Osaka University Knowledg

Quantitative Evaluation of Software Reviews and

Title Testing Processes
Author(s) |[fuA, EZ
Citation |KFRKXZ, 1993, FLimX

Version Type

VoR

URL

https://doi.org/10.11501/3072904

rights

Note

Osaka University Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

Osaka University

Quantitative Evaluation of Software Reviews
and Testing Processes

Shinji KUSUMOTO

September 1993

Quantitative Evaluation of Software Reviews
and Testing Processes

Shinji KUSUMOTO

September 1993

Dissertation submitted to the Faculty of the Engineering Science of
Osaka University in partial fulfillment of the requirements

for the degree of Doctor of Engineering

Abstract

Increasing the productivity and quality of software development processes
has been an important research objective in software engineering. This thesis
proposes a metric and a framework to improve the prodtctivity and quality of
software development from two perspectives; (1)taking the narrow view, a met-
ric, M}, is proposed and tested for modeling the review and testing processes in
order to quantitatively analyze their effectiveness, and Z2) a framework is de-
signed and tested for mathematically modeling software development processes
in order to improve the development processes themselves.

Putting more emphases on testing has been recognized to be one of the
most effective approaches. It is reported that most companies spend between
50-80% of their development cost on testing. Therefore, reducing the cost
of testing is a key factor for increasing productivity in software development.
Software reviews are one of the most effective techniques for reducing the
cost of testing. But we do not have enough knowledge on how to do software
reviews in order to reduce the testing cost drastically. Especially, there are few
methods for evaluating and deciding if a current software review is going well
with respect to the testing cost. Some metrics have a};eady been proposed,
but most of these calculate only the number of faults in _éoftware products and
the number of faults which are detected by software reviews. Thus, metrics .
need to be developed that can evaluate and prove the effectiveness of software
reviews with respect to software development cost. v

This thesis proposes a new metric, My, for evaluating cost effectiveness
of software reviews. It is based on the degree to which cost to detect and
remove all faults from the software in a project are reduced by technical re-

views. We present experimental evaluations of conventional metrics and the

proposed metric M}, using data collected in an industrial environment. These
data illustrate the validity and usefulness of the proposed metric M. If we
obtain data from software reviews in many projects, it may also be possible
to control review activities effectively and to improve productivity in software
development projects.

In order to improve the quality of the final software product, we must im-
prove the quality of the software product throughout the development process
(requirement analysis, design and implementation) in addition to spending
much time testing. For realizing improvements, it is necessary to (1) under-
stand and analyze the current status of the software development process, and
(2) execute the improvement plan of the process based on this analysis. In
order to realize the most effective improvement, we must rely on quantitative
measurements to ob jectively control software development processes. However
there are few studies that present a formal method that is useful for system-
atically measuring software development processes.

This thesis proposes a new framework for measuring software development
processes. The key idea of the proposed framework is that all activities to be
measured can be defined based on a mathematical description of the process
to be measured. The proposed framework consists of four steps: (1) process
modeling, (2) metric definition, (3) process and metric implementation, and
(4) process and metric execution. Process modeling transforms the software
development process to be measured into a Petri net model which represents
essential features of the process. Metric definition clarifies how to evaluate the
features of the process in the model. Process and metric implementation means
to enact the process based on the model, and collect data from the process, and

compute the metric values based on the model. Process and metric execution

i

means to carry out the process, and to compute data collected from the process.

Finally, in order to present an application of the proposed framework a
coding and debugging process in a student project in an academic environment
was modeled using a Petri net, and four metrics for evaluating the debugging
activities were defined. Data were collected from two successive experiments
based on the model and were used to evaluate the effects of the design method
improving debugging activities. The study showed that the framework can
make it possible to measure software development processes in a systematic
way and make it easy to interpret the experimental results.

In this dissertation, Chapter 1 briefly summarizes related progress and
topics in software engineering and describes outline of the thesis.

In Chapter 2, we define software development processes, software reviews,
and software testing to be discussed in this thesis.

Chapter 3 presents three conventional metrics: M, by Myers, M by Fagan,
and M, by Collofello, for evaluating the effectiveness of technical reviews.
Then, a new metric, My, is introduced for evaluating the cost effectiveness of
technical reviews. |

Chapter 4 shows an experimental evaluation of the metrics M,,, My, M,
and M using the data collected in industrial project. Experimental results
are summarized to show the superiority of the M) metric.

Chapter 5 describes an application of the ‘M r metric comparing three meth-
ods for allocating review effort.

Chapter 6 shows four major activities and the potential capability of the
framework for measuring the software development processes and describing
testing activities in an academic environment. |

Chapter 7 presents an application of the framework, in which we tried to

1ii

evaluate the effects of the design method in an academic environment improv-
ing testing activities.
Chapter 8 summarizes the main results of this thesis and presents some

areas for future research.

v

List of Major Publications

(1) S. Kusumoto, K. Matsumoto, T. Kikuno and K. Torii : “On a mea-
surement environment for controlling software development activities,”

IEICE Transactions on Communications Electronics Information and

Systems, Vol.E 74, No.5, pp.1051-1054(1991).

(2) S. Kusumoto, K. Matsumoto, T. Kikuno and K. Torii: “Experimental
evaluation of the cost effectiveness of software reviews,” Proceedings of

15th Computer Software & Applications Conference, pp.424-429(1991).

(3) S. Kusumoto, K. Matsumoto, T. Kikuno and K. Torii: “Approaches to im-
proving effectiveness of review activities in technical review

rocess,” Proceedings of International Software Quality Exchange, pp.
p g p

7B1-7B16(1992).

(4) S. Kusumoto, K. Matsumoto, T. Kikuno and K. Torii : “A new met-
ric for cost effectiveness of software reviews,” IEICE Transactions on

Information and Systems, Vol. E75-D, No. 5, pp.674-680(1992).

(5) K. Matsumoto, S. Kusumoto, T. Kikuno and K. Torii: “A new framework
of measuring software development processes,” Proceedings of IEEE-CS

International Software Metrics Symposium, pp.108-118(May 1993).

(6) S. Kusumoto, K. Matsumoto, T. Kikuno and K. Torii: “Using a Petri-net
mode] for quantitative analysis of debugging processes in academic en-
vironment,” IEICE Transactions on Information and Systems,(1993)(to

appear, in Japanese).

(7) S. Kusumoto, K. Matsumoto, T. Kikuno and K. Tanaka: “Application of
fault tolerant techniques to software development process,” Pacific RIM

International Symposium on Fault Tolerant Systems,(1993)(Submitted).

vi

Acknowledgments

During the course of this work, I have been fortunate to have received
assistance from many individuals. I would especially like to thank my super-
visor Professor Tohru Kikuno for his continuous support, encouragement and
guidance for this work.

I am also very grateful to the members of my thesis review committee: Pro-
fessor Koji Torii and Professor Nobuki Tokura for their invaluable comments
and helpful criticisms of this thesis. |

I also wish to thank Associate Professor Ken-ichi Matsumoto and Associate
Professor Yoshiaki Kakuda for their valuable suggestions and stimulating dis-
cussions.

- T also wish to thank Associate Professor Katsuro Inoue and Assistant Pro-
fessor Takeshi Ogihara for their valuable advices.

Many of courses that I have taken during my graduate career have been
helpful in preparing this thesis. I would especially like to acknowledge the guid-
ance of Professors Mamoru Fujii, Akihiro Hashimoto, Tadao Kasami, Toshi- i
nobu Kashiwabara, Hideo Miyahara, Hirokazu Nishitani, Masaru Sudo and
Ken-ichi Taniguti.

I would like to express my thanks to Professor David Notkin of the Uni-
versity of Washington and Dr. Margaret C. Thompson for their insightful
comments and valuable discussions on the paper which formed the basis for
Chapters 3, 4 and 5 of this thesis. | |

I wish to express my gratitude to Dr. Kumiyo Nakakoji and Miss Tamara
Sumner of the University of Colorado at Boulder for their careful reading of a
draft of this thesis. Their suggestions were very helpful.

I would also like to acknowledge the support of Mr. Yukio Mohri of Nihon

vii

Unisys, Ltd. for the industrial experimental projects described Chapters 4 and
5 of this thesis.
Thanks are also due to many friends in the Department of Information and

Computer Sciences at Osaka University who gave me many useful suggestions.

viii

Contents

1 Introduction

1.1 Software productivity and quality
1.2 - Cost-effectiveness of software reviews
1.3 Measuring software testing process
1.4 Outlineof thethesis C e

2 Preliminary Definitions

2.1 Error and fault o

2.2 Software development process
2.3 Softwarereviews
2.4 Software testing e e e e

3 M;: A New Metric for Software Reviews

3.1 Conventional review metrics L
3.1.1 Mpyers’s metric M,, e e e e e e e e
3.1.2. Fagan’s metricM; e e e
3.1.3 Collofello’s metric M,

3.2 Newmetric M, R .
3.2.1 Why a new metricisneeded
3.2.2 Definitionof My

ix

10
10
11
14
16

3.2.3 The relationship of Mj to conventional metrics.

4 Experimental Evaluation of Metric M,
4.1 Outlineof theproject
4.2 Experimentaldata
4.3 Analysisof Mp’susefulness
4.3.1 Comparisonto M,
4.3.2 Comparison with respect toteam T'7
4.3.3 Stability of metric My
434 Estimationof Mp
5 Application of M;
51 Overview. o
5.2 Amount of effort in technical reviews
5.3 Capability of developer
5.4 Three methods for allocating review effort
55 Experiment e
5.5.1 Outlineof the project.
5.5.2 Details of review activities
5.5.3 Experimental data
5.6 Analysis of the effort allocation methods
5.6.1 Simple comparison
5.6.2 Effects of team organization
5.6.3 Individual case studies

6 Modeling the Testing Process
6.1 A framework for measuring software development processes .

6.1.1 OVerVIEW . . . v v v i e e e e e e e e e

26
26
27
29
29
30
31
31

34
34
35
36
36
39
39
40
41
44
44
45
48

- 50

50

6.1.2 Processmodeling L

6.1.3 Metricdefinition Lo

6.1.4 Process and metric implementation

6.1.5 Process and metricexecution

6.2 Testingprocess

6.3 Petri net model of the testing process

6.4 Example of firing sequences oL
6.5 Metrics for the testing process e e e e e e e e e e '

Experimental Evaluation of the Testing Process in a Student

Project
7.1 Outline. e e e e e e e e e e e e
7.2 Implementation on UNIX environment
7.3 GINGER system,
7.3.1 System organization
7.3.2 Implementation
7.4 Experimental data in two projects
7.5 Results and interpretation . . . e .
Conclusion
8.1 Summary of majorresults oL
8.2 Futurework e
Bibliography

X1

67

67
69
71
71
4
80
81

87
87
89

92

Chapter 1

Introduction

1.1 Software productivity and quality

The management of a large software development project is a complex and
intrinsically difficult task. Since a large software is inherently very complex,
its production may involve hundreds of man-years of skilled efforts with cor-
respondingly large budgets [Rook 1986]. The discipline that deals with such.
problems is called software engineering. In the late 1960’s, the term software
engineering was coined as the technical and managerial discipline concerned
with the systematic invention, production, and maintenance of high-quality
software systems, delivered on time, at minimum cost [Frakes et al. 1991].
Basili and Musa illustrated how éoftware engineering has shifted its focus
since 1960’s [Basili & Musa 1991]. In the 1970’s, the need to develop soft-
ware in a timely, planned, and controlled fashion became apparent. Several
software life-cycle models and schedule tracking methods were introduced as
a result of software engineering research. In the 1980’s, software engineering
focused on lowering development costs and attaining high productivity, since

hardware costs continued to decrease, and the personal computer created a.

mass market that drove software prices down. Various cost models came into
use and resource tracking became commonplace, but these methods do not go
far enough towards meeting the goals of software engineering. The 1990’s will
be the quality era, in which software quality is quantified and brought to the
center of the development process.

Thus, software quality is a major problem facing software engineering. It
is very important to establish effective procedures, methods, notations, tools,
and practices for promoting software quality. Software quality has been defined
in several ways including : the absence of errors, conformance to requirements,
fitness for use, and customer satisfaction[Frakes et al. 1991]. Moreover, quality
affects productivity, since products with higher quality require less rework and
maintenance.

In order to improve quality, the software development process has to be im-
proved [Frakes et al. 1991] [Humphrey 1988]. That is, essential improvements
in the software product can be attained by improving the software development
process. For the software development process to be improved, it is necessary
to grasp the current state of the process[Basili & Rombach 1988].

There are numerous research studies aimed at improving software devel-
opment process. Basili and Rombach have proposed the Goal/ Question/
Metric paradigm (simply called G/Q/M paradigm) in the TAME project
[Basili & Rombach 1988]. The G/Q/M paradigm explicitly describes the rela-
tion between the goal to be achieved in the process and the metric to be applied
to the process. Next, Humphrey has proposed SEI Software Process Maturity
Self-Assessment [Humphrey 1988]. Based on a process maturity model, SEI
Self-Assessment builds a consensus view of an organization’s maturity and the

key issues facing it. Ultimately, it presents an improvement plan for software

development processes that have been endorsed by general management.

The following key attributes (a)-(c) are stressed in these proposals: (a)
the software development process is strictly defined (that is, the software de-
velopment process is defined as a sequence of fundamental activities that are
precisely specified), (b) for each activity, quality data are collected and an-
alyzed statistically, and (c) based on the empirical analysis, each activity is
improved or streamlined.

One of the studies based on the approach described above is presented in
[Mohri & Kikuno 1991]. They defined the JSP(Jackson Structured Program-
ming) [Cameron 1989] software development process that consists of thirteen
activities. They collected and analyzed fault data (a type of quality data) from
an actual software development process. They found that most of the faults
found during testing could have been detected by design and code reviews.
Their study concluded by noting the importance of correctly executing such
reviews.

It is widely recognized that errors have a large impact on software produc-
tivity and quality. In attempting to reduce the number of delivered faults, it
is estimated that most companies spend between 50-80% of their development
effort on testing [Collofello & Woodfield 1989]. Therefore, reducing the effort
or cost of testing is an important step towards increasing productivity and
quality in software development.

Two types of activities to detect and remove faults are review and testing.
Review is manually performed by a team of developers. Testing is executed
on a terminal using various convenient tools. Although software reviews and
testing are generally believed to be valid quality assurance techniques in that

they help detect errors, there is very little evidence illustrating the effectiveness

of these techniques. It is very important to quantitatively show the usefulness
of these quality assurance techniques. In this thesis, we address the fault de-
tection and removal process and try to quantitatively evaluate the effectiveness
of the process. In order to clarify discussions, we discuss reviews and testing

activities independently.

1.2 Cost-effectiveness of software reviews

Software reviews are said to be one of the most effective techniques for re-
ducing the testing effort. Technical reviews are frequently executed to detect
and remove faults in software throughout the software development life cycle.
Faults detected by such reviews are removed at a lower cost compared to those
removed by testing. The technical reviews are mainly implemented in the form
of “design reviews” and “code reviews”.

In order to evaluate the effectiveness of design reviews and code reviews,
several metrics have been proposed. For example, Myers has proposed a metric
based on the number of faults detected by reviews[Myers 1978]. Fagan has also
proposed a metric called Error Detection Efficiency, which is calculated based
on the number of faults detected by reviews and the total number of faults in
the product before reviews[Fagan 1976].

However, there are few metrics that evaluate and prove the effectiveness of
technical reviews with respect to software development cost. Only Collofello et
al. has taken into account the costs consumed and saved by reviews, and pro-
posed a metric called Cost Effectiveness [Collofello & Woodfield 1989]. How-
ever, as it does not take into account the total cost to detect and remove
all faults from the software by reviews and testing, Collofello’s metric is not

sufficient for some software development processes.

4

In this thesis, we provide an example that proves the insufficiency of Collofello’s

metric (See Chapter 3). We propose a new metric, My, for evaluating the cost
effectiveness of software reviews. It is based on the degree to which costs to
detect and remove all faults from the software in a project are reduced by
technical reviews. The proposed metric can be interpreted as a metric that
combines Fagan’s metric and Collofello’s metric. As the value of the proposed
metric is normalized by wvirtual testing cost (which is described in Chapter
3), we can use M} to compare the results of review evaluation across many

different kinds of projects.

1.3 Measuring software testing process

Software testing usually consists of unit testing, integration testing, system
testing and acceptance testing. Software testing is the last chance to reduce
the delivered errors. Such testing is believed to be one of the most effective
approaches for improving software quality. In order to improve the efficiency
of testing processes, numerous testing techniques and test case generation
methods have been proposed. For example, the white-box testing method
is proposed for unit testing and the black-box method for acceptance testing
[Myers 1979]. In addition to the testing techniques, it is necessary to grasp and
analyze quantitatively the current status of the software development process
in order to improve the software development process (including the testing
process). Process improvements can then be based on the results of this anal-
ysis. Measurement provides powerful and effective technologies for such a
quantitative and objective approach.

The Software Reliability Growth Model (SRGM) is one of the most well-

known models for quantitatively evaluating the software testing process

5

[Matsumoto et al. 1988]. SRGM expresses the testing process as a relation
between the testing time ¢t and the cumulative number of faults removed from
the beginning of testing through time ¢. The testing time ¢ and the cumulative
number of faults, which are parameters of the model, are usually computed
based on the testing report recorded by the testers. Thus SRGM gives us use-
ful information, e.g., the number of residual faults in the software or MTBF,
for deciding the shipping date. The testing time may be interpreted as elapsed
time spent on testing, i.e., how long the testers have spent their time testing
the software.

But the testing process is very corﬁplicated consisting of: planning the
general approach, finding resources, and scheduling, determining features to be
tested, designing the set of tests, implementing the plan and design, executing
the test procedures, checking for termination, and evaluating the test effort and
unit[IEEE 1008 1987]. We can easily imagine that it is not appropriate to sum
up each of these elapsed time as the testing time ¢. Based on the definitions
of these activities and the definition of SRGM, we should select some of these
testing activities and sum up the elapsed time of the selected activities as the
testing time t. Unfortunately, most SRGMs do not have enough information
to select the activities to be measured [Matsumoto et al. 1988]. This reduces
the usefulness of these SRGMs.

One of the best ways to explicitly define the features of the process to
be parameterized and the relation between these features and the parameters
of the metric, is to express the process to be measured as a mathematical
model and define the metric based on this model. There already exist some
product metrics which have been defined on models of the software product

to be measured. For example, MaCabe proposed a complexity metric, called

Cyclomatic number [MaCabe 1976]. He modeled program code in a directed
graph and defined the Cyclomatic number on the graph using graph theory.
He also showed a simple rule for translating program code into a directed
graph. His rule can be applied to almost all procedure-oriented programming
languages. Consequently, it becomes easy to understand the implication of the
Cyclomatic number and to apply it to the program code to be measured.

We propose a new framework of measuring software development processes
[Matsumoto et al. 1993]. The key idea of the proposed framework is that all
activities to be measured can be explained by a mathematical model of the
process to be measured. In this framework, a Petri net model is used to model
the process, since it is one of the most powerful models for representing con-
current processes such as software development processes [Peterson 1981]. The
proposed framework consists of four steps: (1) process modeling, (2) metric
definition, (3) process and metric implementation, and (4) process and metric
execution. Process modeling transforms the software development process to
be measured into a Petri net model which represents essential features of the
process. Metric definition clarifies how to evaluate the features of the process
in the model. Process and metric implementation means to enact the process
based on the model, collect data from the process and compute the metric
values based on the model. Process and metric execution means to carry out
the pfocess, and to compute data collected from the process.

This thesis presents an application of the proposed framework, in which a
coding and debugging process in a students class project was modeled with a
Petri net, and four metrics for evaluating the debugging activities were defined.
Data were collected from two successive experiments based on the model and

used to evaluate the effects of the design method improving debugging activi-

ties.

1.4 Outline of the thesis

First, this thesis proposes a new metric, My, for evaluating cost effectiveness
of software reviews. It is based on the degree to which costs to detect and
remove all faults from the software in a project are reduced by technical re-
views. Then we show the validity and usefulness of the proposed metric My, by
presenting an experimental evaluation performed in an industrial environment
which compared M} and conventional metrics.

This thesis proposes a new framework for measuring software development
processes. The key idea of the proposed framework is that all activities to be
measured can be defined based on a mathematical description of the process
to be measured.

In Chapter 2, we define software development processes, software reviews,
and software testing to be discussed in this thesis. Chapter 3 presents three
conventional metrics: M,, by Myers, M; by Fagan, and M. by Collofello, for
evaluating the effectiveness of technical reviews. Then, a new metric, My, is
introduced for evaluating the cost effectiveness of technical reviews. Chapter
4 shows an experimental evaluation of the metrics M,,,, My, M. and M} using
the data collected in industrial project. Experimental results are summarized
to show the superiority of the M} metric. Chapter 5 describes an application
of the M}, metric, comparing three methods for allocating review effort.

Chapter 6 shows four major activities and the potential capability of the
framework for measuring the software development process and describing test-
ing activities in an academic environment. Chapter 7 presents an application

of the framework, in which we tried to evaluate the effectiveness of the design

8

method in an academic environment in terms of improvements in the testing
activities.
Finally, Chapter 8 summarizes the main results of this thesis and presents

some areas for future research.

Chapter 2

Preliminary Definitions

2.1 Error and fault

It is widely recognized that errors have a large impact on software productivity
and quality. Numerous studies have been conducted in the field of “error anal-
ysis” in order to understand the effect of each error on software productivity
and quality. For example, Mohri and Kikuno [Mohri & Kikuno 1991] proposed
a fault analysis procedure for software development using JSP. The procedure
determines the steps in the JSP process when fault introduction might occur,
and when fault detection (and correction) should be executed.

Sometimes the term “error” and “fault” are used with the same meaning.
In this thesis, we follow the IEEE standard with respect to the definition of
error and fault. In the IEEE standard, an error is defined as a human action
that results in software which contains a fault. Examples include omission or
misinterpretation of user requirements in software specification and incorrect
translation or omission of a requirement in the design specification. A fault
is defined as a manifestation of an error in software. A fault, if encountered,

may cause a failure (synonymous with bug).

10

2.2 Software development process

The software development process we use in this thesis is the standard waterfall

model [Royce 1970] consisting of the following phases:

(1)Concept exploration and feasibility analysis phase: Identify a need

to automate a process and analyze project feasibility.

2)Requirement specification phase: Analyze and document system re-
q y

quirements. The requirements document must clearly state what the

projected system will do, what elements the software product will have,

and what characteristics the product elements must have.

(3)Design phase: Design the system and document the design. The de-
sign document specifies how to build a software system to satisfy the

requirements.
(4)Implementation phase: Write the software.

(5)Testing phase: Exercise the software to verify that it satisfies its re-

quirements.

(6)Maintenance phase: Following deployment of the software product,

faults are corrected and the system is changed or enhanced.

Though the waterfall model is often criticized as having little to do with
project realities [Frakes et al. 1991], we adopt it in this thesis because it is still
the model most often used on large software development projects. Phases (1)
to (4) are development activities where faults are introduced [Coward 1982].

Technical reviews are frequently utilized in each phase, such as specification

11

reviews, design reviews and code reviews. Generally, technical reviews and
testing are the primary means for detecting faults in the product. Thus, in this
thesis, we consider technical reviews and testing to consist of fault detection,
fault localization and fault fixing.

In order to clarify discussions, we simplify the waterfall model as shown in
Figure 2.1. We assume that the software development process consists of three
successive phases: a design phase, an implementation phase and a test phase
(See Figure 2.1). We also assume that software development is executed by a
team. Additionally, we assume that a given specification has no faults and is
not changed throughout the development process.

As shown in Figure 2.1, we introduce several parameters. In the design
phase, each member of the team designs some parts of system to be developed
and writes design documents. Let ey be the total number of faults introduced
into the design documents. We assume that during a design review, Fy, faults
are detected in the design documents. Let Ty, be the total time expended for
the design review.

Next, in the implementation phase, each member of the team creates pro-
gram code based on the design documents. We assume that (e; — Ey,) faults
remaining in the design documents manifest themselves as faults in the pro-
gram code. In addition, e. faults are newly introduced into the program code
by coding. Therefore, when coding is complete, the program code now contains
(ea — E4r + €.) faults.

At the end of the implementation phase, the code is reviewed. In the
code review, all members of the team examine the program and verify that it
compiles with both the design documents and the specification. We assume

that during the code review, E., faults are detected. Thus at the end of the

12

Design phase

| ﬂ | 1
ification el Tecion: Design Design
Spel c1f1cat1won > Designing document review
-
Number of Tar
faults N = 0 N = ed
Implementation phase
Desien . Code
dofurr%cnt + Coding review
-
TC"
N =ed- Edr N = ed- Edar + ec
Test phase
s 8
Program _| | Unit Integration
>_ code testing testing
g & - >
N = ed- Ear T:
+ ec - Ecr

ed : Number of faults introduced by designing

ec : Number of faults introduced by coding

Edr: Number of faults detected by design review
Ecr: Number of faults detected by code review
Tdr: Total time of design review
Ter: Total time of code review
Tt: Total time of unit and integration testing

Figure 2.1 Software development process

13

implementation phase, (e; — Ey- +e.— E.,) faults still remained in the program
code. Let T,, be the total time expended for the code review.

Finally, the test phase is the period of time during which components of
a software product are evaluated and integrated and the final software prod-
uct is evaluated to determine whether or not requirements have been satisfied
[IEEE 610 1990]. The test phase consists of two subphases: unit testing and
integration testing. During unit testing, each member of the team evaluates
his or her own program code. During integration testing, all program units
are integrated and evaluated. Supposedly all the faults from design and im-

plementation are detected and removed by the unit and integration testing.

2.3 Software reviews

According to IEEE Standards, a software review is defined to be a formal eval-
uation of software elements or project status to ascertain discrepancies with
planned results and to recommend improvements [[EEE 1028 1988]. Software
elements include project planning documents, software requirements and de-
sign specifications, test effort documentation, program source code, represen-
tation of software solutions implemented in firmware, and reports and data.

Generally speaking, software reviews can be classified into two types: man-
agement reviews and technical reviews [[EEE 1028 1988]. A management re-
view is an evaluation of a project level plan or project status relative to that
plan by a designated review team. A technical review is a team evaluation of
a software element. This thesis focuses on technical reviews, especially design
reviews and code reviews.

Several practical review methods [Weinberg & Freedman 1984] have been

proposed for the technical review. Among them, inspections and walkthroughs

14

are well known and applied by many computer companies.

Walkthroughs are a method in which a designer or programmer leads mem-
bers of the development team and other interested parties through a segment
of documentation or code. The participants ask questions and make comments
about possible errors, violations of development standards and other problems
[IEEE 610 1990]. All review members except for the designer or programmer
do not have to understand the details(structure, algorithm, data structure and
so on) of all products in advance. Thus it is common that differences exists in
the level of understanding of the products. As a result, applying walkthroughs
to large-scale products may be difficult to complete in a relatively short period
of time.

Inspections are another review method that relies on visual examination
of development products to detect errors, violations of development standards
and other problems [IEEE 610 1990]. The inspection method was described
formally and rigorously by Fagan [Fagan 1976]. In contrast to the walkthrough
method, the participants must understand the details of all products before
the inspection is executed. Moreover, participants need to be trained in the in-
spection methodology. This is a fundamental difference between inspection and
walkthroﬁgh review methods. Given these differences, we think that inspec-
tions are best carried out by skilled developers (reviewers) and walkthroughs
are more appropriate for novices.

Fagan introduced a metric measuring review efficiency, called error detec-
tion efficiency, which is defined as the number of faults found by reviews over
the total number of faults in the product before its review. Using this metric,
Fagan has evaluated the effectiveness of detailed design reviews, code reviews,

and unit test reviews[Fagan 1976].

15

2.4 Software testing

In the IEEE standard [IEEE 610 1990], testing is deﬁned as the process of ex-
ercising or evaluating a system or system component by manual or automated
means to verify that it satisfies specified requirements or to identify differences
between expected and actual results.

Software systems are tested at several different levels. Generally, software

testing consists of following four types [Frakes et al. 1991}):

Unit testing : A unit is a piece of software implemented by a single program-
mer. Units are typically single functions or small groups of functions that
work together to accomplish some simple task. Programmers are usually
responsible for testing units alone during their implementation before

they are integrated with other parts of the system.

Integration testing : When several units are brought together to form a

module, subsystem, or system, they are tested as a group.

System testing : Once a system has been completely integrated, it must
be tested as a whole. System testing exercises a program with input
generated from system requirements that may not reflect the use of the

system by its intended users.

Acceptance testing : The whole system is exercised with data reflecting
use of the system by its intended users. Often small groups of users
participate in acceptance testing in an effort to provide a more realistic

trial of the software.

In Chapters 3 and 4, we pl‘()upose a new metric, My, for evaluating the cost

effectiveness of software reviews. The metric is defined in terms of the costs of

16

unit and integration test reduced by developing technical reviews. In Chapters
6 and 7, we evaluated the effectiveness of the design method in an academic

environment improving the unit testing activities.

17

Chapter 3

M;: A New Metric for Software

Reviews

3.1 Conventional review metrics

In this Section, we present a brief overview of some metrics previously proposed

for assessing the effectiveness of software reviews.

3.1.1 Myers’s metric M,

Myers has tried to evaluate the effectiveness of black-box testing, white-box
testing, and code reviews individually, as well as in combination with one
another[Myers 1978]. In his evaluations, a metric based on the number of
faults detected by each technique is extensively utilized.

In order to evaluate the effectiveness of both design review and code review,
applying Myers’s metric M,, to the software development process shown in

Figure 2.1, yields the following equation:

M,, = Egy + E,. (3.1)

18

As such, M,, depends on an assumption that (1) the same number of faults
exist in each product before their reviews, and that (2) we do not take into

account the cost expended by reviews.

3.1.2 Fagan’s metric My

Fagan has evaluated the effectiveness of detailed design reviews, code reviews,
and unit test reviews[Fagan 1976]. He introduced the Error Detection Effi-
ciency metric My for measuring review efficiency. M; is defined as the number
of faults found by reviews over the total number of faults in the product existed
before the reviews. (“Error” in [Fagan 1976] is almost the same as “fault”.)
Applying Fagan’s metric M, to the software development process shown in

Figure 2.1, yields the following equation:

_ Edr + Ecr

M
d ed+ec

(3.2)

M is meaningful even if the same number of faults are not in each product
before the reviews. But M; also does not account for the cost expended by

reviews.

3.1.3 Collofello’s metric M,

There may exist a reliability assurance technique (e.g. review or testing)
that has a low Error Detection Efficiency but is still considered worthwhile.
Collofello and Woodfield have proposed Cost Effectiveness, M,, as a measure
of worth[Collofello & Woodfield 1989]. The M, of an error-detection process
is defined to be the ratio of the “costs saved by the process” to the “cost

consumed by the process.”

19

Aapplying Collofello’s metric M, to the software development process shown

in Figure 2.1, yields the following equation:

(3.3)

where AC; is the testing cost saved by design and code reviews, and C, is the
total cost consumed by those reviews. Then, C, and AC; can be expressed by
the following equations [Collofello & Woodfield 1989], where ¢, is the average
cost to detect and remove a fault in reviews, and ¢; is the average cost to detect
and remove a fault in testing provided that (E4,. + E.,) faults are detected by

reviews:

Cr = (E4 + Eer) - ¢ (34)

ACt = (Edr + Ecr) + Cq. (3.5)

From equations (3.3),(3.4) and (3.5), M, is rewritten as follows:

(Edr + Ecr) * Gy
(Edr + Ecr) *Cr

= 2 (3.6)

cr

M.

Equation (3.6) shows that M, is the ratio of the average cost to detect and
remove a fault in testing to that to detect and remove a fault in reviews.

Next, we assume that the total cost to detect and remove faults in reviews
is the total time expended for both design and code reviews, and that the
total cost to detect and remove faults in testing is the total time expended for
unit testing and integration testing. Then ¢, and ¢; can be estimated by the

following equations, respectively:

20

) 0
Reviews
. 1000(Virtual
Testing testing cost)
-
Cost
Figure 3.1 Virtual testing cost
. Tdr + Tcr
“= EutEn 0
and
c Ti (3.8)

- (ed + ec) - (Edr + Ecr) .
3.2 New metric M,

3.2.1 Why a new metric is needed

Among the three kinds of metrics discussed (M, My and M,), Collofello’s
metric M. is the most practical, which takes into account the costs consumed
and saved by the reviews, because cost is one of the most important factors
for software development project management.

But we should point out that M, is still insufficient for evaluating the cost
effectiveness of software reviews in that M, does not take into account the
total cost to detect and remove all faults from the software by reviews and

testing. For example, let us assume that testing cost for program code is

21

Reviews —l 10

Testing 000 1000

(a) Case I (Testing cost is reduced by 100.)

) 60
Reviews
Testing 400 1000
: >
Cost

(b) Case II (Testing cost is reduced by 600.)

Figure 3.2 Costs for reviews and testing in two cases

1,000 (person-months, thousands of dollars, etc.) if no reviews are executed
(See Figure 3.1). We call this the virtual testing cost. Consider two cases of
software development: (Case I) the testing cost saved by reviews is 100 and
the total costs consumed by reviews is 10, and (Case II) the testing cost saved
by reviews is 600 and the total costs consumed by reviews is 60. Both Case I
and II are shown in Figure 3.2.

If we apply Collofello’s metric M, to Case I and II, then the value of M,
is 10 in each case, thereby, the cost effectiveness of these particular reviews
cannot be distinguished. But, the total costs to detect and remove all faults

from the design documents and program code by reviews and testing in Case

22

Reviews ACt

Testing

; _— Cost

Virtual testing cost

Figure 3.3 Parameters for new metric Mk

I and II are 910 and 460, respectively. It is obvious that the reviews in Case II
are more effective than the ones in Case I in terms of reducing the total cost.
The cost reduction of detecting and removing faults in the project is one of

the most important objectives of software reviews.

3.2.2 Definition of M,

Based on the discussion in subsection 3.2.1, we propose a new metric My for
evaluating the cost effectiveness of software reviews in terms of reduction of
cost to detect and remove all faults from the software.

Assume that by spending the cost C, for reviews, the cost C; is needed for
testing. Additionally, in vthis case, the testing cost is reduced by AC; compared
to the virtual testing cost provided no review is executed (See Figure 3.3).

Then, a new metric M is defined by the following equation:

23

AC; — C,

Me = Z3ac

(3.9)

Intuitively, My is a ratio of the reduction of the total costs to detect and
remove all faults from the design documents and program code using design
and code reviews in a project to the virtual testing cost (of the program code).
Since the value of the proposed metric is normalized by the virtual testing
cost, we can use My to compare the results of reviews across many different
kinds of projects.

Applying a new metric My to the software development process shown in
Figure 2.1 by using the same notation as in equation (3.3), yields the following
equation:

AC, - C,
C: + AC,
(Esr + Ee) -t — (Ear + Esr) - €1

(ea+ec)-c
Edr + Ecr ¢t — Cr

eq + e (&

(3.10)

Now, if we apply M} to Case I and II (See Figure 3.2), the values of Mj
for Case I and Case II are 0.09 and 0.54, respectively. Thus, M} identifies that

the review in Case II is more effective than the review in Case 1.

3.2.3 The relationship of M; to conventional metrics

The proposed metric M, is similar to Collofello’s metric M, with respect to
including the testing cost saved by the reviews in the definition.

In this subsection, we discuss the relationship between the proposed metric

24

M;. and the conventional metrics M,,, My and M.. These relationships will be
discussed again in Chapter 4 with respect to the experimental data.

From the equations (3.2),(3.6) and (3.10), M} can be rewritten as:

Ey +E, ¢ —c
€4+ e Ct

= M; (1 - E}—) : . (3.11)

Hence, M can be interpreted as being a metric that combines M; with
M.. |
Assume that the value of My is constant (Assumption 1), then from equa-

tion (3.11), it is clear that M is inversely proportional to M,

M, = a (1“1\14> (3.12)

<

where a; 1s a proportional factor or coefficient.

Next, similarly we assume that M., that is a ratio of the average cost c;
to the average cost c,, is constant (Assumption 2), then it is clear that M} is
proportional to M;. As an extreme, we assume that ¢; >> ¢, (Assumption 3),
then, M}, is approximately equal to Mj.

Finally, we assume that either Assumption 2 or Assumption 3 holds, and
the total number of faults (eq + €) is constant (Assumption 4). Then, from

equations (3.1), (3.2) and (3.10), M} is proportional to M,,:

My = a;M,,, (3.13)

where a, 1s some coefficient.

25

Chapter 4

Experimental Evaluation of

Metric M

To demonstrate the validity of metric Mj, we apply four metrics M,,, My,
M, and M, to the data collected from an experimental software development

project, and compare the resultant values obtained by these metrics.

4.1 Outline of the project

The experimental project was performed in a certain computer company
[Kusumoto et al. 1990]. The main characteristics of the project were:

(1) Seven teams developed the same batch processing system. The system is
a file processing program in a business application. Each team designed
the system using the JSP(Jackson Structured Programming) method and
implemented it in COBOL.

(2) Each team consisted of four or five novice developers. Teams were orga-
nized by an instructor in an attempt to minimize individual differences

in performance. Two terminals were assigned to each team.

26

(3) The system consists of eighteen program modules. The same partition of
program modules was given to each team. However, the assignment of
program modules to team members was arbitrarily determined by each
team’s leader. The final programs consisted of approximately 2,000 lines
of code.

(4) The instructor tested the programs developed by each team to ensure that

no faults remained after the team’s testing phase.

4.2 Experimental data

The experimental data are summarized in Table 4.1 which shows eight data
points for each team. Among them, the total number of faults (e4 + e.), the
total number of faults detected in design review and code review (E,, + E.),
and the total cost of these reviews (C,) are compiled based on the data reported
manually by each programmer.

The testing cost (C,) is computed based on automatically collected data
concerning terminal access time [Kusumoto et al. 1991]. Because testing in
this project is almost performed on the terminal. The rest of the data, c,,
¢, AC, and (C; + ACy), are computed from the data mentioned above.
In particular, the value of AC; is computed from equation (3.5)

[Collofello & Woodfield 1989].

27

OP0TT %433 0S¢C TZSL 08T 0y 91 v ZL
SvC6 6Ly CEeve 998¥ T1¢ 09¢ 31 3¢ oL
S¥36 TLSY 015¢ vLTS 3eY 0LS €l 8T SL
05S9 €31¢ 6 £9¢ L9EY 0°S6 0LS 9 31 v
0¥S01 7853 T 6Ly 081L 6¢CL 01¢S L 44 €L
$9001 €€0S ¢Gee 7€0S Iy 079 9 0¢ Zl
L096 099¢ SLSY L¥6S S79 00S 3 (¥4 1L
o o OO0 b | eamom (urw) | (W=} | 22400
(RL+®L =) 4D
SMITAA Sunsy SMITAL SMOTADI s)nej Jo | weaL
1500 hn— paaes ur jjnej € 10919p 1800 ur :ﬂa.w 14 uooaov 1500 MOIAD %Q Uo..-oouow qumu
Sunso) remarp | 1500 3unsa] | 0131500 93eroay | Sunsoy, | 011500 o8eroay g sinej jo oqumpN | [BI0L

e)ep [ejudwLRdxy 1 9Iqel

28

Table 4.2 Results of applying metrics

Team Mc (rank) Mk (rank)
TI | 7.32(5) | 0.329 (4)
T2 | 8.12 (2) | 0.438 (1)
13 6.58 (6) | 0.270 (6)
T4 3.83 (7) 10.246 (1)
15 8.02 (3) 10406 (3)
16 7.82 (4) | 0413 (2)
7 | 8.39 (1) | 0.281 (5)

4.3 Analysis of M,’s usefulness

4.3.1 Comparison to M,

In this subsection, we show the advantages of the proposed metric My over M..
Among the three conventional metrics M,,, M f‘ and M., Collofello’s metric M,
is the most practical one since M, takes into account the costs consumed and
saved by the reviews. The proposed metric M} is similar to M, in the sense
that Mj includes the testing cost saved by the reviews.

Table 4.2 shows the values and ranks of two metrics M, and M), for seven
teams. Spearman’s rank correlation test indicates that there is not strong cor-
relation between M, and M, (correlation coefficient is 0.61, level of signiﬁcanée

is 0.05). But, we should note that the ranks of team T'7 are quite different be-

29

tween M. and Mj: the cost effectiveness of reviews by team T'7 is best among
these seven teams in terms of M., but it is not so good in terms of M. By ex-
amining the details of data collected on team 77, we have found that team T'7
exhibited interesting behavior which will be discussed in the next subsection.
Therefore, we eliminated team 7T'7 from the following analysis. After removing
team T'7, the value of rank correlation between M. and M increased to 0.94
with the same level of significance(0.05). This implies that M. and M}, produce

nearly identical measurements for teams T'1 through 7'6.

4.3.2 Comparison with respect to team T'7

Next, we compare the metrics M and M, computed for team T'7. The follow-
ing characteristics of team T'7 were observed from the collected data in Table
4.1
(1) Average cost to detect and remove a fault in reviews (¢,) is the lowest
among all seven teams (28.0 min.).
(2) Virtual testing cost (C; + AC}) is the highest among seven teams (11,046
min.).
(3) Review cost (C,) is the lowest among seven teams (420 min.).

Team T'7 has done very efficient reviews with respect to ¢,. But, their
virtual testing cost is very high and their review cost is low. Thus, the reviews
of team T'7 were efficient even though T'7 did not use the resources effectively.
In this case, M} is a more appropriate review metric for team 7'7, because
it reveals that the cost effectiveness of reviews was not so good among these

seven teams.

30

4.3.3 Stability of metric M;

Stability is one of the most important aspects of a metric. From Table 4.2, we
find that team 7'3 exhibits characteristics similar to team 7'7:
(1) The number of faults detected by reviews over the total number of faults
in the product before its review is low(0.32),
(2) C, is relatively low(510 min.),
(8) C: is relatively high(7,186 min.).

The rank of My for these two teams are almost the same (sixth for '3 and
fifth for T'7). On the other hand, the ranks of M, are quite different (first for
T'7 and sixth for T'3). '

Thus, the values of M, are stable for teams that exhibit similar character-
istics for reviews and testing, but the values of M, are not stable.

From these observations, we conclude that M} provides a more practical

evaluation than M..

4.3.4 Estimation of M,

To evaluate metric M}, we need the values of the total number of faults (eq+e,)
and the average cost ¢; to detect and remove a fault in testing. Unfortunately,
these values are obtained at the end of testing. Thus we can not evaluate
review activity using M; until the end of testing, which largely reduces the
usefulness of the proposed metric.

In this subsection, we present a method for estimating Mj at the end of
reviews. The correlations among the data collected from reviews ((Eq4, + E.),
(Tar + T), ¢ and the reciprocal of ¢,) and the data collected from testing
((eq + €.) and the reciprocal of ¢;) are summarized in Table 4.3. There are two

high coefficients of correlations: 0.98 between (eq + €.) and the reciprocal of

31

Table 4.3 Coefficient of correlation
among experimental data

Edr + Ecr Tdr + Ter cr Llcr
ed+ec 0.84 -0.43 0.88 0.98
1/ct 0.82 -0.26 0.73 0,92

Table 4.4 Estimated value and error of
estimation of Mk

~)
Team| ap || Me-Mk
Mk

X100
(%)

T1 {0.303
72 10.420
T3 [0.289
T4 10.286 1
T5 10.376
76 10.400
T7 10.300
average

(oo B ol Burg {ooff Bag D

32

¢r, and 0.92 between the reciprocal of ¢; and the reciprocal of c,. Regression
analysis indicates that (eq + e.) and the reciprocal of ¢; can be estimated by

the following equations:

1
(ea +e.) = 4.88 + 1090 (:) (4.1)
and
1 1
o= 0.00114 + 0.0848 (c—) . (4.2)
1 T

The estimated values of M} using equations (4.1) and (4.2) for the seven
teams are summarized in Table 4.4, together with the estimation error of M,.
From Table 4.4, the average error estimation is about 7%. Thus we conclude
that it is possible to estimate M}, within +10% at the end of reviews before

the completion of testing.

33

Chapter 5

Application of M

5.1 Overview

We have already described the effectiveness of technical reviews towards reduc-
ing the testing effort. Several practical review methods have been proposed for
the technical review [Weinberg & Freedman 1984]. Among them, inspections
and walkthroughs are well known and applied by many computer companies.
Several experiments have studied the effectiveness of these review methods
[Fagan 1976] [Myers 1978]. However, previous studies do not clearly describe
the effort required for each element in a review.

Most review methods are based on the principle that the same amount of
effort is needed to review each product. In other words, the effort required
to review a product is independent of its quality. Since products having low
quality (e.g. containing many faults) are intermixed with products having
high quality (e.g. containing a few faults), these review methods are not very
effective. If we could estimate which products have low quality prior to the
review process, then we could focus our review effort on these products. Such

focusing would improve the effectiveness of technical reviews.

34

In this Chapter, we advocate a new principle stating that much effort should
be spent reviewing products with lower quality. When applying this new prin-
ciple, we estimate the quality of a product by considering the capabilities of
the product’s developer. That is, we assume that less capable developers cre-
ate products of lower quality. Additionally, we propose two new methods for
determining how to distribute review effort: a proportional distribution of ef-
fort and a concentrated distribution of effort. We also discﬁss an ordinal or
uniform distribution of effort. |

We applied these three methods to software development in an industrial
environment where new employees developed a business application program.
We compared the three methods using our new metric M. The analysis of
experimental data showed the superiority of the proposed new principle over

the conventional principle of uniform effort distribution.

5.2 Amount of effort in technical reviews

Most proposed review methods are based on the conventional principle that
each product requires the same amount of effort to review. In other words, we
usually spend the same amount of effort on each product, independent of the
quality of the product. Since the quality of two products may differ to a large
extent, this approach is generally not effective. If products having low quality
could be distinguished before the review phase, then we could focus our review
effort on them. This would improve the effectiveness of the review process.

It is, however, very difficult to estimate the quality of the product before-
hand. In the next section, we describe a way to estimate product quality and

how to use this information to enhance the review process.

35

5.3 Capability of developer

It is widely recognized that the individual capabilities of a developer is strongly
related to the productivity and quality of software [Matsumoto et al. 1992]
[Sackman et al. 1968]. For example, Sackman et al. showed that for most per-
formance variables there are very large individual differences in programming
performance[Sackman et al. 1968]. Additionally in the COCOMO(COnstructive
COst MOdel) model[Boehm 1981], there are fifteen factors which affect the
development cost. Among these factors, the capability of the developer or
development team is most important and plays a dominant role. Moreover,
our early experiments[Matsumoto et al. 1992] revealed that programmers with
high performance constructed programs with fewer faults. Even when faults
are introduced into programs, programmers with high performance can remove
them faster [Matsumoto et al. 1992).

Based on these facts, we classify the capabilities of each developer into
three categories: low, medium or high performance. (Subsection 5.5.1 will
explain how to distinguish these three levels of performance.) We assume that
developers with low levels of capabilities construct products with low quality.
We make analogous assumptions about developers exhibiting medium or high

levels of performance.

5.4 Three methods for allocating review ef-

fort

We introduce new methods for determining how much review effort to allocate
across products. The decision regarding how much effort to expend on each

product is based on the quality of that product.

36

-4

Products Products Products
developed developed developed
by A by B by C
Review Review Review
(2) Method U using CL2 using CL2 using CL2
' 2 =20 2 =20 12 =20
Review Review Review
(b) Method P using CL3 using CL2 using CL:
| I3 =10 Iz =20 I1 =30
' ~ Review Review
(©) Method C Noreview yusingCL1 using CL1
I1 =30 1 =30

Figure 5.1 Three effort allocation methods

Assume that each developer constructs the same number of modules of the
same size. Let s be the size of a module.

Assume that a review is executed using a check list. We consider three
kinds of check lists CL,, CL, and CL3. Let Iy, l; and I3 (I; > I3 > I3) be the
numbers of items in each check list CL;, C'L; and CLs, respectively. Assume
that each item requires the same amount of time to execute, and let u denote
the time needed for each item.

We define three review methods as follows:

(1) Uniform distribution(called Method U): Each product is reviewed using
the same check list C'L,, independent of the quality of product.

(2) Proportional distribution(called Method P): Products with low quality
are reviewed using the largest check list, CL;. Products with medium
quality are reviewed using check list, C'L;. Products with high quality
are reviewed using the smallest check list, C'Ls.

(3) Concentrated distribution(called Method C): Only products with low and
medium qualities are reviewed using check list C'L;.

We give an intuitive explanation for these three review methods using an
example. Consider a team consisting of three developers A, B and C. Assume
that developers A, B and C have high, medium and low capabilities, respec-
tively. Consider check list CL,, CL; and C L3 with sizes {;=30, [,=20 and
13=10, respectively.

Figure 5.1 shows the distribution of effort for each review method. By
Method U in Figure 5.1(a), total review time is 60us and review time of each
product is 20us. By Method P in Figure 5.1(b), total review time is 60us.
Review times of products constructed by A, B and C are 10u, 20u and 30u for

each product, respectively. The distribution of review times is proportional to

38

the capabilities of the developers. Finally, by Method C in Figure 5.1(c), total
review time is 60us. Review time is 30u each for the products constructed by

B and C. No time is spent for products constructed by A.

5.5 Experiment

To compare the usefulness of the proposed review methods, we applied these
three methods(Method C', Method P and Method U) to an experimental soft-
ware development project. The software development process in this experi-
ment consisted of three successive phases: design, implementation and testing

as shown in Figure 2.1.

5.5.1 Outline of the project

The experimental project was performed in a computer company from August

14, 1990 to September 6, 1990. The main characteristics of the project were:

(1) Developers were new employees of the computer company and had just
graduated from college in March 1990.

(2) Thirteen teams (7’1 through T'13) of developers constructed the same
batch processing system. The system is a file processing program in a busi-
ness application. Each team designed the system using the JSP(Jackson
Structured Programming) method and implemented it in COBOL.

(3) The system consists of eighteen program modules. The same partition of
program modules was given to each team. However, the assignment of
program modules to team members was arbitrarily determined by each

team’s leader. The final programs were approximately 2,000 lines of code.

39

(4) Each team consisted of five developers (ml through m5). Teams were
organized by an instructor who attempted to minimize individual differ-
ences in performance.

(5) Each team was assigned two terminals.

In the experiment, we determined the capabilities of each of the five mem-
bers in a team as follows: Each member of the team selected one product he
or she had created to review. All other team members jointly reviewed the
product, trying to identify faults. Team members were ranked according to
the number of faults found in the product and assigned a level of capability
based on that rank. High capability levels were assigned to the two members
whose products had the least number of faults, low to the two members whose

products had the greatest number, and medium to the member whose product

fell in the middle.

5.5.2 Details of review activities

The thirteen teams were divided into three groups: Three teams (7’1 through
T3) reviewed products using Method C, four teams (T4 through T'7) reviewed
products using Method P, and six teams (T8 through T'13) reviewed products
using Method U.

Since the system developed in this experiment 1s relatively small, and the
developers were new employees of the company, we adopted the following re-

view process:

e Stepl(Presentation): The developer explains the product he or she has

created.

o Step2(Question): Participants ask questions about the product.

40

o Step3(Check): All members check the product jointly using a specified
check-list.

o Step4(Rework): The developer updates the product by correcting all
faults pointed out in Step3.

e Step5(Follow): The team leader checks the correctness of the results of

Step 4.

These steps are based on the inspection method proposed by|[Fagan 1976].
The check lists CL;, CL, and C L3 were constructed based on the fault
information collected from the same project developed the previous year, as
follows: (1)sort check items in decreasing order of the number of the occur-
rences of the corresponding faults; (2)select 40 check items from the top to
form CLy; (3)select 25 check items from the top to form CL,; and (4)select 10

items from the top to form CLs.

5.5.3 Experimental data

The experimental data are summarized in Table 5.1 and Table 5.2. Table 5.1
includes the data for each team T'i(1 < ¢ < 13), and Table 5.2 includes the‘
data for each member mi(1 < ¢ _<_k 5) of the team.

In Table 5.1, the total number of faults (e + e.), the number of faults
detected by review (Eg + E..), and the total review cost (C,) are calculated
based on data reported by each programmer and by the team leader. The
testing cost (C;) is calculated based on data concerning terminal access time,
which is collected automatically [Kusumoto et al. 1992]. |

In Table 5.2, the number of faults introduced by each member, the total

number of faults, the average number of faults, and the variance of each mem-

41

 Table 5.1 Experimental data - 1

Total Number of Testing
Effort - | number | faults detected | Review cost | cost
allocation {re,m | of faults| by reviews
methods Cr (= Tar+Ter)| Ct(=T1)
ed+eéc Edr+Ecr(=Mm) (mm) (min.)
Tl 08 76 860 7724
Method C
(Concentrated) T2 61 46 600 4574
T3 46 24 840 5641
T4 54 43 610 9680
Methqd PITS 36 20 820 4340
(Proportional) | 15 | 43 30 880 6688
17 40 19 890 5283
T8 30 22 1050 8682
T9 23 13 870 6065
Method U |TI0 | 38 26 660 7909
(Uniform) 1777 | 49 20 430 7407
TI12 | 64 34 560 10150
T13 | 42 18 840 6483

42

Table 5.2 Experimental data - 2

alif:fz?tﬁ)n Team introdzjggibl?; gggﬁurlrimber ng‘r?ltsér f;l‘l’f; sgf n\l/l';lnr%)eg;cgf

methods of faults| of faults | faults
ml {m2 |m3 |md | m5

Method € TI {25124 123111] 151 98 19.6 38.8
Concentaeny 12120116 | 6[15| 4] 61 | 100 | 472
3 112 5 6117 6| 46 9.2 26,7
14 9 120 91 9 71 54 10.8 27.2
Method P | 135 i 9 3116 11 36 1.2 342
(Proportional) | T¢ 9 4 61 51 19] 43 8.6 37.3
7 9113 41 7 71 40 8.0 11.0
18 6 4 6111 31 30 6.0 9.5
19 3 8 11 4 1] 23 4.6 8.3
Method U |L.T10] 6 9 9110 41 38 1.6 6.3
(Uniform) TI11| 7112 91 51 16} 49 9.8 18.7
Ti12] 8126 112111 11 64 12.8 58.7
Ti31 12 8 81 7 71 42 84 43

43

Table 5.3 Average values for each method

alﬁog‘;)triz)n rc[:"i‘:af/aggst I?e‘:,sc trii;gge Metric
- methods (min.) cost My
Method C 767 5980 0.71
Method P 800 6498 0.65
Method U 735 7783 0.54

ber’s faults are given. As we mentioned before, the number of faults attributed

to each member approximates the capability of that member.

5.6 Analysis of the effort allocation methods

5.6.1 Simple comparison

In this subsection, we compare the three effort allocation methods by evaluat-
ing review effort and testing effort. Table 5.3 shows the average review cost,
average testing cost, and metric M; for each method. As mentioned in sub-

section 3.1.2, My, error detection efficiency, is a metric for evaluating review

activities[Fagan 1976].

(A)Average review cost: There is little difference among the three methods.

Method C took 767 min., Method P took 800 min., and Method U took

44

735 min.

(B)Average testing cost: From Table 5.3, Method C took 5,980 min., Method
P took 6,498 min., and Method U took 7,783 min. Thus the following

relation is derived:

Method C < Method P < Method U

(C)My(error detection efficiency): The same relation as in (B) is derived.

These results imply that teams using Methods C and P can test in a shorter

time and efficiently detect more faults in review as compared to Method U.

5.6.2 Effects of team organization

In this subsection, we evaluate review activity using two metrics My and M.
Then, we compare the three methods with respect to variances in the capabil-
ities of team members.

The first metric is error detection efficiency [Fagan 1976], M;, which is
defined by Fagan (See subsection 3.1.2). By applying Fagan’s metric to the
software development process shown in Figure 2.1, we get the following equa-

tion. (See equation 3.2, also.)

. Edr + Ecr
 eate
The second metric is M[Kusumoto et al. 1992}, which is defined in Chap-

M; (5.1)

ter 4. In this experiment, we consider time as the cost. M} is then specified

by the following equation. (See equation (3.9), also.)

45

Table 5.4 Evaluated values for two metrics

Effort

allocation Team My Mk

methods
Tl 0.78 0.75
Method C T2 0.75 0.72
T3 0.52 0.45
, 14 0.80 0.78
Method P T5 0.56 0.47
16 0.70 0.66
17 0.48 0.39
T8 0.73 0.70
79 0.57 0.50
Method U TI10 0.68 0.66
T11 0.41 0.37
Ti2 0.53 0.51
T13 0.43 0.35

46

Edr + Ecr Ct —~ Cr
eq+ e, ¢

My

(5.2)

In equation (5.2), ¢, is the average cost to detect and remove a fault in
reviews, and c; is the average cost to detect and remove a fault in testing
provided that (Ey, + E..) faults are detected by reviews.

Table 5.4 shows the values of two metrics M; and My for each team. Ob-
serve that the rank order among teams for each method is almost the same for
both metrics. This provides further evidence indicating that M; is approxi-
mately equal to My under Assumption 3 in subsection 3.2.3. Thus we use the
value for M} in the following discussions.

We compare the three methods with respect to team organization. We
divided the thirteen teams into two categories: even teams and uneven teams,
based on the variance of capabilities across members of a team. Intuitively
speaking, an even team implies that all members in the team have about
the same capabilities, and an uneven team implies there is a relatively large
difference among the capabilities of members.

It is very difficult to determine the boundary between even and uneven
teams. Based on the variances in Table 5.2, we extracted five even teams (T7,
T8, T9, T10and T'13) and five uneven teams (71, T2, T5, T6 and T'12). Table
5.5 illustrates the distribution of teams. Teams 7'1 and T'2 have high M, values.
Both teams were uneven and used Method C. This implies that it is very
effective for uneven teams to concentrate their review effort on products created
by low capability developers. This supports our hypothesis that products
having low quality are created by developers with low capabilities.

On the other hand, teams T8, T'9 and T'10 have relatively high values of
M. All these teams were even and used Method U. This implies that when

47

Table 5.5 Distribution of values Mk's with

respect to team organization

Effort Capabilities of members in
allocation each team
methods Uneven teams Even teams
T1 0.75
Method C ™ 072
Method P YTE 8'22 T7 0.39
T8 0.70
79 0.50
Method U iz 0.51 T10 0.66
T13 0.35

T'13 is an exceptional case and is analyzed in more detail below.

5.6.3 Individual case studies

48

the difference in capabilities of team members is low, reviews are most effective

if the same amount of effort is applied to each product.

We analyze why some special teams have very low values of M. From Table
5.4, it is clear that teams 77, T'11 and T'13 have low values for both metrics
My and M. These teams detected only a small number of faults at review
time (thus, relatively large numbers of faults remained in the product), and the
times spent on reviews is about average. Thus we can conclude that members

of teams T7, T11 and T13 did not execute their reviews as meticulously as the

other teams.

On the other hand, teams T'1, T2, T6 and T'10 have high values of M. This
implies that if they choose an appropriate review method based on the team
organization, then their reviews will be successful. That is, if the capabilities
of members in a team is almost even, then the team should adopt Method U.
In contrast, if the icapabilities differ to a considerable extent, then the team
should adopt either Method C or Method P.

Finally, the low value of Team T'12 indicates that an inappropriate review
method was used. Team T'12 should adopt Method C or P rather than Method
U.

49

Chapter 6

Modeling the Testing Process

6.1 A framework for measuring software de-

velopment processes

6.1.1 Overview

In this Section, we propose a new framework for measuring software develop-
ment processes [Matsumoto et al. 1993]. The key idea of the proposed frame-
work is that all activities to be measured can be explained using a mathemati-
cal model of the process. In this framework, a Petri net model is used to model
the process, since it is one of the most powerful models for representing concur-
rent processes such as those occurring in software development[Peterson 1981}.

The framework consists of four steps: (1) process modeling, (2) metric
definition, (3) process and metric implementation , and (4) process and metric
execution (See Figure 6.1). The following subsections summarize these four

steps.

50

Process modeling

Transform the software development process to be measured

into a Petri net model.
I’Metric definition

Clarify how to evaluate the features of the process using the
Petri net model.

"Process and metric implementation

Realize the mechanisms required for executing the process
based on the model, collectiong data from the process, and
computing metric values.

|'Process and metric execution

Carry out the process and apply the data collection and
computation mechanisms to the process.

Figure 6.1 The proposed framework for measuring software
development processes |

51

6.1.2 Process modeling

During process modeling, the software development process to be measured is
transformed into a Petri net model. The Petri net model used in the proposed
framework is “safe”, that is, the number of tokens in each place never exceeds
one.

The software development process consists of many activities whose inter-
actions depend on the type of product being developed. In the framework, such
interacting activities are modeléd by transitions which represent nonprimitive
events. Products are modeled using tokens. The places in the Petri net repre-
sent states (or conditions) of the process which are waiting for the execution
of the activity in the process.

Figure 6.2 shows an example of a Petri net representing unit and integration
testing processes. In this example, the program to be developed consists of
two modules: module A and module B. Tokens in places p; and pg represent
module A and module B, respectively. In this figure, both of the modules
are waiting for execution in the unit testing. Tokens in places pg, p12, and
p19 represent test data required for unit testing of module A, unit testing of
module B, and for integration testing, respectively. In the current version of
the proposed framework, we do not distinguish product types in the process.

Modules A and B are tested concurrently in each unit testing process.
The unit testing process of module A is represented by a set of transitions
T, = {ti,t3,t3,t4,ts5,te} and a set of places P, = {py,p2,P3s,P4,Ps}. The unit
testing process of module B is represented by a set of transitions
T, = {tr,ts,t9,t10,t11,t12} and a set of places P, = {pr,ps,Po, P10, P11}
If both of them pass the unit testing, they are linked (transition ¢;3) and then

tested (transition tyg).

52

$3ss3201d Surysa) uoneaSajul pue JIuUN Jo [PPOW JAU LIPJ V79 N3

sy[ne) onIwuks £t Jo
[eAoural 10J Sunyes st g S[Upo
powasp 3moq Vid pasowsat Buraq
pasowal paacaz are g smpous ul a8 g ompour
$uraq are g sMpow 8uraq are g Smpow L SINE} ORI Ul Sj[ey ONIremag
=1 o5 z Ppa8inqp oq i
w sifus opwewss 27§ ut siqueg oSy :E o1 sy eI 1y pas3nqap oq ol vonepdmos
£ 0] 30 poxU] o} syme; onomuks s 103 Sunes
9q 03 Sunrem paroxs $u1oq 30 10 TUONINIIXD 0] 1 g 3[MPON
§1 g SMpo Sunrem s1 g oampo
parowar aq o1 pasu PoACwaL 3 01 ol g o_ua_woz 8 _ 171
s1[ey onuweE 1 30 q 01 Sumem sy S8wqu| a3t 203 - | 9 Py -
Funrem st g smpopy st wresSoad Funres st g 9[Mpon o ; _ 4
817 10 v1ep 1S9 Stg P oq
6f o 1 g SMPOW
¥
PAOANIp Furoq acwar Jutaq
pawa19p Bureq 12 paoagep Suaq of are g ompowr uy 8 &vuo: g ompow
o g smpow uy /Ty are g ompow ug 74y siuey onoviukg 1 myney onoEIAS
$INE} SnUBUISY simey Sfequr] 1 1
pa83nqap pofiSnqap posm oq 03 FunrEm fi[ney opuEws
2q 01 sy onuwIs 5] e i Iy = gompou St 3o eaceuas 20y
103 unrem 10 pa3sngap /| 10 10 uopmoaxa 10 <! ursSoxd sv 105 W% WL, Sunruam st g SMPOW
[1a1dusoo st uresfiorg Bunem 51 wreBorg A payu Suaq
@ _ i1 oo ——
o mr
£ pamoaxa uroq \ VomPoN 9 ® v ompous ' £ Qa.a.«u.w:a ovu“nu“”
5 ufond o TP IAL Sumrem s1 v S[pO
papap Sursq pawaop Fuoq $
pawap uisq posourar ur
ore Y ompows ur naﬂo?voﬁi! or8 y ompout £, 8-«315“”
ey onwewsg 677 iy Fwqury P u sy onoemuks o 7 S3nE} oRIEIUAS

PIACWIAL 3G O PA0Wax 2q 01
SI[ITe] ODWEWS 811 o sy} a8y st 10 ‘ .
Buntem sty SMpOW Bunres sty JMPON vq
dg ’g pa83nqaop oq
01 fIME] ONUBWIE
11 40J 30 payul
: PaAowas 3q 03 Buprem
panotrat 1 v ompol
Suraq are y ampowr 0z 8uaq ore <M169= 72
u siuey opusISg w1 s1ney aFeNUY

PpaZangap oq g
10§ Suntem
St I[Mpo 3 1[ne] SHOWULS £} Y
J0J 1O UOTIMDIXD JOJ §1 ¥ 3[mpopy.
Sunrem 51y I[MPO

AOIAL Bu:
P dmoq vuv.u v uivm:ou
% b orpott 13 o SI[NeY SNURSG
n SmEy JNUBLIG d

(snyne] snuewsss s)1 Jo
[BAGIAS 20] BUnTEM 51 OTNPOIN

53

In the model shown in Figure 6.2, “debugging processes” are represented

by the following eight subsequences of transition firings:

(1) Debugging of syntactic faults:
61(; = t2t3t1 (module A)
b1p = tgtgty (module B)

(2) Debugging of semantic faults by unit testing:
820 = tstel167,t4 (module A)
525 - tutlgt'ﬂs;btlg (module B)

(3) Debugging of linkage faults:
63a = t14t15t16;at46;at13 (module A)
535 - i16t17t76;bt106;&t13 (module B)

(4) Debugging of semantic faults by integration testing:
54(1 —_ tlgtgotl6;at46;at136§at18 (module A)

64{, - t21t22t75;bt105;bt135§bt18 (module B)

6.1.3 Metric deﬁnition

Métric definition clarifies how the features of the process depicted by the Petri
net model will be evaluated. The metric is defined as a mathematical relation-
ship among parameters which represent a structure or behavior of the Petri
net model. We call such parameters “primitive parameters” and call metrics
which include only primitive parameters “primitive metrics”.

Primitive parameters in the current version of the proposed framework are

summarized as follows:

(1) Primitive parameters of model structure[Peterson 1981]

54

P = {p1, p2,-.-, Pu} : a finite set of places in the model.
T = {t1, t2,..., tm} : a finite set of transitions in the model.

I:T — P* : an input function, that is a mapping from transitions to

bags of places. (the input places of the transition.)

O : T — P> : an output function, that is a mapping from transitions

to bags of places. (the output places of the transition.)
g = (p1, 2, -y tn): @ vector of the number of tokens in the places.
n : the cardinality of the set P. (the number of places.)
m : the cardinality of the set T'. (the number of transitions.)

#(pi, I(t;)) : the number of occurrences of a place p; in the input bag

of a transition {;.
#(pi, O(t;)) : the number of occurrences of a place p; in the output bag
of a transition ;.
(2)Primitive parameters of model behavior
p(t) = (p1(2), p2(t), -y in(t)): a vector of the number of tokens in the
places at time ¢.
Oki = thiythi,.--tri, - @ sequence of transition firings.

I'; : a sequence of transition firings executed from time 0 through time

1.
Ny(p:,T';): the number of tokens residing in place p; in I',.
N¢(t;,T';): the number of occurrences of transition ¢; in I',.

Ng(6g1, k2, '7): the number of occurrences of firing sequence 6, in T',

where §;; is a subsequence of §;2 and &2 is a subsequence of T',.

55

E,(p;,T';): total elapsed time in place p; in I';.
E(t;,T;): total elapsed time of transition ¢; in I';.

Es(k1,6k2,T'r): total elapsed time of firing sequence 8y in I';, where

61y is a subsequence of 65, and 6, is a subsequence of T',.

For example, eight sequences, 614,615, 624,625, 634, O3b, 040, and b4, of the
transition firing shown in subsection 6.1.2, can be used as primitive parameters
in the debugging processes. In addition, we can define the following primitive

metrics using only these primitive parameters:

(1) The integration testing cost:

Cit(F‘r) = E6(64a-;F7'7 FT) + E5(64b> F‘ra I“r)

(2) Productivity in unit and integration testing:

_ Z;rf_-l Et(tj,r‘r)
Yicy Bo(pi, Tr) + Eiey Eu(t5, 1)

PRD(T,)

(3) Unit testing cost of module A before integration testing:

Cuta(r'r) = E5(62a3 FT, Fr)_(E5(62a7 t14t15t1t462a7 FT)+E5(620,, t19t20t1t452aa FT))

We give an intuitive explanation for the definition of Cy,(T;). Let Ay
be the total sum of elapsed times for firing sequence 65, in each firing

subsequence ty4ti5t1t40,, of sequence I'; from time 0 through time t.

56

Similarly, let A,z be the total sum of elapsed times of é;, for each firing
subsequence ¥1gto0t1140,, of sequence I'; from time 0 through time ¢. If
I'; does not contain such a subsequence, then the value of A,; (:=1,2) is

zero and,
Cuta(r‘r) = E5(52a7 F’ry FT) - (Aal + AaZ)

(4)Unit testing cost of module B before integration testing:

Cute(T'7) = Es(bap, U, I'2)—(E5(62p, trgti7trt10626, I'r)+ Es(626, tortaatzt10028, ')

If the number of primitive parameters increases by extending the process
model of the framework, then most of the conventional process metrics could
be defined as primitive metrics. For example, if the product is modeled by
a “colored token” in order to show explicitly what types of product are used
in the process to be modeled, then we could define and use “product type”
as a new primitive parameter, and we could then define some new primitive

metrics.

6.1.4 Process and metric implementation

During process and metric implementation, mechanisms are realized for exe-
cuting the process based on the model for collecting data from the process in
order to obtain values of primitive parameters, and for computing values of
primitive metrics.

One way to support process implementation is to provide developers with a

tool-based software development environment. That is, devise or gather a set

57

of software tools that correspond to all activities in the process to be imple-
mented. Many primitive tools are already provided by operating systems. For
example, tools for program compilation, linkage, and execution are provided
as well-known operating system commands. Text editors are essential tools
for creating and modifying program code, e.g., removing syntactic or semantic
faults in the program code. If we can execute the process in a CASE envi-
ronment, then it is relatively easy to find appropriate tools or commands for
supporting the activities of the process. (In some cases, the tools provided
in the development environment determine how the process will be modeled.)
When there is an activity with no supporting tools then an alternative is to
design a worksheet for the activity and devise a tool which can edit the work-
sheet. Such tools can be created by customizing ordinary text and/or graphical
editors provided by the operating system.

During metric implementation, mechanisms should be devised that auto-
matically and reliably collect the necessary data. This data should be collected
without interrupting and restricting the developers’ activities. However, for
small-scale projects, the development systems are typically not very powerful
computationally. Any data collection requiring large amounts of computation
will interfere with program development. In this case, the project may not
succeed and reliable data may not be collected. Therefore, mechanisms should
be designed to minimize the impact of data collection on the system.

As mentioned in subsection 6.1.3, primitive parameters consist of two kinds
of parameters: parameters of model structure and of model behavior. The
values of parameters of model structure can be obtained from the definition
of the model independent of the process implementation. On the other hand,

the values relating to model behavior have to be obtained by processing the

58

- data collected from the process to be measured. In the current version of the
proposed framework, all parameters can be obtained by clarifying when and
which transition fires on the model as the process executes. |
If we provide a set of software tools supporting all activities of the process
to be implemented, then it would be relatively easy to know when and which
transition fires on the model as the process executes. To do so, we only have to
collect execution data from the tools that correspond to the transitions. One of
the easiest ways to collect tool execution data is to use some existing functions
provided by the accdunting system of the operating system. For example,
the UNIX operating system records the following six data items concerning
command execution: (1) the command name, (2) the programmer’s name, (3)
the identifier of the terminal, (4) the amount of CPU time (in 1/100 seconds)
necessary to execute the command, (5) the date, and (6) the time when the
command was executed. These six data items are recorded for each command
execution [Matsumoto 1990]. It is easy to extract the necessary information

from them to know which transition is firing.

6.1.5 Process and metric execution

During process and metric execution, the process being modeled is executed
and the data collection and computation mechanisms are applied to the exe-
cuting process.

If a new and unfamiliar process is introduced into the project, develop-
ers must be trained in the process to avoid collecting meaningless or unreliable
data. If data reliability is a major concern, the developers’ activities can be re-
stricted to prevent any deviations from the Petri net model of the process. For

example, developers could be prohibited from using any tools and commands

59

with no corresponding model transitions.

During metric execution, we can choose whether developers will be in-
formed about what data is being collected and how to interpret their per-
formance based on that data. Such a decision depends on the objective (or
goal) of the project. For example, when the objective is to control the process,
the collected data provides valuable feedback helping developers direct their
activities towards accomplishing the project plan. On the other hand, when
the objective is to investigate the features or characteristics of the process it-
self, then it is probably best not to inform developers since their knowledge
could impact the data being collected. Of course, collecting data from develop-
ers without their knowledge requires devising a mechanism that collects data
without interrupting and restricting the developers’ construction activities.

On the completion of the process and metric execution, the various pieces
of the framework (i.e. the model, the metric definitions, the mechanisms, the
metric values, and the collected data) are assembled and packaged as a new

experience for measuring the software development process.

6.2 Testing process

The activities on the terminal during the testing process consist of editing,
compiling and executing programs. When editing or implementing programs,
syntactic and semantic faults are introduced into the code. During compila-
tion, source programs are translated into the executable code by the éompiler.
Finally, the correctness of the program can be validated by executing the pro-
gram with some test data.

When syntactic faults are detected during compilation, these faults need

to be isolated. Usually, this can be done using the compile list. Similarly,

60

when semantic faults are detected during execution; i.e: a failure happens, the

faults that triggered the failure also need to be isolated. These activities are

repeated until no failures happen during program execution.

6.3 Petri net model of the testing proéess

Figure 6.3 shows the Petri net description of the activities presented in sub-

section 6.2. It includes the following four places and six transitions:

Places:

P

p2:

DP3:

DP4:

Program is waiting to be created.
Program is waiting for compilation.

Program is waiting for execution or for its syntactic faults to be

debugged.

Program is completely debugged or waiting for its semantic faults

to be debugged.

Transitions:

11:
ta:
i3:
14
i5:

te!

Program is being created.

Program is being compiled.

Program is being executed.

Syntactic faults in program are being fixed.
Sema;xtic faults in program are being fixed.

Process is over.

61

Semantic faults in
program are being

Program is
. fixed (debugged) completely
Program is debugged or
:vall;cmg Program is waiting waiting for its
0 .
created for compilation Program is Program is sencxlartx)uc fzglts 0
being compiled being executed { debuge
L | t3 |
- -
| X I Is
Program is Program is waiting for Process is
being created execution or for its over
syntactic faults to be
debugged
Syntactic faults in
program are being fixed
(debugged)

Figure 6.3 A Petri net model of a coding and debugging
process in a student project

62

The token in place p; represents a ,program. Before firing transition t,, this
token represents an empty program containing no code. Test data, used in the
execution of the program (represented by transition ¢3), are omitted. |

For example, the firing sequence 8; = t1tat4t2tststatsts corresponds to the

following sequence of basic activities:
(1)Editing the program
(2)Compiling tfxe program
(3)Fixing the syntactic faults
(4)Re-compiling the program
(5)Executing the program (Failure happens.)
(6)Fixing the semantic faults
(7)Re-compiling the program
(8)Executing the program

(9)Process completes.

6.4 Example of firing sequences

In this Section, we discuss how the following three firing sequences (83, 83, and

d4) correspond to the behavior of the programmer.

(1) Ideal behavior
8y = tytqtsts

63

62 1s the process where no syntactic and semantic faults are detected. 6,
can happen when a small program is being developed by an experienced
programmer.

(2) Behavior of a novice programmer

53 = t1t2t4t2t4t2 t4t2t3t5t2t3t5t2t3t5t2t4t2t4t2t3t5t2t3t6

The difference between 63 and 6, is that the sequences t4t2(= 6;,) and
tstats(= 6sm) are inserted between t; and ts. FEach occurrence of 65,
and d,,, corresponds to fixing a syntactic or a semantic fault, respec-
tively. Thus, 63 illustrates the development process of a novice program-
mer where numerous fault fixing activities are executed repeatedly.
(3) Behavior of an average programmer
64 = tytotatotatotatstotatstotatstytate

In b4, as with 63, &, and é,,, are inserted between ¢; and t¢. But, for 8,
there are fewer occurrences of d;, than in é3. ¢4 illustrates a development
process with fewer syntactic faults but still many semantic faults; i.e. &4

depicts the average programmer.

6.5 Metrics for the testing process

As described in Section 6.4, the model includes two types of debugging pro-

cesses. They are represented by the following sequences of transition firings:
(1) Debugging of syntactic faults: 85, = tats
(2) Debugging of semantic faults: & = tsty dits

We defined the following primitive metrics using only the primitive param-

eters d,, and 6é;,,,. In these definitions, 7. denotes the time it takes the proceés

64

to complete, and thus G, (in subsection 6.1.3) = G,.

(1) Total cost of the process:

5
C = Z Et(tj, F.,-e)
=t
(2) Productivity of the process:

z?:l Et(t.h F‘fe)
?:1 Ep(pi’ F‘fe) + 25'=1 Et(tJ7 FTe)

PRD =

(3) Total cost for debugging syntactic faults:

Csy = E&(ésya F're, Fre)
= E5(t4aFTearTe) + E&(t2,t4t2,r7-e)
= Eﬁ(t4a F’re) + E&(t'b t4t2, FTe)

(4) Average cost for debugging syntactic faults during a single execution:

Coy = Coy
¥ Né’(‘ssyvrra ch)
Es(ty,Tr,) + Es(ta, tat2, Tian.)
Nt(t4>FTe)

(5) Total cost for debugging semantic faults:

Csm = E&(t5t2>6sm7 FTe) + E&(t35sm7 F‘re)
= (E5(t5, F’Q, FTQ) + E&(t27 t5t2) FTe)) + E&(t3’ F‘re) FT,)
= Ey(ts,Tr,) + Es(ta, tst2, ') + Ey(ts, Tr.)

65

(6) Average cost for debugging semantic faults during a single execution:

Csm
“m = Ny(BomsLrvTr)
Ei(ts,T7.) + Es(ta, tst2, T'r,) + Eu(ts, I's,)
Ni(ts,Tr,)

66

Chapter 7

Experimental Evaluation of the
Testing Process in a Student

Project

7.1 Outline

In this Section, we present an example application of the proposed framework.
We evaluated the effectiveness of the design method in an academic environ-
ment by examining its effect on debugging activities. The experiment was con-
ducted using participants from the Department of Information and Computer
Sciences at Osaka University. The following steps outline the experimental

process:

Step 1: Process modeling

Based on observations in the academic environment extending over sev-
eral years, we modeled the coding and debugging processes of student

participants as a Petri net(See Figure 6.3) consisting of four places and

67

six transitions. The token in the model represents the program to be

developed.

Step 2: Metric definition

We defined six metrics for evaluating the process(See Section 6.5). One
of them evaluates the cost of executing the process in terms of the to-
tal elapsed time of transitions in the model. Another metric computes
productivity in the process based on the elapsed time of both places and
transitions. The other four metrics evaluate the total cost and average

cost to debug syntactic and semantic faults.

Step 3: Process and metric implementation

We specified a set of UNIX[UNIX 1986] commands which correspond
to all activities of the process to be implemented. Next, we devised
a data collection mechanism using a measurement environment called
GINGER which automatically collects data concerning the activities of

programmers during software development in the UNIX environment

[Kusumoto et al. 1991] [Torii et al. 1990].

Step 4: Process and metric execution

Two projects (Project 1 and Project 2) were carried out and data were
collected using participants from the Department of Information and
Computer Sciences at Osaka University. Twelve students participated in
both projects. In Project 1, students developed programs using no partic-
ular design method. In Project 2, the same students developed programs

by using the Structured Design Method [Yourdon & Constantine].

Step 5: Interpretation

68

Figure 7.1 A correspondence of transitions and commands

We examined the impact using the Structured Design Method had on
the debugging processes in the two projects. Specifically, we compared

the values of primitive metrics generated in these two projects.

7.2 Implementation on UNIX environment

We implemented the mechanisms for executing the process model in a UNIX
environment. Qur task was simplified because the tools necessary for pro-
gram creation, compilation, execution, and debugging were already provided
by UNIX and the participants in this experiment were already familiar with
these tools. The following mappings illustrate the correspondence between

model transitions and well-known UNIX commands (See Figure 7.1):

t1: vi (Program is being created.)

69

1988-11-11 11:42 11:56 vi 1.38 secs

1988-11-11 11:58 11:58 cc 2.71 secs
1988-11-11 11:58 11:59 vi 1.95 secs
1988-11-11 12:01 12:01 cc 2.69 secs
1988-11-11 12:02 12:02 a.out 0.78 secs
1988-11-11 12:07 12:14 vi 4.61 secs

Figure 7.2 Example of command execution data provided
by GINGER

ty: cc (Program is being compiled.)

t3: a.out (Program is being executed.)

t4: vi (Syntactic faults in program are being fixed (debugged).)
ts: vi (Semantic faults in program are being fixed (debugged).)

ts: none (Process is over.)

In order to know when a particular transition fires as the process exe-
cutes, we need to collect data concerning the execution of the commands:
“vi”, “cc”, and “a.out”. The data collection mechanism uses a measurement
environment called GINGER which automatically collects data concerning the
activities of programmers during software development [Kusumoto et al. 1991)

[Torii et al. 1990]. GINGER can collect data about command execution using

existing functions available in an accounting system in the UNIX environment.

70

GINGER provides us with selected command execution data including: the ex-
ecution date, the time the command started, the time the command exited, the
name of the command, and the amount of CPU time used (in 1/100 seconds).
All times are reported in 24-hour time format except CPU time. Figure 7.2
shows an example of the data provided by GINGER [Kusumoto et al. 1991]
[Matsumoto 1990].

7.3 GINGER system

7.3.1 System organization

Figure 7.3 outlines the system architecture of GINGER and describes the in-
~ formation flow between the development environment and the management

environment.

(A) Data Collection Unit

The (CM1) Process Management component supports and controls a pro-
grammer’s regular activities during software developmenf. The (CM2)
Product Management component maintains the product, i.e., the pro-
gram text developed by the programmer. The (CM3) Process Data Col-
lection component accumulates data concerning the programming efforts.
The (CM4) Product Data Collection component accumulates a series of
intermediate programs (including the final program) and collects histor-

ical data about program modifications.

(B) Data Management Unit

The (CM5) Data Compression component saves memory by storing as

little data as possible. For a series of intermediate products, only the

71

Measurement Environment
Management Environment
]
{cM12 User Interface |
f Information
ICMll Feedback Management I Fee_dbaCk
f Unit
1
[cM10 statstical Analysis |
cM9 Programmer Productivity
Evaluation
ICMS PreproAcessing I
3 Data
I CM7 Data Expansion I Analysis
Unit
D
Process/Product PI CM6 Data Base Management |
Data Base f Data
ICMS Data Compression I Ma.nagement
Unit
Process Data Product Data
Data
CM3 CM4 .
Process Data | | Product Data | | Collection
Collection Collection Unit
CM1 M2 ﬁ
Process Process Product
Product
Data _M_gm_a_%ns,gt_ Ma;ganem Data
\ Feedback
Developer P &7 _ Information
(Programmer) 5 D
Development Environment

Figure 7.3 System architecture of the measurement environment

72

difference between the two is stored. The (CM6) Data Base Manage-
ment component supports data storage and information retrieval. The
data from the Data Collection Unit and the information from the Data

Analysis Unit are stored in the Process/Product Data Base.

(C) Data Analysis Unit

The (CMT7) Data Expansion component restructures the data by re-
inserting the compressed parts previously deleted by the Data Com-
pression component. The (CM8) Preprocessing component prepares the
expanded data for evaluation. Preprocessing includes transforming the
data which was collected in the physical unit (i.e., file) into data for the
logical unit (i.e., module). The (CM9) Programmer Productivity Eval-
uation component calculates several values according to the algorithms

or guidelines for measurement.

The (CM10) Statistical Analysis component applies statistical anal-
yses to the collected data (CM8) and to the results of the evaluation
(CM9). In these analyses, historical data on the programmer and data

on similar prior projects may be used extensively.

(D) Information Feedback Unit

The (CM11) Feedback Management component determines the timing
of feedback and the details of information to be returned. Feedback is
also provided whenever the programmer requests it. The (CM12) User
Interface component manages the presentation of feedback information

to the programmer.

- 73

7.3.2 Implementation

(A)Characteristics of the prototype

The first prototype system is currently being developed in a UNIX en-
vironment. The main characteristics of the prototype’s implementation

are summarized below:

(I1) The system has been implemented in C since portability is an

important issue in a data collection and analysis environment.

(I2) Many of the functions and tools provided in UNIX have been
integrated into the prototype. In particular, when implementing
the Data Collection, Data Management and Information Feedback

Units, provided UNIX functions and tools are used as much as pos-

sible.

(I3) The environment is running on a local area network of workstations
linked by an Ethernet. The Data Collection Unit is implemented on
the programmers’ workstations, and all other units are implemented

on the manager’s workstation, as shown in Figure 7.3.

(B)Data collection

(1) Process data
The process data consists of two kinds of data: terminal access
times and command execution data. These data are accumulated
by the Process Data Collection component which is (CM3) based
on the UNIX accounting system. This step can be considered as

Process Management (CM1) in the prototype system. Accounting

74

data for each programmer are obtained using the commands “last”

" and “lastcomm” provided by the accounting system.

(2) Product data

All of the program texts are collected as process data whenever they
are updated. Modification times are also collected. The program
text is managed as files on UNIX. For each file, relevant data such as
date, time and access rights are maintained by the file system. We
check the file update times recorded by the UNIX file system at five
minutes intervals. All files that were updated within the past five

minutes are collected by the Product Data Collection component

(CM4).

(C)Data management

’A basic function of the Data Management Unit in the prototype sys-
tem is management of the Process/Product Data Base (See Figure 7.3)..
Another function of the Data Management Unit is compression of the
product data. As mentioned in (B), all files are collected as process data
whenever they are updated. Since this is a very large amount of data, it

is impractical to store all of them in their original form.

The product data, that is, all of the updated files and their update
times are compressed into a history of modifications plus the latest ver-
sion of the file by the Data Compression component (CM5). The history
of modifications are accumulated by computing the difference between
the new version of the file and the last version of the file using the file

comparator, “diff”. This is done whenever the file is updated within the

75

past five minutes.

(D)Data analysis

The analysis generates information on programming efforts, the qual-
ity /quantity of the resulting program, and program modifications. An

example analysis is shown in Figure 7.4.

The following four kinds of measures concerning programming efforts
are currently calculated: (1) calendar days, (2) total terminal access
time (in minutes), (3) total number of commands that were executed,
and (4) total CPU time (in 1/100 seconds) for command execution. The
latter two are further classified in four ways, depending on the type of
command: program editing, compilation, linking, and execution. These
values are calculated based on terminal access data and command exe-

cution data.

The quality /quantity of the final program is calculated from the latest
version (F1) of the file in product data. Currently, for measuring quantity,
two concrete measures are adopted: the total number of lines and the
total number of modules. As for quality, the ratio of successful tests to

the total number of test cases and test coverage are used.

Finally, program modification statistics are calculated based on the
history of modifications in the product data. For basic measures concern-
ing program modifications, the six L's (L;, L,, L., Ly, Ly, L,) shown in

Figure 7.4 are currently adopted according to the type of modification.

Additionally, the number of errors removed during the program de-

velopment process is estimated (See Figure 7.4). The sum of the error

76

~Programming Efforts

Calendar days 10
Total terminal access time (min.) 1231
Total number of commands executed 115
- Program editing 42
- Program compilation 30
- Program linking 18
-~ Program execution ; 25
Total CPU time for command execution (sec.) 323.90
- Program editing 251.03
- Program compilation 31.12
- Program linking 26.13
- Program execution 15.62
—Quality/Quantity of Resulting Program
Total number of lines : 326
The number of modules 21
Rate of successful test 100%
—Program Modifications
The number of lines of the initial program (Li) 285
The number of lines appended to program (La) 97
The number of lines deleted by change (Lc) 178
The number of lines appended by change (Lc') 163
The number of lines deleted from program (Ld) 41
The number of lines of the resulting program (Lr) 326
Total number of errors (estimated value) 127
Sum of error life span (estimated value) 3291

Figure 7. 4 Example of measurement

[

life span [Matsumoto 1990], which has been introduced as a measure of
programmer productivity, is also estimated. An error life span (1) for
an error e is defined as the length of time from when error e is first mani-
fested to when error e is removed. The number of errors and the error life

span can be calculated automatically from the program modifications.

In order to estimate these two measures automatically, the followings

two assumptions are made:

(1) The purpose of modifying program text at each edit session is to

remove errors.

(2) The set of lines which is created at one edit session and modified at

another edit session corresponds to one error.

From these assumptions, we define the number of errors removed at
the edit session as the number of the sets described in assumption (2).
Then, summing the errors for all edit sessions yields the total number of
errors removed during the program development process. Next, for each
set of lines, we can calculate a time duration from when lines belonging
to the set were created to when they were removed. Then we define the

sum of error life span to be the time durations thus calculated.

(E)Information feedback

In the prototype system, the programmer can retrieve the collected
data and the analysis results stored in the process/product Data Base.
But, it is difficult for programmers to understand and control their own
activities given only these raw data. Therefore, the prototype system

provides a mechanism to make these raw data more understandable us-

78

Programmer Eragegf v(;fluc
productivity (predicted)
Difference between
predicted and actual
Current value state
P ' Range of
, : predicted
: i value
; Predicted process | (Actual state)
: in future :
Historical data '
- Calendar
s E time
Current Deadline

time

Figure 7. 5 Conceptual drawing of feedback information

79

ing the Feedback Management (CM11) and User Interface (CM12) com-
ponents. An example of the information provided is shown in Figure 7.5.
Figure 7.5 represents a conceptional drawing of the feedback information

provided by GINGER.

The results of some experimental evaluations showed that the feed-
back information shown in Figure 7.5 helps programmers manage their

own activities and thus improves programmer productivity [Torii et al. 1990].

7.4 Experimental data in two projects

In order to evaluate the impact of the design method on debugging activities in
an academic environment, two projects (Project 1 and Project 2) were carried
out in Department of Information and Computer Sciences at Osaka University.
The main characteristics of both Project 1 and Project 2 are summarized

below:

(1) Twelve programmers participated. All were undergraduate students in the

Department of Information and Computer Sciences at Osaka University.

(2) Each programmer developed an inventory control program in Project 1
and a data processing program in Project 2. In both projects, they
developed their programs based on the given specification using the C

language.
(3) The resulting programs contained about 300 lines of code in both projects.

(4) Project 2 was conducted about 2 months after the completion of Project 1.

In Project 1, programmers designed their programs in ad hoc approach.

80

In Project 2, programmers designed their programs using the Structured

Design Method.

Table 7.1 and Table 7.2 show the values of primitive parameters for twelve
programmers upon completion of Project 1 and Project 2. These values are
used to compute the primitive metrics defined in Section 6.5. Table 7.3 and
Table 7.4 show the values of the primitive metrics for the same twelve pro-

gramiers.

7.5 Results and interpretation

In this subsection, we present how the framework makes it possible to analyze
the software development process in more detail as compared with other con-
ventional approaches. To compare the two projects, the averages of C, PRD,
Csys Cems Csy, and ¢y, for each project were calculated and summarized in
Table 7.5. From Table 7.5, the following relation (R1) is derived with respect
to the average total cost (C). * |

(R1) Average total cost (C):
Project 1 > Project 2

Namely, the total cost of Project 2, in which each student used the Struc-
tured Design Method, is less than the total cost of Project 1, in which no
design method was used. Total cost is one of the most well-known metrics for

evaluating the process.

!Relations from (R1) through (R6) shown in this Section are confirmed by the paired-

difference test. The level of significance was chosen as 0.05.

81

Table 7.1 Primitive parameters in Project 1

Student Ep(PI .G1,) Ep(p2,Gs,) Ep(p3,G:,) EP(P«G:) Eft1,G1) | Ed12,G,,) |Ed13.Gs,) | Edt4.Gs,) |Ed15,G1) | Edes, 4G1,) | B t2.Gs) I Nd(14.Gs,) | Nilt5.Gy)
#1 6 1770 104 27 29 97 53 49 446 44 53 44 53
#2 1 562 32 11 2 91 44 31 40 47 43 47 43
#3 3 1070 51 62 5 81 49 49 462 32 49 32 49
#4 5 483 49 100 39 50 35 25 22 15 34 15 3
#5 1 1290 82 134 35 93 45 47 184 48 44 48 4
#6 1 975 59 26 19 141 66 80 303 15 65 15 65
#7 4 1069 29 18 83 28 12 34 323 16 11 16 11
#8 2 811 14 88 73 40 12 187 187 28 12 28 12
#9 2 1197 76 36 3 63 27 68 398 36 26 36 26
#10 1 1263 117 249 12 227 135 63 194 92 135 92 135
#11 1 222 19 62 42 43 23 pL 145 20 23 20 23
#12 1 1059 27 53 22 66 41 14 140 25 41 25 41

Table 7.2 Primitive parameters in Project 2

Student | Ep(p1.G1,) | Ef(p2,G1,) | Ep(p3.Gs,) | Ep(p4,Gi,) | EN11.Gs,) | E12,Gy,) [Ed13.G1,) | Ed4.G1,) | Edts.Gr,) | Edtz wGy,) | Bty 12.Gr,) | N(a.G1,) | Ni(15,G1,)
#1 3 415 30 14 210 46 19 64 91 27 18 27 18
#2 1 170 18 6 1 14 4 41 37 10 4 10 4
#3 1 628 59 5 52 30 8 207 38 22 8 22 8
#4 2 416 49 38 3 50 22 65 102 28 22 28 22
#5 1 367 35 24 40 40 23 96 83 17 2 17 23
#6 1 226 10 1 1 16 5 59 18 11 5 11 5
#7 4 2% 20 2 46 16 2 58 9 14 2 14 2
#8 1 454 8 3 40 11 2 217 4 9 2 9 2
#9 1 342 32 23 49 27 15 83 35 12 14 12 14

#10 1 796 69 25 47 102 31 243 251 71 31 n 31
#11 1 220 27 16 2 17 7 39 4 10 7 10 7
#12 2 352 33 17 166 32 16 21 95 16 16 16 16

82

Table 7.3 Primitive metrics in Project 1

Student C PRD Csy Csy Csm Csm
#1 674 0.26 93 2.11 552 10.42
#2 208 0.26 78 1.66 127 2.95
#3 646 0.35 81 2.53 560 11.43
#4 376 0.37 40 2.67 296 8.71
#5 404 0.21 95 1.98 273 6.20
#6 609 0.36 155 2.07 434 6.68
#7 480 0.30 50 3.13 346 31.45
#8 499 0.35 215 7.68 211 17.58
#9 559 0.30 104 2.89 451 17.35
#10 631 0.28 155 1.68 464 3.44
#11 277 0.48 44 2.20 191 8.30
#12 283 0.20 39 1.56 222 541

Table 7.4 Primitive metrics in Project 2

Student C PRD Csy Csy Com Csm
#1 430 0.48 91 3.37 128 7.11
#2 97 0.33 51 5.10 45 11.25
#3 335 0.33 229 10.41 54 6.75
#4 242 0.32 93 3.32 146 6.64
#5 282 0.40 113 6.65 129 - 5.61
#6 99 0.29 70 6.36 28 5.60
#7 131 0.34 72 5.14 13 1 6.50
#8 274 0.37 226 25.11 8 4.00
#9 209 0.34 95 7.92 64 4.57
#10 674 0.43 314 4.42 313 10.10
#11 89 0.25 49 4.90 38 5.43
#12 330 0.45 37 2.31 127 7.94

83

But, comparing only the total cost of the process across the two projects
does not reveal why the Structured Design Method reduced the cost. Nor can
we examine the validity of the experimental results.

The primitive metrics defined in Section 6.5 provide us with valuable infor-
mation about the relation between the usage of the Structured Design Method
and the reduction of the total cost. For example, from Table 7.5, the following
relation (R2) is derived with respect to the average productivity (PRD).

(R2) Average productivity (PRD):
Project 1 & Project 2

The relation (R2) tells us that students worked just as intensively in Project
1 as they did in Project 2. Therefore, the higher cost of Project 1 cannot be
attributed to more waiting or idle time. It may be useful to look more closely
at changes in the process itself.

With respect to the process of debugging syntactic faults, the following
relations (R3) and (R4) are derived from Table 7.5.

(R3) Total cost for debugging syntactic faults(Cl,):
Project 1 = Project 2

(R4) Average cost for debugging syntactic faults during a single
execution(cy):

Project 1 < Project 2

If we assume that the cost for debugging a syntactic fault is almost the
same in both projects, we can say from the relation (R3) that students made
about the same number of syntactic mistakes in both projects. From the rela-

tion (R4), we conclude that students examined the compiler’s output, which

84

Table 7.5 Average values of primitive metrics in two projects

C PRD Csy Csy Csem Csm
Project 1 471 0.31 96 2.68 344 10.83
Project 2 266 0.36 120 7.08 91 6.79

included relevant debugging information, more carefully and fixed more faults
during a single compilation in Project 2. However, these changes do not con-
tribute to the cost reduction of the process, and, of course, these changes were
not due to the usage of the Structured Design Method.

With respect to the process of debugging semantic faults, the following
relations (R5) and (R6) are derived from Table 7.5.

(R5) Total cost for debugging semantic faults(C,,,):
Project 1 > Project 2

(R6) Average cost for debugging semantic faults during a single
execution(Cspy):

Project 1 = Project 2

If we assume that the cost of debugging a semantic fault is the same in both
projects, we conclude from relation (R5) that students made fewer semantic
mistakes and spent less time debugging their semantic faults in Project 2.
From the relation (R6), we conclude that students fixed approximately the

same number of semantic faults per execution in both projects.

85

We, therefore, conclude that using the Structured Design Method reduced
the total cost of the coding and debugging processes in these student projects.
That is, the Structured Design Method prevented occurrences of semantic
faults and reduced the total cost of debugging semantic faults. However, the
method did not provide any additional information to help novice program-
mers detect and remove semantic faults from their programs. The results of
our experiment may be considered “commonsense”, but the point we wish to
emphasize is that the proposed framework made it possible to systematically
measure the software development process and made it easy to interpret the

experimental results.

86

Chapter 8

Conclusion

8.1 Summary of major results

In this thesis, a new metric M} is proposed for measuring review activities.
This metric monitors the cost of detecting and removing faults during technical
reviews. We have evaluated the usefulness of M) using experimental data
collected from software projects in a computer company. Moreover, an analysis
of the relationship between the values collected from reviews and the values
from testing made it possible to present a method for estimating the value of
M, by using the values collected from reviews only. As the value of Mj is
normalized by the virtual testing cost, we can compare review metrics across
projects. Using data from many projects, it may be possible to establish a
criterion for determining when project review activities should be terminated.

Then, we used M} to compare three methods for allocating review effort:
a proportional distribution of effort(Method P), a concentrated distribution
of effort(Method C) and a uniform distribution of effort(Method U). This
analysis revealed that the most effective review effort allocation method was

dependent on the type of team organization. If the capabilities of members in

37

a team are almost even, then the team should adopt Method U. If the capa-
bilities of members in a team are different to a considerable extent, then the
team should adopt either Method C or Method P. So, if we can evaluate the
developers’ capabilities quantitatively and select the appropriate effort alloca-
tion method, then the effectiveness of review activities can be substantially
improved.

Finally, we described a new framework for measuring software development
processes. The key idea of this proposed framework is that all activities to
be measured can be explained by a mathematical model of the process to
be measured. A Petri net is used for modeling in the proposed framework.
We presented an example application of the proposed framework where we
examined the impact of the Structured Design Method on testing activities in
an academic environment. The example showed that the framework can make
it possible to measure software development processes in a systematic way and
can make it easy to interpret experimental results.

In this thesis, we have focused on the software review and testing pro-
cesses. However, our framework can also be used to quantitatively compare
projects if the projects and their collected data are defined by common rules or
models. Additionally, a Reference database [Basili & Cantone 1992] for soft-
ware measurements, which consists of a set of reference projects and their
data, can be formed on the basis of a few projects that are designed using
standard software processes, products, tools, and environments, executed and
analyzed. Such a database would allow future research ideas or technologies
to be easily evaluated against existing data without running expensive and
time-consuming experiments. This would enhance the exchange of experimen-

tal results and knowledge between researchers and practitioners of software

88

engineering. The proposed framework is an important step towards establish-
ing such the Reference database for software measurements. Because, in the
proposed framework, software development processes are specifically defined
by a mathematical Petri net model, and software metrics are explicitly defined
as mathematical relationships among parameters representing a structure or

behavior of the Petri net model.

8.2 Future work

Future research work includes the following;:

(1)Extension of Metric M,

In this thesis, we have assumed that after the test/debug cycle, no more
faults remain in the software. But in a real environment containing tens
of thousands of lines of code, this assumption probably does not hold.
In order to deal with such cases, we are going to extend M} such that
M;. can be applied to the residual faults detected after testing. It is very
important to collect data on residual faults and apply this data towards

extending M.

In this thesis, we also assume that the average cost to detect and
remove a design fault in testing versus a coding fault is the same. Usually,
the cost of detecting and removing a design faults are much larger than
for coding faults. So, we should take into account this cost difference
for removing faults detected by design reviews, code reviews and testing,

- respectively. It is essential to collect and analyze data about the cost of

each type of fault.

89

(2)Data collection and analysis

In order to evaluate the entire software development process, it is es-
sential to assure the reliability of data from the process. We have to
devise automatic data collection mechanisms that do not interrupt or
restrict developers’ activities. Automatic data collection could adversely
affect system performance on less powerful platforms and thus interface
with program development. In such cases, the project may not succeed
and reliable data may not be collected. Therefore, mechanisms must be
designed so as to minimize the impact of automatic data collection on

system performance.

We already use the measurement environment GINGER that auto-
matically collects and analyzes data concerning software development.
The current prototype of GINGER is mainly intended for the implemen-
tation(coding) and testing phases on the workstation. New mechanisms
in GINGER need to be developed to collect and analyze data from the

requirements and design phases.

(3)Evaluation of research methodology

Numerous studies in software engineering develop new methods, tools,
or techniques to improve some aspect of software development or main-
tenance. However, relatively little evidence has been gathered on which
of these new developments are effective[Tichy et al. 1993]. We have ex-

amined the cost-effectiveness of software reviews in this thesis.

Tt is very important to carefully evaluate the research results. Towards
this end, we have to define the problem being addressed, specify the as-

sumptions, and clearly state the hypotheses. We consider the framework

90

used in Chapters 6 and 7 to be useful for systematically evaluating them.
For example, consider creating a transition representing the design activ-
ity. Many design methods such as JSD (Jackson System Design), SD
(Structured Design), OOD (Object — Oriented Design) have already
been proposed. The steps for any one of these methods must be specified.
Once the steps are specified, we can apply our framework and evaluate
the effectiveness of the design method quantitatively. Eventually, we will
extend our Petri net model to describe all aspects of software develop-
ment, such as the software product, process, tools, human resources, and

environments.

91

Bibliography

[Aoyama & Chang 1992] M. Aoyama and C. K. Chang :“A Petri net based
platform for developing communication software systems,” IEICE
Transactions on Fundamentals of FElectronics, Communications and

Computer Sciences, Vol.ET5-A, No.10, pp.1348- 1359(1992).

[Basili & Musa 1991] V.R.Basili and J.D.Musa:“The future engineering of
software: A management perspective,” IEEE Computer, Vol.24, No.9,
pp-90-96(1991).

[Basili & Rombach 1988] V. R. Basili and H. D. Rombach : “The TAME
project: Towards improvement-oriented software environment,” IEEFE

Transactions on Software Engineering, Vol.14, No.6, pp.758-773(1988).

[Basili 1989] V. R. Basili: “Software development: A paradigm for the future,”
Proceedings of the 13th International Computer Software and Applica-
tion Conference, pp.471-483(1989).

[Basili & Cantone 1992] V. R. Basili and G. Cantone: “A reference architec-
ture for the component factory,” ACM Transactions on Software Engi-

neering and Methodology, Vol.1, No.1, pp.53-80(1992).

92

[Bisant & Lyle 1989] D.B. Bisant and J. R. Lyle: “A two-person inspection
method to improve programming productivity,” IEEFE Transactions on

Software Engineering, Vol.15, No.10, pp.1294-1304(1989).

[Boehm 1981} B. W. Boehm: Software Engineering Economics, Prentice-Hall
(1981).

[Cameron 1989] J. Cameron: JSP & JSD: The Jackson Approach to Software
Development, IEEE Computer Society, (1989).

[Collofello & Woodfield 1989] J. S. Collofello and S. N. Woodfield: “Evalu-
ating the effectiveness of reliability-assurance techniques,” Journal of

Systems & Software, Vol.9, No.3, pp.191-195 (1989).

[Conte et al. 1986] S.D. Conte, H. E. Dunsmore and V. Y. Shen: Software En-
gineering Metrics and Models, The Benjamin/Cummings Pub., (1986).

[Coward 1982] J. M. Coward: “Today’s risks in software development - Can
they be significantly reduced?,” The Journal of Defense Systems Acqui-
sition Management, Vol.5, No.4, pp.73-94(1982).

[DeMarco 1982] T. DeMarco: Controlling Projects: Management, and Esti-
mation, Yourdon Press, (1982).

[Druffel 1983] L. E. Druffel, S. T. Redwine, Jr. and W. E. Riddle: “The
STARS program: Overview and rationale,” IEEE Computer, Vol.16,
No.11, pp.21-29(1983).

[Fagan 1976] M. E. Fagan: “Design and code inspections to reduce errors in
program development,” IBM Systems Journal, Vol.15, No.3, pp.182-211
(1976).

93

[Frakes et al. 1991] W. B. Frakes, C. J. Fox and B. A. Nejmeh: Software En-
gineering in the UNIX/C Environment, Prentice-Hall(1991).

[Humphrey 1988] Humphrey W.S.: “Characterizing the software process: A
maturity framework,” IFEE Software, Vol.5, No.2, pp.73-79(1988).

[IEEE 610 1990] “IEEE Standard Glossary of Software Engineering Terminol-
ogy”, IEEE, ANSI/IEEE Std 610.12-1990 (1990).

[IEEE 1008 1987] “IEEE Standard for Unit Testing”, IEEE. Rep. IEEE-Std-
1008-1987, (1987).

[IEEE 1028 1988] “IEEE Standard for Software Reviews and Audits,” IEEE,
ANSI/IEEE Std 1028-1988 (1988).

[Kusumoto et al. 1990] S. Kusumoto, K. Matsumoto, T. Kikuno and K. Torii:
“Experimental evaluation of metrics for review activities,” Proceedings

of 10th Software Symposium, pp.236-241 (1990).

[Kusumoto et al. 1991] S. Kusumoto, K. Matsumoto, T. Kikuno and K. Torii
: “On a measurement environment for controlling software development
activities,” IEICE Transactions on Communications Electronics Infor-

mation and Systems, Vol.E 74, No.5, pp.1051-1054(1991).

[Kusumoto et al. 1991] S. Kusumoto, K. Matsumoto, T. Kikuno and K. Torii:
“Experimental evaluation of the cost effectiveness of software reviews,

” Proceedings of 15th Computer Software & Applications Conference,
pp-424-429(1991).

[Kusumoto et al. 1992] S. Kusumoto, K. Matsumoto, T. Kikuno and K. Torii:

“Approaches to improving effectiveness of review activities in techni-

94

cal review process,” Proceedings of International Software Quality Ez-

change, pp. TB1-7B16(1992).

[Kusumoto et al. 1992] S. Kusumoto, K. Matsumoto, T. Kikuno and K. Torii
“A new metric for cost effectiveness of software reviews,” IFICE

Transactions on Information and Systems, Vol. E75-D, No. 5, pp.674-
680(1992).

[Kusumoto et al. 1993] S. Kusumoto, K. Matsumoto, T. Kikuno and K. Torii:
“Using a Petri-net model for quantitative analysis of debugging pro-
cesses in academic environment,” IFICE Transactions on Information

and Systems,(1993).(to appear)

[MaCabe 1976} T. J. MaCabe: “A complexity measure,” IEEE Transactions
on Software Engineering, Vol.SE-2, No.4, pp.308-320(1976).

[Matsumoto et al. 1988] K. Matsumoto, K. Inoue, T. Kikuno and K. Torii:
“Experimental evaluation of software reliability growth models,” Pro-

ceedings of the 18th International Symposium on Fault-Tolerant Com-

puting, pp.148-153 (1988).

[Matsumoto et al. 1992] K. Matsumoto, S. Kusumoto, T. Kikuno and K. Torii
: “An experimental evaluation of team performance in program develop-

ment based on model —Extension of programmer performance model,”

Journal of Information Processing, Vol.15, No.3, pp.466-473(1992).

[Matsumoto et al. 1993] K. Matsumoto, S. Kusumoto, T. Kikuno and K.
Torii: “A new framework of measuring software development processes,”
Proceedings of IEEE-CS International Software Metrics Symposium,
pp-108-118(May 1993).

95

[Matsumoto 1990] K. Matsumoto: A Programmer Performance Model and its
Measurement Environment, Ph.D. dissertation, Faculty of the Engineer-

ing Science, Osaka University, Japan,(1990).

[Mohri & Kikuno 1991] Y. Mohri and T. Kikuno: “Fault analysis based on
fault reporting in JSP software development,” Proceedings of 15th Com-
puter Software & Applications Conference, pp.591-596 (1991).

[Musa et al. 1987] J.D. Musa, A. Iannino and K. Okumoto: Software Reliabil-
ity: Measurement, Prediction, Application, McGraw-Hill(1987).

[Myers 1978] G. J. Myers: “A controlled experiment in program testing and
code walkthroughs / inspections,” Communications of the ACM, Vol.21,
No.9, pp760-768 (1978).

[Myers 1979] G. J. Myers: The Art of Software Testing, John Wiley & Sons,
Inc. (1979).

[Peterson 1981] J. L. Peterson: Petri Net Theory and the Modeling of Systems,
Prentice-Hall(1981).

[Royce 1970] W. W. Royce: “Managing the development of large software

systems: Concepts and techniques,” Proceedings of WESCON, pp.1-
6(1970).

[Rook 1986] P. Rook: “Controlling software projects,” Software Engineering
Journal, pp.7-16(1986).

[Sackman et al. 1968] H. Sackman, W.J. Erikson and E.E. Grant: “ Ex-

ploratory experimental studies comparing online and offline program-

96

ming performance,” Communication of ACM, Vol.11, No.l, pp.3-
11(1968).

[Sommerville 1992] 1. Sommerville: Software Engineering, Addison-Wesley,
(1992).

[Tichy et al. 1993] W.F. Tichy, N. Harbermann and L. Prechelt: “Future direc-
tions in software engineering,” ACM SIGSOFT, Software Engineering
Notes, Vol.18, No.1, pp.35-48(1993).

[Torii et al. 1990] K. Torii, T Kikuno, K. Matsumoto and S. Kusumoto, “A
measurement environment and some results at class experiments,” Pro-
ceedings of the 2nd International Workshop on Software Quality Im-
provement, pp.88-91(1990).

[UNIX 1986] “UNIX User’s Reference Manual -4.3 Berkeley Software Distri-
bution Virtual VAX-11 Version—,” (1986).

[Weinberg & Freedman 1984] G. M. Weinberg and D. P. Freedman: “Reviews,
Walkthroughs, and Inspections,” IEEE Transactions on Software Engi-
neering, Vol.10, No.1, pp.68-72(1984).

[Yourdon & Constantine] E. Yourdon and L. L. Constantine: Structured De-
sign: Fundamentals of a Discipline of Computer Program and System

Design, Prentice-Hall, (1979).

97

