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1. Introduction

The purpose of this paper is to give a detailed proof of an analogue of the

Paley- Wiener theorem for the euclidean motion group which was announced in

[3], Restricting our attention to bi-invariant functions (with respect to the rota-
tion group) we obtain an analogue of the Paley-Wiener theorem for the Fourier

-Bessel transform.

2. Unitary representations

Let G be the group of all motions of the w-dimensional euclidean space Rn.
fk x\

Then G is realized as the group of (w+l)x(^+l)-πιatrices of the form ( J,

(k^SO(n), x^R"). Let K and H be the closed subgroups consisting of the ele-

ments (* °\ (AeSO(ιι)) and f] x\ (*<Ξ/Γ), respectively. Then G is the

semi-direct product of H and K. We normalize the Haar measure dg on G

such that dg=dxdk, where dx=(2π)~n/2dx1 dxn and dk is the normalized Haar

maesure on K.

For any subgroup G1 of G we denote by Gl the set of all equivalence classses

of irreducible unitary representations of Gx. For an irreducible unitary repre-

sentation σ of G!, we denote by [σ] the equivalence class which contains σ.

For simplicity we identify k<=SO(ri) with )^K and *^#* with

Denote by < , > the euclidean inner product on Rn. Then we can identify

H with Rn so that the value of ξ^ϊί at x^H is ei<ξ'x>. Because H is normal,

K acts on H and therefore on H naturally: <kξ, #>=<£, β~V>. Let Kξ be the

isotropy subgroup of K at ξ^H. If £ΦO, Kξ is isomorphic to SO(n— 1).

The dual space ό of G was completely determined by G. W. Mackey [4]

and S. Itό [2] as follows.

Let $Q=L2(K) be the Hubert space of all square integrable functions on K.

We denote by U* the unitary representation of G induced by ξ^H. Then for
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Ik x\
Ho J

(U*F)(u) =

Let %σ and rfσbe the character and the degree of [σ]^Kξ, respectively. Let L
and R be the left and right regular representations of K, respectively. We also
denote by L and R the corresponding representations of the universal enveloping
algebra of the Lie algebra of K defined on C°°(K), respectively. If σ(m)=
(σpq(m))(\^p, q^dσ\ we put

and

where d%m is the normalized Haar measure on K%. Then Pσ and Pσ

q are both
orthogonal projections of ξ>. Put &σ=Pσ& and φ;=PJξ>. The subspaces £>£
(l^q^dσ) are stable under U* and the representations of G induced on £>£
(1 ̂ q^dσ) under U* are equivalent for all ?=!, •••, dσ. We fix one of them and
denote by U^σ. It is easy to see that

(2.1)

Two representations U%'σ and C/ξ/>σ/ are equivalent if and only if there exists an

element k<=K such that ξ'=kξ and [σ]=[σ/*], where

First we assume that £=t=0. Then U%'σ is irreducible and every infinite
dimensional irreducible unitary representation is equivalent to one of E7*f<r,

(?ΦO, [σ]eite). Since φ= 0 ξ)σ and ξ)σ-θ€>Q, we have
[σ]e£ξ ί"1

t/ίs 0 (t/^e-θt^). (2.2)
Me-Kξ " T~7^ 'dσ times

Next we assume that ξ=0. Then C/ξ'σ is reducible and K%=K. For any
[σ] e it we define a finite dimensional unitary representation Uσ of G by ί7J=

σ(A), where ^=(* f)eG. Then we have f/^^Z/'e — 0Z/σ and C/°^ 0
V ϋ 1; "T"̂  - ' ^£*aσ times

ί7°'σ. Moreover every finite dimensional irreducible unitary representation of G

is equivalent to one of C/σ, ([σ]^^).

We denote by (G)^ and (G)0 the set of all eqiuvalence classes of infinite and
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finite dimensional irreducible unitary representations of G, respectively.

3. The Plancherel formula

Let ϊ be the Lie algebra of K. We denote by Δ the Casimir operator of
K (In case n= 2, we put Δ= — X2 for a non-zero X^ΐ). By the Peter- Weyl
theorem we can choose a complete orthonormal basis {φy}ye/ of ξ>, consisting

of the matricial elements of irreducible unitary representations of K, that is,

φj=dr

1/2rpq for some [r] e fi (r= (τpq)) and^>, </=!, •••, dτ. First, we prove the

following

Lemma 1. Let T be a bounded operator on $Q=L2(K) which leaves the

space C°°(K) stable. If for any non-negative integers I and my there exists a con-

stant Cl'm such that

I I ATA* I \^Cl'm,

then the series ^ |(Tφy, φ{)\ converges.
i,j£J

Proof. For the sake of brevity we assume that n^3. In case n=2 the

same method is valid with a slight modification. Let t be a Cartan subalgebra
of f . Denote by lc and tc the complexifications of ϊ and t, respectively. Fix
an order in the dual space of (— l)1/2t. Let P be the positive root system of lc

with respect to ic. Let £? be the set of all dominant integral forms. Then Λe

£? is the highest weight of some irreducible unitary representation of K if and
only if it is lilfted to a unitary character of the Cartan subgroup corresponding to

t. Let £F0 be the set of all such Λ's. For any Λe£?0 we doente by TΛ a repre-

sentative of [Tj^ξΞiK which is a matricial representation of K with the highest
weight Λ. Then the mapping ΛI->[TΔ] gives the bijection between 30 and £.

Let dA be the degree of TA. Denote by JA be the set of j e/ such that φy=dΛ

1/2

(TA)PQ f°Γ some^>, 5=1, •••, dA. Let ( , ) be the inner product on the dual space
of (— l)1/2t induced by the Killing form and put |Λ =(Λ, Λ)1/2. As usual we

put p— ̂ r Σ α. We use the following known facts (i)^(iii):
2 ot,EP

( i ) For every ΛeSo andye/Λ, we have (Δ+ |p|2)φy= |A+p| 2φ y .

(ii) For every AeS^, ̂ Π gpCA+P, a) ^ (WeyΓs dimension formula).

(iii) The Dirichlet series Y] - converges if s > — .
^ ^ A ^ Λ + r 8 L 2 J

(see [l(a)] and [9])

By (i)
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Therefore

On the other hand by the assumption of the lemma we can prove that there exists
a constant C['m such that

Then

Therefore if put l=m, we have

If we take l=m>— r-^ ί=— dim K9 using the property (iii) we obtain

Σ \(Tφ;, φί)l< + °° -

q.e.d.

Corollary. If T is an operator on ξ> satisfying the conditions of Lemma 1,
T is of the trace class.

For the proof of this corollary, see Harish-Chandra [l(a), Lemma 1].

For any / e C~(G). We put

Tf(ξ,<r)=\Gf(g)UΪ'σdg

Then

(Γχf f σ)F)M=( Ktf,*;u,v)F(v
J K

where
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Kf(ξ, σ; if,*) = dv\κσ3M ^L^T" l) ̂ '"'̂

It is easy to see that Tf(ξy σ)F<=C°°(K) for any/eCc°°(G) and
We denote by λ and μ the left and right regular representations of G, respe-

ctively. We also denote by λ and μ the corresponding representations of the
universal enveloping algebra of G defined on C°°(G). We regard each element
X^l as a right invariant vector field on K. So that we have L(X)= — X.
Since

, σ)F(exp(-tX))u) = (Γλcexptx)/ (ξ, σ)F)(u) (ίe Λ) ,

we have

((-X)Ttf, σ)F)(u) = (Γxc^Xf, σ)IO(«)

for FeC°°(K). Therefore for any non-negative integer /

A'T,(ξ, σ) = TλCΔ)/χ?, σ) .

Also we have

Tf(ξ, <τ)Δm = r«Aj-Xf , σ) (m = 0, 1, 2, -)

by a similar way. On the other hand we notice that

M7V(l?,σ)| |<;( \f(g)\dg.J G

Hence

I I A'Tf(ξ, σ)Δ-| I ί£ ( I (λ(ΔX μ(ΔΓf)(g) \ %
J G

Thus the opreator Tf(ξ, σ), /eCΓ(G), satisfies the assumptions of Lemma 1.
By the corollary to Lemma 1, Tf(ξ, σ) is of the trace class.

As it can be easily seen that Kf(ξy σ; uy v)^C°°(KχK), we have

Tr(Tf(ξ,σ))=\ Kf(ξ,σ;u,u)du
J K

(see [l(b), Lemma 5]). Making use of the relation

we have the following proposition.

Proposition 1. For any f <= C7(G), Tf(ξ, σ) (ζ Φ 0, [σ] e Jt$) is of the trace
class and
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Tr(Tf(ξ, σ)) = ^ HxK

Let J?+ be the set of all positive numbers and let M be the subgroup consis-

/I 0 0\
ting of the elements 0 m 0 I , (m^SO(n— 1)). Then for any ξ^H of the form

/<Λ M) 0 1'

?=( 9 I (a^R+), we have Kξ=M. It follows from the results of §2 that

\ 0

can be indetified with Λ+xΛdΓ. For f = 9 (a<=R+\ we write briefly Tf(ξ,σ)

0
= Tf(a, σ). Then we have the following Plancherel formula for G.

Proposition 2. For any f

| I 1 2 denotes the Hίlbert- Schmidt norm.

Proof. It is enough to prove that

ϊ)-
For any/eCΓ(G), we put

As above we write Tf(ξ)=Tf(a) for f= 9 («e72+). Then by (2.2)

\ 0
?>(?)= e (iXf.^e

d, times
Therefore

Hence it is enough to prove that

Since
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is a central function on Kξ ,

φ(m)= Σ

(see [7], §24). Hence by Proposition 1 we have

Thus we have

Hence

/(J J) = JH7V(ΓX£))</? (3.4)

By (2.1) we have Tr(T f(kξ)}=Tr(RkT f(t)Rk->)=Tr(T f(ξ)}.

Hence Tr(Tf(ξ ))= 7V(Γχ | f | )). So that we have (3.3) from (3.4).
q.e.d.

Let B (ξ>) by the Banach space of all bounded linear operators on ξ>. We
define the Fourier transform of /e C™(G) by the .B(ξ>)-valued function Tf on
fi. In terms of this transform Proposition 2 becomes the following

Corollary. Foranyf<=C™(G)

4. The Fourier-Laplace transform

For each ξeβc(=C") we define a bounded representation of G on ξ) by

where ^=(* f)eG. For/eCΓ(G), put
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Then Tf is a #(ξ>)-valued function on Hc. We shall call Tf the Fourier-

Laplace transform of/.

Since K is compact, for each /e C™(G) there exists a positive number β such

that Supp(/)c|ί °Λ}^GI M ^0, k(=κ}, where Supp(/) denotes the sup-

port of/. We denote by r7 the greatest lower bound of such α's. Throughout
this section we assume that r^a for a fixed a

Lemma 2. There exists a constant C^O depending only on f such that

f(ζ)\\^Cexpa\Imξ\.

Proof. Making use of the Schwarz's inequality we have

for any FξΞΪQ. Therefore it is enough to put

H"
q.e.d.

Lemma 3. ΓA^ B(&)-valued function Tf on fic is entire analytic.

Proof. For any w-tuple (m19 •••, mn) of non-negative integers we define a
bounded operator Tf

mϊ"mn by

(Tf~ϊ"~nF) (U) =( f ( k ^) X?ϊ"XΛ~nF(k-*u)dx dk ,
J AΓx K \U 1 /

/ Λ ? Λ

where#=l . Then we have
V v ]\Λn/

Hence for any fixed ξ=(ζ1 •••, ?B)eC" the series

, ra ml m..
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Converges in B (ξ>)-norm. It is easy to see that this series is equal to Tf(ζ).

q.e.d.
For any polynomial function p on Hc, we define a differential operator p(D)

H by p(D)=p(- -- ,*••,- -- ). A polynomial funciton p on ίϊc is called
V i dx1 i dxn/

jK-invariant if p(k ξ)=p(ζ) for any k<=K and ξ^Hc. As is easily seen, Tf(ζ)
leaves the space C°°(K) stable.

Lemma 4. 1) For any non-negative integers I and m we have ΔlTf(ζ)Δ™

on

2) For any K-ίnvariant polynomial function p on ίϊc, we have p(ξ)Tf(ζ)=

*(ζ)=p(-ξ).

The statement 1) can be proved by a similar way mentioned in §3. The
r\

statement 2) is easily proved, using the fact - ei<ζ>x>=iξ .ei<ζ'x> and the in-
dxj

tegration by parts. From Lemma 2 and Lemma 4 we have the following

Proposition 3. For any K-invarίant polynomial function p on Hc and for any

non-negative integers I and my there exists a constant Clp™ such that

exp a\Imζ\.

Finally from the definition of T f we have the following functional equations

for Tf.

Proposition 4. T ]

f(kζ)=RkT f(ζ)R~k

l (ζ^Hc

9 kt=K).

5. The analogue of the Paley- Wiener theorem

Theorem 1. A B (tQ)-valued function T on H is the Fourier transform off

e C"(G) such that rf^a (a>ϋ) if and only if it satisfies the following conditions:

(I) T can be extended to an entire analytic function on Hc.
(II) For any ζ^Hc, T(ξ) leaves the space C°° (K) stable. Moreover for

any K-invariant polynomial function p on Hc and for any non-negative integers I

and m, there exists a constant Clt™ such that

I IXOΔ'ΪXOΔ""! I rgC<- exp a\Imζ\ .

(III) Foranyk^K

Proof. We have already proved the necessity of the theorem in §4. In

the following we shall prove the sufficiency of the theorem.
Let T be an arbitrary l?(ξ>)-valued function on fi statisfying the conditions

(I)— (III) in the theorem. Let {φy}ye/ be the complete orthonomal basis of ξ>
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which we have chosen in §3. If \Imξ\ ^b(b>0), by the condition (II) for any

non-negateive integers / and m there exists a constant C1'™ such that

Therefore by Lemma 1 the series

converges and T(ζ) is of the trace class. We assume that n^>3. If φ~
we have | φ j ( u ) \ ^dl£2 because |T&(u)p q\ ^ 1. So we have

•y, Φi)φi(u) φy^)1 ̂  Cί'Mea (j W2/^r ,
7 1- |Λ+pHΛ'

Hence

Σ

(5.1)V ;

for 2 / > |- K"-1) _ -LΓ-5-1 . In case n= 2, | φy | = 1 for all e /. Therefore
Δ* ΔJ Z* L £* J

<f)l= / iΣ rl(Γ(r)Φy,Φι)l< + ~.

Now let us define the kernel function of T(ζ) (ξ^Hc) by

: u, v) = Σ (T (?) φy, φι) Φ, (M) "φXίi). (5.2)

By the facts stated above and the property (I) it is easy to see that for any

the right hand side of (5.2) is absolutely convergent and that it is uniformly cover-
gent on every compact subset of HcχKχK. Thus we have the following

Lemma 5. The function Hc x K X K 3 (?, u, v) -* K(ξ uy v) is of class C°°
and entire analytic with repsect to ζ.

If we adopt the formula (5.1) to p(ξ)T(ξ) instead of T(ζ), we have the fol-
lowing lemma by making use of (II).

Lemma 6. For any K-ίnvarίant polynomial function p on Hc, there exists
a constant Cp such that

\p(ζ)K(ξ u, v)\^Cp expa\Imξ\,(ζεΞHc, uy v^K).

REMARK. K(ζ\ u, v) is rapidly decreasing on the real axis H.

Let us define a function / on G by the inversion formula corresponding to



ANALOGUE OF THE PALEY- WIENER THEOREM

the Fourier transform, i.e.

By the property (III) we have

Let φf = d\l*τpq and φ< =

and

Therefore

τ]eJt). Then

"^ — /71/2 V r Λ
/ ^T ^_1 Λ / V 4

-έ
Hence

Σ Σ

= Σ
p,l=ir,m=ι s=ι ί=ι

= Σ Σ (T(ξ)d^rpl , d^σrm)d^σrm(uk)d^ τpl(vk) .
= r "»=»

X«V«(*) x Σ

Since K(ξ; u, v) =M^ ̂

we have the following functional equation for K(ξ; u, v):

K(kζ;u,v) = K(ζ;uk,vK).

On the other hand

Tr(T(kξ)Ufr) = Tr(RkT(ξ)Rk-
1Ul-^) = Tr(T(ξ)UΪ->),

Hence

where rf| = . As

8?

(5.3)

«) = ( ΛΓ(f «, i ̂ βjίfo (f
^ K
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(L-i k~1X\ /k X\
J for g = ί J eG, we have

K
; &M, v)F(v)do .

Since Γ(?) is of the trace class, so is UξT(ξ). Moreover the function KxK=>

(u, v) (-> ίΓ'̂ '"'1*'1*^^; ΛM, ») is clearly of class C°°. Hence

Therefore the equation (5.3) and the remark to Lemma 6 imply that

( Tr(T(ξ)Uί-ι)dξ = \ \ e-i<kut'x>K(ξ;ku,
H v HJ K

tu-1^; ku, u)dξ du
KJH

= \ e-'<* ">K(ξ , I, k-l)dξ .
J H

Thus we have

/ (J *) = J/-ί<f>AΓ>^(f 1, k->)dξ , (5.4)

y x^H). It follows from Lemma 5 and the remark to Lemma 6 that / is
of class C°°. Making use of Lemma 6, it follows from the classical Paley- Wiener

theorem that if \x\ >a, f (k X\=Q for any k<=K.

Finally we have to check that Tf= T. Since

Tf(ξ)F(u)=\ K^:u,v)F(v)dv
J K

where

so it is enough to prove that

*«;;«, ,)

By the relation (5.4),
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Hence

K(u-*ξ u, v] =

If we replace uξ for ξ ,

This completes the proof of the theorem.

6. The Fourier-Bessel transform

Let C™(K\G/K) be the set of all complex valued j&Γ-bi-invariant functions on

G which are infinitely difϊerentiable and with compact support. For /e C~(G),

put

& f)(g)=\af(g §

and

J K

Forf<=C™(K\G/K) it is easy to to see that

(3&ιf) (I i) = ( JH / (J $ Φ«0')4x) Φ-«W , (6.1)
where

φ£x) = j e^'^du .

REMARK. The formula (6.1) is regarded as an analogue of the Poisson inte-
gral for semisimple Lie groups (see [5]). And the function φg is the zonal sphe-

rical function.
Let us define the Fourier-Bessel transform $3foff£ϊC~(K\G/K) by

If x = ( 9 > (r>0) and £ = ί 9 1 > (β>0), we can prove that

0
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V 2 / / C L Y \
\2J

(see [8] for the the notation of the Bessel function /„ (r)).

l\ 0 r \

0 1
, (τ Ξ>0), we write briefly f(r)=f(gr). Then for any

V o o i/
(K\G/K) f is uniquely determined by /(r), (r ̂  0). Let C°°(K\ίϊ) be the

set of all complex valued ^-invariant functions on H which are infinitely differ-

la\
entiable. If ξ= 9 > we write F(ξ)=F(a) for F(^C~(K\H). It is obvious

\ 0 /
that .3£F/e C"(K\H) for /e C~(K\G/K). Moreover we have

ί /(r
Λ+

Since forf<=C"(K\G/K)

o i o i o i

we have

On the other hand we remark that φ_^(x)= φ%(x) for any ξ ̂ H and
Hence we have the following inversion formula

Then we can easily prove the following analogue of the Paley- Wiener theorem
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for the Fourier-Bessel transform.

Theorem 2. A function F on H is the Fourier-Bessel transform 0//eC7
(K\G/K) such that rf^a (a>ϋ) if and only if it satisfies the following conditions:

(I) F can be extended to an entire analytic function on Hc.
(II) For any K-invarίant polynomial function p of Hc there exists a constant

Cp such that

I p ( ζ ) F ( ζ ) I ̂ Cp exp a | Imζ \ (ζ^fic).

(III) ForanykeK

F(kζ) = F(ζ) (?e#).

REMARK. In case n— 2, we have

(<B2f)(a)=Γf(r)Uar)rdr.
Jo

This is the classical Fourier-Bessel transform [8].
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