Title: Behaviour of Transition Metal Ions in Slag (Report I): State of Titan Ion in CaO-SiO_2-TiO_2 System

Author(s): Iwamoto, Nobuya; Fuji, Masao; Tsunawaki, Yoshiaki

Citation: Transactions of JWRI. 3(1) P.53-P.57

Issue Date: 1974-02

Text Version: publisher

URL: http://hdl.handle.net/11094/3624

DOI:

rights: 本文データはCiNiiから複製したものである

Note:

Osaka University Knowledge Archive: OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University
Behaviour of Transition Metal Ions in Slag (Report I)†
—State of Titan Ion in CaO-SiO₂-TiO₂ System—

Nobuya IWAMOTO*, Masao FUJI** and Yoshiaki TSUNAWAKI***

Abstract

Many sorts of conventional fluxes contain TiO₂ because it gives good properties for welding matters. The role of TiO₂ in flux remains unclear. It is important to study the state of titan ion for solving the behaviour of TiO₂ in slags. The state of titan ion in CaO-SiO₂-TiO₂ system has been considered with the application of some spectroscopic means, that is to say, the measurements of infrared absorption, chemical shift of fluorescent X ray and X ray absorption. In these studies, it might be likely that Ti ion does not remain in complete octahedra coordination.

1. Introduction

The weldability of flux depends on various physical properties such as viscosity, surface tension and so on. It has a great influence for getting a good shape of bead. Likewise, the reactivity of flux gives effect to the soundness of weld metal. Although there exists interrelation between the chemical and physical properties and the structure of flux, our knowledge is inadequate to develop new flux. In order to solve this problem, such a parameter as basicity has been considered to be available, but our intention is not always successful.

There are many sorts of fluxes containing TiO₂ in market because TiO₂ gives good properties for welding matters. However, the role of TiO₂ in flux remains unclear. As an example, the results of viscosity measurement of CaO-Al₂O₃-TiO₂ system are refered now. When substituting TiO₂ for Al₂O₃ up to 9-10% in CaO-Al₂O₃ system, the viscosity coefficient increases rapidly at 1500℃, but viscosity does not depend on TiO₂ content above 1550℃. On the other hand, when substituting TiO₂ for CaO, the viscosity coefficient increases over a wider range of experimental temperature. From these behaviour of TiO₂ in fluxes, it is impossible to interpret the similarity of titan ion to silicon ion.

Likewise, from the fact that the addition of SiO₂ or Al₂O₃ to Na₂O-2SiO₂ increases viscosity at 1400℃, TiO₂ decreases it reversely, it is recognized that the behaviour of titan ion is quite different from that of silicon ion.

Frohberg and Schenck have investigated in detail on the viscosity coefficient of CaO-SiO₂-TiO₂ system and SiO₂-Al₂O₃-TiO₂ system. The followings are their conclusions. It was noticed that SiO₂ content has great influence on the viscosity in SiO₂-Al₂O₃-TiO₂ system, but viscosity does not change noticeable in the case of low TiO₂ content. On the other hand, the isoviscosity lines are parallel to the variation of Al₂O₃ content and the viscosity is independent to Al₂O₃ in the case of CaO-Al₂O₃-TiO₂ system. CaO content gives additional effect to the influence of TiO₂. They have summarized that TiO₂ generally decreases viscosity of the slag which contained CaO, SiO₂ and Al₂O₃.

Secondary, the results of electrical conductivity measurements will be briefly described. With increase of TiO₂ content in Na₂O-SiO₂-TiO₂ system, electrical conductivity decreases, but the value increases in CaO-SiO₂-TiO₂ system. It seems as if Ti⁺⁺ ion makes Ca²⁺ ion to be free from the silicate network. However, in FeO-SiO₂ system, electric conductivity decreases with increasing of SiO₂, but increases with the addition of TiO₂.

From various results mentioned above, it was understood that it remain indistinct how Ti⁺⁺ ion contributes to silicate network.

It has become practical to study solid slag because the investigation of slag structure in molten state is very difficult now. So, it has become important to obtain molten state of slag without change to room temperature.

According to random network theory of glass structure, it is essential for metal cations to occupy tetrahedral coordination in order to accomodate in network. This theory does not permit titan ions to be a networkformer because ionic radius of titan ion is

† Received on Dec. 24, 1973
* Professor
** Co-operative Researcher (Nippon Steel Corporation)
*** Research Instructor
suitable for octahedral coordination. Therefore, it is appropriate to consider TiO\textsubscript{2} as a network modifier. Rao has investigated glassy specimens from alkali oxide-TiO\textsubscript{2} system and has concluded that TiO\textsubscript{2} is a network former while being in octahedral coordination31. He also studied specimens from K\textsubscript{2}O-SiO\textsubscript{2}-TiO\textsubscript{2} system.31 He says that TiO\textsubscript{2} reinforces the network from occupying tetrahedral coordination in the case of high silica content, but it weakens the network from occupying octahedral coordination in the case of low silica. He concluded that TiO\textsubscript{2} has tendency to work as network former essentially.

The authors have intended for studying the state of titan ion, that is to say, to know coordination number, and the state of Ti-O bond. These knowledge play an important role for solving the behaviour of TiO\textsubscript{2} in slags. In this report, the state of titan ion in slags has been considered with the application of some spectroscopic means.

2. Experimental procedures

The chemical compositions of each slags are given in Table 1 and shown in Fig. 1. Every components of analytical grade reagents were correctly weighed and mixed sufficiently. Specimens near one gram were supplied to one experiment. After held for 2 hours at the temperature of 100°C above melting point, it was dropped into mercury ice-cooled.

Infra-red absorption measurements were performed with 225-type spectrometer (Hitach Co. Ltd.). Every specimens were mixed with nujol. Fluorecent X-ray studies were carried on with X-ray spectrometer system (Rigaku Denki Co Ltd.). Chromium and tungsten targets and LiF (200) and (220) as dispersion crystal were used. X-ray absorption measurements were done with GF-3 (Rigaku Denki Co. Ltd.) and 400 multi channel analyzer (Tullamore Model PIP 400).

<table>
<thead>
<tr>
<th>Slag No.</th>
<th>TiO\textsubscript{2}</th>
<th>SiO\textsubscript{2}</th>
<th>CaO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15.5</td>
<td>49.3</td>
<td>35.2</td>
</tr>
<tr>
<td>2</td>
<td>11.4</td>
<td>51.7</td>
<td>36.9</td>
</tr>
<tr>
<td>3</td>
<td>7.5</td>
<td>54.0</td>
<td>38.5</td>
</tr>
<tr>
<td>4</td>
<td>3.7</td>
<td>56.2</td>
<td>40.1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>58.3</td>
<td>41.7</td>
</tr>
<tr>
<td>6</td>
<td>7.5</td>
<td>47.2</td>
<td>45.3</td>
</tr>
<tr>
<td>7</td>
<td>7.5</td>
<td>39.6</td>
<td>53.0</td>
</tr>
<tr>
<td>8</td>
<td>56.1</td>
<td>56.1</td>
<td>36.5</td>
</tr>
</tbody>
</table>

Fig. 1. Specimens studied in the system SiO\textsubscript{2}-CaO-TiO\textsubscript{2}.

3. Experimental results

As an example, typical result by X-ray diffraction patterns of slag rapidly quenched is shown in Fig. 2. It will be seen that the patterns obtained are broad and there is no proof of crystallized matters. It was certified that every specimens did not show crystallization similar to this result.

In Fig. 3, the variation of infra-red absorption results with varying TiO\textsubscript{2} composition from 0 to 15.5 mole% of the specimens which have constant ratio of CaO/SiO\textsubscript{2} = 0.71 are shown. Likewise, the variation of infra-red absorption results with changing CaO/SiO\textsubscript{2} ratio from 0.65 to 1.3 of the specimens having constant TiO\textsubscript{2} content are shown in Fig. 4. It is known that the broad absorption band ranging from 1200 to 900 cm-1 is caused by the stretching vibration (\nu\textsubscript{1}) of Si-O bond, and the absorption band appeared at about 500 cm-1 is caused by the bending vibration (\nu\textsubscript{4}) of Si-O bond. The absorption band appeared at about 720 cm-1 is caused to nujole.

As an example, the comparison of chemical shift of TiK\textsubscript{α} of between titan metal and slag containing TiO\textsubscript{2} are shown in Fig. 5. As an example, the comparison of X-ray absorption spectrum between same samples are shown.

4. Discussion

In Figs. 3 and 4, two absorption bands were determined. The higher frequency absorption band is due to the stretching vibration (\nu\textsubscript{1}) of Si-O bond and that of lower frequency (\nu\textsubscript{4}) is caused by bending of
Fig. 2. X-ray diffraction pattern: sample No. 1.

Fig. 3. Infrared spectra of the slags in the case of CaO/SiO₂=0.71.
Si-O bond as is generally known. Respectively, ν_3 and ν_4 bands shift to lower and higher frequency with the increase of CaO content. The variation is understood from the knowledge that CaO behaves as modifier in slag. These experimental results agree well with the results of Sugino et al.10.

With the increase of TiO$_2$ content, every specimens except No. 1 have shown the same results that ν_3 band shifts to lower frequency in contrary to the fixation of ν_4 band. On the other hand, No. 1 slag containing 15.5 mole % has shown ν_4 band shift to higher frequency than those in the specimens containing lower TiO$_2$ content. However, the cause of the shift is unclear at this point.

Furthermore, there exists the difficulty to obtain glassy materials in the samples having constant CaO/SiO$_2$ = 0.71 ratio when they contained TiO$_2$ content above 30 wt %. From the absorption profiles, it is anticipated that a certain change occurs in the structure of slag. The cause of the difference of the absorption results between specimen (No. 1) and another samples correspond to the inequality of the crystallization. In Fig. 3, the absorption spectrum of crystallized specimen (No. 1) is also shown for comparison. The spectrum contains the occurrences of fine structures and the ν_4 band has largely different frequency when compared with glassy specimen. It is apparent that the vanishing of the fine structures in the glassy state means the variation to random arrangement of structural groups. According to Dachille and Roy11, and Tarte12, it was indicated that the main infra-red absorption bands which corresponds to the stretching modes of metal ion-O shift to higher frequency if metal ion has a lower coordination number. In the case of Ti-O, the absorption band appears in the frequency range from 500 to 650 cm$^{-1}$ when titan ion has a octahedral coordination. Whereas, the absorption band shifts to 690\sim850 cm$^{-1}$ when titan ion has tetrahedral coordination. In this
study, absorption bands are not found because of the scanty of TiO₂ content and SiO₂ absorption bands. Furthermore, Raman spectrum was obtained because of obtaining Ti-O spectrum without hindrance of another vibration modes. As a result of the present time, Raman experiment was unsuccessful because of the appearance of the strong emission uncleared from which the cause was induced.

From the comparison of Figs. 3 and 4, it is understood that TiO₂ might take same role as CaO in slag.

If the coordination of titan or the state of Ti-O bond is varied, the energy level of valence electron of titan changes. This consideration suggests that the wavelength of characteristic X-ray of titan will vary. Dodd and Glen⁷ observed the chemical shift of SiKα in glasses shift to higher energy due to the destabilization of Si-O bond.

An example of the measurements of TiKα is shown in Fig. 5. Kα line of Ti in slag shifts to lower energy when compared with the results from metallic titan. Another specimens have shown the similar tendency. These results are explained by molecular orbital theory that the energy of the valence electron of titan becomes lower because titan combines with oxygen. At this stage there remains uncertainty to discuss about detailed points because the resolution angle of fluorescent X-ray instrument is 0.01" in 2θ.

It is difficult to discuss the variation of energy state in the vicinity of Ti⁴⁺ ion with this means.

In Fig. 6, the absorption spectra of titan in the sample (No. 1) and standard TiO₂ are shown. The difference of titan spectrum is remarkable. The variation at the higher energy region beyond absorption edge corresponds generally to the change of the coordination. The coordination of titan in slag might be different from perfect octahedra coordination. It is expected that X-ray absorption means will give much information about the variation of circumstance in the vicinity of Ti⁴⁺ in slags.

5. Conclusion

Measurements of infrared absorption, chemical shift of fluorescent X-ray, and X-ray absorption were carried out about glassy samples of the SiO₂-CaO-TiO₂ system. Middle-infrared absorption measurement gave only informations of υ₁ and υ₃ vibration of Si-O bond. It was not clear in this wavelength range (middle-infrared) what state Ti⁴⁺ ions exist in. In fluorescent X-ray measurement, it was observed that the Kα line of Ti in slag shifts slightly toward low energy level in comparison with Ti metal. However, the accuracy was so insufficient that the state of Ti⁴⁺ ion in slag could not be discussed with the results.

X-ray absorption measurement appeared apparent difference between the profile of absorption spectra of Ti in slag and that of Ti in TiO₂. The authors have considered that X-ray absorption measurement may be the good method for studying the state of Ti⁴⁺ ion in slag.

In our investigation, it could not be concluded whether TiO₂ is a slag network former or a modifier in the composition range studied. It might be likely that Ti ion does not remain in complete octahedra coordination.

Acknowledgement

Authors thank to facilities for X-ray absorption research to Prof. Tsutsumi in Osaka Prefectural University and for fluorescent X-ray research to Rigaku Denki Co. Ltd.

References