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1. Introduction. Let G be a connected semi-simple Lie group with finite
center and with no connected normal, compact subgroups. Let KcCGbe a
maximal compact subgroup and let I' C G be a discrete subgroup acting freely
on X=G/Kand so that I'\G is compact. Let M=T\Xthen M is a typical
compact locally symmetric space of negative curvature. Let G act by the right
regular action, zp, on L¥T\G). In Matsushima [13] a formula for the Betti
numbers of M is given in terms of the multiplicities of certain unitary repre-
sentations of G in #zr. In this paper we investigate the existence of the repre-
sentations of G that come into the Matsushima formula. In particular we show
that if X is irreducible and Hermitian symmetric and if rank X>p then there are
no unitary representations of G that satisfy the conditions for the Matsushima
formulas for the (0, p) Betti number of T\ X, b, ,(I'\X). Thus we find that if
p<rank X, b, ,(T'\X)=0. In particular if rank X>/ we recover Matsushima’s
theorem [12] that the first Betti number of T\ X is zero.

Actually this result (on the first Betti number) follows from the more general
theorem of Kazhdan which says if G is a simple Lie group of split rank larger than
I and if TG is a discrete subgroup so that I'\G has finite volume relative to
some Haar measure on G then I'/[T, I'] is finite.

In light of the above result of Kazhdan it is reasonable to study the unitary
representations that appear in the formula of Matsushima for the first Betti
number in the case G has split rank 1. We show that in this case such representa-
tions always exist. We show that there are at most two such unitary representa-
tions and if G is locally SO(=, 1) there is exactly one, let us call it 7, (see Lemma
2.1, Prop. 2.2 and Lemma 4.4). This gives us some interesting examples.
E. B. Vinberg [16] has constructed a uniform discrete subgroup I"'cSO.(n,])
for 3<n<5, which is arithmetic in the sense of Borel, Harish-Chandra, such
that I'/[I', I'] is infinite. In Johnson-Wallach [7] it is shown that =, cannot be
tempered in the sense of Harish-Chandra (see G. Warner [14]) if n>4. Thus
there exists an arithmetic uniform discrete subgroup I' of a simple algebraic
group G and a non-trivial non-tempered representation with positive multi-
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plicity in L3T'\G). This fact would require furthur refinement about so-called
“generalized Ramanujan conjecture”. We are grateful to Professor A. Borel
for kindly pointing out this paper of Vinberg.

We conclude the paper by giving the representations that occur in the Matsu-
shima formula for the (p,¢) Betti numbers in the case of SU(2, 1) and study the
implications of Riemann-Roch and Gauss-Bonnet theorem in this case.

2. The existence and uniqueness of certain representations

In this section we study the case where G is a connected, simple, Lie group
with finite center having split rank 1. Let K G be a maximal compact sub-
group. Let g and i be respectively the Lie algebras of G and K. Let g=t®p
be the corresponding Cartan decomposition of g.  We denote by Ad the adjoint
representation of G on g¢ (the complexification of g).  Let (7, p¢) be the repre-
sentation of K on p¢ (the complexification of p) given by Ad|x. There are two
possibilities:

(1) (7, p¢) is reducible and pe=p*Pp~ with (T, p*) and (T, p~) irreducible (in
this case G is locally isomorphic with SU(#n, 1) for some z).
(@) (7, pc) is irreducible.

In case (1) we take 7, to be (T, p~) in case (2) we take 7, to be (T, pc¢).

Let Q be the Casimir operator of g. That is, if B is the Killing form of g,
if X;, *++, X, is a basis of g and if Y;, *++, Y, satisfy B(X,, Y,)=5&then Q—
SX.Y..

Lemma 2.1.  There exists an irreducible unitary representation (m,, H,) of G
so that (m,| x:7)=1 and =, (Q)=0. (Here if o,, o, are representations of K then
(0.t 0,) is the dimension of the space of K-intertwiningoperators from o, to o,).

Proof. In Kostant [10] (see also Johnson-Wallach [7]) it is shown that if
aris a (non-unitary) prinicipal series representation of G and if ¢ is an irreducible
unitary representation of K then (z|x:0)= 1 or 0 depending on whether or not
o has an M-fixed vector. In Johnson-Wallach [7] it is shown if (z°, ¥) is the
representation of G on the space V of K-finite, C* functions on G/MAN (MAN
=P a minimal parabolic subgroup of G, M=KN P, K/M=G/P}lefined by

(WX)f) = " flexp(—tX)s) ooy for fC(GIP)

then every constituent of the (finite) composition series extends to a unitary
representation of G. Now 7, has an M-fixed vector thus (z°| ,: 7,)=1. Hence
exactly one of the irreducible constituents of z° contains 7,, We denote this
constituent by z,. Clearly z°(Q)=0 (1 & V). Thus =,(Q)=0.

Proposition 2.2.  Suppose that G is in case (1) above or that G is locally
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wsomorphic with SO,(n, 1), n>3 (the identity component of the group of the
quadratic form > x2—xk,,).  If (=,H) is an irreducible unitary representation of
G so that (m| g: To)+0 and n(Q)=0 then s is unitarily equivalent with r,.

Proof. The assertion in case (1) will be proved in the next section. We
therefore assume that G is locally isomorphic with SO.(n, 1)=G,. If (=, H)
contains 7, then since the center of G, Z, is contained in K and 7,(Z)={/} we
see that n(Z)=1. We may therefore assume that G=G,. Let P=MANbe a
minimal parabolic subgroup of G such that M=PN K and the Lie algebra of
A, a, is contained in p. Let M be the set of equivalence classes of irreducible
unitary representations of M and let a*; be the space of complex valued linear
forms on a. Ifnis the Lie algebra of N then there is a unique element, H €q,
so that adH |n=1. Now a=RH. If GEMand vea*; let (ze.,, H®Y) be the
corresponding (non-unitary) prinicipal series representation of G,. That is H&"
is the space of all f: G—H; ((§ Hg) is a representative of £ such that / is
measurable and

(i) flgman)y=¢(m) e~ f(g)
forgeG, meM, ac A, ne N and log: A— a is the inverse of exp: a—A4

(i) [ lfwirae<o
(i) (rs..()))(0)=A(g™"%)

We note that in the notation of Lemma 2.1 #°=m,,, 1 the class of the trivial
representation of M.

The subquotient theorem (Harish-Chandra [1]) says that (=, H) is infinites-
imally equivalent with a constituent of the composition series of z¢, for some
geM,y=a*,. Frobenius reciprocity implies that since (7| k2 To)==0 then if 7
is equivalent to a constituent of z¢ ,, (Tolar: €)=F0.

Now K acts on p as SO(n) on R*. M isjust SO(n—1) imbedded in K as

I SO(n—1) OJ
o 1 J.

Thus if &, is the standard representation of M on C” *and 1 is the trivial repre-
sentation of M, 7| ,,=&,1. Thus =~ must be a constituent of =, ., for some v
or mg, , for some v. If 7, ,(Q)=0 then »(H) =0or n— 1. Since 7, , and =, ,_,
have the same composition series we see that if o is a constituent of 7z, , for some
v then = is equivalent to ;.

If z¢, ,(Q)=0 then »(H)=zor n—z—1 for some s&C by the usual formula
for m¢, ,(Q):

750, () = const. {(H)*—(n—1)p(H)+(&)} ,

where ¢(¢,)= Cis a constant depending only on &,. ¢y .., and =g, , have the
same character hence the same composition series. Thus since (To|p: &)=1
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there is at most one other irreducible unitary representation of G satisfying the
required conditions and it must appear in zg, ,. We show that the constituent
of z¢, . containing 7, is infinitesimally equivalent to 7, and thereby prove the
proposition.

Let T, be a maximal torus of M. Then 7,4 is a Cartan subgroup of G,.
Let Gc=SO0(rn+1,C) and let C c G¢be the Cartan subgroup corresponding to
T,A. Let b be the Lie algebra of C in g¢. Let A be the root system of (gc, b)
and let A" be a system of positive roots such that if A and a(H)>0 then
a>0. Thenifn"=3>,ca-gs 0T Ng=n. Leta, **°, a, be the corresponding
simple roots (/ is the largest integer <(n-+1)/2). Let m¢ be the complexification
of the Lie algebra of M. Set Ay={axeAlg,Cm¢}. Then by relabeling the
ay, -+, tf/ We mayassume @, **r, @,EAy Let v,€Hy=C""be a non-zero
highest weight vector and let w, be a lowest vector. IffeH%" set S(f) (g)=
(f(8), wo) ((Z, W)ZZZsz) If feC=(G) define for XE€he, X=X +iX,,

X.€g, (Rxf) (9)= % (f(g exptX)+if(g exptXy)|imo.  If E(E)0e=N(t)V, for all

teT, and if fe H% ¥ then

() RxS(f= 0 for Xen®

(I S(f(gta)= A(t)e**#”S(g)  for teT,, ac4.

The Borel-Weil theorem (c.f. Wallach [17]) implies that S is a 1-1 map from
the space of C* elements of Hé*, HEo" onto the space of all f& C=(G) satisfying
(M), (I1). Let X™Y be the space of all C* functions on G satisfying (I), (I).
If feX*? x,6€G set (T,.(8)f) (x)=f(g"'x). Then Seme, ,(8)=T).(g)°S.
Hence the representations (7 ,X**) and (m¢, ., He") of g are infinitesimally
equivaldent.

Let now tfe)"-{0} (g_.,={X<Egcl[h, X]=—a,(h)X for all h€h}).
Set for feH.’, B(f)(g)=(Rg_,[f9. A direct computation gives B(H:’)
c X*¥ with v=q,|a. But B is clearly non-zero. Hence v==2 or n—z—1.
Furthermore, it is shown in Johnson-Wallach [7] that H"°/(constants) is irredu-
cible. Thus (=, H,) is infinite simally equivalent with (=, ,, H"°/constants)
and by the above is contained in 7, .. This completes the proof of the Proposi-
tion.

NOTES. 1. If G satisfies (2) then one can use the same sort of arguments
as those proving Proposition 2.2 to show that there are at most 2 irreducible
unitary representations, 7z, of G satisfying (z| x: 7,)#+0 and =(Q)=0.

2. We note that if 7 is irreducible (z|x:1)==0 and #(Q)=0 then x is the
trivial representation of G. Indeed, the subquotient theorem implies 7 is a con-
stituent of =z, , for some v. But =, (Q)=0 implies »=0 or v=2p. Both con-
tain the trivial representation.

Using a similar argument we prove
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Proposition 2.3.  Let G be locally isomorphic with SU(n,1)and n>2. Then
G satisfies (1). As a representation space of K, p*Qp™ =Cv,P (7,1, V1,.) with
(Ad(R)RQRAd(R)) (v))=vo,kEK and (1,,, V,,) is irreducible.

(1)  There exists an irreducible unitary representation (z**, H,,) of G so that
(7" g T1,1) 0 and »*(Q)=0.

(2) If n=2 and if 7w is an irreducible unitary representation of G so that
(wlg: T11)F0 and =(Q)=0 then s is unitarily equivalent with =**.  Furthermore
7 is a non-integrable, squeare integrable representation of G.

Proof. We assume (as in the proof of Proposition 2.2) that G=SU(n, 1).
The statements about p*@p~ are standard. Again we look at the composition
series of #z"° and find that there is a unique constituent, z'' containing T,;.
Since every constituent of 7, , is unitarizable (1) follows.

To prove (2) take G=SU(2,/). Tt is proved in Johnson-Wallach [7] that
7! is non-integrable discrete series. As a representation of M, 7, ;= 1D &,DéE,,
&; characters of M. MA. is a Cartan subgroup of G. Ordering the roots as in
the proof of Proposition 2.1 the simple roots that are not roots of M consists of
a5, a, (say). One finds HL°/Ker(Rg_, )+ Ker(Rz_,j} the representation space
of #z'*. The proof of uniqueness now follows as in the proof of Proposition 2.2.

NOTE. (2) above is actually true for all SU(n, 1), #>2 using a similar
argument to the proof of (2) above. Here one must use RZ-_MRE_Q,Z for an
appropriate R>1 to "pick up" the extra representation of M. These "extra
intertwining operators” will be studied systematically in another paper.

3. Certain representations with highest weights

Let G be a connected, simply connected, simple Lie group. Let g be the
Lie algebra of G and let g=¥@Pp be a Cartan decomposition of g (see Helgason
[3] chapters 3 and 8 for the pertinent definitions).

Let g¢ be the complexification of g.  We assume that [i, f]3=f. Let by be
a maximal abelian subalgebra of i. Ifp is the complexification of hx in g¢ then
b is a Cartan subalgebra of g¢.Let A be the root system of g relative to ). We
may (and do) assume that (=R:HP[E, i] with a(H)=41or 0 fora=A. Let
Ax={a=A\g,Ctc}, Ap={ac= A \g,CPc}. Here ¥, and pc are the respective
complexifications of f and p in g¢. Then Agx= {xe A\ a(H)=0}.

Let hp=19+x={h€h|a(h)= Ror all acA}. Let H=H,H,, -, H,be a
basis of hgr. Order H% DA lexicographically relative to the ordered basis H,, -,
H,. Let A" be the corresponding system of positive roots for A. Set Ag=A"
n AK’ A;=A+ n AP' Set p+=ZwEA;gm ‘p—ZZaEA;g—w Then pC=p+@p~
and adH |p+=1I, ad H|p-=—/. Hence ad(f¢) p*Cp*. Also set 1"=>cr*qu
=2 les G-
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DEFINITION 3.1. A representation (=, V) of g€ is said to have highest weight
Aebh*=hXQC if there is v,&V, v,%0 so that

1) =(H)v,=A(H)v, for Heb,

@) n(1*)o,=0,

3 (Ulgo)e=V-
Here U(gc) is the universal enveloping algebra of gc.

DEFINITION 3.2. A representation (7, V) of gc¢ is said to be g-infinitesimally
unitary if there exists a positive definite inner product < , > on V such that
{n(X)o, wr+<v, #(X)w>=0 for all X g, v, weV.

Theorem 33. (Harish-Chandra [2]). If (=,V) is a g-infinitesimallyunitary
representation of gc with highest weight A and if V is the Hilbert space completion of
(V,<{ D) then there exists an irreducible unitary representation o of G on V so that
the differentiabf o restricted to V is .

Proof. The only difference between the above statement and Theorem 4 of
Harish-Chandra [2] is the irreducibility statement. Let v,& V be as in Definition
3.1. Tt is easy to see that if v V and n(h)v=A(h)ofor all A=Y then v=cv, for
some scalar c.

Suppose that W c Vis an invariant subspace. Then W is invariant. Clearly
v,& Wor vy, W+. Hence W— Vor W*=V. Thus x is indeed irreducible if
it is g-infinitesimally unitary.

Lemma 34. Let B be the largest root of A. If A€bh* and <A, B>=0
(< , > is the dual in bilinear form on %* to B onY)) and if A==0 then no representa-
tion with highest weight A can be g-infinitesimallyunitary.

Proof. Let g,=fip and let E, =g, define a Weyl basis of g¢/f) relative to
g.. That is if T is the conjugation of g, relative to g (7(X+:Y)=X—iY},
Yegq,) then TE,=—F_, and [E,, E_,]=H,with B(H,, H)=a(H) for ffen.
If (=, V) is g-infinitesimally unitary relative to < , > then {z(X)vw>=—<v,
m(o(X))wlor X eg¢, v, we V. Here o is conjugation of g¢ relative to g.  Also
ocE,——FE_for a=Agk, cdE,=FE__ for ac Ap.

Suppose now (=, V) is g-infinitesimally unitary with highest weight A and
{A, B>=0. Let v, be as in Definition 3.1 and assume that {v,, v,>=1.

(1) #(E_g)v,=0.

In fact, since B Ap we see <{n(E_g)vy,n(E_g)vyy=—{n(& pg)n(E _g)00v,)
= —{z(Ep)n(E _p)v,, vop= —<{m(Hp)vo,vo0= — A(Hp)=-<A, B>=0 (since 7(Ejp)
v,=0).

Now — 3 is the lowest weight of (ad, g¢). Hence ad(U(n))E_g=gc. (Un")
the universal enveloping algebra of n*). On the other hand O=z(n*UWm"))x
(E_g)vo=rn(ad(m*UMm*)E_g)v,. But ge=CE gPadm*Um*))E_s. Hence
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7(gc)v,=0 But then A=0 since 0==(h)v,=A(k)v,for H€}). Q.E.D.
The following lemma is more or less well known (Kostant [9]). We include
a proof for the sake of completeness.

Lemma 3.5. Let W'={scWesA™ DAL} . Here W¢is the Weylgroup of
1
the pair (gc, 9). Let p="5 Shecara  If s Wedefine I(s)to be the order of sA*

NA (A ={—alacsA*}). Let adenote the representation of ¥con N*p~. Let
Jor A%}, Ax-dominant integral (that is ‘_{d %Zis a nomnegative integer for o<
Aj), Ta denote the irreducible finite dimensional representation of ¥ with highest
weight ). (c.f. Wallach [18], chapter 4).

(1) Ifse Wcthen sp—p is Ag-dominant integral if and only if s&€ W',

Q) Tr=2ewsr Tsp-p
1=k

s~

Proof. (1) Ifse Wgand {sp—p,a>=0 for all =A% then <{sp, ap>>0
for all aAk. Thus aesA* for all a=A%. Let a be a simple root in Ajk
(this is equivalent to 2<{p, a>=<a, a>). Then if s& W then {sp—p, a>=<{p—

57, 57 ar=Cp, s a>—<p, a>=<p, ">~ BE . But ALCSA® thus Ak

CA*. Thus, since <{p, ¥>><v, v>/2 for all and y=A* and <{s 'a, s ‘a>=

{a, a, we see that sp—p,a>>0 for a= A%, a simple. But every a€ Ak is a

non-negative integral combination of simple roots in A). This proves (1).
Ifheh then trolexph)= X e GR:,

5;;‘;'.31,6.:\';,
distinct

Thus if X (h)=>]tro(exph) and X_(h)=3] tro,,,(exp(h)) then X (h)—
X_(h)= H+(1__e—w(h)). Hence X.(h)—X_(h)= gil“‘e""‘”’)/wcl‘L Jr(l__e-a(h))'

wTA

But &*® 1 (1—e” @)= X det(s) e, e’x® J1 (1—e *®)= X det(s)e”x”
weAt sEW o et SEWEK
(here pK———% 1 tf) (see for example Wallach [18], Lemma 4.9.5.). Hence,
UEAE+
X (h)—X_(h)=( X det(s)e***"x)[ > det(s)e’’x.
SEW ¢ SEWER

Now o(expiH)=e*;. Thus the representations >\Po,, and > Po e
of p¢ are disjoint. Also if o= > n,(A)T,,then the Weyl character formula (c.f.

Wallach [18], 4.9.6.) says ( X det(s)e’™®) (X, —X_)=2(—1)2n(A) =
Sew g k SEWEK
det (s)e?+Pe,
Thus we see

—1)* SA+PR) SP— P+ pE-
};_,( 1) ;nk(h)se%r‘,xdet(s)e k SEZWJCdet(s)e E

From this, the above observations and (1), we see that #,(A)=0 or 1 and all
of the highest weights appearing with 7,(A)==0 must be of the form sp—p, s&
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W*. Now, ifse€ W, sp— -p=>" 'Y the sum taken over the elements of SA™ N A™.
If seW'thensA" NA"CAp= {—alacsA}}.

(a) If seW'and if a€Ak, vyEsA*N A" then if a+vEA, at+vesA™
NA-.

Indeed, if a= A} and y=esA™N A~ and if a4y < A then since a=s98, §&
A" and v=su, ueA", at+v=s(E+pn), 8+psA*. But yEAr and ifaEAg,
a+vyeAthen a+v=Ap. Thus a+vy= A~ NsA*. This proves (a).

But now (0) implies that if a= Ak then ou(E,) (E_~, A AL 5)=0 for
SATNA ={—28,, =, —Bs}. Thus 7n,(sp—p)=0 for s€ W' The lemma is
now completely proven.

Lemma 3.6. [If G has split rank>Fk and if s&€ W* with l(s)<kthen {sp—p,
B>=0 ([ the largest root).

Proof. Let «y, ***, ¢, be the simple roots in A*. We may assume «, & Az,
a; €Ak, j=2. Lets; be the Weyl reflection about the hyperplane o .=0
(spmnKmava)
<C(j7 C(j>
Let «,, -++,v, be elments of A} so that
(a) Yi=a,

(b) ifi%j, v,x£7,EA

(¢) ris maximal subject to (a), (b).

Then r=split rank (G) (See Harish-Chandra [3]).

(d) Let 5 =>1CHv,. Then if a= Ak, aly- is of one of the following
forms: %(vi——fyj), i>j,——%fy,-, 0. If a=Ap then «aly- is of one of the
following forms 71 (v;+v;)i<jor v, ;,1)—7]. (see Harish-Chandra [3]).

We prove by induction on k:

(i) If {an, 810y $85,000, * =, 8,85, 8, } CAp and are distinct and if
B,;=$8, §;;_,a;then there are at most & of the v; so that <338,, 7,>>0.

(1) k=1 is clear since then 2}B;=a,and {v,, v,>=0ifi=].

(2) Suppose that the result is true for k. Set Bpn=5; §;,&;, € ApBrn
+8;,j<k. Letv;, -, 7, be such that {v;, iZskB]->>O. Then u<k. Now

relabel the 7v,’s so that 7v,=q, (as before) Y;,=%Y: t<<u. (d) above implies
B;ly- €2 Ry, for j<k.
i<#

(I Bkﬂlb-:% (vi+v,), 1<j.

If u<<k then {v,, ***, %w 7 7,;} has at most k41 elements and the induction
is complete. If u=k then in order for the lemma to be false we must have

1
2B ly- =217, ¢;>>0 and Bk+llb—=7('yk+1+'7k+z)- But now B4,=s;,"*
SOy, Thus Brp=s;8;, (s, et )=ABrt$; ;- 05, =23d;8;+



MaTtsusHima’s FORMULA 427

;.- But thentf,, , lb“:%(@’kﬂ—l-')’kﬂ} But t1his is impossible since if 7.,
=1, a;, (=1 it =2, a;k“lb‘=—i% or +(7:—%;), s<t. Thus in case
(I) the induction is complete.

The only other possibility is Br.. |y~ ="Y¢ or :7’)’, forsome 1<t<r. But

then the set {v,, ***, v,,7,} has at most k41 elements. (i) is now completely
proved.

We now prove the lemma. Suppose s W' and <{sp—p, B>=+0. Since
sp—p is a sum of netgative roots and S is the highst weight of the adjoint
representation {sp—p, B> <0. If vy A} then again since S is the highest

1
weight of P as a representation of f¢, vY=8—> n,a;, n, >0. Hence {sp—p, v>
i=2

=<sp—p, BO—2m; <sp—p, ;> <0since <sp—p, a;>>0, i>2 by Lemma 3.5.

Hence ifse W* and {sp—p, B>=+0 then {p—sp, ¥>>0 for all yeA}p. If
s€W?, I(s)=Fk then s=5;,---s;, and SATN A" ={—a;,, —$i,Q4y ==, —Si"* "S5, 0s,}
C Ap and contains precisely k elements. (c.f. Wallach [18], 8.9.13). But then
anEAP hence L=1. If B;=$:8:,"**8;;_,cti; then P—SP=I§181‘ If <p—sp, B>
=0 then by the above {p—sp, v;>>0 for j=1, +**, 7. But then (i) implies »<k.
Q.E.D.

The following lemma is due to Parthasarathy [15]. We include the proof
since it is only implicitely stated in [15].

Lemma 3.7. Let V, be the irreducible (finite dimensional) representation of

fc with highest weight \.. Let A?p~ QV =3 np(\: u)Vyuas a representation of f.

Suppose that ) is At-dominant integral. If 7w is an irreducible unitary representa-

tion of G so that 7(Q)=|N+p|*—|p|*=C\ and 23, o : wyso(7| Vi) F0, then 7

is infinitesimallyequivalent with the irreducible representation with highest weight u
Jor some u with np(N: p)=0.

Proof. We retain the notation of Lemma 3.4. Let H,, ---, H, be a basis
of § so that B(H;, H;)=§;;.

Then \Q':EwEAEmE—-a—*‘Z‘fﬂHiz- Set QKzszAKEmE—m+Z£=1Hi2' Set Qp=
EmeAPEmE—as-

Let (m, H) be an irreducible unitary representation of G so that #(Q)=C,
and (7|g: Vu)=0 for some u so that np(A: p)=+0. Let v, H a unit vector
such that

() (Eo.=0,ac Ak

2)  (UQ¢))vuis equivalent with V. as a representation of .

Then 7(Qx)vu=Kp+pxr+px>—<Px, Px>)vu (c.f. Wallach [18], 5.6.4.).
Hence ZmeA,ﬂ(EaE—m)Wr—‘(C;\— [ +pxl*+1 pxl )vu  But Za&AP”(EmE )=
ZZuEAp*”(E—w)”(Ew)‘vﬂ-—{—ZNGAP’*”(Hw)vl"=ZZwEAP+7[(E—me)v#+22wEAp+/J‘(Hw)
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vu.  We therefore see (3) 23 enp+m(E_o)m(En)ou=(Co—<p~+2p))vu=(| A+
pl*=| utpl o

Now if a€Ap then {z(E,)v, wy=—v, z(E_,)w>,v, wE domain {=(E,),
n(E_,)}. Using this we see that if we take the inner product of the left hand
side of (3) with v, we have

@) —2heapllmEJoulP=(1n+p1*— | p+pl?).

But every highest weight of V,@A?p~ is of the form A —<Q)> where QC Ap
is a subset and <OQ>=3>1,coax. But if QC A*, |[A+p|*— | A—{OD>+p|*>0.
(See Kostant [9]). Hence n(E,)vu=0 for a=Ap. This clearly implies 7 has
highest weight u. Q.E.D.

NOTE: Case (1) of Proposition 2.2 follows from Lemma 3.7 using A=0
since P~ is irreducible and thus there is only one possible y with n,(0: p)==0.

Corollary 3.8. Suppose that split rank G>k. // k>0 and if A¥p =
S n(w)Vy then there does not exist a unitary irreducible representation (m, H) of G so
that

(1 =(Q)=0

(2 22nu(p) [7]k: Vi]=0.

Proof. Ifsuch a (m, H) existed then it would have to have highest weight
u for some u with n,(px)=0. But then p=sp—p for some s W, I(s)=k. But
then {sp—p, B>=+0 by Lemma 3.4 and Lemma 3.6 yields a contradiction.

NOTE. The above result is best possible in light of Lemma 2.1. Since split
rank SU(n, 1)=1 and =, in the notation of Lemma 2.1 satisfies (1), (2) above
with k=1,

4. The Betti numbers of 7\X

Let G be a connected, simple Lie group with finite center and let K be a
maximal compact subgroup of G. Let I'C G be a discrete subgroup of G so that
I' has no elements of finite order and T'\G is compact. Let X=G/K. Then
T\X is a compact locally symmetric space. Let g be the Lie algebra of G and
let g=E®p be the Cartan decomposition of g corresponding to K. Let dg be a
Haar measure on G and let dg denote the corresponding G invariant measure
on N\G. Let =y be the regular representation of G on L*T\G). Then it is
well known that as a representation of G, zp= > ,caNr(w)w(here G is the set of
equivalence classes of irreducible unitary representations of G) and Np(w)<eco.

Let (A?(Ad| k), A?pc)= D m, 7, with 7, theirreducible unitary representa-
tion of K with highest weight A. If [{, 1] @1 then po=b*Pp~ as a representation
of Kand let

(ApAdIK®Aqu|K; App+®qu-) = Znﬁ,q; ATa
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7, the irreducible representation of K with highest weight X.

Theorem 4.1. (Matsushima [13], Matsushima-Murakami [14]).

(1) bp(D\X)=rct, V() Dyl &2 T)2)  // [, B)EE then T\X
is a Kahler manifold and b, (T\X)=3esNe(m) T ny sl 7). Here
G,= {r€ G| =(Q)=0}.

(2) above combined with Corollary 3.8 immediately implies
Theorem 4.2. //rank X=k then b, ((T\X)=0or 0<g<k.

Corollary 4.3.  (Matsushima [12]). If X is érreducible and Hermitian sym-
metric of rank greater than 1 then b(T'\X)=0.

Proof. b (T\X)=b,,(T\X)+b, (T'/X). But b, (T'\X)=b,,(T"\X) since
T\X is Kahler,
We also note (using the notation of §2)

Lemma 4.4. If G is locally isomorphic with SU(n, 1) then b(T\X)=
2N(m,). If G is locally isomorphic with SO, (n, 1) and n>3 then b(I'\X)=Nr(z,).
Otherwise if G is of split rank 1 then b(T'\X)> Nr(x,).

We conclude this paper by looking at the example G=SU(2,1). Let us
denote, 7, by #%'. Let A be the highest weight of A%~. Then the irreducible
representation of G with highest weight A (in the sense of §3) is a holomorphic
discrete series representation. It is not integrable however so Langlands’
formula [11] does not apply. (It can also be shown that the formula of Hotta-
Parthasarathy [6] does not apply either). Denote this representation by =%
Let "' be as in Proposition 2.3. Then &,,(T\X)=Nn(7"")b, .(T\X)=Nr(n*?),
b, (D\X)=Ny(z"")+ 1.If we normalize dg so that vol (I‘\G)_—.‘ - dg=X(T\X)

JT/G
the Euler number of T\ Xthen the Max Noether formula combined with the

Hirzebruch proportionality principle implies

(@) 1—by(T\X)+b4,(T\[X)=—1v0l (NG).
also X(T\X)=%-o(—1)2b 4T\ X).
Poincaré duality implies
(b) 2—2b(T\X)+b,(T"\X)=vol (T'\G).
Hence we have
(@) 1=Ne(@*)+Ne(z*)  'vol (I\G)
(V) 3—4N(z"")+2N(z"*)+ Nr(7)=vol (NG).
Now since vol(IT'\G)>0 we see that if b, ,(T'\ X)=0then &, ,(I"\X)=0 hence
vol(I'\G)=3. Hence b,(T'\X)=1. Thus (as is well known in this case) if I is
such that Np(w,;)=0 then the real cohomology ring of I'X is generated by the
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Kabhler class and is isomorphic with the real cohomology ring of CP?.

We also note that (a’), (§’) combined imply Np(z"')=Np(*?)+Np(z*?).
We can see no reason in the harmonic analysis of LXT'\G) why this should be
true. Finally we note that in (a’), z”2 is discrete series but z* is a so called
"trash representation”. That is, it is non-tempered but its character has sup-
port in the elliptic regular elements. Paul Sally and the authors have named
these representations frash because they seem to be the reason why the expected
formulae for the multiplicities of discrete series are not right. Thatis, ifthe trash
has been disposed of the formula is correct. Note that the trivial representation
is a trash representation.

Similar coupling of non-integrable discrete series and trash representations
have been found by Paul Sally and the second author of this paper for the two-
fold cover of SL(2, R).

HIROSHIMA UNIVERSITY
RUTGERS UNIVERSITY
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