

Title	A condition on lengths of conjugacy classes and character degrees
Author(s)	Hanaki, Akihide
Citation	Osaka Journal of Mathematics. 1996, 33(1), p. 207–216
Version Type	VoR
URL	https://doi.org/10.18910/3672
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Hanaki, A. Osaka J. Math. 33 (1996), 207-216

A CONDITION ON LENGTHS OF CONJUGACY CLASSES AND CHARACTER DEGREES

Akihide HANAKI

(Received July 7, 1994)

1. Introduction

In E. Bannai [1], the following condition on finite groups is investigated. Let G be a finite group, $Irr(G) = \{\chi_i\}_{1 \le i \le k}$ be the set of all irreducible characters of G, and $Cl(G) = \{C_i\}_{1 \le i \le k}$ be the set of all conjugacy classes of G.

Condition. By suitable renumbering i,

 $\chi_i(1)^2 = |C_i|$, for $i=1, 2, \dots, k$.

We call this condition B-condition ("B" is due to E. Bannai). A few groups satisfying B-condition are known: abelian groups, Suzuki 2-groups $A(n, \theta)$ (See [3, VIII.6.7 Example and §7]), ϕ_6 , ϕ_{11} in [4], and groups isoclinic to them (For isoclinism, see [2]). In any case, they are nilpotent and their derived lengths are at most 2.

In this paper, we shall construct a family of groups satisfying B-condition. Our groups are, in a sense, generalizations of Suzuki 2-groups. By our examples, we can say that

Theorem. Derived lengths of groups satisfying B-condition are unbounded.

2. Construction of groups

Let $F = GF(2^n)$ be the finite field of order 2^n , and let θ be an automorphism of F. We put, for a positive integer l and $a_1, a_2, \dots, a_l \in F$,

A. HANAKI

$$u(a_{1}, a_{2}, \dots, a_{l}) = \begin{pmatrix} 1 & & & & \\ a_{1} & 1 & & & & \\ a_{2} & a_{1}\theta & 1 & & & \\ a_{3} & a_{2}\theta & a_{1}\theta^{2} & 1 & & \\ \dots & \dots & \dots & \dots & \dots & \\ a_{l} & a_{l-1}\theta & a_{l-2}\theta^{2} & \dots & a_{1}\theta^{l-1} & 1 \end{pmatrix} \in M_{l+1}(F)$$

and

$$A_i(n, \theta) = \{u(a_1, a_2, \cdots, a_l) | a_i \in F\}$$

The multiplication is defined as a product of two matrices as follows :

$$u(a_1, a_2, \dots, a_l)u(b_1, b_2, \dots, b_l) = u(a_1+b_1, a_2+(a_1\theta)b_1+b_2, a_3+(a_2\theta)b_1+(a_1\theta^2)b_2+b_3, \dots, a_l+(a_{l-1}\theta)b_1+\dots+(a_1\theta^{l-1})b_{l-1}+b_l).$$

So $A_l(n, \theta)$ becomes a group of order 2^{nl} . If l=2, this group is isomorphic to a Suzuki 2-group $A(n, \theta)$ in [3, VIII.6.7 Example and §7].

For $1 \le i \le l$, we put

$$G_i = \{ u(0, \dots, 0, a_i, a_{i+1}, \dots, a_i) \}.$$

Define $\varphi_{l,i-1}$: $A_l(n, \theta) \longrightarrow A_{i-1}(n, \theta)$ by $\varphi_{l,i-1}(u(a_1, \dots, a_l)) = u(a_1, \dots, a_{i-1})$. Then $\varphi_{l,i-1}$ is an epimorphism and ker $\varphi_{l,i-1} = G_i$. Thus G_i is a normal subgroup of $A_l(n, \theta), A_l(n, \theta)/G_i \cong A_{i-1}(n, \theta)$, and obviously G_l is in the center of $A_l(n, \theta)$ by the multiplication.

 $A_l(n, \theta)$ has important automorphisms. Let $\lambda \in F^x$. We define $\xi_{\lambda} : A_l(n, \theta) \rightarrow A_l(n, \theta)$ by

$$\xi_{\lambda}(u(a_1, a_2, \dots, a_l)) = u(\lambda_1 a_1, \lambda_2 a_2, \dots, \lambda_l a_l)$$

where

$$\lambda_{1} = \lambda$$

$$\lambda_{2} = \lambda(\lambda\theta)$$

$$\lambda_{3} = \lambda(\lambda\theta)(\lambda\theta^{2})$$

...

$$\lambda_{l} = \prod_{i=0}^{l-1} (\lambda\theta^{i}).$$

Then this is an automorphism of $A_l(n, \theta)$.

For simplify our argument, throughout this paper, we assume that θ is the Frobenius automorphism of F, $\theta: x \to x^2$. Then $\lambda_i = \lambda^{2^{i-1}}$. We also assume that λ is a generator of F^x and is fixed. Then λ_i generates F^x if and only if $(2^n - 1, 2^i - 1) = 1$. But it is easy to check that $(2^n - 1, 2^i - 1) = 1$ if and only if (n, i) = 1. In this case, $\langle \xi_{\lambda} \rangle$ permutes $G_i/G_{i+1} - G_{i+1}$ transitively. If $l < n_0$, where n_0 is the smallest prime divisor of n, then this holds for any i.

Our main result is

Theorem 2.1. Let θ be the Frobenius automorphism of $GF(2^n)$. Assume that $l < n_0$, where n_0 is the smallest prime divisor of n. Then $A_l(n, \theta)$ satisfies *B*-condition.

In particular, if n is a prime and l < n then $A_l(n, \theta)$ satisfies B-condition.

The second part of this theorem is obviously holds by the first part, and the first part is proved by the next theorem.

We put

$$q_i(G) = \#\{C \in Cl(G) | |C| = 2^i\}$$

$$r_i(G) = \#\{\chi \in Irr(G) | \chi(1) = 2^i\}.$$

Then B-condition holds for a 2-group G if and only if

$$q_{2i}(G) = r_i(G)$$
, for any $i \ge 0$.

Theorem 2.2. Put $G = A_l(n, \theta)$. Assume that θ is the Frobenius automorphism, and $l < n_0$, where n_0 is the smallest prime divisor of n. Then

(a) $q_0(G)=2^n$, $q_{m(n-1)}(G)=2^m(2^n-1)$ for $1 \le m \le l-1$, and $q_i(G)=0$ for the other i > 0. (b) $r_0(G)=2^n$, $r_{m(n-1)/2}(G)=2^m(2^n-1)$ for $1 \le m \le l-1$, and $r_i(G)=0$ for the other i > 0.

REMARK. If $l \ge n_0$ there exist groups which does not satisfy B-condition. For example, $A_2(2, \theta)$, $A_3(3, \theta)$, and $A_4(3, \theta)$, θ the Frobenius automorphism, do not satisfy B-condition.

It is known that $A_2(n, \theta)$ satisfies B-condition when θ is an arbitrary odd order automorphism of $GF(2^n)$. For odd characteristic finite fields, we can define groups similar to $A_l(n, \theta)$, and they satisfy B-condition if l=2 and the order of θ is odd (This is my work and unpublished). This is a general case of ϕ_{11} in [4].

3. Conjugacy classes

In this section, we shall prove Theorem 2.2 (a). In this and later sections, we assume that $l < n_0$, where n_0 is the smallest prime divisor of n. If l=1 then $A_l(n, \theta)$ is abelian so we assume $l \ge 2$. Note that n is odd.

Theorem 3.1. The following is a complete set of representatives of conjugacy classes of $A_l(n, \theta)$.

 $\{\xi_{\lambda}^{j}u(e_{1}, e_{2}, \dots, e_{l})|0 \le j < 2^{n}-1, e_{i}=0 \text{ or } 1 \text{ and at least one } e_{i}=1\} \cup \{u(0, \dots, 0)\}$

When $e_1 = \cdots = e_{i-1} = 0$ and $e_i = 1$, the order of the centralizer of $\xi_{\lambda}^{i}u(e_1, e_2, \cdots, e_l)$ is 2^{ni+l-i} .

To prove this, we need two lemmas.

Lemma 3.2. The order of the centralizer of $u(0, \dots, 0, e_i, \dots, e_l)$, $e_i=1$ and $e_j=1$ or 0 for j > i, is 2^{ni+l-i} .

Proof. Let $u(a_1, a_2, \dots, a_l)$ centralize $u(0, \dots, 0, e_i, \dots, e_l)$. Then by direct calculation (note that θ acts trivially on e_j),

$$e_{i}a_{1}(a_{1}^{2^{i-1}}+1)=0$$

$$e_{i}a_{2}(a_{2}^{2^{i-1}}+1)=e_{i+1}a_{1}(a_{1}^{2^{i+1}}+1)$$

$$\cdots$$

$$e_{i}a_{l-i}(a_{l-i}^{2^{i-1}}+1)=e_{l-1}a_{1}(a_{1}^{2^{l-1}}+1)+\cdots+e_{i+1}a_{l-i-1}(a_{l-i-1}^{2^{i+1}}+1)$$

By our assumption, the map $x \rightarrow x^{2^{i-1}}$ is a bijection from F to F, so the first equation say that $a_1=0$ or 1. Hence the right hand side of the second equation is 0, and thus $a_2=0$ or 1. We can continue this argument until a_{l-i} . Thus the order of the centralizer of $u(0, \dots, 0, e_i, \dots, e_l)$ is $2^{l-i} \cdot 2^{ni} = 2^{ni+l-i}$. The proof is complete. \Box

Let tr be the trace map from $GF(2^n)$ to GF(2): $tr(x) = \sum_{i=0}^{n-1} x \theta^i$. The next holds.

Lemma 3.3. $\xi_{\lambda}^{i}u(e_{1}, e_{2}, \dots, e_{l}), e_{i}=0 \text{ or } 1, and \quad \xi_{\lambda}^{k}u(f_{1}, f_{2}, \dots, f_{l}), f_{i}=0 \text{ or } 1, are conjugate if and only if <math>j=k$ and $e_{i}=f_{i}$, for all i.

Proof. Assume $\xi_{\lambda}^{i}u(e_{1}, e_{2}, \dots, e_{l}), e_{i}=0$ or 1, and $\xi_{\lambda}^{k}u(f_{1}, f_{2}, \dots, f_{l}), f_{i}=0$ or 1, are conjugate in $A_{l}(n, \theta)$. If $e_{1}=\dots=e_{i-1}=0$ and $e_{i}=1$, then obviously $f_{1}=\dots=f_{i-1}=0$ and $f_{i}=1$, and j=k, since G_{i}/G_{i+1} is in the center of G_{1}/G_{i+1} . So we may assume that j=k=0. Then there exists $u(a_{1}, \dots, a_{l})$ such that $u(e_{1}, \dots, e_{l})u(a_{1}, \dots, a_{l})=u(a_{1}, \dots, a_{l})u(f_{1}, \dots, f_{l})$. Obviously $e_{1}=f_{1}$. Suppose that $e_{i}=f_{i}$, for i < m. Then by direct calculation,

$$e_{m}+f_{m}=e_{m-1}a_{1}+e_{m-2}a_{2}+\dots+e_{1}a_{m-1}$$

+f_{m-1}(a_{1}\theta^{m-1})+f_{m-2}(a_{2}\theta^{m-2})+\dots+f_{1}(a_{m-1}\theta)
= $e_{m-1}(a_{1}+a_{1}\theta^{m-1})+e_{m-2}(a_{2}+a_{2}\theta^{m-2})+\dots+e_{1}(a_{m-1}+a_{m-1}\theta).$

The right hand side of this equation is in the kernel of tr, since $e_i=0$ or 1. But the left hand side is 0 or 1. So $e_m=f_m$. Thus the proof is complete. \Box

Now Theorem 3.1 is easily shown.

$$\xi_{\lambda}^{j}u(e_{1}, e_{2}, \dots, e_{l})$$
, for $0 \le j \le 2^{n} - 1$, $e_{i} = 0$ or 1

are in distinct conjugacy classes each other. Consider the lengths of these classes. The sum of their lengths is

$$1+1\cdot(2^{n}-1)+2^{n-1}\cdot 2(2^{n}-1)+2^{2(n-1)}\cdot 2^{2}(2^{n}-1) +\cdots +2^{(l-1)(n-1)}\cdot 2^{l-1}(2^{n}-1) = 2^{nl} = |A_{l}(n, \theta)|.$$

Thus they are representatives of conjugacy classes of $A_i(n, \theta)$. Theorem 3.1 and also Theorem 2.2 (a) are proved.

4. Irreducible characters

In this section, we shall prove Theorem 2.2 (b). We need many lemmas to prove this.

We put $G = A_{l}(n, \theta)$. Recall that

$$G_i = \{u(0, \dots, 0, a_i, a_{i+1}, \dots, a_i)\}$$

and $G/G_i \cong A_{i-1}(n, \theta)$.

Lemma 4.1. $C_G(G_i) = G_{l-i+1}$. Especially, G_i is abelian if and only if $i \ge (l+1)/2$.

Proof. This holds by direct calculations. \Box

Lemma 4.2. Let G_N be abelian, and let $\varphi \in Irr(G_N)$ such that $\ker \varphi \ge G_i$. Then

$$|I_G(\varphi)|=2^{nN+l-N},$$

where $I_G(\varphi)$ is the stabilizer of φ in G.

To show this, we may assume that φ_{G_l} is $u(0, \dots, 0, a_l) \rightarrow (-1)^{\operatorname{tr}(a_l)}$ since $\operatorname{Irr}(G_l) - \{1_{G_l}\}$ is transitively permuted by $\langle \xi_\lambda \rangle$, and note that any character of G_l is invariant in G since G_l is in the center of G. This lemma will be shown later.

Let G_N be abelian. Then $\varphi \in Irr(G_N)$ can be regarded as a homomorphism from G_N to $F_2 = GF(2)$, since G_N is an elementary abelian 2-group. Thus φ can be regarded as a sum of homomorphisms from G_i/G_{i+1} to F_2 , $i=N, N+1, \dots, l$. Note that G_i/G_{i+1} is isomorphic to $F = GF(2^n)$ as an additive group.

Lemma 4.3. Define $\Phi: F \longrightarrow \operatorname{Hom}_{F_2}(F, F_2)$ by $\phi(a)(x) = \operatorname{tr}(ax)$. Then ϕ is an isomorphism as abelian groups.

Proof. Put K = ker tr. If aK = bK implies a = b then the proof is complete. Thus we shall show aK = K implies a = 1.

If $a \neq 1$ then *a* induces a permutation on *K*. Obviously $C_{\kappa}(a) = \{0\}$, and the lengths of $\langle a \rangle$ -orbits are the order of *a*. But by our assumption, (|K|-1, o(a)) = 1. This is a contradiction. The proof is complete. \Box

By this lemma, any $\varphi \in \operatorname{Irr}(G_N)$ has a form $\varphi : u(0, \dots, 0, x_N, \dots, x_l) \to (-1)^{\sum_{i=n}^{l} tr(ax_i)}$ for some $a_1, \dots, a_l \in F$, and we can denote this by $\varphi(a_N, \dots, a_l)$.

Lemma 4.4. Define $\rho_{i,j}: F \times F \longrightarrow F$ by $\rho_{i,j}(a, b) = (a\theta^j)b + a(b\theta^i)$. Then, for i > 0, j > 0, and $0 < i+j \le l$, there exits an integer m such that $(2^i-1)m \equiv 2^{i+j}$ $-1 \pmod{2^n-1}$, and

 $\rho_{i,j}(a, F) = a^m \ker \operatorname{tr}.$

Especially, $\rho_{i,j}(a, F) = \rho_{i,j}(b, F)$ if and only if a = b.

Proof. Since $i \le l < n_0$, $2^i - 1$ is coprime to $2^n - 1$. Thus such *m* exits.

Obviously $\rho_{i,j}$ is bilinear. If $(a\theta^j)b + a(b\theta^i) = 0$ then $a^{2^j}b + ab^{2^j} = 0$, and so b = 0 or $a^{(2^j-1)/(2^i-1)}$. Hence $|\rho_{i,j}(a, F)| = 2^{n-1}$ for $a \neq 0$.

On the other hand,

$$(a\theta^{j})b + a(b\theta^{i}) = a^{m}(a^{2^{j-m}}b + (a^{2^{j-m}}b)^{2^{i}})$$

$$\in a^{m} \text{ker tr.}$$

Thus $\rho_{i,j}(a, F) = a^m \ker \operatorname{tr.}$

The last part of the lemma clearly holds by the same way as the proof of Lemma 4.3 and $(m, 2^m-1)=1$.

The proof is complete. \Box

In general, conjugates of elements in $A_l(n, \theta)$ is very complicated. So we prepare the easy cases.

Lemma 4.5. (a)

 $u(0, \dots, 0, a_i, 0, \dots, 0)u(0, \dots, 0, x_m, 0, \dots, 0)u(0, \dots, 0, a_i, 0, \dots, 0)^{-1} = u(0, \dots, 0, x_m, 0, \dots, 0, (x_m\theta^i + x_m)_{m+i}, 0, \dots, 0, (x_m\theta^{2i} + x_m)_{m+2i}, \dots).$

(b) When i+j=l,

 $u(0, \dots, 0, g_i, 0, \dots, 0)u(0, \dots, 0, x_j, 0, \dots, 0)u(0, \dots, 0, g_i, 0, \dots, 0)^{-1} = u(0, \dots, 0, x_j, 0, \dots, 0, (x_j\theta^i)g_i + x_j(g_i\theta^j)).$

Proof. Note that

 $u(0, \dots, 0, g_i, 0, \dots, 0)^{-1}$

$$= u(0, \dots, 0, g_i, 0, \dots, 0, ((g_i\theta^i)g_i)_{2i}, 0, \dots, 0, ((g_i\theta^{2i})(g_i\theta^i)g_i)_{3i}, \dots).$$

So the results follow by direct calculations. \Box

We define a subgroup H of G by

$$H = \{u(a_1, a_2, \dots, a_l) | a_i = 1 \text{ or } 0\}$$

Obviously this is a subgroup of G and abelian. H is generated by $u(0, \dots, 0, 1_i, 0, \dots, 0), 1 \le i \le l$, and has the order 2^l .

Lemma 4.6. Assume that G_N is abelian. For $\varphi = \varphi(a_N, \dots, a_l)$, $a_i = 1$ or 0, $I_G(\varphi) = HG_{l-N+1}$.

Proof. $I_G(\varphi) \ge G_{l-N+1}$ since $C_G(G_N) = G_{l-N+1}$ holds by Lemma 4.1, and $I_G(\varphi) \ge H$ by Lemma 4.5 (a). So $I_G(\varphi) \ge HG_{l-N+1}$.

If N = l the result holds obviously. Assume the result holds for $\varphi_{G_{N+1}} = \varphi(a_{N+1}, \dots, a_l)$. Then $I_G(\varphi) \leq G_G(\varphi_{G_{N+1}}) = HG_{l-N}$. Let $g \in I_G(\varphi)$. We can write $g = hg', h \in H, g' \in G_{l-N}$. Then $g' \in I_G(\varphi)$. Since $G_{l-N+1} \leq I_G(\varphi)$, we may assume that $g' = u(0, \dots, 0, g_{l-N}, 0, \dots, 0)$. Consider the action of g' on $u(0, \dots, 0, x_N, 0, \dots, 0)$. By Lemma 4.5 (b), $(x_N \theta^{l-N})g_{l-N} + x_N(g_{l-N} \theta^N)$ must be in ker tr for any $x_N \in F$. But by Lemma 4.4,

$$\{(x_N\theta^{l-N})g_{l-N} + x_N(g_{l-N}\theta^N) | x_N \in F\} = \rho_{l-N,N}(g_{l-N}, F) = g_{l-N}^m \ker \operatorname{tr},$$

where $(2^N-1)m\equiv 2^l-1 \pmod{2^n-1}$. Thus if $g_{l-N} \neq 0$, g_{l-N} must be 1 by Lemma 4.4 and $\rho_{l-N,N}(1, F) = \ker \operatorname{tr.}$ So $g_{l-N} = 1$ or 0. Now $I_G(\varphi) \leq HG_{l-N+1}$ and the result follows. \Box

Lemma 4.7. Assume that G_N is abelian. If $\varphi(a_N, \dots, a_l)^g = \varphi(b_N, \dots, b_l)$, $a_i = 1$ or 0, $b_i = 1$ or 0, then $a_i = b_i$ for all *i*.

Proof. Suppose that $a_m \neq b_m$ and $a_i = b_i$ for all i > m. We may assume that $a_m = 1$ and $b_m = 0$. $g = u(g_1, \dots, g_l)$ fixes $\varphi(a_{m+1}, \dots, a_l)$ so $g \in HG_{l-m}$ by Lemma 4. 6. Consider the action of g on $\varphi(a_m, \dots, a_l)$. Since HG_{l-m+1} stabilizes $\varphi(a_m, \dots, a_l)$, we may assume that $g = u(0, \dots, 0, g_{l-m}, 0, \dots, 0)$. Then

$$\begin{aligned} \varphi(a_m, \dots, a_l)^g(u(0, \dots, 0, a_m, 0, \dots, 0)) \\ &= \varphi(a_m, \dots, a_l)(u(0, \dots, 0, a_m, 0, \dots, 0)^{g^{-1}}) \\ &= \varphi(a_m, \dots, a_l)(u(0, \dots, 0, a_m, 0, \dots, 0, g_{l-m}\theta^m + g_{l-m})) \\ &= 1 \end{aligned}$$

by Lemma 4.5 (b). But $\varphi(b_m, \dots, b_l)(u(0, \dots, 0, 1_m, 0, \dots, 0))=0$. This is a contradiction, and the proof is complete. \Box

Now we can prove Lemma 4.2.

Proof of Lemma 4.2. Let G_N be abelian. Then the number of irreducible characters of G_N whose kernels do not contain G_l is $2^{(l-N)n}(2^n-1)$. Lemma 4.6 says that $\varphi(a_N, \dots, a_l)$, $a_i=1$ or 0, are in distinct G-orbits, and Lemma 4.6 says that their orbits have lengths $2^{(l-N)(n-1)}$. Also $\varphi(a_N, \dots, a_l)^{\epsilon_l}$ are in distinct G-orbits. Thus they are complete representatives of G-orbits. Now the result follows from Lemma 4.6. \Box

Using Lemma 4.2, we can prove Theorem 2.2 (b) by induction on l. We separate the cases l as odd from l as even.

Lemma 4.8. Assume that Theorem 2.2 holds for $A_{l-1}(n, \theta)$ and l is odd. Then Theorem 2.2 holds for $A_l(n, \theta)$.

Proof. Put N=(l+1)/2, then G_N is abelian. Let χ be an irreducible character of G such that $\ker \chi \ge G_l$. Let φ be an irreducible character of G_N such that $(\chi_{G_N}, \varphi) = 0$ and $\ker \varphi \ge G_l$. By Lemma 4.2, $|G: I_G(\varphi)| = 2^{(n-1)(l-1)/2}$. So $\chi(1) \ge 2^{(n-1)(l-1)/2}$. The number of such χ is $2^{l-1}(2^n-1)$ by the number of conjugacy classes. Conider that

$$|G| = \sum_{\substack{\chi \in Irr(G) \\ Z^{n(l-1)} + 2^{(n-1)(l-1)} \cdot 2^{l-1}(2^n - 1) = 2^{nl} = |G|}} \sum_{\substack{\ker \chi \ge G_i \\ Z^{n(l-1)} + 2^{(n-1)(l-1)} \cdot 2^{l-1}(2^n - 1) = 2^{nl} = |G|} \sum_{\substack{\ker \chi \ge G_i \\ Z^{n(l-1)} + 2^{(n-1)(l-1)} \cdot 2^{l-1}(2^n - 1) = 2^{nl} = |G|} \sum_{\substack{\ker \chi \ge G_i \\ Z^{n(l-1)} + 2^{(n-1)(l-1)} \cdot 2^{l-1}(2^n - 1) = 2^{nl} = |G|} \sum_{\substack{\ker \chi \ge G_i \\ Z^{n(l-1)} + 2^{(n-1)(l-1)} \cdot 2^{l-1}(2^n - 1) = 2^{nl} = |G|} \sum_{\substack{\ker \chi \ge G_i \\ Z^{n(l-1)} + 2^{(n-1)(l-1)} \cdot 2^{l-1}(2^n - 1) = 2^{nl} = |G|} \sum_{\substack{\ker \chi \ge G_i \\ Z^{n(l-1)} + 2^{(n-1)(l-1)} \cdot 2^{l-1}(2^n - 1) = 2^{nl} = |G|} \sum_{\substack{\ker \chi \ge G_i \\ Z^{n(l-1)} + 2^{(n-1)(l-1)} \cdot 2^{l-1}(2^n - 1) = 2^{nl} = |G|} \sum_{\substack{\ker \chi \ge G_i \\ Z^{n(l-1)} + 2^{(n-1)(l-1)} \cdot 2^{l-1}(2^n - 1) = 2^{nl} = |G|} \sum_{\substack{\ker \chi \ge G_i \\ Z^{n(l-1)} + 2^{(n-1)(l-1)} \cdot 2^{l-1}(2^n - 1) = 2^{nl} = |G|} \sum_{\substack{\ker \chi \ge G_i \\ Z^{n(l-1)} + 2^{(n-1)(l-1)} \cdot 2^{l-1}(2^n - 1) = 2^{nl} = |G|} \sum_{\substack{\ker \chi \ge G_i \\ Z^{n(l-1)} + 2^{(n-1)(l-1)} \cdot 2^{l-1}(2^n - 1) = 2^{nl} = |G|} \sum_{\substack{\ker \chi \ge G_i \\ Z^{n(l-1)} + 2^{(n-1)(l-1)} \cdot 2^{l-1}(2^n - 1) = 2^{nl} = |G|} \sum_{\substack{\ker \chi \ge G_i \\ Z^{n(l-1)} + 2^{(n-1)(l-1)} \cdot 2^{l-1}(2^n - 1) = 2^{nl} = |G|} \sum_{\substack{\ker \chi \ge G_i \\ Z^{n(l-1)} + 2^{(n-1)(l-1)} \cdot 2^{nl} - 2^{nl} = 2^{nl} - 2^{nl} = 2^{nl} - 2^{nl} = 2^{nl} - 2^{nl$$

Thus $\chi(1)=2^{(n-1)(l-1)/2}$. The proof is complete.

Lemma 4.9. Assume that Theorem 2.2 holds for $A_{l-1}(n, \theta)$ and l is even. Then Theorem 2.2 holds for $A_l(n, \theta)$.

Proof. Put N = l/2. Note that G_N is not abelian. Let χ be an irreducible character of G such that ker $\chi \ge G_l$. Let φ be an irreducible character of G_N such that $(\chi_{G_N}, \varphi) = 0$ and ker $\varphi \ge G_l$. G_{N+1} is in the center of G_N . So $\varphi_{G_{N+1}}$ is homogeneous. Let ψ be the homogeneous constituent of $\varphi_{G_{N+1}}$. Then

$$|I_G(\varphi)| \leq |I_G(\psi)| = 2^{(l/2-1)+n(l/2+1)}$$

Consider the structure of G_N . Put

$$A = \{u(0, \dots, 0, a_{N+1}, a_{N+2}, \dots, a_{l-1}, 0)\}$$

$$B = \{u(0, \dots, 0, a_N, 0, \dots, 0, a_l)\}.$$

Then obviously $G_N = A \times B$ and A is in the center of G_N . Since φ_{G_l} is homogeneous, $|G_l \cap \ker \varphi| = 2^{n-1}$. Put $K = G_l \cap \ker \varphi$. The commutator map $B/G_l \times B/G_l \longrightarrow G_l$ can be regarded as $\rho_{N,N}$ in Lemma 4.4:

 $[u(0, \dots, a_N, 0, \cdot, 0), u(0, \dots, b_N, 0, \cdot, 0)] = u(0, \dots, 0, a_N(b_N\theta^N) + (a_N\theta^N)b_N).$

Thus Lemma 4.4 says that there exists the unique non zero a_N such that $u(0, \dots, a_N, 0, \dots, 0)$ is in the center of B/K. Clearly $D(B/K) = \Phi(B/K) = G_l/K$ and its order is 2. Thus B/K is isomorphic to a central product of an extraspecial group of order 2^n and an abelian group of order 4 (it is not so hard to check that the center of B/K is cyclic of order 4 but this is not necessary for our argument). It is well known that an irreducible character degree of an extraspecial group of order p^{2r+1} is 1 or p^r . So $\varphi(1) = 2^{(n-1)/2}$. Now

$$\chi(1) \ge |G: I_{c}(\varphi)| \cdot \varphi(1) \\ \ge 2^{nl - (l/2 - 1) - n(l/2 + 1)} \cdot 2^{(n-1)/2} \\ = 2^{(n-1)l - 1/2}$$

By the same argument as Lemma 4.8, the result follows. \Box

Now Theorem 2.2 (b) is proved and $A_l(n, \theta)$, $l < n_0$, satisfies B-condition.

5. Derived lengths

In this section, we consider the derived length of $A_{l}(n, \theta)$. The next holds.

Theomem 5.1. If $2^{d-1} \le l \le 2^d$, then the derived length of $A_l(n, \theta)$ is d.

This theorem is an easy consequence from the following lemma.

Lemma 5.2. $[G_i, G_j] = G_{i+j}$, where $G_m = 1$ if m > l.

Proof. Obviously $[G_i, G_j] \leq G_{i+j}$. Suppose that $i+j \leq l$, otherwise $[G_i, G_j] \geq G_{i+j}=1$ holds. Then $[G_i, G_j] \geq G_l$ holds since G_l-1 is transitively permuted by $\langle \xi_{\lambda} \rangle$. Inductively $[G_i, G_j]/G_m \geq G_{m-1}/G_m$ for $i+j \leq m \leq l$. Thus $[G_i, G_j] \geq G_{i+j}$ and so $[G_i, G_j] = G_{i+j}$. \Box

Theorem 5.1 holds obviously from this lemma. We can also see that the nilpotency class of $A_l(n, \theta)$ is l.

Now Theorem in introduction holds from Theorem 2.1 and Theorem 5.1.

References

- [1] E. Bannai : Association schemes and fusion algebras (an introduction), J. Alg. Comb. 2 (1993) 327 -344.
- [2] P. Hall: The classification of prime-power groups, J. Reine Angew. Math. 182 (1940), 130-141.

A. HANAKI

- [3] B. Huppert and N. Blackburn : Finite Groups II, Berlin-Heidelberg-New York 1982.
- [4] R. James: The groups of order p⁶ (p an odd prime), Math. Computation 43 (1980) 613-637.

Faculty of Engineering, Yamanashi University Takeda 4, Kofu, 400, Japan