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Introduction. The fundamental solution of the Cauchy problem for a
hyperbolic operator is given in the form of Fourier integral operator. As shown
in [16] or [20] when the problem is not C°° well-posed, the symbol of the funda-
mental solution has exponential growth, that is, it is estimated not only from
above but also from below by

(0.1) C e x p f ^ T , c > 0 .

The constant K in (0.1) corresponds to the constant in the necessary and suf-

ficient condition for the well-posedness in Gevrey classes given by Ivrii [5].

In the present paper we define UWFw(u) (ultra wave front sets) for u that

belongs to the space of ultradistributions S (K} ' by

(0.2) (xoy

3 C ;

where X^S{κ} Γ\Co and ξ belongs to a conic neighborhood of ξ0 (see
Definition 2.1). Then by using UWF(μ>)(ύ) we can state the propagation of
very high singularities for the solution of not C°° well-posed Cauchy problem
(see Theorems 3.1 and 3.2). Here, by a very high singularity of uy we mean
that its local Fourier transform has an estimate like (0.1).

UWF are first defined by Wakabayashi [22] by the name * 'generalized wave
front sets". But, his definition contains both UWF and Gevrey wave front
sets and they are denoted by WF[K] and WF[K) respectively (see Definition
1.3.2 in [22]). He also tried to get non-trivial inner estimates for UWF, but
got only a lemma ("not really satisfactory'' in his words) and he gave two ex-
amples with respect to operators with constant coefficients.

In section 1 we define pseudo-differential operators and Fourier integral
operators whose symbols have exponential growth and show that these operators
act on the space of ultradistributions S{κ}'. In section 2 we define the UWF
of M G ^ { 4 ' and give the propagation theorem of UWF for Fourier integral
operators of infinite order (Theorem 2.2). In section 3 we give exactly the
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UWF of the solution of the Cauchy problem for hyperbolic operators with

variable multiplicities.

1. Ultradistributions and Fourier integral operators of infinite order.
Let K satisfy κ>l. For positive constants h and S we define a class S{/c; h, 6}
of ultra differentiable functions by a set of functions u(x) satisfying

(1.1) \d*xu(x)\

for a positive constant 0. For u^S{κ; h, 8} we define a norm \\u; S{/c; h, £}||
by

\\u; S{κ; h9ε}\\ = inf{C of (1.1)}.

Then, S{κ; h9 6} is a Banach space.

DEFINITION 1.1. We define a class S(κ} by

S{κ} = indlim<S{/e; A, 6}
Λ-*o, ε-H)

and denote by S {K} ' the dual space of S {K} .

Lemma 1.2. The Fourier transform F[u]=ύ(ξ) maps S{κ} to S{κ}
and hence the Fourier transform is also well-defined on S{κ}'.

Proof is omitted.

The class S {/c}' is a class of ultradistributions (see [2] and [9]), and as we
shall prove later (Lemma 1.7) the class S{κ}' is characterized by the following:
Let MGCS{/C}'. Then, for any function X(x) in S{κ} with compact support the
Fourier transform (Xu)A(ξ) of Xu is a measurable function and has an estimate

for any £>0.

Let p and δ be real numbers satisfying O^δ^Sp^l, δ < l , /c(l — δ ) ^ l and

DEFINITION 1.3 (cf. [6], [12], [17]). i) Let w(θ) be a positive and non-
decreasing function in [1, oo) or a function of the type θm. We say that a
symbol p(x, ξ) belongs to a class Sp>δtG(κ)[w] if p(x, ξ) satisfies

for all x and ξ ,
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where pφ]=d*(—idx)
βp' We call the above function w(θ) an order function.

ii) We say that a symbol p(x> ξ) (^S~°°) belongs to a class 3iG(κ) if for
any a there exists a constant CΛ such that

hold with a positive constant c independent of a and /3. We call a pseudo-
differential operator with a symbol in iR^) a regularizing operator.

REMARK 1. When w(θ)=θm for a real m we denote SP,afCGo[w] by S"8tG(κ).

REMARK 2. When ^'(^)=exp(C^σ) for a er>0, the class S^QMIW] is a
symbol class of exponential type, and this corresponds to the class investigated
in [23], [14] and [1]. We also remark that the class of symbols in Gevrey classes
are investigated in [10], [11], [3] and [19].

EXAMPLE. For Λ(#, f)e*S*0,GW ^ e s v m k o l ρ(x, ξ) = a(x, £)exp «£>*)
belongs to Slt0>Giκ)[txV(2θσ)].

DEFINITION 1.4. Let 0 ^ τ < l . We say that a phase function φ(x9 ξ)
belongs to a class ^ ^ ( T ) if φ(x, ξ) is real-valued and for J(x, ξ) = φ(x, ξ)—x ξ
the estimates

(1.2) Σ I/$(*.

and

(1.3) !/©(*, ξ)\gτM-™+M\alβ\γ<ξy-™

hold for a constant M independent of a and /3. We also set

3>GM= U 5» β ω (τ).
O^T<1

Proposition 1.5. Z^ί w(^) δ^ αw orώr function satisfying

(1.4)

/or α constant σ with 0^σ<l//c. For a phase function φ(x> ξ)^SG^κ) and a
symbolp(x, ξ)^SPt8tG(κ)[w] we define a Fourier integral operator Pφ and a conjugate
Fourier integral operator Pφ* by

Pφu{x) = j «'•<*•»#*, ξ)ύ(ξ)dξ ,

Pφ*u{x) = j e"'H j e-'*o *>p(y, ξ)u(y)dy}dξ ,

where dζ = {2πYndξ. Then, the operators Pφ and Pφ* map S{κ} to S{κ} con-

tinuously.
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Proof. For u(x)^S{/c} we denote

Define L={l+|VsΦ(#, ξ)\2}^ίl~iVξφ(xy f) V*}. Then, we have Leiφ(x^=

eiΦ(χ.ξ) a n d hence

)" ip(x,

By the induction on N we can prove

(1.5) |

for positive constants C, Mv M2, Cx and £, since ά(ξ) belongs to 5̂ {/c}. Assume
that x satisfies CoiV

ιe^<Λ;><Co(iV+l)<c for a constant Co to be determined later.
Then, using (1.5) with α=-0 and denoting φβ(xy ξ)=e~iφ(x'ξ)dβ

xe
iφ(x-ξ) we have

| Σ (

β'+β"=β \β

=β \β ) exp

exp feCo^JV+l)) exp

for any positive constant £lβ Now, take Co and εx satisfying

Then, /(x) satisfies (1.1) with h=MA and S — SxCy*. Consequently, we have
proved that Pφ maps S{κ} to S{κ} continuously. In the same way we can
prove that Pφ* maps S{κ} to S{κ} continuously. Q.E.D.

From Proposition 1.5 the following definition is well-defined

DEFINITION 1.6. Let w(θ) be an order function satisfying (1.4), that is,
it satisfies

for a constant σ with 0^σ<l//c . Then for φ(χ, £)e£PG((e) and p(x,

'S'p.β.GOoM* ̂ e following operators
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are defined by the principle of duality.

EXAMPLE. For a(x, ξ)^S"ΰίGM («<2) we consider a symbol p(x, ξ) =
a(x, ξ) exp « £ > V 2 ) with c>0. Then, it belongs to SuoMκ) [exp(2c0V2)] and for
1 < « < 2 the following maps are well-defined:

where φ is a phase function in iPG(K).

Lemma 1.7. For &ecS{/c}' #m/ X^S{κ} Γl CJΓ the Fourier transform
(Xu)A(ξ) ofXu is a measurable function and has an estimate

for any £>0.

Proof. We may assume that u^S{κ}' has a compact support and prove
that, for any fixed £, exp(—£<£>1/κ)ώ is a functional on L1 and has the following
estimate

(1.6) KexpC-K?)1^, Ψ>l ^C||ψ||xi

for ψGL 1 . Then, we find that exp(—£<|>Vκ)ώ belongs to L°° and we have an
estimate

for any £. Denote by yjr(x) the inverse Fourier transform of ψ(ξ) and take a
function %(#) in S{κ; h} 1} ΠC?(!?*) with h=SκκΓκ\2 such that %(Λ?)=1 on the
support of w. Then, we have for ψG^S{/ί; A, 1}

= <«, exp ( -

= <«,%(*) exp(-

Here, we have used Proposition 1.5 for well-definedness of the third and fourth
members of the above equation. Hence, by the definition and the fact that

' we have

(1.7) K&xp(-ε<ξyfκ)A ψ>\ £O\\X(x) exp(-£<I>>^)ψ.; 3{κ; h,

Write
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X(x) exp(-£<Z)>^)^) = J «<*•*X(x) exp (-<K£>V"

Then, from h=£κfc~κj2, we have

18?(%(*) exp(-β<Z)>v^)I ^CA-'-'αl" exp (—

and hence

; £{*; A, l } | | ^

This and (1.7) yields (1.6) for ψGcS{/ί; A, 1}. Finally, using the limiting process
we have (1.6) for any ψ^L\Rn). Q.E.D.

From Lemma 1.7 we get the following Lemma 1.8, which states that the
pseudo-differential operator with a symbol in 3lG(κ) is a regularizing operator.

Lemma 1.8. For u^S{κ}' with compact support and r(#, ξ)^SlG(κ) we
have

r{X,

Here, f(x)elB{κ} means that there exists a constant C such that

19if(x) I gCM-' ΌI for any x.

In the following section we also need

Lemma 1.9. Let r(x, ξ) satisfies

(1.8) \r$(x,ξ)\

for a positive constant c0. Then, for u^S{/c}', r(Xf Dx)u is well-defined and

belongs to <3{/c}.

We can prove the lemma as Proposition 1.5 and Lemma 1.7. The detailes
are omitted.

2. Ultra wave front set

DEFINITION 2.1. Let K and μ satisfy κ^μ. For u^S{/c}' we define a
UWF (ultra wave front set) of u as follows: We say that a point (x0> ξ0) in
T*#\{0} does not belong to UWF^\u) if there exist a function X(x) in
S{κ} Γ\CQ with %(ΛJO)4=O, a conic neighborhood Γ of ξQy and for any positive
constant S there exists a constant C such that

(2.1) |(%M)A
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REMARK 1. As stated in Introduction this definition is the same as that
of Wakabayashi. (See Definition 1.3.2 in [22]).

REMARK 2. Let u<=S{κ}' and let κ^μ. Then, (x09 ξ)<£UWF(κ\u) for
all ξ is equivalent to that Xu^S{μ}' for some %e<5{4 with %(*0)4=0. (See
Lemma 1.3.3 of [22]). Especially, from Lemma 1.7 we have UWFw(u)=φ for

Theorem 2.2. Let κ<μ and let φ(x, f j e ^ and ρ(x, f)<=
SptιtG(κ)[exp (cθ*)]for some σ with σ<l/μ. Assume that φ(x, ξ) is positively homo-
geneous for large \ξ\. Then, for U<ZΞS{K}' and{yQiηQ)ςΞT*R\{fy with | ^ | > 1 ,
(jΌ> vo)^UWF^\u)yields

(2.2) fa, ξo)GUWF<PχPφu),

where

(2.3) ξ0 = Vxφ(χ0> vo), y0 = VeΦ(Λ?0> ??O)

This theorem corresponds to the theorem for the propagation of Gevrey
wave front sets investigated in Theorem 4 in [18].

Proof. Assume (yo> Vo)$ UWFw(u). Then, from the definition we can
take a neighborhood V2 of y0 and a conic neighborhood Γ2 of ηQ such that for any
S and %G<5{/c} with supp % c F 2 a n inequality

(2.4) l ( % ^ ) Λ ω i ^ C ε e x p [ ^ > ^ ] /or ^GΓ 2

holds. Next, using (2.3) we take neighborhoods Vx and V'2 of x0 and y0, and
conic neighborhoods Γ2 and Γ2 of ^0 and 970 satisfying

and

("I ( .!.
I u

i) Vίφ(Λ?, η)tΞV2 for

) Vxφ-\x,ξ)<ΞΓ'2 for

where η=Vxφ^\xy ξ) is the inverse function of ξ=Vxφ(x, η). Let Xx{x) and
%2(Λ?) be functions in S{κ} and ψ^f) and ψ2(ξ) be symbols in 55,0,GU) satisfying

(2.6)
(2.7)

(2.8)

suppXjCFi,
supp% 2 cΓ 2 ,

supp ψ iCΓj,
Uy) = i
•ψ i(l ) = 1

for

for

with some conic neighborhood Γ? of £0, and
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(2.9) s u p p ^ 2 c Γ 2 , ψ2(η)=l for

Now, write Xx(x)Pφu as

(2.10) XJφU = %1

From (2.5) and (2.8)-(2.9) we can show that σ(ψ1(D)X1Pφ(l—ψ2(D)) satisfies
(1.8) and hence from Lemma 1.9 we have

and

(2.11) \ίm\^C for

Similarly, from (2.5)-(2.7) we obtain that σ(X1Pφψ2(D)(ί—X2)) satisfies (1.8)
and hence we get

fjx) = SC

This yields

(2.12) \M®\£C for all ξ.

Next, we consider f^x). Let T be a constant satisfying (1.2)—(1.3) and write

(2.13) f m = j j *<-"

= Γ f
JJ|0-ϊ?

with λ—(l+τ)/2. Since the absolute value of the integrand of I1 is estimated by

Cexp [c<vy+€<vy^]SC exp [2ε<v>
VΊ

we have

(2.14) I/J ^Cff exp [2si2l(ί-τ)}ι/\ξy/μ].

Let L=-i\-ξ+Vxφ(x, η)\~2(-ξ+Vxφ{x, v))-Vs. Then, we have
L exp [/(—x ξ-{-φ(x, ̂ ))]=exp [/(—x ξ-{-φ(x, η))]. Hence, using the integration
by parts and | — ξ-\- Vxφ(x, η) \ ̂ C«?>+<97» on the support of the integrand of
I2 we can obtain
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(2.15) \I*\£C.

Combining (2.10)-(2.15) we obtain

\(X&u)*g)\ ^Cexp[26{2/(l-τ)}^<D 1 / μ] far £ e Γ ° .

Since we can take £ arbitrary, we obtain (2.2). Q.E.D.

3. Propagation of ultra wave front sets. The propagation of Gevrey
wave front sets are investigated in [8], [13] and [15] for the solutions of not C°°
well-posed Cauchy problem of hyperbolic operators. In this section, we give
the propagation of the UWF for the solutions of the following two degenerate
hyperbolic operators in [ί, T]xRl:

L = D2

t-t2jD2

x+aitkDx

and

L = D2-g(x)2jD2

x+aiDx,

where Dt~—idt and Dx=—idx. First, we consider the former degenerate
hyperbolic operator

(3.1) L = D2

t-t2iDl+aitkDx in [s, T]xRι

x,

where a is a real constant. Then, Shinkai [16] proves that the fundamental
solution E(t,s) for the Cauchy problem

(3.2) Lu(t) = 0, «(*) = <), erfs) = u0,

when s<0<t, is constructed in the form

(3-3) E(t,s) = Σli.n^Ea,n,Kn(t,s),

where φw>Λ(ί, s) = φm,n(t, *l ζ) are phase functions defined by

Φ...(t, *; f) = *e+{(-

In (3.3) the symbols em>n{t, s; ξ) of EmtUιΦ (t, s) satisfy

(3.4) β...(ί,ί;f) = β.

where

So, in (3.4), if Re C m n > 0 , then EMtHtφ (ί, s) is a Fourier integral operator of
infinite order. Using the fundamental solution in (3.3) we have the following
theorem

Theorem 3.1 ([16]). Assume k<j—l. Let u(t, x) be the solution of (3.2)
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for (3.1) with uo(x)=8(x) (Dirac function). Let Tmt1t be the trajectory associated to

Φm,n fw t>0. Then we get

(3.5) UWF«"\u(t)) = UpΓ W ) B ,

where P= {(m, n)\ Re Cw,M>0}.

REMARK. The result (3.5) shows that if k<j—l, then (3.2) for (3.1) is
not C°° well-posed and is <γ(ιe)-well-ρosed for ί<κ<(2j—k)l(j—k—l) (for the
7(κ)-well-posedness see also [5]).

Next, we consider a degenerate hyperbolic operator with respect to the
space variable:

(3.6) L = D)-g{xfDl+aiDx

with a positive constant a, where j is an even number and g(x) is an function
in <B{κ} satisfying g(x)=x for \x\ <*1, g(x)^l f o r x>^ a n d £ ( * ) ^ —* f o r

x< — 1. It is well-known that the Cauchy problem (3.2) for (3.6) is not C°°
well-posed (see [5], [21] and [4]). Assume

Let φ±(t, s; x, ξ) be the phase functions corresponding to the characteristic roots
±g(x)jξ of (3.6). Then, the fundamental solution of the Cauchy problem
(3.2) for (3.6) is constructed in the form

(3.7) E(tf s) = E+tΦ+(t, s)+E-tΦ_(t, s)+(regularizing operator)

and the symbols e±(tf s; x, ξ) of the Fourier integral operators E±tΦ±(t, s) can
be written in the form

(3.8) e±(t, s; x, ξ) = exp [f±(t, s; x, ξ)]e'±(ty s; x, ξ)

with symbols f±(t, s; x, ξ) in S'i-2δ,δ>G(κ) and elliptic symbols e+(t, s; x, ξ) in
SΊ-s,δ,GU)- Here, δ=l/(2j). Moreover, when s<t> the symbols /±(ί, s; x, ξ)
of (3.8) satisfy

(3.9) Re/+(ί, ,; x, ξ)^C(t

(3.10) Re/.(ί, s; x, ξ)^-C(t-s)Qy'2l(\x\Kξ>1/2+l)

for a positive constant O. Hence, E+tΦ+(ty s) is a Fourier integral operator with
infinite order. For a conic set V in T*F} we set T(t> s; V)= U ±ί(x, ζ)\ (xy ζ)
is a point at t of the bicharacteristic strip of ±g(x)jξ emanating from (yy η)
in V}. Then, using the fundamental solution (3.7) we have

Theorem 3.2 ([20]). Let u(t) be the solution of the Cauchy problem (3.2)
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of the operator (3.6) for u0 in S{tc) ' with compact support. Then, when μ satisfies

/e<μ<2 we have

UWF^(u{t)) = Tit, s; UWF^\u0))

and when μ^2we have

UWF^\u{t))(ZT(t, s; UWF^(uQ)) U TfR ,

especially, we have

= T(ty s\

where TfR={(0, ξ); ξ^R\{0}}. In particular, when uo=S(x) (Dirac function)
we have

(0, ±l)(=UWFW(u(t)).

For the construction of the fundamental solution (3.7) we use finite order
Fourier integral operators with complex phase functions φ±(ty s; x, ξ)—if±{t, s;
xy ξ) as in [7] instead of Fourier integral operators of exponential order. Then,
we can give the estimate (3.10) from below.

REMARK. In the above we assumed a>0. But, if we assume a<0 we can
also constructe the fundamental solution E(t> s) for (3.6) in the same form (3.7)
with (3.9)-(3.10) replaced by

_(ί, s; x, ξ)^C(t-

ί, s;
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