<table>
<thead>
<tr>
<th>Title</th>
<th>Growth properties of hyperplane integrals of Sobolev functions in a half space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Shimomura, Tetsu</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 38(4) P.759-P.773</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2001-12</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/3705</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/3705</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
</tbody>
</table>
GROWTH PROPERTIES OF HYPERPLANE INTEGRALS OF SOBOLEV FUNCTIONS IN A HALF SPACE

Dedicated to Professor Masayuki Ito on the occasion of his sixtieth birthday

TETSU SHIMOMURA

(Received January 21, 2000)

1. Introduction

Let $D \subset \mathbb{R}^n$ ($n \geq 2$) denote the half space

$$D = \{x = (x', x_n) \in \mathbb{R}^{n-1} \times \mathbb{R}^1 : x_n > 0\}$$

and set

$$S = \partial D;$$

we sometimes identify $x' \in \mathbb{R}^{n-1}$ with $(x', 0) \in S$. We define the hyperplane integral $S_q(u)$ over S by

$$S_q(u) = \left(\int_S |u(x')|^q dx' \right)^{1/q}$$

for a measurable function u on S and $q > 0$.

Set

$$U_r(x') = u(x', r) - \sum_{k=0}^{m-1} \frac{r^k}{k!} \left[\frac{\partial}{\partial x_n} \right]^k u(x', 0)$$

for quasicontinuous Sobolev functions u on D, where the vertical limits

$$\left(\frac{\partial}{\partial x_n} \right)^k u(x', 0) = \lim_{x_n \to 0} \left(\frac{\partial}{\partial x_n} \right)^k u(x', x_n)$$

exist for almost every $x' = (x', 0) \in \partial D$ and $0 \leq k \leq m - 1$ (see [8, Theorem 2.4, Chapter 8]).

Our main aim in this note is to study the existence of limits of $S_q(U_r)$ at $r = 0$. More precisely, we show (in Theorem 3.1 below) that

$$\lim_{r \to 0} r^{-\omega} S_q(U_r) = 0$$
for some \(\omega > 0 \).

Consider the Dirichlet problem for polyharmonic equation

\[\Delta^m u(x) = 0 \]

with the boundary conditions

\[\left(\frac{\partial}{\partial x_n} \right)^k u(x', 0) = f_k(x') \quad (k = 0, 1, \ldots, m - 1). \]

We show (in Corollary 3.1 below) that if \(1 < p \leq q < \infty, \frac{n}{p} - \frac{n - 1}{q} < 1 \) and \(u \in W^{m,p}(D) \) is a solution of the Dirichlet problem with \(f_k(x') = (\partial/\partial x_n)^k u(x', 0) \) for \(0 \leq k \leq m - 1 \), then

\[\lim_{r \to 0} r^{n/p-(n-1)/q} S_q(u_r) = 0, \]

where \(U_r(x') = u(x', r) - \sum_{k=0}^{m-1} \frac{r^k}{k!} f_k(x') \).

To prove our results, we apply the integral representation in [6, 8]. For this purpose, we are concerned with \(K \)-potentials \(U_K f \) defined by

\[U_K f(x) = \int K(x - y) f(y) dy \]

for functions \(f \) on \(\mathbb{R}^n \) satisfying weighted \(L^p \) condition:

\[\int_{\mathbb{R}^n} |f(y)|^p |y_n|^{\beta} dy < \infty. \]

In connection with our integral representation, \(K(x) \) is of the form \(x^\lambda |x|^{-n} \) for a multi-index \(\lambda \) with length \(m \). Our basic fact is stated as follows (see Theorem 2.1 below):

\[\lim_{r \to 0} r^{n/p-(n-1)/q} S_q(u_r) = 0, \]

where \(u_r(x') = U_K f(x', r) - \sum_{k=0}^{m-1} \frac{r^k}{k!} \left(\frac{\partial^k}{\partial x_n^k} U_K f \right)(x') \).

In the final section, we give growth estimates of higher differences of Sobolev functions.

For related results, see Gardiner [2], Stoll [14, 15, 16] and Mizuta [5, 6, 9]. We also refer the reader to Mizuta-Shimomura [10, 11] concerning monotone functions as a generalization of harmonic functions.
2. Hyperplane integrals of potentials

For a multi-index \(\lambda \) and \(l > 0 \), set

\[
K(x) = \frac{x^\lambda}{|x|^l}.
\]

We define the \(K \)-potential \(U_K f \) by

\[
U_K f(x) = \int_{\mathbb{R}^n} K(x-y) f(y) dy
\]

for a measurable function \(f \) on \(\mathbb{R}^n \) satisfying

\[
\int_{\mathbb{R}^n} (1 + |y|)^{|\lambda| - l} |f(y)| dy < \infty
\]

and

\[
\int_{\mathbb{R}^n} |f(y)|^p |y_n|^\beta dy < \infty, \quad y = (y_1, \ldots, y_n).
\]

In particular, \(K \) is the Riesz \(\alpha \)-kernel when \(\lambda = 0 \) and \(l = n - \alpha \). In this case, \(U_K f \) is written as \(U_\alpha f \) with \(\alpha = |\lambda| - l + n > 0 \). Note here that (2.1) is equivalent to the condition that

\[
U_\alpha |f| \neq \infty.
\]

Throughout this paper, let \(M \) denote various constants independent of the variables in question.

For a nonnegative integer \(m \), consider

\[
K_m(x, y) = K(x-y) - \sum_{k=0}^{m} \frac{x_n^k}{k!} \left[\left(\frac{\partial}{\partial x_n} \right)^k K \right] (x'-y),
\]

where \(x = (x', x_n) \in \mathbb{R}^{n-1} \times \mathbb{R} \); we sometimes identify \(x' \) with \((x', 0) \).

Lemma 2.1. Let \(m \) be a nonnegative integer such that \(|\lambda| - l < m + 1 \).

1. If \(|x' - y| \geq x_n/2 > 0 \) and \(|x - y| \geq x_n/2 > 0 \), then

\[
|K_m(x, y)| \leq Mx_n^{m+1}|x' - y|^{|\lambda| - l - m - 1}.
\]

2. If \(|x - y| < x_n/2 \), then

\[
|K_m(x, y)| \leq M(x_n^{|\lambda| - l} + |x - y|^{|\lambda| - l}).
\]

3. If \(|x' - y| < x_n/2 \), then

\[
|K_m(x, y)| \leq M(x_n^{|\lambda| - l} + x_n^m|x' - y|^{|\lambda| - l - m}).
\]
Proof. If \(|x' - y| > 2x_n\), then by Taylor’s theorem, we obtain

\[
|K_m(x, y)| \leq M \frac{x_{n+1}^m}{(m+1)!} |(x', \theta x_n) - y|^{|\lambda| - l - m - 1} (0 < \theta < 1)
\]

\[
\leq Mx_{n+1}^m |x' - y|^{|\lambda| - l - m - 1},
\]

If \(x_n/2 < |x' - y| < 2x_n\) and \(|x - y| \geq x_n/2 > 0\), then

\[
|K_m(x, y)| \leq |K(x - y)| + \sum_{k=0}^{m} \frac{x_n^k}{k!} \left(\left(\frac{\partial}{\partial x_n} \right)^k K \right) (x' - y)
\]

\[
\leq Mx_n^{|\lambda| - l} + M \sum_{k=0}^{m} \frac{x_n^k}{k!} |x' - y|^{|\lambda| - l - k}
\]

\[
\leq Mx_n^{|\lambda| - l}
\]

\[
\leq Mx_{n+1}^m |x' - y|^{|\lambda| - l - m - 1},
\]

so that (1) is proved.

If \(|x' - y| < x_n/2\), then \(x_n/2 < |x - y| < 3x_n/2\), so that

\[
|K_m(x, y)| \leq |K(x - y)| + \sum_{k=0}^{m} \frac{x_n^k}{k!} \left(\left(\frac{\partial}{\partial x_n} \right)^k K \right) (x' - y)
\]

\[
\leq Mx_n^{|\lambda| - l} + M \sum_{k=0}^{m} \frac{x_n^k}{k!} |x' - y|^{|\lambda| - l - k}
\]

\[
\leq M(x_n^{|\lambda| - l} + x_n^m |x' - y|^{|\lambda| - l - m}),
\]

which proves (3).

Finally, if \(|x - y| < x_n/2\), then \(x_n/2 < |x' - y| \leq x_n + |x - y| < 3x_n/2\), so that

\[
|K_m(x, y)| \leq |K(x - y)| + \sum_{k=0}^{m} \frac{x_n^k}{k!} \left(\left(\frac{\partial}{\partial x_n} \right)^k K \right) (x' - y)
\]

\[
\leq |x - y|^{|\lambda| - l} + M|x' - y|^{|\lambda| - l}
\]

\[
\leq M(x_n^{|\lambda| - l} + |x - y|^{|\lambda| - l}),
\]

which proves (2). Thus the present lemma is established. \(\square\)

For a point \(x \in \mathbb{R}^n\) and \(r > 0\), we denote by \(B(x, r)\) the open ball with center at \(x\) and radius \(r\).
Lemma 2.2 (cf. [9, Lemma 3.2]). Let $\beta > -1$, $q > 0$ and $|\lambda| - l + n/q > 0$. Let m be a nonnegative integer such that

$$m < |\lambda| - l + \frac{n + \beta}{q} < m + 1.$$

Then

$$\left(\int_{E_3} |K_m(x, y)|^q |y_n|^{\beta} dy \right)^{1/q} \leq M x_n^{\lambda |l + m q + \beta/q}$$

for all $x = (x', x_n) \in D$.

Proof. For fixed $x \in D$, consider the sets

$$E_1 = B \left(x, \frac{x_n}{2} \right), \quad E_2 = B \left(x', \frac{x_n}{2} \right), \quad E_3 = \mathbb{R}^n - (E_1 \cup E_2).$$

Since $|\lambda| - l + (n + \beta)/q - m - 1 < 0$, applying the polar coordinates about x', we have by Lemma 2.1(1)

$$\left(\int_{E_3} |K_m(x, y)|^q |y_n|^{\beta} dy \right)^{1/q} \leq M x_n^{\lambda + m + 1} \left(\int_{E_3} |x' - y|^{|\lambda| - l + m - 1 + \beta} |y_n|^{\beta} dy \right)^{1/q} \leq M x_n^{\lambda + m + 1} \left(\int_{x_n/2}^{\infty} r^{|\lambda| - l + m - 1 + \beta} r^{-1} dr \right)^{1/q} = M x_n^{\lambda |l + m q + \beta/q}.$$

Similarly, since $|\lambda| - l + n/q > 0$, we have by Lemma 2.1(2)

$$\left(\int_{E_1} |K_m(x, y)|^q |y_n|^{\beta} dy \right)^{1/q} \leq M x_n^{\lambda - l + n} \left(\int_{E_1} (x_n^{\lambda|l - l - m q|} |x' - y|^{\lambda|l - l - m q|} dy \right)^{1/q} = M x_n^{\lambda |l + m q + \beta/q}.$$

Finally, since $|\lambda| - l + (n + \beta)/q - m > 0$, we obtain by Lemma 2.1(3)

$$\left(\int_{E_2} |K_m(x, y)|^q |y_n|^{\beta} dy \right)^{1/q} \leq M \left(\int_{E_2} (x_n^{\lambda|l - l + m q|} |x' - y|^{\lambda|l - l + m q|} |y_n|^{\beta} dy \right)^{1/q} \leq M x_n^{\lambda |l + m q + \beta/q} + M x_n^{m} \left(\int_{x_n/2}^{\infty} r^{|\lambda| - l + m q + \beta} r^{-1} dr \right)^{1/q} = M x_n^{\lambda |l + m q + \beta/q}.$$

The required inequality now follows. □
Lemma 2.3 (cf. [9, Lemma 3.4]). Let $q > 0$ and m be a nonnegative integer such that
\[m < |\lambda| - l + \frac{n-1}{q} < m + 1. \]

If $x = (x', x_n) \in \mathbb{D}$ and $y = (y', y_n) \in \mathbb{R}^n$, then
\[
\left(\int_{\mathbb{R}^{n-1}} |K_m(x, y)|^q dx' \right)^{1/q} \leq Mx_n^{m+1} (x_n + |y_n|)^{|\lambda| - l - m - 1 + (n-1)/q}.
\]

Proof. Let $x = (x', x_n) \in \mathbb{D}$ and $y = (y', y_n) \in \mathbb{R}^n$. If $|y_n| \geq 2x_n$, then, since $|\lambda| - l - m - 1 + (n-1)/q < 0$, we have by Lemma 2.1(1)
\[
\left(\int_{\mathbb{R}^{n-1}} |K_m(x, y)|^q dx' \right)^{1/q} \leq \frac{Mx_n^{m+1} \left(\int_{\mathbb{R}^{n-1}} |x' - y'|^{(|\lambda| - l - m - 1)q} dx' \right)^{1/q}}{r_{y_n}^2 + y_n^2} \leq \frac{Mx_n^{m+1} |y_n|^{(|\lambda| - l - m - 1 + n-1)/q}}{r_{y_n}^2 + y_n^2}.
\]

If $|y_n| < 2x_n$, then we have as in the proof of Lemma 2.2
\[
\left(\int_{\mathbb{R}^{n-1}} |K_m(x, y)|^q dx' \right)^{1/q} \leq M \left(\int_{\{x', y \in E_1\}} (x_n^{\lambda| - l + |x - y|^{\lambda| - l - m q} dx') \right)^{1/q} + M \left(\int_{\{x', y \in E_1\}} (x_n^{\lambda| - l + x_n^m |x' - y|^{\lambda| - l - m q} dx') \right)^{1/q}
\]
\[
+ Mx_n^{m+1} \left(\int_{\{x', y \in E_1\}} |x' - y|^{(|\lambda| - l - m - 1)q} dx' \right)^{1/q} \leq Mx_n^{\lambda| - l + (n-1)/q} + M \left(\int_{B(y', x_n/2)} (x_n + |x' - y'|^{\lambda| - l - m)q} dx' \right)^{1/q}
\]
\[
+ Mx_n^{m+1} \left(\int_{B(y', x_n/2)} |x' - y'|^{(|\lambda| - l - m - 1)q} dx' \right)^{1/q} + Mx_n^{m+1} \left(\int_{\mathbb{R}^{n-1}} (x_n + |x' - y'|^{(|\lambda| - l - m - 1)q} dx' \right)^{1/q}
\]
\[
= Mx_n^{\lambda| - l + (n-1)/q}.
\]

Therefore the required inequality now follows. \qed
Lemma 2.4 (cf. [1, Theorem 13.5], [8, Sections 6.5 and 8.2]). Let $\alpha = |\lambda| - I + n$, $p > 1$, $\alpha p > 1$, $\alpha p > 1 + \beta$ and $-1 < \beta < p - 1$. If f is a measurable function on \mathbb{R}^n satisfying (2.2) and (2.3), then $U_K f$ has the (ACL) property; in particular, $U_K f(x', x_n)$ is absolutely continuous on \mathbb{R} for almost every $x' \in \mathbb{R}^{n-1}$. Moreover, in case m is a positive integer such that $(\alpha - m)p > 1$ and $(\alpha - m)p > 1 + \beta$,

$$\left(\frac{\partial}{\partial x_n} \right)^m U_K f(x', x_n) = \int \left(\frac{\partial}{\partial x_n} \right)^m K(x - y) f(y) dy$$

is absolutely continuous on \mathbb{R} for almost every $x' \in \mathbb{R}^{n-1}$.

Theorem 2.1 (cf. [5, Theorem 2.1] and [9, Theorem 2.1]). Let $\alpha = |\lambda| - I + n$ satisfy $m + 1/p < \alpha < m + n$. Let $1 < p \leq q < \infty$, $-1 < \beta < p - 1$ and

$$\frac{n - \alpha p}{p(n - \alpha)} < \frac{n - 1}{q(n - \alpha + m)} \quad \text{when } n - \alpha > 0.$$

Further suppose $m < \omega < m + 1$, where $\omega = (n - 1)/q - (n - \alpha p + \beta)/p$. If f is a nonnegative measurable function on \mathbb{R}^n satisfying (2.2) and (2.3), then

$$\lim_{r \to 0} r^{-\omega} S_f(u_r) = 0,$$

where $u_r(x') = U_K f(x', r) - \sum_{k=0}^m (r^k/k!) (\partial/\partial x_n)^k U_K f(x', 0)$.

Proof. Under the assumptions on p, α, β, q and m in Theorem 2.1, we can take (δ, γ) such that

1. $\beta < \gamma < p(n - \alpha + m + 1)\delta + \beta - \frac{p(n - 1)}{q}$,
2. $p(n - \alpha + m + 1)\delta + (\alpha - m - 1)p - n < \gamma < p(n - \alpha + m)\delta + (\alpha - m)p - n$,
3. $\beta < \gamma < p - 1$, $0 < \delta < 1$,
4. $\delta p(n - \alpha) > n - \alpha p$

and

$$\frac{n - 1}{q(n - \alpha + m + 1)} < \delta < \frac{n - 1}{q(n - \alpha + m)}$$

(if $\alpha \geq n$, then (2.7) clearly holds). Set $a = (1 - \delta)p'$ and $b = -\gamma p'/p$, where $p' = p/(p - 1)$. Then, by (2.6), we have

$$b > -1.$$
In case $\alpha \geq n$, we clearly find

$$\alpha - n + \frac{n}{a} > 0,$$
and in case \(\alpha < n \), (2.10) also holds by (2.7). Further, (2.5) implies
\[
(2.11) \quad m < \alpha - n + \frac{n+b}{a} < m + 1.
\]
By the fact that \(m + 1/p < \alpha \), we have
\[
(2.12) \quad \alpha p > 1.
\]
Since \(\omega > m \), we have
\[
(2.13) \quad (\alpha - m)p > 1 + \beta.
\]
By (2.12), (2.13) and Lemma 2.4, we first note that
\[
\begin{align*}
u_{\gamma}(x') &= U_K f(x) - \sum_{k=0}^{m} \frac{x_n^k}{k!} \left(\frac{\partial}{\partial x_n} \right)^k U_K f(x', 0) \\
&= \int K_m(x, y) f(y) dy.
\end{align*}
\]
Using Hölder’s inequality, we have
\[
|\nu_{\gamma}(x')| \leq \left(\int \left| K_m(x, y) \right|^\alpha |y_n|^{q_0} dy \right)^{(1-\delta)/\alpha} \left(\int \left| K_m(x, y) \right|^\delta p f(y) |y_n|^{q} dy \right)^{1/p}.
\]
By (2.9)–(2.11) and Lemma 2.2, we have
\[
|\nu_{\gamma}(x')| \leq M_{n}^{\alpha - n(1-\delta)+\alpha'p'/\gamma} \left(\int \left| K_m(x, y) \right|^\delta p f(y) |y_n|^{q} dy \right)^{1/p}.
\]
In view of Minkowski’s inequality for integral we have
\[
S_{q}(\nu_{\gamma}) \leq M_{n}^{\alpha - n(1-\delta)+\alpha'/\gamma} \times \left\{ \int \left(\int_{\mathbb{R}^{n-1}} \left| K_m(x, y) \right|^\delta q dx' \right)^{p/q} f(y) |y_n|^{q} dy \right\}^{1/p}.
\]
Here, noting (2.8), we have by Lemma 2.3
\[
\left(\int_{\mathbb{R}^{n-1}} \left| K_m(x, y) \right|^\delta q dx' \right)^{p/q} \leq M_{n}^{m+1}(x_n + |y_n|)^{\alpha - n - m - 1 + (n-1)/\delta q} \delta p.
\]
Consequently
\[S_q(u_r) \leq M r^{(\alpha-n)1-\gamma/p+\gamma/p+\delta} \times \left\{ \int (r + |y_n|)^{\alpha-n-1+(n-1)/\delta} f(y)^p |y_n|^{\beta} dy \right\}^{1/p} . \]

Consider the function
\[k(r, y_n) = r^{(\alpha-n-p+\beta)\gamma/p+(n-1)/\delta} \times (r + |y_n|)^{\alpha-n-1+(n-1)/\delta} |y_n|^{\beta} . \]

Then
\[r^{-\omega} S_q(u_r) \leq M \left\{ \int k(r, y_n) f(y)^p |y_n|^{\beta} dy \right\}^{1/p} , \]

where \(\omega = (n-1)/q - (n - \alpha p + \beta)/p \). It follows from (2.4) that
\[r^{-\omega} r^{(\alpha-n)(1-\delta)n/p'-\gamma/p+\delta} = r^{(\alpha-n+\delta+\gamma)/p-(n-1)/q} \to 0 \]
as \(r \to 0 \). If \(r < |y_n| \), then
\[k(r, y_n) \leq M \left(\frac{r}{|y_n|} \right)^{(n-\alpha+\delta+\gamma-p(n-1)/q} \leq M; \]

if \(|y_n| \leq r \), then
\[k(r, y_n) \leq M \left(\frac{|y_n|}{r} \right)^{-\gamma-\beta} \leq M. \]

Hence Lebesgue’s dominated convergence theorem implies that
\[\lim_{r \to 0} r^{-\omega} S_q(u_r) = 0. \]

Now the proof of Theorem 2.1 is completed. \(\square \)

3. Sobolev functions

For an open set \(G \subset \mathbb{R}^n \), we denote by \(BL_m(L^p_{\text{loc}}(G)) \) the Beppo Levi space
\[BL_m(L^p_{\text{loc}}(G)) = \{ u \in L^p_{\text{loc}}(G) : D^\beta u \in L^p_{\text{loc}}(G) \quad (|\beta| = m) \} \]
(see [8, Chapter 6]). Set \(K_\lambda(x) = |x|^\lambda \) and
\[\tilde{K}_\lambda(x, y) = \begin{cases} K_\lambda(x-y), & y \in B(0, 1), \\ K_\lambda(x-y) - \sum_{|\mu| \leq m-1} \frac{x^\mu}{\mu!} \left[\frac{\partial}{\partial x} \right]^\mu K_\lambda(-y), & y \in \mathbb{R}^n - B(0, 1). \end{cases} \]
In view of [8, Theorem 7.2, Chapter 6], each \(u \in BL_m(L^p_{\text{loc}}(D)) \) satisfying

\[
\int_D |\nabla_m u(x)|^p \lambda_n^\beta dx < \infty
\]

has an \((m, p)\)-quasicontinuous representative \(\tilde{u} \), where

\[
|\nabla_m u(x)| = \left(\sum_{|\mu|=m} |D^\mu u(x)|^2 \right)^{1/2},
\]

\(1 < p < \infty\) and \(-1 < \beta < p - 1\). Moreover, \(\tilde{u} \) is given by

\[
\tilde{u}(x) = \sum_{|\lambda|=m} \alpha_\lambda \int K_{\lambda,m}(x, y) D^\lambda \overline{u}(y) dy + P(x),
\]

where \(\overline{u} \) is an extension of \(u \) to \(\mathbb{R}^n \), \(P(x) \) is a polynomial of degree at most \(m - 1 \).

Note further from Lemma 2.4 that for each \(k \) with \(0 \leq k \leq m - 1 \) and for almost every \(x' \in \mathbb{R}^{n-1} \),

\[
\left(\frac{\partial}{\partial x_n} \right)^k \int K_{\lambda,m}(x, y) D^\lambda \overline{u}(y) dy = \int \left(\frac{\partial}{\partial x_n} \right)^k \tilde{K}_{\lambda,m}(x, y) D^\lambda \overline{u}(y) dy
\]

holds for \(x_n \in \mathbb{R} \), where \(x = (x', x_n) \).

Since \(Q(x) - \sum_{k=0}^{m-1} (x_n^k / k!) [(\partial / \partial x_n)^k Q](x') = 0 \) for any polynomial \(Q \) of degree at most \(m - 1 \), we have

\[
U(x) \equiv \tilde{u}(x) - \sum_{k=0}^{m-1} \frac{x_n^k}{k!} \left(\frac{\partial}{\partial x_n} \right)^k \tilde{u}(x')
\]

\[
= \sum_{|\lambda|=m} \alpha_\lambda \int K_{\lambda,m}(x, y) D^\lambda \overline{u}(y) dy = \tilde{u}(x) - P(x)
\]

for \(x \in D \), where \(K_{\lambda,m}(x, y) = K_{\lambda}(x - y) - \sum_{k=0}^{m-1} (x_n^k / k!) [(\partial / \partial x_n)^k K_{\lambda}](x' - y) \).

Theorem 2.1 now gives the following result.

Theorem 3.1. Let \(1 < p \leq q < \infty \),

\[
\frac{n - mp}{p(n - m)} < \frac{1}{q} \quad \text{when } n - m > 0
\]

and

\[
\frac{n - p + \beta}{p(n - 1)} < \frac{1}{q} < \frac{n + \beta}{p(n - 1)}.
\]

If \(u \in BL_m(L^p_{\text{loc}}(D)) \) satisfying (3.1) for \(-1 < \beta < p - 1\) is \((m, p)\)-quasicontinuous on \(D \), then

\[
\lim_{r \to 0} r^{(n - mp \beta)/(p(n - 1)) q} S_q(U_r) = 0,
\]
where \(U_r(x') = u(x', r) - \sum_{k=0}^{m-1} (r^k/k!)(\partial/\partial x_n)^ku(x', 0) \).

Consider the Dirichlet problem for polyharmonic equation:
\[
\Delta^m u(x) = 0
\]
with the boundary conditions
\[
\left(\frac{\partial}{\partial x_n} \right)^k u(x', 0) = f_k(x') \quad (k = 0, 1, \ldots, m - 1).
\]

We denote by \(W^{m,p}(G) \) the Sobolev space
\[
W^{m,p}(G) = \{ u \in L^p(G) : D^\lambda u \in L^p(G) \quad (|\lambda| \leq m) \}
\]
(see Stein [13, Chapter 6]). If \(u \in W^{m,p}(\mathbb{D}) \) is a solution of the Dirichlet problem, then the vertical limit \((\partial/\partial x_n)^ku(x', 0) \) exists for almost every \(x' = (x', 0) \in \partial\mathbb{D} \) and \(0 \leq k \leq m - 1 \) (see [6], [7]).

We also see that every function in \(W^{m,p}(\mathbb{D}) \) can be extended to a function in \(W^{m,p}(\mathbb{R}^n) \) (see Stein [13, Theorem 5, Chapter 6]). Hence Theorem 3.1 gives the following result.

Corollary 3.1. Let \(1 < p \leq q < \infty \) and
\[
(0 <) \; \frac{n}{p} - \frac{n-1}{q} < 1.
\]
If \(u \in W^{m,p}(\mathbb{D}) \) is a solution of the Dirichlet problem with \(f_k(x') = (\partial/\partial x_n)^ku(x', 0) \) for \(0 \leq k \leq m - 1 \), then
\[
\lim_{r \to 0} r^{n/p-(n-1)/q-m} S_q(U_r) = 0,
\]
where \(U_r(x') = u(x', r) - \sum_{k=0}^{m-1} (r^k/k!)f_k(x') \).

4. Higher differences

For \(r > 0 \) and a function \(u \), we define the first difference
\[
\Delta_r u(t) = \Delta_1^1 u(t) = u(t + r) - u(t)
\]
and the \(m \)-th difference
\[
\Delta_r^m u(t) = \Delta_{\partial r}^{m-1} (\Delta_r u(\cdot))(t),
\]
It is easy to see that
\[\Delta_t^m u(t) = \sum_{k=0}^{m} (-1)^{m-k} \binom{m}{k} u(t + kr). \]

As in Section 2, we consider
\[K(x) = \frac{x}{|x|^p} \]
and define
\[u_r(x') = \Delta_t^m U_K f(x', \cdot)(0) = \sum_{k=0}^{m} (-1)^{m-k} \binom{m}{k} U_K f(x', kr). \]

Theorem 4.1. Let \(\alpha = \lfloor \lambda \rfloor - l + n \), \(1 < p \leq q < \infty \), \(\beta < p - 1 \) and
\[\frac{n - \alpha p}{p(n - 1)} < \frac{1}{q} \quad \text{(when } n - \alpha > 0 \text{).} \]

Further suppose \(0 < \omega < m \), where \(\omega = (n - 1)/q - (n - \alpha p + \beta)/p \). If \(f \) is a nonnegative measurable function on \(\mathbb{R}^n \) satisfying (2.2) and (2.3), then
\[\lim_{r \to 0} r^{-\omega} S_q(u_r) = 0, \]
where \(u_r(x') = \Delta_t^m U_K f(x', \cdot)(0) \).

To prove this, we have only to prepare the following two lemmas instead of Lemmas 2.2 and 2.3.

Lemma 4.1. Let \(\beta > -1 \), \(q > 0 \) and \(|\lambda| - l + n/q > 0 \). Let \(m \) be a positive integer such that
\[0 < |\lambda| - l + \frac{n + \beta}{q} < m. \]

Then
\[\left(\int |K_m^*(x, y)|^q |y_n|^\beta dy \right)^{1/q} \leq M_{\lambda} |\lambda| - l + n + \beta/q \]
for all \(x = (x', x_n) \in \mathbf{D} \), where \(K_m^*(x, y) = \Delta_t^m K(x' - y', \cdot - y_n)(0) \) for \(x = (x', x_n) \in \mathbf{D} \) and \(y = (y', y_n) \in \mathbb{R}^q \).
Proof. For $x = (x', x_n) \in \mathbf{D}$, write
\[
\left(\int |K_m^*(x, y)|^q |y_n|^2 \, dy \right)^{1/q} = U'(x_n) + U''(x_n),
\]
where
\[
U'(x_n) = \left(\int_{\{y = (y', y_n) : |x' - y| \geq (m + 2)x_n\}} |K_m^*(x, y)|^q |y_n|^2 \, dy \right)^{1/q},
\]
\[
U''(x_n) = \left(\int_{\{y = (y', y_n) : |x' - y| \leq (m + 2)x_n\}} |K_m^*(x, y)|^q |y_n|^2 \, dy \right)^{1/q}.
\]
If $|x' - y| \geq (m + 2)x_n$, then we obtain by Taylor's theorem,
\[
(4.1) \quad |K_m^*(x, y)| \leq M_x^m |x' - y|^{\lambda - l - m}.
\]
Since $|\lambda| - l - m + (n + \beta)/q < 0$, applying the polar coordinates about x', we have
\[
|U'(x_n)| \leq M_x^m \left(\int_{\{y = (y', y_n) : |x' - y| \geq (m + 2)x_n\}} |x' - y|^{(\lambda - l - m)q} |y_n|^2 \, dy \right)^{1/q}
= M_x^m \left(\int_{(m + 2)x_n}^{\infty} r^{(\lambda - l - m)q + \beta} r^{-n-1} \, dr \right)^{1/q}
= M_x^{|\lambda| - l + (n + \beta)/q}.
\]
On the other hand, since $|\lambda| - l + n/q > 0$ and $|\lambda| - l + (n + \beta)/q > 0$, we have by Lemma 2.2
\[
|U''(x_n)| \leq M \sum_{k=0}^{m} \left(\int_{\{y = (y', y_n) : |x' - y| \leq (m + 2)x_n\}} |x' - y + kx_n e^{(\lambda - l - m)q} |y_n|^2 \, dy \right)^{1/q}
\leq M_x^{|\lambda| - l + (n + \beta)/q},
\]
where $e = (0, \ldots, 0, 1)$. \hfill \Box

Lemma 4.2. Let $q > 0$ and m be a positive integer such that
\[
0 < |\lambda| - l + \frac{n - 1}{q} < m.
\]
If $x = (x', x_n) \in \mathbf{D}$ and $y = (y', y_n) \in \mathbb{R}^n$, then
\[
\left(\int_{\mathbb{R}^{n-1}} |K_m^*(x, y)|^q \, dx' \right)^{1/q} \leq M_x^m (|x_n| + |y_n|)^{|\lambda| - l - m + (n - 1)/q}.
\]
Proof. Let \(x = (x', x_n) \in D \) and \(y = (y', y_n) \in \mathbb{R}^n \). If \(|y_n| \geq (m+2)x_n \), then, since \(|\lambda| - l - m + (n-1)/q < 0\), we have by (4.1)

\[
\left(\int_{\mathbb{R}^n} |K_m^*(x, y)|^q \, dx' \right)^{1/q} \leq Mx_n^m \left(\int_{\mathbb{R}^n} |x' - y|^{(|\lambda| - l - m)q} \, dx' \right)^{1/q}
\]

\[
= Mx_n^m |y_n|^{(|\lambda| - l - m + (n-1)/q)}.
\]

If \(|y_n| < (m+2)x_n \), then we have by (4.1) and Lemma 2.3

\[
\left(\int_{\mathbb{R}^n} |K_m^*(x, y)|^q \, dx' \right)^{1/q} \leq Mx_n^m \left(\int_{\{x' : |x' - y| \geq 2(m+2)x_n\}} |x' - y|^{(|\lambda| - l - m)q} \, dx' \right)^{1/q}
\]

\[
+ M \sum_{k=0}^m \left(\int_{\{x' : |x' - y| \leq 2(m+2)x_n\}} |x' - y + kx_n e_i|^{(|\lambda| - l - m)q} \, dx' \right)^{1/q}
\]

\[
\leq Mx_n^{|\lambda| - l + (n-1)/q}.
\]

Therefore the required inequality now follows. \(\square \)

Theorem 4.2. Let \(1 < p \leq q < \infty \),

\[
\frac{n - mp}{p(n-1)} < \frac{1}{q} \quad \text{when } n - m > 0
\]

and

\[
\frac{n - mp + \beta}{p(n-1)} < \frac{1}{q} < \frac{n + \beta}{p(n-1)}.
\]

If \(u \in BL_m(L^p_{\text{loc}}(D)) \) satisfying (3.1) for \(-1 < \beta < p - 1\) is \((m, p)\)-quasicontinuous on \(D\), then

\[
\lim_{r \to 0} r^{(n - mp + \beta)/p - (n-1)/q} S_q(U_r) = 0,
\]

where \(U_r(x') = \Delta_m^p u(x', \cdot)(0) \) for \(r > 0 \).

In fact, since \(\Delta_m^p Q = 0 \) for any polynomial \(Q \) of degree at most \(m - 1 \), we have

\[
U(x) = \Delta_m^p u(x', \cdot)(0) = \sum_{|\lambda| = m} a_\lambda \int K_{\lambda, m}(x, y) D^{\lambda} \tilde{u}(y) \, dy,
\]

where \(K_{\lambda, m}(x, y) = \Delta_m^p K_\lambda(x' - y', -y_n)(0) \) with \(K_\lambda(x) = x^\lambda |x|^{-n} \). Now we can apply Theorem 4.1 to obtain the present result.
ACKNOWLEDGEMENT. The author would like to express his deep gratitude to Professor Y. Mizuta for his valuable advices and encouragement.

References