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1. Introduction

In this paper, a surface in R* = {(z1,z2,23,t)|T1,T2,%3,t € R} means a closed
(oriented or not and connected or not) PL 2-manifold embedded in R* locally flatly.
For two surfaces F' and F’ in R*, the following conditions are mutually equivalent (cf.

(3D.

(1) F is ambient isotopic to F'.
(2) F is related with F' by a sequence of simplex moves on surfaces in R*.

On the other hand, it is usual to describe a surface in R* by use of a motion picture
method [1]; taking the t-coordinate as a height function, we consider a surface to be
a one-parameter family of subsets in R> that are the intersections of the surface and
the parallel hyperplanes. A surface in R* is said to be elementary if all of its critical
points are elementary (that is, minimal points, maximal points, and saddle points).

Let @p : R* — R* be a rotation about the x;z,-plane by an angle 6. If p is
an elementary (resp. non-elementary) critical point of a surface F, then pgy(p) is also
an elementary (resp. non-elementary) critical point of g(F') for a sufficiently small
positive angle . In particular, if F' is elementary, then ¢y (F) is also elementary.

The purpose of this paper is to prove the following theorem.

Theorem 1.1. Let F' and F' in R* be two elementary surfaces. The following
conditions are mutually equivalent.

(1) F is ambient isotopic to F'.
(2) wo(F) is related with pg(F') by a sequence of simplex moves on elementary sur-
faces in R* for a sufficiently small positive angle 0.

In Section 2, we introduce the notion of a degree of a point of a surface in R*.
We give a sufficient condition to decide which critical points are elementary (Lemma
2.3). Section 3 is devoted to examining how a 3-simplex move changes the degree
of a point of a surface (Lemma 3.1). In Section 4, we define a A-move, which is a
deformation to “pick up” a critical point and change it into some elementary critical
points. This deformation was used in [2]. We show that a A-move is decomposed into
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some 3-simplex moves (Lemma 4.2). In Section 5, we prove Theorem 1.1.
Throughout this paper, we work in the piecewise linear category.

2. Critical Points

Let 7 : R* — R3 be the projection defined by 7(x1, 2, z3,t) = (x1, Z2,z3). We
use the notation ¢(p) for the ¢-coordinate of a point p in R*. We consider the following
condition for a compact polyhedron P in R*:

(2.1) Any two vertices v and v’ of P satisfy that w(v) # 7(v’) and t(v) # t(v').

We notice that g (P) satisfies the condition (2.1) for a sufficiently small positive angle
6. In this section, we assume that a surface F' in R* satisfies (2.1).

For a subset A of R3 and a subset B of R, we denote the subset AxB C R3xR =
R* by AB. If B consists of one point ¢, we use the notation A[t] for A{t}.

The intersection F'' N R3[t] is an ordinary cross-section if it is the empty set or a
closed 1-manifold in R3[t]. The intersection F' N R3[t] is an exceptional cross-section
if it is not an ordinary cross-section.

If F N R3[t] is an exceptional cross-section, then there is a unique point p that has
no neighborhood in F' N R3[t] homeomorphic to an interval.Such a point p is called
a critical point of F. We note that a critical point must be a vertex of F, that is, a
0-simplex of any triangulation of F'.

In this paper, maximal points, minimal points, and saddle points are called elemen-
tary critical points, where a saddle point is the singular point illustrated in Figure 2.1.
The points of F' except critical points are called the ordinary points. We say that F' is
an elementary surface if all the critical points of F' are elementary.

(I

N[t-2e] N[t-¢] N[t] N[t+e]l] N[t+2¢]

Figure 2.1

For any point p of F, the number of the edges in the 1-dimensional polyhedron
F N R3[t(p)] around p is even.

DEFINITION 2.2. The degree of p of F is the half number of such edges and
denoted by d(p; F)).



SIMPLEX MOVES ON ELEMENTARY SURFACES 75

The degree d(p; F) is O (resp. 1) if and only if p is a maximal point or a minimal
point (resp. an ordinary point) of F. If d(p; F') > 3, then p is a non-elementary critical
point of F. In the case of d(p; F) = 2, p is not necessarily a saddle point of F.

Lemma 2.3. Let K be a triangulation of F which contains a vertex p. If the
number of the edges in K around p is less than or equal to five, then p is an elementary
critical point or an ordinary point.

Proof. Let |pv1|, [pva|,- -, |pvn| be the 1-simplices in K such that the link Lk(p;
F) = |Lk(p; K)| is |v1vg| U |vaua| U -+ U |UpUnt1| (Vny1 = v1). Since 2d(p; F) is
equal to the number

#ilt(vi) <t(p) < t(vigr) or t(vi) > t(p) > t(vita)},

we have d(p; F') < 2. It suffices to consider the case of d(p; F) = 2.

We take a small cylindrical neighborhood Na,b] of p in R*, where N is a convex
linear 3-ball in R and a < t(p) < b. Taking b — a to be a sufficiently small positive
number, we may assume that the side (ON)[a,b] is disjoint from |pv;| (i =1,--- ,n).
Let T,(p; F) and T(p; F) be two tangles (N[a], F N N[a]) and (N[b], F N N[b]) re-
spectively. Because of d(p; F) = 2, Tx(p; F) is a 2-string tangle (k = a,b). Each
string of Tx(p; F') has one or two vertices corresponding to |pv;| N N[k], and in total
two strings of Tk (p; F') have two or three vertices in intN[k] (k = a,b). Therefore we
see that both T, (p; F') and Ty(p; F') are trivial tangles.

We identify 0T, (p; F') with 0Ty (p; F')*, where Ty(p; F)* is the mirror image of
Ty(p; F). Since T,(p; F) and Ty (p; F') are trivial 2-string tangles and the union T, (p; F
YUaTy(p; F)* is a trivial knot, there exists an isotopy {hs} (0 < s < 1) of N[a] = N[b]
such that hy(T,(p; F)) and hy(T,(p; F)) have the forms N[t — €] and N[t +¢] in Fig-
ure 2.1, respectively. This isotopy is extended to a level-preserving isotopy of R*, and
hence p is a saddle point of F'. This completes the proof.

REMARK 2.4. We have the following equation:

> {d(p; F) — 1} = —x(F),

pEF
where x(F) is the Euler number of F. Since d(p; F) — 1 = 0 for any ordinary point
p, the sum is finite.
3. Simplex Move

Let P be a p-manifold in a g-manifold with p < g and oP*! be a (p + 1)-simplex
such that P N oP+! = PN HcPt! is the union of some p-faces of oP*!. Let P’ be the
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p-manifold cl(P U doP*! — P N GoP*!). Then we say that P’ is obtained from P by
the (p + 1)-simplex move associated with oP+1.

Suppose that F' and F’ are two surfaces in R* which satisfy (2.1)and that F’ is
obtained from F' by a 3-simplex move associated with ¢3.

Lemma 3.1. For any point p of F N F/, we have

ld(p; F') — d(p; F)| < 1.

type (0) type (1) type (2) type (3)

type (01) type (02) type (03)

type (12) type (13) type (23)

type (012) type (013) type (023) type (123)

Figure 3.1

Proof. Let ag,aq,a2 and a3 be the vertices of o3 with

t(ao) < t(al) < t(a:z) < t(a3)
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and 77 the 2-face of o such that a; * 72 = 0% (i = 0,1,2,3). We say that the type
of the 3-simplex move is (), (ij), or (ijk) if FNo3 = 7,7, U7, or 73 UT; UTg for
distinct 4, j, k € {0, 1,2, 3} respectively; see Figure 3.1. In the figure, the black faces
(resp. the white faces) indicate F' N o3 (resp. F' N a?).

Suppose that the type of the 3-simplex move is (0); namely, F' N o3 consists of
78 = |ayazas|. If p is any point of F'N F’ except ai,ay and as, then it is obvious that
d(p; F') — d(p; F) = 0. Consider the case p = a;. Since Lk(a; F’) is obtained from
Lk(ay; F) by replacing |azas| with |azao| U |agas|, the difference d(ay; F’) — d(ay; F)
is +1. Similarly, if p = az or a3, we have d(p; F') — d(p; F) = 0. Note that ag is not
in F but is in F’ as a minimal point of F”.

The other types are similarly examined as shown in Table 3.1. In the table, the
notation x means that the difference d(a;; F') — d(a;; F') has no sense because a; is
not in both of F' and F’. This completes the proof.

l type OO ]@[B)]
d(a(), ,) d(ao; F) X 0 0 0
d(ay; F') —d(ay; F) || +1 | x 0 0
(az, ) (ag, ) 0 0 X +1
d(ag; F') —d(az; F) | 0 | 0 | 0 | x
| type [ (01) [(02) [ (03) | (12) | (13) | (23) |
dlao; FY—d(a; F) ] 0 | 0 ] 0O ] 0] 0 0
dla; Fy—dlas F) | 41| 0 | 0 | 0 | 0 | -1
d(ag, ) d(ag; F) -1 0 0 0 0 +1
(ag, ) (a3, ) 0 0 0 0 0 0
| type [ (012) | (013) [ (023) | (123) |
d(ag; F') — d(ao; F) 0 0 0 X
d(al,F’) d(a1; F) 0 0 X -1
d(ag; F') —d(ag; F) | —1 x 0 0
d(a3, F/) d(a3, ) X 0 0 0
Table 3.1

In the case of d(p; F') — d(p; F) = 0 in Lemma 3.1, we have the following.

Lemma 3.2. Let p be a point of F N F'. If p is an elementary critical point
(resp. an ordinary point) of Fand d(p; F) — d(p; F') = 0, then p is also an elementary
critical point (resp. an ordinary point) of F’.
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Proof. If p is a maximal point or a minimal point, then d(p; F) = d(p; F') =0
and hence p is a maximal point or a minimal point of F’. If p is an ordinary point of
F, then d(p; F) = d(p; F') = 1 and hence p is an ordinary point of F’.

Suppose that p is a saddle point of F'. We use the notations in the proof of Lemma
23. Let Dy be 03 N N[k] (k = a,b). If Dy = ¢, then Ti(p; F) = Ti(p; F'). If
Dy, # ¢, then Dy is a 2-disk. In this case, we see that Ti(p; F) and Ty(p; F’) are
ambient isotopic and that T (p; F”) is a trivial tangle; see Figure 3.2. Hence p is a
saddle point of F’. This completes the proof.

Tk(p;F) Tk(p; F')
Figure 3.2

Two p-manifolds P and P’ in a g-manifold @) with p < g are related by a sequence
of simplex moves on p-manifolds in @ if there exists a sequence of p-manifolds in @

P=P—P,—...— P, =P

such that P,y is obtained from P; by a (p+1)-simplex move (i = 1,2,--- ,n—1).
Two elementary surfaces F' and F’ in R* are related by a sequence of simplex moves
on elementary surfaces in R* if there exists a sequence of elementary surfaces in R*

F=F —F— -.—F,=F

such that F;,; is obtained from F; by a 3-simplex move (: = 1,2,--- ,n — 1).
Kamada, Kawauchi and Matumoto proved the following theorem in [3].

Theorem 3.3. Let P and P’ be two p-manifolds in a q-manifold Q with p < q.
The following conditions are mutually equivalent.

(1) P is ambient isotopic to P'.
(2) P is related with P' by a sequence of simplex moves on p-manifolds in Q.

If two elementary surfaces F' and F’ in R* are ambient isotopic, then there exists
a sequence of 3-simplex moves on surfaces in R*

F=F1—>F2—>-"——->Fn:F/
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by Theorem 3.3. However F; does not necessarily satisfy (2.1) (i = 2,---,n — 1).
Taking a sufficiently small positive angle 6, we obtain a sequence of 3-simplex moves

wo(F) = pp(F1) — pg(F2) — - — pg(Fn) = po(F").

such that @g(F;) satisfies (2.1); nevertheless yg(F;) is not necessarily an elementary
surface. Our theorem (Theorem 1.1) asserts that we can replace the intermediate sur-
faces of the above sequence with another ones which are all elementary.

4. A -move

For a point p of a surface F' which satisfies (2.1), we take a sufficiently small
cylindrical neighborhood Nfa,b] of p in R* such that the bottom NJa] and the top
N[b] are disjoint from F, where N is a convex linear 3-ball in R? (this is different
from the one defined in the proof of Lemma 2.3). We remove the 2-ball F' N N{a, b|
and replace it by a cone px {FN(ON)[a, b]} so that we obtain a new surface F’, where
p is in intN[b]. We say that F” is obtained from F' by a A-move at p, and denote F’

by Fj.
In comparison between the vertices of F' and F}, p is not in F,, and vy, -+ ,vp
and p are in Fj,, where v; (1 = 1,---,n) are the vertices of the polygonal curve

FN(0N)[a,b]. Taking an appropriate 3-ball N, we make F}, satisfy (2.1). Throughout
this paper we may assume that, if F' satisfies (2.1), then F}, also satisfies (2.1).

We see that D is a maximal point of F}, and that v; is an elementary critical point
or an ordinary point of F,, by Lemma 2.3. Hence we have the following (cf. [2]).

Lemma 4.1. If all the critical points of F' except p are elementary, then Fy, is an
elementary surface. In particular, if F' is elementary, then F}, is also elementary.

Lemma 4.2. If F' is elementary, then F' and F, are related by a sequence of
simplex moves on elementary surfaces.

Proof. Let ¢(p; F') be a polygonal curve F'N (ON)[a,b] in (ON)]a,b]. By Theo-
rem 3.3, if p is a maximal point, an ordinary point, or a saddle point, then there exists
a sequence of 2-simplex moves on polygonal curves in int(ON)[a, b]

e(p;F):el—’€2—>---——>€n=Br2

such that

(1) 72 is a 2-simplex in int(ON)[a, t(p)],
(2) £; 41 is obtained from ¢; by a 2-simplex move associated with 7-1-2 (i=1,2,--- ,n—
1),
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(3) {p} V¥, satisfies (2.1) (i = 1,2,--- ,n), and
@ #H{& N (ON)[t(p)]} = H{e2 N (ON)[t(P)]} = -+ = #{£n N (N)[t(p)]} = 0.

Note that #{£; N (ON)[t(p)]} is equal to 2d(p; F;) and hence #§{¢; N (ON)[t(p)]} is
equal to 0, 2, or 4 . If p is a minimal point, we replace “int(ON)[a, t(p)]” in (1) by
“int(ON)[t(p), b]”.Then we have a sequence of surfaces in R*

F=F —Fh— ... ——F,
_’(Fn)p—’ _—’(F2)p_’(F1)P:FP

such that

(5) Fi;1 is obtained from F; by a 3-simplex move associated with p x pZ?, where p? is
a 2-simplex in R* (i=1,2,--- ,n—1),

(6) F; satisfies (2.1) (i =2,---,n), and

(M (p*p?)N(ON)[a,b] =72 (i =1,2,--- ,n—1).

Using this sequence, we prove that F' and F),, F,, and (Fy)p, (F,)p and F, are related
by a sequence of simplex moves on elementary surfaces, respectively.

First, p is an elementary critical point or an ordinary point of F; by (4) and Lemma
3.2. Moreover, the new vertices of F; generated by the 3-simplex move associated with
p * p2_, are elementary critical points or ordinary points of F; by Lemma 2.3. Hence
F; is an elementary surface. It follows that F' and F;, are related by a sequence of
simplex moves on elementary surfaces.

Second, let F), be a surface obtained from F), by the 3-simplex move associated
with p * 72. Then (F},), is obtained from F, by the 3-simplex move associated with
p* T2, We see that F, and (F,), are elementary surfaces by Lemma 2.3, and hence
F,, and (F,), are related by a sequence of simplex moves on elementary surfaces.

Finally, we notice that (F}), is an elementary surface by Lemma 4.1. We remove
the 3-simplex p* 72 from p# p? and replace it by the 3-simplex p* 77 so that we obtain
the 3-ball B} (i = 1,2,--- ,n — 1). Then two elementary surfaces (F;;1), and (F),
differ by B?.

By assuming Lemma 4.3 which is stated below, we see that (Fj;1), and (F}), are
related by a sequence of simplex moves on elementary surfaces. It follows that (F3,),
and F), are related by a sequence of simplex moves on elementary surfaces, and we
have the conclusion.

Let ag * p? = |apaiazasz| be a 3-simplex in R* which satisfies (2.1). We take a
2-simplex 72 = |bybeb3| in a, * p?> which satisfies (2.1), where b; is an interior point
of |aga;| and close to ag (i = 1,2, 3). Let by be a point in R* such that by is joinable
with 72, cl(ag * p? — ag * 72) N (bo * 72) = 72, and t(by) > t(b;) (i = 1,2,3). Let F
and Fg be two elementary surfaces such that Fiz is obtained from F' by a 3-cellular
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move associated with a 3-ball B3 = (ag * p — ag * 72) U (b * 72). Suppose that F'N B3
is a 2-ball which is T1,T5, T3, T12,T13 or To3, where

Ty = (|lapazas| — |agbabs|) U |bobobs| U |aiazas|,
T, = (laoaras| — |aobibs|) U |bobibs| U arazas],
T3 = (laoaraz| — |agbibz|) U [bobibz| U |aiazas],
Ti2 = (laoazas| — |agbzbs]) U |bobabs|
U  (lagaras| — |agbibs|) U |bobibs| U |aiazas|,
Tz = (laoazas| — |aobzbs|) U |bobzbs|
U (Jagaiaz| — |aghibz]) U |bobib2| U |aiazas|, and
Tos = (lapaiaz| — |agbibs|) U |bobybs]
U  (laoaiaz| — |agbibe|) U |bobiba| U |aiazas|.

Lemma 4.3. In the above situation, F' and Fg are related by a sequence of sim-
plex moves on elementary surfaces.

Proof. We may assume that t(b;) < t(b) < t(b3). According to the levels of a;
and by, ap and by, a3 and b3, we have four cases;

(1) tar) > t(b), t(as) > t(bs), t(az) > (bs),
(i-2) t(al) < t(bl) (az) > t( 2),t(a3) > t(bs),
@i-3) t(al) < t(bl) t(az) < t(b 2),t(a3) > t(b3), and
(i4) t(a1) < t(b1), E(az) < t(b), t(as) < t(bs).

(ii-1) t(a1) < t(az) < t(as),
(ii-2) t(a1) < t(a3) < t(az),
(>ii-3) t(ag) < t(a ) < t(a3),
(ii-4) t(az) < t(a3) < t(al),
(ii-5) t(as) < t(a1) < t(az), and
(ii-6) t(a3) < t(az) < t(al)

If the levels of the vertices of B3 are of type (i-a) and (ii-3), then say that B3 is of
type (a, 3), where a € {1,2,3,4} and 8 € {1,2,3,4,5,6}. We notice that there exist
no 3-balls B3 of types (2,3), (2,4), (2,5), (2,6), (3,2), 3,4), (3,5), and (3,6). For each
type (, 3), there are six cases according to F N B3 = Ty, Ty, T3, T12, Ti3 and Tss.

Case 1. Suppose that B3 is of type (1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1) or
2.2).
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First, we consider the case that B3 is of type (1,1) and F N B3 is 7. As the
division of B3, we take four 3-simplices A3, A3, A3, A3, where

A? = |a1aza3b1 |, A3 = |azazbyby, A = |agbybybs|, and A2 = |bob1b2bs].

Then F' and F'p are related by a sequence of simplex moves on surfaces which satisfy
the condition (2.1);

F=F 25F 22,5 2 p 2 0y

see Figure 4.1. Then the difference of the degrees of the vertices of B3 is given in
Table 4.1.

/4 AN bs/bo
. \"~>~
\ / b1
a1
F=F1
_ N . -
Fs Fa =
Figure 4.1
li vertex || ai l as I as | bo | by l b ' b3—|
dx;Fp) —dxF) [ +1] 0 (0] 0] x] 00
d(*;Fg) - d(*,FQ) 0 -1 0 0 0 +1 0
dxF)—dxFs) ||l 0 ] 0 ]0]0]0] 0O
dx;Fs)—dxF) ]l 0 |0 J0]0]0] 0]0

Table 4.1

Since a; is an elementary critical point or an ordinary point of Fj;, we have
d(aq; F1) < 1. If the vertex a; is a maximal point or a minimal point of F}, then
a1 is an ordinary point of Fy, F3, Fy and Fs. If a; is an ordinary point of F3, then a;
is a saddle point of F5, F3, Fy and F5 by Lemma 3.2.
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Similarly, the vertices a2, as, bo, b1, b2 and b3 are elementary critical points or ordi-
nary points of Fy, F3, and F} (in particular, b; is a minimal point). Hence the surfaces
Fy, F3 and Fy are elementary surfaces, and F' and Fg are related by simplex moves
on elementary surfaces.

L1 (1,2)
WP 'y [T [T5 [Tie | Tis [ Tos | 11 | T2 | T3 | Tz | Tus | Tos
order” P1|P2LP3IP1 |P3|P3 |P1|P2|P3lP1 |P3 |P3 |

(1,3) (1,4)
WP "D [T [T [Tuz [Tz [ Tas | T1 | T2 | T3 | Tiz | Ths | Tos
order ” P4 | P2 | P3 L P5 | P3 l P3 rP4 | P2 l P3 I P5 | P3 I P3 |

(1,5) (1,6)
WP ' [T [T5 [ Tie | Ths | Tos T1 | T [ T3 [ Tho | Tus | Tos

Ol'der“P4|P2|PglP1|P6|P3rP4IP2[P3|P1|P6|P3J
(2,1) (2,2)

WPe 'y [T [T5 | Tio | Tis [ Tos | Th | T2 | T3 | Taz | Tis | s
oder [P\ [P |Ps| P | P | P[P |PR|P|P|P]|P]

Table 4.2

In Case 1 generally, we use one of the following six kinds of order of simplex

moves;

Pi. F=F = 2, B ip},ﬂﬂiﬁ:ﬁ,

Pg.F:Fl F2—>F3—>F4 %, Fy = Fp,

P;. F= F1 F2 > F3 La, F4 =% F5 = Fg,

P4.F=F1 F2—>F3—>F4 4 Fs = Fg,

P F= F'1 Fg F3 F4 —% F5 = Fp, and

Ps. F=F, —>F2—>F3—>F4——>F5=FB.
For each type in Case 1, we give an example of order such that F' and Fp are related
by a sequence of simplex moves on elementary surfaces; see Table 4.2.

Case 2. Suppose that B3 are of type (3,1), (3,3), (4,1), (4,2), (4,3), (4,4), (4,5) or
(4.,6).

As the division of B3, we take four 3-simplices A3, A2, A, A3, where
Ag = |a1a2a3b3|,A§ = |a1a2b2b3|, and A3 = Ialblbgbgl.

We use one of the following four kinds of order of simplex moves;
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Q. F=F 255, 2% py 2%, p, 24 = Ry,
Q2. F=F1&F2—A—5’F3ﬁ*F4éiF5=FB,
Qs. F=F, 24 F, 2% p, 2% Fy 2% By — Fig, and
Qs F=F 25 F, 85 F 85 gy A% e .

For each type in Case 2, we give an example of order such that F' and Fp are related
by a sequence of simplex moves for elementary surfaces; see Table 4.3.

(3,1) (3,3)
pe 'y | [T [T [T [T [T [T [T [T | Tis | Tos

lOl'del'”Q1(Q2|Q3|Q1JQ4|Q2 [ Q1 [ Q[Q: ] Q1] Q] Q@
(4,1) (4,2)

WPe 'y [ Tp [ T5 [Tuz [ Tis [ Tos | Ta | 1o | T3 | Tha | Tis | T
lorder [| Q1 | Q2| Q3| Q1 [ Qs | Q@i ][Q:][Qs]| Q1] Qs Qs
(4,3) (4,4)

wpe |7y | [T [T [T [Tos [T [T | Ts [Tho [ Tas | Tos
lorder [ @1 [ Q2] Qs Q1| Qs Q2 IQIIQ?IQB’QI | Qs [ Q|
(4,5) (4,6)

wpe 'y [ T [T [T [Tuis [Tos | L [To [ T3 [Thp | Tha | Tis
[order [ Q1 [ Q[ Qs [ Q1 [ Qs [ Qs [Q:1 ] Q| Qs3] Q[ Q3] @ |

Table 4.3

-

This completes the proof of Lemma 4.3.

For a surface F' which satisfies (2.1), we denote the surface obtained by the A-
moves at all the points of F' with their degrees > 2 by F'. Then F is elementary (cf.
Lemma 4.1). By Lemma 4.2, we have the following.

Corollary 4.4. For any elementary surface F in R, F and F are related by a
sequence of simplex moves on elementary surfaces.

5. Proof of Theorem 1.1

To prove Theorem 1.1, we prepare three more lemmas.

Let 03 be a 3-simplex |agaiazaz| in R* which satisfies (2.1). We take a 2-simplex
P2 = |ao1ag2a03| which satisfies (2.1), where ag; (¢ = 1,2,3) is an interior point of
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|aoa;| and close to ag and the 3-simplex ag * p2 is similar to ¢3. Similarly we take
2-simplices p?, p2 and p2 near a;,ay and a3 respectively.

Let F' be an elementary surface and F’ a surface in R* obtained from F by a 3-
simplex move associated with o3. For the set U of vertices of ¢ which are in F N F”,

we take a 3-ball C® = cl(0® — U ai * p7). Let Fo be a surface obtained from F by
a; €U

the 3-cellular move associated with C3. We notice that F satisfies (2.1). Then we

have the following.

Lemma 5.1. (1) F¢ is an elementary surface.
(2) F and F¢ are related by a sequence of simplex moves on elementary surfaces.

Proof. Let 77 be a 2-face of 03 with a; x 72 = 0 (1 = 0,1, 2, 3).
(1) If FNno® = 1¢ = |a1azas|, then the new vertices ag, a10, a12, @13, 20, @21, 23,
a3o0,a31 and asg are generated in Fo by the 3-cellular move. The edges in F¢ around
aio are |ajpaol, |@10a12|, and |ajpais|. Then ap is an elementary critical point or an
ordinary point of Fc by Lemma 2.3. We see that the rest of the vertices of F- are also
elementary critical points or ordinary points, and hence F¢ is elementary. The other
types are similarly examined.
(2) We may assume that t(ap) < t(a1) < t(az) < t(as). We divide the proof into 14
cases according to F' N o3,

Type (0). F N o3 consists of 7¢ = |ajazas).

As the division of C3, we take seven 3-simplices:

|a0a12a23a31|, |a0a10a12a31|, |a10a12a13a31|, |a12a20a21a23|,

|apai2a20a23|, |azsasoasiasz|, |aoazsasoas:|-

We apply 3-simplex moves associated with these 3-simplices in this order to obtain a
sequence of simplex moves on surfaces which satisfy (2.1)

F=F —F,— - — Fg=Fg,
see Figure 5.1. We notice that the levels of the vertices of C* are

t(ao) < t(alo) < t(alg) < t(a13) < t(azo)
< t(azl) < t(a23) < t(ago) < t(a31) < t(agz).

Then the difference of the degrees of these vertices is shown in Table 5.1.
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a13<—a12
—
@ ' ' 1\
Fa
A /\ /\ /\
Fs Fs Fr Fs=Fc
Figure 5.1
| vertex ” ao ” aio l a2 ’ a3 ” aonam—r%s ” aso La31 | as2 ]
d(*; F3) —d(x; Fy) || x x | +1] 0 X 0 0 X 0 0
d(*; F3) —d(x; F) || O X 0 0 X 0 0 X 0 0
d(*; Fy) —d(x; F3) || 0 0 0 0 X 0 0 X 0 0
d(*; F5) —d(*; Fy) || O 0 0 0 X 0 0 X 0 0
d(x; Fg) —d(*; F5) || 0 0 0 0 0 0 0 X 0 0
d(*; F7) —d(x; Fg) || O 0 0 0 0 0 0 X 0 0
d(x; Fg) —d(x; Fy) || O 0 0 0 0 0 0 0 0 0
Table 5.1
We see that Iy, - .-, Fg and F% are elementary surfaces and that I’ and Fo are related

by a sequence of simplex moves on elementary surfaces.

The other 13 cases are similarly examined. The following is an example of a
division of C® and an order of simplex moves for each case so that F' and F¢ are
related by a sequence of simplex moves on elementary surfaces.
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Type (1); FNo3 =12

)003(110201132], |a01a02a03a20|, |ao1aoaala20i, |(103630031032|,

|0«0301¢131(132|, |0200210230321, |a1a20a21a32|.

Type (2); FNod =13,

|a03a10a2a31|, |001002003¢110|, |ao2aosa10¢12|, laosasoaslaszl,

|a03a2a31a32|, [010612013031|, |aloa1zaza31|-
Type (3); FNo3 = 72.

|a02a10a21a3|, |a01a02a03a10|, |¢102<103¢11003|7 |aoza2la23f13|,

lao2a20a21a23], |ai0a12a13a21|, |ai0aizaz1asl.
Type (01); FNo® =12 Ui

|a02a12a23a32|, |002a12021¢123|, |aozazo¢121023|, laozaloa12a32|,
|a10a12a13a32|, |¢110&13031@32!, |aozaloa30032l,

lat0asoasiasz|, |@o1a02@10a30|, |@o1a02a03as0|.
Type (02); FNo® =12 Ui

|a03a13a23a31|, |a03a23a31a32|, |a03a30a31a32|, |ao3(113(120(1231,
|a13a20a21a23), |a12a13a20021], |@o3ai0a13020],

|(110a120130'20|7 |a01aozao3alol, |a02a03<110(120|-
Type (03); FNo® =12 UTs.

|a02a12a21a32|, |a02a21a23a32|, |a02a20a21a23|, |¢102¢112¢130¢132|,
lai2asoasiasz|, |a12a13a30031], |ag2a10a12030|,

la10@12a13a30], |@02@03a10a30|, |@01a02a03a10]-
Type (12); FNo® =12 UTs.

la03a13023a30|1 lamazsasoaszl, la13a30a31‘132|a lao3013021023|,
|aosa2oa21a23|, |a02a03a20a21|, |a01a03a13a21|,

|(101a02(103021l7 |a01a12a13a21|, |(101(110012f113|-
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Type (13); FNo® =12 Ui

|¢102¢112€120(132|, lalzazoazzaaazl, ]a12a20a21a23|, |a02a12a31a32|,
|002¢130031032|, |aozao3030031|, |1101aozf112031|,

|ao1aozao3031|, |a01a12a13a31|, l001¢110¢112(113|-
Type (23); Fno® =12 Ui

la01a10a21a31|) |aloal3az1as1|, laloalza13021|7 |001¢121¢131032|,
|a01a30a31a32|, |a01a03a30a32|, |a01a02a21a32|,

|a01a02a03a32|, |a02a21a23a32|, |002020021¢123|-
Type (012); FNo3 =12 Ut U2,

|01001302103|7 |aloal2a13a21|7 laozaosaloasl, |a01a02a03a10|,

lao2a10a21a3|, |ao2a21a23a3], |ao2a20a21a23|.
Type (013); FNo3 =12 Ut UTE.

|a10a12a2a31|, |aloalza13031|, laosa2aa1a32|, |003030631632|,

lao2a03ai0a2|, |ao1@02a03a10|, |aozaioazasi|.
Type (023); FNo® =12 UTs UTL.

Ialazoazla32|, |a20a21a23a32|, Iaosalaslaazl, |a03a30a31a32|,

lao1aosaiazol, |ao1@02a03a20|, |aozaiazoasz|.
Type (123); FNo3 =712 Ur3 UTs.

,‘740‘123030031|7 lazsasoaslaszl, 100012020023|, |a12a20a21a23|,

|a0a12a23a31|, laoaloauasll, |¢110¢112013031|-

This completes the proof.

Let F and F’ be two surfaces in R* such that they satisfy (2.1) and that F” is
obtained from F by a 3-simplex move associated with p * p?, where p is a vertex of
FNF' and p? is a 2-simplex in F. Suppose that all the critical points of F' and F’
except p are elementary. Let F, (resp. F}) be a surface obtained from F' (resp. F") by

the A-move at p.
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For the cylindrical neighborhood Nla,b] of p in R* and the point p € intN|[b]
associated with the A-move at p, we take a 2-ball D? = (p * p?) N (ON)[a,b] and a
3-ball B? = (p*p® —p* D?) U (p* D?). By Lemma 4.1, F}, and F}, are elementary
surfaces and differ by B3. :

Lemma 5.2. F, and F]; are related by a sequence of simplex moves on elemen-
tary surfaces.

Proof. Let ¢, (resp. £,) be a polygonal curve FN(ON)[a, b] (resp. F'N(ON)[a, b])

which satisfies (2.1). Then £, and ¢, differ by D?. We take a division of D? into 2-

simplices 72,72, -+ ,72_, such that the 2-simplex moves associated with 77,72, - - -

72_, are applied to ¢y, in this order to obtain £,.

Let p * p? be a 3-simplex with (p x p?) N (ON)[a,b] = 72 and p? C p? (i =
1,2,---,n —1). Notice that p * p? is divided into {p * p?,p* p3,--- ,p* p2_,}. Let
B3 be a3-ball (p*p? —p*x72)U(P*7?) (i=1,2,--- ,n—1). We may assume that

B} satisfies (2.1). Then there exists a sequence of cellular moves on surfaces

b

Fp:F1—>F2—>--'—>Fn=FI/,

such that F;; is obtained from F; by the 3-cellular move associated with Bf’ and that
F; satisfies (2.1). By Lemma 4.3, two surfaces F; and F;; are related by a sequence
of simplex moves on elementary surfaces. This completes the proof.

Suppose that F' and F’ are surfaces in R* which satisfy (2.1) and that F’ is ob-
tained from F by a 3-simplex move associated with o3.

Lemma 5.3. F and F' are related by a sequence of simplex moves on elementary
surfaces.

Proof. Let 02 be |agajazas| with t(ag) < t(a1) < t(az) < t(az). We use the
notations in Lemma 5.1. For the 3-ball C® obtained by cutting the corners off from
o3, we have a sequence of surfaces

F—>F0—>F/.

We note that F’ is obtained from F¢ by the composition of the 3-simplex moves asso-
ciated with a; * p? (a; € U); see Figure 5.2.

Let S be the set of vertices of F' with their degrees> 2 except the vertices of o>.
We classify the vertices in U into four (possibly empty) sets:

Un = {vld(v; F) < 1,d(v; F') < 1},
Uiz = {v|ld(v; F) = 1,d(v; F') = 2},



90 S. SATOH

Figure 5.2

U21 = {v]d(v; F)

=2,d(v; F') = 1}, and
Uze = {vld(v; F) > 2,d

,d(v; F') > 2}.

Then we obtain a sequence of surfaces between Fand F/
ﬁ=F1-——>F2-—>F3—>F4—>F5=ﬁ

such that

€))] F= F; is obtained from F' by the composition of the A-moves at the vertices in
S U Uz UUsg,

(2) F; is obtained from Fz by the composition of the A-moves at the vertices in S U
Uz U Usa,

(3) F3 is obtained from F by the composition of the A-moves at the vertices in S U
Ui2 U Uz U Uz,

(4) Fy is obtained from F’ by the composition of the A-moves at the vertices in S U
U12 U U21 U U22, and

0) Fs = F is obtained from F”’ by the composition of the A-moves at the vertices in
S U Uz U Usy; see Figure 5.3.

We notice that F5, F3, and F), are elementary surfaces by Lemma 4.1. Then we have
the following.

V\ N 7 N 7
A A
N/ N/
Un — —_ — —
F=Fn F2 F3 Fa Fs=F'

Figure 5.3
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(6) Since F; is obtained from Fj by the 3-cellular move associated with C3, two sur-
faces Fy and F; are related by a sequence of simplex moves on elementary surfaces

by Lemma 5.1(2).
(7) Since Fj is obtained from F, by the composition of the A-moves at the ordinary

points in Uy, two surfaces F3 and F3j are related by a sequence of simplex moves

on elementary surfaces by Lemma 4.2.
(8) Since F} is obtained from F3 by the composition of the 3-simplex moves associ-

ated with a; * p? (a; € Uy;) and the 3-cellular moves associated with the 3-balls
constructed by picking the vertex a; of a; * p,% (a; € U2 UUy UUsy), two surfaces
F3 and Fj are related by a sequence of simplex moves on elementary surfaces by

Lemma 5.2.
(9) Since Fjy is obtained from Fj by the composition of the inverse A-moves at the

ordinary points in Us;, two surfaces Fy and Fj are related by a sequence of simplex
moves on elementary surfaces by Lemma 4.2.

Therefore F' and F are related by a sequence of simplex moves on elementary surfaces
and we have the conclusion.
We are ready to prove Theorem 1.1.

Proof of Theorem 1.1. It is well-known that (2) = (1) (cf. [4]). We may prove
that (1) = (2). Let F and F’ be two elementary surfaces in R* which are ambient
isotopic. By Theorem 3.3, there exists a sequence of simplex moves on surfaces in R*
between F' and F’. Rotating the surfaces and the 3-simplices in this sequence slightly,
we obtain a sequence of simplex moves on surfaces in R* which satisfy (2.1)

wo(F)=F, — Fy — -+ — Fp, = pg(F').

Deforming the surfaces in this sequence by A-moves at all the points with their degrees>
2, we have a sequence of elementary surfaces

o(F)=F) — F — Fy —> --- — F,, — F,, = @p(F").

Then F; and F1, F and F,, are related by a sequence of 51mplex moves on elementary
surfaces by Corollary 4.4, respectively. Moreover, F and E+1 are also related by a
sequence of simplex moves on elementary surfaces by Lemma 53 (: = 1,2,--- ,n—1).
Hence we obtain a required sequence of simplex moves on elementary surfaces between

@o(F') and wo(F").
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