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1. Introduction

In E. Bannai [1], the following condition on finite groups is investigated.
Let G be a finite group, Irr(G) ={x:}:<i<+ be the set of all irreducible characters
of G, and CI(G)={C:}i<i<+ be the set of all conjugacy classes of G.

Condition. By suitable renumbering 7,

21?=|Ci, for i=1, 2, -, k.

We call this condition B-condition (“B” is due to E. Bannai). A few groups
satisfying B-condition are known : abelian groups, Suzuki 2-groups A(#, 8)(See
[3, VIIL6.7 Example and §7]), #s, ¢u1 in [4], and groups isoclinic to them (For
isoclinism, see [2]). In any case, they are nilpotent and their derived lengths are
at most 2.

In this paper, we shall construct a family of groups satisfying B-condition. Our
groups are, in a sense, generalizations of Suzuki 2-groups. By our examples, we can
say that

Theorem. Derived lengths of groups satisfying B-condition are unbounded.

2. Construction of groups

Let F=GF(2") be the finite field of order 2%, and let & be an automorphism
of F. We put, for a positive integer / and a1, az, ***, ©.€F,
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1
ai ].
wlay, an o a)=| @ @¢ 1 & Mei(F)

as a0 0192 1
ar a0 a0 -+ @t 1
and
A[(%, 6)2{2{(01, az, -, [lz)'diEF}-

The multiplication is defined as a product of two matrices as follows :

u(al, az, **, dz)u(bl, ba, -, bl)
=u(a1+b1, az+(a1(9)b1+bz, a3+(a26)b1+(a102)b2+b3,
N dz+(dz—10)b1+"‘+(61101_1)bz—1+bz).

So A« n, 8) becomes a group of order 2™. If /=2, this group is isomorphic to a
Suzuki 2-group A(n, 6) in [3, VIIL6.7 Example and §7].
For 1<i/</, we put

Gi:{u(o, oty 0, ai, Ai+1, ", dz)}-

Define ¢ui-1: An, 0)—Ai-i(n, 0) by ¢ri-1(u(as, -, a))=ula, -+, ai-1).
Then ¢;:-1 is an epimorphism and ker ¢;:;-1=G:. Thus G: is a normal subgroup
of Aln, 9), Aln, 0)/G:=Ai-1(n, §), and obviously G, is in the center of A:(n,
#) by the multiplication.

Ai(n, 6) has important automorphisms. Let AE F*. We define &:: Aun, 6)
—>Az(7l, (9) by

Eulay, as, -+, a)=ulhai, Aas, -, Aai)
where

/11 :/1
'/12 = /1(/1 (9)
A=A(10)(16%)

-1
/11=iI=IO(/1(9i).

Then this is an automorphism of A/(#n, 6).

For simplify our argument, throughout this paper, we assume that & is the
Frobenius automorphism of F, 8 : x—x2 Then A;=A*"'. We also assume that A
is a generator of F* and is fixed. Then A; generates F* if and only if (2" —1, 2'—1)
=1. But it is easy to check that (2" —1, 2°—1)=1 if and only if (%, 7)=1. In this
case, &> permutes Gi/Gis1— Gy transitively. If /<o, where #o is the smallest
prime divisor of #, then this holds for any 7.
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Our main result is

Theorem 2.1. Let 6 be the Frobenius automorphism of GF(2"). Assume
that 1 <wo, where no is the smallest prime divisor of n. Then A(n, 0) satisfies
B-condition.

In particular, if n is a prime and [<n then A/ n, 0) satisfies B-condition.

The second part of this theorem is obviously holds by the first part, and the
first part is proved by the next theorem.
We put

¢{G)=t{CeCI(G)||C|=2%)
r{ G)=#Hx€Irr(G)|2(1)=2%.

Then B-condition holds for a 2-group G if and only if
q2:{(G)=7:«G), for any 7=0.

Theorem 2.2. Put G=A/(n, ). Assume that 0 is the Frobenius automor-
phism, and 1< o, where no is the smallest prime divisor of n. Then

@ qG)=2", gnin-y(G)=2™(2"—1) for 1<m<I[—1, and q{G)=0 for the
other i>0.
(b) 7’0(G)=2", rm<n_1>/z(G)=2"’(2”—1) for lémél—l, and r,-(G)=0 for the
other 1>0.

REMARK. If />0 there exist groups which does not satisfy B-condition. For
example, A2(2, 6), As(3, 6), and A3, 8), 6 the Frobenius automorphism, do not
satisfy B-condition.

It is known that Ax(n, ) satisfies B-condition when @ is an arbitrary odd
order automorphism of GF(2"). For odd characteristic finite fields, we can define
groups similar to A:(#n, ), and they satisfy B-condition if /=2 and the order of &
is odd (This is my work and unpublished). This is a general case of ¢ in [4].

3. Conjugacy classes

In this section, we shall prove Theorem 2.2 (a). In this and later sections, we
assume that /< no, where #o is the smallest prime divisor of %. If /=1 then A.(n,
) is abelian so we assume /=2. Note that # is odd.

Theorem 3.1. The following is a complete set of representatives of con-
jugacy classes of Adn, 0).

{Eiu(en, ez, -+, €)|0<j<2"—1, ;=0 or 1 and at least one e;=1}U{u(0, -+, 0)}
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When e1=+=e;-1=0 and e;=1, the order of the centralizer of &lu(es, e, -+,
el) iS 2m‘+l—i.

To prove this, we need two lemmas.

Lemma 3.2. The order of the centralizer of u(0, -0, e;, -, e, ei=1 and
e;=1or 0 for j>1, is 2"*°

Proof. Let u(ai, as, -+, a.) centralize (0, -, 0, e;, ***, ;). Then by direct
calculation (note that @ acts trivially on e¢;),

ea(af ' +1)=0
eiaz(d%i_l +1)=ema(al"'+1)

eial—i(d%l—_il‘F1)=el—lal(a%bl__1+1)+"'+€i+lal—i—1.(a%i::':%+1)
By our assumption, the map x—x>"! is a bijection from F to F, so the first
equation say that @1=0 or 1. Hence the right hand side of the second equation is
0, and thus @2=0 or 1. We can continue this argument until @;—;. Thus the order
of the centralizer of %(0, -+, 0, e;, -+, e;) is 2792 =2"*""{_ The proof is
complete. []

Let tr be the trace map from GF(2") to GF(2): tr(x)=27=x6°. The next
holds.

Lemma 3.3. E&lu(e, e, -+, e)), =0 or 1, and Etu(h, fo, -+, f2), /=0 or
1, are conjugate if and only if j=Fk and e:=f;, for all i.

Proof. Assume &u(e, ez, =+, €1), e;=0 or 1, and Efu(f, fo, =+, 1), /=0 or
1, are conjugate in A/(#n, §). If e;=---=e;-1=0 and e;=1, then obviously fi=""
=f;-1=0and f;=1, and =k, since G:/G:+1 is in the center of G1/G:+1. So we may
assume that j=%=0. Then there exists %(ai, **-, @:) such that u(ei, -, e)u(ai,
o an)=ulay, -+, a)u(fi, -+, ). Obviously er=/i. Suppose that e;=f;, for i<
m. Then by direct calculation,

entfn=emn-1a1+em—sazt -+ e1am-
+fm_1(a10”‘")+fm-z(az¢9'"‘2)+ +f1(dm—1l9)
= e,,,_l(al—l- dlﬁm_l)+ em-z(d2+ 426”“2)+ X o el(am_1+am_16).

The right hand side of this equation is in the kernel of tr, since ¢;=0 or 1. But the
left hand side is 0 or 1. So em=/n. Thus the proof is complete. []

Now Theorem 3.1 is easily shown.
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Eiuley, ez, -+, e1), for 0<;<2"—1, e;=0 or 1

are in distinct conjugacy classes each other. Consider the lengths of these classes.
The sum of their lengths is

1+1-(2"=1)+2""-2(2" — 1) +2°" - 2%(2" — 1)
+ - +2(l—1)("—1),21—1(2n _ 1)
=2"=|Adn, 9)\.

Thus they are representatives of conjugacy classes of A%, §). Theorem 3.1 and
also Theorem 2.2 (a) are proved.

4. Irreducible characters

In this section, we shall prove Theorem 2.2 (b). We need many lemmas to
prove this.
We put G=A:#n, 0). Recall that

Gi={u(0, Y Ov ai, Ai+1, ", al)}
and G/GigAi—l(n, 9)

Lemma 4.1. Co(G:)=Gi-i+1. Especially, G: is abelian if and only if i=(l
+1)/2.

Proof. This holds by direct calculations. []

Lemma 4.2. Let Gy be abelian, and let ¢<Irr(Gy) such that kero® G..
Then

[Ze(p)| =277,

where Ic(p) is the stabilizer of ¢ in G.

To show this, we may assume that ¢g, is (0, -+, 0, a;)—=(—1)"* since Irr(G.)
—{1¢,} is transitively permuted by <&:>, and note that any character of G is
invariant in G since G; is in the center of G. This lemma will be shown later.

Let Gn be abelian. Then ¢EIrr(Gn) can be regarded as a homomorphism
from Gy to F>=GF(2), since Gy is an elementary abelian 2-group. Thus ¢ can be
regarded as a sum of homomorphisms from G:/Gi+1 to Fz, i=N, N+1, -+, [. Note
that G:/G:+1 is isomorphic to F=GF(2") as an additive group.

Lemma 4.3. Define @ : F—Homp,(F, F3) by $(a)(x)=tr(ax). Then ¢ is
an isomorphism as abelian groups.
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Proof. Put K=ker tr. If eK=50K implies =0 then the proof is complete.
Thus we shall show K=K implies a=1.

If a=+1 then a induces a permutation on K. Obviously Cx(a)={0}, and the
lengths of <a>-orbits are the order of @. But by our assumption, (|K|—1, o(a))=
1. This is a contradiction. The proof is complete. []

By this lemma, any ¢&Irr(Gy) has a form ¢: (0, -+, 0, xn, -,
x1)—(—1)F-4= for some a1, -, @, F, and we can denote this by ¢(aw, -, a.).

Lemma 4.4. Define p:;: FXF—F by p:(a, b)=(a0’)b+a(bb?). Then,
for i>0, 7 >0, and 0<i+;j<1, there exits an integer m such that (2' —1)m=2"*"
—1(mod 2"—1), and

o:.:(a, F)=a™ker tr.
Especially, p:(a, F)=p0:;b, F) if and only if a=b.
Proof. Since i</< o, 2°—1 is coprime to 2"—1. Thus such  exits.
Obviously p;,; is bilinear. If (a6?)b+ a(b0?)=0 then a*b+ ab* =0, and so b

=0 or a®¥V®Y_ Hence |p:(a, F)|=2"" for a=+0.
On the other hand,

(ab) b+ a(b)=a™(a?™b+(a¥~™b)%)
€ a™ker tr.

Thus p:;(a, F)=a™ker tr.

The last part of the lemma clearly holds by the same way as the proof of
Lemma 4.3 and (m, 2" —1)=1.

The proof is complete. []

In general, conjugates of elements in A.(#, @) is very complicated. So we prepare
the easy cases.
Lemma 4.5. (a)

u(O, ) 0) ai, 0» Y O)M(O, Y 0) Xm, O; ) O)Z{(O, Y Oy ai, O) Y 0)”l
:u(o) ) 0, Xm, 0: ) 0,(xm0i+xm)m+i, 07 ) O,(xm€2i+xm)m+2i, '”)‘

(b) When i+j=1,
u(O, T O; 9i, O’ T O)u(o) T O) Xis Oy ) O)u(or Y 0» gi, O’ ) O)_l
=u(0, ) 0’ Xy 07 ) Oy(xlel)gl—*_xl(glej))
Proof. Note that
u(O, ...’ 0’ gi, 0’ ..., 0)_1
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=u(0y Y O,Qi’ 0’ ) 0,((gi0i)gz‘)25, O’ ) 0)((gi02i)(gi6i)gi)3iv '")-

So the results follow by direct calculations. []

We define a subgroup H of G by
H={u(ai, a, AN at)ldi=1 or 0}.

Obviously this is a subgroup of G and abelian. H is generated by %(0, -+, 0, 1,
0, =+, 0),1<7</, and has the order 2°.

Lemma 4.6. Assume that Gy is abelian. For ¢=g¢(an, ***, a1), ai=1 or 0,

IG(¢)=HG1—N+1.

Proof. Is(9)=Gi-n+1since Co(Gy)=Gi-n+1 holds by Lemma 4.1, and I6(9)
>H by Lemma 4.5 (a). So Ie(@)=HGi-y+1.

If N=/ the result holds obviously. Assume the result holds for gy, =
elans, -+, ai). Then Io(9)< Go(@cn)=HG,-n. Let gEIa(qo). We can write g
=hg', hEH, §EGiy. Then g E€1(p). Since Gi-n+1<Ic(p), we may assume
that ¢ =u(0, -+, 0, gi-n, 0, --*, 0). Consider the action of ¢ on %(0, --+, 0, xw, O,
+=+, 0). By Lemma 4.5 (b), (xv0""")g:-n+xx(g:-~0") must be in ker tr for any xy
€F. But by Lemma 44,

{(xnv0 M) gi-v+2x5(g1-nOM)|xn E F} = 01-n.n(gi-n, F) =gl vker tr,

where (2¥ —1)m=2'—1(mod 2" —1). Thus if g:-x=+0, g:—~ must be 1 by Lemma
4.4 and p1-x (1, F)=kertr. So gi-x=1 or 0. Now Ic(9)<HG;-n+1 and the
result follows. []

Lemma 4.7. Assume that Gy is abelian. If ¢(an, -, a))’=¢(by, **, by), a:
=1 or 0, b:=1 or 0, then a;=b; for all i.

Proof. Suppose that an=bn and a:=b: for all i>m. We may assume that
an=1 and bn=0. g=ulg, -, g:) fixes (@m+1, ***, a:) s0 gE HG:—m by Lemma 4.
6. Consider the action of ¢ on @(am, -, a:). Since HGi—n+: stabilizes ¢(@m, **-,
a.), we may assume that g=u(0, ***, 0, gi=m, 0, ***, 0). Then

¢(am, Y al)g(u(()’ ) Oy am, 07 Y 0))
=§0(am, T (ll)(u(o, ) Oy am, Oy R 0)9_1)
=¢(am, Y dl)(u(o, ) Oy am, O’ ) Oy gl—m0m+gz—m))
=1

by Lemma 4.5 (b). But ¢(bm, -+, b:)(u(0, =+, 0, 1m, 0, -+, 0))=0. This is a
contradiction, and the proof is complete. [J



214 A. HANAKI
Now we can prove Lemma 4.2.

Proof of Lemma 4.2. Let Gy be abelian. Then the number of irreducible
characters of Gy whose kernels do not contain G, is 2¢"V*(2"—1). Lemma 4.6 says
that ¢(aw, -, ai), a:=1 or 0, are in distinct G-orbits, and Lemma 4.6 says that
their orbits have lengths 2"V Also ¢(aw, -+, @) are in distinct G-orbits.
Thus they are complete representatives of G-orbits. Now the result follows from
Lemma 4.6. [

Using Lemma 4.2, we can prove Theorem 2.2 (b) by induction on /. We
separate the cases / as odd from / as even.

Lemma 4.8. Assume that Theorem 2.2 holds for A.-\(n, 0) and [ is odd.
Then Theorem 2.2 holds for A«n, 6).

Proof. Put N=(/+1)/2, then Gy is abelian. Let x be an irreducible
character of G such that kery 2 G.;. Let ¢ be an irreducible character of Gn such
that (xc», ¢)#0 and kere® G.. By Lemma 4.2, |G : Ic(@)|=2""P¢D2 5o x(1)
>2(=DU=D2  The number of such x is 2°7'(2"—1) by the number of conjugacy
classes. Conider that

IGl= ¥ x(1P= 3 x(1)*+ X xQy=2"""P+ 3 2(1)
ker 72 G kerz 3G

x€Irr(G) ker =G, er x2G

2271([—1)+2(n—1)(l—l).2l—l(2n_1):2nl=|G|‘
Thus x(1)=2""DU=V2 The proof is complete. []

Lemma 4.9. Assume that Theorem 2.2 holds for A.-\(n, 0) and [ is even.
Then Theorem 2.2 holds for An, 6).

Proof. Put N=1[/2. Note that Gy is not abelian. Let ¥ be an irreducible
character of G such that ker y > G;. Let ¢ be an irreducible character of Gy such
that (xcx, ¢)*+0 and ker ¢+ G;. Gw+1 is in the center of Gyn. SO @cw.. is
homogeneous. Let ¢ be the homogeneous constituent of @cy,,. Then

(@< Ta@l=reaen
Consider the structure of Gn. Put

A={u(0, ey 0, an+1, AN+2, **°, A1-1, O)}
B={u(0» ) 0’ an, 0; Y 0’ al)}'

Then obviously Gv=A X B and A is in the center of Gy. Since @¢, is homogene-
ous, |GiNker ¢|=2""". Put K=G:Nker . The commutator map B/G:X
B/Gr——G: can be regarded as ow,v in Lemma 4.4 :
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[u(O’ *tt, an, 0, %y 0); u(O; Y bNr 0) i) 0)]=u(0y ot O, aN(bNﬁN)—i—(aNeN)bN)-

Thus Lemma 4.4 says that there exists the unique non zero an such that (0, -,
aw, 0, -+, 0) is in the center of B/K. Clearly D(B/K)=®(B/K)=G/K and its
order is 2. Thus B/K is isomorphic to a central product of an extraspecial group
of order 2" and an abelian group of order 4 (it is not so hard to check that the
center of B/K is cyclic of order 4 but this is not necessary for our argument). It is
well known that an irreducible character degree of an extraspecial group of order
P"*islor p". So-¢(1)=2""12 Now

2(D)=|G: Ie(@)] (1)
> 9ni=(U2=D=n(1/2+1)  9(n=1)/2
—9r=11-1)2

By the same argument as Lemma 4.8, the result follows. []

Now Theorem 2.2 (b) is proved and A:«(#n, ), [ <o, satisfies B-condition.

5. Derived lengths

In this section, we consider the derived length of A%, ). The next holds.

Theomem 5.1. If 2°7'<[<2% then the derivd length of A, 0) is d.

This theorem is an easy consequence from the following lemma.

Lemma 52. [G:, G;1=Gi+j, where Gn=1 if m>1.

Proof. Obviously [G:, G;]<G:+;. Suppose that i+ ;<1 otherwise [G:, G;]
> Gi+;=1 holds. Then [G:, G;]= G, holds since G:—1 is transitively permuted by
<&». Inductively [G:, Gil/Gn=Gn-1/Gn for i+j<m</[. Thus [G:, G;]=Gis;
and so [G:, G;]1=Giyy.

Theorem 5.1 holds obviously from this lemma. We can also see that the

nilpotency class of An, ) is /.
Now Theorem in introduction holds from Theorem 2.1 and Theorem 5.1.
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