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1. Introduction
Let D C R" (n > 2) denote the half space
D={x=(@"x,)€eR" xR :x, >0}
and set
S=0D;

we sometimes identify’ € R*~! with (x’,0) € S. We define the hyperplane integral

S, (u) over S by
1/q
560 = [t ra)

for a measurable function o8 andg > 0.

Set
m—1 k k
U =l =S (i) u| (', 0)
pard k! Oxp,

for quasicontinuous Sobolev functions @9 where the vertical limits

k k
<ai ) “(xl’o):x”To(ai > (e, xa)

exist for almost everyy’ = (x’,0) € 9D and 0< k < m — 1 (see [8, Theorem 2.4,
Chapter 8]).

Our main aim in this note is to study the existence of limitsSpfU, ( yat =0.
More precisely, we show (in Theorem 3.1 below) that

lim r=5,(U;) =0
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for somew > 0.
Consider the Dirichlet problem for polyharmonic equation

A"u(x)=0

with the boundary conditions

9 k
(37) ul(x',0)=f,&") (k=01...,m—1).
We show (in Corollary 3.1 below) that if £ p < g < o0, n/p — (n —1)/q <1 and
u € W™P(D) is a solution of the Dirichlet problem wittf; x() = (9/9x,)*u(x’, 0) for
0<k<m-1, then

r"To 1/ p—(—1)/q—m S,(U,) =0,

where U, (') = u(x', r) — Y1 (F /&Y fulx").
To prove our results, we apply the integral representation in [6, 8]. For this pur-
pose, we are concerned witi -potentiélg f defined by

U f(x) = / K — ) f()dy

for functions f onR”" satisfying weightedL? condition:

[ 150wy < o
RII

In connection with our integral representatiok, x ( ) is of the farhx|™" for a
multi-index A with lengthm . Our basic fact is stated as follows (see Theorem 2.1 be-
low):

lim 7/ P—(—=1/a—m Sq(btr) =0,

r—0

whereu, () = Ux f(x',r) — > i (r* /KDI(/0x, ) U £1(x").

In the final section, we give growth estimates of higher differences of Sobolev
functions.

For related results, see Gardiner [2], Stoll [14, 15, 16] and Mizuta [5, 6, 9]. We
also refer the reader to Mizuta-Shimomura [10, 11] concerning monotone functions as
a generalization of harmonic functions.
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2. Hyperplane integrals of potentials

For a multi-index\ and! > 0, set

XA

TR

KO =1

We define theK -potentialix f by
Uk ()= [ KGr= )70y

for a measurable functioff oR" satisfying

2.1) / @+ DN £y < oo
R”
and
(2.2) / O nlPdy < 000 3= (1 ves ).
R’I

In particular, K is the Rieszv-kernel whenX = 0 and/ =n — «. In this case,
Uk f is written asU,, f with a = |A\| — [ +n > 0. Note here that (2.1) is equivalent to
the condition that

(2.3) Ualf| # oo.

Throughout this paper, le¥  denote various constants independent of the variables
in question.
For a nonnegative integet , consider

m k
Kn(r.y) = Klx—y) =350 [( 0 ) K

= k! Ox,

(xl - y)’

wherex =, x,) € R"! x R; we sometimes identifx’ with (x’, 0).

Lemma 2.1. Letm be a nonnegative integer such that — 7 < m + 1.
(1) If |x' —y|>x,/2>0and |x — y| > x,/2> 0, then

|Kon(x, )| < MY — y|AI=t=m=1,

n

(2) If |x —y| < x,/2, then|K,,(x, y)| < M(x,‘,,M_[ +|x — y|[IND),

(3) If |x" —y| < x,/2, then|K,,(x, y)| < M(x,l,)“_l +xMx — y||>‘"’*"’).
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Proof. If |x’ — y| > 2x,, then by Taylor’s theorem, we obtain

m+l

Xn —l—m—
[Knlx ) < M6 ) = [P0 (0< 6 <)

Mx’r;z+1|xl _ y‘ \)\|7lfmfl.

IN

If x,/2 < |x’ —y| <2x, and|x — y| > x,/2 > 0, then

m k k
X 0
K )] < [KG— )]+ 30| l(a—> K| ()
k=0 | " Kn
m X k
< MR 3By
k=0
< Mx,L’\l_[
< MX,T+1|X/ o y|\A|717m71’
so that (1) is proved.
If |x" —y| <x,/2, thenx,/2 < |x — y| < 3x,/2, so that
m xnk 9 k ,
K. 3)] < [KGe— )+ 30 |50 (a—) K| -
=0 : Xn
m X k
< MX’LA|7I+MZ ]; I/ — y| A==k
k=0
< M(xl|l)\\—l +x’rln‘x/ _ y||)\\—l—m)’

which proves (3).
Finally, if |x — y| < x,/2, thenx, /2 < |x" — y| < x, +|x — y| < 3x,/2, so that

m xnk 9 k
[Kn(x, )| < [K(x =)+ o [(8_xn> K| (')
k=0
< =y M — |
< Mo = R,
which proves (2). Thus the present lemma is established. ]

For a pointx € R" andr > 0, we denote byB i, r ) the open ball with center at
x and radiusr .
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Lemma 2.2 (cf. [9, Lemma 3.2]). Let3 > —1, ¢ >0and |\ —!+n/q > 0. Let
m be a nonnegative integer such that

m<I|\—-1+ <m+1

n+p
q
Then

1/q
(/ | K, (x, y)|qy,,'6dy> < Mxl\qA|71+(n+,3)/q

for all x = (x', x,) € D.
Proof. For fixedx € D, consider the sets

E1=B(x,%"), E2=B(x’,x—2”>, E3=R" — (E1U Ey).

Since|\| -1+ +5)/q —m —1 < 0, applying the polar coordinates abott we have
by Lemma 2.1(1)

N

1/q L L 1/q
( Km(x,y>|q|yn|ﬂdy) _Mx;"+( x! — y[(Al=tom= Mynﬁdy)
E3 E3

oo 1/q
Mxllln+1 / r(\/\|7lfmfl)q+ﬂrnfldr
Xn/2

= M)/,

IN

Similarly, since|\| =/ +n/q > 0, we have by Lemma 2.1(2)
1/q
</ | Kon(x, y)lqunﬂdy>
Ey

Finally, since|A| — [ + (n + 3)/q —m > 0, we obtain by Lemma 2.1(3)

1/q
( / Km(x,y)|q|yn|ﬁdy)
Ep

IN

1/q
([ 6+t
E;
Mxr\lk|fl+(n+5)/q‘

IN

1/q
M ( (e 4 y*""’)qunlﬁdy)
Ep

1/q

IN

Xn /2
Mxl|z)\\—l+(n+5)/q +Mx,/ln </ r()\|—l—m)q+ﬁrn—ldr>
0

M -HeB)/g.

The required inequality now follows. Ll
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Lemma 2.3 (cf. [9, Lemma 3.4]). Let ¢ > 0 and m be a nonnegative integer
such that

n—1

m < |\ —1+ <m+1

If x=(',x,) €D andy=(y, y,) € R", then
1/q
([ Rtrolrax’) < bagris « P on-aseae,
Rn—1

Proof. Letx = {’,x,) € Dandy = (', y,) € R". If |y,|] > 2x,, then, since
[A|=1—m—1+@n—1)/q <0, we have by Lemma 2.1(1)

Ya 1/q
(/R » | Ko (x, Y)|qul> MX;T+1 (/R » |x/ - Y|(>\|lm1)qul>

00 1/q
Mx'/ln+l (/ (r2 +ynZ)(|)\—/—m—l)q/Zrn,—Zdr)
0

m+1 A|—l—m—1+(n—1
Mx" |yn|‘| =1/q_

IN

If |ya| < 2x,, then we have as in the proof of Lemma 2.2

1/q 1/q
([ kateoiar) <o ([ ity yan
Rn—1 {x":y€E1}
1/q
+M / (XILM—/ +x'/ln|x/ _ y|\)\|—/—/n)qul
{x":y€E>}

1/q

+ Mx:ln+1 / |x/ _ y|(\/\|—1—m—1)qu/

{x":y€Es}

1/q
Mx’|l)\\—l+(n—l)/q +M / |xl _ y/‘(M\—l)qu/
B(y’,x,/2)

1/q
+ M)C;ln / ‘X/ _ y/|(\)\|717m)qu/
B()",x,,/2)

1/q
+ Mx:ln+1 (/ (xn + |)C/ _ yl|)(>\|—1—m—1)qu/)
Rn—1

- Mx’|l)\\—l+(n,—l)/q.

IN

Therefore the required inequality now follows. U
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Lemma 2.4 (cf. [1, Theorem 13.5], [8, Sections 6.5 and 8.2] et a = |\|—I+n,
p>L1Lap>1 ap >1+pand -1 < g < p—1 If fis a measurable func-
tion on R" satisfying(2.2) and (2.3), thenUg f has thg ACL) property, in particular,
U f(x', x,) is absolutely continuous oR for almost everyx’ € R"~1. Moreover, in
casem Is a positive integer such th@t —m)p > 1 and (o« —m)p > 1+,

(o) verton= [ () &G =250

is absolutely continuous oR for almost everyx’ € R* 1,

Theorem 2.1 (cf. [5, Theorem 2.1] and [9, Theorem 2.1])Leta = |\| — [ +n
satisfym+1l/p<a<m+n. Letl<p<g<oo, -1<pf<p—1and

n—ap n—1

h —« )
p(n_a)<q(n_a+m) whenn —a >0

Further supposen < w < m+1, wherew =(n —1)/g —(n—ap+0)/p. If fis a
nonnegative measurable function &1 satisfying(2.2) and (2.3), then

rlimor_wsq(”r) =0,
whereu, (x') = Ux f(x', r) — > peo(r* /KNI(D/0x, ) Uk f1(x’, 0).

Proof. Under the assumptions ¢n «, 3, ¢ andm in Theorem 2.1, we can take
(6, ~) such that

(2.4) ﬁ<7<p@—a+m+ﬂ“ﬁ—£gfa,
25 phn—a+tm+1l)Yy+(a—-m—-Lp—-n<y<pn—a+m)d+(a—m)p—n,
(2.6) f<y<p-—1 0<dé<l,
2.7 opn —a)>n—ap
and
-1 -1
(2.8) n n

q(n—a+m+1)< < qg(n —a+m)

(if « > n, then (2.7) clearly holds). Set = @4d)p’ andb =—~p’/p, wherep’ =
p/(p —1). Then, by (2.6), we have

(2.9) b> -1
In casea > n, we clearly find

(2.10) a—n+g>Q
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and in casex < n, (2.10) also holds by (2.7). Further, (2.5) implies
(2.11) m<o¢—n+naj<m+l.

By the fact thatn + Ip < «, we have

(2.12) ap > 1

Sincew > m, we have

(2.13) (o —m)p >1+p.

By (2.12), (2.13) and Lemma 2.4, we first note that

m xk 9 k
0 () = Uk f) = Y02 [(3—) Ust

k=0

(x".0)

/ Kou(x. ) FO)dy.

Using Holder's inequality, we have

(1-9)/a 1/p
()] < ( / |Km(x,y>“|yn|bdy) ( / |Km(x,y)|5f’f(y)"|yn|wy) .

By (2.9)—(2.11) and Lemma 2.2, we have

1/p
luy, ()| < MxfommE=orn/p'=x/p ( / Ko (x, y)l‘s”f(y)”lymdy) :

In view of Minkowski’'s inequality for integral we have

Sq (M.\-,,) < Mx’(la—n)(l—é)ﬂq/p/ —v/p

r/q 1/p
dq / » y
X {/ </R”1 ‘Km(x, )’)| dx ) f(y) |yn| dy} )

Here, noting (2.8), we have by Lemma 2.3

r/q
(/ 1 |K,,,(x, y)|5qul> S M[x’rln+1(x" + |yn Doz—n—m—l+(n—l)/5q]Sp.
R”*

Consequently
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Sq(ur) < Mr(oz—n)(l—é)m/p/—fy/p+(m+l)6

1/p
x { / [+ y,1|)a"'"1*‘"1>/5q]5”yn|”ﬁf(y)ﬂynﬂdy} .

Consider the function

k(r, yy) = rPn=0p*B)/p—(@=1)/a] .pllc—n)L=0yn/ '~/ p+m+1)]

X[(r + [y ) DRy, 8,

Then

1/p
rT¢S,w) <M {/k(r, )’n)f()’)pynﬂdy} ’

wherew = (n — 1)/q — (n — ap + §)/p. It follows from (2.4) that

o plamm)(1=8)tn/p =/ pHn+ 1 = | (1—atm+1)5+(B—)/p—(—D)/q _, g

asr — 0. If r < |y,|, then

(n—atm+1)5 p+(B—~)—pn—1)/q
) <M;

k(r’ yn) < M( -

[ Y]

if |y,| <r, then

k(r,y,) <M <|);—n|>7ﬁ <M.
Hence Lebesgue’s dominated convergence theorem implies that
rIiLnOr‘“’Sq(u,) =0.
Now the proof of Theorem 2.1 is completed. U

3. Sobolev functions

For an open seG C R”, we denote byBL,, L’ (G)) the Beppo Levi space

loc

BL, (LY (G)) ={u € L] (G): D*u € LE (G) (A =m)}

loc loc
(see [8, Chapter 6]). Sek,(x) = x*|x|™" and
K)\('x - y)’ ye B(O’ 1)’
K)\,m(xa y): K,\(x—y)— Z ﬁ |:(2)MK/\:| (—y), y € Rn—B(O, l)

! Ox
|u|<m—1 #
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In view of [8, Theorem 7.2, Chapter 6], eaehe BL,,(L{ (D)) satisfying
(3.1) / |Vt (x)|PxPdx < oo
D

has an f:, p )-quasicontinuous representafiyavhere|V,,u(x)| = (3, | D u(x) P2,
1< p<ooand—-1< < p—1. Moreover,ii is given by

i)=Y ax [ Runle DD 0Ny + P
|X|=m

whereu is an extension ofi tdR", P(x) is a polynomial of degree at most — 1.
Note further from Lemma 2.4 that for eagh with<0k < m — 1 and for almost
everyx’ € R" 1,

k k
<8()9C,,> /k)\,m(xa J’)D’\ﬁ(y)dy:/<azn> I?)\’m(x,y)DAﬁ(y)dy

holds forx, € R, wherex =/, x,).
Since 0 ¢ )— Y1t (n* /kDI(8/0x,)k Q](x’) = 0 for any polynomialQ of degree
at mostm — 1, we have

m—=1 k
UR) = i) - > % (ai ) i(x')

k=0

= Y o [ Kanle )D TNy = i(3) - P)

| X|=m

for x € D, where Ky (x, y) = Kx(x — y) — Yoo (xa* /KDI(8/0x,) KAN(x" — ).
Theorem 2.1 now gives the following result.

Theorem 3.1. Letl< p <g < oo,

w<} whenn —m >0

pln—m) ¢

and
n—p+p 1 n+p
— L << )
pn—=1) g p@r-1)

If u e BL,(Li.(D)) satisfying(3.1) for —1 < § < p — 1 is (m, p)-quasicontinuous on
D, then

lim F=m ) p==D/a g (1) =0,

r—0
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where U, (x") = u(x’, r) — ZZ;Bl(rk/k!)[(a/ﬁxn)ku](x’, 0).
Consider the Dirichlet problem for polyharmonic equation:
A"u(x)=0

with the boundary conditions

o k
(8 > u(x’,0)=fix") (k=01...,m—1).
Xn
We denote byWw™-? ¢ ) the Sobolev space
W™P(G) = {u € LP(G) : D*u € LP(G) (|\| <m)}

(see Stein [13, Chapter 6]). B € W™P(D) is a solution of the Dirichlet problem,
then the vertical limit §/0x,)u(x’, 0) exists for almost every’ = (x’,0) € 9D and
0<k<m-—1 (see [6], [7]).

We also see that every function iw”:? DY can be extended to a function in
wm-P(R") (see Stein [13, Theorem 5, Chapter 6]). Hence Theorem 3.1 gives the fol-
lowing result.

Corollary 3.1. Letl< p <g < oo and

_1
T

(o<)ﬁ_
p

If u € W™P(D) is a solution of the Dirichlet problem withf;(x’) = (0/0x,) u(x’, 0)
for 0 <k <m —1, then

lim p/P=(=D/a=mg (1) =0,

r—0
where U, (x') = u(x’, r) — Spg (F /&Y fulx").
4. Higher differences
For r > 0 and a functioru , we define the first difference
Au(t) = Atu(t) = u(t +r) — u(r)
and them -th difference

ATu(r) = AP (Au()) (0).



770 T. SHIMOMURA

It is easy to see that
Aru() =Y (~1y (’Z) u(t +kr).
k=0
As in Section 2, we consider

XA

K(X) = W

and define
w () = APUR (&', )(0) = S (-1 (’}j) Uk (' k).
k=0

Theorem 4.1. Leta=|\—-1l+n,1<p<g<oo, f<p—1and

nzap < 1 (whenn — a > 0).
pin—1) ¢q

Further supposed < w < m, wherew = (n — 1)/g — (n —ap + 8)/p. If fis a
nonnegative measurable function &1 satisfying(2.2) and (2.3), then

|im0r7qu(ur) = Oa
whereu, (x’) = A" Uk f(x', -)(0).

To prove this, we have only to prepare the following two lemmas instead of Lem-
mas 2.2 and 2.3.

Lemma 4.1. Letg > -1, ¢ > 0and |\ —[+n/q > 0. Letm be a positive
integer such that

O<|A -1+ < m.

n+p3
q
Then

1/q
</|K,T,(x,y)‘1|yn|ﬁdy> < Mx B /g

for all x = (x", x,) € D, where K (x, y) = Al K(x" —y', - — y,)(0) for x = (x", x,) € D
andy = (', y.) € R".
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Proof. Forx ={’, x,) € D, write

1/q
</|K;Z(x,y)lq|yn|ﬂdy) = U (xn) + U" (x),

where

1/q
vw) = ([ Ko Il |
{.\':(y/syn):‘XI_Y|Z(’"+2)-\'M}

1/q
U () = / K )l Py |
{y=0" )i 2" —y| <(m+2)x, }

If |x" —y| > (m+2)x,, then we obtain by Taylor’s theorem,
(4.1) K. y)| < Moxyy[x” — A=,

Since|A| =1 —m+ (n +3)/q < 0O, applying the polar coordinates abotft we have

1/q
U (5] < M / ! — [N =t=may, gy
{y:(yl~yrz):‘x/ _.\" Z(m+2)xn}

) 1/q
M.X,Iln (/ r(|)\—l—m)q+,6‘rn,—ldr>
(m+2)x,

Mx=1e)/a,

N

On the other hand, since\| =l +n/g > 0 and|\| -1+ (n +3)/q > 0, we have by
Lemma 2.2

Y 1/q
|U//(xn)| < MZ / |x’ -y +kx”e|(‘)\|71)q|yn|ﬁdy
=0 \/ =073 =y <(m+2h,}
< Mx N9 g
wheree =(0...,0, 1). .

Lemma 4.2. Letg >0 andm be a positive integer such that

n—1

O< [N -1+ <m.

If x=(x',x,) €D andy=(y,y,) € R", then

1/q
(/ IK,f,(x,y)lqu’> < Mx™(xy + |y |) A=/
Rr—1
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Proof. Letx ={’,x,) €D andy =¢', y,) € R". If |y,[ > (m+2)x,, then, since
IA| =1 —m+(n—1)/q <0, we have by (4.1)

1/q 1/q
( | it ny') < My ( e y|“'—f—m)quf)
Rni—1 Ri—1

Mx" |y, |A[—l=m+(n—1)/q

A

If |y,| < (m+2)x,, then we have by (4.1) and Lemma 2.3

1/q
([ e

1/q
< Mx;zn </ |xl _ y(|)\—l—m)qul>
(x5 —y|>2m+2), }

m

1/q
+MY / ! — y + ke (A=D4 gy
k=0 {x"tx’ =y <2(m+2)x, }

< MxM-t+e-D/q,
Therefore the required inequality now follows. ]

Theorem 4.2. Letl< p <g < oo,

% <§ whenn —m >0
and
n—mp+p3 1 n+pj
pin—=1) " q " pln—1)
If u € BL,(Li.(D)) satisfying(3.1) for —1 < § < p — 1 is (m, p)-quasicontinuous on
D, then

lim r(n—mp+5)/p—(n—1)/flSq(Ur) =0,

r—0

where U, (x") = A™u(x’, -)(0) for r > 0.
In fact, sinceA?Q =0 for any polynomia) of degree at most- 1, we have

Ux) = Aju@x',)(0)= ) ax | K3 u(x, y)D u(y)dy,
[X|=m

where K3, (x, y) = AY Kx(x'—y", - —y,)(0) with K (x) = x*x|~". Now we can apply
Theorem 4.1 to obtain the present result.
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