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SUMMARY 

We have determined the entire structure of the human pancreatic cr-amylase (Amy2) gene. It is approx. 9 

kb long and is separated into ten exons. This gene (amy2) has a structure very similar to that of human salivary 

cl-amylase (Amyl) gene [Nishide et al. Gene 41(1986a) 299-3041 in the nucleotide sequence and the size and 

location of the exons. The major difference lies in the fact that amyl has one extra exon on the 5’ side. Other 

differences are at the 5’ border of exon 1 and the 3’ border of exon 10. The close similarity of these two genes, 

as compared with mouse pancreatic and salivary amylase genes, suggests that during evolution, the divergence 

into the two amylase genes may have occurred after the divergence of mice and man. 

INTRODUCTION 

Human a-amylases which hydrolyze a-1,4 gluco- 

sidic bonds, consist of two major isozymes, i.e., 

salivary type and pancreatic type. These two iso- 

zymes differ in molecular size (Matsuura et al., 1978; 

Stiefel et al., 1973) isoelectric point (Matsuura et al., 

Correspondence to: Dr. A. Horii, Institute for Molecular and 

Cellular Biology, Osaka University, Yamadaoka, Suita 565 

(Japan) Tel. (06)877-5244. 

* Present address: Howard Hughes Medical Institute, Univer- 

sity of Utah, Salt Lake City, UT 84132 (U.S.A.) Tel. (801)581- 

3741. 

1978) and antigenic properties (Boehm-Truitt et al., 

1978). Our previous studies on cDNAs of salivary 

and pancreatic a-amylases (Nakamura et al., 1984; 

Nishide et al., 1986b) have shown that at least two 

different, but closely related genes are transcribed in 

tissue-specific fashion. In addition, salivary a-amy- 

lase gene (amyl), but not pancreatic a-amylase gene 

Abbreviations: aa, amino acid(s); Amyl, human salivary cc-amy- 

lase; amyl, gene, cDNA or mRNA coding for Amyl; Amy2, 

human pancreatic cc-amylase; amy2, gene, cDNA or mRNA 

coding for Amy2; bp, base pair(s); cDNA, DNA complementary 

to RNA; cos, cosmid; kb, kilobase or 1000 bp; N, any nucleo- 

side; nt, nucleotide(s); p, plasmid; PolIk, Klenow (large) frag- 

ment of E. coli DNA polymerase I. 
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(amy;!), is expressed in some cancers (Y. Nakamura, 
N.T., T.N., M.E.,A.H., M.O., T.M., G. Kosaki, T. 
Okabe, M. Fujisawa, N. Osawa, T. Kameya and 
KM., manuscript in prep.; N.T., N. Matsuura, 
A.H., M.E., T.N., M.O., T.M., 0. Doi, and K.M., 
ms. in prep.). Thus, it seems to be of interest to clarify 
the mechanisms of the specific expression control, 
and therefore, we started to analyze these genes. This 
paper reports the structure of human amy and com- 
pares it with the structure of amyl (Nishide et al., 
1986a). The results show that these two genes are 
remarkably similar, albeit they express differently, 
suggesting that they separated very recently, or that 
there has been a very efficient gene conversion pro- 
cess to conserve the sequence during evolution. 

(d) Sequence analysis 

DNA fragments were extracted from the cosmid 
clone (cosP2), subcloned in pUC8 (Vieira et al., 
1982) or in Bluescribe (Vector Cloning Systems), 
and in Ml3 vectors mpl0, mpll (Messing, 1983), 
mpl8 or mp19 (Yanisch-Pe~on et al., 1985), and 
sequenced by the dideoxy method (Sanger et al., 
1980; Hattori et al., 1986). 

(e) Poly(A)+RNA preparation 

A resected human pancreas was frozen in liquid 
nitrogen and stored at -70’ C. RNA was isolated as 
described (Nakamura et al., 1984). Poly(A) + RNA 
was purified by oligo(dT)-cellulose column chroma- 
tography. 

(f) Primer extension analysis 

MATERIALS AND METHODS 

(a) Enzymes and reagents 

Restriction endonucleases were purchased from 
Takara Shuzo (Kyoto, Japan) and Toyobo (Osaka 
Japan). PolIk and Escherichia coli T4 ligase were 
from Takara Shuzo. 

(b) Library screening 

The human genomic cosmid library carrying ap- 
prox. 40-4S-kb inserts was kindly provided by Dr. 
Y. Nakamura (Lau et al., 1983). Recombinant 
colonies carrying human amyl and amy were 
screened using the mixture of 32P-labeled human 
amyl and amy cDNAs (Nishide et al., 1986b) as the 
probe. Selection of a clone (cosP2) that carries the 
amy is described in the text. 

(c) Mapping of cosmid ciones 

Each cosmid clone was digested with some 
restriction endonucleases, electrophoresed in 0.5 y0 
or 0.35% agarose gels (Maniatis et al., 1982), trans- 
ferred and hybridized to 32P-labeled cDNA, or to 
32P-labeled fragment of the cosmid vector DNA, 
according to Southern (1975). We also used double 
digestion or partial digestion for tine mapping. 

Primer extension was carried out using pancreatic 
poly(A)+ RNA as a template and a 5’ end-labeled 
synthetic oligodeoxynucleotide primer (5’-CCAG- 
CAGAACCCAATGGT-3’). This primer is com- 
plementary to a sequence of pancreatic cl-amylase 
cDNA covering codons 9 through 14. Analysis was 
carried out in a 6% polyacryl~ide-8 M urea gel 
along with appropriate dideoxy sequencing samples 
as size markers. 

RESULTS AND DISCUSSION 

(a) A cosmid carrying the human pancreatic a-amy- 

lase gene 

The human genomic cosmid library was screened 
with human amyl and amy cDNA probes (Nishide 
et al., 1986b). Out of 1.2 x IO5 colonies screened, 
nine clones carrying full-length DNA covering an 
amylase gene were obtained. Eight of them gave an 
identical restriction cleavage pattern with that of sali- 
vary a-amylase gene (Nishide et al., 1986a). One, 
which we named cosP2, gave a different cleavage 
map. As will be shown below, the cosP2 carries the 
DNA that covers the entire human pancreatic c1- 
amylase gene. 
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. +- amy 

Fig. I. Restriction map ofhuman genes amy and amyl. Relative positions ofexons, deduced from the nucleotide sequence, are indicated 

by solid boxes. B, BumHI; E, EcoRI; G, &g/II; H, HindHI; Hp, HpaI; N, BanIII; P, PstI; S, SacI; X, XbaI. Only relevant restriction 

sites are displayed. A few errors in the restriction map previously published (Nishide et al., 1986a) have been corrected. The numbering 

of the exons in amyl has been revised so as to unify the nomenclatures for the two genes. The primer used for extension analysis is 

also shown. with its 5’-3’ orientation, above the exon 1 of amy2. 

(b) The structure of amy 

The insert in the cosP2 was analyzed by restriction 
endonucleases. The fragments were monitored by 
their ability to hybridize to amyl and amy cDNA 
regional probes (Nakamura et al., 1984; Nishide 
et al., 1986b). The fragments were subcloned for fine 
restriction mapping and nucleotide sequencing. The 
restriction map and location of exons (see below) are 
shown in Fig. 1, and the nucleotide sequence, along 
with the predicted amino acid sequence, is shown in 
Fig. 2. The nucleotide sequence of the amino acid 
coding region, along with its 5’- and 3’-flanking 
regions which were regarded to be exons, completely 
agrees with that of human pancreatic cr-amylase 
cDNA (Nishide et al., 1986b). These sequences also 
agree with the cDNA sequence reported by Wise 
et al. (1984), except for 1 nt (thymine instead of 
cytosine) in exon 8 at aa position 370. These results 
indicate that the gene we analyzed in cosP2 is 
actually the human p~creatic c+amylase gene. 

Fig. 1 also shows the map and location of exons 
in arnyl. The two genes are very similar in structure 
including the locations and lengths of exons as well 
as introns. One of the major differences lies in the 
fact that amyl has an extra exon, referred to as exon 
S*, which is lacking from amy (see below). The 5’ 

* The exons in amyl were renumbered so as to unify the nomen- 

clature of corresponding exons in the two genes (viz., amyl and 

am_~2). Thus, amyl consists of exons S, 1,2,3, . . . 9,lO and amy 

consists of exons I, 2, 3, ___ 9, IO. 

border of exon 1 and the 3’ border of exon 10, each 
differ to some extent between amy and amyf. The 
difference in the 5’ border of exon 1 (an extra 32 nt 
is transcribed in the exon 1 of the amyl ) can be used 

to monitor the presence of a small amount of amy 
mRNA among large amounts of amyl mRNA (Y. 
Nakamura, N.T.,T.N.,M.E.,A.H., M.O.,T.M.,G. 
Kosaki, T. Okabe, M. Fujisawa, N. Osawa, T. 
Kameya and K.M., ms. in prep.) 

In addition to the overall homologies between 
transcribed sequences in amy and amyl, we see 
striking similarities in the size of introns and the 
sequences that cover the 5’ and 3’ flanking regions 
of the two genes. The 5’ untranscribed region of 
amy which corresponds to the exon S of amyl is 
93% homologous to the exon S. This raised the 
question as to whether amy is transcribed in this 
region. Accordingly, we determined the transcription 
start point of amy by primer extension analysis, as 
shown in Fig, 3, using the mRNA from human pan- 
creas. The result showed ambiguously that the 
transcription starts at 14 bp upstream from the start 
codon in the exon 1. S 1 nuclease mapping confirmed 
this result (not shown). Therefore, the homologous 
sequence to the exon S in amy is not transcribed. 
The TATA box of amy lies 29-23 nt upstream from 
the transcription start point which lies in the exon 1 
in amyl. The TATA box of amyl lies farther 
upstream from the exon S (34-28 nt upstream from 
the cap site of amyl). 
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AGCTP 

40- 

Fig. 3. Primer extension analysis. Lanes A, G, C and T show the 

known nucleotide sequence ladders employed as size standards 

(30-70 nt). Lane P shows the cDNA primed with a “P-5’-end- 

labeled 18-nt synthetic oligodeoxynucleotide (see MATERIALS 

AND METHODS, section f, and Fig. 1) using pancreatic 

poly(A)+ RNA as a template. The arrow indicates the primer 

extension product, 56 nt in size, containing a 42-nt coding region 

and a 14-nt 5’.nontranslated region. 

(c) Comparison of amylase genes between man and 

mouse 

Schibler et al. (1982) published structures of a- 

amylase genes in mouse. They showed that in this 

animal the amy gene consists of ten exons and the 

amyl gene of eleven. In addition to the pancreas and 

salivary gland, a-amylase can be produced in the 

liver, whose gene consists of eleven exons. The struc- 

tures of mouse and human a-amylase genes are 

similar from exon 1 through exon 10, which is equi- 

valent to amy (Fig. 4). These four genes show close 

similarity in sizes of exons 1 through 10. In this 

region, the nucleotide sequences of mRNAs repre- 

senting amy exons are 85% homologous between 

man and mice, and 8 1 y0 homologous, with respect 

to amyl exons (Hagenbttchle et al., 1980). Fig. 4 

shows that the sizes of introns in human and mouse 

amylase genes differ to some extent. To our surprise, 

introns in human pancreatic and salivary amylase 

genes also show very close similarities. As far as we 

sequenced, the nucleotide sequences are more than 

90% homologous. The extra exon (exon S) in the 

salivary amylase genes in both man and mice have 

no sequence homology. Moreover, their size and 

location show no similarities. Thus, the size of exon 

S in man is 154 bp and is located 357 bp upstream 

from the 5’ end of exon 1, whereas in mice, the size 

is 50 bp and the location is 7.77 kb upstream from 

the 5’ end of exon 1 (Schibler et al., 1982). It thus 

seems likely that at some stage of evolution, the exon 

S in both species was created by mutation in the 

upstream region to the basal ten exons which may 

represent the primordial amylase gene and is similar 

to amy2. The expression of amylase in mouse liver 

(Schibler et al., 1980; 1982; 1983; Young et al., 

1981) is also mediated through an additional exon, 

called exon L, that is located at the 5’ side of the 

basal ten exons. Acquisition of such an extra exon 

for expression in the salivary gland (or in the liver) 

in both mammalian species is interesting for the 

tissue-specific expression of a gene, and suggests 

that similar mechanisms may be found in some other 

genes, particularly those coding isozymes that are 

expressed in tissue-specific fashion. 

The nucleotide sequence homology between the 

basal ten exons in amyl and amy is 98 % in humans. 

Not only are the lengths and locations of the exons 

similar, but also the introns and flanking regions. 

Close similarity between the basal ten exons is also 

observed in amyl and amy in mice (89% homo- 

logous). On the other hand, the overall nucleotide 

sequence homology between corresponding exons 

from the two mammals is 8 1% (salivary type) and 

85 % (pancreas type). These data suggest that during 

evolution, the divergence into the two amylase genes 

(viz. amyl and amy2) occurred after the divergence 

of mice and man. Alternatively, the highly conserved 

sequence homologies within a species, may be 

accounted for by gene conversion among the mem- 

bers of the amylase gene family. 

Swift et al. (1984), Boulet et al. (1986) and Osborn 

et al. (1987) found a conserved sequence, possibly a 

part of the enhancer sequence that plays a role in 

pancreas-specific gene expression. The corre- 

sponding 5’ region of human amy has the almost 

identical sequence (AGGTCATTTAGATGATTT- 

CCATGAGAGACTT) at 153-183 bp upstream 

from the cap site of amy2. Interestingly, the human 
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amyl has this sequence, too, except for substitution 
of 9th T by G in intron S. The 5’-flanking region of 
arnJJ2 is 94% homologous to the exon S of amyl, as 
shown in Fig. 2. Our unpublished data show that up 
to at least 0.6 kb from the cap site of human amyl, 
the sequences for amyf and amy are very similar. 
Thus, from sequencing studies alone, it is not possi- 
ble to point out the c&-acting control regions for 
tissue-specific expression. Further analyses are 
needed to clarify these problems. 
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