

Title	On ultra wave front sets and Fourier integral operators of infinite order
Author(s)	Shinkai, Kenzo; Taniguchi, Kazuo
Citation	Osaka Journal of Mathematics. 1990, 27(3), p. 709-720
Version Type	VoR
URL	https://doi.org/10.18910/3611
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Shinkai, K. and Taniguchi, K.
 Osaka J. Math.
 27 (1990), 709-720

ON ULTRA WAVE FRONT SETS AND FOURIER INTEGRAL OPERATORS OF INFINITE ORDER

KENZO SHINKAI AND KAZUO TANIGUCHI

(Received September 5, 1989)

Introduction. The fundamental solution of the Cauchy problem for a hyperbolic operator is given in the form of Fourier integral operator. As shown in [16] or [20] when the problem is not C^∞ well-posed, the symbol of the fundamental solution has exponential growth, that is, it is estimated not only from above but also from below by

$$(0.1) \quad C \exp [c\xi^{1/\kappa}], \quad c>0.$$

The constant κ in (0.1) corresponds to the constant in the necessary and sufficient condition for the well-posedness in Gevrey classes given by Ivrii [5].

In the present paper we define $UWF^{(\mu)}(u)$ (ultra wave front sets) for u that belongs to the space of ultradistributions $\mathcal{S}\{\kappa\}'$ by

$$(0.2) \quad (x_0, \xi_0) \in UWF^{(\mu)}(u) \Leftrightarrow \forall \varepsilon > 0 \ \exists C; |(\chi u)^\wedge(\xi)| \leq C \exp [\varepsilon \langle \xi \rangle^{1/\kappa}],$$

where $\chi \in \mathcal{S}\{\kappa\} \cap C_0^\infty$ and ξ belongs to a conic neighborhood of ξ_0 (see Definition 2.1). Then by using $UWF^{(\mu)}(u)$ we can state the propagation of very high singularities for the solution of not C^∞ well-posed Cauchy problem (see Theorems 3.1 and 3.2). Here, by a very high singularity of u , we mean that its local Fourier transform has an estimate like (0.1).

UWF are first defined by Wakabayashi [22] by the name “generalized wave front sets”. But, his definition contains both UWF and Gevrey wave front sets and they are denoted by $WF^{(\kappa)}$ and $WF_{(\kappa)}$ respectively (see Definition 1.3.2 in [22]). He also tried to get non-trivial inner estimates for UWF , but got only a lemma (“not really satisfactory” in his words) and he gave two examples with respect to operators with constant coefficients.

In section 1 we define pseudo-differential operators and Fourier integral operators whose symbols have exponential growth and show that these operators act on the space of ultradistributions $\mathcal{S}\{\kappa\}'$. In section 2 we define the UWF of $u \in \mathcal{S}\{\kappa\}'$ and give the propagation theorem of UWF for Fourier integral operators of infinite order (Theorem 2.2). In section 3 we give exactly the

UWF of the solution of the Cauchy problem for hyperbolic operators with variable multiplicities.

1. Ultradistributions and Fourier integral operators of infinite order.

Let κ satisfy $\kappa > 1$. For positive constants h and ε we define a class $\mathcal{S}\{\kappa; h, \varepsilon\}$ of ultra differentiable functions by a set of functions $u(x)$ satisfying

$$(1.1) \quad |\partial_x^\alpha u(x)| \leq Ch^{-|\alpha|} \alpha!^\kappa \exp(-\varepsilon \langle x \rangle^{1/\kappa})$$

for a positive constant C . For $u \in \mathcal{S}\{\kappa; h, \varepsilon\}$ we define a norm $\|u; \mathcal{S}\{\kappa; h, \varepsilon\}\|$ by

$$\|u; \mathcal{S}\{\kappa; h, \varepsilon\}\| = \inf \{C \text{ of (1.1)}\}.$$

Then, $\mathcal{S}\{\kappa; h, \varepsilon\}$ is a Banach space.

DEFINITION 1.1. We define a class $\mathcal{S}\{\kappa\}$ by

$$\mathcal{S}\{\kappa\} = \lim_{h \rightarrow 0, \varepsilon \rightarrow 0} \mathcal{S}\{\kappa; h, \varepsilon\}$$

and denote by $\mathcal{S}\{\kappa\}'$ the dual space of $\mathcal{S}\{\kappa\}$.

Lemma 1.2. *The Fourier transform $F[u] \equiv \hat{u}(\xi)$ maps $\mathcal{S}\{\kappa\}$ to $\mathcal{S}\{\kappa\}$ and hence the Fourier transform is also well-defined on $\mathcal{S}\{\kappa\}'$.*

Proof is omitted.

The class $\mathcal{S}\{\kappa\}'$ is a class of ultradistributions (see [2] and [9]), and as we shall prove later (Lemma 1.7) the class $\mathcal{S}\{\kappa\}'$ is characterized by the following: Let $u \in \mathcal{S}\{\kappa\}'$. Then, for any function $\chi(x)$ in $\mathcal{S}\{\kappa\}$ with compact support the Fourier transform $(\chi u)^\wedge(\xi)$ of χu is a measurable function and has an estimate

$$|(\chi u)^\wedge(\xi)| \leq C_\varepsilon \exp[\varepsilon \langle \xi \rangle^{1/\kappa}]$$

for any $\varepsilon > 0$.

Let ρ and δ be real numbers satisfying $0 \leq \delta \leq \rho \leq 1$, $\delta < 1$, $\kappa(1-\delta) \geq 1$ and $\kappa\rho \geq 1$.

DEFINITION 1.3 (cf. [6], [12], [17]). i) Let $w(\theta)$ be a positive and non-decreasing function in $[1, \infty)$ or a function of the type θ^m . We say that a symbol $p(x, \xi)$ belongs to a class $S_{\rho, \delta, G(\kappa)}[w]$ if $p(x, \xi)$ satisfies

$$\begin{aligned} |p_{(\beta)}^{(\alpha)}(x, \xi)| &\leq CM^{-|\alpha|+\beta|}(\alpha!^\kappa + \alpha!^{\kappa\rho} \langle \xi \rangle^{(1-\rho)|\alpha|}) \\ &\quad \times (\beta!^\kappa + \beta!^{\kappa(1-\delta)} \langle \xi \rangle^{\delta|\beta|}) \langle \xi \rangle^{-|\alpha|} w(\langle \xi \rangle) \\ &\quad \text{for all } x \text{ and } \xi, \end{aligned}$$

where $p_{(\beta)}^{(\alpha)} = \partial_{\xi}^{\alpha} (-i\partial_x)^{\beta} p$. We call the above function $w(\theta)$ an order function.

ii) We say that a symbol $p(x, \xi)$ ($\in S^{-\infty}$) belongs to a class $\mathcal{R}_{G(\kappa)}$ if for any α there exists a constant C_{α} such that

$$|p_{(\beta)}^{(\alpha)}(x, \xi)| \leq C_{\alpha} M^{-|\beta|} \langle \xi \rangle^{-|\alpha|} \beta!^{\kappa} \exp(-c \langle \xi \rangle^{1/\kappa})$$

hold with a positive constant c independent of α and β . We call a pseudo-differential operator with a symbol in $\mathcal{R}_{G(\kappa)}$ a regularizing operator.

REMARK 1. When $w(\theta) = \theta^m$ for a real m we denote $S_{\rho, \delta, G(\kappa)}[w]$ by $S_{\rho, \delta, G(\kappa)}^m$.

REMARK 2. When $w(\theta) = \exp(C\theta^{\sigma})$ for a $\sigma > 0$, the class $S_{\rho, \delta, G(\kappa)}[w]$ is a symbol class of exponential type, and this corresponds to the class investigated in [23], [14] and [1]. We also remark that the class of symbols in Gevrey classes are investigated in [10], [11], [3] and [19].

EXAMPLE. For $a(x, \xi) \in S_{1,0,G(\kappa)}^m$ the symbol $p(x, \xi) = a(x, \xi) \exp(\langle \xi \rangle^{\sigma})$ belongs to $S_{1,0,G(\kappa)}[\exp(2\theta^{\sigma})]$.

DEFINITION 1.4. Let $0 \leq \tau < 1$. We say that a phase function $\phi(x, \xi)$ belongs to a class $\mathcal{P}_{G(\kappa)}(\tau)$ if $\phi(x, \xi)$ is real-valued and for $J(x, \xi) \equiv \phi(x, \xi) - x \cdot \xi$ the estimates

$$(1.2) \quad \sum_{|\alpha| + |\beta| \leq 2} |J_{(\beta)}^{(\alpha)}(x, \xi)| / \langle \xi \rangle^{1-|\alpha|} \leq \tau$$

and

$$(1.3) \quad |J_{(\beta)}^{(\alpha)}(x, \xi)| \leq \tau M^{-(|\alpha| + |\beta|)} (\alpha! \beta!)^{\kappa} \langle \xi \rangle^{1-|\alpha|}$$

hold for a constant M independent of α and β . We also set

$$\mathcal{P}_{G(\kappa)} = \bigcup_{0 \leq \tau < 1} \mathcal{P}_{G(\kappa)}(\tau).$$

Proposition 1.5. Let $w(\theta)$ be an order function satisfying

$$(1.4) \quad w(\theta) \leq \exp[C\theta^{\sigma}]$$

for a constant σ with $0 \leq \sigma < 1/\kappa$. For a phase function $\phi(x, \xi) \in \mathcal{P}_{G(\kappa)}$ and a symbol $p(x, \xi) \in S_{\rho, \delta, G(\kappa)}[w]$ we define a Fourier integral operator P_{ϕ} and a conjugate Fourier integral operator P_{ϕ^*} by

$$P_{\phi} u(x) = \int e^{i\phi(x, \xi)} p(x, \xi) \hat{u}(\xi) d\xi,$$

$$P_{\phi^*} u(x) = \int e^{ix \cdot \xi} \left\{ \int e^{-i\phi(y, \xi)} p(y, \xi) u(y) dy \right\} d\xi,$$

where $d\xi = (2\pi)^{-n} d\xi$. Then, the operators P_{ϕ} and P_{ϕ^*} map $\mathcal{S}\{\kappa\}$ to $\mathcal{S}\{\kappa\}$ continuously.

Proof. For $u(x) \in \mathcal{S}\{\kappa\}$ we denote

$$f(x) = P_\phi u(x) \equiv \int e^{i\phi(x, \xi)} p(x, \xi) \hat{u}(\xi) d\xi.$$

Define $L = \{1 + |\nabla_\xi \phi(x, \xi)|^2\}^{-1} \{1 - i\nabla_\xi \phi(x, \xi) \cdot \nabla_\xi\}$. Then, we have $Le^{i\phi(x, \xi)} = e^{i\phi(x, \xi)}$ and hence

$$f(x) = \int e^{i\phi(x, \xi)} (L^t)^N \{p(x, \xi) \hat{u}(\xi)\} d\xi.$$

By the induction on N we can prove

$$(1.5) \quad |\partial_x^\alpha \partial_x^\beta (L^t)^N \{p(x, \xi) \hat{u}(\xi)\}| \leq CM_1^{-N} M_2^{-|\alpha+\beta|} (|\alpha|+N)!^\kappa \langle x \rangle^{-N} \times (\beta!^\kappa + \beta!^{\kappa(1-\delta)} \langle \xi \rangle^{\delta|\beta|}) \exp(C_1 \langle \xi \rangle^\sigma - \varepsilon \langle \xi \rangle^{1/\kappa})$$

for positive constants C, M_1, M_2, C_1 and ε , since $\hat{u}(\xi)$ belongs to $\mathcal{S}\{\kappa\}$. Assume that x satisfies $C_0 N^\kappa \leq \langle x \rangle \leq C_0 (N+1)^\kappa$ for a constant C_0 to be determined later. Then, using (1.5) with $\alpha=0$ and denoting $\phi_\beta(x, \xi) = e^{-i\phi(x, \xi)} \partial_x^\beta e^{i\phi(x, \xi)}$ we have

$$\begin{aligned} |\partial_x^\beta f(x)| &= \left| \sum_{\beta' + \beta'' = \beta} \binom{\beta}{\beta'} \int e^{i\phi(x, \xi)} \phi_{\beta'}(x, \xi) D_x^{\beta''} (L^t)^N \{p(x, \xi) \hat{u}(\xi)\} d\xi \right| \\ &\leq C \sum_{\beta' + \beta'' = \beta} \binom{\beta}{\beta'} \int M_3^{-|\beta'|} \left\{ \sum_{j=1}^{|\beta'|} (|\beta'| - j)!^\kappa \langle \xi \rangle^j \right\} M_1^{-N} M_2^{-|\beta''|} N!^\kappa \langle x \rangle^{-N} \\ &\quad \times (\beta''!^\kappa + \beta''!^{\kappa(1-\delta)} \langle \xi \rangle^{\delta|\beta''|}) \exp(C_1 \langle \xi \rangle^\sigma - \varepsilon \langle \xi \rangle^{1/\kappa}) d\xi \\ &\leq CM_4^{-|\beta|} \beta!^\kappa M_1^{-N} N!^\kappa \langle x \rangle^{-N} \\ &\leq CM_4^{-|\beta|} \beta!^\kappa M_1^{-N} N!^\kappa (C_0 N^\kappa)^{-N} \exp(\varepsilon_1 C_0^{1/\kappa} (N+1)) \exp(-\varepsilon_1 C_0^{1/\kappa} \langle x \rangle^{1/\kappa}) \end{aligned}$$

for any positive constant ε_1 . Now, take C_0 and ε_1 satisfying

$$C_0 \geq 2M_1^{-1}, \quad \exp(\varepsilon_1 C_0^{1/\kappa}) \leq 2.$$

Then, $f(x)$ satisfies (1.1) with $h=M_4$ and $\varepsilon=\varepsilon_1 C_0^{1/\kappa}$. Consequently, we have proved that P_ϕ maps $\mathcal{S}\{\kappa\}$ to $\mathcal{S}\{\kappa\}$ continuously. In the same way we can prove that P_{ϕ^*} maps $\mathcal{S}\{\kappa\}$ to $\mathcal{S}\{\kappa\}$ continuously. Q.E.D.

From Proposition 1.5 the following definition is well-defined

DEFINITION 1.6. Let $w(\theta)$ be an order function satisfying (1.4), that is, it satisfies

$$w(\theta) \leq \exp(C\theta^\sigma)$$

for a constant σ with $0 \leq \sigma < 1/\kappa$. Then for $\phi(x, \xi) \in \mathcal{P}_{G(\kappa)}$ and $p(x, \xi) \in S_{p, \delta, G(\kappa)}[w]$, the following operators

$$\begin{aligned} P_\phi : \mathcal{S}\{\kappa\}' &\rightarrow \mathcal{S}\{\kappa\}', \\ P_{\phi^*} : \mathcal{S}\{\kappa\}' &\rightarrow \mathcal{S}\{\kappa\}' \end{aligned}$$

are defined by the principle of duality.

EXAMPLE. For $a(x, \xi) \in S_{1,0,G(\kappa)}^m$ ($\kappa < 2$) we consider a symbol $p(x, \xi) = a(x, \xi) \exp(c\langle \xi \rangle^{1/2})$ with $c > 0$. Then, it belongs to $S_{1,0,G(\kappa)}[\exp(2c\theta^{1/2})]$ and for $1 < \kappa < 2$ the following maps are well-defined:

$$\begin{aligned} P_\phi : \mathcal{S}\{\kappa\}' &\rightarrow \mathcal{S}\{\kappa\}', \\ P_{\phi^*} : \mathcal{S}\{\kappa\}' &\rightarrow \mathcal{S}\{\kappa\}', \end{aligned}$$

where ϕ is a phase function in $\mathcal{L}_{G(\kappa)}$.

Lemma 1.7. For $u \in \mathcal{S}\{\kappa\}'$ and $\chi \in \mathcal{S}\{\kappa\} \cap C_0^\infty$ the Fourier transform $(\chi u)^\wedge(\xi)$ of χu is a measurable function and has an estimate

$$|(\chi u)^\wedge(\xi)| \leq C_\varepsilon \exp(\varepsilon \langle \xi \rangle^{1/\kappa})$$

for any $\varepsilon > 0$.

Proof. We may assume that $u \in \mathcal{S}\{\kappa\}'$ has a compact support and prove that, for any fixed ε , $\exp(-\varepsilon \langle \xi \rangle^{1/\kappa})\hat{u}$ is a functional on L^1 and has the following estimate

$$(1.6) \quad |\langle \exp(-\varepsilon \langle \xi \rangle^{1/\kappa})\hat{u}, \psi \rangle| \leq C \|\psi\|_{L^1}$$

for $\psi \in L^1$. Then, we find that $\exp(-\varepsilon \langle \xi \rangle^{1/\kappa})\hat{u}$ belongs to L^∞ and we have an estimate

$$|\hat{u}(\xi)| \leq C_\varepsilon \exp(\varepsilon \langle \xi \rangle^{1/\kappa})$$

for any ε . Denote by $\tilde{\psi}(x)$ the inverse Fourier transform of $\psi(\xi)$ and take a function $\chi(x)$ in $\mathcal{S}\{\kappa; h, 1\} \cap C_0^\infty(R^n)$ with $h = \varepsilon^\kappa \kappa^{-\kappa}/2$ such that $\chi(x) = 1$ on the support of u . Then, we have for $\psi \in \mathcal{S}\{\kappa; h, 1\}$

$$\begin{aligned} \langle \exp(-\varepsilon \langle \xi \rangle^{1/\kappa})\hat{u}, \psi \rangle &= \langle \hat{u}, \exp(-\varepsilon \langle \xi \rangle^{1/\kappa})\psi \rangle \\ &= \langle u, \exp(-\varepsilon \langle D \rangle^{1/\kappa})\tilde{\psi} \rangle \\ &= \langle u, \chi(x) \exp(-\varepsilon \langle D \rangle^{1/\kappa})\tilde{\psi} \rangle. \end{aligned}$$

Here, we have used Proposition 1.5 for well-definedness of the third and fourth members of the above equation. Hence, by the definition and the fact that $u \in \mathcal{S}\{\kappa\}'$ we have

$$(1.7) \quad |\langle \exp(-\varepsilon \langle \xi \rangle^{1/\kappa})\hat{u}, \psi \rangle| \leq C \|\chi(x) \exp(-\varepsilon \langle D \rangle^{1/\kappa})\tilde{\psi}; \mathcal{S}\{\kappa; h, 1\}\|.$$

Write

$$\chi(x) \exp(-\varepsilon \langle D \rangle^{1/\kappa}) \tilde{\psi}(x) = \int e^{ix \cdot \xi} \chi(x) \exp(-\varepsilon \langle \xi \rangle^{1/\kappa}) \psi(\xi) d\xi.$$

Then, from $h = \varepsilon^\kappa \kappa^{-\kappa}/2$, we have

$$|\partial_x^\alpha (\chi(x) \exp(-\varepsilon \langle D \rangle^{1/\kappa}) \tilde{\psi})| \leq Ch^{-|\alpha|} \alpha!^\kappa \exp(-\langle x \rangle^{1/\kappa}) \|\psi\|_{L^1}$$

and hence

$$\|\chi(x) \exp(-\varepsilon \langle D \rangle^{1/\kappa}) \tilde{\psi}; \mathcal{S}\{\kappa; h, 1\}\| \leq C \|\psi\|_{L^1}.$$

This and (1.7) yields (1.6) for $\psi \in \mathcal{S}\{\kappa; h, 1\}$. Finally, using the limiting process we have (1.6) for any $\psi \in L^1(\mathbb{R}^n)$. Q.E.D.

From Lemma 1.7 we get the following Lemma 1.8, which states that the pseudo-differential operator with a symbol in $\mathcal{R}_{G(\kappa)}$ is a regularizing operator.

Lemma 1.8. *For $u \in \mathcal{S}\{\kappa\}'$ with compact support and $r(x, \xi) \in \mathcal{R}_{G(\kappa)}$ we have*

$$r(X, D_x)u \in \mathcal{B}\{\kappa\}.$$

Here, $f(x) \in \mathcal{B}\{\kappa\}$ means that there exists a constant C such that

$$|\partial_x^\alpha f(x)| \leq CM^{-|\alpha|} \alpha!^\kappa \quad \text{for any } x.$$

In the following section we also need

Lemma 1.9. *Let $r(x, \xi)$ satisfies*

$$(1.8) \quad \begin{aligned} |r_{(\beta)}^{(\alpha)}(x, \xi)| &\leq CM^{-|\alpha+\beta|} \alpha!^\kappa \\ &\times (\beta!^\kappa + \beta!^{\kappa(1-\delta)} \langle \xi \rangle^{\delta|\beta|}) \exp(-c_0 \langle x \rangle^{1/\kappa} - c_0 \langle \xi \rangle^{1/\kappa}) \end{aligned}$$

for a positive constant c_0 . Then, for $u \in \mathcal{S}\{\kappa\}'$, $r(X, D_x)u$ is well-defined and belongs to $\mathcal{B}\{\kappa\}$.

We can prove the lemma as Proposition 1.5 and Lemma 1.7. The details are omitted.

2. Ultra wave front set

DEFINITION 2.1. Let κ and μ satisfy $\kappa \leq \mu$. For $u \in \mathcal{S}\{\kappa\}'$ we define a *UWF* (ultra wave front set) of u as follows: We say that a point (x_0, ξ_0) in $T^*R^n \setminus \{0\}$ does not belong to $UWF^{(\mu)}(u)$ if there exist a function $\chi(x)$ in $\mathcal{S}\{\kappa\} \cap C_0^\infty$ with $\chi(x_0) \neq 0$, a conic neighborhood Γ of ξ_0 , and for any positive constant ε there exists a constant C such that

$$(2.1) \quad |(\chi u)^\wedge(\xi)| \leq C \exp[\varepsilon \langle \xi \rangle^{1/\mu}] \quad \text{for } \xi \in \Gamma.$$

REMARK 1. As stated in Introduction this definition is the same as that of Wakabayashi. (See Definition 1.3.2 in [22]).

REMARK 2. Let $u \in \mathcal{S}\{\kappa\}'$ and let $\kappa \leq \mu$. Then, $(x_0, \xi) \in UWF^{(\kappa)}(u)$ for all ξ is equivalent to that $\chi u \in \mathcal{S}\{\mu\}'$ for some $\chi \in \mathcal{S}\{\kappa\}$ with $\chi(x_0) \neq 0$. (See Lemma 1.3.3 of [22]). Especially, from Lemma 1.7 we have $UWF^{(\kappa)}(u) = \phi$ for $u \in \mathcal{S}\{\kappa\}$.

Theorem 2.2. *Let $\kappa < \mu$ and let $\phi(x, \xi) \in \mathcal{P}_{G(\kappa)}$ and $p(x, \xi) \in S_{\rho, \delta, G(\kappa)}[\exp(c\theta^\sigma)]$ for some σ with $\sigma < 1/\mu$. Assume that $\phi(x, \xi)$ is positively homogeneous for large $|\xi|$. Then, for $u \in \mathcal{S}\{\kappa\}'$ and $(y_0, \eta_0) \in T^*R^n \setminus \{0\}$ with $|\eta_0| \gg 1$, $(y_0, \eta_0) \in UWF^{(\mu)}(u)$ yields*

$$(2.2) \quad (x_0, \xi_0) \in UWF^{(\mu)}(P_\phi u),$$

where

$$(2.3) \quad \xi_0 = \nabla_x \phi(x_0, \eta_0), \quad y_0 = \nabla_\xi \phi(x_0, \eta_0).$$

This theorem corresponds to the theorem for the propagation of Gevrey wave front sets investigated in Theorem 4 in [18].

Proof. Assume $(y_0, \eta_0) \in UWF^{(\mu)}(u)$. Then, from the definition we can take a neighborhood V_2 of y_0 and a conic neighborhood Γ_2 of η_0 such that for any ε and $\chi \in \mathcal{S}\{\kappa\}$ with $\text{supp } \chi \subset V_2$ an inequality

$$(2.4) \quad |(\chi u)^\wedge(\eta)| \leq C_\varepsilon \exp[\varepsilon \langle \eta \rangle^{1/\mu}] \quad \text{for } \eta \in \Gamma_2$$

holds. Next, using (2.3) we take neighborhoods V_1 and V'_2 of x_0 and y_0 , and conic neighborhoods Γ_1 and Γ'_2 of ξ_0 and η_0 satisfying

$$V'_2 \subset V_2, \quad \Gamma'_2 \cap S_\eta^{n-1} \subset \Gamma_2 \cap S_\eta^{n-1}$$

and

$$(2.5) \quad \begin{cases} \text{i)} & \nabla_\xi \phi(x, \eta) \in V'_2 \quad \text{for } x \in V_1, \eta \in \Gamma'_2, \\ \text{ii)} & \nabla_x \phi^{-1}(x, \xi) \in \Gamma'_2 \quad \text{for } x \in V_1, \xi \in \Gamma_1, \end{cases}$$

where $\eta = \nabla_x \phi^{-1}(x, \xi)$ is the inverse function of $\xi = \nabla_\xi \phi(x, \eta)$. Let $\chi_1(x)$ and $\chi_2(x)$ be functions in $\mathcal{S}\{\kappa\}$ and $\psi_1(\xi)$ and $\psi_2(\xi)$ be symbols in $S_{1,0,G(\kappa)}^0$ satisfying

$$(2.6) \quad \text{supp } \chi_1 \subset V_1,$$

$$(2.7) \quad \text{supp } \chi_2 \subset V_2, \quad \chi_2(y) = 1 \quad \text{for } y \in V'_2,$$

$$(2.8) \quad \text{supp } \psi_1 \subset \Gamma_1, \quad \psi_1(\xi) = 1 \quad \text{for } \xi \in \Gamma_1^0$$

with some conic neighborhood Γ_1^0 of ξ_0 , and

$$(2.9) \quad \text{supp } \psi_2 \subset \Gamma_2, \quad \psi_2(\eta) = 1 \quad \text{for } \eta \in \Gamma_2'.$$

Now, write $\chi_1(x)P_\phi u$ as

$$(2.10) \quad \begin{aligned} \chi_1 P_\phi u &= \chi_1 P_\phi \psi_2(D) \chi_2 u + \chi_1 P_\phi \psi_2(D) (1 - \chi_2) u + \chi_1 P_\phi (1 - \psi_2(D)) u \\ &\equiv f_1(x) + f_2(x) + f_3(x). \end{aligned}$$

From (2.5) and (2.8)–(2.9) we can show that $\sigma(\psi_1(D)\chi_1 P_\phi (1 - \psi_2(D)))$ satisfies (1.8) and hence from Lemma 1.9 we have

$$\psi_1(D)f_3 = \psi_1(D)\chi_1 P_\phi (1 - \psi_2(D))u \in \mathcal{B}\{\kappa\}$$

and

$$(2.11) \quad |\hat{f}_3(\xi)| \leq C \quad \text{for } \xi \in \Gamma_1^0.$$

Similarly, from (2.5)–(2.7) we obtain that $\sigma(\chi_1 P_\phi \psi_2(D)(1 - \chi_2))$ satisfies (1.8) and hence we get

$$f_2(x) = \chi_1 P_\phi \psi_2(D)(1 - \chi_2)u \in \mathcal{B}\{\kappa\}.$$

This yields

$$(2.12) \quad |\hat{f}_2(\xi)| \leq C \quad \text{for all } \xi.$$

Next, we consider $f_1(x)$. Let τ be a constant satisfying (1.2)–(1.3) and write

$$(2.13) \quad \begin{aligned} \hat{f}_1(\xi) &= \iint e^{i(-x \cdot \xi + \phi(x, \eta))} \chi_1(x) p(x, \eta) \psi_2(\eta) (\chi_2 u)^\wedge(\eta) d\eta dx \\ &= \iint_{|\xi - \eta| \leq \lambda \langle \eta \rangle} e^{i(-x \cdot \xi + \phi(x, \eta))} \chi_1(x) p(x, \eta) \psi_2(\eta) (\chi_2 u)^\wedge(\eta) d\eta dx \\ &\quad + \iint_{|\xi - \eta| \geq \lambda \langle \eta \rangle} e^{i(-x \cdot \xi + \phi(x, \eta))} \chi_1(x) p(x, \eta) \psi_2(\eta) (\chi_2 u)^\wedge(\eta) d\eta dx \\ &\equiv I_1 + I_2 \end{aligned}$$

with $\lambda = (1 + \tau)/2$. Since the absolute value of the integrand of I_1 is estimated by

$$\begin{aligned} C \exp [c \langle \eta \rangle^\sigma + \varepsilon \langle \eta \rangle^{1/\mu}] &\leq C' \exp [2\varepsilon \langle \eta \rangle^{1/\mu}] \\ &\leq C' \exp [2\varepsilon \{2/(1 - \tau)\}^{1/\mu} \langle \xi \rangle^{1/\mu}], \end{aligned}$$

we have

$$(2.14) \quad |I_1| \leq C'' \exp [2\varepsilon \{2/(1 - \tau)\}^{1/\mu} \langle \xi \rangle^{1/\mu}].$$

Let $L = -i|-\xi + \nabla_x \phi(x, \eta)|^{-2}(-\xi + \nabla_x \phi(x, \eta)) \cdot \nabla_x$. Then, we have

$L \exp [i(-x \cdot \xi + \phi(x, \eta))] = \exp [i(-x \cdot \xi + \phi(x, \eta))]$. Hence, using the integration by parts and $|-\xi + \nabla_x \phi(x, \eta)| \geq C(\langle \xi \rangle + \langle \eta \rangle)$ on the support of the integrand of I_2 we can obtain

$$(2.15) \quad |I_2| \leqq C.$$

Combining (2.10)–(2.15) we obtain

$$|(\chi_1 P_\phi u)^\wedge(\xi)| \leqq C \exp [2\varepsilon \{2/(1-\tau)\}^{1/\mu} \langle \xi \rangle^{1/\mu}] \quad \text{for } \xi \in \Gamma^0.$$

Since we can take ε arbitrary, we obtain (2.2). Q.E.D.

3. Propagation of ultra wave front sets. The propagation of Gevrey wave front sets are investigated in [8], [13] and [15] for the solutions of not C^∞ well-posed Cauchy problem of hyperbolic operators. In this section, we give the propagation of the *UWF* for the solutions of the following two degenerate hyperbolic operators in $[s, T] \times R_x^1$:

$$L = D_t^2 - t^{2j} D_x^2 + ait^k D_x,$$

and

$$L = D_t^2 - g(x)^{2j} D_x^2 + ait^k D_x,$$

where $D_t = -i\partial_t$ and $D_x = -i\partial_x$. First, we consider the former degenerate hyperbolic operator

$$(3.1) \quad L = D_t^2 - t^{2j} D_x^2 + ait^k D_x \quad \text{in } [s, T] \times R_x^1,$$

where a is a real constant. Then, Shinkai [16] proves that the fundamental solution $E(t, s)$ for the Cauchy problem

$$(3.2) \quad Lu(t) = 0, \quad u(s) = 0, \quad \partial_t u(s) = u_0,$$

when $s < 0 < t$, is constructed in the form

$$(3.3) \quad E(t, s) = \sum_{m, n=1}^2 E_{m, n, \phi_{m, n}}(t, s),$$

where $\phi_{m, n}(t, s) \equiv \phi_{m, n}(t, s; \xi)$ are phase functions defined by

$$\phi_{m, n}(t, s; \xi) = x\xi + \{(-1)^m t^{j+1} + (-1)^n s^{j+1}\} \xi / (j+1).$$

In (3.3) the symbols $e_{m, n}(t, s; \xi)$ of $E_{m, n, \phi_{m, n}}(t, s)$ satisfy

$$(3.4) \quad e_{m, n}(t, s; \xi) = a_{m, n} \exp [C_{m, n} \xi^\sigma] \xi^{-1} (1 + o(1)), \quad \xi \rightarrow +\infty,$$

where

$$\sigma = (j-k-1)/(2j-k).$$

So, in (3.4), if $\operatorname{Re} C_{m, n} > 0$, then $E_{m, n, \phi_{m, n}}(t, s)$ is a Fourier integral operator of infinite order. Using the fundamental solution in (3.3) we have the following theorem

Theorem 3.1 ([16]). *Assume $k < j-1$. Let $u(t, x)$ be the solution of (3.2)*

for (3.1) with $u_0(x) = \delta(x)$ (Dirac function). Let $\Gamma_{m,n}$ be the trajectory associated to $\phi_{m,n}$ for $t > 0$. Then we get

$$(3.5) \quad UWF^{(1/\sigma)}(u(t)) = \cup_P \Gamma_{m,n},$$

where $P = \{(m, n); \operatorname{Re} C_{m,n} > 0\}$.

REMARK. The result (3.5) shows that if $k < j-1$, then (3.2) for (3.1) is not C^∞ well-posed and is $\gamma^{(\kappa)}$ -well-posed for $1 < \kappa < (2j-k)/(j-k-1)$ (for the $\gamma^{(\kappa)}$ -well-posedness see also [5]).

Next, we consider a degenerate hyperbolic operator with respect to the space variable:

$$(3.6) \quad L = D_t^2 - g(x)^{2j} D_x^2 + a i D_x$$

with a positive constant a , where j is an even number and $g(x)$ is a function in $\mathcal{B}\{\kappa\}$ satisfying $g(x) = x$ for $|x| \leq 1$, $g(x) \geq 1$ for $x > 1$ and $g(x) \leq -1$ for $x < -1$. It is well-known that the Cauchy problem (3.2) for (3.6) is not C^∞ well-posed (see [5], [21] and [4]). Assume

$$2j/(2j-1) \leq \kappa \leq 2j/(j+1).$$

Let $\phi_{\pm}(t, s; x, \xi)$ be the phase functions corresponding to the characteristic roots $\pm g(x)^j \xi$ of (3.6). Then, the fundamental solution of the Cauchy problem (3.2) for (3.6) is constructed in the form

$$(3.7) \quad E(t, s) = E_{+, \phi_+}(t, s) + E_{-, \phi_-}(t, s) + (\text{regularizing operator})$$

and the symbols $e_{\pm}(t, s; x, \xi)$ of the Fourier integral operators $E_{\pm, \phi_{\pm}}(t, s)$ can be written in the form

$$(3.8) \quad e_{\pm}(t, s; x, \xi) = \exp [f_{\pm}(t, s; x, \xi)] e'_{\pm}(t, s; x, \xi)$$

with symbols $f_{\pm}(t, s; x, \xi)$ in $S_{1-\delta, \delta, G(\kappa)}^{1/2}$ and elliptic symbols $e'_{\pm}(t, s; x, \xi)$ in $S_{1-\delta, \delta, G(\kappa)}^0$. Here, $\delta = 1/(2j)$. Moreover, when $s < t$, the symbols $f_{\pm}(t, s; x, \xi)$ of (3.8) satisfy

$$(3.9) \quad \operatorname{Re} f_+(t, s; x, \xi) \geq C(t-s) \langle \xi \rangle^{1/2} / (|x|^j \langle \xi \rangle^{1/2} + 1),$$

$$(3.10) \quad \operatorname{Re} f_-(t, s; x, \xi) \leq -C(t-s) \langle \xi \rangle^{1/2} / (|x|^j \langle \xi \rangle^{1/2} + 1)$$

for a positive constant C . Hence, $E_{+, \phi_+}(t, s)$ is a Fourier integral operator with infinite order. For a conic set V in T^*R^1 we set $\Gamma(t, s; V) = \cup_{\pm} \{(x, \xi); (x, \xi)$ is a point at t of the bicharacteristic strip of $\pm g(x)^j \xi$ emanating from (y, η) in $V\}$. Then, using the fundamental solution (3.7) we have

Theorem 3.2 ([20]). *Let $u(t)$ be the solution of the Cauchy problem (3.2)*

of the operator (3.6) for u_0 in $\mathcal{S}\{\kappa\}'$ with compact support. Then, when μ satisfies $\kappa < \mu < 2$ we have

$$UWF^{(\mu)}(u(t)) = \Gamma(t, s; UWF^{(\mu)}(u_0))$$

and when $\mu \geq 2$ we have

$$UWF^{(\mu)}(u(t)) \subset \Gamma(t, s; UWF^{(\mu)}(u_0)) \cup T_0^*R,$$

especially, we have

$$UWF^{(\mu)}(u(t)) \setminus T_0^*R = \Gamma(t, s; UWF^{(\mu)}(u_0)) \setminus T_0^*R,$$

where $T_0^*R = \{(0, \xi); \xi \in R \setminus \{0\}\}$. In particular, when $u_0 = \delta(x)$ (Dirac function) we have

$$(0, \pm 1) \in UWF^{(2)}(u(t)).$$

For the construction of the fundamental solution (3.7) we use finite order Fourier integral operators with complex phase functions $\phi_{\pm}(t, s; x, \xi) - if_{\pm}(t, s; x, \xi)$ as in [7] instead of Fourier integral operators of exponential order. Then, we can give the estimate (3.10) from below.

REMARK. In the above we assumed $a > 0$. But, if we assume $a < 0$ we can also construct the fundamental solution $E(t, s)$ for (3.6) in the same form (3.7) with (3.9)–(3.10) replaced by

$$\begin{cases} \operatorname{Re} f_-(t, s; x, \xi) \geq C(t-s) \langle \xi \rangle^{1/2} / (|x|^j \langle \xi \rangle^{1/2} + 1), \\ \operatorname{Re} f_+(t, s; x, \xi) \leq -C(t-s) \langle \xi \rangle^{1/2} / (|x|^j \langle \xi \rangle^{1/2} + 1). \end{cases}$$

References

- [1] T. Aoki: *Symbols and formal symbols of pseudodifferential operators*, Advanced Studies Pure Math. 4 (1984), 181–208.
- [2] I.M. Gel'fand and G.E. Shilov: *Generalized functions*, Academic Press, 1964.
- [3] S. Hashimoto, T. Matsuzawa and Y. Morimoto: *Opérateurs pseudodifférentiels et classes de Gevrey*, Comm. Partial Differential Equations 8 (1983), 1277–1289.
- [4] S. Itoh: *On a sufficient condition for well-posedness in Gevrey classes of some weakly hyperbolic Cauchy problems*, Publ. RIMS, Kyoto Univ. 21 (1985), 949–967.
- [5] Ja. V. Ivrii: *Correctness of the Cauchy problem in Gevrey classes for nonstrictly hyperbolic operators*, Math. USSR Sb. 25 (1975), 365–387.
- [6] C. Iwasaki: *Gevrey-hypoellipticity and pseudo-differential operators on Gevrey class*, Pseudo-Differential Operators, Lecture notes in Math. 1256 (1987), 281–293.
- [7] K. Kajitani: *Fourier integral operators with complex valued phase function and the Cauchy problem for hyperbolic operators*, reprint.
- [8] K. Kajitani and S. Wakabayashi: *Microhyperbolic operators in Gevrey classes*, Publ. RIMS Kyoto Univ. 25 (1989), 169–221.

- [9] H. Komatsu: *Ultradistributions, I, Structure theorems and a characterization*, J. Fac. Sci. Univ. Tokyo, Sec. IA **20** (1973), 25–105.
- [10] O. Liess and L. Rodino: *Inhomogeneous Gevrey classes and related pseudo-differential operator*, Bollettino U.M.I. Analisi Funzionale e Applicazioni Ser Vi **3** (1984), 233–323.
- [11] O. Liess and L. Rodino: *Fourier integral operators and inhomogeneous Gevrey classes*, reprint.
- [12] G. Métivier: *Analytic hypoellipticity for operators with multiple characteristics*, Comm. Partial Differential Equations **6** (1982), 1–90.
- [13] Y. Morimoto and K. Taniguchi: *Propagation of wave front sets of solutions of the Cauchy problem for hyperbolic equations in Gevrey classes*, Osaka J. Math. **23** (1986), 765–814.
- [14] L. Rodino and L. Zanghirati: *Pseudo differential operators with multiple characteristics and Gevrey singularities*, Comm. Partial Differential Equations **11** (1986), 673–711.
- [15] K. Shinkai: *Gevrey wave front sets of solutions for a weakly hyperbolic operator*, Math. Japon. **30** (1985), 701–717.
- [16] K. Shinkai: *Stokes multipliers and a weakly hyperbolic operator*, to appear in Comm. Partial Differential Equations.
- [17] K. Shinkai and K. Taniguchi: *Fundamental solution for a degenerate hyperbolic operator in Gevrey classes*, to appear.
- [18] K. Taniguchi: *Pseudo-differential operators acting on ultradistributions*, Math. Japon. **30** (1985), 719–741.
- [19] K. Taniguchi: *On multi-products of pseudo-differential operators in Gevrey classes and its application to Gevrey hypoellipticity*, Proc. Japan Acad. **61** (1985), 291–293.
- [20] K. Taniguchi: *A fundamental solution for a degenerate hyperbolic operator of second order and Fourier integral operators with complex phase*, to appear.
- [21] H. Uryu and S. Itoh: *Well-posedness in Gevrey classes of the Cauchy problems for some second order weakly hyperbolic operators*, Funkcial. Ekvac. **28** (1985), 193–211.
- [22] S. Wakabayashi: *The Cauchy problem for operators with constant coefficient hyperbolic principal part and propagation of singularities*, Japan J. Math. **6** (1980), 179–228.
- [23] L. Zanghirati: *Pseudodifferential operators of infinite order and Gevrey classes*, Ann. Univ. Ferrara Sez. VII Sc. Mat. **31** (1985), 197–219.

Kenzo Shinkai
and
Kazuo Taniguchi
Department of Mathematics
University of Osaka Prefecture
Sakai, Osaka, Japan