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Introduction. The fundamental solution of the Cauchy problem for a
hyperbolic operator is given in the form of Fourier integral operator. As shown
in [16] or [20] when the problem is not C= well-posed, the symbol of the funda-
mental solution has exponential growth, that is, it is estimated not only from
above but also from below by

(0.1) Cexp[cE¥], ¢>0.

The constant « in (0.1) corresponds to the constant in the necessary and suf-
ficient condition for the well-posedness in Gevrey classes given by Ivrii [5].

In the present paper we define UWF ®)(u) (ultra wave front sets) for u that
belongs to the space of ultradistributions & {x}' by

(0.2) (%0, E) EUWF® (1) &
ve>0 3C; | (Xu)"(§)| =C exp[&ED],

where X S{«} NC7 and & belongs to a conic neighborhood of &, (see
Definition 2.1). Then by using UWF®(u) we can state the propagation of
very high singularities for the solution of not C= well-posed Cauchy problem
(see Theorems 3.1 and 3.2). Here, by a very high singularity of u, we mean
that its local Fourier transform has an estimate like (0.1).

UWEF are first defined by Wakabayashi [22] by the name “generalized wave
front sets”’. But, his definition contains both UWF and Gevrey wave front
sets and they are denoted by WF®™ and WF, respectively (see Definition
1.3.2 in [22]). He also tried to get non-trivial inner estimates for UWF, but
got only a lemma (“not really satisfactory” in his words) and he gave two ex-
amples with respect to operators with constant coefficients.

In section 1 we define pseudo-differential operators and Fourier integral
operators whose symbols have exponential growth and show that these operators
act on the space of ultradistributions S{«}’. In section 2 we define the UWF
of ueS{x}’ and give the propagation theorem of UWF for Fourier integral
operators of infinite order (Theorem 2.2). In section 3 we give exactly the
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UWF of the solution of the Cauchy problem for hyperbolic operators with
variable multiplicities.

1. Ultradistributions and Fourier integral operators of infinite order.
Let « satisfy x>1. For positive constants # and & we define a class S{«; &, &
of ultra differentiable functions by a set of functions u(x) satisfying

(1.1) | 0%u(x) | < Ch~ 'l !* exp (— &)™)

for a positive constant C. For ueS{«x; h, & we define a norm ||u; S{x; k, &}||
by
[lu; S{r; h, & || = inf {C of (1.1)}.
Then, S{«; A, & is a Banach space.
DeFINITION 1.1.  We define a class S {«} by

S{ = ind lim S {i; b, &}

and denote by S{«}’ the dual space of S{x}.

Lemma 1.2. The Fourier transform F[u]l=4(§) maps S{x} to S{x}
and hence the Fourier transform is also well-defined on S {x}".

Proof is omitted.

The class S{x}’ is a class of ultradistributions (see [2] and [9]), and as we
shall prove later (Lemma 1.7) the class S{«}’ is characterized by the following:
Let uS{x}’. Then, for any function X(x) in S{«} with compact support the
Fourier transform (Xu)" (&) of Xu is a measurable function and has an estimate

[(Xu)"(&)| = C, exp [e<EY]
for any £>0.

Let p and & be real numbers satisfying 0=86<p=1, 8§<1, #(1—8)=1 and
kp=1.

DeriNiTION 1.3 (cf. [6], [12], [17]). i) Let w(@) be a positive and non-
decreasing function in [1, o) or a function of the type ”. We say that a
symbol p(x, &) belongs to a class S, ; cw[w] if p(x, £) satisfies

ng;(x’ )l éCM-l‘H'p'(a!‘+a[‘9<§>(l~p)|¢,|)
X (I BIHEPIPNCES 1 w((ED)
for all x and £ ,
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where p{§)=0g(—10,)’p. We call the above function w(6) an order function.
ii) We say that a symbol p(x, £) (€5 ") belongs to a class Ry, if for
any « there exists a constant C, such that

| p&(x, £)| SC M 1PIEY™1* B1% exp (— < EDV®)

hold with a positive constant ¢ independent of o and 8. We call a pseudo-
differential operator with a symbol in R, a regularizing operator.

ReEMARK 1. When w(6)=6" for a real m we denote S, 5 cw[w] by Si's co-

ReMARK 2. When w%(0)=exp (C8°) for a o>0, the class S, 4 ¢[w] is a
symbol class of exponential type, and this corresponds to the class investigated
in [23], [14] and [1]. We also remark that the class of symbols in Gevrey classes
are investigated in [10], [11], [3] and [19].

ExampLE. For a(x, £) € S7ocw the symbol p(x, £)=a(x, &) exp (KE°)
belongs to S| ¢ ¢ [exp (267)].

DrrINITION 1.4. Let 0=7<1. We say that a phase function ¢(x, &)
belongs to a class Pgy(7) if P(x, &) is real-valued and for J(x, £)=¢(x, E)—x-&
the estimates

(12) N INGaE
and -
(1.3) | J@(x, £)| S7M~U=1BD (] g1y <CEH 1!

hold for a constant M independent of @ and B. We also set
Pow =0§LTJ<1-‘PG<K>(T) :
Proposition 1.5. Let w(0) be an order function satisfying
(1.4) w(f)<exp [CO]

for a constant o with 0<o<1/xk. For a phase function ¢(x, £)E P and a
symbol p(x, E)E S, 5 cw)[w] we define a Fourier integral operator Py and a conjugate
Fourier integral operator Py by

Pyu(x) = Se"'ﬂ*"f’ (%, EYAE)EE ,
Poufs) = [ et { [ 00 p(y, Epu(y)ir e,

where & = (2z)™"dE. Then, the operators Py and Py map S{x} to S{x} con-
tinuously.
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Proof. For u(x)eS {«} we denote
fi) = Pouta) = e p(x, EYENEE

Define L= {1+ |V¢p(x, &)1} {1—iVep(x, £)-Ver. Then, we have Le*d=
4@ and hence

£ = [ ey {p(a, DUE} A
By the induction on N we can prove

(1.5) | 9508(LH)Y {p(x, EYA(E)} | SCM ¥ M5 *Bl(|a| +N)I*ad~¥
X (BRI ENNF) exp (CKEN —EED)
for positive constants C, M,, M,, C,and &, since #(£) belongs to S{x}. Assume

that x satisfies C(N*< x> < Cy(IN+1)" for a constant C, to be determined later.
Then, using (1.5) with =0 and denoting ¢g(x, &)=e"#* Ee"¢*=£) we have

2l =1 53 (B e#eopuix, DY LY {p(, MO 2]

B+87= \3’

sc, 53 (8) [ G081 Ker) M My NGy

BB =B

X (B 154 B 1Ka-BEXE1) exp (CKED”—ECEDV ) dE
SCMPBRIMiY NIX x>~V
SCMPRIEMTN¥NINCN®)™V exp (§,C¥*(N+1)) exp (—&,C ¥ xp¥™)

for any positive constant §&. Now, take C, and &, satisfying
Co=2M71", exp (6,Ci"=2.

Then, f(x) satisfies (1.1) with A=M, and €=¢,C¢*. Consequently, we have
proved that Py maps S{x} to S{«} continuously. In the same way we can
prove that Py maps S{«} to S{«x} continuously. Q.E.D.

From Proposition 1.5 the following definition is well-defined

DrFiNiTION 1.6, Let w(0) be an order function satisfying (1.4), that is,
it satisfies

w(f)=<exp (CH°)

for a constant ¢ with 0 <o <<1/k. Then for ¢(», £)€ P and p(x, £)E
Sp.5.c0[w], the following operators
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By: S{} — S},
Py: S{}’ — S{}’

are defined by the principle of duality.

ExampLE. For a(x, £)ES7) ¢ (£<2) we consider a symbol p(x, &)=
a(x, E) exp (c<EXY?) with ¢>0. Then, it belongs to .S o ¢ [exp(2¢6¥%)] and for
1<#x<2 the following maps are well-defined:

Py : S{e}' — SHx}’,
Py: S{e}" — S{u}’,
where ¢ is a phase function in Pg).

Lemma 1.7. For ucS{x}' and XS{x} NC§ the Fourier transform
(Xu)™(&) of Xu is a measurable function and has an estimate
[(Xu)"(&)| = C. exp (6EDY)
for any €>0.

Proof. We may assume that &S {x}’ has a compact support and prove
that, for any fixed &, exp(—&(EDY*)4 is a functional on L' and has the following
estimate

(16) | Cexp (—ECE )R, Y| S Cllll,

for yv&L'. Then, we find that exp(—&EDY*)2 belongs to L* and we have an
estimate

|4(E)| = C, exp (&EX)

for any &. Denote by vJ(x) the inverse Fourier transform of yr(£) and take a
function X(x) in S{x; &, 1} NCF(R") with h=&"x~"/2 such that X(x)=1 on the
support of u. Then, we have for y&S{x; &, 1}

exp (—&EXVNR, ) = <&, exp(—EEI Wr>
= <, exp(—&DY"Wr>
= <u, X(x) exp(—&DY)P> .
Here, we have used Proposition 1.5 for well-definedness of the third and fourth
members of the above equation. Hence, by the definition and the fact that
ueS{x}’ we have
(L7)  [<exp (—ECEY"), W>| S CIX() exp(—ECDY¥ s Stes b, 1.
Write



714 K. Suinkal anp K. TANIGUCHI

X(s) exp(—6CDY () = [ ¢4 X(x) exp (—e<E PyAENE -

Then, from A=&"«"*/2, we have
| 0%(X(x) exp (—&DXV* W) | = Ch™'*'ar!* exp (—<aDY™)| [l 2
and hence
[1X(x) exp (—&DX*Wp; S{re; by, THISCllle .

This and (1.7) yields (1.6) for &S {x; k, 1}. Finally, using the limiting process
we have (1.6) for any Y& L(R"). Q.E.D.

From Lemma 1.7 we get the following Lemma 1.8, which states that the
pseudo-differential operator with a symbol in R, is a regularizing operator.

Lemma 1.8. For ucS{x}’ with compact support and r(x, £)E Ry we
have

r(X, D, ucB{x} .
Here, f(x) =B {x} means that there exists a constant C such that
[02f(x)| SCM gl for any x .
In the following section we also need

Lemma 1.9. Let r(x, £) satisfies

(18) |73, £)] SCMsPiar
X (BB ICEIA exp (—eiCed e — D)

for a positive constant c,. Then, for uS{x}’, r(X, D,)u is well-defined and
belongs to B {r}.

We can prove the lemma as Proposition 1.5 and Lemma 1.7. The detailes
are omitted.

2. Ultra wave front set

DerFINITION 2.1. Let « and p satisfy «<pu. For ucS{«x}' we define a
UWEF (ultra wave front set) of u as follows: We say that a point (%, &) in
T*R"\ {0} does not belong to UWF®(u) if there exist a function X(x) in
S{r} NC7 with X(x,)%0, a conic neighborhood T' of &, and for any positive
constant & there exists a constant C such that

2.1) |(Xu)"(§)| <Cexp [&KEX™]  for EE€T.
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RemMARK 1. As stated in Introduction this definition is the same as that
of Wakabayashi. (See Definition 1.3.2 in [22]).

ReMARK 2. Let uS{«}’ and let k<. Then, (x,, &) UWF®(u) for
all £ is equivalent to that XucS{u}’ for some XS {«} with X(x))%0. (See
Lemma 1.3.3 of [22]). Especially, from Lemma 1.7 we have UWF ®)(u)=¢ for
ueS{x}.

Theorem 2.2. Let «<p and let ¢(x, £) € Py, and p(x, ) E
Sp.5.c0lexp (¢07)] for some o with o <1/p. Assume that ¢(x, ) is positively homo-
geneous for large |E|. Then, for ucS{x}’ and (y,, 7)) € T*R"\ {0} with || >1,
(Yor n0) & UWF “(u) yields

(2.2) (%0, Eo) e UWF ®(Pyu),
where
(2.3) Eo= V.%o M), Yo = V(%0 70) -

This theorem corresponds to the theorem for the propagation of Gevrey
wave front sets investigated in Theorem 4 in [18].

Proof. Assume (y,, 70)&e UWF®(u). Then, from the definition we can
take a neighborhood V, of y, and a conic neighborhood T', of 7, such that for any
€ and XS {«} with supp XV, an inequality

(2.4) |(Xu)*(n)| =C, exp [eV*]  for yET,
holds. Next, using (2.3) we take neighborhoods ¥, and ¥} of x, and y,, and
conic neighborhoods T, and T'; of &, and 7, satisfying
viev,, T'inS;‘er,nss!
and

2.5) { 1) Vip(x, n)EV; for x€V,, neTY},

i) V.¢7'(x, &)y for x€V, E€T,

where »=V,¢7(x, £) is the inverse function of £==V,¢(x, ). Let X,(x) and
X,(x) be functions in S{x} and (&) and +r(£) be symbols in S, 4, satisfying

(2.6) supp X,CV,,
(2.7 supp X,CV,, Xy(y)=1  for yeV},
(2.8) supp Yyn CT'y, ry(§) =1 for E€T

with some conic neighborhood I'Y of &,, and
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(2.9) supp ¥, CTz, () =1  for »€T:.
Now, write X,(x)Pyu as

(2.10) X, Py = X, Pyyrf( D)X+ X, Py dra(D)(1 — X+ X, Po(1—ry( D))t
= fi(%)+Hfo(x)+Hfilx) -

From (2.5) and (2.8)~(2.9) we can show that o(yr(D)X,Ps(1—Ary(D)) satisfies
(1.8) and hence from Lemma 1.9 we have

Y (D)fs = Yri(D)X, Py(1—ry(D)) uE B{x}
and

(2.11) lfE)=C  for EETY.
Similarly, from (2.5)—(2.7) we obtain that o(X,Pgyry(D)(1—X,)) satisfies (1.8)

and hence we get

fo(%) = X, Pe (D)1 =X Ju s B{x} .
This yields
(2.12) | HE)=C  forall E.

Next, we consider f,(x). Let 7 be a constant satisfying (1.2)~(1.3) and write
@213)  A©) = || ecrereemx@pis, (o) )y ds
= gg el b Emx (x)p(%, m)Vra(n)(Xpu)" () dndx
1E-nl=nCnd

[ e, (e, ) () ()
1E-n12alnd

=I+1,
with A=(1+47)/2. Since the absolute value of the integrand of I, is estimated by

C exp [e<n)" + &Y< C” exp [26<>"*]
=C’'exp[26{2/(1—7)} VB EMH |

we have
(2.14) |1,| SC” exp [26{2/(1—7)} *CEXM] .

Let L=—1i| —£+V,d(x, 9)| ((—&+V,p(x, 1)) V.. Then, we have
L exp [i(—x-E+¢(x, 7))]=exp [{(—x-E+p(x, 7))]. Hence, using the integration
by parts and | —&+V,¢(x, 7)| = C(KE>+<)) on the support of the integrand of

I, we can obtain
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(2.15) |LI=C.
Combining (2.10)—(2.15) we obtain
[(X, Pyu)"(E)| <C exp [26 2/(1— 1)} V™EVV™]  for EETC.

Since we can take & arbitrary, we obtain (2.2). Q.E.D.

3. Propagation of ultra wave front sets. The propagation of Gevrey
wave front sets are investigated in [8], [13] and [15] for the solutions of not C*
well-posed Cauchy problem of hyperbolic operators. In this section, we give
the propagation of the UWF for the solutions of the following two degenerate
hyperbolic operators in [s, '] X R;:

L =D~ D?+ait*D,

and
L = D}—g(x)¥ Di+aiD, ,
where D,= —i8, and D,= —10,. First, we consider the former degenerate
hyperbolic operator
3.1) L = D}—t¥ D2+-ait*D, in [s, TIXR},

where a is a real constant. Then, Shinkai [16] proves that the fundamental
solution E(2,s) for the Cauchy problem

(3.2) Lu(t) =0, u(s)=0, 0u(s)= 1,
when s<<0<#, is constructed in the form
(3.3) E(t, s) = 30 n1Bnns, (85),
where ¢, (2, $) =P (2, s; £) are phase functions defined by

Pty 83 £) = 2E+{(—1)" 7 +(—1)"}E/(j+1) -
In (3.3) the symbols e, (%, s; &) of E, 54 (2, 5) satisfy
(3-4) et $3 E) = p,n xp [Co nE )7 (14-0(1)), &> +oo,
where

o = (j—k—1)/2j—F).

So, in (3.4), if Re C,,>0, then E, , 4 (% 5) is a Fourier integral operator of
infinite order. Using the fundamental solution in (3.3) we have the following
theorem

Theorem 3.1 ([16]). Assume k<<j—1. Let u(t, x) be the solution of (3.2)
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Sor (3.1) with uy(x)=_58(x) (Dirac function). LetT,, , be the trajectory associated to
O, for t>0. Then we get

(3.5) UWFYu(t)) = UpTha,
where P= {(m, n); Re C,, ,>0}.

ReMARK. The result (3.5) shows that if k<<j—1, then (3.2) for (3.1) is
not C> well-posed and is y®-well-posed for 1<x<<(2j—k)/(j—k—1) (for the
y®-well-posedness see also [5]).

Next, we consider a degenerate hyperbolic operator with respect to the
space variable:

(3.6) L = D}—g(x)* Di+aiD,

with a positive constant @, where j is an even number and g(x) is an function
in B{x} satisfying g(x)=x for |x|=<1, g(x)=1 for x>1 and gx)=<—1 for
x<—1. It is well-known that the Cauchy problem (3.2) for (3.6) is not C*
well-posed (see [5], [21] and [4]). Assume

2(Z—N)=e=2j/(j+1).

Let ¢.(t, s; x, £) be the phase functions corresponding to the characteristic roots
+g(x)’€ of (3.6). Then, the fundamental solution of the Cauchy problem
(3.2) for (3.6) is constructed in the form

3.7) E(t,s) = E, 4,(t, $)+E_ 4_(t, s)+(regularizing operator)

and the symbols e.(2, s; x, £) of the Fourier integral operators E, 4_(t, 5) can
be written in the form

(3.8) e.(t, s; %, £) = exp [f.(2, s; %, E)]|el(¢, s; x, E)

with symbols f. (2, s; x, £) in Si%5 ;60 and elliptic symbols eL(z, s; x, &) in
Si-ss.c0- Here, §=1/(2j). Moreover, when s<t, the symbols f.(¢, s; x, &)
of (3.8) satisfy

3.9) Ref. (2, s; &, E)=C(t—s)<EX2|(| x|’ CEDV2+1),
(3.10) Re f_(2, 5; &, £) < —C(t—s)KEDV?(| % | iCEDV?-1)
for a positive constant C. Hence, E, 4,(¢, ) is a Fourier integral operator with
infinite order. For a conic set ¥V in T*R! we set I'(¢, s; V)= U . {(%, &); (%, &)

is a point at ¢ of the bicharacteristic strip of -4 g(x)’& emanating from (y, %)
in V}. Then, using the fundamental solution (3.7) we have

Theorem 3.2 ([20]). Let u(t) be the solution of the Cauchy problem (3.2)
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of the operator (3.6) for u, in S{x} ' with compact support. Then, when . satisfies
K< <2 we have

UWEF®(u(t)) = T'(¢, s; UWF®(u,))
and when =2 we have
UWF®(ut))CT(¢, s; UWF®(u,)) U TR,
especially, we have
UWF®(u(@))\T¥R = T'(t, s; UWF®(u,))\T¥R),
where TER={(0, £); EER\{0}}. In particular, when u,=8(x) (Dirac function)
we have
(0, 1) UWF ®(u(t)) .

For the construction of the fundamental solution (3.7) we use finite order

Fourier integral operators with complex phase functions ¢.(, s; x, £)—if.(2, s;

x, £) as in [7] instead of Fourier integral operators of exponential order. Then,
we can give the estimate (3.10) from below.

RemARk. In the above we assumed a>0. But, if we assume a<<0 we can
also constructe the fundamental solution E(z, s) for (3.6) in the same form (3.7)
with (3.9)—(3.10) replaced by

{ Ref_(¢, s; x, £)=C(t—s)XEDV?|(|x|CED2 1),
Re (1, 55 3, )< —C(t—s)KE/(| x| KEM*+1) .
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