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Let ! be an odd prime number and let J be a Jacobian variety of the curve
defined by the equation y*=1—x’ over a field of characteristic p>0. If p+2,1, ]
is an abelian variety of dimension (/—1)/2. Our aim in the present paper is
to study its endomorphism algebra, its zeta-function and its formal structure.
Denote by A(J) the endomorphism ring of J and put A (J)=A(J)QQ. Letf
be the least natural number such that p=1 (mod. /) and ¢, be a primitive /-th
root of 1 in GF(p”). Denote by Z the endomorphism of J corresponding to the
birational automorphism of the curve: (¥, y)—({,%,y). As for A(J), our idea
consists in investigating the subalgebra R=Q(II, Z) of _A,(J) generated by Z
and the p-th power endomorphism II of /. The arithmetic characterization of
I1/ obtained in Davenport-Hasse [1] and in Shimura-Taniyama [6] makes it
possible. It turns out that there exists a sharp difference according as fis even
or odd. In the first case the structure of R is fairly simple (Theorem 1). The
zeta-function of J coincides essentially with that of a direct product of elliptic
curves whose Hasse invariants are zero. It is plausible that J is isogenous
to a direct product of elliptic curves though R is in general smaller than the
endomorphism algebra of the latter. In the second case A,(J) coincides with R
and is a cyclic algebra over the decomposition field of p in Q(Z). Its local
invariants are determined completely by the prime ideal decomposition of 1/
(Theorem 2). On the other hand the prime ideal decomposition of I1 deter-
mines also the formal structure of J (Manin [5]). In this way we obtain simple
abelian varieties with various formal structures. (Note that ] itself is not always
simple when f is odd.) ‘

The method employed here would be applicable to more general types of
abelian varieties to some extent. We hope that our results suggest something
general for the theory of abelian varieties over finite fields.

1. Let / be an odd prime and let p be another odd prime. Denote by
C a complete non-singular model of the function field defined by the equation
y*=1—af over the field GF(p) of p elements. It is well known that C has genus
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n=(l—1)/2. Let J be a Jacobian variety of C. We may assume that J as well
as a canonical map @: C— J is defined over GF(p).
Let Z,1I and R be as defined before. Z is a primitive /-th root of 1:

Z=1. (1)
Put K=@Q(Z) and let K, be the decomposition field of p in K. Putting g=

[K,:Q], we have [K:K ]=f and [K:Q]=2n=fg. By Proposition 1 of [6], Chap.
II, the commutor of K in A J) coincides with K. As we have clearly

NZ = Z°11, (2)
I1” is contained in K. Moreover we have
ek, (3)

since the map 7: a—TIlall™* is a generating automorphism of K/K, and II” is
fixed by this map. From (1), (2), (3), R is a cyclic algebra (Il/, K, 7).

The prime ideal decomposition of I1” is already obtained in Davenport-
Hasse [1], but it is more convenient to use results of Shimura-Taniyama [6].
Let C, be a complete non-singular model of the function field defined by the
equation y*=1—u«’, J its Jacobian, and let ¢, be a canonical map C,— J,, all
defined over @. By Theorem 3 of Igusa [3], we may assume that the reductions
of Cy, J, and @, modulo p are C, J and ¢ respectively. Put {=¢"#/* and let
«(¢) be the endomorphism of ], corresponding to the birational automorphism
of Cy:(x,y)—(£x,y). This determines an injection ¢: Q(§)—A,(J,)- Denot-
ing by @; the element of the Galois group G(K/Q) such that ¢, (¢)=t?, (J,,¢)
belongs to the simple CM-type (K;{®, ,":*, ®,}) ([6], Chap. II). By Theorem
1 of [6], Chap. III, there exists a prime ideal p in K, dividing p such that

@) =Ip" (= 9r). (4)
Now Riemann hypothesis implies that

|TV| = p7. (3)
Finally it is easy to see that

=1 (mod. 2(Z—1)) (6)
from the expression of I1/ by Gaussian sums

1 — T07(9)
(%)

(cf. Davenport-Hasse [1]). The relations (3), (4), (5), (6) characterize I1/ as an
algebraic integer.
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For later use, we transform (4) into a more convenient form for our purpose.
Let p be a primitive root modulo /. G(K/Q) is generated by o such that
o(Z)=2Z*"". For 1=<i<I—1, choose &, (1=<k,;<I—1)) so that

pti=1 (mod. 1)

As ;=g %, we have y;=c*i. Therefore we can rewrite (4) in the form

() = [Ty, (4)

For 1<j=<g, let v; be the number of 7 such that 1<7/<# and k;=j (mod. g).
Since the Galois group of K/K, is generated by &%, we have

4
() =5 (+)
j=1
2. First we shall treat the case where f is even. For 1<j<g, let v} be the
number of 7 such that n+1=<:/</—1 and k;=j (mod. g). As —1is a power of
p? mod. / in this case, we have k,_;=k; (mod. g). So we have vj=v,. Con-
sidering that »;,4v}=f, we obtain

yjzé for 1<j<g. (7)

Therefore, if f is even, we have
I/ = —p”, (8)

because (8) satisfies (3), (4”), (5) ,(6). The local invariants of the cyclic algebra
R=(—p"*, K, 7) can be determined without difficulty. Let q be a prime
ideal of K, dividing neither p nor /. 'Then q is unramified in K and II” is a
g-unit. Therefore q is unramified in R. Let [ be the prime divisor of / in
K,. Since IT” is a local norm for K/K, at | from (6), [ is also unramified in R.
As for the prime divisors of p, we have

(B)=Lfr=14 @oan for 1sjse.
Finally all the infinite places of K, are ramified in R, since K, is totally real.

Denote by D., , the quaternion algebra over @ whose ramified places are the
infinite place and p. We have

R:Mf/z(Doo,p®Ko), (9)

because the both sides of (9) have the same local invariants. (M,(x) denotes
the total matrix algebra of degree ¢.)
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Theorem 1. If fis even, the characteristic polynomial PP(X) of 11/ is given
by
PO(X) = (X+p™y" (10)

and Q(I1, Z) is the simple algebra M, (D.. ,QK,). Denoting by f the formal
completion of ], we have

JAN nGl,l’ (11)

The last assertion follows immediately from Theorem 4.1 of Manin [5].

It is easy to see that R coincides with () in the case g=1. Is this true
in other cases? In view of Tate’s conjecture (8) of [7], it seems that [ is
isogenous to the direct product of » copies of an elliptic curve whose Hasse
invariant is zero. Then we should have

A(J) = M Dy ») (12)
which would imply that Ay J) is larger than R if g>1.
3. Now let us consider the case where fis odd. First we shall prove
Lemma. If fis odd, we have Q(I1”*)=K, for all s=1.

Proof. As p is unramified in K, it suffices to prove that (IT¥) is not an
ideal of a proper subfield of K,. Assume that

(IV)"* = (IV),
ie.

14 . g .

ILpie"" = I prs” . (13)

j=1 i=1
Put p®=>b and let £ be a character of order g modulo I. As (13) implies that
{EQ)) ,-, E(n)} = {E(1-B) ,---, E(n-b)}, we have

3 EG) = 2EOED)

and so
EB) -2 E@) = 0.
Here it is classical that
gao¢0. (14)

Therefore we have £(b)=1, a=0 (mod. g) and so s*=G(K/K,). This completes
our proof.
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Proof of (14). As fis odd, §—1)=—1. Put
U=, V=i,

Since V appears in the first factor of the class number formula of K, it is not
zero. We have on one hand

V=3V Edi+ 3 E1—i)l—)
and hence
V= 22, £@)i—1U . (15)

On the other hand, we have

V= g £(24) 2+ ; E(I—24)(1—2i)
and hence

V=42 3 )i~ R U. (16)

By eliminating }i‘, &(7)7 from (15) and (16), we have
2E2)-1)V =—-kEQU,
which implies U =0.

From this Lemma, we can deduce that R coincides with (4,(J). By Propo-
sition 3 of [6], Chap. II, A([]) is a simple algebra. Let L be its center. Because
I1”* belongs to L for some s, we have [L:Q]=g by our Lemma. As a maximal
subfield of A,(J) is of degree 2n over @, we have [A(]):Q]=<f’g, which
implies that A, (J)=R.

Now we consider the local invariants of R when f is odd. As in the case
fis even, all the ramified prime ideals of R divide p. Moreover no infinite place
is ramified in R, because K, is totally imaginary. As for the prime divisors of
p, we have from (4")

R\ _ v;
F) =2 (mod. ). 17)

Theorem 2. If f is odd, R coincides with AJ). It is a central simple
algebra over K, in which only prime divisors of p are ramified. The local invariants
of R are given by (17). The characteristic polynomial of 117 is the f-th power of
an trreducible polynomial of degree g with coefficients in Z for every s=1. Let r be
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the G.C. M. of v, ,-++,v,. Then the index of AJ) is flr and ] is isogenous to
the direct product of r copies of a simple abelian variety.

The last assertions follow from the fact that the subfield of K of degree
(I—1)/r is a splitting field of R.

In the case fis odd, the invariants {v,,-::, »,} determine also the formal
structure of J by Theorem 4.1 of Manin [5]. For 0=<k<f{, let 1, be the number
of v; such that »;=k. Put r,=fpu, and put c=~k/f for k4=0. We have r,.=fpu,,
n.=kpy, and m,=(f—k) p, in the notation of Theorem 4.1 of [5]. As G, , is not

A

a component of J in this case, the formal structure of J is given by
A
]N roGl, ot 2 (Gnc, mc+Gmc, nc) . (18)
0<k<f12
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