

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Hanaki, A. Osaka J. Math. 33 (1996), 207-216

A CONDITION ON LENGTHS OF CONJUGACY CLASSES AND CHARACTER DEGREES

AKIHIDE HANAKI

(Received July 7, 1994)

1. Introduction

In E. Bannai [1], the following condition on finite groups is investigated. Let *G* be a finite group, $\text{Irr}(G) = \{ \chi_i \}_{1 \leq i \leq k}$ be the set of all irreducible characters of G, and $Cl(G) = {C_i}_{1 \leq i \leq k}$ be the set of all conjugacy classes of G.

Condition. By suitable renumbering i ,

 $\chi_i(1)^2 = |C_i|$, for $i = 1, 2, \dots, k$.

We call this condition B-condition ("B" is due to E. Bannai). A few groups satisfying B-condition are known : abelian groups, Suzuki 2-groups $A(n, \theta)$ (See [3, VIII.6.7 Example and §7]), ϕ_6 , ϕ_{11} in [4], and groups isoclinic to them (For isoclinism, see [2]). In any case, they are nilpotent and their derived lengths are at most 2.

In this paper, we shall construct a family of groups satisfying B-condition. Our groups are, in a sense, generalizations of Suzuki 2-groups. By our examples, we can say that

Theorem. *Derived lengths of groups satisfying B-condition are unbounded.*

2. Construction of groups

Let $F = GF(2^n)$ be the finite field of order 2^n , and let θ be an automorphism of F. We put, for a positive integer l and $a_1, a_2, \dots, a_i \in F$,

208 A. HANAKI

$$
u(a_1, a_2, \cdots, a_l) = \begin{pmatrix} 1 & & & & & \\ a_1 & 1 & & & & \\ a_2 & a_1 \theta & 1 & & & \\ a_3 & a_2 \theta & a_1 \theta^2 & 1 & & \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ a_l & a_{l-1} \theta & a_{l-2} \theta^2 & \cdots & a_1 \theta^{l-1} & 1 \end{pmatrix} \in M_{l+1}(F)
$$

and

$$
A_i(n, \theta) = \{u(a_1, a_2, \cdots, a_i)|a_i \in F\}
$$

The multiplication is defined as a product of two matrices as follows :

$$
u(a_1, a_2, \cdots, a_l)u(b_1, b_2, \cdots, b_l)
$$

= $u(a_1+b_1, a_2+(a_1\theta)b_1+b_2, a_3+(a_2\theta)b_1+(a_1\theta^2)b_2+b_3,$
 $\cdots, a_l+(a_{l-1}\theta)b_1+\cdots+(a_1\theta^{l-1})b_{l-1}+b_l).$

So $A_i(n, \theta)$ becomes a group of order 2^{n} . If $i=2$, this group is isomorphic to a Suzuki 2-group $A(n, \theta)$ in [3, VIII.6.7 Example and §7].

For $1 \le i \le l$, we put

$$
G_i = \{u(0, \cdots, 0, a_i, a_{i+1}, \cdots, a_l)\}.
$$

Define $\varphi_{l,i-1}: A_{l}(n, \theta) \longrightarrow A_{i-1}(n, \theta)$ by $\varphi_{l,i-1}(u(a_1, \dots, a_l)) = u(a_1, \dots, a_{i-1}).$ Then $\varphi_{i,i-1}$ is an epimorphism and ker $\varphi_{i,i-1}=G_i$. Thus G_i is a normal subgroup of $A_i(n, \theta)$, $A_i(n, \theta)/G_i \cong A_{i-1}(n, \theta)$, and obviously G_i is in the center of $A_i(n, \theta)$ *θ)* by the multiplication.

 $A_l(n, \theta)$ has important automorphisms. Let $\lambda \in F^X$. We define ξ_λ : $A_l(n, \theta)$ \rightarrow *A_l*(*n, θ*) by

$$
\xi_{\lambda}(u(a_1, a_2, \cdots, a_l)) = u(\lambda_1 a_1, \lambda_2 a_2, \cdots, \lambda_l a_l)
$$

where

$$
\lambda_1 = \lambda \n\lambda_2 = \lambda(\lambda \theta) \n\lambda_3 = \lambda(\lambda \theta)(\lambda \theta^2) \n... \n\lambda_l = \prod_{i=0}^{l-1} (\lambda \theta^i).
$$

Then this is an automorphism of $A_l(n, \theta)$.

For simplify our argument, throughout this paper, we assume that *θ* is the Frobenius automorphism of F, θ : $x \rightarrow x^2$. Then $\lambda_i = \lambda^{2^i-1}$. We also assume that λ is a generator of F^{\times} and is fixed. Then λ_i generates F^{\times} if and only if $(2^n-1, 2^i-1)$ =1. But it is easy to check that $(2ⁿ-1, 2ⁱ-1)=1$ if and only if $(n, i)=1$. In this case, $\langle \xi_{\lambda} \rangle$ permutes $G_i/G_{i+1} - G_{i+1}$ transitively. If $l < n_0$, where n_0 is the smallest prime divisor of *n,* then this holds for any *i.*

Our main result is

Theorem 2.1. Let θ be the Frobenius automorphism of $GF(2^n)$. Assume *that* $l < n_0$ *, where* n_0 *is the smallest prime divisor of n. Then* $A_l(n, \theta)$ *satisfies B-conditίon.*

In particular, if n is a prime and $l < n$ *then* $A_l(n, \theta)$ *satisfies B-condition.*

The second part of this theorem is obviously holds by the first part, and the first part is proved by the next theorem.

We put

$$
q_i(G) = \# \{ C \in \text{Cl}(G) || C | = 2^i \}
$$

$$
r_i(G) = \# \{ \chi \in \text{Irr}(G) | \chi(1) = 2^i \}.
$$

Then B-condition holds for a 2-group G if and only if

$$
q_{2i}(G) = r_i(G), \text{ for any } i \ge 0.
$$

Theorem 2.2. Put $G = A_l(n, \theta)$. Assume that θ is the Frobenius automor*phism, and* $1 \le n_0$ *, where no is the smallest prime divisor of n. Then*

(a) $q_0(G)=2^n$, $q_{m(n-1)}(G)=2^m(2^n-1)$ for $1 \leq m \leq l-1$, and $q_i(G)=0$ for the *other* $i > 0$. (b) $r_0(G) = 2^n$, $r_{m(n-1)/2}(G) = 2^m(2^n - 1)$ for $1 \le m \le l - 1$, and $r_i(G) = 0$ for the *other* $i>0$.

REMARK. If $l \geq n_0$ there exist groups which does not satisfy B-condition. For example, $A_2(2, \theta)$, $A_3(3, \theta)$, and $A_4(3, \theta)$, θ the Frobenius automorphism, do not satisfy B-condition.

It is known that $A_2(n, \theta)$ satisfies B-condition when θ is an arbitrary odd order automorphism of $GF(2ⁿ)$. For odd characteristic finite fields, we can define groups similar to $A_l(n, \theta)$, and they satisfy B-condition if $l = 2$ and the order of θ is odd (This is my work and unpublished). This is a general case of ϕ_{11} in [4].

3. Conjugacy classes

In this section, we shall prove Theorem 2.2 (a). In this and later sections, we assume that $l < n_0$, where n_0 is the smallest prime divisor of *n*. If $l = 1$ then $A_l(n)$, *θ*) is abelian so we assume $l \ge 2$. Note that *n* is odd.

Theorem 3.1. *The following is a complete set of representatives of conjugacy classes of* $A_i(n, \theta)$ *.*

 $\{\xi^i_iu(e_1, e_2, \cdots, e_i)|0\leq j<2^n-1, e_i=0 \text{ or } 1 \text{ and at least one } e_i=1\}\cup\{u(0, \cdots, 0)\}$

When $e_1 = \cdots = e_{i-1} = 0$ and $e_i = 1$, the order of the centralizer of $\xi_i u(e_1, e_2, \cdots, e_n)$ *e_l*) *is* 2^{ni+l-i} .

To prove this, we need two lemmas.

Lemma 3.2. The order of the centralizer of $u(0, \dots, 0, e_i, \dots, e_i)$, $e_i = 1$ and $e_j = 1$ or 0 for $j > i$, is $2^{n_i + l - i}$.

Proof. Let $u(a_1, a_2, \dots, a_i)$ centralize $u(0, \dots, 0, e_i, \dots, e_i)$. Then by direct calculation (note that θ acts trivially on e_j),

$$
e_i a_1(a_1^{2^{i-1}}+1)=0
$$

\n
$$
e_i a_2(a_2^{2^{i-1}}+1)=e_{i+1}a_1(a_1^{2^{i+1}-1}+1)
$$

\n... ...
\n
$$
e_i a_{l-i}(a_{l-i}^{2^{i-1}}+1)=e_{l-1}a_1(a_1^{2^{l-1}-1}+1)+\cdots+e_{i+1}a_{l-i-1}(a_{l-i-1}^{2^{i+1}-1}+1)
$$

By our assumption, the map $x \rightarrow x^{2^{t}-1}$ is a bijection from F to F, so the first equation say that $a_1 = 0$ or 1. Hence the right hand side of the second equation is 0, and thus $a_2=0$ or 1. We can continue this argument until a_{i-i} . Thus the order of the centralizer of $u(0, \dots, 0, e_i, \dots, e_i)$ is $2^{l-i} \cdot 2^{ni} = 2^{ni+l-i}$. The proof is complete. \square

Let tr be the trace map from $GF(2^n)$ to $GF(2)$: $tr(x) = \sum_{i=0}^{n-1} x \theta^i$. The next holds.

Lemma 3.3. $\xi^i u(e_1, e_2, \cdots, e_i), e_i = 0 \text{ or } 1, \text{ and } \xi^k u(f_1, f_2, \cdots, f_i), f_i = 0 \text{ or } 0$ 1, are conjugate if and only if $j=k$ and $e_i = f_i$, for all i.

Proof. Assume $\xi_i^j u(e_1, e_2, \dots, e_i)$, $e_i = 0$ or 1, and $\xi_i^k u(f_1, f_2, \dots, f_i)$, $f_i = 0$ or 1, are conjugate in $A_i(n, \theta)$. If $e_1 = \cdots = e_{i-1} = 0$ and $e_i = 1$, then obviously $f_1 = \cdots$ $=f_{i-1}=0$ and $f_i=1$, and $j=k$, since G_i/G_{i+1} is in the center of G_i/G_{i+1} . So we may assume that $j = k = 0$. Then there exists $u(a_1, \dots, a_l)$ such that $u(e_1, \dots, e_l)u(a_1, \dots, a_l)$ \cdots , a_l) = $u(a_1, \cdots, a_l)u(f_1, \cdots, f_l)$. Obviously $e_1 = f_1$. Suppose that $e_i = f_i$, for $i <$ m. Then by direct calculation,

$$
e_m + f_m = e_{m-1}a_1 + e_{m-2}a_2 + \cdots + e_{1}a_{m-1} + f_{m-1}(a_1\theta^{m-1}) + f_{m-2}(a_2\theta^{m-2}) + \cdots + f_1(a_{m-1}\theta) = e_{m-1}(a_1 + a_1\theta^{m-1}) + e_{m-2}(a_2 + a_2\theta^{m-2}) + \cdots + e_1(a_{m-1} + a_{m-1}\theta).
$$

The right hand side of this equation is in the kernel of tr, since $e_i = 0$ or 1. But the left hand side is 0 or 1. So $e_m = f_m$. Thus the proof is complete. \Box

Now Theorem 3.1 is easily shown.

$$
\xi_i^j u(e_1, e_2, \cdots, e_i)
$$
, for $0 \le j < 2^n - 1$, $e_i = 0$ or 1

are in distinct conjugacy classes each other. Consider the lengths of these classes. The sum of their lengths is

$$
1+1\cdot(2^{n}-1)+2^{n-1}\cdot2(2^{n}-1)+2^{2(n-1)}\cdot2^{2}(2^{n}-1)+\cdots+2^{(l-1)(n-1)}\cdot2^{l-1}(2^{n}-1)=2^{nl}=|A_{l}(n, \theta)|.
$$

Thus they are representatives of conjugacy classes of $A_l(n, \theta)$. Theorem 3.1 and also Theorem 2.2 (a) are proved.

4. Irreducible characters

In this section, we shall prove Theorem 2.2 (b). We need many lemmas to prove this.

We put $G = A_i(n, \theta)$. Recall that

$$
G_i = \{u(0, \cdots, 0, a_i, a_{i+1}, \cdots, a_l)\}
$$

and $G/G_i \cong A_{i-1}(n, \theta)$.

Lemma 4.1. $C_G(G_i) = G_{i-i+1}$. Especially, G_i is abelian if and only if $i \geq (l)$ $+ 1)/2.$

Proof. This holds by direct calculations. \Box

Lemma 4.2. Let G_N be abelian, and let $\varphi \in \text{Irr}(G_N)$ such that $\ker \varphi \geq G_l$. *Then*

$$
|I_G(\varphi)|=2^{nN+l-N},
$$

where $I_G(\varphi)$ *is the stabilizer of* φ *in G.*

To show this, we may assume that φ_{G_l} is $u(0, \dots, 0, a_l) \rightarrow (-1)^{tr(a_l)}$ since $\text{Irr}(G_l)$ $-\{1_{G_l}\}\$ is transitively permuted by $\langle \xi_\lambda \rangle$, and note that any character of G_l is invariant in G since G_i is in the center of G. This lemma will be shown later.

Let G_N be abelian. Then $\varphi \in \text{Irr}(G_N)$ can be regarded as a homomorphism from G_N to $F_2 = GF(2)$, since G_N is an elementary abelian 2-group. Thus φ can be regarded as a sum of homomorphisms from G_i/G_{i+1} to F_2 , $i=N$, $N+1$, \cdots , l . Note that G_i/G_{i+1} is isomorphic to $F = GF(2^n)$ as an additive group. **Cancel 3.1** as a sum of homomorphisms from G_i/G_{i+1} to $F = GF(2^n)$ as an add
Lemma 4.3. *Define* $\Phi : F \longrightarrow \text{Hom}_{F_2}(F, F_2)$ *b* somorphism as abelian groups

Lemma 4.3. *Define* Φ : $F \longrightarrow Hom_{F_2}(F, F_2)$ by $\phi(a)(x) = \text{tr}(ax)$. *Then* ϕ is *an isomorphism as abelian groups.*

Proof. Put K =ker tr. If $aK = bK$ implies $a = b$ then the proof is complete. Thus we shall show $aK = K$ implies $a = 1$.

If $a+1$ then a induces a permutation on K. Obviously $C_K(a) = \{0\}$, and the lengths of $\langle a \rangle$ -orbits are the order of *a*. But by our assumption, $(|K| - 1, o(a)) =$ 1. This is a contradiction. The proof is complete. \Box

By this lemma, any $\varphi \in \text{Irr}(G_N)$ has a form $\varphi: u(0, \cdots, 0, x_N, \cdots,$ χ_l \rightarrow $(-1)^{\sum_{i=1}^{l} \chi_l(a_i x_i)}$ for some $a_1, \dots, a_l \in F$, and we can denote this by $\varphi(a_N, \dots, a_l)$. By this lemma, any $\varphi \in \text{Irr}(G_N)$ has a for $(-1)^{\sum_{i=1}^{i} f_i(a_i x_i)}$ for some $a_1, \dots, a_i \in F$, and we can **Lemma 4.4.** Define $\rho_{i,j}: F \times F \longrightarrow F$ by $\rho_{i,j}$
 ≥ 0 , $j > 0$, and $0 \leq i + j \leq l$, there exits an integral

 $(a, b) = (a\theta^j)b + a(b\theta^i)$. Then, *for* $i > 0$, $j > 0$, and $0 < i + j \leq l$, there exits an integer m such that $(2ⁱ-1)m \equiv 2^{i+j}$ -1 (mod $2ⁿ-1$), and

 $\rho_{i,j}(a, F) = a^m$ ker tr.

Especially, $\rho_{i,j}(a, F) = \rho_{i,j}(b, F)$ *if and only if a* = b.

Proof. Since $i \leq l \leq n_0$, 2^i-1 is coprime to 2^n-1 . Thus such m exits.

Obviously $\rho_{i,j}$ is bilinear. If $(a\theta^j)b + a(b\theta^i) = 0$ then $a^{2j}b + ab^{2j} = 0$, and so b $=0$ or $a^{(2^{j}-1)/(2^{i}-1)}$. Hence $|\rho_{i,j}(a, F)|=2^{n-1}$ for

On the other hand,

$$
(a\theta^j)b + a(b\theta^i) = a^m(a^{2i-m}b + (a^{2i-m}b)^{2i})
$$

\n
$$
\in a^m \text{ker tr}.
$$

Thus $\rho_{i,j}(a, F) = a^m \text{ker tr}.$

The last part of the lemma clearly holds by the same way as the proof of Lemma 4.3 and $(m, 2^m-1)=1$.

The proof is complete. \Box

In general, conjugates of elements in $A_l(n, \theta)$ is very complicated. So we prepare the easy cases.

Lemma 4.5. (a)

 $u(0, \dots, 0, a_i, 0, \dots, 0)u(0, \dots, 0, x_m, 0, \dots, 0)u(0, \dots, 0, a_i, 0, \dots, 0)^{-1}$ $= u(0, \dots, 0, x_m, 0, \dots, 0, (x_m \theta^i + x_m)_{m+i}, 0, \dots, 0, (x_m \theta^{2i} + x_m)_{m+2i}, \dots).$

(b) When $i+j = l$,

 $u(0, \dots, 0, g_i, 0, \dots, 0)u(0, \dots, 0, x_j, 0, \dots, 0)u(0, \dots, 0, g_i, 0, \dots, 0)^{-1}$ $= u(0, \dots, 0, x_i, 0, \dots, 0, (x_i\theta^i)g_i+x_i(g_i\theta^j)).$

Proof. Note that

 $u(0, \dots, 0, g_i, 0, \dots, 0)^{-1}$

$$
= u(0, \dots, 0, g_i, 0, \dots, 0, ((g_i \theta^i) g_i)_{2i}, 0, \dots, 0, ((g_i \theta^{2i}) (g_i \theta^i) g_i)_{3i}, \dots).
$$

So the results follow by direct calculations. \Box

We define a subgroup *H* of *G* by

$$
H = \{u(a_1, a_2, \cdots, a_l)|a_i = 1 \text{ or } 0\}.
$$

Obviously this is a subgroup of G and abelian. H is generated by $u(0, \dots, 0, 1_i, ...)$ $(0, \cdots, 0), 1 \le i \le l$, and has the order 2^l .

Lemma 4.6. *Assume that* G_N *is abelian. For* $\varphi = \varphi(a_N, \dots, a_l)$, $a_i = 1$ *or* 0, $I_G(\varphi) = HGL_{N+1}$

Proof. $I_G(\varphi) \geq G_{l-N+1}$ since $C_G(G_N) = G_{l-N+1}$ holds by Lemma 4.1, and $I_G(\varphi)$ \geq *H* by Lemma 4.5 (a). So $I_G(\varphi) \geq H_{G_{l-N+1}}$.

If $N=l$ the result holds obviously. Assume the result holds for $\varphi_{G_{N+1}}=$ $\varphi(a_{N+1}, \dots, a_l)$. Then $I_G(\varphi) \leq G_G(\varphi_{G_{N+1}}) = HG_{I-N}$. Let $g \in I_G(\varphi)$. We can write g $= hg'$, $h \in H$, $g' \in G_{l-N}$. Then $g' \in I_G(\varphi)$. Since $G_{l-N+1} \leq I_G(\varphi)$, we may assume that $g' = u(0, \dots, 0, g_{t-N}, 0, \dots, 0)$. Consider the action of g' on $u(0, \dots, 0, x_N, 0,$ \cdots , 0). By Lemma 4.5 (b), $(x_N \theta^{1-N}) g_{1-N} + x_N (g_{1-N} \theta^N)$ must be in kertr for any x_N \in F. But by Lemma 4.4,

$$
\{(x_N\theta^{l-N})g_{l-N} + x_N(g_{l-N}\theta^N)|x_N \in F\} = \rho_{l-N,N}(g_{l-N}, F) = g_{l-N}^m \text{ker tr},
$$

where $(2^N-1)m\equiv 2^l-1 \pmod{2^n-1}$. Thus if $g_{l-N}=0$, g_{l-N} must be 1 by Lemma 4.4 and $\rho_{t-N,N}(1, F)$ =kertr. So $g_{t-N}=1$ or 0. Now $I_G(\varphi) \leq HG_{t-N+1}$ and the result follows. \Box

Lemma 4.7. Assume that G_N is abelian. If $\varphi(a_N, \dots, a_l)^g = \varphi(b_N, \dots, b_l)$, a_i $= 1$ or 0, $b_i = 1$ or 0, then $a_i = b_i$ for all i.

Proof. Suppose that $a_m \neq b_m$ and $a_i = b_i$ for all $i > m$. We may assume that $a_m = 1$ and $b_m = 0$. $g = u(g_1, \dots, g_i)$ fixes $\varphi(a_{m+1}, \dots, a_i)$ so $g \in HG_{l-m}$ by Lemma 4. 6. Consider the action of g on $\varphi(a_m, \dots, a_l)$. Since HG_{l-m+1} stabilizes $\varphi(a_m, \dots, a_l)$ a_l), we may assume that $g=u(0, \dots, 0, g_{l-m}, 0, \dots, 0)$. Then

$$
\varphi(a_m, \cdots, a_l)^g(u(0, \cdots, 0, a_m, 0, \cdots, 0))
$$

= $\varphi(a_m, \cdots, a_l)(u(0, \cdots, 0, a_m, 0, \cdots, 0)^{g-1})$
= $\varphi(a_m, \cdots, a_l)(u(0, \cdots, 0, a_m, 0, \cdots, 0, g_{l-m}\theta^m + g_{l-m}))$
= 1

by Lemma 4.5 (b). But $\varphi(b_m, \dots, b_l)(u(0, \dots, 0, 1_m, 0, \dots, 0)) = 0$. This is a contradiction, and the proof is complete. \Box

Now we can prove Lemma 4.2.

Proof of Lemma 4.2. Let G_N be abelian. Then the number of irreducible characters of G_N whose kernels do not contain G_l is $2^{(l-N)n}(2^n-1)$. Lemma 4.6 says that $\varphi(a_N, \dots, a_l)$, $a_i = 1$ or 0, are in distinct G-orbits, and Lemma 4.6 says that their orbits have lengths $2^{(l-N)(n-1)}$. Also $\varphi(a_N, \dots, a_l)^{\epsilon_l}$ are in distinct G-orbits. Thus they are complete representatives of G-orbits. Now the result follows from Lemma 4.6. \Box

Using Lemma 4.2, we can prove Theorem 2.2 (b) by induction on l . We separate the cases l as odd from l as even.

Lemma 4.8. *Assume that Theorem* 2.2 *holds for* $A_{l-1}(n, \theta)$ and *l* is odd. *Then Theorem* 2.2 *holds for* $A_i(n, \theta)$.

Proof. Put $N=(l+1)/2$, then G_N is abelian. Let χ be an irreducible character of G such that ker $\chi \not\geq G_l$. Let φ be an irreducible character of G_N such that (χ_{G_N}, φ) \neq 0 and ker $\varphi \not\geq G_l$. By Lemma 4.2, $|G : I_G(\varphi)| = 2^{(n-1)(l-1)/2}$. So $\chi(1)$ $\geq 2^{(n-1)(l-1)/2}$. The number of such *χ* is $2^{l-1}(2^n-1)$ by the number of conjuga classes. Conider that

$$
|G| = \sum_{\substack{\mathbf{x} \in \text{Irr}(G)}} \chi(1)^2 = \sum_{\substack{\ker \mathbf{x} \ge G_i}} \chi(1)^2 + \sum_{\substack{\ker \mathbf{x} \ge G_i}} \chi(1)^2 = 2^{n(l-1)} + \sum_{\substack{\ker \mathbf{x} \ne G_i}} \chi(1)^2
$$

$$
\ge 2^{n(l-1)} + 2^{(n-1)(l-1)} \cdot 2^{l-1}(2^n - 1) = 2^{nl} = |G|.
$$

Thus $\chi(1) = 2^{(n-1)(l-1)/2}$. The proof is complete. \square

Lemma 4.9. *Assume that Theorem 2.2 holds for* $A_{l-1}(n, \theta)$ *and l is even.* $Then Theorem 2.2 holds for $A_l(n, \theta)$.$

Proof. Put $N = l/2$. Note that G_N is not abelian. Let χ be an irreducible character of G such that ker $\chi \not\geq G_l$. Let φ be an irreducible character of G_N such that $(\chi_{G_N}, \varphi) \neq 0$ and ker $\varphi \not\geq G_l$. G_{N+1} is in the center of G_N . So $\varphi_{G_{N+1}}$ is homogeneous. Let ψ be the homogeneous constituent of $\varphi_{G_{N+1}}$. Then

$$
|I_G(\varphi)| \leq |I_G(\psi)| = 2^{(\ell/2 - 1) + n(\ell/2 + 1)}.
$$

Consider the structure of *GN.* Put

$$
A = \{u(0, \dots, 0, a_{N+1}, a_{N+2}, \dots, a_{l-1}, 0)\}
$$

$$
B = \{u(0, \dots, 0, a_N, 0, \dots, 0, a_l)\}.
$$

Then obviously $G_N = A \times B$ and A is in the center of G_N . Since φ_{G_l} is homogeneous, $|G_i \cap \text{ker } \varphi|=2^{n-1}$. Put $K = G_i \cap \text{ker } \varphi$. The commutator map $B/G_i \times$ Then obviously $G_N = A \times B$ and A is in the center of G_N
ous, $|G_l \cap \text{ker } \varphi| = 2^{n-1}$. Put $K = G_l \cap \text{ker } \varphi$. The co-
 $B/G_l \longrightarrow G_l$ can be regarded as $\rho_{N,N}$ in Lemma 4.4 :

 $[u(0, \dots, a_N, 0, \cdot, 0), u(0, \dots, b_N, 0, \cdot, 0)] = u(0, \dots, 0,$

Thus Lemma 4.4 says that there exists the unique non zero a_N such that $u(0, \cdots,$ a_N , 0, \cdots , 0) is in the center of B/K. Clearly $D(B/K) = \Phi(B/K) = G_1/K$ and its order is 2. Thus B/K is isomorphic to a central product of an extraspecial group of order *ϊⁿ* and an abelian group of order 4 (it is not so hard to check that the center of B/K is cyclic of order 4 but this is not necessary for our argument). It is well known that an irreducible character degree of an extraspecial group of order p^{2r+1} is 1 or p^r. So $\varphi(1) = 2^{(n-1)/2}$. Now

$$
\chi(1) \geq |G : I_G(\varphi)| \cdot \varphi(1)
$$

\n
$$
\geq 2^{n! - (l/2 - 1) - n(l/2 + 1)} \cdot 2^{(n-1)/2}
$$

\n
$$
= 2^{(n-1)l - 1)/2}
$$

By the same argument as Lemma 4.8, the result follows. \Box

Now Theorem 2.2 (b) is proved and $A_i(n, \theta)$, $1 < n_0$, satisfies B-condition.

5. Derived lengths

In this section, we consider the derived length of $A_i(n, \theta)$. The next holds.

Theomem 5.1. *If* $2^{d-1} \le l < 2^d$, then the derivd length of $A_l(n, \theta)$ is d.

This theorem is an easy consequence from the following lemma.

Lemma 5.2. $[G_i, G_j] = G_{i+j}$, where $G_m = 1$ if $m > l$.

Proof. Obviously $[G_i, G_j] \leq G_{i+j}$. Suppose that $i+j \leq l$, otherwise $[G_i, G_j]$ $\geq G_{i+j} = 1$ holds. Then $[G_i, G_j] \geq G_l$ holds since $G_l - 1$ is transitively permuted by $\langle \xi_i \rangle$. Inductively $[G_i, G_j]/G_m \geq G_{m-1}/G_m$ for $i+j \leq m \leq l$. Thus $[G_i, G_j] \geq G_{i+j}$ and so $[G_i, G_j] = G_{i+j}$.

Theorem 5.1 holds obviously from this lemma. We can also see that the nilpotency class of $A_l(n, \theta)$ is *l*.

Now Theorem in introduction holds from Theorem 2.1 and Theorem 5.1.

References

- [l] E. Bannai: *Association schemes and fusion algebras (an introduction),* J. Alg. Comb. 2 (1993) 327 -344
- [2] P. Hall: *The classification of prime-power groups,* J. Reine Angew. Math. 182 (1940), 130-141.

216 A. HANAKI

- [3] B. Huppert and N. Blackburn : Finite Groups II, Berlin-Heidelberg-New York 1982.
[4] R. James : The groups of order p⁶ (p an odd prime), Math. Computation **43** (1980)
- [4] R. James: *The groups of order p⁶* (p an odd prime), Math. Computation 43 (1980) 613-637.

Faculty of Engineering, Yamanashi University Takeda 4, Kofu, 400, Japan