u

) <

The University of Osaka
Institutional Knowledge Archive

Crack Propagation Analysis Using Interface

Title Element (Report I) : Theoretical Formulation and
Potential Fields of Application(Mechanics,
Strength & Structure Design)

s gﬁgi;g?a, Hidekazu; Serizawa, Hisashi; Wu,

Citation |Transactions of JWRI. 1998, 27(2), p. 67-72

Version Type|VoR

URL https://doi.org/10.18910/3690

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



Trans. JWRI, Vol. 27,(1998), No. 2
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- Theoretical Formulation and Potential Fields of Application -

Hidekazu MURAKAWA#*, Hisashi SERIZAWA** and Zhengqi Wu***

Abstract

Fiber reinforced composite materials and the composites with a thin film coating are applied in
various fields as structural materials because of their high specific strength and stiffness which
contribute to weight savings. The conventional materials, such as metals and ceramics, are also
used under severe conditions due to the recent improvement of their performances. From the point
of view of safe design of the structures, it is very important to estimate the fracture strength of
materials with a reasonable accuracy. Many methods to evaluate the failure strength of materials
have been proposed. There are basically two approaches. One is the macroscopic approach in
which the concepts of stress intensity factor, energy release rate and J-integral are employed. The
other is the microscopic approach such as the simulation of crack propagation using molecular
dynamics”. To evaluate the strength of a structural component, both the macroscopic and the
microscopic nature of the phenomena must be taken into account. It is also noted that problems,
such as ductile crack growth in metals and brittle fracture of ceramics and composite materials,
are highly nonlinear and time dependent. Thus, extremely heavy computation is required. In
addition, the mechanisms of crack extension or interface stripping have not been thoroughly
clarified.

In this study, a new and simple method is developed in order to simulate the fracture
phenomena that can be considered as the formation of new surface as a result of crack propagation.
Based on the fact that surface energy must be supplied for the formation of new surface, a potential
function representing the surface energy density is introduced in the finite element method. The
proposed method is applied to the mode-I and II crack propagation problems and its capability for
static and dynamic analyses is demonstrated.

KEY WORDS: (Interface element) (Interface potential) (Peeling test) (Push-out test) (Dynamic crack
propagation) (Ductile crack propagation)

propagation modeled using interface elements. The
1. Introduction interface element consists of two surfaces and it has no

The phenomena of crack propagation and interface

stripping can be regarded as the formation of a new A N
surface. Thus, it is quite natural to model these problems cm)_ml) LX
by introducing the mechanism of surface formation. The A [B |C |D

authors proposed a method in which the formation of
new surface is represented by interface element based on

(a) before crack extension.

the interface potential energy?. The general idea of the ‘

interface element and its application to peeling test of T Finite clement
film¥, push-out test of fiber in matrix®, dynamic crack A lg

propagation”, and ductile tearing of steel plate are oA p A B

-l

\ c [D B
— 9 s A
|

| Interface element|

presented in this report.

2. Method of Analysis v
2.1 Surface potential (b) during crack extension.
Figure 1 shows an illustration of the crack Fig.1 Crack propagation model with interface element.
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Fig.2 Iennard-Jones type interface potential.

thickness when the load is not acting. When the load is
applied, the two surfaces separate from each other. The
distance between the surfaces, or the crack opening, is
denoted by & . The mechanical characteristics of the
interface element are defined through a potential
function ¢(5). Since the function (,b(é) can be chosen

rather arbitrarily, the Lennard-Jones type potential
energy® described by the following equation is employed
in this study.

¢(6)=2y-{[r rié) _2'(/25) } (1)

Where 6 is the crack opening and y, n and r, are the

material constants. In particular, 2y is the surface

energy per unit area. As shown in Fig.2, n controls the
shape of the potential energy. The derivative of ¢ with
respect to & gives the bonding force per unit area of the
surface. As shown in Fig.3, the bonding force rapidly
decreases with increasing & . Through this phenomenon,
the formation of new surface can be described.

2.2 Equilibrium equation of system

For simplicity, the outline of the mathematical
formulation is presented using the crack propagation
problem in an elastic solid. When the material is elastic,
the equilibrium equation can be derived based on the
principle of minimum potential energy.

The total energy II of an elastic body with a
propagating crack can be described as the sum of the
strain energy U, and the potential of the external load W
and the interface energy for the newly formed surface
during crack propagation U, ie.

O=U+U, +W @)
In case of the finite element method, the elastic body to
be analyzed is subdivided into small elements and the
displacements in each element are interpolated by nodal
displacement u, Noting this, the total energy is
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Fig.3 Bonding force acting on interface.
described as,
I =H(”())=U(u0)+Ux (u())+W(”o) 3)
Further, U (uo ), U, (u 0 ) and Wi, ) can be

represented as the sum of the contributions from each
element U"(u“) U‘( )and W ( )

H(u(, )= E %J (”0 )+US Uy +WL (u(; )} (4)
where, u, is the nodal displacement vector for each
element extracted from the nodal dlsplacement vector of
the whole system u,,.

Once the total energy II is given as in Eq.(4), the
equilibrium equation in incremental form can be derived
in the following manner. Denoting the nodal
displacement at the present step and its increment to the
next step as u, and Au,, the total energy II can be

described as a function of u,+Au, and it can be

expanded into Taylor’s series, ie.
T0(, + Ay )=~ T0(u, )+ A'TI(Au, )+ A2TT(Au,, )

=H(”n)‘{Aun} {f}+_ {A”(l} [k]{A“o} )

where, A'TT and A’Il are the first and the second
terms in Au(), ie.

Au () {Au 0 } {f } (6)

%'{Auo }T k]{Auu} @) ‘

Further, the equilibrium equation can be derived as the
stationarity condition of H(u(, +Au(,) with respect to

Azl'[(AuO )=

Au,, ie.
O (i, + Auy )
0Au,
or,

[k au, }=1{f } ©)

where, [k] and {f } are the tangent stiffness matrix and

= {f e[k fau, =0 (8)

the load vector, respectively.



2.3 Stiffness matrix and force vector of interface

element

The stiffness matrix and the load vector of the
interface element can be derived in a manner basically
similar to that for the whole system. Since the FEM code
developed in this research is a three dimensional code
using a solid element, the same 8-node solid element is
used for the interface element as shown in Fig.4. The
interface element consists of two surfaces containing
four nodes, namely nodes 1-4 for the bottom surface and
5-8 for the top surface, and it has no thickness when load
is not applied. The two surfaces separate when the load
is applied and the distance or the opening is denoted by
8 . When the surface area of the interface elementis S°,
the interface energy for an element U (uf,) is given by

the following equation.
Ut e )= fo(6)-as* (10)
where, & is the opening at an arbitrary point on the

surface and it can be interpolated using the interpolation
function N, (E ,17), ie.

6(§>77)=ENi(Es77)'(Wi+4“wi) (11
where,

N,(E,n)=025-(1+&)-(1-7) (12)

N,(Em)=025-(1+&)-(1+n) (13)

N,(&n)=025-(1-&)-(1+n) (14)

N,(En)=025-(1-)-1-n) (15)

and w, is the nodal displacement normal to the surface.
Finally, the stiffness matrix [k“] and the load vector
{f “} of the interface element can be derived by
expanding Ujg (uf, +Au§) with respect to Au, in the
following manner.
Utlug +du )= [4(5 + 26 )-as*

Fig.4 Interface element and interpolation
of crack opening.
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=f¢(5)'dSE+ d¢—(6)-£-Au5~dse
1) (a8 L\
+5f ds? o Auo) dS* +H.OT. (16)
where,
dpl6) 96 . o [ L
J=as g 0B = {ref s} (17)
1 d%0) (86 N\
. N Py V72 dse
2f ds? (au; uo)
1 T
=5 ”fe’}T[k ]{Auo} (18)

Since the interface element has no volume or mass, the
same formulation can be applied to both the static and
the dynamic problems. Further, by arranging the
interface elements along the crack extension path in the
ordinary FEM model, crack propagation problems can be
analyzed.

3. Simulation of Peeling Test

Figure 5 shows the peeling test to be analyzed by
the proposed method. The computed load-displacement
curves are shown in Figs.6-9. The computed results
show that the crack starts to propagate at the maximum
load. Then, the load gradually decreases with increase of
peeling length. Figures 6 and 7 show the effect of
material constants r, and #. It is seen that the force at the
start of crack extension becomes large when 7, is small
or n is large, while the curve during the crack
propagation is not influenced by r, or n. Figure 8 shows
that the value of y influences both the initiation and the
crack extension. These results suggest that crack
extension in the peeling test is primarily governed by the
magnitude of the surface energy y . The effect of mesh
size is examined in Fig.9. As seen from the figure, the
mesh size does not show any significant effect on the
load-displacement curve. Further, the peeling problem of
wider films as shown in Fig.10 is simulated to
demonstrate the potential versatility of the proposed
method.

<—a»i<———— L -—»l;
B Interf: 1 t
/ 7/ nterrace elemen W

a: Initial Crack length

F

Fig.5 Peeling test model for FEM analysis.
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4. Push-out Test of Fiber in Matrix

The proposed method can be applied also to mode-II
crack propagation problems with minor modification.
The push-out test of a fiber in matrix shown in Fig.11 is
analyzed. The computed load-displacement curves are
presented in Fig.12. The relatively horizontal part after
the linear stage corresponds to the crack propagation
process. This means the load is almost constant during
the crack propagation. The sudden drop of the load
observed in the case of 2y = 0.2 N/mm represents the
moment when the interface crack reaches the bottom
surface of the matrix.
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Fig.12 Ioad-displacement curve of push-out test.
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Fig.13 Model for dynamic crack propagation.
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Fig.14 Pulse load to initiate crack propagation.
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5. Dynamic Crack Propagation

In many cases, fracture problems are dynamic
phenomena. To demonstrate the potential capability of
the proposed method, the dynamic crack propagation in
an elastic plate as shown in Fig.13 is analyzed. The plate
has an initial crack with its length 400 mm and it is pre-
stressed by the forced displacement at the top and the
bottom edges. The crack is initiated by a pulse load
applied at the tip of the initial crack. The pulse load
increases and decreases linearly in 10 ps as shown in
Fig.14. The time histories of crack extension lengths
Aa for different values of pre-stress displacement u, are
plotted in Fig.15. As theoretically predicted”, the speed
of crack propagation increases with the value of pre-
stress. When the pre-stress is small as in the case of u, =
0.4 mm, the crack is arrested. Figure 16 shows the crack
extension and the stress distribution at 60 and 80 us after
the application of pulse load. Due to the symmetry, only
left half of the plate is shown.

250 T T 7 T
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—~ I P
£ 200 uy=0.7m s
(S S~
% r u,=0.65mm o g ]
150 | -~ .
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¢ =
[8] 50 [
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5 (]
0 1 | [l 1
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Time (us)

Fig.15 Influence of pre-stress on
crack propagation length.
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T
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Fig.16 Deformation and Stress distribution
during crack propagation.
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u=2.4mm U=9.0mm

Fig.17 Deformation and stress distribution
in tearing test.

6. Ductile Tearing of Steel Plate

The process of tearing of steel plate with an initial
notch at its center is analyzed as an elastic-plastic finite
strain problem using the proposed method. The length of
the initial notch in the steel plate is 20 mm. The width of
the plate at the center section and the thickness are 200
mm and 4.5 mm, respectively. The computed
deformation and the distribution of the stress component
in the loading direction before the crack propagation and
at the fina] stage are presented in Fig.17. The curves for
nominal stress-strain relation are compared between
FEM analysis and experiment in Fig.18. The strain is the
average strain for the 50 mm gauge length at the center.
Good correlation between the computation and the
experiment proves the potential capability of the
proposed method for the analysis of ductile crack
propagation.

7. Conclusions

In order to analyze crack propagation and peeling, a
new computer simulation method using an interface
element is proposed and applied to the peeling test of
film, the push-out test of a fiber in matrix, a dynamic
crack in pre-stressed plate and the ductile tearing of steel
plate. The conclusions can be summarized as follows.
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(1) The processes of mode-I and II crack propagation
can be simulated by the proposed method.

(2) In the simulation of the peeling test, the material
constants r, and » influence the load at the beginning
of crack propagation, but they do not influence the

processes of crack propagation. On the other hand,
y influences both the beginning and the processes

of crack propagation. The effect of mesh division on
the crack propagation is found to be small.

(3) The dynamic crack propagation in a pre-stressed
elastic plate is simulated and the relation between
the crack propagation speed and the pre-stress is
clarified.

(4) Good correlation with experiment proves the
potential capability of the proposed method for
ductile fracture problems.
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