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1. Introduction. Let G be a connected semi-simple Lie group with finite
center and with no connected normal, compact subgroups. Let KdG be a
maximal compact subgroup and let Γ C G be a discrete subgroup acting freely
on X=G/K and so that Γ\G is compact. Let M=T\X then M is a typical
compact locally symmetric space of negative curvature. Let G act by the right
regular action, πΓy on L2(Γ\G). In Matsushima [13] a formula for the Betti
numbers of M is given in terms of the multiplicities of certain unitary repre-
sentations of G in πr. In this paper we investigate the existence of the repre-
sentations of G that come into the Matsushima formula. In particular we show
that if X is irreducible and Hermitian symmetric and if rank X>p then there are
no unitary representations of G that satisfy the conditions for the Matsushima
formulas for the (0, p) Betti number of T\X, b0>p(T\X). Thus we find that if
p<rank Xy b0>p(T\X)=0. In particular if rank X>1 we recover Matsushima's
theorem [12] that the first Betti number of Γ\^Γ is zero.

Actually this result (on the first Betti number) follows from the more general
theorem of Kazhdan which says if G is a simple Lie group of split rank larger than
1 and if ΓcG is a discrete subgroup so that Γ\G has finite volume relative to
some Haar measure on G then Γ/[Γ, Γ] is finite.

In light of the above result of Kazhdan it is reasonable to study the unitary
representations that appear in the formula of Matsushima for the first Betti
number in the case G has split rank 1. We show that in this case such representa-
tions always exist. We show that there are at most two such unitary representa-
tions and if G is locally SO(n, 1) there is exactly one, let us call it π^ (see Lemma
2.1, Prop. 2.2 and Lemma 4.4). This gives us some interesting examples.
E. B. Vinberg [16] has constructed a uniform discrete subgroup TdSOe(ny 1)
for 3<ra<5, which is arithmetic in the sense of Borel, Harish-Chandra, such
that Γ/[Γ, Γ] is infinite. In Johnson-Wallach [7] it is shown that πl cannot be
tempered in the sense of Harish-Chandra (see G.Warner [14]) if n>4. Thus
there exists an arithmetic uniform discrete subgroup Γ of a simple algebraic
group G and a non-trivial non-tempered representation with positive multi-
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plicity in L2(Γ\G). This fact would require furthur refinement about so-called

"generalized Ramanujan conjecture". We are grateful to Professor A. Borel

for kindly pointing out this paper of Vinberg.
We conclude the paper by giving the representations that occur in the Matsu-

shima formula for the (p, q) Betti numbers in the case of 5C7(2, 1) and study the
implications of Riemann-Roch and Gauss-Bonnet theorem in this case.

2. The existence and uniqueness of certain representations

In this section we study the case where G is a connected, simple, Lie group
with finite center having split rank 1. Let KdG be a maximal compact sub-
group. Let g and ϊ be respectively the Lie algebras of G and K. Let g— ϊφp
be the corresponding Cartan decomposition of g. We denote by Ad the adjoint

representation of G on gc (the complexification of g). Let (r, pc) be the repre-
sentation of K on pc (the complexification of £) given by Ad\κ. There are two
possibilities:
(1) (τ> t>c) is reducible and |)c=|>+φp- with (T, £+) and (T, £-) irreducible (in
this case G is locally isomorphic with SU(n, 1) for some n).
(2) (r, pc) is irreducible.

In case (1) we take TO to be (T, p~) in case (2) we take TO to be (T, pc).

Let Ω be the Casimir operator of g. That is, if B is the Killing form of g,

if X19 •••, Xn is a basis of g and if Yί9 •••, Yn satisfy B(Xi9 Yj)=8fj' then Ω—

Lemma 2.1. There exists an irreducible unitary representation (π^ H^) of G
so that (π^fζi τQ)=l and τr1(Ω)=0. (Here if σly σz are representations of K then

(σι: σ2) is the dimension of the space of K-intertwίnίng operators from σί to σ2).

Proof. In Kostant [10] (see also Johnson-Wallach [7]) it is shown that if
π is a (non-unitary) prinicipal series representation of G and if σ is an irreducible
unitary representation of K then (π\ κ: σ)= 1 or 0 depending on whether or not
σ has an M-fixed vector. In Johnson-Wallach [7] it is shown if (τr°, V) is the

representation of G on the space V of ^-finite, C°° functions on G/MAN (MAN

=P a minimal parabolic subgroup of G, M=K Π P, K/M^G/P) defined by

(π\X)f) (x) = f(^(-tX}x) I ,_ for /e
at

then every constituent of the (finite) composition series extends to a unitary
representation of G. Now TO has an M-fixed vector thus (τr°| κ : τ0)=l. Hence
exactly one of the irreducible constituents of π° contains TO. We denote this

constituent by π,. Clearly τr°(Ω)=0 (1 e V). Thus ^(Ω)=0.

Proposition 2.2. Suppose that G is in case (1) above or that G is locally
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ίsomorphic with SOe(ny 1), n>3 (the identity component of the group of the

quadratic form Σϊ^iΛ?— #S+1). V(π> H) is an irreducible unitary representation of
G so that (π\κ: τ0)φO and τr(Ω)=0 then π is unitarily equivalent with π^

Proof. The assertion in case (1) will be proved in the next section. We

therefore assume that G is locally isomorphic with SOe(n, 1)=G0. If (TT, H)
contains TO then since the center of G, Z, is contained in K and τQ(Z)= {/} we

see that π(Z)=I. We may therefore assume that G=G0. Let P=MAN be a

minimal parabolic subgroup of G such that M=P Π K and the Lie algebra of

A, α, is contained in p. Let Mbe the set of equivalence classes of irreducible
unitary representations of M and let α*c be the space of complex valued linear

forms on α. If tΐ is the Lie algebra of N then there is a unique element, Jf/eα,

so that acLHΊn=/. Now a=RH. If ξ eΛfr and z/eα*c let (ττ f ι V, H**) be the
corresponding (non-unitary) prinicipal series representation of G0. That is H^

is the space of all /: G-*H% ((ξ , H$) is a representative of ξ) such that / is

measurable and

( i ) f(gman)=ξ(mΓe~^°**>f(g)

for g^G, m<=M, a&A, n<=N and log: A^ a is the inverse of exp: a-*A

We note that in the notation of Lemma 2.1 7Γ°=7Γ1>0, 1 the class of the trivial
representation of M.

The subquotient theorem (Harish-Chandra [1]) says that (TT, //) is infinites-
imally equivalent with a constituent of the composition series of τr^v for some

ξ^My z^α*c. Frobenius reciprocity implies that since (π\κ: τ0)Φθ then if π

is equivalent to a constituent of τr0>v, (TO| M : f)φO.
Now K acts on \> as 5O(w) on /2W. M is just SO(n— 1) imbedded in ̂  as

Γ SO(n-l) 0 ]
L 0 1 J .

Thus if ξ0 is the standard representation of M on CM 1 and 1 is the trivial repre-
sentation of M, TO | M=ί0φl. Thus r̂ must be a constituent of τ r l f V for some v

or τr£ 0 f V for some v. If τr1>v(Ω)=0 then v(H) =Q or w— 1. Since τr1 > 0 and TT^^.!
have the same composition series we see that if π is a constituent of τr1 > v for some

v then 7r is equivalent to π±.
If τr£o>v(Ω)—0 then v(H)—z or n—#—1 for some .sreC by the usual formula

for ;rw(Ω):

^ίθiV(Ω) = const.

where c(ξ0)^C is a constant depending only on f0. τr^ 0 > w _ 2 _ 1 and ^^o 2 have the

same character hence the same composition series. Thus since (TO |M: f0)=l
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there is at most one other irreducible unitary representation of G satisfying the

required conditions and it must appear in πtQtίg. We show that the constituent

of τrg 0 t 2 containing TO is infinitesimally equivalent to πl and thereby prove the

proposition.

Let 7\ be a maximal torus of M. Then T^A is a Cartan subgroup of G0.

Let Gc=SO(n-\-\y C) and let CdGc be the Cartan subgroup corresponding to

T^A. Let £) be the Lie algebra of C in gc. Let Δ be the root system of (gc, Ij)

and let Δ+ be a system of positive roots such that if α£ΞΔ and a(//)>0 then

α>0. Then if rt+—S^A'Sαπ rt+Πg—π. Let #ι, •••, α/ be the corresponding

simple roots (/ is the largest integer <(w-f-l)/2). Let m^ be the complexification

of the Lie algebra of M. Set ΔM—{αeΔlg^ctric}. Then by relabeling the

ecu •••> tf/ we maY assume α2, •••, α/eΔM Let vQ^Hξo=Cn~l be a non-zero

highest weight vector and let w0 be a lowest vector. If f^H^ set *S(/) (#)—

((Z, W)=^ZiWi). If /eC-(G) define for *e$c, ^=^+ 2̂,

4 (/te expί^O+ί/fe expί^2)I ί=0. If ?0(ίK=λ(ίK for all
αί

fo »then

(I) RxS(f) = Q for Jϊen+

(II) S(f) (gtά) = \(t)e-^^S(f) (g) for ίe Γ,, a^A.

The Borel-Weil theorem (c.f. Wallach [17]) implies that S is a 1-1 map from

the space of C°° elements of H*<>'*, Hjj,o'v, onto the space of all/e C°°(G) satisfying
(I), (II). Let .AΓλ'v be the space of all C°° functions on G satisfying (I), (II).

If ft=X* \x9g<=G set (T^(g)f)(X)=f(g~*x). Then So7r^(g)=Tλ>v(g)oS.
Hence the representations (TλfVJSΓλ'v) and (τr^θ j V, Jϊβ!0>v) of g are infinitesimally

equivaldent.

Let now tf^eί)^-{0} (g_αι= {^egc| [A, ̂ J^-α^)^ for all
Set for /eifc0, B(f)(g)=(RE_cύJ) (g). A direct computation gives

c^fλ>v with z/=α 1 |α. But J5 is clearly non-zero. Hence v=z or w—^—1.

Furthermore, it is shown in Johnson-Wallach [7] that £P'°/(constants) is irredu-

cible. Thus ( π ί 9 ί/j) is infinite simally equivalent with (τr1>0, ί/1>0/constants)

and by the above is contained in π $ Q t Z . This completes the proof of the Proposi-

tion.

NOTES. 1. If G satisfies (2) then one can use the same sort of arguments
as those proving Proposition 2.2 to show that there are at most 2 irreducible

unitary representations, π, of G satisfying (π\κ: τ0)Φθ and τr(Ω)=0.
2. We note that if π is irreducible (π\κ: 1)ΦO and τr(Ω)—0 then π is the

trivial representation of G. Indeed, the subquotient theorem implies π is a con-

stituent of τr1>v for some ι>. But ττ l jV(Ω)=0 implies z/=0 or z;—2p. Both con-
tain the trivial representation.

Using a similar argument we prove
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Proposition 2.3. Let G be locally isomorphic with SU(n,l) and n>2. Then
G satisfies (1). As a representation space of K, $+®$~=Cv0ξ&(τ1>ly Vltl) with

(Ad(*)® Ad(ft)) (VQ)=VO, k<=K and (τ1§1, FM) is irreducible.

(1) There exists an irreducible unitary representation (πί>l, Hltl) of G so that

(2) If n=2 and if π is an irreducible unitary representation of G so that

(π\κ\ τM)φO and τr(Ω)=0 then π is unitarily equivalent with π1'1. Furthermore

π1'1 is a non-integrableί squeare integrable representation of G.

Proof. We assume (as in the proof of Proposition 2.2) that G—SU(n, 1).
The statements about t>+®JΓ are standard. Again we look at the composition

series of τr1>0 and find that there is a unique constituent, π1'1 containing TM.

Since every constituent of τr l f 0 is unitarizable (1) follows.

To prove (2) take G=SU(2,l). It is proved in Johnson-Wallach [7] that

7Γ1'1 is non-integrable discrete series. As a representation of M, r1 >x— 1®^®^,

ξ{ characters of M. MA. is a Cartan subgroup of G. Ordering the roots as in

the proof of Proposition 2.1 the simple roots that are not roots of M consists of

«!, α2 (say). One finds H1^Q/Ktr(RE_cύl)+KGτ(RE_cύ2) is the representation space

of π1'1. The proof of uniqueness now follows as in the proof of Proposition 2.2.

NOTE. (2) above is actually true for all SU(n, 1), n>2 using a similar

argument to the proof of (2) above. Here one must use RE-ΛI^ E-ΛZ ^or an

appropriate k> 1 to "pick up" the extra representation of M. These "extra

intertwining operators" will be studied systematically in another paper.

3. Certain representations with highest weights

Let G be a connected, simply connected, simple Lie group. Let g be the

Lie algebra of G and let g— ϊφp be a Cartan decomposition of g (see Helgason

[3] chapters 3 and 8 for the pertinent definitions).

Let QC be the complexification of g. We assume that [ϊ, ϊ]Φϊ. Let £)# be
a maximal abelian subalgebra of ϊ. If rj is the complexification of ξ* in QC then

ΐ) is a Cartan subalgebra of gc.Let Δ be the root system of gc relative to fj. We

may (and do) assume that ϊ=ΛιH'®[I, ϊ] with a(H)=±l or 0 for αeΔ. Let
Δ^^ {a e Δ \ g* C ϊc} , ΔP= {a e Δ \ gΛ C pc} . Here lc and pc are the respective
complexifications of f and $ in gc. Then Δ^— {a e Δ \ a(H)=Q} .

Let f)R=if)^={h^\a(h)^R for all αeΔ}. Let H=H19 H2, .-, Ht be a
basis of ήΛ. Order ΐ)Jl3Δ lexicographically relative to the ordered basis Hlt •••,

Hj. Let Δ+ be the corresponding system of positive roots for Δ. Set Δ^=Δ+

nΔX )Δ£=Δ+nΔP. Set t)+=Σ-SΛίβ. f"=Σ.eΔίfl-. Thenpc=ί)
and zaH\^—I, ad//|p- = — /. Hence ad (ϊc) p±cϊ>± . Also set n+=Σα!
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DEFINITION 3.1. A representation (TT, V) of gc is said to have highest weight
Ae5*=5J®C if there is VQ^ V, ^0ΦO so that

(1) τr(#K=Λ(#K f o r f f e f c
(2) ar(n>0=0,
(3) π(U(Qc))vQ=V.

Here C/(gc) is the universal enveloping algebra of gc.

DEFINITION 3.2. A representation (π, V) of gc is said to be Q-infinitesimally
unitary if there exists a positive definite inner product < , > on V such that

<τr(;i>, w>+<>;, 7r(JQtt;>=0 for all Λ"eg, v, WSΞ V.

Theorem 3.3. (Harish-Chandra [2]). If(π, V) is a Q-infinitesimally unitary
representation of gc with highest weight Λ and if V is the Hubert space completion of
(V,(y) then there exists an irreducible unitary representation σ of G on V so that
the differential of σ restricted to V is π.

Proof. The only difference between the above statement and Theorem 4 of
Harish-Chandra [2] is the irreducibility statement. Let τ;0e V be as in Definition
3.1. It is easy to see that if v^ V and π(h)v=A(h)v for all A e ΐ ) then v=cv0 for
some scalar c.
Suppose that WdV is an invariant subspace. Then W^ is invariant. Clearly
v0^ W or ^Oe W^. Hence W— V or W^= V. Thus π is indeed irreducible if
it is g-infinitesimally unitary.

Lemma 3.4. Let β be the largest root of Δ. If Λeϊj* and <Λ, /3>=0
« , > is the dual in bilinear form on t)* to B on t}) and if ΛΦO then no representa-
tion with highest weight Λ can be Q-infinitesimally unitary.

Proof. Let gM— ϊφφ and let E^eg^ define a Weyl basis of gc/ί) relative to
gw. That is if T is the conjugation of gc relative to Qu(τ(X-}-iY)=;X—iY, X,

YegM) then rEΛ=-E.Λ and [EΛ, E.^HΛ with β(//ΓJ, H)=a(H) for ffeή.
If (TT, V) is g-infinitesimally unitary relative to < , > then ζπ(X)v, wy=—<(y,
π(σ(X))wy for X^QCy v, w^ V. Here σ is conjugation of gc relative to g. Also
σEΛ=—E_(ύ for αeΔx, σEG,=E_c. for αeΔP.

Suppose now (TT, F) is g-infinitesimally unitary with highest weight Λ and
<A, /:?)>— 0. Let % be as in Definition 3.1 and assume that <(%, voy=l.

(1) a.(£_p)t;0=0.

In fact, since /3eΔJ we see (π(E_ft)v0, π(E^)v^>=—<jι(a E_?)π(E_β)vM ^0>

= -<w(^X£.p)t;0, %>= -O(f/pK ^0>= -Δ(HP)= -<Λ, )S>=0 (since w(

Now — /β is the lowest weight of (ad, gc). Hence ad([/(n+))£'_β=gc. (t/(n+)
the universal enveloping algebra of n+). On the other hand 0=π(n+U(n+))π
(E_β)v0 = π(ad(n+U(n+)) E_β)v<). But gc==C£_Pφad(n+C/(n+))£:_β. Hence
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*(βcK=0 But then Λ=0 since Q=π(h)vQ=-A(h)vQ for H^. Q.E.D.
The following lemma is more or less well known (Kostant [9]). We include

a proof for the sake of completeness.

Lemma 3.5. Let W1={s^Wc\ *Δ+ => Δ£} . Here Wc is the Weyl group of

the pair (gc, ϊj). Let p—-~- Σ*e./+tf V s^ Wc define l(s) to be the order of sΔ+

(ΊΔ~(Δ~={— α|αeΔ+}). Let σk denote the representation oflc on Λ*t>~. Let

for XeljJ, Δκ-dominant integral (that is y 'a^ is a nonnegative integer for αe
\#, Oί/

Δ£)> τλ denote the irreducible finite dimensional representation of ΐc with highest
weight λ (c.f. Wallach [18], chapter 4).

(1) If s^ Wc then sρ—ρ is ^-dominant integral if and only ifs&W1.

(2) σft=]2ίeτrι> TSP-P

Proof. (1) If s^Wc and <jsρ—ρ, α>^0 for all #eΔ£ then <jp, α>>0
for all αeΔ£. Thus αeίΔ+ for all α^Δ£. Let α be a simple root in Δ£
(this is equivalent to 2<p, α>=<α, #». Then if ̂ e IF1 then <>p—p, α>=<p—

^"V> ί"1α>=<P, s~la>-<ρ, a>=<P, ^"1α>-<αα>. But Δ^c^Δ+ thus rJΔ^

cΔ+. Thus, since <p, 7>><γ, γ>/2 for all and γeΔ+ and <s *#, s 1α>=
<α, α>, we see that (sp—p, α>>0 for αeΔ£, α simple. But every αeΔίc is a
non-negative integral combination of simple roots in Δ£. This proves (1).

If λ<ΞΪj then trσ^(expA)^ Σ e-tw»m

distinct

Thus if %+(A)-Σtrσ2Af(expA) and X.(A)=Σ trσ2A+1(exp(A)) then X+(A)—

X-(A)= Π+(1-^"ΛCΛ)). Hence X+(A)-X.(A)= Π^l-^^/ Π +(1-^Λ(Λ)).

Bute"* Π (l-«" c*>)= Σ det(ί) «•«*', «p*c» Π (l-e-"tt>)= Σ det(ί)es

ΛeΔ+ ^eϊr^, «eΔs:+ *eWs

(here ρκ=~- 5] tf) (see for example Wallach [18], Lemma 4.9.5.). Hence,
2 ΛeΔκ+

Now σk(cxpt H)=ekt

τ. Thus the representations Σθσ2Aί and
of pc are disjoint. Also if σk— ̂  nk(\)rλy then the Weyl character formula (c.f.

Wallach [18], 4.9.6.) says ( Σ det (*)*"*) (X+-X-) = Σ(-l)*Σ»*(λ) Σ

det (5)
Thus we see

A λ seir^

From this, the above observations and (1), we see that wA(λ)=0 or 1 and all
of the highest weights appearing with wΛ(λ)=t=0 must be of the form sρ—p, $e
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Wl. Now, if s^ Wc, sp— -p=Σ Ύ the sum taken over the elements of sΔ+ Π Δ".
If SΪΞ Wl then jΔ+ Π Δ~cΔp= {—a I αeΔJ} .

(a) If s^W1 and if αeΔJ, TesΔ+ΠΔ" then if α+γeΔ, α+7<ΞsΔ+

ΠΔ-.
Indeed, if α^Δ£ and 7^sΔ+ Π Δ~ and if a+7^Δ then since a=sδ, δe

Δ+ and 7=sμ, μeΔ+, #+7=s(£+μ)> δ+μ<ΞΔ+. But γeΔp and if αeΔ^,
α+7<ΞΔ then α+Ύ^Δp. Thus #+7<ΞΔ~ ΠίΔ+. This proves (a).

But now (0) implies that if αeΔ^ then σjfe(£Λ) (£'_p1Λ Λ£l^J=0 for

ίΔ+ΠΔ"={-A, •'•> -/5J. Thus WΛ(J/>— p)Φθ for ίeϊF1. The lemma is
now completely proven.

Lemma 3.6. If G has split rank>k and if s^ Wl with l(s)<k then <sp— p,
/5>=Q (β the largest root).

Proof. Let aly •••, α/ be the simple roots in Δ+. We may assume α^Δp,
J , 7>2. Let jy be the Weyl reflection about the hyperplane a~ 0

Let γn •••, jr be elments of Δp so that
(a) γ^of!
(i) i f ιΦy,7ί±7 y ΦΔ
(t) r is maximal subject to (a), (b).

Then r— split rank (G) (See Harish-Chandra [3]).
(d) Let ^"=20/^7,.. Then if αeΔ^, α|r is of one of the following

forms: -=-(7,.— 7^), i>j, — -^-7^, 0. If αeΔp then α|ίr is of one of the
1 1

following forms -y (7y+7y), i<J or 7y, -^-7y (see Harish-Chandra [3]).

We prove by induction on k:

(i) If {«ι, ^α. jj, ίΛ2αί3, •••, Vί2'" < s f *-ιcίί*}c:Δp and are distinct and if
βj=sίsi2 sίj_1aίj then there are at most & of the 7,. so that <Σ/3Z , γz >>0.

(1) A=l is clear since then 'Σιβi=a1 and <γ, , 7y>— 0 if i^FJ.
(2) Suppose that the result is true for k. Set βk+ί=sίί sikaίk ^^p9 βk+\

Φ/3y,y<&. Let 7yι, .-, 7yw be such that <7y., Σ βy>>0. Then M<A. Now
1 /<**

relabel the 7/ί so that 71=α1 (as before) 7y.=7ί, i<M. (rf) above implies

/9yU-eΣ

(i)
If w<^ then {7α, •••, 7M, 7,., 7y} has at most k+1 elements and the induction
is complete. If u=k then in order for the lemma to be false we must have

and /3*+ιlή-
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OLjk+1. But then tf, Λ+1 !&-=-«- (%&+!+ ΎjH-2) But this is impossible since if ik^Λ

= 1> α,*+ιU-='yι if *Vn>2, a£k+1\^-=—^-7t or —(<γt—Ύs), s<t. Thus in case

(I) the induction is complete.

The only other possibility is βk+ι\t)- = Ύt or ~^-Ύt f°Γ some \<t<r. But
Zj

then the set {%, •••, γM, jt] has at most k+l elements, (i) is now completely
proved.

We now prove the lemma. Suppose s^W1 and <sρ— p, /3>ΦO. Since
sp— p is a sum of netgative roots and β is the highst weight of the adjoint
representation <sρ— p, /3> <0. If γ<ΞΔp then again since β is the highest

/
weight of p+ as a representation of ϊc, 7=yβ— Σ n^a^ w, >0. Hence <sp— p, 7>

ί = 2

=<sp— p, β>— Σw» <\sP—py #*•> <0 since <^p— p, ^>>0, ί>2 by Lemma 3.5.
Hence if je W71 and <ίp— p, /3>ΦO then <p— jp, 7>>0 for all γeΔp. If

ίe W71, /(ί)=Λ then 5=*^—*^ and ^Δ+ Π'Δ"= {— α^, — ̂ α,̂ , - , - î"-^- ,̂}
and contains precisely k elements, (c.f. Wallach [18], 8.9.13). But then

^ hence ί1==l. If ^=^2— .̂̂  then p—ίp=Σ^y If <P— Ψ> β>

Φθ then by the above <ρ— ίp, 7y>>0 for/— 1, •••, r. But then (i) implies r<Λ.
Q.E.D.

The following lemma is due to Parthasarathy [15]. We include the proof
since it is only implicitely stated in [15].

Lemma 3.7. Let Vλ be the irreducible (finite dimensional) representation of
lc with highest weight λ. Let A.p$~®Vx=^np(\: μ)Vμ as a representation of lc.
Suppose that λ is Δ+ -dominant integral. If π is an irreducible unitary representa-
tion of G so that 7t(Ω,)=\\+p\2-\p\2=Cλand^ttp^:μ,^0(π\κ: Fμ)Φθ, then π
is infinitesimally equivalent with the irreducible representation with highest weight μ
for some μ with np(\: μ)Φθ.

Proof. We retain the notation of Lemma 3.4. Let H19 •••,#/ be a basis
of f) so that £(#,., Hj)=Stj.

Then Ω=Σ.eΔ^-β+Σί-ι#Λ Set Π * = e Δ £ - » + Σ U # Λ Set S1P=

Let (π, H) be an irreducible unitary representation of G so that τr(Ω)— Cλ

and (π\κ: Fμ)Φθ for some μ so that np(\\ μ)Φθ. Let v^H a unit vector
such that

(1) π(Ea)vμ=0, αeΞΔ£
(2) ( U(ίc))vμ. is equivalent with Vμ. as a representation of ϊc.
Then π(Ωκ)v^(^μ+Pκ> μ+pκ>-<Pκ, Pκ»vμ (c.f. Wallach [18], 5.6.4.).

Hence Σ.βAί?r(^E-.K=(C'χ- I μ+Pκ 1 2+ I PK I X But Σ.

2Σ*
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*μ. We therefore see (3) 2^Λ^^π(E.Λ)π(E0)vμ=(Cλ^μ+2P) μ>K=( | λ+

Now if a^Δp then (π(E^v, w^=— <z>, π(E_^wy, vy w^ domain {π(EΛ),
π(E_^} . Using this we see that if we take the inner product of the left hand
side of (3) with vμ we have

(4) -2ΣU4,+IW£«Mlλ+Pl*-l/H-p|*).
But every highest weight of Fλ®Λ^~ is of the form λ— <£)> where QcΔp

is a subset and <Q>=Σ-6βα. But if 0CΔ+, |λ+p| 2- |λ-<ρ>+p| 2>0.
(See Kostant [9]). Hence 7r(/?Λ)ϋμ=0 for αeΔp. This clearly implies π has

highest weight μ. Q.E.D.

NOTE: Case (1) of Proposition 2.2 follows from Lemma 3.7 using λ=0
since £~~ is irreducible and thus there is only one possible μ with Wj(0: μ)Φθ.

Corollary 3.8. Suppose that split rank G>&. // k>0 and if
Σ^Cμ)^- then there does not exist a unitary irreducible representation (π, H) ofGso
that

(1) τr(Ω)=0

(2)

Proof. If such a (π, H) existed then it would have to have highest weight
μ for some μ with w*(μ)ΦO. But then μ=sp—ρ for some se W71, l(s)—k. But
then <ίp— p, /3>ΦO by Lemma 3.4 and Lemma 3.6 yields a contradiction.

NOTE. The above result is best possible in light of Lemma 2.1. Since split
rank SU(n, 1)— 1 and π± in the notation of Lemma 2.1 satisfies (1), (2) above
with A=l .

4. The Betti numbers of T\X

Let G be a connected, simple Lie group with finite center and let K be a
maximal compact subgroup of G. Let Γ C G be a discrete subgroup of G so that
Γ has no elements of finite order and Γ\G is compact. Let X=G/K. Then
T\X is a compact locally symmetric space. Let g be the Lie algebra of G and
let g— f ®t> be the Cartan decomposition of g corresponding to K. Let dg be a
Haar measure on G and let d'g denote the corresponding G invariant measure
on Γ\G. Let πr be the regular representation of G on L2(Γ\G). Then it is
well known that as a representation of G, πΓ = ̂ ω^NΓ(ω)ω (here ό is the set of
equivalence classes of irreducible unitary representations of G) and Nτ(ω) < oo .

Let (Λ^Adl/r), Λ^c)— Σw/>,λτλ with τλ the irreducible unitary representa-
tion of K with highest weight λ. If [ϊ, ϊ] Φ ϊ then ^c^t^θp" as a representation
of ̂  and let

(Λ*Ad| *
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τλ the irreducible representation of K with highest weight X.

Theorem 4.1. (Matsushima [13], Matsushima-Murakami [14]).
(1) bp(Γ\X)=^^QNΓ(π)^mp^0(π\κ:rλ). (2) // [f, f]φϊ then T\X

is a Kάhler manifold and bp>q(Γ\X)^^^0Nτ(π)^λ>nptq.^0(π\κ: rλ). Here

(2) above combined with Corollary 3.8 immediately implies

Theorem 4.2. // rank X=k then b0tg(T\X)=Q for 0<q<k.

Corollary 4.3. (Matsushima [12]). If X is irreducible and Hermitίan sym-
metric of rank greater than 1 then bl(Γ\X)=0.

Proof. b1(Γ\X)=b0>l(Γ\X)+b1>0(Γ/X). But bί>0(T\X)=b0>l(Γ\X) since
T\X is Kahler.

We also note (using the notation of §2)

Lemma 4.4. If G is locally isomorphίc with SU(n, 1) then bl(T\X)=
2Nτ(πl}. If G is locally isomorphic with SOe(n, 1) andn>3 then b1(Γ\X)=NΓ(π1).

Otherwise if G is of split rank 1 then

We conclude this paper by looking at the example G=SU(2,l). Let us
denote, πly by 7Γ0>1. Let Λ be the highest weight of Λ2p~~ . Then the irreducible
representation of G with highest weight Λ (in the sense of §3) is a holomorphic
discrete series representation. It is not integrable however so Langlands'
formula [11] does not apply. (It can also be shown that the formula of Hotta-
Parthasarathy [6] does not apply either). Denote this representation by τr°'2.
Let 7Γ1'1 be as in Proposition 2.3. Then b0>1(T\X)=Nτ(π°'1)9 bΰt2(T\X)=NΓ(π°'2)9

b, l(Γ\X)=NΓ(πltl)+l. If we normalize dg so that vol (Γ\G)=f d'g=X(Γ\X)
JT/G

the Euler number of T\X then the Max Noether formula combined with the
Hirzebruch proportionality principle implies

(α) 1 -έ0,1(Γ\Jί)+ό0>2(Γ\/^)=-l vol (Γ\G).

also χ(r\*)=ΣM-iWr\^).
Poincarέ duality implies

(b) 2-261(Γ\^)+ό2(Γ\^)=vol (Γ\G).
Hence we have

(a') l-N^Ϊ+NrW) vol (Γ\G)

(V) 3-4NΓ(π0'1)+2NΓ(π'>'z)+NΓ(π1 1)=vol (Γ\G).
Now since vol(Γ\G)>0 we see that if b0ι2(T\X)=Q then ό0,1(Γ\^Γ)=0 hence

vol(Γ\G)=3. Hence b2(Γ\X)=l. Thus (as is well known in this case) if Γ is
such that NΓ(π0 f2)=0 then the real cohomology ring of Γ\X is generated by the
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Kahler class and is isomorphic with the real cohomology ring of CP2.

We also note that (β7), (V] combined imply NΓ(π^}=Nτ(

We can see no reason in the harmonic analysis of L2(Γ\G) why this should be

true. Finally we note that in (#'), τr°>2 is discrete series but π°ίl is a so called
"trash representation". That is, it is non-tempered but its character has sup-

port in the elliptic regular elements. Paul Sally and the authors have named

these representations trash because they seem to be the reason why the expected

formulae for the multiplicities of discrete series are not right. That is, if the trash
has been disposed of the formula is correct. Note that the trivial representation
is a trash representation.

Similar coupling of non-integrable discrete series and trash representations
have been found by Paul Sally and the second author of this paper for the two-

fold cover of SL(2, R).
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