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1. Introduction

In E. Bannai [l], the following condition on finite groups is investigated.
Let G be a finite group, Irr(G) — (χι}\<i<,k be the set of all irreducible characters

of G, and Cl(G) = {Cji^^ be the set of all conjugacy classes of G.

Condition. By suitable renumbering z,

ttCDHGl, for i = l, 2, -, k.

We call this condition B-condition ("B" is due to E. Bannai). A few groups
satisfying B-condition are known : abelian groups, Suzuki 2-groups A(n, <9)(See
[3, VIII. 6. 7 Example and §7]), φ&, φ\\ in [4], and groups isoclinic to them (For
isoclinism, see [2]). In any case, they are nilpotent and their derived lengths are
at most 2.

In this paper, we shall construct a family of groups satisfying B-condition. Our

groups are, in a sense, generalizations of Suzuki 2-groups. By our examples, we can
say that

Theorem. Derived lengths of groups satisfying B-condition are unbounded.

2. Construction of groups

Let F— GF(2") be the finite field of order 2n, and let θ be an automorphism

of F. We put, for a positive integer / and a\, #2, •••,
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I

I

a\ 1

t62 dlθ 1

a θ a θ2 1

I dl-lθ Q,l-2V

and

Aι(n, θ} = {u(a\, #2, •••, (2/) |<

The multiplication is defined as a product of two matrices as follows :

u(a\, (22, * , aΐ)u(b\, b2, •••, bϊ)

So Aj(w, 5) becomes a group of order 2n^. If /:=2, this group is isomorphic to a

Suzuki 2-group A(w, 5) in [3, VIΠ.6.7 Example and §7].
For !</</, we put

Gi = {u(Q, •••, 0, Λ, , Λί+i, ••-, at)}.

Define φι.i-ι'. Aι(n, θ} - >A -ι(w, (9) by φι,i-ι(u(aι, ••-, dι}} = u(aι, •••, β«-ι).
Then ^/,ί-ι is an epimorphism and ker ^,ί-ι=Gz . Thus Gz is a normal subgroup

of Aι(n, θ), Aι(n, θ)/Gi = Ai-ι(n, θ), and obviously Gι is in the center of Aι(n,
θ) by the multiplication.

Aι(n, θ) has important automorphisms. Let λ^Fx. We define ξλ : A^(w, θ)

-+Aι(n, θ) by

where

Z-l

ί=0

Then this is an automorphism of Aι(n, θ}.

For simplify our argument, throughout this paper, we assume that θ is the
Frobenius automorphism of F, θ : χ-^>x2. Then λi=λ2t~l. We also assume that λ

is a generator of Fx and is fixed. Then Λ, generates Fx if and only if (2n — 1, 2£ — 1)

= 1. But it is easy to check that (2n-l, 2f'-l) = l if and only if (w, /) = !• In this
case, <<?Λ> permutes Gi/d+i — Gί+ι transitively. If Kn0, where no is the smallest
prime divisor of n, then this holds for any i.
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Our main result is

Theorem 2.1. Let θ be the Frobenius automorphism of GF(2n). Assume
that Kno, where no is the smallest prime divisor of n. Then Aι(ny θ) satisfies
B-conditίon.

In particular, if n is a prime and Kn then At(n, θ) satisfies B-condition.

The second part of this theorem is obviously holds by the first part, and the
first part is proved by the next theorem.

We put

Then B-condition holds for a 2-group G if and only if

<?2z(G) = rz (G), for any z>0.

Theorem 2.2. Put G=Aι(n, θ}. Assume that θ is the Frobenius automor-
phism, and I < no, where no is the smallest prime divisor of n. Then

(a) qo(G) = 2n, qm(n-i)(G)=2m(2n-l} for l<m</-l, and qt(G}=Q for the
other z>0.
(b) ro(G) = 2n, rm(n-i),2(G} = 2m(2n-\) for l<m</-l, and n(G) = 0 for the
other i>Q.

REMARK. If / ̂  no there exist groups which does not satisfy B-condition. For
example, Aι(2, θ), As(3, #), and Aι(3, θ), θ the Frobenius automorphism, do not
satisfy B-condition.

It is known that Aa(n, θ} satisfies B-condition when θ is an arbitrary odd
order automorphism of GF(2n). For odd characteristic finite fields, we can define
groups similar to Aι(n, θ), and they satisfy B-condition if 1 = 2 and the order of θ
is odd (This is my work and unpublished). This is a general case of φ\\ in [4].

3. Conjugacy classes

In this section, we shall prove Theorem 2.2 (a). In this and later sections, we
assume that Kno, where no is the smallest prime divisor of n. If / = ! then Aι(n,
θ) is abelian so we assume l>2. Note that n is odd.

Theorem 3.1. The following is a complete set of representatives of con-
jugacy classes of Aι(n, θ).

{ξΐu(eι, e2, " , eO|0<;'<2n-l, ei = 0 or 1 and at least one ei = l}V{u(Q, — , 0)}
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When eι = " = 6i-ι = 0 and 6i = l, the order of the centralizer of ξiu(e\, £2, •••,
ei) is 2nί+l-ί.

To prove this, we need two lemmas.

Lemma 3.2. The order of the centralizer of u(Q, •••, 0, eίy •••, ei), βi = \ and

ej=l or Oforj>i, is 2πί+|-ί.

Proof. Let u(a\, a2, •••, aϊ) centralize u(Q, •••, 0, βi, •••, £/). Then by direct
calculation (note that θ acts trivially on £/),

^-ifli^

By our assumption, the map #— ̂ .x21"1 is a bijection from F to F, so the first
equation say that aι = 0 or 1. Hence the right hand side of the second equation is
0, and thus a2 = 0 or 1. We can continue this argument until a,ι-i. Thus the order
of the centralizer of u(Q, — , 0, eiy — , ei) is 2 ί"£ 2m' = 2n£+z" ί. The proof is
complete. D

Let tr be the trace map from GF(2n) to GF(2) : tτ(x) = 'ΣKoxθi. The next
holds.

Lemma 3.3. ξίu(eι, e2, •••, ei), ei = 0 or 1, and ξϊu(f\, /2, ••-, f ι ) , /« = 0 or
1, are conjugate if and only if j=k and βi=fi, for all i.

Proof. Assume ξiu(eι, e2, •••, ei), βt = 0 or 1, and ξίu(f\, /2, •••, //), Λ = 0 or
1, are conjugate in Ai(w, ^). If eι = = et-ι = Q and -̂ = 1, then obviously /ι =
=/ι-ι = 0 and Λ — 1, and /=^, since Gi/d+i is in the center of Gi/d+i. So we may
assume that j = k = Q. Then there exists W(ΛI, •••, aί) such that w(βι, •••, ei)u(aι,
••-, ai) = u(a\, •••, ai)u(fι, •••, /z). Obviously e\=f\. Suppose that 6i=fi, for /<
m. Then by direct calculation,

The right hand side of this equation is in the kernel of tr, since ez = 0 or 1. But the
left hand side is 0 or 1. So em=fm. Thus the proof is complete. D

Now Theorem 3.1 is easily shown.
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, eι\ for (= or

are in distinct conjugacy classes each other. Consider the lengths of these classes.
The sum of their lengths is

Thus they are representatives of conjugacy classes of Aι(n, θ). Theorem 3.1 and
also Theorem 2.2 (a) are proved.

4. Irreducible characters

In this section, we shall prove Theorem 2.2 (b). We need many lemmas to

prove this.
We put G=Aι(n, θ). Recall that

Gi={u(Q, ••-, 0, fl. , fli+i, ••-, αz)}

and G/Gi = Ai-ι(n, θ).

Lemma 4.1. Cc(Gi)=Gι-i+ι. Especially, d is abelian if and only if i>(l

+ D/2.

Proof. This holds by direct calculations. D

Lemma 4.2. Let GN be abelian, and let ^elrr(G^) such that
Then

where Ic(φ) is the stabilizer of φ in G.

To show this, we may assume that <PGL is «(0, •••, 0, aι)—>( — ϊ)tr(aι) since Iτr(Gι)
— {IcJ is transitively permuted by <<?Λ>, and note that any character of Gι is
invariant in G since Gι is in the center of G. This lemma will be shown later.

Let G v be abelian. Then φ^Irr(Gjv) can be regarded as a homomorphism
from GN to F2=GF(2), since GN is an elementary abelian 2-group. Thus φ can be

regarded as a sum of homomorphisms from Gi/Gi+i to Fz, i=N, 7V + 1, •••, /. Note
that Gi/Gi+i is isomorphic to F=GF(2n) as an additive group.

Lemma 4.3. Define Φ : F - >HomF2(F, F2) by φ(a)(x)=tr(ax). Then φ is
an isomorphism as abelian groups.
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Proof. Put K =ker tr. If aK=bK implies a — b then the proof is complete.
Thus we shall show aK=K implies a = l.

If #Φ1 then a induces a permutation on K. Obviously Cκ(a) = {Q}, and the
lengths of <<2>-orbits are the order of a. But by our assumption, (\K\ — 1, o(ά)) =

1. This is a contradiction. The proof is complete. D

By this lemma, any ^^Irr(G^) has a form φ: u(Q, •••, 0, XN, •••,
— ϊ)^Ntτ(aiXi) for some a\, •••, ai^F, and we can denote this by £>(##, •", aϊ).

Lemma 4.4. Λς/&ιβ pίtj : FxF - >F by p{j(a, b) = (aθj)b + a(bθi\ Then,
for />0, />0, and 0< ?+/</, there exits an integer m such that (2l — ί)m = 2l+J

-I(mod2ll-l), and

Especially, ptj(a, F) = pij(b, F) // and only if a = b.

Proof. Since i<l<nQ, 2ί — \ is coprime to 2Λ — 1. Thus such m exits.
Obviously pu is bilinear. If (aθJ)b + a(bθ') = Q then β2'δ + βδ2'-0, and so b

-0 or fl<*-ι>'<*-« Hence \Pu(a, F)\=2n~l for

On the other hand,

Thus pij(a, F) = amkertr.
The last part of the lemma clearly holds by the same way as the proof of

Lemma 4.3 and (m, 2W-1) = 1.
The proof is complete. D

In general, conjugates of elements in Aι(n, θ) is very complicated. So we prepare
the easy cases.

Lemma 4.5. (a)

u(Q, •••, 0, βίf 0, •••, 0)w(0, •••, 0, xm, 0, -, 0)w(0, -, 0, βz , 0, -, O)-1

= u(Q, •-, 0, ΛΓ«, 0, ••-, 0,(^/9z'+^m)^+z-, 0, ••-, Q,(xmθ2i+xm)m+2i, •••)•

(b) ^/ze« !+; = /,

w(0, -, 0, ̂ , 0, -, 0)w(0, -, 0, *,, 0, -, 0)α(0, -, 0, ffi, 0, -, O)'1

= w(0, -, 0, ̂ , 0, -, Qάxjθ'ϊgi+xAgtθ')).

Proof. Note that

w(0, -, 0, ̂  , 0, -, O)-1
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= u(Q, -, 0,gi9 0, -, O/MOΛ 0, -, 0,((^20(^0^)3z , -X

So the results follow by direct calculations. D

We define a subgroup H of G by

H={u(aι, 0,2, •••, 0z) | f l« = l or 0}.

Obviously this is a subgroup of G and abelian. H is generated by u(Q, •••, 0, 1, ,
0, — , 0),l<z</, and has the order 2l.

Lemma 4.6. Assume that GN is abelian. For φ=φ(aN, •••, #0, tfi = l or 0,

IG(φ)=HGι-N+ι.

Proof. IG(φ)>Gι-N+\ since CG(GN) = GI-N+I holds by Lemma 4.1, and Ic(φ)
>H by Lemma 4.5 (a). So IG(φ)>HGι-N+ι.

If 7V=/ the result holds obviously. Assume the result holds for φcN+ι —
φ(aN+ι, ~, aι). Then IG(φ)<GG(φGN+l} = HGι-N. Let g^IG(φ). We can write 0

= %', h^H, g^Gι-N. Then g^IG(φ\ Since GI-N+I<*!G(<P\ we may assume
that g=u(Q, ••-, 0, ^/_jv, 0, •••, 0). Consider the action of '̂ on w(0, ••-, 0, XN, 0,
•••, 0). By Lemma 4.5 (b), (xNθl~~N}gι-N + XN(gι-NθN} must be in kertr for any XN

. But by Lemma 4.4,

where (2ΛΓ-l)m-2z-l(mod 2n-l). Thus if ^-ΛΓΦO, ^-ΛΓ must be 1 by Lemma
4.4 and Pz-jvjv(l, F)=kertr. So gι-N = l or 0. Now IG(φ)<HGι-N+ι and the
result follows. D

Lemma 4.7. Assume that GN is abelian. If φ(aN, •••, aι)g — φ(bN, •••, 6z), α z

= 1 or 0, έί = l or 0, then di=bi for all i.

Proof. Suppose that am^bm and di = bi for all i>m. We may assume that

am = l and bm=Q. g — u(g\9 •••, ̂ ) fixes φ(am+ι, •", Λ/) so g^HGι-m by Lemma 4.
6. Consider the action of # on ^(βOT, •••, flO Since HGι-m+\ stabilizes φ(am, •••,
β/), we may assume that g=u(Q, ••-, 0, #/-m, 0, •••, 0). Then

(«(0, -, 0, am, 0, -, 0))
w(0, •••, 0, am, 0, ••-, O)^"1)
w(0, •••, 0, Λ«, 0, ••-, 0, gι-mθm + gι-m))

by Lemma 4.5 (b). But φ(bm, — , *z)(w(0, -, 0, !„,, 0, -, 0)) = 0. This is a
contradiction, and the proof is complete. D
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Now we can prove Lemma 4.2.

Proof of Lemma 4.2. Let GN be abelian. Then the number of irreducible
characters of GN whose kernels do not contain Gι is 2(l~N}n(2n — 1). Lemma 4.6 says
that φ(a,N, •••, aι\ aι = l or 0, are in distinct G-orbits, and Lemma 4.6 says that

their orbits have lengths 2(ί~N)(n~1\ Also φ(aN, •••, cii)** are in distinct G-orbits.
Thus they are complete representatives of G-orbits. Now the result follows from
Lemma 4.6. D

Using Lemma 4.2, we can prove Theorem 2.2 (b) by induction on /. We
separate the cases / as odd from / as even.

Lemma 4.8. Assume that Theorem 2.2 holds for Aι-\(n, θ} and I is odd.
Then Theorem 2.2 holds for Aι(n, θ\

Proof. Put N=(l + l)/2, then GN is abelian. Let χ be an irreducible
character of G such that ker^ ̂  Gι. Let φ be an irreducible character of GN such

that (χGN, ?)ΦO and ker^^Gz. By Lemma 4.2, |G : /G(00| = 2(n-1>(|-1)/2. So χ(ϊ)
^2(^-i)(z-D/2 τhe number of such χ is 2/-1(2w-l) by the number of conjugacy

classes. Conider that

|Gh Σ χ(l)2= Σ z(D2+ Σ χ(ϊ)2=2«'-» + Σ χ(l)2

Thus χ(ϊ)=2(n-l)(l-l)l\ The proof is complete. D

Lemma 4.9. Assume that Theorem 2.2 holds for Aι-ι(n, θ) and I is even.
Then Theorem 2.2 holds for At(n, θ\

Proof. Put N=l/2. Note that GN is not abelian. Let χ be an irreducible
character of G such that ker χ^ Gι. Let φ be an irreducible character of G# such
that (XGN, ί?)=*=0 and ker^^G^. GN+I is in the center of G .̂ So <PGN+I is
homogeneous. Let ψ be the homogeneous constituent of <PGN+\- Then

Consider the structure of GN. Put

A={u(Q, •••, 0, flAr+ι, aN+2, ••-, ai-i, 0)}
B={u(Q, — , 0, aN, 0, — , 0, aι)}.

Then obviously GN^AXB and A is in the center of GN. Since φGl is homogene-
ous, iGzίΊker φ\=2n~1. Put K=GιΓ\kerφ. The commutator map B/GιX
B/Gi - > Gz can be regarded as PN,N in Lemma 4.4 :
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[w(0, •••, to, 0, , 0), w(0, -, bN, 0, , 0)] = tt(0, -, 0,

Thus Lemma 4.4 says that there exists the unique non zero dx such that w(0, •••,
a*, 0, — , 0) is in the center of B/K. Clearly Ό(B/K)=Φ(B/K) = Gι/K and its
order is 2. Thus B/K" is isomorphic to a central product of an extraspecial group
of order ϊn and an abelian group of order 4 (it is not so hard to check that the
center of B/K is cyclic of order 4 but this is not necessary for our argument). It is
well known that an irreducible character degree of an extraspecial group of order
P2r+1 is 1 or pr. So-0>(l)=2(π-1)/2. Now

χ(l)>\G: IG(φ)\ φ(ϊ)

By the same argument as Lemma 4.8, the result follows. D

Now Theorem 2.2 (b) is proved and Aι(n, θ\ Kno, satisfies B-condition.

5. Derived lengths

In this section, we consider the derived length of Aι(n, θ\ The next holds.

Theomem 5.1. // 2d~1<l<2d, then the derivd length of Aι(n, θ) is d.

This theorem is an easy consequence from the following lemma.

Lemma 5.2. [Gί, Gj] = Gι+j, where Gm = l if m>l.

Proof. Obviously [Gί, Gj\<Gi+j. Suppose that ?'+/</, otherwise [Gί, Gj\
>Gi+j = l holds. Then [Gί, Gj\^Gι holds since Gι~ 1 is transitively permuted by

<ξλ>. Inductively [G, , Gj]/Gm>Gm-ι/Gm for i+j<m<l. Thus [G, , Gj]^Gi+j
and so [G, , Gj] = Gi+j. D

Theorem 5.1 holds obviously from this lemma. We can also see that the

nilpotency class of Aι(n, θ) is /.

Now Theorem in introduction holds from Theorem 2.1 and Theorem 5.1.
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