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1. Introduction

Let {S,}2 , be a random walk on the d dimensional integer lattice Z, that is,
So = O, S" = z Xk’
k=1

where {X;}X, is a sequene of independent identically distributed random variables
with values in Z? defined on some probability space (Q,4,P). The random walk
is called transient if ¢>0 and recurrent otherwise, where g is the probability
that the random walk never returns to the origin. An equivalent criterion for
transience is the convergence of ;2 P(S,=0). When T2 ;T2 P(S,=0)< o0, we
call the random walk strongly transient. The random walk is transient if the
genuine dimension is greater than or equal to 3, and strongly transient if not less
than 5. There are also transient and strongly transient random walks in lower
dimensions. If EX,=0 and E|X,|> <o, the random walk will be recurrent when
the genuine dimension is equal to 1 or 2, and not strongly transient if it is 3 or 4.

Let R, be the number of distinct points visited by the random walk before
time n. Kesten, Spitzer, and Whitman showed that R, /n — g almost surely for all
random walks (see [12]). Jain and Orey [6] proved that for strongly transient
random walks, if ¢ <1, then Var R, ~ u’n for some suitable positive constant p? and
(R,—qn)/ ,uﬁ converges to the standard normal variable in the distribution
sense. Moreover, Jain and Pruitt [7] concluded the same statement for genuinely 4
or more dimensional random walks, and in [8] they also established the law of
the iterated logarithm in each cases.

The single point range of the random walk, denoted by Q,, means the number
of distinct sites entered once and only once by the random walk before time
n. Pitt [11] showed that EQ,~g*n and Q,/n — q* almost surely for all transient
random walks. In [3], it was shown that if the random walk has genuine
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dimension d>4 and g<1, then there exists a positive constant ¢? such that

Var Q,~¢?n and the distribution of (Q,—g?n)/a./n is asymptotically equal to the
standard normal. Moreover, the law of the iterated logarithm for Q, is proved
in [4]. The case g=1 is not of interest since Q,=n+1 almost surely.

We shall consider the central limit theorem and the law of the iterated
logarithm for Q, in the strongly transient case. The limiting behavior of the
variance of O, and the proof of the central limit theorem are given in Section
3. Section 4 is devoted to the proof of the law of the iterated logarithm.

2. Notation and preliminaries

In this section we will give some notation and one lemma. For
xeZ% the notation P,(-) will be used to denote the probability measures of
events related to the random walk starting at x. When x=0, we will simply use
P(-) instead of Py(-). For n>0 and x,y e Z% the notation p"(x,y) means P (S,=y)
and note that p"(x,y)=p"(0,y—x). For xeZ’ 1, will denote the first hitting time
of x, ie.

T, =inf{n>1; S,=x};

if there are no positive integers satisfying S,=x, then 7,=o00. The taboo
probabilities are defined by

p'z'(x,y)sz(S,,=y, rZZn), P:w(xay)zp(sn=y’ T,2h, Twzn)-
For n>0 and x,ye 2" let

Gixp)= 3 ).

k=0

For transient random walks, there exists lim,_, , G,(x,y), which denoted by G(x,y), and
this limit is bounded by G(0,0)=¢ !<oo. It is trivial that P(t,<o0)<G(0,x).
We will use r, for Py(n<ty,<o0), f, for p§(0,0), and u,=p"(0,0). For n>0, let

If the random walk is strongly transient, we have that ¢, < oo.
The following lemma plays important roll in calculating the probability
estimates of some quantities related the random walk.

Lemma 2.1. For strongly transient random walks, we have

0

Y, G060 =Y f Pi0,0)= io( Jj+1)p/(0,0)< 0.

xeZd i=0 j=i j=
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Proof. By the definition of the function G, we have
YGOX0Gx0)= 3, Y. Y pOx)p(x0).
x i=0 j=0 x

Noting that X, pi(0,x)p(x,0)=p'*%(0,0), the right hand side is

This means the assertion of Lemma 2.1.

For the sake of simplicity of notation, in what follows, we shall use the
following convention. If {a,} and {b,} (b,>0) are sequences of real numbers,
then a,=o(b,) means a,/b,— 0; a,=O0(b,) means a,/b, remains bounded; a,~b,
means a,/b,— 1, as n—> 0. C;, C,---C;; will denote suitable finite positive
real constants.

3. The central limit theorem for Q,

For the genuinely 2 dimensional, aperiodic random walks with mean 0 and
finite variance, Hamana [5] showed that Var Q,~ Ln*/(logn)® for some suitable
constant L and (Q,— EQ,)/+/ Var Q, converges to the self-intersection local time
of a planar Brownian motion multiplied by some constant in the distribution
sense. Our goal in this section is to establish the central limit theorem for the
single point range of strongly transient random walks, especially, 2 dimensional ones.

Now we introduce several indicator random variables. For 0<i<j, let

i 1 ifS;#S, for i<a<j,
“lo otherwise,

J

Yie 1 ifS;#S, for i<a<j,
0 otherwise,

and Z!=Y"=1 for n>0. Then we have Q,=X"_,Y?Z]. In order to obtain the
variance of Q,, we need to define other indicator random variables. Let X,, X_,
(n=1,2,---) be independent copies of X; and for /<m, define

X(lm)= i X,

k=1+1

Using this notation, we can express

J
i

Ui X(e) #0 for i<a<j,
o otherwise,
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Jj

Y"—{l if X(a,/)#0 for i<a<j,
~ |0 otherwise.

For each integer j, let

{1 if X(j,)#0 for a>j,
0 otherwise,

Y—{l if X(o,j)#0 for a<j,
|0 otherwise.

and for i<j, Wi=Zj—Z,and Vi=Yi—Y, Note that W/ and V] are also indicator
random variables. Let A,=Z7_,Y;,Z;, We aim to approximate Q, by A,, and
the following lemma assure the approximation of Q,. '

Lemma 3.1. For the strongly transient random walk,

2
=o(n), E|

2

E =o(n).

n n
LWy LV
j=0 j=0

Proof. We have

n 2 n n j—1
(3.1) EY w!| =Y EWwr+2Y 'Y EWW!
=0 j=0 j=1i=0
n n—1 j—1
<2V EWr42Y Y EWIW].
j=o j=1i=0

For 0<j<n, EW}=r,_; and EW};=1—q. Then we obtain the first term of (3.1)
is dominated by 2(¢,+1). For 0<i<j<n,

EWIW?= Y ph (0x)P(n—j<T0,T, < 0).

x#0

Neglecting the event {n—j<1,<00},
E:;EW,-" Wy 3 GONPn—j<to< o)

Note that for m>0,

(3.2 P(m<t,<0)< i P*(x,y) = G(x,) — G o(x,y).

k=m+1
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Then the bound of the second term of (3.1) is

(33) 2 T G0G00)— G0}

j=1 x

Since G{(x,0) = G(x,0) as j tends to infinity, by Lemma 2.1,
lim ) G(0,x){G(x,0) — G {x,0)} =0,

where the dominated convergence theorem have been applied. Hence the order
of (3.3) is o(n). The estimate of the part involving ¥’s can be shown in the same
fashion by relabeling the indices of X. This completes the proof the lemma. W

In repetition of the argument used in calculating Var A, in the case d=3 and
¥G(0,x)*G(x,0) < 00, one sees that Lemma 3.1 gives the asymptotic behavior of the
variance of the single point range of strongly transient random walks (see Lemma
3.6 and 3.7, and Theorem 3.8 in [S]). Then we can derive the following theorem.

Theorem 3.2. For strongly transient random walks, if q<l1, then there
exists a positive constant ¢* such that Var Q,~a’n.

To prove the central limit theorem for Q,, we need to define four more indicator
random variables. For n>0 and 0<j</, let

(1 if §;#8, for j<a<l, I<a<n,

=+ and §;=S§, if I<n,
!0 otherwise,

Z;"Z{l iij;é.S.’a for j<a<n,and S;=S,, if I=n,
’ 0 otherwise,

7 {1 if S;#8S, for j<a<la>land S;=S,
W=

0 otherwise,
W"'l':Z]'{l—Zj,l'

Js

The random variable £1Z%7_;, Z}), denoted by R, is equal to the number of
distinct points visited at least twice by random walks up to time n. It is clear
that 0,=R,—R?. Let I',=%"_,Z, Noting that R,=X7_,Z], the estimate

(34 ER,—T,*=0(n)

was established in Lemma 3.1. Then we try to obtain the similar assertion about
R®. The following two lemmas assure that R{?) is approximately a partial sum of a
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stationary sequence.

Lemma 3.3. For strongly transient random walks, we have

n—1 n 2
Y Y wi =o(n)

j=01=j+1

Proof. We can calculate this expectation analogously to Lemma 4.1 in
[5]. However, the method of estimating is slightly deferent.

n—1 n 2 n-1 n
E Z 2 I = Z Z EW;,
j=01=j+1 Jj=0 1=j+1

n—1 j—1 n

2y Y Y Y Ewpn,

j=1i=01=j+1 h=1+1

n—-1 j—-1 n -

+22 X X 2 EW; Wiy

=1 i=01Il=j+1 h=j+1

n—1 j—-1 n

2%y 3%

j=1i=01=j+1 h=i+1

=[4+1I+1I41V.

For 0<j<I<n, it is clear that EW},=f,_;,_,, Hence we have I=0(1). Since,
for 0<i<j<l<h<n,

EW? WP, <Y pPmH0x)p,i(x x)p" ~H(x,0)Po(n — h < 14,7 < 00),

we obtain by neglecting the event {n—h<1t,<o0},
n—11-1 n

n<y Y Y fiija- ,,Zp" '(x,00G(0,x)= O(1).

1=2 j=1 h=l+1

The third term is dominated by

IIM;

5: 52 0GE0)G0:9r,-1=0()
and the bound of the fourth term is

123 2.G(0,x){ G(x,0)— G(x,0)} G(x,0) + lir,, ~13.G(0,%)G(x,0).
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The first part is o(n) by the same method as in obtaining the order of (3.3) and
the second part is O(1) by Lemma 2.1. W

Lemma 3.4. For strongly transient random walks,

n—1 ©
Y X Zi

j=0 l=n+1

2
E| =o(n).

Proof. We can prove the assertion similarly to Lemma 4.2 in [5]. Namely,
we have

n—1 © 2 n-1 ©
EZ 2 Z;, =Z Z EZ;,
j=01l=n+1 j=0 Il=n+1
n—1 j—1

2y Y S Y Ez,z,

j=1i=01l=n+1 h=1+1

n—-1 j—1 © )
+2Y Y Y Y EZ;Z,

j=1i=0 h=n+1 I=h+1
=I+II+IIL
The limiting behavior of each term can be easily obtained. We have that the
first term I is bounded and the second term II is no larger than
n—1 j—1 .
Y 2o T0.x)G(x,0)=O(1).
j=11i=0 x
The third term III is bounded by
n—1
Z ZG(O,X){G(X,O) - Gn _,(x,O)}G(O,x) = 0(”)'
j=0 x

J

Therefore we can conclude the assertion. [l

For n>0, define I'P=%7-0%",,,Z;,, Combining Lemma 3.3 and Lemma
3.4, we have
(3.5) EIRP —T P2 =o(n).

We are now ready to show the central limit theorem. The main tool is the

Lindeberg theorem for triangular arrays.

Theorem 3.5. For strongly transient random walks, if ¢ <1, then (Q,—q*n)/ o\/;z
converges to the standard normal variable in the distribution sense.
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Proof. Let ¥,=T,—T'?. We conclude that E|Q,—¥,|>=o0(n) by (3.4) and
(3.5). Thus (Q,—V¥,)/ \/r; — 0 in probability as n tends to infinity, and hence it

suffeces to consider (¥,—q%n)/ a\/r;.
Let m=[n'] and for i=12,---,m?,

im—1 im—1 im
_ im 2)_ - .
A=Y Zj" A=Y Yz
j=(@—1)m j=@G—-1m l=j+1
im—1 im—1 im
—_ i 2) __ i
U= Y W U= Y X Wi
j=@—1)m j=@—-1m l=j+1
im—1 ©

2
Vi = Z Z Zjy
J=G—1ym 1=im+1
Then we have

Py gm®= Y. (A= EA)— ¥ (U= EU) +(Zps— ),

i=1 i=1

T g(1 =g’ = 3 (4D~ EAP)

i=1
3 (v —pve)
i=1

m2
- ¥ (U -EUP)+
i=1

Firstly we show that both 4 part and 4® part are dominant comparing with the
other parts. Recalling the argument used in Theorem 3 in [7] and in Theorem
4.1 in [9], we can derive that

(3.6) Var( 5 U,-) =o(m?).

We next estimate Var(ZU{?) and Var(ZV{?). However, the way of calculation is
similar to that used in Theorem 4.4 in [9].

Var( Y U,‘”)
i=1

m? im—1 im—1 im im . .
=Y X Y X X CovWiwg)
i=1 j=(@(—-1)yms=(—-1)ml=j+1 h=s+1
m2 j—1 jm-—1 im—1 Jjm im . .
+2), Y X Y Covwinws

j=2i=1r=(—-1)ms=(@{—-1)ml=r+1 h=s+1

=I4+IL

Dominating each Cov(W/5,Win) in 1 by EW[TW{,, we can estimate the term I in
the same way as Lemma 3.3, and also have I <o(m®). Now we estimate the term
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II. The bound of Cov(W/7,Wim) is

I—r
Sos 3 S0 THOPM0P " O s

k=1 x

qﬁl—sﬁ—r Z Pﬁ_h(O,x)Px(To <Ty jm—l<rx< OO)
x#0

For details, see the proof of Theorem 4.4 in [9]. Then the first part of the term
IT is dominated by

m2 Jjm

-1 l-r
Y Y TGO T HONN

j=21=(G-m+1 r=(—-1)m k=1 x

m2 Jjm -1

Sq_lz Z z (l_r)ul—rrjm—l'

j=21=(-Dm+1 r=(j- )m

By Lemma 2.1, it is of order m?>. The remaining part is no larger than
jm

Y Y YGOx)P(to<1,, jm—I<t,<00)=0(m>).
i=2

I=(—-1)m+1 x

Here we have applied the argument used in Theorem 4.1 in [9] again.
Thus

(3.7 Var( mzz Ui‘z’) =o(m?).

i=1

We shall show the ¥ part has the same estimate as the U'® one.

Var( mz V}”)

i=1

m2 im—1 im—1 o 0
= Z Z Z COV(Zj.I’Zs,h)
i=1 j=(@{—1)ym s=(@{—1)ym l=im+1 h=im+1
m2 j—1 jm-—1 im—1 )
+22 Y X Y ) CovZ,Z,)
j=2i=1r=@(-1)m s=@(i-1)ml=jm+1
2 j—1  jm-1 im—1

+ 2 mz Z Z i Cov(Zr,sz,l)

j=2 i=1 r=@—1)m s=(@{—1)m l=jm+1

m2 j—-1 jm-—1 im—1 © r—1
2y Y X X X ) CovZ,Z.)
j=2 i=1 r=(—1)m s=(@{-1)m l=jm+1 h=im

m2 j—1 jm-—1 im—1 )

YT YN S Y cowzuz

j=2i=1r=@-1)m s=(@{—-1)m l=jm+1 h=r+1
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m2 j—1 jm-—1 im—1 ) ©
+2 z Z Z Z Z Z COV(Zr,lSZs,h)
j=2 i=1 r=@(—1)ms=({—1)ml=jm+1 h=1+1
=I+II+II+IV+V+VL

The first three terms can be estimated in the same manner as the U?® part by
choosing the order of the summation carefully and each term is bounded by
o(m?®). the method of estimating the term IV is similar to that used in Theorem
44 in [5]. In fact, for s<h<r<l,

Cov(zr,bzs,h) Sﬁl —-sJ1- 'Zpr - h(O,X)G(X,O).

For fixed s, we sum over % in (s,7), and take the summation on i. Then
m2 jm—1  (—-1m r—1

Iv<2}y Z YooY fuestim- ,Zp’ "(0,x)G(x,0).

j=2r=@(—-1)m s=0 h=s+1

Changing the order of summing on 4 and s after widening the summation on
s. Hence we have that
m2 jm—1

IVSC,Y 'Y Fpor=0(m?).

Jj=2r=@{-1)m

The estimate of the term V is quite easy. Indeed, for s<r<h<l/,
EZ,Z,4<Y.p " 0x)p" " (x,0)p' ~"(0,x).

Therefore, summing first on i and then on [/ after changing the order of the
summation on / and A,

m2 jm—1  (—1)m

V23 ¥ 3 X T0NGE0G0)

j=2r=@(-1m s=0

25 % T(609—6,- - 1m00}6x0G0)

j=2r=(—-1m x

=o(m?).

We will estimate the term VI. Since for s<r</<h,

EZr lZs h—= Z pO S(O x)l’ ( ,x)P'('); l(x9O)Px(r0>Tx = CD),

x#0

dominating P (tq,t,=00) by 1, we have
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(see [10] page 272).
Theorem 4.1. For strongly transient random walks, if g<1, then

)
lim supﬂ_
no /26%nloglogn

and the liminf of this sequence is —1 almost surely.

=1 as.

Proof. The sequence {n;} is formed by taking for k=3,4,--- all integers in
[22£22¥*2) of the form 2% +j¢ with j a non-negative integer and ¢&,
=[2%logk)~**]+1. The number of members of the sequence which are in
[2%%,2%%*2) will be at most 3-2*logk)**. Since if n,<n<n,,,, then

|Qn - EQn - Qni + EQnJ < 2(” _ni) = o(nil/z):

it is enough to show the statement of this theorem along the subsequence {n;}. We
also need to see that EQ, can be replaced by ¢g?n but this is valid since

EQ,= ) (q+r)g+r,-)=¢’n+0(1)
j=0
for strongly transient random walks.
Recall the definitions of indicator random variables Z/, Y} introduced in Section
3. We define two more ones. For 0<a<b<c, let Wo'=2Z!—Z: and VP
=Y?—Y? Using these indicators, we have

i-1 nj+q
ni _ ni 7N+
0,,—Zo'= Z YZy
=0 h=n;+1

i—-1 nj+q
_ Z z W":j+ls”iY":j
j=0 h=nj+1

i—1 nj+y

__Z Z V,','J"OZ,’,””

j=0 h=nj+1

i—1 nj4q

+Y X Wy

j=0 h=nj+1
=I-II-III-1V.

Firstly we will show that the term I is dominant comparing with the other terms
and next check the first term satisfies the Kolmogorov condition.

If 2%<n;<2%*2, then we define n,=[2%logk)™'/*] and p;=m;, where
k(j)=[logn;/log4]. The second term is divided into two parts, that is,
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Z EZr,lZs,h Sfl -r Z p;)_ S(O’x)Px(TO < 00,Tg < Tx)'

h=1+1 x#0

Hence, neglecting the event {t,<7,},

m2 jm—1 (—1m

VI<2Y Y Y s Y T 0X)G(,0)= O(m?).

j=2r=@(—-1m s=0 x

Accordingly we obtain that

(3.8) Var( "f V{”) =o(m3).

i=

From now on, we show the central limit theorem. For the sake of convenience,
put A;=4;,—A?®. By (3.6), (3.7), and (3.8), we have

Var[i“z (UP -V~ Ui)]=o(m3)= oln),

which yields that for any £>0,

d
We need to show the residual part (¥,—¥,:—q’n+q’m®)/ \/t_t converges to 0 in
probability. However, it is valid since Var(¥,—Y¥,,:)=O0(n?'?). 1t still remains to

check the Lindeberg-Feller condition. A; are independent and their each
distribution coincides with that of @, —1, and A;<m for each i. Thus

m?2 A — . 2
Var(z ; EA,)zm VarQ,, L

2
i=1 0'\/;1 ag’n

(s — qzma) - mzz (Ai—EA)

i=1

>eﬁ]=o(1).

and since |A;— EA;|<m,

m2 L \2 4
5 (A' EA') ;|Ai—EA.~|>sﬁ]S%Vanm
&\ w'n

This completes the proof of the theorem. W

which is of order n~1'/3.

4. The law of the iterated logarithm for Q,

In this section we will give a proof of the law of the iterated logarithm for
the single point range of strongly transient random walks. The main tool is the
Kolmogorov-Cantelli condition for a sequence of independent random variables
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i—1  nj4q i—1  mjyy
= z 2 W;:j+l+Pj;"iY'7‘lj+ z 2 W;llj'&l’"j*l"‘ﬂjY;:j.
Jj=0 h=n;+1 j=0 h=nj+1

For the sake of convenience, we put
nj+1 nj+1

— nj+ 1+ pjniyn — n + n
;= Z wr iy, ﬁj_ Z Wit tnicitesym,

h=nj+1 h=nj+1

and then have that I1=X3:"{(a;+ ).
We first consider the part involving o’s. For 22¢<n;<22%+2,

i-1 i-1 nj4q i=1 njey—nj—1
E zal S Z Z rn,+1+p,—h= Z Z 7‘,,4.,,,.
Jj=0 Jj=0 h=nj+1 j=0 h=0

Then we have that

i—1 k Bm+1—Nm—1
E(Z“i)ﬁ > > Y Then

Jj=0 1=3 m:221<p,,<221+2 h=0

IA
M=

(nm+ 1 _nm)rm
1

3 m:22l<n,,<221+2
k
< C2 Z 2217,”.

1=3

By the definition of the sequence {n;}, we note that there are no positive integers m
satisfying 22'<n,, for [=0,1,2. On the other hand,

d
Noting a;> 0 for every j> 0, we have the expectation of the right hand side is bounded
by 2EZa;. Now form a subsequence {n, } by taking every [2*(logk)"/*]th member

of {n;} in [22%,2%%*2), and then there will be O{(logk)'/*} members of the subsequence
in this interval. Then we obtain

A

© k
<C; Y 27Klogk)™* Y 2%'r, x (logk)*
k=3 =3

ii (o — Eory)
j=0

j=

> e2¥log k)*] <e 12 logk) *E|

i-1
2. (@;— Eo))
=0

vm—1

Y, (o;— Eay))

j=0

>s(n, Joglog nv.y]

<C,Y 2(log)?r,,
1=3
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Since r, <X, U4, applying Lemma 2.1, the last summation is dominated by

Mm+1 "m+l
22’(logl)“ Z Y u, Z 2"(logm)™* Y u,
m=1l n=npm+1 m=3 n=Nm
<Cs Y. fu,< .
n=1

This means that X(x;—Ewa;) divided by (nloglogn)'/? tends to zero along the
subsequence {n, }. If 2**<n, <n,<n, <2?**2 then

Vm+1—

vm—1

Z (otj— Eotj)— Z Eo;< Z(a —Eoc)<vm+zl l(ozj——Eoz,)+vm+zl‘, lEoz
j=o

J=vm

which implies that we only need a estimate of Ex; to see that convergence to zero
along the original sequence {n;}. For n;<2?**2,

nj+1—ny 00
Eo;< Y Ny, < Y rp=o(l)
h=0 h=me(j)

as j— oo. Moreover, both v,,,—i and i—v, are less than or equal to
2*(logk)'/2. Thus

i-1 Va1 1
Y. Eo;, Y. Ea;j=o0{2"logk)*}.
=V j=i

Next we estimate the part involving f’s and have
i—1
4.1) Var( y ﬁj) Z Varf;+2 Z Z Cov(B;,p).
Jj=0 ji=11=

For 0<j<i, the variance of B; is

nj+1
(4.2) Z Var( W":j+lynj+l +PjY'7l'j)

h=n;+1

njr1—1  ny4q
+2 Z Z Cov(Wpi+tmi+1¥pi YRy i+ tnys1¥p) Yy

m=nj+1 h=m+1

The bound of the first part of (4.2) is

nj+1 nj+1

Z EW’U+1"]+1+PJ< Z r

h=n;+1 h=n;+1

_p=0(1)

nj+1
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and that of the second part of (4.2) is

"j+1_1 +1 nj+1-1
j+1.mj+1+p
DO LA OP T e R R
m= 'lj+1h m+1 m=nj;+1
PJ
<2 mr,,
m=

where we use n;,; —n;<p; Therefore we obtain that the first term of (4.1) is no
larger than 3iX%_ mr,. The second term of (4.1) is equal to

i-1 j-—- nj+t n+y

22 Z Z Z Cov(Wpi+1mi+ 1+ ps Yy Jy/ms vms 1+ prym)

j=11=0 h=nj+1 m=m+1

To estimate it, we split it up into several parts. For 0</<j<i, we consider
the three cases:

() myy+p<n; (i) ny<my+p<h (i) h<n+p,.

In Case (i), Wpitvmi+1+Piyni and Wr+uvm+1+oym are independent. Therefore the
covariance and also the summation are equal to zero. In Case (ii), we have that

Wi+ n:+1+pl_u/m+1 nj u/n'.nl+1+01
m ’ - m "+ mJ

and Wni+eniyn™ is independent of Wpi+tm+1+esyr, Hence

COV(W":1+ly'lj+l+PjY::j’W'7:ll+l;"1+l+P1Y:'lll
— Lhj+1tpjyn M1t prym
= CoV(WI+1ms+ 1 +0s Y5 Jymsms s+ pryn
SEW;;+1,n1+1+pJW;jJ1+1+m

<r"j+1 hrnj m*

Then, summing first on /, the multiple sum is bounded by

i—1 nj+y nj
r
Jj=1 h=nj+1 m=1

nj+q —hrnj—m'

By strong transience, it is of order i. In Case (iii), the covariance is equal to
(4.3) Cov(WysrrmserHosY s Wi v Y L)
+ CoV(Wyr oM+ 21 Yo WY )
+C0V(W":j+1,"j+1+PJY":1,W""I,"I+1+P1Y;I).

We immediately have that the first part of (4.3) is zero by independence, and can
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easily show that the summation of the second part is of order i by the same
argument as in Case (ii). The last part of (4.3) is no larger than EWk™+1*ri<y,
Hence the summation is bounded by

i—1 n+1 m+1+p1 i—1 my1—m m+p;
D Y ThemS Y X
1=0 m=m+1 h=n+1+1 I1=0 m=0 h=m
i-1 pt 2p;
<Cs s
1=2 m=0 h=m
2pi
<C,iY, hr,
h=1

Combining with these estimates, we can conclude that
i-1 2pi

Var{ ) ﬂj)=0<i Y mr,,,).
j=0 m=1

Then we can show that Xf; is negligible along the same line as in [8]. Therefore
we can conclude that 11— EIl = o{(n,Jloglogn;)'/*} almost surely and can prove that
III - Elll=o0{(njloglogn;)'/*} as. in the same technique as in estimating II by
splitting III into two parts:

i—1 nj4q i—=1 nj+y

III=Z Z V;f,"x‘mz;,un+z Z Vi erOZmi,

j=0 h=nj+1 Jj=0 h=n;+1

In this case, V’s and Z’s play the same roles as W’s and Y’s respectively by
considering the time-reversed random walk.
From now on, we will estimate the last part VI. For 0<j<i, let

nj+1 0
— niy/mj,
y= S wpmpe,
h=n;+1
Then
i—-1 i—=1 nj4q i—1 njsy—nj
12 Z Vi = Z Z Pryor—nth—n;= Z Pnysr=nj—h'n
=0 Jj=0 h=n;+1 j=0 h=1

We divide the summation on A into two parts:
(@) 1<h<lnjyy—np (i) {njpy—nd><h<n;  —n;

where {(x) is the integer part of a real number x/2, and easily see that the
summation on h of each case is of order rg ,  _,, since r, is non-
increasing. Therefore, for 22*<n,<22¥*2
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i—-1 k
E Zy,)SCB Y
=0 1=3

k
Ty < C9§32'(103 DRries.

m:22l <py<221+2

Now we consider a subsequence {n, } by taking every [2%(logk)'/#]Jth member of
{n;} in [22%2%¥*2) and there will be O{(logk)!/?} members of the subsequence in
this interval. To see that X(y;—Ey, divided by (nloglogn;)'/? tends to 0 along
the subsequence {n, }, it suffices to show the convergence of

0 k
’232 “klogk)~ *1232’(log Dr gy x (log k)t

Indeed, it is bounded by

© : a Em+ 1) @ Em+1)
Cio Y, (loghty. us<Cyo ). mlogm* Y u,
1=3 m=1 &= (Emy+1 m=3 E=(Emr+1
(e o]
<Cyy Y, éus<oo.
&=1

By the same argument used on Xf;, we can obtain that IV—EIV is equal to
o{(njloglogn;)!/?} almost surely.
It remains to check that the term I satisfies Kolmogorov condition.
For 0<j<i, let
nj+1
= 3 Yezpe

h=n;+1

Since the {; are mutually independent and the law of {; coincides with
Qnyoi—n,— 2’ "™ for each j,

i-1 i—-1
Var( Z Cj)"’ Z 62("j+1—nj)~0'2n,~
j=o i

ji=0

and for 22k <n,<2%*2

1
|Ci_ECi|Sz(n.'+1—ni)52{2k(logk)_*+1}=0{<-7ni > }
loglogn;

This completes the proof of Theorem 4.1. W
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