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1. Introduction

Let (M, g) be a compact Riemannian manifold, A the Laplacian of (M, g) and
Spec(M, g) := {0 = Ao < A; < Ay < ---} the spectrum of A of (M, g).

It is an important problem in geometry to find lower bounds for the eigenvalues
of A of (M, g) in terms of the given geometric data and characterize those Rieman-
nian manifolds (M, g) for which these lower bounds are attained. Lichnerowicz
proved in [8] that if (M, g) is a complete Riemannian manifold of dimension n > 2
with Ricci curvature Ricpy > I, where | is a positive constant, then the first eigen-
value )\, satisfies the inequality \y > n/(n — 1)l. Later Obata proved in [9] that
equality is attained only for the round sphere of radius \/(n — 1)/l. Antonio Ros
studied this problem for P-manifolds. Let us recall that a manifold (M, g) is called
a P-manifold, if all the geodesics of (M, g) are periodic. It is well known that these
geodesics admit a minimum common period. By normalising the metric we may as-
sume that the period is 2w and call the manifold (M,g) a Pa.-manifold (See [2]
for a detailed study of P-manifolds). Antonio Ros proved in [12] that if (M, g) is
a P,.-manifold of dimension n > 2 with Ricci curvature Ricy; > 1, then the first
eigenvalue )\, satisfies the inequality A, > (1/3)(2l + n + 2) and equality is attained
iff for any first eigenfunction f we have that f(v,(t)) = A, cost+ Bysint + C,, for
u € UM. He further remarked that in view of Obata’s theorem, this should happen
only for a small class of manifolds.

In this paper we substantiate his claim by proving

Theorem 1. Let (M, g) be a Py,-manifold of dimension n > 2 with Ricci cur-
vature Ricpr > 1 and A = (1/3)(2l +n + 2). Then
1. (@ X = (k(m+1))/2 = \(M) and | = Ricg; where M is a sim-
ply connected compact rank-1 symmetric space (CROSS) of dimension
n = km with sectional curvature 1/4 < Ky < 1 and k = 1, 2, 4,
8 or n is the degree of the generator of H*(M,Q) = H*(M,Q) and
H*(ﬁ, Zy) = H*(M,Zsy) where M is the universal cover of M.
(b) Ifk > 4 then M is simply connected and the integral cohomology ring
of M is same as that of M.
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(c) Ifk = 2 then either M is simply connected or M is non-orientable and
it has a two sheeted simply connected cover M. Moreover H *(M \Z) =
H*(M,Z).
2. Ifk=1 then (M,3g) is isometric to S™ with constant sectional curvature 1/4.
3. Ifk = n then (M,g) is isometric to S™ with constant sectional curvature 1
(Lichnerowicz-Obata theorem).
4.  Ifk =2, 4 or8 and if there is a first eigenfunction f without saddle points
then the universal cover (MV ,9) of (M, g) is isometric to M of dimension km.

REMARKS.
1. In lc) it should be noted that, if (1/2)dim M is even then M is forced to be
simply connected (See Lemma 2.12 and Proposition 2.16).
2. In CROSSes there are first eigenfunctions admitting saddle points. For instance
on CP", consider the function defined by

ao |20|? +a1 |z12 +... +an | 2a]?
|20 + 212 +... + |20 |?

f([z0,21,..,20]) =

in homogeneous co-ordiantes. This function has as many critical values as
there are distinct a;’s; if there are p distinct a;’s and each a; occurs m; times
then the number of eigenvalues of hessian of the function f on each critical
submanifold is p and the multiplicity of the i-th eigenvalue is 2m,;. In this
example, we get a first eigenfunction without saddle points, only if these a;’s
take exactly two values as ¢ runs from 0 to n.

In fact a generic first eigenfunction is a Morse function.

The main step in the proof of Theorem 1 is the following

Theorem 2. Let (M,g) be a Pyr-manifold of dimension n > 2 and )\ be an
eigenvalue of A with an eigenfunction f such that f(~,(t)) = Ay cost+ B, sint+C,
foru e UM. Then A = (k(m +1))/2 = A\ (M) where M is as in Theorem 1.

REMARK. That the behaviour of f is strikingly similar to that in the model
CROSSes is also borne out by the auxillary results proved in this paper.

We refer to [2] and [6] for definitions, basic tools and results used in this paper.

2. Preliminaries

In this section we study the topology of critical sets of the function f of the
form f(y,(t)) = Aycost + Bysint + C, for u € UM on a P,,-manifold (M, g).

DEeFINITION.  Let (M, g) be a complete Riemannian manifold. A subset B C M
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is called totally a-convex if for any pair of points a1, az € B and any geodesic
~:[0,7] = M with v(0) = a1, v(r) = az and r < a, we have v([0,7]) C B (See [7]).

Theorem 3. Let (M,g) be a Py.-manifold and f € C>®(M) be such that
F(yu(t)) = Ay cost + Bysint + C,, foru e UM. Then
1. For each critical value o of the function f, the set D, := {x € M : f(z) =
a and Vf(z) = 0} is a totally 2m-convex, totally geodesic submanifold of
(M, g) without boundary.
2. d(Da,Dg) =7 fora # B.
3. The function f has only finitely many critical values.

2.1. Proof of Theorem 3

Let z € M. Then f(v,(t)) = Aycost + Bysint + C, for every u € U, M, the
unit sphere in T, M. If z is a critical point of the function f, then, since V f(z) = 0,
we have that
d
— o t
G| S0

= (V/(2),7.(0))
=0

B,

Therefore if x is a critical point of the function f, then f(vy,(t)) = A, cost+ C, for
every u € U, M.
To prove Theorem 3(1) we will first prove some lemmas.

Lemma 2.1. Let x € D,, u a unit vector at x and ~, the corresponding
geodesic. If J,, is a normal Jacobi field along ~, such that J,(0) =0 and J,(0) = v,

then (Jof)(vu(t)) = —2(V2f(u),v)(cost — 1).

Proof. Without loss of generality we may assume that v is a unit vector orthog-
onal to u. Let ug := cosfu + sinfv in U, M. Then f(vy,(t)) = Ay,(cost,—1) + a,
where

Aue = _<v2f(u9))u0>
= —cos?0A, —sin® A, — 2sinf cos (V2 f(u),v)

Hence

9
a6
d

00

(Juf)(u(t))

Frue (1))

6=0

[Ay, (cost — 1) + af
6=0
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= —2(V2f(u),v)(cost — 1) I

Corollary 2.2. Ifu is an eigenvector of V2f in Lemma 2.1, then Vf is tan-
gential to v, for allt.

Proof. As v is orthogonal to u in Lemma 2.1, if —V2f(u) = pu, then

(Juf)(7u(t)) = 0 for all ¢.
Since for almost all ¢, J,(t) can be made any vector normal to ~,,(¢), Vf(vu(t))

can have no component normal to v, (¢). U

REMARK. This Corollary shows that, for x € D,, if p is an eigenvalue of
—V2f(z) and E, is the corresponding eigensubspace, then for every u € S,, the unit
sphere in E,,, the geodesics 7,,’s are integral curves of —V f/||V f||. As a consequence,
it follows from Proposition 1 of [11] that V£ is an eigenvector of V2f along such
geodesics.

Corollary 2.3. In Corollary 2.2 above, v, () is necessarily a critical point of
the function f and ) () is an eigenvector of —V?f at v, ().

Proof. If —V2f(u) = uu, then, since Vf is tangential to -,, we see that
Vi(ru(t) = (VF(7u(t)), 7u(£))7(t). Therefore

VI (®) = o f (M)

- %[y(cost — 1) + o]y, (t)

= —psinty,(t)

Hence V f(v, (7)) = 0.
Also limy— - (Vf(7.(t)))/(t — m) = V2f(v. (7)) by L’'Hopital’s Rule. At the
same time

VI(u(t) _ o —psintr(©)

lim ————* = lim
t—m t—m t—m t—m
= pry,(m)
Hence V2£ (v, (r)) = pv (). m

We will now come to the

Proof of Theorem 3(1). Let z, y € D, and ~, be a geodesic joining x and y
such that v,(0) = z and 7,(r) = y for some r € R*. Since f(z) = f(y) = a and
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f(yu(t)) = Ay cost + C,, we have that A, + C,, = A, cosr + C,,. Hence 4, = 0 if
r < 2m. This shows that f(v,(t)) = a for all t € [0,7].

We will now show that v,,([0,7]) C D,.

Let v L u in U,M. Then we know from Lemma 2.1 that (J,f)(7.(t)) =
—2(V2f(u),v)(cost — 1). Since v,(r) = y, for 0 < r < 2m, is a critical point of
the function f, we see that (J,f)(v.(r)) = 0. This proves that (V2f(u),v) = 0
for all v L u. Hence u is an eigenvector of —V?2f with eigenvalue u (say). Then
f(vu(t)) = p(cost —1) + a. However f(v,(t)) = a. Hence u = 0. Now by Corollary
2.2 and the proof of Corollary 2.3, we know that V f(v,(t)) = —pusinty,(t) = 0.
This shows that ~,(t) is a critical point of f for all ¢. Therefore «,(t) C D, for
all ¢t. Hence D, is totally 2m-convex. We know from theory of convex sets that D,
is a topological manifold with boundary 8D, (possibly empty) and Int(D,), the
interior of D, is non-empty, smooth and totally geodesic. Here Int(D,,) is not the
topological interior as a subset of M but the interior of the manifold D, (See [6]).

It remains to show that 8D, = 0

Now let p € 8D, and ¢ € Int(D,,). Then the geodesic segment joining p and ¢
has complementary segment of length less than 27 (as all geodesics are periodic of
common period 27). Hence whole of geodesic is actually contained inside D, and
hence there are no boundary points. O

Proof of Theorem 3(2). Let a and 8 be two critical values of the function
f such that o # B. Let x € D, and y € Dg with d(x,y) = to for some ¢y € Rt
and v, be a geodesic segment such that +,(0) = z and ~,(to) = y. Then f(v,(¢)) =
A, cost+ C, and

d

_Au Sinto = a f(’}’u(t))
t=to

(V£(), . (to))
=0

This can happen only if ¢t = 7. This proves that d(D,, Dg) = 7 for a # . O

Proof of Theorem 3(3). It is obvious as the critical submanifolds are constant
distance apart. Ul

2.2. In this subsection we will find out the eigenvalues of V2 f on various D,’s
and determine the topology of these D,’s.

Since the function f has only finitely many critical values, we denote these
critical values by max(f) = a1, ag, -+, ap = min(f) and we denote by D; the
critical submanifold {z € M : f(z) = a; and V f(z) = 0}.

Let 29 € Diax = {z € M : f(z) = max(f)}. Then —V2f(z) is positive
semi-definite for each = € D,,.x. Therefore we can write the distinct eigenvalues of
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—V2f(zo) as pp > pp—1 > -+ > p2 > pug = 0 for some p € {1,2,---,n}. p and p;’s
may apriori depend on zg.

For each i, we denote by E,,, the u;-eigensubspace of —V?2f(z), by S,, the
unit sphere in E,,, and by S,,(0,r) the sphere of radius r centred at origin in E,,.
Let u € S,,,. Then max(f) = 4, + C, and p; = —V2f(u,u) = A,. Therefore A,
and hence C,, = max(f) — A, are constants on S,,. Now we define S(u;,r) :=
exp,(S,,(0,7)), the exponential image of the sphere S, (0,7) of radius r. Since
u € §,,, it follows from Corollary 2.2 that Vf is tangential to ~, for all ¢t and
hence V f (v, (t)) = —p;sintd, where 8, is the radial vector field 9/8t. From this we
conclude that V f(y) = 0 for y € D;(xo) := S,, (0, 7).

We will now show that D;(zo) = D; := {y € M : f(y) = max(f) — 2u; and
Vf(y) =0}

It follows from Corollary 2.3 that D;(zo) C D;. To show that D; C D;(zo) we
start with a Lemma which is a sort of converse to Lemma 2.1.

Lemma 24. Let~, be a geodesic such that~,(0) and ~,(w) are critical points
of the function f. Then both ~!,(0) and ~. () are eigenvectors of V?f.

Proof. Let J, be the Jacobi field along ~,, such that J,(0) =0 and J,(0) = v
for v L u. We know from Lemma 2.1 that (J, f)(vu(t)) = —2(V2f(u),v)(cost — 1).
Since 7, () is a critical point of the function f, at t = =, (J, f)(yu(7)) = 0. This
forces (V2 f(u),v) = 0. i.e., V2f has u as an eigenvector.

Similarly arguing from the other side we see that «/,(7) is also an eigenvector
of V2f at 7, (). O

Corollary 2.5. Ify € D, and 3 # « is another critical value of the function
f., then for each z € Dg and each geodesic ~y joining y and z, ~'(0) is in the same
eigenspace of —V*f at y. Moreover, the eigenvalue is independent of the points y
and z.

Proof. If u=+/(0) then A, = —(V2f(u),u), and f(y(t)) = Ay(cost — 1)+«
and so 8 = —2A, + . Therefore —A4, = (8 — a)/2.

Since it follows from Lemma 2.4 that u is necessarily an eigenvector of —V?2f,
the eigenvalue is (o — 3)/2 which is independent of y and =. tl

This proves that D; C D;(zo) and hence D; = D;(zo).
As a consequence of the Corollary 2.5 above we prove the following

Lemma 2.6. The spectrum of —V2f is constant along D ax.

Proof. Let g € Dpax. Then for each eigenvalue p;, we have the submanifold
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D;(z0) = exp,, (Su,(0,7)). Also it follows from Lemma 2.4 that, for every # € Drax,
the set of unit vectors {u € U, M : ,(0) = z and ~,(7) € D;(z0)} is the unit sphere
of the eigenspace of V2f with eigenvalue p;. This implies that

1.  The number of distinct eigenvalues of —V2f on Dy, and hence on all the
critical submanifolds is constant.
2. Each eigenvalue p; is constant on Dy y. O

REMARK. This Lemma 2.6 verifies that each critical submanifold D, is non-
degenerate in the sense of R. Bott.

Now, since y; are the only eigenvalues of —V2f on Dy, it follows from Corol-
lary 2.5 and Lemma 2.6 above that any critical submanifold D, coincides with one
of the D;’s. Hence the only critical values of the function f are max(f) — 2u; where
u;’s are the eigenvalues of —V2f on Dp,., and the eigenvalues of —V2f on D; are
{mij == pj — i, 1 < j < p}. Thus we have proved the following

Corollary 2.7.

1. For each critical value o # max(f), the critical submanifold D, coincicdes
with D; for some i where 2 < i < p.
2. The only critical values of the function f are max(f) — 2u; where p;’s are

the eigenvalues of —V2f on Dy for 1 < i < p. Moreover the eigenvalues of
—V2f on Di are {,U,.L] = ,U,j —_ pq',]. S ] S p}

We will now prove the following

Lemma 28. Letxz € D,, u € Sy(x) and v € S,/(x) where p # 1/ and
S,.(z) be the unit sphere in the eigenspace of V2 f(x) with eigenvalue p. Let J,, as
before, denote the Jacobi field along -, such that J,(0) = 0 and J(0) = v. Then
(V2f(Jo(m)), Ju(m)) = —4(u' — p).

Moreover, if v' € S, (z) such that p" # ' and v' is orthogonal to u, then
(V2f(Jy(m)), Jy(m)) = 0.

Proof. By Corollary 2.1 and Corollary 2.3, «,(7) is a critical point of the
function f. Hence V2f at v,(n) can be identified with the matrix of second par-
tial derivative at this point. Therefore (V2 f(J, (7)), Jo(7)) = —2(8%/962) |g—0 Au,
where ug = cosfu + sinfv and A,, = —(V2f(ug),us). In our situation

—Ay, = (V2f(ug), ug)
= cos? O + sin? O/

Hence —(92/06%) [g=o Auy = —2(4' — 1) and (V2f(J,(m)), J, (m)) = —4(u' — p).
Similarly considering the two parameter variation defined by ug, ¢4 := cosfu +
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sin f(cos ¢v + sin ¢v’) we have that

Aue,¢ = —<V2f(u‘97¢),ug,¢)
= —(ucos? 6 + sin® §(cos? pp’ + sin® pp’"))

and

2 _ 2909
<V f(‘]v(']r))ﬂ]v'(ﬂ)) = -2 96 8(}5 60 Aue,¢

=0 O

Corollary 2.9. Letx € D,, 0# v L u, u € S,(x) and J, be the Jacobi field
along ~,, such that J,(0) =0 and J}(0) = v. If J,(7) =0, thenv € S, (z).

Proof. Letwv =) v, be the decomposition into eigenvectors. Then J,(7) =
>, Ju, () = 0. In particular (V2f(J,(r)), Jy, (7)) = 0 for each eigenvalue v,. By
the Lemma 2.8 above this gives 4(u — v) | v, ||*= 0. Therefore v, = 0 whenever

u#E v O

Corollary 2.10. For z € D, and for any non-zero eigenvalue p of —V? f(x),
the map exp, : S,(0,7) — D, (z) = Dq_o, is a fibration with (k — 1)-dimensional
fibres and hence the multiplicity of u is divisible by k where k — 1 is the index of
geodesics ~y of length 27 in (M, g).

Proof. For each u € S, (), the geodesic v, has index k —1 on [0, 27) and its
segments [0, 7] and [r, 27] are both minimizing. Hence all the conjugate points to
v.(0) are concentrated at w. By the Corollary 2.9 above the Jacobi fields must come
from v € S, (z). This proves the first part of the Corollary.

By Corollary 2.3, as u runs over S, (z), the unit vectors ~,,(7) exhaust all the
eigenvectors of V2 f with eigenvalue — u sitting along D,,_s,,. Hence the multiplicity
of u is divisible by k. O

REMARK. Since dimM is divisible by k, even for p = 0, the multiplicity is
divisible by k.

We will now study these fibrations.

Let z € D, and p a non-zero eigenvalue of —V?2f(z) on D,. Then we have
seen in Corollary 2.10 that exp, : S, (0,7) — Dq_2, is a constant rank map and the
rank of exp, is dim E, — k. If k = 1, then exp, : S,(0,7) — Dq_2, is a covering.
If k > 2, then either
Fl. k—-1=1, 3, or 7 in which case the connected components of the fibres are

homotopy spheres "' and k — 1 = 7 occurs only when S, = S5 (see [4])
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or
F2. k—14#1,3 and 7 in which case the fibration has to be trivial.

When F2 holds we have the following

Proposition 2.11. Let x € D, and the fibration exp, : S,,(0,7) — Dq_o, be
such thatk —1+#1, 3 and 7. Then

1. the fibration is trivial for all critical values o,
2. the function f does not have saddle points and
3. M is homeomorphic to S™.

Proof. If the fibration exp,, : S,(0,7) — Dy_3, is non-trivial for some critical
value a and some non-zero eigenvalue u of —V2f on D, then from [4] it follows
that the connected components of the fibres are homotopy spheres Zk—l, k—1=1,
3, or 7. Hence by our assumption the fibration has to be trivial for all critical values
a of the function f. This also shows that all critical submanifolds are singleton.

Since the geodesics from D, to Dy, for o > min(f) must neccessarily be in
the direction of negative eigenvalues of V2 f, the local minimum i.e., index=0, must
necessarily be unique.

Now starting with D,,;, we attach the discs of radius = from each eigenspace
at every level. Since these discs are simply connected and the boundary, being the
sphere of dimension greater than or equal to 2 is simply connected, by Van Kam-
pen’s Theorem, we get a simply connected space at every stage. Hence M is simply
connected. Further from our construction, it is clear that M is also an integral co-
homology CROSS and the degree of generator of H*(M,Z) is k where k # 2, 4 and
8.

Now it is a result in cohomology theory that in this case k = n, the dimension
of M (See [2]). Hence there are only two critical submanifolds Dp,ax and Dy, and
they are singletons.

This proves that the function f does not have saddle points and from our
construction it is clear that M is homeomorphic to S™. 0

REMARK. By case (3) of Theorem 1 (to be proved later), we have isometry
with S™.

Now we come to case F1. First we start with the following
Lemma 2.12.

1. Either all D, ’s are simply connected integral cohomology CROSSes, or
2. all D,’s are non-orientable and m1(D,) ~ ZZ,.
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Proof. Let D, and Dg be two distinct critical submanifolds. Then, we know
from corollaries 2.5 and 2.10 that exp, : S(o—g)/2(0,m) — Dpg is a fibration for
z € D, and exp, : S(g_qa)/2(0,7) — D, is a fibration for y € Dg. If the number of
connected components in each fibre is r for the fibration exp,, : S(o—g)/2(0,7) — Dg,
then by symmetry we see that for the fibration exp, : S(3_q)/2(0,7) — Dq also the
number of connected components in each fibre is 7. Therefore #m1(Dy) = #m1(Dpg)
and we have shown that
1. either all D,’s are simply connected, or
2. all D,’s are non-simply connected and they all have fundamental groups of

same cardinality.

We will now show that when 71 (D, ) is non-trivial all D,’s are non-orientable
and 71 (Dgy) = Zs.

Since exp, : S(a-p)/2(0,m) — Dg is of constant rank, we have a folia-
tion Fop of Sin_g)/2(0,7) given by the family of (k — 1)-planes ker(dexp,), for
u € S(o-py2(0,). For each point u € S(4_g)/2(0,), the leaf through wu is the
connected component through u in the fibre exp;!(exp,(u)). Let L,5 be the leaf
space of this foliation and Il : S(a—pg)/2(0,7) — Lap the natural projection. Then
S(a—p)/2(0,7) is a (k — 1)-sphere bundle over L, and the map L,3 — Dg is a cov-
ering [2]. Since Il,p : S(a—p)/2(0,7) — Lap is a sphere bundle, it follows that L,z
is a simply connected integral cohomlogy CROSS. If we now show that a simply
connected integral cohomology CROSSes can have only non-orientable 2-sheeted
quotients, then we will be through.

Let Y be a simply connected integral cohomology CROSS. If G is a nontrivial
finite group acting fixed point freely on Y, then a simple application of Lefschetz’s
fixed point Theorem tells us that G ~ Z,. Again a simple application of Lefschetz’s
fixed point Theorem tells us that any Z, action on Y has a fixed point if H*(Y,Z) =
H*(CalP?,Z). In other cases it follows from [3] that
1. ifH*Y,Z)= H*(@Ph, Z), then any Zs-action on Y must have a fixed point,

and
2. ifH*(Y,Z)=H *((C]P’h, Z) then a fixed point free action of Z, is possible only
when h is odd and in this case the quotient is not orientable.
Thus we have proved that
1. if k —1=1 then exactly one of the following holds true :
(a) For each a, D, is a simply connected integral cohomology CROSS and
the degree of the generator of H*(D,,Z) is 2, or
(b) For each o, D, is non-orientable, m;(Dy) ~ Zg and (1/2)dim D,, is
odd.
2. ifk—1=3or7, then each D, is a simply connected integral cohomolgy
CROSS and the degree of the generator of H* (D, Z) is k.
I
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For each o # (3, we denote by D, *Dg, the submanifold obtained by attaching
the disc bundles of E(,_g)/2 and E(3_o)/2 along the boundary set. Then we have
the following

Lemma 2.13. Each D, is orientable iff D,*Dg is orientable. Further if D, is
not orientable then 7,(Dy) is isomorphic to 71 (Dy*Dg).

Proof. Let us assume that each D, is orientable. We saw in the Lemma 2.12
that D, is orienatble iff D, is simply connected.

Now, Do#Dg is obtained by attaching the disc bundles of E(_g)/2 and Eg_q)/2
along the boundary set. These disc bundles are simply connected and the boundary
set being S™*~! bundles over D,’s with 7 > 1 and k > 2, is connected. Hence by
Van Kampen’s Theorem D, *Dg is simply connected. This proves that if each D,
is orientable then D, *Dg is orientable.

Let us now assume that each D, is non-orientable and we will show that D, *Dg
is non-orientable and 71 (D,,) is isomorphic to m1(Dy*Dg).

For each critical value o, we denote by 5;, the simply connected two sheeted
cover of D,. Then by the arguments above, it follows that ]3;*5; (constructed in an
obvious way) is a simply connected integral cohomology CROSS covering Dy*Dg.
This proves that D, *Dg is non-orientable and 7 (Do *Dg) ~ Zs.

From the inclusion i : Do — Do *Dg, we have the natural map i, : m1(Dg) —
m1(Da*Dg). We will be through if this map is non-trivial.

Let v be a non-trivial geodesic loop in D,. Let 7 be the lift of 7 in 5; Now,
if 4.(y) is trivial in 7m;(Dq*Dg), then its lift 7,(y) is a closed geodesic loop in
I’)\;*L’)‘; which is contained in D,. But 5 = i:(;). This implies that ¥ is a closed
geodesic loop in D,. Therefore v must be homotopically trivial, a contradiction.
Hence i.(7) is non-trivial in 7 (Do*Dg) and this proves that m; (D, ) is isomorphic
to Wl(Da*Dﬁ). O

Next we prove the following

Lemma 2.14. For each «, the normal bundle Np (D, ) of D, is orientable along
D,,.

Proof. If D, is orientable then it is simply connected and hence the normal
bundle N (D,) of D, is orientable along D,,.

We will now assume that D, is not orientable. It suffices to show that for each
critical value 8 # «, the subbundle E(,_g)/; of the normal bundle Ny (D) is
orientable along D,,.

For a vector bundle E over D,, we denote by A'*P(E), the top exterior line
bundle of E over D,.
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We know that

A'P(T(DoxDg) | p,) = A*P(TDa ® Ea_s)
= AtOP(TDa) ® AtOP(EQT—ﬁ)

Hence from the properties of the Stiefel-Whitney classes, it follows that
wi(AP(T(Da* D) | p,)) = wa(A“(TDa)) + w1 (AP (E(apy2)) in H (Dar, Za);
here w; (*) denotes the first Stiefel-Whitney class.

Since i, : m (Do) — mi(Dg * Dg) is an isomorphism, the natural map
i* : HY(Do*Dg,Z2) — H'(Dgy,Z>) is also an isomorphism. Under this isomor-
phism w; (A**PT(DgxDg)) — wi(A*PTD,) + wy(A*PE(4_g)/2). Since Do*Dg is
non-orientable, w; (T(Da*Dg)) is the unique non-zero element in H'(Dyo*Dg,Z>)
and hence its image w; (A*PTD,) + w1 (A**PE(,_g)/2) is the non-zero element in
H'(Dy, Zs3). This implies that wy (A*PE,_g)/2) = 0 in H'(Dg,Z;) and hence the
normal bundle Ny (D,) of D, is orientable along D,,. O

Now we are in a position to prove the following

Proposition 2.15. The following statements are equivalent
1 M is orientable.
2 D, ’s are orientable.
3. D, ’s are simply connected.
4 M is simply connected.

Proof. The proof of the claims that 4 = 1 = 2 = 3 is obvious.

We will now come to the proof of 3 = 4.

We again remark here that the local minimum i.e., index=0 is unique (See
proposition 2.11). Hence starting with D,,;, which is simply connected, we attach
disc bundles at every level along the boundary set. These disc bundles are simply
connected and the boundary set being the S™*~1 bundle, for r > 1 and k > 2,
over D, is connected. Hence by Van Kampen’s Theorem, we get a simply connected
space at every stage. This implies that M is simply connected. |

Similar statement can also be made when M is not orientable. We state this as

Proposition 2.16. The following statements are equivalent
M is not orientable.
M is not simply connected and (M) is isomorphic to Zs.
D, ’s are not simply connected and m1(D,)is isomorphic to Zs.
D, ’s are not orientable.

Eal o e

Proof. If M is not orientable, then we take the orientable two sheeted cover
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(1\7,@) of (M,g). Then (M, g) is also a Ppr-manifold. For otherwise the common
index of geodesics of length 47 in (M, g) will be 2k+n—1 > n+1, a contradiction.
Now the rest of the proof goes through by appealing to proposition 2.15. U

3. Proof of Theorem 2

Let A be an eigenvalue of A with an eigenfunction f such that f(v,(t)) =
A, cost+ By, sint+C, for u € UM. We know from Theorem 3 that the function has
only finitely many critical values say {c; : 1 <1 < p}. Let Dyax = D1, Do, -+, Dp =
Dpin be the critical submanifolds of the function f with critical values «;.

Let pp > pp—1 > -++ > pp > p1 = 0 be the eigenvalues of —V2f on Dyax. We
saw in Corollary 2.10 that for each € Dyp,,x, the map exp,, |Su,- (0,7 Sy, (0,m) — D;
is a fibration with fibres of dimension k£ — 1. Therefore we can write dimE,,; = kr;
for some non-negative integer r; € {1,2,---,n}. Hence dim D; = k(r; — 1).

We also know from Corollary 2.7 that the eigenvalues of —V2f on D; are
{msj + wj—pi, 1 < j < p} and from Corollary 2.10 that eXp|ij (0,r): Su; (0,7) — D;
is a fibration for j # i. In particular exp : S_,,,(0,m) — Dmnax is a fibration. Hence
dimE,,; =dimE,, =kr; and dimE_,, = dim Dyax + k = k(r1 + 1).

Now we will compute Af along D;’s.

Since f is an eigenfunction of A with eigenvalue A, for each z € D .y

Amax(f) = Af(z)
= Tr(-V?*f(z))

P
=k Z Tilks
i=1
and for each y € D;

Aaj = Af(y)

But we know that o; = max(f) — 2u;. Therefore

Mmax(f) — 2u;) = k(ry + 1) (1 — p3) + kD il — p5)
i>2

p
= —kp; + kY ri(pi — p;)

i=1

= —kp; + kzrmi —kp; » _mi

7

—k(1+ ZTi)ﬂj + Amax(f)
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This proves that

k(m+1)

A=
2

where m =Y, 7.

We know from Bott-Samelson Theorem for P-manifolds that H*(M,Q) has
exactly one generator (See [1], [2]). From Lemma 2.12 and the discussion towards
the end of its proof, it follows that the degree of the generator is k. Therefore
A = k(m+1)/2 = A\;(M) where M is a CROSS of dimension km with sectional
curvarture 1/4 < K7 < 1 and H*(M,Q) = H*(M, Q). U

4. Proof of Theorem 1

By hypothesis Ricpr > 1 and Ay = (1/3)(2l + n + 2). Hence for any first eigen-
function f we have that f(v,(t)) = Ay cost+ Bysint + C, for u € UM (See [12]).

Proof of la. It follows from Theorem 2 that A; = (k(m + 1))/2. Since A; is
also equal to (1/3)(2l+n+2), we get that | = (k(m —1))/4+ (k—1) = Ricy;. Again
from the proof of Theorem 2 it follows that H*(M,Q) = H*(M,Q) and also that
H*(M,Z3) = H*(M, Z,). O

Proof of 1b. Since k > 4, it follows from Lemma 2.12 that all D,’s are simply
connected and from proposition 2.15 shows that M is simply connected.

Since each D, is a simply connected integral cohomology CROSS and we are
attaching only rk-dimensional cells at each level along D,’s, we see that M is also
an integral cohomolgy CROSS and the degree of the generator of H*(M,Z) is k.

J

ReEMARk. If the integral cohomology ring of M is same as that of the cohomol-
ogy projective plane then the function can have at most three critical submanifolds
Dpax and Dpin and one saddle. If there are three critical submanifolds then all of
them are points; if there are only two critical submanifolds D,.x and Dy, again
one of them is a point.

Proof of 1c.  Since k = 2, it follows from Lemma 2.12 and propositons 2.15
and 2.16 that, M is either simply connected or it has orientable 2-sheeted simply
connected cover. That the integral cohomology ring of M is same as that of M
follows from the proof of Theorem 1b). This completes the proof of Theorem Ic).

a

Proof of 2. Let (M,@') be the universal cover of (M,g) and II : M- M
the covering map. Since k = 1, we have that Ricys = (n — 1)/4. Therefore Ricy; =
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Ricps = (n—1)/4. Now by Bonnet-Myers’ Theorem it follows that diam(ﬂ ,9) < 2m.
We will now show that diam(ﬁ ,g) > 2m. Then it will follow from the rigidity of
Bonnet-Myers’ Theorem [6] or Cheng’s maximal diameter Theorem [5] that (M, 3)
is isometric to S™ with constant sectional curvature 1/4.

Since (M, g) is a Par-manifold it follows that (M,@') is a Py, manifold (See [2]).
If v is a geodesic between two critical submanifolds then the index of v |[ 2x)= 0.
Since the index of geodesics of length 27 in (M, g) is constant, we see that all such
geodesics must have index 0. Hence y(27) is conjugate «(0) with full multiplicity
n—1, for any geodesic « in (M, g). This implies that, in (j/fv ,g) also, we must have that
J(2) is conjugate to 7(0) with full multiplicity n—1 for any geodesic ¥ and no more
conjugate points in between. This proves that every point in (M ,g) has conjugate
locus at constant distance 27. Therefore for every z € M andu € TIM a unit vector
d(exp, )ty : TEM — T;u(t)Mv is non-singular for 0 < ¢t < 27 and d(exp,)2xu (V)
for all v L w. This implies that exp, is a local diffeomorphism on the open ball
B(0,27) of radius 27 centred at origin in T, M and exp,(S(0, 2m)) is singleton.
Hence exp, : D(0,2r)/5(0,2r) — M is a covering. Here D(0,2n) is the disc of
radius 27 and S(0,27) is the sphere of radius 27 both centred at origin in T, M.
This implies that M is diffeomorphic to S™. Since exp, : D(0,27)/S(0,27) — M
is a diffeomorphism the cut points to z can not occur before 27. This implies that
diam(M, §) > 2. Hence (M, §) is isometric to S™ with constant sectional curvature.

O

REMARKS.

1. If dim M is even then (M, g) is isometric to RP™ with constant sectional cur-
vature 1/4. If dim M is odd only even order lens spaces can occur. i.e., 71 (M)
is of even order. In this case 71 (M) acts linearly on S™, leaving invariant, at
least as many great spheres as the number of critical levels of the function f.

2. We can in fact show that any Ps,-metric g on RP" is standard. We give a
proof below.

Let (RP",g) be a P;-manifold. Then its universal cover (S",q) is a Py,-
manifold. We also know that the index of geodesics of length 27 in RP™ is
constant and the same is true about the geodesics of length 4m. In (RP", g) for
any geodesic v, the point v(2) is conjugate to v(0) with full multiplicity n—1.
Hence 7, the lift of +, will have ¥(27) conjugate to ¥(0) with full multiplicity
n—1 and hence no more conjugate points can occur in between. Hence for all
geodesics v in S™, the point ¥(27) is conjugate to 7(0) with full multiplicity
n — 1. This implies that for any point z € S™, the cojugate locus occurs at
constant distance 27. From the proof above we can deduce that the injectivity
radius at any point is a constant equal to 27. This means that (S™,q) is a
Blaschke manfold. Now from Blaschke conjecture for spheres [2], it follows
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that (S™,g) is isometric to S™ with constant sectional curvature 1/4. Hence
(RP™, g) is ismoetric to the standard RP™ with constant sectional curvature
1/4.

Proof of 3. Since A\; = n, this case is nothing but Obata’s Theorem. OJ

4.1. Proof of Theorem 1(4)

First we assume that M is simply connected and that max(f) and min(f) are
the only critical values of the function f. Hence Dy,.x and D,y;, are the only critical
submanifolds of the function f in (M, g). Therefore —V?2f has only two eigenvalues
on Dy,ax. By normalizing the function f, we may assume that these two eigenvalues
are 1 and 0. Hence we can write f(,(t)) = cost + C for u € UDx,,, the unit
normal bundle of Dy,,x, and the tubular hypersurfaces around D,,.x are level sets
of the function f.

Now we get bounds for V2 f(u,u) for every u € UM.

Let S(t) be the tubular hypersurface of radius ¢t around Dp,.x. Then f(z) =
cost + C for z € S(t) and f(v4(t)) = Ay cost+ Bysint + C, for u € Uy M. Then
v (0) € S(t) and ~y,(7) € S(¢1) for some ¢; such that 0 < ¢; < . Since A, + Cy, =
cost + C and —A, + C, = cost; + C, we have that A, = (1/2)(cost — costy).
Therefore

—vzf(u: u) = Ay
1
= —(cost — cost;)
2
and we get that
1- 1
cost > VQf(u’u) > _ +2cost

Having got these bounds for V2 f, we define two eigensubbundles of V2 f

Eice = {E€T,M : x € S(t) and V*f(E) = 1 = cor ‘2C°StE}
B_si: == {E€T,M: 2 € S(t) and V2f(B) = — < st gy

Then we have the following

Lemma 4.1.
1. The eigensubbundles E(1 _cos¢)/2 and E_(11cost)/2 Of V2f are parallel along
the trajectories of V f. More over dim E(1_cos¢)/2 +dim E_(14cos¢)/2 = k(m —

1).
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2. E(—cost)y/2 and E_(1 cost)/2 are eigensubbundles of R(.,Vf)Vf with eigen-
value (1/4)||V ]|

Proof. Let z € Dy and 7 be a geodesic starting at z such that 4/(0) €
UDpmax™. Let J be a Jacobi field along ~ describing the variation of the geodesic
~v such that J(0) € TDyax and J(w) = 0. We normalise J such that ||J'(7)|| = 1.
Then, since J is a Jacobi field, [J,+/(t)] = 0 along the geodesic . Further, since
¥ (@) = =V f/|IVf||, we note that J(||V f||) = 0. Hence

1

~' ) = T (VY )
[|J]|? 1 —cost
VAL 2
(J', J) S _lsin%
[|7]2 = 2cost

2

The function ||J||*/cos2(t/2) is smooth and non-vanishing on R. Hence we can take
the positive square root ||J||/| cos(t/2)| of ||J||?/ cos?(t/2) which is again smooth.
The function cos(t/2) is positive on (—m, 7). Therefore from the last step of the
above equation it follows that

d |11
—1 >
dat 8 (cos% =0

on (—m,m). Now since (M, g) is a Pyr-manifold, we have that J(¢) = J(t + 27).
Hence ||J||/ cos(t/2) |t=—== ||J||/ cos(t/2) |t=r= 2. This proves that ||J||/ cos(t/2)
= 2 for t € [—m, x| and equality must hold everywhere in the above inequalities.
This proves that J is an eigenvectorfield of V2 f with eigenvalue (1 —cost)/2. Since
[|[J]| = 2cos(t/2), we can write J(t) = 2cos(t/2)E(t) where E(t) € Eq_cost)/2 is a
unit vector field along «. Since J is a Jacobi field along v

J =V,
1
BRZiAEAS
1—cost 1
I v’
- t 1 t
= —_;:os W2COS§E.

On the other hand J’ = —sin(t/2)E + cos(t/2)E’. This shows that E’ is along the
direction of the vector field E. Since E is a unit vector field along v, E/ 1L E.
Therefore E' = 0 along . Thus we have shown that any Jacobi field J along v
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with J(0) € TDmax and J(w) = 0 is of the form J(t) = 2cos(t/2)E(t), where
E(t) € E(1—cost)/2 and E(t) is parallel along . On the other hand it follows from
Lemma 2.8 that every element of E(;_c.s1)/2 can be expressed as a Jacobi field J(t)
described above. This proves that E(;_..s¢)/2 is parallel along the trajectories of
Vf.

Now by a similar argument we can show that the eigensubbundle E_ (1 cos¢)/2
is also parallel along the trajectories of V f by using the inequality that V2 f(u,u) <
—(1 4 cost)/2. (For a proof see also [11]).

Now we set out to prove the second part of Lemma 4.1. Let E € E(1_cos1)/2 be
a unit vector at t = 0 and J be a Jacobi field describing the variation of a normal
geodesic v starting Dpax, such that J(0) = 2E. Then from what we have seen above
J(t) = 2cos(t/2)E(t); E(t) parallel along v. Therefore

R(J, ’Y/)’Y, — _J/I
1
= Z,]

and this proves that E(;_cos¢)/2 is eigensubbundle of R(.,Vf)V f with eigenvalue
(1/4)||Vf||* along the trajectories of Vf. The same arguments will prove that
E_(14cost)/2 is also an eigensubbundle of R(., Vf)V f with eigenvalue Ol

It follows from Lemma 2.8 that both the subbundles are of constant dimension
at any point in M and also that dimE(;_cs¢)2 = ka and dimE_ (1 cost)/2 =
k(m —a — 1) where dim Dyyax = ka and dim Dy, = k(m — a — 1). This proves that
dim E(l—cost)/2 + dim E—(1+cos t)/2 = k(m - 1) 0

Let E_cost := (E(1—cost)/2 ® E_(14cos t)/g)'L be the orthogonal complement of
E(1—cost)/2 ® E_(14cost)/2 iIn TM. Then we have the following

Lemma 4.2. E_ . is an eigensubbundle of
1. VZ2f with eigenvalue — cost
2. R(.,Vf)Vf with eigenvalue |V f||*

Proof.  First we note that dim(E(;_cost)2 © E_(14cost)/2) = k(m — 1).
Therefore the dimension of E_.,s: is k. Let us choose an orthonormal basis
Ey =V f/IIVfll, B2, E3, - -+, Ex, of E_cost, Egy1, Ext2, -+, Er(at+1) of E(1—cost)/2
and Exat1)+1> Fra+2s = s Ekm Of E_(14cost)/2- Then

k km
> (R(E;, V)V, E;) = Riem(Vf, V) — Y (R(E;, V)V, E))
i=2 j=k+1
_ [k(m—=1) k(m—1)
o R [ e T T

= (k= DIV
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Now, for 2 < i < k, we define the vector fields W;(t) = sintE;(t), where each FE; is
a parallel vector field along v such that E;(0) = E;. Then Index Lemma shows that

0 < I(W,, W) = / " (WL W — (ROWi A W)

Therefore

k
0< Y I(W;, W)

=2

k ™
= Z / cos?t(E;, E;) — sin® tK (E;, ')
=2 0

= (k- )/W(cos2t—sin2t)
0
=0

Hence W;(t) = sintE;(t) are Jacobi fields along v for 2 < ¢ < k. Now it can be
easily verified that E_ ..; is an eigensubbundle of V2 f with eigenvalue — cost and
also an eigensubbundle of R(.,v')y’ with eigenvalue 1. O

An intersting Remark. When k& = 2, we don’t need the condition on Ricys to
show that E_ .. is an eigensubbundle of V2 f with eigenvalue — cost and also an
eigensubbundle of R(.,v')y’ with eigenvalue 1. We give the proof below.

Let p; and pp be the eigenvalues of V2f|g__ _,. Then for € Dyax

af(@) = M4 pq
_ k(m+1)
= #(1 +C)
Therefore
k(m+1)

(1+C) = Tr(=V?*f(z))

= —Tr(V*f(z) IE_1+C_;M) —Tr(V2f(@) |E- con.)
= k(m —a)

2

Hence C =m — (2a+ 1)/m + 1.
Now let p € M. Then f(p) = cost + C for some ¢ and

k(m+1)
2

Il

[cost + C] = Tr(—V*f(p))

—'l‘l‘l - /'1‘2 - Tr(v2f(p) ]E_ l14cost )
2
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_T"'(V2f(p) IE'l;Zit)

1 —cost
= cost — ug — ka (——2—)

+h(m — (a+1)) (@)

Hence by substituting the value m — (2a + 1)/m + 1 for C' we get that s = — cost.

An important consequence of Lemma 4.1 is that, for each £ € D,,y, the map
exp, : S(0,7) — Dpin and for each y € Dy, the map exp, : S(0,m) — Dpax are
great sphere fibrations; here S(0,7) denotes the normal sphere of radius m at the
corresponding points. Now we state the following

Lemma 4.3. For every x € Dy,.x, the map
exp, : S(0,7) = Dmin
and for every x € Dy;n, the map
exp, : S(0,7) = Dmax
are congruent to Hopf fibrations.
Proof. See [7] and [11]. O

Proof of Theorem 1(4). Let us fix a P*(k) C P™(k). We denote by TDZ,,,
the normal bundle of Dy,a and by (TP%(k))%, the normal bundle of P*(k) in
P™(k). Since the map exp, : S(0,m) — Dy, is congruent to Hopf fibration for
each 2 € Dp,ax there is a fibre preserving isometry I : TDy,, — (TP*(k))*. Using
this isometry we define a map

&: M\ Dpin — P™ (k)

as follows: For every ¢ € M\ Dy, there is a unique € D,y and a unique geodesic
segement joining z and q and we define ®(q) := exp ol oexp; !(g). This map carries
the geodesics orthogonal to Dy,.x to geodesics orthogonal to P?(k) and matches the
tubular hypersurfaces around Dy,.x. To complete the proof we only have to show
that d® preserves the length of the Jacobi fields along these normal geodesics. This
follows from [11]. This finishes the proof when M is simply connected.

We will now come to the case when M is not simply connected.

If M is not simply connected, then from our earlier analysis we conclude that
the universal cover (MV ,9) of (M, g) is isometric to CP??~! with its standard metric
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of sectional curvature 1/4 < Kpea-1 < 1. This completes the proof of Theorem
1(4). O

CONCLUDING REMARKS
1. If k=2 and M is not simply connected then we have seen that (M,g) is a
quotient of CP?*~! by a fixed point free involutive isometry. For the existence
of such a map consider

¢ . (C]P)2d-l N (C]P)Zd—l

defined by
¢([z17 B2y v vy Z2d]) = [221 _Ela e )22d7 —E2d——1]

in homogeneous co-ordinates. Then ¢ is a fixed point free involutive isometry
of CP?*~1,
For example, consider the eigenfunction

f . CP2d_1 N C]P)2d—1
defined by

ao(|z1? + |22]?) + a1 (|zs]* + ... + |224/%)
|Z1|2 + |22|2 +...+ |Z2d|2

flz1, 22, - 224)) =

For ag # a1, f goes down to M = CP?¢! /Zs to give a first eigenfunction
without saddle points.

2. Theorem 1(4) has been used to give an intrinsic proof of Lichnerowicz conjec-
ture on harmonic manifolds by the first author (See [13] for a proof using Nice
imbeddings). The details will appear in An Intrinsic Approach to Lichnerowicz
Conjecture [10].
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