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1. Introduction

Let G be a permutation group on a finite set Ω. A transitive group T
on ΩU {°°}> where oo denotes an additional point, is said to be a transitive
extension of G if the action on Ω of the stabilizer in T of the point oo is
permutation ίsomorphic to that of G on Ω. What permutation groups have
transitive extensions is a rather difficult problem. In the present paper we
study this problem in the case G is simply transitive on Ω. Firstly we give some
necessary condition for a simply transitive group to have a transitive extension,
and secondly, making use of it, prove the non-existence of transitive extensions
of some classes of simply transitive groups with particular exceptions.

Before stating our results we define some terminology. Let a permuation
group G on a finite set Ω act (not necessarily faithfully) on subsets Ωx and Ω2 of Ω.
Then we say that

( * ) (G, Ωj) is similar to (G, Ω2) on Ω,

if there is an element x in the symmetric group on Ω such that
( i ) x normalizes G, and
(ii) x interchanges the subsets Ωx and Ω2 of Ω.

Out result is as follows.

Theorem 1. Let G be a simply transitive group on Ω with self-paired
orbitals A and Γ such that
( i ) for # e Ω (GΛ, A{a)) and (Gβ, T(a)) are not similar on Ω— {a},
(ii) G has no orbital Π different from Δ and Γ so that (Gβ, Π(#)) is similar to

(Gm, Δ(α)) or (Gm, I » ) on Ω - {a}, and
(iii) I A(ά) Π A(c)| Φ0/or α<ΞΩ and cGΓ(α).
Assume that G has a transitive extension. Then either of the following cases occurs:
(A). For a^Ω and iGΔ(α) Gah has a fixed block Λ on Δ(α)— {b} such that A
is different from A(a)ΓϊA(b) and (Gab9 Λ) is similar to (Gab, A (a) Π A(b)) on
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(B). For # e Ω and c^T(a), Gac has a fixed block Λ on A(ά) such that Λ is
separated from A(a)f]A(c) and (Gaci Λ) is similar to (Gacy A(a)f)A(c)) onΩ— {a, c}.

By Theorem 1 we have, for example, the following results.

T h e o r e m 4.3, The symmetric group Sm or the alternating group Am on a set

Σ, IΣI —m> considered as a permutation group of degree (mjon r-element subsets of

Σ with 1 < r < m — 1 has no transitive extension except the cases (r, m)=(2, 4), (2, 5)

and (2, 6).

Theorem 4.4. A subgroup of PYL(my q) containing PSL(m9 q) with q>2 and

m>3 considered as a permutation group of degree—^ ~"~ A¥ ~9)'"\ΐ ~Q )

on r-dimensional subspaces of PG(m—l> q) with ί^r^m—3 has no transitive
extension.

The case r=0 in Theorem 4.4. was treated by H. Zassenhaus [5].

Acknowledgement. Professor E. Bannai has kindly pointed out that the
conclusion of Theorem 1 remains valid without the assumptions (i) and (ii) if
all orbitals of G are self-paired (see the proof of Theorem 1 in section 3). The
author wishes to thank him for his helpful comments. The author also
wishes to thank Professor H. Nagao for his advice and encouragement.

2. Notation, definitions and prelimiany results

Let G be a permutation group on a finite set Ω. For points a>byc," of Ω
we denote by Ga b c... and Gtabc...} the pointwise and the global stabilizer in G
of the set {a, b, cy •••}, respectively. A subset Δ of Ω is a fixed block of G if G
fixes Δ as a set. If Δ is a fixed block of G the restriction of G to Δ and the
kernel of the restriction of G to Δ are denoted by GA and C?Δ, respectively. For
the remainder of this section G is assumed to be simply transitive on Ω. Then
an orbital of G is a mapping Δ from Ω into the subsets of Ω such that

( i ) A(a) is an orbit of Ga for αGΩ, and
(ii) Δ(ίi)*=Δ(<i*) for all αGΩ, g<=Ξ G.

An orbital of G is self-paired if iGΔ(fl) implies flGΔ(4). Now let G have a
transitive extenstion Ton ΩU {°°}. Then for ίGΩU {°°} we denote by Ac the
orbital of Tc considered as a transitive group on ΩU {°°} — {c} such that
( i ) . Δoo=Δ, and
(ii). Ac(d)={Aoo(dg~1)y for all£=£:::)€= Γ, ί G Ω U {oo}-{*}..

In this notation we have:

Lemma 2.
( i ) . {Aa(b)}*=Aag(bg)for all α , ίGΩU {-}, g^ T.
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(ii). We have Aa(b)= Ab(a)for all a, έGίlU {°°} if there exists no orbital Π of
G such that for cEΩ (G C , U(C)) is similar to (Gc, A(c)) on Ω - {c}.
(iii). If A is self-paired then Aa is self-paired for all αeΩU {°°} If further
Aa(b)=Ab(a)y then for cGΔβ(J), Tiatbc} acts as S3 on {a, b, c}.

Proof.
( i ) . Clear by the definition of Aa.
(ii). Let y be an element in T of the form {a, £)•••. Then y normalizes Tab

and by the assumption on Δ, y fixes the orbit Aa(b) of Tab on Ω U {°°} — {tf, b].
Hence by (i) we have Aa{b)=Ab{a).
(iii). Assume that Δ=Δoo is self-paired, and let eGΔ(i). Then T contains an
element x of the form (°°)(£, rf) . Then for an element y= (a'.'.'.) in T we have
that ey^Aa(dy), and xy = (a)(ey

y ίP) . Hence Aa is seld-paired. Now let
cGΔβ(ί)=Δδ(fl). Then T has elements of forms (a)(b, c) and (ό)(α, £)•••.
Thus Tiabc} acts as S3 on {α, &, c}.

3. Proof of Theorem 1

Let the orbitals Δ and Γ of G satisfy the assumptions of Theorem 1. In a
usual way we define a graph structure on Ω as follows a pair {ay b} of distinct
points in Ω is said to be an egde if iGΔ(α) or equivalently if αG A(b). Assume
that G has a transitive extension Γ o n Ω U {°°}, and let a be a fixed point in Ω.
Then by making use of the orbital Aa of Ta defined in section 2 we hav as above
a graph structure on Ω U {°°} — {a} - To distinguish the edges defined by Δoo
and Aa we say that

(* ) a pair {b, c} of points on Ω(J {°°} is a blue edge if A G Δ ^ C ) and a red
edge if i e Aa(c).

Note that an element g=(£Z) in T carries blue edges to red ones. Now
consider the stabilizer Tooa of oo and a, and let b be a point in Aoo(a) (=Δβ(oo)).
Then the global stabilizer 7\oo>a>i> in T of the set {oo, a, b} acts as S3 on it by
Lemma 2 (iii). Then an element in Tiooab} of the form (oo#)(i) carries
Δ . W Π Δ . ί i ) to ΔΛ(oo)nΔα(δ) (Lemma 2'(i)). Thus, if | Δoo(α) Π Δ«(6) I Φ0,
(Tooaby AOo(a)ΠAoo(b)) and (T^^, Aa(oo)Γ\Aa(b)) are similar in our sense.
Assume now that Case A of Theorem 1 does not occur. Then it follows that
A00(a)f]A0o(b)=Aa(oo)Γ\Aa(b). Then taking an element x in T^^^ of the
form (ooi)(α) and considering the image of Δ00(α)ΠΔoo(6)=ΔΛ(oo)nΔα(&)
under x we conclude that Δoo(β)nΔoo(i) = ΔΛ(oo)nΔα(δ) = Δoo(i)nΔΛ(i). In
particular Δoo(δ) Π Aa(b) is contained in Δoo(tf). This implies that there is no
pair {b, d} with J G Ω U {OO} — {{oo, a} U A^a)} which is both a blue edge
and a red edge. This is also true if \Aoo(a)Γ[AOo(b)\=0. Then for a point
£ in T(a) with | Δ(α) Γi Δ(c) | Φ0, Δ ^ ) Π Δ ^ ) and Aa(oo)Γ)Aa(c) are fixed
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blocks of Tooac which have no point in common. Furthermore since T^^ c}
acts as S3 on {oo,a>c} it follows that (TOQacfAa(oo)Γ{Aa(c)) and ( 7 ^ , ,
Δoo(β) Π Aoo(c)) are similar on Ω— {a, c}.

This completes the proof of Theorem 1.

4. Some applications of Theorem 1

Proposition 4.1. Let G be a 4-fold transitive group on a set Σ, |Σ|=frc.

Assume that the rank 3 group G of degree I ̂  J on 2-element subsets of Σ has a

transtίvίe extension T. Then one of the following holds:

( i ) . w=4, G is SAy and T is PSL(3, 2),
(ii). m=6, G is A6 or S6t and T is A% EU or Sβ E16, the semi-direct product

of elementary abelian 2-group E16 of order 16 by A6 or S6y

(iii). m^>7 and the stabilizer in G of four points in Σ has an orbit of length
two on the remaining points.

In particular if G is 5-fold transitive on Σ then m=6, G is Sβ and T is Sβ E16.

Proof. Let Ω be the set of unordered pairs of points in Σ. For an
element {1,2} inΩ set Δ({1, 2} )={{*,;} | | {ij} Π {1,2} | = 1} amd Γ({1,2})=
{{/,;} I I {ί, j} Π {1, 2} I =0} . Then Δ and Γ are self-paired orbitals of G such

that |Δ({ l ,2}) |=2(m-2), |Γ({1, 2})| = ( ^ ~ 2 ) and |Δ({1, 2})ΠΔ({/,y})| =

m-2 or 4 according as { / , J } G Δ ( { 1 , 2 } ) or Γ({1, 2}). Since G is 4-fold
transitive on Σ the stabilizer in G of {1, 2} and {1, 3} in fί has three orbits on
Δ({1, 2})-{l, 3} of lenghts 1, m-3, namely {2,3}, {{1, ί} | 4 ^ ί ^ w } and
{{2, i} 14^i^m} . Now assume that G has a transitive extension Ton Ω U {°o}.
For /3eΞΔoo(αO with a= {1, 2}, β= {1, 3 } G Ω set v= \ ΔTO(α) Π AΛ(β) Π Δβ(oo)|.
Then since Δ00(α)ΠΔΛ(/9)ΠΔβ(oo) is a fixed block of TL^ we have v=l or
m—2. Note that vφm—3 if m>4, because then both Δoo(α) Π Δ^^) and
ΔΛ(oo) n ΔΛ(/3) must contain {2, 3}. We first prove:

Lemma 4.2. If v= 1 then m=4 and G is S4.

Proof. We assume that m>4 and seek a contradiction. Let {1, 2} be a
fixed element in Ω and for simplicity we denote {1, 2} by α, {1, i} and {2, i}
by βi and δ, (/=3, •••, m)f respectively. We say that a pair {S, £7} of points 6, 8'
in Δoo(α) is a blue edge if f e Δoo(£/) and a erd edge if £ e ΔΛ(£'). Since v= 1 and
m>\, {βι, δ^'s (z=3, ••• m) are the only edges in Δoo(α) which are both red
and blue. Now let x=(ooa)(β3) - be an element of T. We first show that we
can choose x to be an involution. Since G is 4-fold transitive on Σ, G contains
an involution^ having the form (1) (23) on Σ. Then the action of y on Ω is
of the form (oo)(α/53) . Since TioOtΛβz) acts as Sz on {oo, a, β3} we can take
x to be conjugate to y. Now x carries red edges to blue ones and conversely.
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Hence x fixes δ3 and carries /S, (i^4) to some δy 0*^4). Furthermore if x carries

βi to Sj (hence δy to /3t ), {βiy δy} is an edge which are both blue and red.

Hence we conclude that x is of the form (ooa)(β3)(δ3)(β484)(β5δ5) (βm δw). Now

let z be an involution of the form (°oα)(/34) . Then ,similarly to the above,

z has the form (°°a)(β3δ3)(βA)(δA)(β5δ5)'~(βmδm). Hence it follows that xz=

(°°)(a)(βz 83)(β4 δ4)(/35)(δ5) (βm)(8m). Then xz is an element of G and the action

of xz on 2 must be of the form (12)(3)(4) . But then xz can not fix /35, a

contradiction. This complete the proof of Lemma 4.2.

We now complete the proof of proposition 4.1. we may assume that
v—m—2. This implies that blue edges and red edges on Δoo({l,2}) coincide
and that there is no pair {δ, γ} with δeΔo o({l, 2}) and γeΓoo({l, 2}) which
is both a blue edge and a red edge. Now set α = { l , 2}, 7 = {3, 4} and let
g= (ooα)(γ)... be an element of T. Then (Δoo(α) Π Δoo(γ))*= ΔΛ(oo) n Δβ(γ) is
a fixed block of TL̂ y on Δco(α) which is disjoint from Δoo(α) Π Δoo(τ). Further-
more since edges in Δoo(α) Π Δoo(γ) are carried by g to edges in ΔΛ(oo)ΠΔΛ(γ)
we see that ΔΛ(oo)nΔΛ(γ) = {{1, i}, {1,/} {2, ί}, {2, j}} for some i, j in
Σ—{1,2, 3, 4}. This implies that {i,j} is a fixed block of G{xf2X3,4> o n

Σ—{1,2, 3, 4}. Then G1234 fixes {i9j} pointwise or as a set. If the former
case occurs G is A6 or Mn by a result of H. Nagao [3]. But M n considered as
a rank 3 group of degree 55 has no transitive extension on 56 points. This is
seen as follows. Let T be a transitive extension of Mn. Then since Mtl is
simple, T is also simple and has order equal to | M22\, whence T is M22 by [4],
contradicting a well known fact that Mn is not a subgroup of M22 (see [1]).
This completes the proof of Proposition 4.1.

We now prove the following

Theorem 3.4. The symmetric group Sm or the alternating group Am on a set

Σ, IΣI =nι considered as permutation group of degree ( J on r-element subsets of

Σ with ί<Cr<C,m—1 has no transitive extension except the cases (r, m)=(2y 4), (2, 5)

and (2, 6).

Proof. We may assume without any loss of generality that 2r^m. Let fί

be the set of r-element subsets of Σ. For an element a= {1, 2, •••, r) of Ω set

Δ(α) = {{ilf i2, - , ir} \ \ ft, 4, •••, ir} Π {1, 2, .-, r) \ = r - 1 } , and

T(a) = {{i19 4, - , ίr} I I {ily 4, -., ir) Π {1, 2, .-, r} | = r - 2 } .

Then Δ and Γ are self-paired orbitals of G such that | A(a) \ =r(m—r),
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4

Δ and Γ satisfy the assumptions of Theorem 1 except the case w=2r*. Let
β= {1, 2, •••, r— 1, r+1} be an element of Δ(α). Then GΛ β=G ί l > 2 >... ) r_1χ rχ r+1}
has three orbits on Δ(α)— {β}, namely

1 = {ft, 4 - , ir-i, ̂ +1} I {1> 2, -., r-1} Φ ft, 4, •-, ir_ά a {1, 2, ..., r}} ,

2 = {{1, 2, —,r—1, *}|r+2^/^tfz}, and

, •• ,4-2> *", 01 ft> 4> —,ι r-Jc:{l, 2, •• , r - l } ,

Here we have that i Φ j ^ r — 1, |Φ21 =m—r—1 and \Φ3\=(r—l)(m—r—l)
and Δ(α) Π Δ(/3)=Φ1 U Φ2. Therefore if Gaβ has a fixed block Λ on Δ(α)— {/β}
such that Λ=t=Δ(α)ΓIΔ(/8) and (G^, Λ) is similar to (GΛβ, Δ(α) Π Δ(/3)) it
follows that (r— l)(m—r— l ) = r — 1 or wz—r—1, hence m—r+1 or r = 2 . The
former case is out of our consideration and the latter was treated in Prop 4.1.
Thus we may assume that Case A of Theorem 1 does not occur.

Now let δ={l , 2, .-, r— 1, r+2} be an element of T(a). Then G Λ δ =

Gr{1,2,...r_2κr-i,rXr+i,r+2} h a s f o u r o r b ί t s on Δ(tf), namely

, = {{1, 2, .-, r-2, ί,y} I r - l ^ ί ^ r ,

2 = {ft 4, - , ίr-i,Λ I {1> 2, .-, r-2} φ ft /2, ..., ir_£ c
{1, 2, . . . ,r},r+l^;^r+2},

3 = {{1, 2,.. ,r-2, ί ,y} |r-l^ί^r,r+3^y^«} and

4 = {ft, 4, - , ίr-i,y} I {1, 2, .-, r-2} φ ft, 4, - , V-i}

Here we have that | Ψ J = 4 , | Ψ 2 | = 2 ( r - 2 ) , | ψ , | = 2(ιw—r—2) | Ψ 4 | =
(m—r—2)(r—2) and Ψ1==Δ(α) Π Δ(δ). Hence Case B of Theorem 1 may possi-
bly hold only if | Ψ, \ = \ ψ2 \, | ψ31 or | Ψ41, namely r = 4 , r=m—4 or (r, m)=
(3, 9). If r = m - 4 then (r, w) = (3, 7) or (4, 8) because 2r^m. We first
eliminate the cases (r, m)=(3, 7) and (3, 9). Assume that A7 or S7 of degree

ί ^ ) has an transitive extension Γ, and let N denote a minimal normal subgroup

of T. Then N is simple and since N Π 5 7 is a normal subgroup of Ŝ  it follows
that either N=T or TV has index two in Γ, contradicting a result of M. Hall [2],
Now assume that | ψα | = | ψ41 and hence (r, m)=(3> 9). In this case the kernels
of the restrictions of GΛβ to Ψx and Ψ4 are G12345{;6789} and G1{2>3K45}6789» respectively
and hence are not isomorphic as abstract groups. Hence (Gaβ, Ψα) and

* Even in this case the conclusion of Theorem 1 holds since all orbitals of G are self-paired
(see §1).



TRANSITIVE EXTENSIONS OF FINITE PERMUTATION GROUPS 631

)3, Ψ4) are not similar in our sense. Finally we consider the case r=4. Let
θ and π be the orbitals of G defined as follws:

Θ({1, 2, 3, 4}) = {ft, 4, h, ύ) I I ft, h, h, Q n {1, 2, 3, 4} | =1}, and

π{{\, 2, 3,4})= {ft, i2, i3, Q I I ft, 4, i3, Q Π {1, 2, 3, 4} | =0} .

Assume first that m2; 10. Then θ and π satisfy the assumptions of Theorem

1 for Δ and Γ, respectively. We have that | θ(a) I = 4 ^ ^ 4 \ I τt(a) \ =

and

i f £ e » ( α ) .

For α = {1, 2, 3, 4} and 6 = {1, 5, 6, 7} of θ(a), Gat = G{ ικ . .at....»> has
seven orbits on ^(α)— {£}, namely

Λ = {{1, i, j , k} I ft , k) c {8, 9, »., m}} ,

Λ = {ft;, k,
P3 = {{1, ί,y,

P* = {{i>j> k, /} |5^ί,y^7, 2^*^4, 8^/^
P 5 = {{5,6,7,ί}|2^^4},

P. = {{1, M, ̂ } I 5^*,y^7, 8^A}, and

P7 = {ft;, k,

Here I Λ I ^ 1 " ^ 7 ) , |P 2 | = 9 ( / M - 7 ) , | P 3 | = 3 ( W - 7 ) , |P 4 |=9(«-7),

I =3, |P, |=3(»-7), | P 7 | =

Also for an element p = {5, 6, 7, 8} of π{a) Gas> = Gti^.s^Xs.e.'.e} n a s f°U Γ

orbits on θ(a), namely

Oχ = {ft;, *, /} | 5 ^ ί ^ 8 , l ^ i ^ 4 , 9^*,
02 = {ft;, A, /} |5^i,y^8, l^ife^
03 = {ft y, ft, /} I S£i,j, k^S, l^/^4} , and
ot = {fty, ft, /} 11^^4,9^y, ft, /^m}.

Here |OX | = l β ( m J 8 ) , |O 2 | = 24(m-8), |O, |=16, | O 4 | = 4 ( W ^ 8 ) and

Ox=^(α) Π^(p). Hence we see that the conculsion of Theorem 1 may possibly
hold only in the following cases.
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Casel. \pi\ + \p2\ = \pi\ + \p7\.

Case2. |PJ + |P 2 | = |AI + |P2I
Case 3. \O1\ = \O4\.
Case 4. \Ot\ = \O2\.
We treat these cases separately.
Case 1. In this case m=l8. We see that GΛZ is faithful on P2, but not

on P7. Hence Case A of theorem 1 does not hold in this case.
Case 2. In this case m=18, and the kernels of the restrictions of GΛg to

Pj and P3 have distinct orders.
Case 3. In this case m=28} and Gap is faithful on Oly but not on O4.
Case 4. In this case m—12. Assume that G has an transitive extension T

on ΩU {°°}> where Ω denotes the set of four element subsets of Σ, | Σ | =12,
Let # be an element of order three in G having the form (/, j> k) on Σ. Then
x has 135 fixed points on Ω, hence 136 fixed points on ΩU {°°} In particular,
if f e G for ίGΪ 1 , then xt=x8 for some g^G. Then since G contains 440
conjugates of x it follows that the number of conjugates of x in T is equal to

—— X 440, which is not an integer, a contradiction.

Finally the cases (r, m)=(4, 8) and (4, 9) are eliminated by a similar argu-
ment to Case 4.

Theorem 4.4 A subgroup of PΓL(m, q) containing PSL(m, q) with q>2 and

m^>4 considered as a permutation group of degree — ^ ~ ^ ~?Γ"w ~Q ) ^

on r-dimensional subspaces of PG(m—l, q) with \ ̂ r^m—Z has no transitive
extension.

Proof. Let Ω denote the set of r-dimensional subspaces of PG(m— 1, q).
For an element a of Ω set

A(a)= {ySeΩ|dim. af)β = r— 1}, and

Γ ( α ) = {/?GΞΩ|dim.arn/3 = r - 2 } .

Then Δ and Fare self-paired orbitals of G such that

(ϊ+1) 2 if ^ e Γ ( α ) .

It is easy to see that Δ and Γ satisfy the assumptions of Theorem 1. Let β be
an element of Δ(α). We may assume that
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ί/«i \

a = 0 ) and β = (

\

β'r

0
βr.
0

o

\

-1

/

β{(=GF(q)

IVo
Then G<,p ΠPGL(m, q) has the following form:

r 2

*

0
*

0

*

0

*

It is then easy to see that GΛβ has the following orbits on Δ(α)— {β}.

Φ 2 = {βeΔ(α

Φ 3 = {£GΞΔ(α)|dim.£Π/S = r—1, 6Π/S = 5Πα,

Φ4 = {5e Δ(α) I dim. £ Π /3 == r-2} .

Here we have Δ(α)nΔ(/3)=Φ 1 UΦ 2 UΦ 3 , | Φ t 1=

- - 1 )

, and

, | Φ 2 | = ? - 1 ,

a n d | φ 4 | = g

3 ( / - D ( g — 2 - l ) . Therefore Case A of

Theorem 1 dose not hold.

Now let δ = <

/ ?>

o'
0

o'

o

\
- 1

+2

+3

/

be an element of Γ(α).
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Then GaS Π PGL(m, q) is of the form;

r-ί 4
. /"
r-1

4

*

0

* 0

0 *

*

*

and GΛδ has the following orbits on A(a).

Ψ 1 = {SeΞA(a)\dim.εnδ = r-

Ψ 2 = {εεΞA(a)\dim.βn8 = r-, }

Ψ3 = {£e Δ(α) I dim. ε Π δ = r—2, £ Π δ = a Π δ, 6 c a U δ} ,

Ψ4 = {ε(=A(a)\dim. εf)δ = r—2y εΠ8 = αΠδ, £φαUδ} and

Ψ5 = {£EΞ Δ(α) I dim. β Π δ = r-3} .

Here we have ψ 1 = Δ ( α ) n Δ ( 8 ) , , 1Ψ,1 =

I ψ51 = 2^ T l i e o r e m n o t

hold, and the proof of Theorem 4.4 is completed.
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