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1. Introduction
In this paper we study a Schrodinger operator with a magnetic field :
(1.1) H=(—iV—>5b(x))*+ V(x)

defined on C§(R?®), where V& L%c(R?) is a scalar potential and b& C'(R®)® is a
vector potential, both of which are real-valued, and B(x)=V X5 is called the
magnetic field. Let x=(x1, x2, 2)ER®, 8 =(x1, x2), » =|x|, 0=| &1, and V>=(8/0x1,
0/0xz). Letting T=—1V—5b(x), we define the quadratic form gx by

anl, 9= [o( T4 TG+ V4 §)ax,
aulpl=aul, ¢]
for ¢, ¢ C(R®). We assume that
(V1) V(x)—0 as |x|]—oo0.

Then H admits a unique self-adjoint realization in L*(R?) (denoted by the same
notation H) with the domain

D(H)={u< L R®); |V|"*u, Tu, HuE L(R?)},

which is associated with the closure of gu (denoted by the same notation gx) with
the form domain

QUH)={us LX(R); |V|"*u, Tu, e LAR*)},

This fact can be proved in the same way as in the cases of the constant magnetic
fields ([1] and [7]).

It is well known that, if B (x)=0, then the finiteness or the infiniteness of the
discrete spectrum of H depends on the decay order of the scalar potential V, of
which the border is |x|"%([6]). On the other hand, if B(x)=(0, 0, B), B being a
positive constant, then the number of the discrete spectrum of H is infinite under
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a suitable negativity assumption of the scalar potential, which is independent of the
decay order of V. More precisely, the following result was proved by Avron-
Herbst-Simon [2].

Theorem 0. ([2]) Let B(x)=Vxb=(0, 0, B), B being a positive constant.
Suppose that VEL*+L? and that V is non-positive, not identically zero and
azimuthally symmetric. Then the number of the discrete spectrum of H is
infinite.

Here a function f(x) on R? is called azimuthally symmetric (in z-axis) if f(x)
depends only on o and 2. Now a question arises : What occurs for the discrete
spectrum when we perturb slightly the constant magnetic field ? One may well
imagine that the infiniteness or the finiteness of the discrete spectrum depends on
both of the magnetic vector potential b(x) and the scalar potential V(x). This is
certainly true. In fact, Mohamed [5] gave a sufficient condition for the existence
of infinite discrete spectrum with long-range scalar potential V(x) and suitable
magnetic fields. The case of short-range scalar potential is also important since in
this case the number of discrete spectrum turns to be infinite because of the presence
of constant magnetic fields. The aim of this paper is to clearify the relation between
b(x) and V(x) for H to have an infinite or a finite discrete spectrum.
To state the main theorem we make some preparations. We assume that

v2) {V is azimuthally symmetric, bounded above and there exists
Ro>0 such that Ve C'(|x|=R,), V<0 for |x|=Ro.

Let B be a positive constant and
be(x)=B/2(—x2, x1, 0)

which satisfies VX b.=(0, 0, B). For given b C'(R?), we put

bo(x)=b(x) = be(x)=(a1(x), ax(x), as(x)).
By introducing the polar coordinate (o, 8) in R? we define the set X by

X={as C(R®); there exists N(a)EN such that

lua(p, 6 : 2)e™°df=0 for |k|=N(a), kEZ).
We denote by o(H) the spectrum of H, by d4(H) the discrete spectrum of H, by
0.(H) the essential spectrum of H and by #Y the cardinal number of a set Y. For
two vector potentials b1, b-E C'(R®)?, we denote bi~b. when b is equivalent to b:

under a gauge transformation, namely, b — 2=V A for some A€ C*(R®). Then our
main result is the following theorem.

Theorem 1. Assume (V1), (V2) and that a;(x)€X (=1, 2, 3). Suppose
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that there exist Ri>0 and positive constants c; (=1, 2, 3) such that

{Iaj(x)l <cmin{| V(x)I'2, | V(x)le} (=1, 2),

(1.2) [Vaa;(x)|<col V(x)| (=1, 2),
|as()| < cs V()|

for |x| =R,

(1.3) 2(c?+ o)+ 3+ V2a1<1,

and also suppose that

(1.4) 0as/0z—0 as |x|—.
Then c.(H)=[B, ©) and
(1.5) #ou(H)=+co.

REMARK 1.1. Let V be as in Theorem 1. If W& Lio(R?) satisfies (V1) and
W<V, then #04(T?*+ W)= +co by the min-max principle. Thus we can apply
the above theorem to potentials which are not azimuthally symmetric or not
continuous on |x|= Ry.

REMARK 1.2. The above theorem of course holds if we replace the vector
potential by an equivalent one.

As an example we consider the perturbation of the constant magnetic field on
a compact set.

Proposition 1.3. If there exists R:>0 such that
B(x)=(0, 0, B) for |x|=Rx,
then one can replace the magnetic vector potential b(x) by an equvalent one
satisfying (1.2), (1.3) and (1.4).
Proof of Proposition 1.3. It is easy to see that
VX(b—bc)=0  (|x|=R,).
Hence, there exist A& CA(R®) such that
b—b:=VA (lx|= Ry).
We put
b=b—VAon R
Then 5~b and b —b.=0 for |x|>R.. Forthis &, (1.2), (1.3) and (1.4) are always



786 T. HATTORI
satisfied. []

Let us compare our result with that of Mohamed [5]. Roughly speaking,
supposing that V(x)=0(|x|~%), he studied the case 0< @< 2. In this case our result
is weaker than his, however, our method can also treat the case @ =>2. We shall also
construct examples which show that our condition (consequently the condition of
Mohamed) is almost optimal to guarantee the infiniteness of the discrete spectrum
when lies in an interval (2—e, 2]. These examples also show that some non-
constant magnetic fields decrease the number of bound states in spite of the fact that
if B(x)=0 and 0< @<2 the number of the discrete spectrum is infinite ([6]).

2. Proof of Theorem 1

We first recall the following facts.

(2.1) inf o.(H )=E:scg£m inf{(H$, ¢)1.; ¢€CF(R\E), |¢]..=1)
(22) =lim inf{(Hg, ¢).; ¢<C(Ix|=R), |4l =1).

They can be proved in the same way as in [1]. We devide the proof of Theorem
1 into three steps.
Step 1. We prove that, if |bp(x)[—0 as |x|—o0, then
3(H)=inf 6.(H)=B.
In fact, letting ‘
Te=—1V—b.,
we have, for any ¢€ C3(R®) and any € >0,

| T8I =|Tep— bog|? _
=|Tedl*+1bol’| ¢ —2ReTcp bp b
>(1— &)l Tegl*+(1— &™)l bs | 41"

Hence, letting M be the operator of multiplication by the function |b5(x)|?, we have
T’>(1—e)T?+(1—e )M
in the form sense. By using (2.2) and the fact that |6,(x)|—0 as |x|—>c0, we have
2(TH=>(1-e)Z(T)=(1—¢)B.
Similarly one can show
S(T*<(1+¢)B.

Hence we have
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2(T?*)=B,
so, by using (2.2) again, we have

2(H)=B.
Step 2.

Proposition 2.1. If |bs(x)|—0, |div bs(x)|—0 as |x[—0, then o.(H)=[B,

Proof of Proposition 2.1. We have only to prove [B, ©)C d.(H). For A=
0, we define ¢m(x) by
(%)= ma(x) =" nn(2)po(B) (MEN, m>1),
where

b B)=B(2r) Vre5 A,
Im(2)=2"""D2p(27"V2)

for some fixed 7€ C(1<|2|<2). We remark that

| dollcxery =l 7mll eer = | | 2y =1,
(g5, Pu)L2=0 (j*Fk),

(2.3) {T2—(—0/02%)} po={(—0/0x1+ Bxz/ 2)*+ (— i6/0x2— Bx1/2)?} po= Bebo.

To prove [B,)Co.(H) it is sufficient to show that

2.4 (H—=(B+4%)¢n—0 strongly in L*(R®) as m— 0.
By using (2.3) and T?%= T2+ (idiv bp+|bs|*) —2bp* T, we have
(2.5) T%Yn=Bm— 0*¢n/0z*+(idiv bp+|bp|2) ¢m—2bp* Tedom.

We compute
— 0 Pm/02*=22¢m+(1)+(11),
where '

(I)=—2i2e™y n(2)po( B),
(I1)=—e*7"n(2)po( 7).

By the change of variable: £=2""""z we have

ICIIZ <242 ™| 7 [iy—0 as m— o0,
ICIDIE <161 7" [fy—0 as m—co.

Hence we have
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(2.6) — 0°¢m/02*— 22 ¢m—0 strongly in L*(R®) as m— 0.

Since | Teml:=(TE¢m, ¢n) and TE=(B+A%)¢n+(1)+(II), there exists a con-
stant ¢o>0 independent of m such that

@7 | Tegmllre< co< +00
Using the assumption on b, and the fact that
supp ¢nC{xER?; 2" <[2]<2"},
gives
(2.8) (¢div bp+|bp[*) ¢m—0 strongly in L*(R®) as m—co.
By (2.7) we also have
(2.9) 2bp* Tepmn—0, Vn—0 strongly in L*(R®) as m— 0.
By (2.5), (2.6), (2.8) and (2.9), we obtain (2.4). [

By the assumption of Theorem 1, the condition in Proposition 2.1 is fulfilled.
Hence we have 0.(H)=[B, ).

Step 3. We can assume that R1=R,. To prove that #04(H )=+ 0, by using the
Rayleigh-Ritz method ([6]), it is sufficient to construct {@n»}n-1C Q(H) such that

{|l@m|lL2:1,(¢j, mk)LZZO (]:#k),

(2.10) qul @;, ©L]=0 (G*F),

LIH[q)m]<B.
We define ¢» by
Os(x)=hs(2)pn(B) (0<sK1, mEN, m>1),

where in terms of (o, 8)-coordinates

(2.11) P B)=ame™ o™e B = (1 + ixa)"e B ([3]),
(2.12) an=(mm!)"V2(B/2)m+D2
hs(2)= s~

They satisfy the following relations.

I @ mll ey = os) ey = ll cen =1, ¢mE QH),
(45, $R2=0 (G+k),
2.13)  {Te—(—0*/02%)} pn={(—i0/0x1+ B2/ 2)*+(— i0/0x2— Bx1/2)*}
= Bdm.
We first show that
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2.14) | T9sls=B+s*+ [(~sin 0V2a1+cos 6Vza)- B~ | il
+ /{p‘z( — X1t x1a2) + @t + a3+ ai}| galPdx.
On one hand, by (2.13) and a straightforward calculation,
| sl =1 Tegtlie+ [(—21m(V g5 0 98)+ (6ol + 200+ b,)| g3}
=B+sz—2mfp‘2(—xza1+xlaz)|¢fnlzdx
+/{a?+ a3+ a3+ B(—x2a1+ x1a2)}| 52 dox.

On the other hand, passing to the cylindorical coordinates and integrating by parts
in o, we have

@15 @m+1) fp-z(—x2a1+x1az)l¢fnl2dx

Z/(Sin 6V2a:—cos 6Vza,)- 5.0_1|</)fn|2dx+/B(—xza1+x1az)|¢fn|2dx.

By using (2.15) and a simple manipulation, we have (2.14) which implies
I T¢fn||i2SB+82+ﬂ|Vzdl|+|VzaZ|+p_1m+ ai+ a3+ a3)|¢alfdx.
Here we use the assumption (1.2) to see that
ITosl-<B+s*+ [ (2ci+e)+ i+ 2ell Vinllgafdx
+,/|;|<R.(C4+ cso )| g5l dx

for some constants ¢, ¢s>0. Since V<0 for |x|= Ri, by letting 6=1—{2(c}+ c2)
+ %+ /2c1} >0, we have

I T¢,S,,||%sz+sz+(1—6)+/M2R,(~ V(x))|¢fnlzdx+ﬁl<m(c4+ cso )| gal*dx.

We add (V¢5, ¢3)i: to the both side, noting that V is bounded from above by
assumption (V2), we have

@16)  aulgl<Bs+8 [ V@Igskar+ [ (cotcopgsldr

for some constant cs>0. Let

2={(7, 2)ER®; 2Ri<p<3R, 0<|z|<1},
2={(B, 2ER?*; 0<p<R, 0<|2|<R.}.

We estimate the integral of the right-hand side as follows.
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1 3R1
_/;1 |¢%|2dx=2£ se‘zs“cz’,‘c"/(;Z7tc170/2‘R1 ke e B 2 dp
>2se7% 1 2man(2R,) " e BRI B,

Therefore there exists a constant ¢(R;) >0 independent of # and s such that

(2.17) B / o V)l gal*dx <0 L _sup V(x)|galdx
< —c(R1)sa%(2R,)*™.

We also have by a similar calculation

(2.18)

|x|<Ry

(cst+cso )| gmlPdx < [h (cotcso™)|gml*dx
< C/(R1)Sd’?nR%m

for some constant ¢’(R1) >0 which is independent of # and s. Hence, by (2.16),
(2.17) and (2.18),

qu[¢n]< B+ s*+ sanRE™(¢'(R1) — c(R1)4™).

There exists 721 >0 such that

c'(R)—c(R)4A™< —1 for m=>my,
so we have

aul 951 < B+ s(s— a4 R?™) for m=m.

Let

s=s(m)=1/2 dhRi", On=¢5'™.
Then the above inequality implies
(2.19) qu[On]<B—(1/2 a4R}")*< B for m=>m,.

Next, by the assumption of Theorem 1, there exists Mi& N such that each
ai(x)(j=1, 2, 3,) is a linear combination of {€*};<w, icz as a function of & with
coefficients depending on o and 2. We show that

(2.20) au[@;, Dal= f f / Glp, 6, 2)e" " dodfdz

where

G(p, 6, z)=|{|g§2 2e”"Gz(p, z), Gp, 2)EL(0, ©) X R).

M+

In fact, we examine each term of the expression

qu[d)j, @;;]=/{V(D,-VT;¢+z(V¢,-ka—V@—-b0,)+(Iblz+ V)@JTh}dx
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Since V is azimuthally symmetric, it is easy to see (2.20). Then we have
QH[¢J', ¢k]=0 (l]—‘k‘ZZNl‘f’S)

Therefore by choosing a subsequence of {®@x»} which we denote again by {@x}, one
can assume that

(2.21) qu[ @5, 0]=0 (G+4).
Summing up, we have obtained {®@n} satisfying (2.10). Hence
#0a(H)=+co.
This completes the proof of Theorem 1. [J
3. Examples

In this section we illustrate some examples showing that the conditions in
Theorem 1 are almost optimal. For the sake of convenience, we strengthen slightly
the conditions in Theorem 1 as follows.

Theorem 1*. Assume (V1), (V2) and that a;,(x)€X(j=1, 2, 3). Suppose
that

a;(x)=o(min{| V(x)['?, | V(x)le}) (i=L, 2)

3.0) Veai(x)=0(| V(x)]) (i=1, 2),
: as(x)=o(| V(x)["*)

das/oz=o0(1)

as |x|>. Then c.(H)=[B, ©) and
#O'd(H) =400,

We give the above mentioned examples in the following form.
(3.2) b=f(r)(—x2, %1, 0)

where F€ CY([0, )), f/(0)=0 and f is real-valued. In this case ai(x)=—(f(#)
—B/2)x2, ax(x)=(f(r)—B/2)x1, as(x)=0, so the assumption that ¢;€ X(j=1, 2,
3,) is satisfied. We assume that V(x) is a function of »=|x|. Then (3.1) is
equivalent to the following

(3.3) {If(r)—B/2|=0(min{! V)" [V (x)D,

' l77(l=o(| V(x)lr).

Now we put V=—7»"%(a>0) for |x|>2, then (3.3) is equivalent to

{lf(r) _B/Zl — O(rmln(—l—alz,—-a)),
lf(r)l=o(r=-%).

Before showing the examples, we prepare the following proposition.

3.4)
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Proposition 3.1. For ¢<= C5(R®), we have the following inequality.
(3.5) firspdn= f(absfom— ool ol .,
where b=(bi(x), bax), bs(x)).
Cororally. In the case of (3.2) we have
flT¢|2a’x2/(f’(r)pzr‘1+2f(r))|¢lzdx for ¢ C5(R?).
In particular, if f'(r)<0, then

(3.6) [iTgrac= [F(r)\gfdx for p=Co(RY),

where Fy(v)=vf(r)+27(7).

Proof of Proposition 3.1. We put
A1=3/6x1+bz, A2=8/8x2—b1, A=A1+ZA2 and P:a/az_lba
Then by a straightforward calculation,

A*A=—3%/oxt— 0% [ox}+27(510/0x1+ b20/0%2) + 1(0by [0x1+ b2 [0x2)
+ | 612+ | ba|* — 0b2/0x1 + 0Dy 02,
P*P=—3%/02*+21b30/0z + i0bs )0z + | bs|*.

Therefore we have
P*P+A*A= Tz—(abz/axl - abl/axz).
Hence, for ¢< C(R?),

ﬁ TePde=((P*P+A*A)$,¢)1, + f(abz/axl—abl Jox2)| B2
> f(abz/axl—abl/axz)|¢|2dx. 0

EXAMPLE 1. We first take =2, namely, let

—r72 (r=e'?),
0 (r<e'?).

If /()= B/2=7r"* for » = e'*(8>2), the condition (3.4) is fulfilled, hence #04(H)
=+00, We next see what occurs when this condition is violated. We define f(#)
by

V(x)={

B/2+ 7 2log » (r =¢e'?),

f(”:{B/zH/(ze) (r<e).
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Then f€ CY([0, ), £(0)=0, f'(»)<0, and

B+772 (r>e!?),
Ff(r)={B+ el (r<e').

Hence, by using (3.6),
3.7) (Hp, $)i2> [(Fy(r)+ V)| gfdx>Blglus for p€ C(RY).

By Proposition 2.1, it is easy to see that 0.(H)=[B, o). Hence, by (3.7), we have
#O'd(H):ﬂ.

ExaMpPLE 2. To consider the case of 0<a@<2 we use the almost same but
slightly complicated method.
Let

_(—r7* (r=2), 0<a<2,
V(x)_{o (r<2).

If f(#)— B/2=(constan)*»~* for » >2(8 >1+a/2), the condition (3.4) is fulfilled,
hence #04(H)=+c0. When f=a(<1+a/2), H does not always have infinitely
many bound states, although the difference (14 @/2)—a—0 as a—2. In fact, We
define f(7) by

B/2+7r7%/(2—a) (r=2),
f(r)z{B/2+{2“'+2“"2a/r(2—r)}/(2—af) (1<r<2),
B/2+27**4+a)/2—a) (r<1).

Then f€ CY([0, )), f(0)=0, f'(r)<0, and

B+7r? (r=2),
Ff(7)={B+2“"1{—2arrz+3a/r+4}/(2—a/) (1<r<2),
B+2*4+a)/(2—a) (r<1),

$0
Fs(r)+ V(x)=B (0<r <),
Hence, by using (3.6), we have
(H¢, ¢)1:=B|¢|i: for p= Co(R®).

So, in the case of 1< a <2, by the same reasoning as before, we have o(H)=o0.(H)
=[B, ), hence

O'd(H) =.

In the case of 0<@<1, we need another proof that o.(H)=[B, ), which is
due to [4] (p117).
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Proof. We have only to prove [B, ©)Cc.(H). Since f(»)— B/2—0 as r—
+ 0o, there exist {%»}zen C R® such that

(3.8) 2n/n?— 400 as n— + 0 and

22 =(0, 0, 2n), 2. >0,
{sup{lf(r)—B/leZ;lz—z,,lsn, p<n}<n .
For =0, we define ¥»(x) by

Tu(x)= W i(x)=e"Ea(2)po( F) (REN),
where ¢o( 7) is in the proof of Proposition 2.1 and
En(2)=n"""E((2—24) n)
for some fixed £€ Ci(|z|<1). We remark that
(3.9 I oll o= Exll 2z = | @l can=1.
To prove [B, ©©)Co.(H) it is sufficient to show that

(3.10) {(H_(B+/12)) ¥,—0 strongly in L*(R®) as m—c0 and
. (¥, Uh)2=0 (j+k).

Since div b=div(f(#)(—x2, x1, 0))=0, we have
T?=TE+2ibp-V+(2bc* bp+1bp]).
Moreover, since ¥ is independent of &,
by V&=(f(r)—B/2)(—x2, x1, 0)-((0%¥2/00) 0™ x1, (0¥2/00) 0™ %2, 0W¥r/02)=0.
Hence we have
(3.11) T*,=T? W+ (2bc bp+|bp|*) T (REN).
By a simple calculation,

|(2be- by-+|bs2) Bl = (£ () — BI2)(F(#)+ B/2)0* T
<d\lf(r)— B/2|o* |

for some constant di1>0. By using the above inequality,
[ @bes byt 0o Bolcte < a2 [ (1£(r)— BJ2)o?| B
<@i{ [+ [ JUro)—Brzloyi v
Using (3.8) and the fact that supp & C{|z—z:|<#} gives

/pSn(|f(7’)*B/2|pz)2] Ufn|2dxsn'2ﬁ“l U, lPde < n %0 as n—oo.
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On the other hand, by using (3.9),
L,,(lf(r)—B/ 2|0°)0*| WnlPdx Sdzf 0°e P2 do—( as n—co.

Therefore we obtain

(3.12) (2bc* bp+bp[*) ¥n—0 strongly in L*(R®) as n—oo.
By a similar argument as in the proof of Proposition 2.1, we also have
(3.13) (T2—(B+2%))¥,—0 strongly in L*(R®) as n—0,
and

(3.14) V¥,—0 strongly in L*(R®) as n—o,

By (3.11), (3.12), (3.13) and (3.14), we obtain
(H—(B+2))¥,—0 strongly in L*(R®) as n—oo.

Using (3.8) and choosing a subsequence of {@,} (denoted by the same notation
{@,}), one can assume that

(@, W)r2=0 (j*Fk).
Thus we obtain (3.10). [J
We next show that the negativity assumption (V2) is necessary for the
infiniteness of the discrete spectrum under the situation that V is bounded above.

ExAaMPLE 3. Let

B/2 (r=2),

B/2+exp(1/(r—2)) (3/2<7<2),
B/2+2e2—exp(—1/(r—1)) (1<7<3/2),
B/2+2e72 (0<7<1).

Then we have f< C'([0, o)), f(0)=0, f'(r)<0, and

B (r=2)
B+4e2(0<r<]).

f(r)=

Fn)=|

Now we define V(x) by

0 (r=2),
V(x)={max(0, B—Fs(7»)) (1<r<2),
v(r) (0<7<1),

where |v(7)|<4e™% We remark that, in this case, (3.3) is satisfied but V(x) does
not satisfy (V2). We also have
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(H, $)i> [(F/(r)+ V)|$dx> Bl s,

SO
0(H)=[B, ), c4(H)=4.

Finally we show an example of the magnetic bottle (see [2]) which means a
magnetic Schrédinger operator without the static potential term having a non-
empty discrete spectrum.

EXAMPLE 4. Let
(3.15) B=inf{(—=Ag¢, ¢)1:; ¢ C5(|x|<1), |¢li=1}
We pick up € C*([0, c)) such that

0 (0<7<1),

f(’):{wﬂ)/z (r>2).

Then it follows from Proposition 2.1 that g.( 7%)=[8+1, o), so by (3.15) it is easy
to see that

inf o( T2 < B<inf 0.(T?),

which implies ga( 7%)+40.
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