
gential to ηu for all t.

Proof. As v is orthogonal to u in Lemma 2.1, if — V2/(it) = μu, then
(Jvf)(lu(t)) = 0 for all t.

Since for almost all t, Jυ(t) can be made any vector normal to η'u(t), V/(7 lt(ί))
can have no component normal to j'u(t). D

REMARK. This Corollary shows that, for x G Da, if μ is an eigenvalue of
—V2/(x) and Eμ is the corresponding eigensubspace, then for every u G 5μ, the unit
sphere in Eμ, the geodesies 7u's are integral curves of — V//|| V/| |. As a consequence,
it follows from Proposition 1 of [11] that V/ is an eigenvector of V2/ along such
geodesies.

Corollary 2.3. In Corollary 2.2 above, 7u(π) w necessarily a critical point of
the function f and η'u{π) is an eigenvector of—V2 f atηu(π).

Proof. If —V2/(u) = μu, then, since V/ is tangential to j u , we see that

V/(7u(ί)) = <V/(7u(t)),Yu(t)h;(ί) Therefore

Hence V/( 7 u(π)) = 0.
Also l im t ^(V/( 7 u (ί)))/(ί - π) = V 2 /(τiW) by LΉopital's Rule. At the

same time

l i m l i m
t—> 7Γ t — π t-+π t — 7Γ

= M7U(π)

Hence V 2/( 7i(π)) = /i74W •

We will now come to the

Proof of Theorem 3(1). Let x, y G jDα and 7U be a geodesic joining x and y
such that 7^(0) = x and 7u(r) = y for some r G R+. Since f(x) = f(y) = α and
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f(lu(t)) = Au cost + Cu, we have that Au + Cu = Aucosr + Cu. Hence Au = 0 if
r < 2π. This shows that f{ju(t)) = a for all t G [0,r].

We will now show that 7u([0, r]) C Da.
Let v ± u in UXM. Then we know from Lemma 2.1 that (Jvf){lu(t)) =

—2(V2f(u),v)(cost — 1). Since 7 l l(r) = y, for 0 < r < 2ττ, is a critical point of
the function /, we see that (Jvf)(ju(r)) = 0. This proves that (V2f(u),v) = 0
for all v _L u. Hence u is an eigenvector of — V2/ with eigenvalue μ (say). Then
f{ju(t)) = μ(cost- 1) + α. However f{ηu{t)) = α. Hence μ = 0. Now by Corollary
2.2 and the proof of Corollary 2.3, we know that V/(7u(ί)) = -μs\τίtη'u(t) = 0.
This shows that ηu(t) is a critical point of / for all t. Therefore 7u(t) C Da for
all ί. Hence Da is totally 2π-convex. We know from theory of convex sets that Da

is a topological manifold with boundary dDa (possibly empty) and Int(2)α), the
interior of Da, is non-empty, smooth and totally geodesic. Here lnt(Da) is not the
topological interior as a subset of M but the interior of the manifold Da (See [6]).

It remains to show that dDa = 0
Now let p G dDa and q G Int(Da). Then the geodesic segment joining p and q

has complementary segment of length less than 2π (as all geodesies are periodic of
common period 2π). Hence whole of geodesic is actually contained inside D& and
hence there are no boundary points. D

Proof of Theorem 3(2). Let a and β be two critical values of the function
/ such that a φ β. Let x G Da and y G Dβ with d(x,y) = to for some to £ ^ +

and 7U be a geodesic segment such that 7u(0) = x and ηu(t0) = y. Then f(*yu(t)) =
An cos £ + Cu and

d
—Au sinίn = —

dt

= 0

This can happen only if t0 = π. This proves that d(Da,Dβ) = π for a Φ β. D

Proof of Theorem 3(3). It is obvious as the critical submanifolds are constant
distance apart. D

2.2. In this subsection we will find out the eigenvalues of V2/ on various Dα 's
and determine the topology of these Da's.

Since the function / has only finitely many critical values, we denote these
critical values by max(/) = a±, α 2, , ap = min(/) and we denote by Dι the
critical submanifold {x G M : f(x) — aι and V/(x) = 0}.

Let x0 G î max = {x £ M : f(x) — max(/)}. Then — V2/(xo) is positive
semi-definite for each x G Dmax. Therefore we can write the distinct eigenvalues of
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) as μp > μp-ι > > μ2 > μi = 0 for some p e {1,2, , n}. p and μ 's
may apriori depend on x0.

For each z, we denote by Eμi, the /î -eigensubspace of — V2/(x0), by Sμi the
unit sphere in Eμi and by Sμi (0, r) the sphere of radius r centred at origin in Eμi.
Let u G Sμi. Then max(/) = Au + Cu and μι — —V2f(u,u) = Au. Therefore Au

and hence Cu = max(/) — Au are constants on Sμi. Now we define S(μι,r) :=
expa.(S

ίμf (0, r)), the exponential image of the sphere Sμi(0, r) of radius r. Since
u G S^, it follows from Corollary 2.2 that V/ is tangential to ηu for all t and
hence V/(7u(t)) = — μ* sinίθί where dt is the radial vector field d/dt. From this we
conclude that Vf(y) = 0 for y e Di(x0) := 5μ.(0,π).

We will now show that Di(xo) = Dι := {y G M : /(t/) = max(/) — 2μ̂  and
V/(y) = 0}.

It follows from Corollary 2.3 that Di(x0) C £)». To show that D^ C A(^o) we
start with a Lemma which is a sort of converse to Lemma 2.1.

Lemma 2.4. Letηu be a geodesic such thatηu{ϋ) andju(π) are critical points
of the function f. Then both 7^(0) and ηf

u(π) are eigenvectors ofV2 f.

Proof. Let Jυ be the Jacobi field along j u such that Jυ(0) = 0 and J'υ{ϋ) = v
for v l u . W e know from Lemma 2.1 that (Jvf)(ju(t)) = -2{V2f(u),v)(cost - 1).
Since 7u(τr) is a critical point of the function /, at t — π, (Jvf)(Ίu{π)) = 0. This
forces (V2f(u),v) = 0. i.e., V2/ has u as an eigenvector.

Similarly arguing from the other side we see that 7^(τr) is also an eigenvector
o f V 2 / a t 7 w ( π ) . D

Corollary 2.5. Ify€ Da and β φ a is another critical value of the function
f, then for each z e Dβ and each geodesic 7 joining y and z, 7/(0) is in the same
eigenspace of — V2/ at y. Moreover, the eigenvalue is independent of the points y
and z.

Proof. If u = 7'(0) thenΛ, - -(V2/(V),u), and f(^y(t)) = Au(cost - 1) + α
and so β = — 2AU + a. Therefore — Au — (β — a)/2.

Since it follows from Lemma 2.4 that u is necessarily an eigenvector of — V2/,
the eigenvalue is (a — β)/2 which is independent of y and z. D

This proves that Dι C Di(x$) and hence Dι = Di(x0).

As a consequence of the Corollary 2.5 above we prove the following

Lemma 2.6. The spectrum of—V2f is constant along Dmax.

Proof. Let XQ G -Dmaχ. Then for each eigenvalue μ̂ , we have the submanifold
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Di(xo) = expXo(Sμ. (0, π)). Also it follows from Lemma 2.4 that, for every x G Anax>
the set of unit vectors {u G UXM : 7u(0) = x and 7u(τr) G ̂ (xo)} is the unit sphere
of the eigenspace of V2/ with eigenvalue μ;. This implies that
1. The number of distinct eigenvalues of — V2/ on D m a x and hence on all the

critical submanifolds is constant.
2. Each eigenvalue μι is constant on Anax D

REMARK. This Lemma 2.6 verifies that each critical submanifold Da is non-
degenerate in the sense of R. Bott.

Now, since μ* are the only eigenvalues of — V2/ on £>max it follows from Corol-
lary 2.5 and Lemma 2.6 above that any critical submanifold Da coincides with one
of the Di's. Hence the only critical values of the function / are max(/) — 2μ^ where
μ '̂s are the eigenvalues of — V2/ on Anax and the eigenvalues of — V2/ on Di are
{μij := μj — μ*, 1 < j < p}. Thus we have proved the following

Corollary 2.7.
1. For each critical value a φ max(/), the critical submanifold Da coincicdes

with Di for some i where 2 < i < p.
2. The only critical values of the function f are max(/) — 2μ; where μι 's are

the eigenvalues of—V2f on D m a x for 1 < i < p. Moreover the eigenvalues of
-V2/ on Di are {μid := μ3f - μu 1 < j < p}.

We will now prove the following

Lemma 2.8. Let x G Da, u G Sμ(x) and v G Sμ'(x) where μ Φ μ! and
Sμ(x) be the unit sphere in the eigenspace ofV2f(x) with eigenvalue μ. Let Jυ, as
before, denote the Jacobί field along ηu such that Jv{ϋ) = 0 and J£(0) = υ. Then

Moreover, if v' G Sμn (x) such that μ" φ μ' and v' is orthogonal to u, then
(V2/(ΛW),Ji(π))=0.

Proof. By Corollary 2.1 and Corollary 2.3, 7u(ττ) is a critical point of the
function /. Hence V2/ at 7u(π) can be identified with the matrix of second par-
tial derivative at this point. Therefore (V2/(Jυ(π)), Jυ(π)) = -2(d2/dθ2) \θ=0 AUΘ

where UQ = cos^u + s i n ^ and AUθ = — (V2/(UQ),UQ). In our situation

-AUΘ = (V2f(uθ),uθ)

= cos2 θμ + sin2 θμ'

Hence -(d2/dθ2) \θ=0 AUΘ = -2(μ' - μ) and (V 2/(ΛW), Λ(τr)) = -4(μ' - μ).
Similarly considering the two parameter variation defined by ugtφ := cos^u +
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sin#(cos φυ + sinφυ') we have that

= -{μ cos2 θ 4- sin2 0(cos2 φμ! + sin2 φμ"))

and

. = 0 D

Corollary 2.9. Let x e Da, 0 φ v ± u, u e Sμ(x) and Jv be the Jacobi field
along 7n such that Jυ(0) = 0 and J£(0) = v. IfJυ(π) = 0, then υ e Sμ(x).

Proof. Let v — Y^vvu be the decomposition into eigenvectors. Then Jv(π) =
Σ i / ^ ( τ r ) = O I n particular (V2f(Jv(π)),JVu(π)) = 0 for each eigenvalue vv. By
the Lemma 2.8 above this gives 4(μ — v) || vu \\2= 0. Therefore vv = 0 whenever
μ/̂ . D

Corollary 2.10. For x e Da and for any non-zero eigenvalue μ of —V2f{x),
the map expx : 5μ(0, TΓ) —> Dμ(x) — DOi-2μ is a fibration with (k — 1)-dimensional
fibres and hence the multiplicity of μ is divisible by k where k — 1 is the index of
geodesies 7 of length 2π /« (M,g).

Proof. For each u e Sμ(x), the geodesic j u has index k — 1 on [0,2τr) and its
segments [0,π] and [π,2π] are both minimizing. Hence all the conjugate points to
7u(0) are concentrated at π. By the Corollary 2.9 above the Jacobi fields must come
from v G Sμ(x). This proves the first part of the Corollary.

By Corollary 2.3, as u runs over Sμ(x), the unit vectors 74(ττ) exhaust all the
eigenvectors of V2/ with eigenvalue —μ sitting along Da-2μ. Hence the multiplicity
of μ is divisible by k. •

REMARK. Since dimM is divisible by k, even for μ = 0, the multiplicity is
divisible by k.

We will now study these fibrations.
Let x e Da and μ a non-zero eigenvalue of —V2/(x) on Da. Then we have

seen in Corollary 2.10 that exp .̂ : Sμ(0, TΓ) —> Da^2μ is a constant rank map and the
rank of exp^ is dimEμ — k. If k = 1, then expx : 5μ(0,π) —> Da_2μ is a covering.
If /c > 2, then either
Fl. k — 1 = 1, 3, or 7 in which case the connected components of the fibres are

homotopy spheres Y^k~λ and k — 1 = 7 occurs only when 5 μ = S 1 5 (see [4])
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or
F2. k — 1 φ 1, 3 and 7 in which case the fibration has to be trivial.

When F2 holds we have the following

Proposition 2.11. Let x e Da and the fibration expx : Sμ(0,τr) —> D α _ 2 μ be
such that k - 1 φ 1, 3 and 7. Γλe/2
1. the fibration is trivial for all critical values a,
2. the function f does not have saddle points and
3. M is homeomorphic to Sn.

Proof. If the fibration expx : Sμ(0, π) —> D α -2 μ is non-trivial for some critical
value α and some non-zero eigenvalue μ of — V2/ on £>α, then from [4] it follows
that the connected components of the fibres are homotopy spheres Σ,k~X, k — 1 = 1,
3, or 7. Hence by our assumption the fibration has to be trivial for all critical values
α of the function /. This also shows that all critical submanifolds are singleton.

Since the geodesies from Da to Dmin for a > min(/) must neccessarily be in
the direction of negative eigenvalues of V2/, the local minimum i.e., index = 0, must
necessarily be unique.

Now starting with Dm m we attach the discs of radius π from each eigenspace
at every level. Since these discs are simply connected and the boundary, being the
sphere of dimension greater than or equal to 2 is simply connected, by Van Kam-
pen's Theorem, we get a simply connected space at every stage. Hence M is simply
connected. Further from our construction, it is clear that M is also an integral co-
homology CROSS and the degree of generator of H* (M, Z) is k where k φ 2, 4 and
8.

Now it is a result in cohomology theory that in this case k = n, the dimension
of M (See [2]). Hence there are only two critical submanifolds An a x

 a n d Anin and
they are singletons.

This proves that the function / does not have saddle points and from our
construction it is clear that M is homeomorphic to Sn. •

REMARK. By case (3) of Theorem 1 (to be proved later), we have isometry
with Sn.

Now we come to case Fl. First we start with the following

Lemma 2.12.
1. Either all Da 's are simply connected integral cohomology CROSSes, or
2. allDa 's are non-orientable andπι(Da) ~ ZZ2.
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Proof. Let Da and Dβ be two distinct critical submanifolds. Then, we know

from corollaries 2.5 and 2.10 that expx : 5(α_^)/2(0, π) —• Dβ is a fibration for

x G Da and expy : 5(/3_α)/2(0, π) —• Da is a ίibration for ?/ 6 £>/?. If the number of

connected components in each fibre is r for the flbration exp^ : 5(α_ / 3)/2(0, π) —> Dβ,

then by symmetry we see that for the flbration expy : S(β_ay2(Q,7Γ) —> Da also the

number of connected components in each fibre is r. Therefore #πi(Z>α) = #πι(Dβ)

and we have shown that

1. either all Da's are simply connected, or

2. all Da's are non-simply connected and they all have fundamental groups of

same cardinality.

We will now show that when τri(Dα) is non-trivial all D^s are non-orientable

andτri(£>α) ~ Z 2 .

Since exp^. : £(<*-/?)/^(O*71") —> Dβ is of constant rank, we have a folia-

tion T^β of 5(α_^)/ 2(0,π) given by the family of (A; — l)-planes ker(dexp x ) u for

u e S^a_βy2{^^)' For e a c h point u e Sf(α-/3)/2(0>7Γ)> the leaf through u is the

connected component through u in the fibre exp~1(expa. (w)). Let £αyg be the leaf

space of this foliation and Π α / 5 : 5 f(α_ i 5)/2(0,π) —• Caβ the natural projection. Then

5f(Q:_/5)/2(0, π) is a (A: — l)-sphere bundle over Caβ and the map Caβ —> Dβ is a cov-

ering [2]. Since Uαβ : 5(α_ / 3)/2(0, π) —• Cαβ is a sphere bundle, it follows that Cαβ

is a simply connected integral cohomlogy CROSS. If we now show that a simply

connected integral cohomology CROSSes can have only non-orientable 2-sheeted

quotients, then we will be through.

Let Y be a simply connected integral cohomology CROSS. If G is a nontrivial

finite group acting fixed point freely on Y, then a simple application of Lefschetz's

fixed point Theorem tells us that G ~ Z 2 . Again a simple application of Lefschetz's

fixed point Theorem tells us that any Z 2 action on Y has a fixed point if H*{Y, Z) =

# * ( C α P 2 , Z ) . In other cases it follows from [3] that

1. if H*(Y, Z) = H*(QFh, Z), then any Z2-action on Y must have a fixed point,

and

2. if # * (Y, Z) = iJ* (CPΛ, Z) then a fixed point free action of Z 2 is possible only

when h is odd and in this case the quotient is not orientable.

Thus we have proved that

1. if fe — 1 = 1 then exactly one of the following holds true :

(a) For each α, Dα is a simply connected integral cohomology CROSS and

the degree of the generator of H*{DOί,
rL) is 2, or

(b) For each α, Dα is non-orientable, 7Γχ(.Dα) ~ Z 2 and (1/2) dim Dα is

odd.

2. if k — 1 = 3 or 7, then each Dα is a simply connected integral cohomolgy

CROSS and the degree of the generator of H*(Dα, Z) is fe.

D
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For each a φ β, we denote by Da*Dβ, the submanifold obtained by attaching
the disc bundles of E(a_βy2 and Eφ_ay2 along the boundary set. Then we have
the following

Lemma 2.13. Each Da is orientable iffD^Dβ is orientable. Further ifDa is
not orientable then πι(Da) is isomorphic to πι(Da*Dβ).

Proof. Let us assume that each D& is orientable. We saw in the Lemma 2.12
that Da is orienatble iff Da is simply connected.

Now, Dc^Dβ is obtained by attaching the disc bundles of E(a_βy2

 a n d E(β_ay2

along the boundary set. These disc bundles are simply connected and the boundary
set being 5 r / c~1 bundles over Da's with r > 1 and k > 2, is connected. Hence by
Van Kampen's Theorem Da*Dβ is simply connected. This proves that if each Da

is orientable then Da*Dβ is orientable.
Let us now assume that each Da is non-orientable and we will show that Da*Dβ

is non-orientable and πι(Da) is isomorphic to πι(Dct^Dβ).
For each critical value a, we denote by Da, the simply connected two sheeted

cover of Da. Then by the arguments above, it follows that Da*Dβ (constructed in an
obvious way) is a simply connected integral cohomology CROSS covering Da*Dβ.
This proves that Da*Dβ is non-orientable and πι(Da*Dβ) ~ Z2.

From the inclusion i : Da —• Da*Dβ, we have the natural map z* : TΓI(.DQ;) —>
πi(Da*Dβ). We will be through if this map is non-trivial.

Let 7 be a non-trivial geodesic loop in Da. Let 7 be the lift of 7 in Da. Now,
if 2*(7) is trivial in πι(Da*Dβ), then its lift i*(7) is a closed geodesic loop in
Da*Dβ which is contained in Da. But 7 = ^(7). This implies that 7 is a closed
geodesic loop in Da. Therefore 7 must be homotopically trivial, a contradiction.
Hence i*(7) is non-trivial in πι(DOί^Dβ) and this proves that π1(DO() is isomorphic

D

Next we prove the following

Lemma 2.14. For each a, the normal bundle NM(Da) o/Da is orientable along

Proof. If Da is orientable then it is simply connected and hence the normal
bundle NM(Da) of Da is orientable along Da.

We will now assume that Da is not orientable. It suffices to show that for each
critical value β Φ α, the subbundle E(Oί-β)/2 of the normal bundle NM(Da) is
orientable along Da.

For a vector bundle E over Da, we denote by Atop(E), the top exterior line
bundle of E over Da.
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We know that

λiov(T(Da*Dβ) \DJ =

Hence from the properties of the Stiefel-Whitney classes, it follows that
w1(Atop(T(Da^Dβ) | D J ) = ^1(Λt°P(TJDα)) + ̂ 1(Λ t°P(^ ( α_ / 3 ) / 2)) in H\Da,Z2)\
here wι(*) denotes the first Stiefel-Whitney class.

Since 2* : ττι(Da) —> πι(Da * Dp) is an isomorphism, the natural map
z* : H1(Da*Dβ,Z2) —> i/ 1 (D α ,Z 2 ) is also an isomorphism. Under this isomor-
phism w^A^TiD^Dβ)) >-> w^A^TDa) + w1(Ato^E{θί_β)/2). Since Da*Dβ is
non-orientable, wι(T(Da*Dβ)) is the unique non-zero element in H1(Da*Dβ,Z2)
and hence its image wi(AtopTDa) + wι(AtopE(a_βy2) is the non-zero element in
H1(Da,Z2) This implies that w1(AtopE{a_βy2) = 0 in i7 1 (^ α ,Z 2 ) and hence the
normal bundle NM(Da) of Da is orientable along Da. D

Now we are in a position to prove the following

Proposition 2.15. The following statements are equivalent
1. M is orientable.
2. Da 's are orientable.
3. Da 's are simply connected.
4. M is simply connected.

Proof. The proof of the claims that 4 = ^ l = > 2 = > 3 i s obvious.
We will now come to the proof of 3 => 4.
We again remark here that the local minimum i.e., index = 0 is unique (See

proposition 2.11). Hence starting with jDmin which is simply connected, we attach
disc bundles at every level along the boundary set. These disc bundles are simply
connected and the boundary set being the Srk~1 bundle, for r > 1 and k > 2,
over Da is connected. Hence by Van Kampen's Theorem, we get a simply connected
space at every stage. This implies that M is simply connected. D

Similar statement can also be made when M is not orientable. We state this as

Proposition 2.16. The following statements are equivalent
1. M is not orientable.
2. M is not simply connected and τri(M) is ίsomorphic to Z2.
3. Da 's are not simply connected and πι(Da)is isomorphic to Z 2.
4. Da 's are not orientable.

Proof. If M is not orientable, then we take the orientable two sheeted cover
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(M,g) of (M,g). Then (M,#) is also a P2τr-πianifold. For otherwise the common
index of geodesies of length 4π in (M,g) will be 2/c + n — 1 > n + 1, a contradiction.
Now the rest of the proof goes through by appealing to proposition 2.15. D

3. Proof of Theorem 2

Let λ be an eigenvalue of Δ with an eigenfunction / such that f(yu(t)) =
Au cos t + Bu sin£ + Cu for u G UM. We know from Theorem 3 that the function has
only finitely many critical values say {aι :l<i<p} Let Dmax = Dι, D2, , Dv =
Dmin be the critical submanifolds of the function / with critical values α*.

Let μp > μp-ι > > μ2 > μi = 0 be the eigenvalues of — V2/ on Dmax. We
saw in Corollary 2.10 that for each x G Dmax, the map expx \Sμ (o,π)

: ^ (0?π) ^^ ^ j
is a fibration with fibres of dimension k — 1. Therefore we can write dimϋ^. = /cr̂
for some non-negative integer rj G {1,2, ,n}. Hence dim£)j = k(rj — 1).

We also know from Corollary 2.7 that the eigenvalues of — V2/ on D{ are
{μfj : μj-μi, 1 < j < p} and from Corollary 2.10 that exp |5μ.^ (0>7r): 5μij. (0, π) -> ^
is a fibration for j φ ί. In particular exp : 5_μi(0, π) —> D m a x is a fibration. Hence

. = dimEμj = krj and dimi£_μi = dim.Dmax + k = k{r\ + 1).
Now we will compute Δ/ along Di's.
Since / is an eigenfunction of Δ with eigenvalue λ, for each x G D m a x

λmax(/) = Δ/(x)

and for each y G Dj

\αά = Af(y)

But we know that αj = max(/) — 2μj. Therefore

λ(max(/) - 2μό) = k{rx

V

— Kμή ~]

^ri)μj +λmax(/)
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This proves that

where m = ]Γ\ r̂ .
We know from Bott-Samelson Theorem for P-manifolds that i/*(M, Q) has

exactly one generator (See [1], [2]). From Lemma 2.12 and the discussion towards
the end of its proof, it follows that the degree of the generator is k. Therefore
λ = k(m+ l)/2 = λi(M) where M is a CROSS of dimension km with sectional
curvarture 1/4 < KΉ < 1 and H*(M, Q) = H*(M, Q). D

4. Proof of Theorem 1

By hypothesis RICM > / and λi = (1/3) (2/ + π + 2). Hence for any first eigen-
function / we have that f(ju(t)) = Aucost + Bu sinί + Cu for u G UM (See [12]).

Proof of la. It follows from Theorem 2 that λi = (k(m + l))/2. Since λi is
also equal to (l/3)(2Z + n + 2), we get that I = (fe(m-l))/4 + (fe-l) = Ric^j. Again
from the proof of Theorem 2 it follows that H* (M, Q) = H* (M, Q) and also that
ff*(M,Z2) = ff*(M,Z2). D

Proof of lb. Since /c > 4, it follows from Lemma 2.12 that all Dα's are simply
connected and from proposition 2.15 shows that M is simply connected.

Since each Da is a simply connected integral cohomology CROSS and we are
attaching only rA>dimensional cells at each level along Z}α's, we see that M is also
an integral cohomolgy CROSS and the degree of the generator of U*(M, Z) is k.

D

REMARK. If the integral cohomology ring of M is same as that of the cohomol-
ogy projective plane then the function can have at most three critical submanifolds
D m a x and Dm[n and one saddle. If there are three critical submanifolds then all of
them are points; if there are only two critical submanifolds Dmaχ and Dm'in again
one of them is a point.

Proof of lc. Since k = 2, it follows from Lemma 2.12 and propositons 2.15
and 2.16 that, M is either simply connected or it has orientable 2-sheeted simply
connected cover. That the integral cohomology ring of M is same as that of M
follows from the proof of Theorem lb). This completes the proof of Theorem lc).

D

Proof of 2. Let (M, g) be the universal cover of (M, g) and Π : M —* M
the covering map. Since k — 1, we have that RICM = (n — l)/4. Therefore
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RICM = (ra—1)/4. Now by Bonnet-Myers' Theorem it follows that diam(M, g) < 2τr.
We will now show that diam(M, g) > 2τr. Then it will follow from the rigidity of
Bonnet-Myers' Theorem [6] or Cheng's maximal diameter Theorem [5] that (M,7f)
is isometric to Sn with constant sectional curvature 1/4.

Since (M, g) is a P2π-manifold it follows that (M, 7j) is a P47Γ manifold (See [2]).
If 7 is a geodesic between two critical submanifolds then the index of 7 |[o,2π)— 0
Since the index of geodesies of length 2π in (M, g) is constant, we see that all such
geodesies must have index 0. Hence 7(2π) is conjugate 7(0) with full multiplicity
ra—1, for any geodesic 7 in (M, #). This implies that, in (M, J7) also, we must have that
7(2ττ) is conjugate to 7(0) with full multiplicity ra — 1 for any geodesic 7 and no more
conjugate points in between. This proves that every point in (M,g) has conjugate
locus at constant distance 2π. Therefore for every x e M and u e TXM a unit vector
d(expx)tu : Γ^M —> T~ , t.M is non-singular for 0 < ί < 2π and d(expx)2πn(^)
for all υ -L u. This implies that expx is a local diffeomorphism on the open ball
JB(0, 2π) of radius 2π centred at origin in TXM and expa.(5'(0, 2π)) is singleton.
Hence expx : £>(0,2π)/5(0,2τr) - > M i s a covering. Here £>(0,2π) is the discjrf
radius 2π and S(0^2π) is the sphere of radius 2π both centred at origin in TXM^
This implies that M is diffeomorphic to Sn. Since exp .̂ : D(0, 2ττ)/S(0, 2τr) -^ M
is a diίfeomorphism the cut points to x can not occur before 2τr. This implies that
diam(M, (7) > 2π. Hence (M,^) is isometric to 5 n with constant sectional curvature.

D

REMARKS.

1. If dim M is even then (M,g) is isometric to MPn with constant sectional cur-
vature 1/4. If dim M is odd only even order lens spaces can occur, i.e., ττi(M)
is of even order. In this case πi(M) acts linearly on Sn, leaving invariant, at
least as many great spheres as the number of critical levels of the function /.

2. We can in fact show that any P2π-metric g on MPn is standard. We give a
proof below.
Let (MPn,#) be a P2π-manifold. Then its universal cover (Sn,g) is a P 4 π -
manifold. We also know that the index of geodesies of length 2π in RFn is
constant and the same is true about the geodesies of length 4π. In (IRPn, #) for
any geodesic 7, the point 7(2π) is conjugate to 7(0) with full multiplicity ra —1.
Hence 7, the lift of 7, will have 7(2τr) conjugate to 7(0) with full multiplicity
ra — 1 and hence no more conjugate points can occur in between. Hence for all
geodesies 7 in 5 n , the point 7(2τr) is conjugate to 7(0) with full multiplicity
ra — 1. This implies that for any point x £ Sn, the cojugate locus occurs at
constant distance 2ττ. From the proof above we can deduce that the injectivity
radius at any point is a constant equal to 2π. This means that (Sn,g) is a
Blaschke manfold. Now from Blaschke conjecture for spheres [2], it follows
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that (5n,<7) is isometric to Sn with constant sectional curvature 1/4. Hence
(MPn,<7) is ismoetric to the standard MPn with constant sectional curvature
1/4.

Proof of 3. Since λi = n, this case is nothing but Obata's Theorem. •

4.1. Proof of Theorem 1(4)

First we assume that M is simply connected and that max(/) and min(/) are
the only critical values of the function /. Hence DmSiX and Anin are the only critical
submanifolds of the function / in (M, g). Therefore — V2/ has only two eigenvalues
on Anax By normalizing the function /, we may assume that these two eigenvalues
are 1 and 0. Hence we can write /(7u(ί)) = cost + C for u G UD^ΆX, the unit
normal bundle of Anax, and the tubular hypersurfaces around Anax are level sets
of the function /.

Now we get bounds for V2/(τz, u) for every u G UM.
Let S(t) be the tubular hypersurface of radius t around DmΆK. Then f(x) =

cost + C for x G S(t) and /(7u(ί)) = Aucost + Businί + Cu for u G UXM. Then
7w(0) G S(t) and 7^(π) G 5(ίi) for some i x such that 0 < tx < π. Since Au + Cu =
cost + C and — 4̂n + Cu — cost\ + C, we have that Au = (l/2)(cosί — costi).
Therefore

and we get that

1 —cost 2 , , 1+cosί

Having got these bounds for V2/, we define two eigensubbundles of V2/

Ei-cost := {E7 G TXM : x G S(t) and V 2 /(£) = 1 ~ c o s t

j £ ;}

E i+cost : = { £ ; G Γ X M : x G S ( ί ) a n d V2f{E) = _ 1 ^

T h e n w e h a v e t h e f o l l o w i n g

Lemma 4.1.

1. The eigensubbundles E(1_costy2 and £L(i+Cost)/2 ofV2f are parallel along
the trajectories ofVf. More over dim #(i_Cosί)/2 +dmii£_(i+cost)/2 = k(m —
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2. £(i-cost)/2 and £_(i+cost)/2 ^ eigensubbundles of R(.,
2

Proof. Let x € -Dmaχ and 7 be a geodesic starting at x such that 7'(0) €
x"1"- Let J be a Jacobi field along 7 describing the variation of the geodesic

7 such that J(0) e TDmax and J(π) = 0. We normalise J such that | | J ' (π) | | = 1.
Then, since J is a Jacobi field, [J, 7'(ί)] = 0 along the geodesic 7. Further, since

7 ' ( t) = -V//IIV/II, we note that J(| |V/||) = 0. Hence

IIV/II

2 - 2 cos I

The function || J||2/cos2(t/2) is smooth and non-vanishing on R. Hence we can take
the positive square root || J\\/\ cos(ί/2)| of || J||2/cos2(£/2) which is again smooth.
The function cos(ί/2) is positive on (—π, TΓ). Therefore from the last step of the
above equation it follows that

,+ — . + . > o
at

on (—π,7r). Now since (M,g) is a P2τr-manifold, we have that J(t) = J(t + 2τr).
Hence || J||/cos(ί/2) | t = - π = ||J||/cos(ί/2) | t = π = 2. This proves that ||J||/cos(ί/2)
= 2 for ί G [—7r,π] and equality must hold everywhere in the above inequalities.
This proves that J is an eigenvectorfield of V2/ with eigenvalue (1 — cos t)/2. Since
| | J | | = 2cos(ί/2), we can write J(ί) = 2 cos(t/2)E(t) where ^(ί) G S(i_COst)/2 is a
unit vector field along 7. Since J is a Jacobi field along 7

J ; = V J 7 '
1

1 — cos t 1
_ I 1 . — , n i l W

1 — cos t 1

On the other hand J' = - sin(t/2)E -h cos(t/2)E'. This shows that £7; is along the
direction of the vector field E. Since E is a unit vector field along 7, E1' _L E.
Therefore E' = 0 along 7. Thus we have shown that any Jacobi field J along 7
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with J(0) G TZ>max and J(π) = 0 is of the form J(t) = 2cos(t/2)E(t), where
E{t) G £'(i-cost)/2 and E(t) is parallel along 7. On the other hand it follows from
Lemma 2.8 that every element of E(1__costy2

 c a n be expressed as a Jacobi field J(t)
described above. This proves that E(1_costy2 is parallel along the trajectories of

v/.
Now by a similar argument we can show that the eigensubbundle E_(1+costy2

is also parallel along the trajectories of V/ by using the inequality that V2f(u, u) <
— (1 -f cosί)/2. (For a proof see also [11]).

Now we set out to prove the second part of Lemma 4.1. Let E G E(ι_costy2 be
a unit vector at £ = 0 and J be a Jacobi field describing the variation of a normal
geodesic 7 starting £>maχ, such that J(0) = 2i£. Then from what we have seen above
J(t) = 2cos(t/2)E(t); E(t) parallel along 7. Therefore

R(J,7fW = -J"

and this proves that E^_costy2 is eigensubbundle of β(.,V/)V/ with eigenvalue
(1/4)||V/||2 along the trajectories of V/. The same arguments will prove that
E_(1+costy2 is also an eigensubbundle of R(., V/)V/ with eigenvalue (1/4)||V/||2.

It follows from Lemma 2.8 that both the subbundles are of constant dimension
at any point in M and also that d i m ϋ ^ . c o s ^ = kα and dim£'_(1 + c o s t)/2 =
k(m — α — 1) where dimDmSLX = kα and dim£>min = k(m — α — 1). This proves that
dim£ ( 1 _ c o s ί )/ 2 + dim£_(i + c o s ί )/ 2 = k(m - 1). D

Let ^_cost := (#(i-cost)/2 θ ^-(i+cost)/2)"L be the orthogonal complement of
E(i-co*t)/2 θ ^-(i+cost)/2 i n ™- Then we have the following

Lemma 4.2. E_cost is an eigensubbundle of
1. V2/ HtfYλ eigenvalue —cost
2. Λ(., V/)V/ wftA eigenvalue ||V/||2

Proof. First we note that dim(E l(1_cosί)/2 θ ^-(i+Cost)/2) = k(m — 1).
Therefore the dimension of E-cost is k. Let us choose an orthonormal basis
Ei = V//HV/H, E2, E39- 9 Ek ofE_cost, Ek+1, Ek+2, ; Ek{a+1) of E{1_cost)/2

and Ek(a+i)+i, Eka+2, , Ekrn of 2£_(i+Cost)/2 Then

fcm

t = 2
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Now, for 2 < i < k, we define the vector fields Wi(t) = sintEi(t), where each E\ is
a parallel vector field along 7 such that Ei(0) = Eι. Then Index Lemma shows that

0 < I(Wi,Wi) = Γ((W!,W!) -
Jo

Therefore

k

o <
i=2

k
2= 22 cos2 t(Ei,Ei) -sin 2ίX(£; i,7 /)

i=2 °

= (k- 1) / (cos21 - sin2 t)
Jo

= 0

Hence Wi(t) = sintEi(t) are Jacobi fields along 7 for 2 < i < k. Now it can be
easily verified that E_cost is an eigensubbundle of V2/ with eigenvalue — cost and
also an eigensubbundle of R(.,Y)jf with eigenvalue 1. D

An intersting Remark. When k = 2, we don't need the condition on RICM to
show that EL c o s t is an eigensubbundle of V2/ with eigenvalue —cost and also an
eigensubbundle of R{.,η')η' with eigenvalue 1. We give the proof below.

Let μι and μ<ι be the eigenvalues of V2/U_Cost Then for x G An a x

Therefore

= /c(m — α)

Hence C = m - (2a + l)/ra + 1.
Now let p e M. Then /(p) = cost 4- C for some t and
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-Γr(V 2 /(p) | g l _ r t )

_ /I — cos t
= cos t — μ2 — ka I

+ COS A

_ J
Hence by substituting the value m — (2α + l)/ra + 1 for C we get that μ2 = — cost.

An important consequence of Lemma 4.1 is that, for each x G Anax, the map
expx : 5(0, π) —• Dmin and for each y G Dmin, the map expy : 5(0, π) —> £>max are
great sphere fibrations; here 5(0, π) denotes the normal sphere of radius π at the
corresponding points. Now we state the following

Lemma 4.3. For every x e Anax> the map

expx:5(0,7r)->Anin

and for every x e Dm[n, the map

e x p x : 5(0, π) —> D m a x

are congruent to Hopf fibrations.

Proof. See [7] and [11]. D

Proof of Theorem 1(4). Let us fix a Ψa{k) C Pm(/c). We denote by
the normal bundle of D m a x and by (ΓPα(/c))-L, the normal bundle of Ψa{k) in
Pm(/c). Since the map exp^ : 5(0, π) —> jDmin is congruent to Hopf fibration for
each x G Anax there is a fibre preserving isometry / : TD^ -> (ΓPα(/c))-L. Using
this isometry we define a map

as follows: For every q G M\D m i n there is a unique x G -Dmaχ and a unique geodesic
segement joining x and q and we define Φ(q) := expo/oexp~1(ς). This map carries
the geodesies orthogonal to D m a x to geodesies orthogonal to Pα(/c) and matches the
tubular hypersurfaces around £>maχ. To complete the proof we only have to show
that dΦ preserves the length of the Jacobi fields along these normal geodesies. This
follows from [11]. This finishes the proof when M is simply connected.

We will now come to the case when M is not simply connected.
If M is not simply connected, then from our earlier analysis we conclude that

the universal cover (M,g) of (M,g) is isometric to CP 2 ^" 1 with its standard metric
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of sectional curvature 1/4 < K(rψ2d-i < 1. This completes the proof of Theorem

1(4). D

CONCLUDING REMARKS

1. If k = 2 and M is not simply connected then we have seen that (M,g) is a

quotient of C P 2 ^ " 1 by a fixed point free involutive isometry. For the existence

of such a map consider

φ : C P 2 ^ - 1 —> C P 2 ^ " 1

defined by

Φ([Z1,Z2, , *2d]) = [̂ 2, - * 1 , ,^2d, ~^2d-l]

in homogeneous co-ordinates. Then φ is a fixed point free involutive isometry

For example, consider the eigenfunction

/ : C P 2 ^ " 1 -> C P 2 ^ " 1

defined by

For α 0 7̂  αi, / goes down to M = CP2d X / Z 2 to give a first eigenfunction

without saddle points.

2. Theorem 1(4) has been used to give an intrinsic proof of Lichnerowicz conjec-

ture on harmonic manifolds by the first author (See [13] for a proof using Nice

ίmbeddings). The details will appear in An Intrinsic Approach to Lichnerowicz

Conjecture [10].
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