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PREFACE

It is a widely spread belief that the electronic structures of atoms
and molecules can, at least in principle, be described completely by
quantum mechanics. The view is gaining increasing support from the
current uplift of the computational accuracy which has been brought about
by both the advances in the methodology of quantum theories and the
improvement of high-speed digital computers. Conversely, theoretically
essential understanding of the atomic and molecular phenomena cannot be
obtained without solving, even approximately, the Schrodinger equations.
Thus, the methodology of solving the equations has in itself been a
traditional problem of quantum chemistry.

This thesis is concerned mainly with the methodological approaches
to the electronic structures and scattering-processes of atoms and
molecules. For the bound states a spin orbital theory will be presented,
and a variational theory will be developed for the scattering problem.

In each branch, a new theoretical scheme will be proposed, which can
supply an evidently more accurate wavefunction than does any other
existing theory.

Part I proposed a new orbital theory, named the theory of spin-
optimized SCF general spin orbitals; It provides the most general and
flexible wavefunction in the realm of orbital scheme. The wavefunction
is expected to yield a highly accurate energy as well as models of the
electronic structures of atoms and molecules.

In Part II, a new guiding variational principle to construct

wavefunctions in the scattering theory is proposed. This is aimed at

(i)



analyzing and avoiding the spurious resonances inherent in some
traditional approaches. The interrelationship between the algebraic
theories (or the expansion ones) and the variational approaches is also

elucidated.

The present thesis is a collection of the author's studies which
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PART 1

GENERAL SPiIN ORBITALS

IN ATomMs AND MOLECULES



CHAPTER 1

Introduction

The orbital theories have doubtlessly played a great role in the
field of quantum chemistry. For example, the Hickel method1 and the
semi—emprical2 {or ab initios) SCF-molecular orbital theory lie in the
fundamental part of almost all theories in this field.

The orbital theories may be classified into three categorie if they
are looked at from the viewpoint of the canonical Hartree-Fock orbitals.4
(1) Hartree-Fock orbitals which are unitarily transformed into
convinient forms for physical purposes. The localized molecularnorbital5
is a typical example. Although these orbitals appear to differ greatly

from the original Hartree-Fock orbitals, the wavefunctions themselves
are invariant except for the phase factor.

(2) Correlated orbitals. They are designed so as to incorporate
the correlation effects into the orbital form. This kind of theory was
developed mainly by L6wdin,6 Goddard,7 and their co-workers.

(3) Purely mathematical orbitals. The orbitals of this type, such
as the natural orbital8 and the MC-SCF orbitals,9 are made use of mostly
in order to simulate the configurations involved in the configuration-
interaction wavefunction.8

The purpose of this Part is to explore the orbitals of the second



kind. A new method is proposed, in which the general spin orbitals (two-
component spinors) are introduced into the so-called spin-optimized SCF
(SO-SCF) scheme.6 The new wavefunction (SO-SCF-GSO function) is more
extended or general in form than any other single-configuration function
hitherto available. Naturally, it takes account of the electron |
correlation to a maximal extent that orbital theories can incorporate.

In Chapter 1, theoretical formulation and general properties of the SO-
SCF-GSO wavefﬁnctions are presented in a general ﬁanner. In Chapter 2,
the theory is aﬁplied to the ZZS and 22P states of the lithium atom.
Through the comparison with other methods, the SO-SCF-GSO wavefunction

is analyzed especiélly in connection with the relation between the energy
and the spin density at nucleus. The results have had enough as a
motivation of Chapter 3, in which the distribution function for odd
electrons which are generated in ground-state molecules having even
electrons is described. These odd electrons are regarded to show up in
strong correlation systems such as the biradical species and the

intermediate states of concerted reaction.
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"CHAPTER 2

Formulation of the Spin-Optimized SCF

General Spin Orbitals

A new orbital theory is proposed, in which general spin orbitals
(GSO) are introduced in the spin-optimized (SO) SCF scheme. In this
SO-SCF-GSO theory, the.effective Hamiltonian for each orbital takes the
form of a 2x2 matrix composed of the eigenfunctions for two-component
spinors. It is found that the GSO's thus defined should still satisfy a
general form of Koopmans' theorem. The SO-SCF GSO's are to be obtained
by solving two sets of coupled SCF equations for the spin coupling
coefficients and the linear combination coefficients for basis functions.
Using an STO-6G basis set of the double T quality, sample calculations

have been carried out for the doublet state of the linear H, system for

3
which the bond lengths are fixed at 1.470 and 2,984 bohrs. The total
energy obtained is ca. 3 kcal/mol lower than the values which have

resuited from the SO-SCF-DODS and the spin-extended Hartree-Fock (SEHF)
GSO calculations with the.same basis set. The resulting orbitals are

found to be more delocalized over the entire system than those obtained

by the SO-SCF-DODS theory.



I. INTRODUCTION

The Hamiltonian operator H for any electronic state of spin-
independent quantum systems in the Born-Oppenheimer approximation

satisfies the symmetry relations:

[H,S] = 0 (1)
and

”~

[H,S_ 1= 0 ' (2)

Z

where S is the total spin operator and SZ is its z-component. The spin

symnetry condition (1) is equivalent tol
[H,P] = 0, (3

where P is an arbitrary permutation operator for the spatial variables.
Because of these conditions together with Pauli's exclusion principle,
any trial wave function should necessarily be spin-symmetry adapted and
antisymmetrized.

| The simplest spin-symmetry adapted wave function is the restricted
Hartree-Fock (RHF) wave function,2 which is composed of doubly occupied
spatial orbitals. As is well known, however, the RHF wave functions
provide results which are seriously in error for molecular systems whose
geometry is far apart from that in equilibrium.3 The difficulty can be
overcome by removing the strong constraint of orbital double occupancy
and instead by assuming different orbitals for different spins (DODS).
The spin polarized Hartree-Fock (SPHF) or unrestricted Hartree-Fock (UHF)

orbitals4 thus derived are still defective in that the wave functions



built up thereof are contaminated by those for some irrelevant spin
states.5 To cope with the situation, Lowdin proposed, some twenty years
ago, the projected Hartree-Fock or spin-extended Hartree-Fock (SEHF)
method,6 in which é spin-projected Slater determinant is optimized for
the total electronic energy. |

In 1967, Goddard7 proposed an SCF procedure (GI-method) for the

following type of wave functions:
_ A
wGI = Cl@@i - (4)

where 8? is the ith spin eigenfunction of S2 with the permutation
symmetry A, ¢ is the product of nonorthogonal orbitals, and (L is an
antisymmetrizer. Equation (4) is a special case of the generel wave

functions set forth earlier by Kotani et 31.8

¥ = >i:0.<1>ie§. | (5)

Recently, Ladner and Goddard 9a and Kaldor and Harrisgb performed the
optimization of the wave function which is a linear combination of Eq.
(4), namely,

A A |
Y = acp()i:ciei) ) (6)

Equation (6) is called the spin;optimized self-consistent-field (SO-SCF)
wave function. According to Goddard,10 the SEHF-DODS theory is merely a
special case of the SO-SCF theory applied to the DODS nonorthogonal
orbitals (SO-SCF-DODS).

Alternatively, a number of workers11 have explored the utility of

the general spin orbitals (GSO) defined as the two-component spinors



x
& = (b-k) = aa+ b8 | (7

where a and bk are the apatial functions for the a- and B-spin
components, respectively. So far, the best wave function for many-
electron systems that explicitly retains the concept of the orbitals for
electrons without recourse to configuration interaction treatments,1
appears to be the one based on the SEHF procedure for GSO's (SEHF—GSO).11
In fact, Lunell11d has pointed out that for systems of a limited number
of electrons the SEHF-GSO theory is seemingly more accurate than the SO-
SCF-DODS theory. It now appears very likely that, when GSO's are
introduced into the SO-SCF scheme (50-SCF-GSO), then both the SEHF-GSO
and the SO-SCF-DODS theories would be embraced as special cases of the
S80-SCF-GSO formalism. Scrutiny of this last point is the purpose of the
present paper. In Table I, several existing orbital theories are
classified in order to clarify the position of the SO-SCF-GSO method to
be developed herewith.

The scope of this work is briefly outlined as follows. First, the
spin-optimized general-spin-orbital (S0-GSO) wave function is defined in
Section II. Next, in Section III, a set of SCF equations to be used for
thé determinations of the orbitals and spin coupling coefficients are
presented in a general manner. In Section IV, we will deal with some
properties of our SO-SCF-GSO wave functions and energies. Section V
will be devotea to sample calculations of é linear H3 molecule in order

to demonstrate how the SO-SCF-GSO method improves the results obtained

by the already familiar SO-SCF-DODS and SEHF-GSO theories.



I1. WAVE FUNCTION AND THE ENERGY EXPRESSION

A. The SO-GSO wave function

We will be concerned primarily with a spin state of the least

nonnegative Sz-eigenvalue, q. By use of the Sz-projection operator

. S,-% |
P, s I ot | ®

%q

and the fundamental units e?j of the algebra for a symmetric group SN

(Appendix A), we express the SO-GSO wave function as
-y (9)

where the orbitals ¢1,¢2,...,¢N are the two-component spinors, Eq. (7).
In Eq. (9), the spin symmetry of the system is characterized by the
irreducible representation A. The symbol X denotes the conjugate
representation associated with A. The suffixes i and j refer to the
relevant spin eigenstates. A convention that egj and e;j operate
respectively on the spin and spatial coordinates, is employed throughout
this paper. The coefficients Cj;s are called the spin coupling coefficients
and to be determined by variation. |
The wave function defined as Eq. (9) satisfies the following

eigenvalue equations:

2, A '
S Wq = SA(SA + I)Wq (10)
Ay A
S Y = q¥ 11
Zq qq ()



PY (12)

i}
(]
el
2=

where P is an arbitrary element of the symmetric group SN’ the quantity
ep being its parity.

The SZ— projected function of the simple product of GSO's can be

expanded as follows:
q =
P d19pe- by = E?uqu (13)

where 1 is the uth spin function of simple product of the a and B
funciions with the net eigenvalue q, wu being the spatial function
associated with Ny We then make use of the irreducible representation
matrix PA and the linear combination coefficients kg;for the spin

products (Appendix A) to obtain the normalized wave function:
A
A f 3
A -1..u A
wq Z Y ) C. F.i(t )kj(twu)ei , 14)
ijut

z!m

where fl is the dimension of the irreducible representation A, t is an

element of Sy and Og is the ith spin eigenfunction of S2 and §Z with the

eigenvalues S, (S, + 1) and q, respectively.

Clearly, the SEHF wave functions are obtained by taking all the

spin coupling coefficients identical, i.e., C;=C=...=C,. Ifone.
f
forces either a, or bk (k=1,2,...,N) to be 0, then the DODS wave

functions are attained. Further, the RHF wave function, for which each

orbital is doubly occupied, results from the constraints that a1=b2,

a3=b4 and so forth.

The SO-GSO wave function can also be written as the linear



combination of the DODS wave functions, viz.,

A

A
¥ ECiCléi(rl,...,rN)ei | (15)

The spatial functions @i are obtained by operating

£ c
N“Z (& Lyt (16)
Tt
on a primitive spatial function
vw = al(rl)bz(rz)as(rs)... . (17)

In Eq. (16), F?i denotes the (i,i) element of FA, and t" and t€ the
permutation operators which operate respectively on the numberings of

i
the a- or b-functions and on the spatial coordinates. The number of the

a-functions present in Eq. (17) should exceed that of the b-functions by

2q.

B. Spinless density matrix and the energy expectation value

We will formulate explicitly the second-order spinless density
matrix for our SO-GSO wave function. The expression for the energy
expectation value can readily be derived from it.

By use of the wave function (14), the Nth-order spinless density

matrix defined asl3

Y¥(r,s sN)dsl...ds (18)

1512+ +oT N

oM’ r - fw*(r;sl,---, TSy

is transformed into

- 10 -



oM’ = 1 18w, sy, ) (19)

uv ts

where

B = il (20)
with

C = Col(Cl,Cz,....,CfA) ' (21)
and

(Kuv) _ (fﬁ)ZkukvPi (s-lt) (22)

ts’ij = ! itj il :

The second-order spinless density matrix for our use can be
expressed as

2‘ t li N v 4 7 4 !
o )(yl,yz;yl,yz) S REE JIID, (Y1,Y 53y 5, lr ,x)dr dr. (23)

Here, Yy etc. are the spatial coordinates and Dz,is a density matrix
generating function defined as

D \J ' ! ) 1 Z (S ¥ t 6

2()’1,)’2,}’1,}’2 r ,I‘) = N—(N_—_l_)—m#n (rm = }’1) (rm - yl)

] ' !
RICHER I LICRES YN JICICAEE DI e

1 1 ]
where 6(rm - yl) etc. are Dirac's d-functions.

Let HR(yl,yz) be a reduced Hamiltonian given by

N N .
HaOp5y) =3 (hy + hy) (e s (25)

where h1 and h2 are the one-electron Hamiltonians operating on Y1 and Yo
respectively, and 812 is the electron-repulsion operator. The energy

expectation value E is then simply given by

- 11 -



E = TelHy (y,,7,00 2 (r],v557, 27} (26)
: R yl,YZ Yl»)’z,)’ls 2 . 7
By virtue of the symmetric property of D2 with respect to r' and r, E
can be expressed as

E= ] 180 jdr'drdyldyzw:(r')wv(r)
uv ts

't |
x [Ho(y157,)D, 0y, 3y sy,lT 67 sm)] (27)

In Eq. (27), use should be made of the usual convention13 that yi and y;
are set equal to Y1 and Yoo respectively, immediately before performing
the integration‘for Y1 and yz;

Our attention is now focused on the kth orbital ¢k in particular.

] ]
Clearly, any wu is the product-of a s and b s involving either a or b

K’
In case where a is involved in wu’ we may write
u " ‘

¥, = & (AT (282)
where Ty denotes all the spatial coordinates except for Ty Conversely,
if bk happens to show up in wu’ then wu(r) should be written as

¥, () = b, (rIBR(T,) . ‘ (28b)
Because of this dual character of wu(r), E should take the form

* 1 % 1 k. ay (rk) 1
= 2
E f(ak (rk)bk(rk))G (rk,rk) drkdrk , (29)
, b, (r,)

1
where Gk(rk,rk) is an effective reduced Hamiltonian operator which is

defined as follows:

- 12 -



Krr) = 3T [ ' dr dt, dy,dy
K7kT v ts V1YY, ko kT2

X uZ[HR(yl,yz)Dz(yi,y;;yl,yzlf',t"lsr)]
SECRIMCRIICRENCR )

£ 1 * (30)
B: (Tk)AK(Tk) BE (Tk)BK(Tk)

X

I111. THE SCF PROCEDURE

In the light of the variational principle, we now search for the
optimum form of the wave function. In doing this, two conditions are
imposed: (1) The norm of the total wave function should be finite and
(2) the norm of each orbital should be finite. Condition (1) permits
unique determination of the spin coupling coefficients. The pseudo-
eigenvalue equations to obtain the SCF orbitals are derived by use of
both conditions (1) and (2). The wave function in question should

satisfy the generalized Brillouin theoremgb’llb’l4:

<8Y|H-E|¥> ' |[H-E|¥>

Yok
=0, (31)

t
where wk+k' is the wave function with a virtual orbital k in place of

the ground-state orbital k.

A. Determination of the orbitals

In this subsection, we formulate two types of one-body Schrodinger

equations to determine the orbitals; one is the direct consequence of

- 13 -



Eqs. (29) and (31) while the other is a modification of the former such
that the orbital energies are given as the solutions of an eigenvalue
problem.

Let us now define an operator Sk(r;,rk) by replacing HR(yl,yz) by 1

in Eq. (30). It is then obvious that

<vluly> = <4 |6"|o,> (32a)

and :
<¥|y> = <¢k|sk|¢k>. (32b)

Noting that neither Gk nor Sk depends. on ¢k itself, we can take the

variational form of Eq. (31)
<8¢, |G*[o,> = E <60, [s¥[o, > (33)
k k k k °’
which directly leads to
k _ rok
G |¢> = ES"[6,> . (34)

It should be noted that in Eq. (34) both Gk and Sk are the function of
all the orbitals other than ¢k but that the spin coupling coefficients
involved in both of them still remain to be determined.

We are now in a position to formulate an eigenvalue problem which
gives the orbital energies. In the integral <¥|(H-E)|¥> one finds two
types of elements; one is proportional to <¢k|¢k> while the other is not.

The situation permits the formal expression:
. y ‘
<WI(H-E){W> = <o [F o> - e <ty 6>, (35)

where €, is a constant and <¢k|Fk|¢k> is the matrix element not

- 14 -



proportional to <¢k|¢k>. It follows that
<60, [P0, > - €,<00,[6,> = 0 (36)
k k k "Tk'k

provided F, is not a function of ¢k. As a consequence, one may write

k

Flo> = e log - | 37)

Since 6<¢k|¢k> = 0, €, has been treated as a Lagrangian multiplier as

k
usual and may be regarded as the orbital energy of ¢k. It is given as
an eigenvalue of the operator Fk whose explicit form has not yet been
given,

The explicit expression of €, can be obtained in the following

manner. In the expression <¥|(H-E)|¥>, one finds the elements
Ak<ak|ak> + B <b, [b,> (38)

where Ak and Bk are some constants which may be dependent on orbital ¢k.

Eq. (38) can be rewritten as

| 1 0\/|a>
Acalae + Beblb> = 3y ¢ B (<o b)) ( >< ‘ >

0 1 ]bk>

1 0 a, >
* %{Ak - B (<a | <vy ) (0 ) (l k > . (39)

-1 [bk>

The first term of the right-hand side of Eq. (39) is all that is
proportional to <¢kl¢k> = <ak]ak> + <bk]bk>, whereas the 2x2 matrix in

the second tefm isvtraceless. If follows that

g, = - % (A, + B). (40)

- 15 -



Explicit formalation of Ak and»Bk is straightforward. Thus, Ak is

given as

1] k ]
AS(ry - 1) = u% tgc )87y favam ayay,

x AT (A () % (sl

x [N ] 8(x, -y)8(x, -y) T 8x - ) h(y))

m (k) h(¥m)
N(N - 1) o '
+ —————Z———m*n%#k)é(rm -y I8, - yI8(x - ¥,)8(x, - ¥,)
X h(¥§’ﬁ)6crhw- r)glyyy) - E1 | (41)

where z(k) means the summation over all pairs of elements (t, s) of S
ts
which do not involve the letter k in the product s—lt, and (shlt)r

N’

: t
denotes the permutation operator operating on coordinate r. Bkﬁ(rk - rk)

. . . u, '\.Vv . u,_ ',V .
can be obtained by introducing Bk(Tk)Bk(Tk) in place of Ak(Tk)Ak(Tk) in
Eq. (41).

. . . ‘ | k, ! . k
It is interesting to relate G (rk,rk) and S (rk,rk) with F (rk,rk).

From Eqs. (32) and (35), we have

k ,rk)

1

k X k. ' :
F(r = G (rk,rk) - ES (rk,rk) + ekI2 . (42)

where

Iz=6(r1'<'rk)(c1> (1)) : (43)

It is evident from Eq. (42) that, when Eq. (34) holds, so does Eq. (37)
automatically, and vice versa. In this connection, it must be cautioned

that Eq. (37) may hold occasionally even when

- 16 -



k k
G lo> =0, 5]¢)> = 0 . (44)

Obviously, this is an artefact arising as a consequence of the violation
of Pauli's exclusion principle. Such false solutions are liable to
diverge és has often been encountered in actual SCF computations.

Both equations (34) and (37) are coupled integro-differential
equations, but the expansion technique may be applied as usual., Thus,

the GSO ¢, is expanded in terms of basis functions {Xl’XZ"°"XM} as
¢k - ZArera * ZBrerB ' (45)
T T

Both Eqs. (34) and (37) are reduced to a set of simultaneous pseudo-

eigenvalue equations in the matrix forms:

X K k X
611 612\ /A Sit S12\ [ &
= E (46)
. ¢ B sk gk B
21 S22 K 21 Sz X

and
k k
F1i1. Fp A _ X 0 Ay 4
Kk T %\, ’ (47)
Fo1 Faa/ \By, By
where
k _ k
(Gmn)rs - <Xrlen|Xs> (48)
k _ k
Spndps = XolSpnlXs” (49)
k K
) = xR I (m,n = 1,2) (50)
Xoo = <XpI%> (51)
and

- 17 -



D .

k

the operators Gin’ Sk and F;n being the (m,n) elements of Gk, Sk and F,

mn

respectively.

B. Spin coupling coefficients

The energy expression, Eq. (29), is quadratic in form in regard to

the spin coupling coefficients, Eq. (21). That is,
c'qc = ECOC (53)

where the matrices Q and O are defined using the matrix K, Eq. (22), as

follows:
_ -1 uv
Q; = u‘ZI tg < lHE s [0 > (K ) 5 (54a)
_ -1 uv
oij - u\}; tg <‘Pult SIU}V>(KtS)ij (54b)

Direct application of the variation principle to Eq. (53) with

regard to C leads to a secular equation
(Q - EO)C = 0. . (55)

The total energy and the spin coupling coefficients are obtained by
solving Eq. (55). Equation (34) or (37), or more practically Eq. (46)
or (47), is coupled with Eq. (55), so that they may be solved for the

S0-SCF-GSO's in an iterative manner.

- 18 -



IV. SOME CHARACTERISTICS OF THE WAVE FUNCTION AND ORBITALS

A. Orthogonality and the unitary transformation property of orbitals

In both the SEHF and RHF formalisms, all the spin-orbitals are
automatically chosen to be orthogonal to one another. This is not
generally the case with the S0-SCF-GSO wave function. The N-body SO-SCF-
GSO wave function has at best [N/2] orbital groups, each containing two
GSO's which can be chosen to be mutually orthogonal and are allowed to
transform to new GSO's by unitary transformation. Here, [N/2] denotes
the largest poésible integer not exceeding N/2.

The above statement can be proven as follows. By the aid of
Serber's spin functions,15 which diagonalize the representations of*the

permutations P, = (2k -~ 1, 2k) for k = 1,2,---,[N/2], we express the

k

fundamental unit e?i in a ket-bra form (Appendix A):

A_A
ey = |ei><ei| . (56)

?
It can then be readily seen that e?i commutes with such Pks. Hence,

A

¥y = allies) (0 by 10g 0 )
A | pOpS
= 42(§Cieii)PkPk(¢1... ¢2k¢2k-1"' ¢N)
= - a(gCieiiJ(cbl-.. Sorbor1m " O - : (57)

where P; and Pi are the permutation operating on the space and spin
coordinates, respectively. Equation (57) states that the functional

component ¢2k-1 involved in ¢2k’ which has been the origin of their

- 19 -



nonorthogonality, should disappear automatically. The unitary

transformation between ¢2k-1 and ¢2k (k = 1,2,..-,[N/2]) are thus assured.

B. Hellman-Feynman theorem

The SO-SCF-GSO wave function satisfies the Hellman-Feynman theorem16

17 18 I18

just as Hartree-Fock, SEHF, G and SO—SCF-DODSga wave functions do.

The proof of this theorem for the SO-SCF-GSO wave function is exactly

identical with that for other wave fﬁnctions.

5 <v|u|y> 1 oH
DRI ERERSILE <ty (58)

C. Ionization and ''Koopmans' theorem'

In the SO-SCF scheme, a state of pure spin symmetry turns upon
ionization to a mixed spin symmetry state. This may have a bearing with
the observation19 that both singlet and triplet states are generated
from a doublet state by ionization. The (N - 1)—body‘wave function
given by deleting any one orbital, say the Mth orbital, ffom the
parent wave function should be a mixture of the singlet and triplet
states with certain weighting factors. Figure 1 illustrates an
ionization process by use of Young's diagram,20 the ground state A =
[N - p, p] ionizing into two different states denotedvby Al = [N - p;
p - 1] and Az = [N-p-1, p]. In addition, in the GSO scheme, the
wave function of the ionizéd state is not an eigenfunction of §z.

According to the present SO-SCF-GSO theory; the energy of the Mth

orbital in the parent N-electron system is given by
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Ap Ap Ap

= 1
MW p=§ 2{<Wq+1/zlwq+l/2>(E0 B Eq+1/2)
A | A
*p P p AjgAo-1
" Yqe1/2ltqr1/2 Bo - Bqyydt X YT (59)

where WA is an N-body wave function with the spin symmetry XA, the §z

eigenvalue q and energy EO, while Wq+1/2 are the ionized-state (N - 1)-

body wave functions with the spin symmetry Ap (p = 1,2), the §z—
A : ‘
p
i +
eigenvalues q*1/2 and energy Eqi1/2'

Equation (59) expresses that the orbital energy €, is just the

M
difference in energy between the ground and ionized states with proper
weighting factors associated with the extent to which the two ionized-
state wave functions contribute to the ions. Therefore, Eq. (59) may be

. Lo 2
regarded as an extention of the familiar Koopmans theorem. 1 For a

special case where N = 2, Eq. (59) reduces to
=1

where ¢1 stands for the first orbital and H, is the one-body Hamiltonian

1
for the ionized state. This last equation is exactly what was derived

by anell11c for a two-electron system in the SEHF-GSO formalism.

D. Excitation and virtual orbitals

The eigenvalue equation (34) provides solutions other than the
ground-state filled orbitals. They are called virtual orbitals. To
distinguish between these two classes of orbitals, we will denote the

former orbitals by ¢§O) and -the latter by ¢£n)’ n>0,
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Lunell22 and Goddard23 showed for the cases of the Hartree-Fock and
the GF methods, respectively, that the resulting virtual orbitals are
sufficiently accurate to describe the excited electronic states to a
zeroth-order approximation. More specifically, the energy gaps between
the virtual and grouhd-state orbitals are good approximations to one-

electron excitation energies.

Similar trends can well be expected of our ¢£n). Let us denote by
Wﬁn) the wave function for the excited state arising from the one-
electron transition ¢£O) > ¢£n). Then, it can readily been shown that
the Wﬁn) functions have the following properties:
oM uly> =0 (61)
aM ™0 @en (62)

As a result, Wﬁn) (n=1,2,..-.) together with WﬁO) completely diagonalize
the Hamiltonian matrix in each k-space, so that Eén) (n=1,2,""") could

in principle be good approximations to one-electron excitation energies.

V. SAMPLE CALCULATIONS

For the purpose of illustration, we here apply the present theory

to the doublet state of a linear H, system with two bond lengths fixed

3
at 1.470 and 2.984 bohrs. Comparisons of the results attained by the
various theories, RHF, SEHF-DODS, SO-SCF-DODS, SEHF-GSO and SO-SCF-GSO,

are another purpose.
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The three-electron doublet system is the simplest possible system
in which the spin degeneracy problem20b arises. According to Eqs. (9)
and (13), the S0-SCF-GSO wave function pertinent to the system in

question is

_ -1/2
Yso-scr-gso = AlC;2 7 (agbyag - biayade,
+ 6 Y20 b.a, + baa, - 2a.a.5,)0.] (63)
2 17223 © P38z 122°3/%,1
where
6, = 2712 (480 - Bon) (64a)
6, = 6-1/2(a8a + Bao - 200B) . (64b)

As stated in section IVA, two GSO's can be chosen to be orthogonal to
each other. Since we have adopted the genealogical spin functions,8 the
GSO's, ¢l and ¢2, are mutually orthogonal, and the wave function is
invariant to any unitary transformation of ¢1 and ¢2. Also, we have
chosen the unitary transformation so as to maximize the norms of a,
and b, (or to minimize the norms of b, and a), <a1|a1>2 + <azla2>2 and
<b1|bl>2 + <b2|b2>2 being invariant to any unitary transformation.

For the DODS cases, we simply set b1 =a, = b3 = 0. Thus, the
S0-SCF-DODS wave function takes the form

¥

3 -1/2
S0-SCr-pops = la;byaz(C 8, + 37777°C,0.)] . (65)
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The SEHF functions corresponding to Eqs. (63) and (65) arise from the

constralnt_c1 = CZ:
¥sEnr-gso © (\Yso-SCF-Gso)cfcz (66)
Yepur-pops = (WSO-SCF—DODS)C1=C2 (67)

Needless to say, the DODS theories lack the elements which allow
the two spin components, o and B, to mix with each other. As a result,
GSO .solutions generally cannot be attained when DODS solutions are used
as initial guesses. It is worth’noting that, none the less, the SO-SCF-
DODS wave function occasionally gives a local minimum in the GSO space.
Conversely, when calculations are started from certain GSO's . the
solutions may in cases converge to the SO-SCF-DODS results. In actual
computations, therefore, several trial GSO's as initial guesses were
tested in order to confirm the convergence of the iterations to the
SO-SCF~GS0 results.

The SO-SCF-GSO calculations were carried out by use of the double
¢ basis functions (1ls and ls' Slater-type orbitals) for each hydrogen
atom. For the sake of simplicity, p orbitals were set aside. The STO's
were assigned the exponents given by Shavitt et al.24 They were expanded
in terms of six Gaussian type orbitals. In order to compare the results
on a common base, the same basis functions were used for the other
orbital theories. The SCF procedure was iterated until the energy
difference between successive two steps did not exceed 10—6 hartree.

Table.II shows the LCAO coefficients for the SO-SCF-GSO's obtained.

Functional profiles of these GSO's are presented in Fig. 2. The first
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and the second orbitals, ¢1 and ¢2, are mutually orthogonal and
delocalized over the whole molecule. The third orbital ¢3 is somewhat
localized on the H3 atom, which will become an isolated atom in the
dissociation limit. In all these orbitals the a- and B-components have
different nodal structures, thus making different contributions to the
chemical bonds.

In Table III, the total (E), electronic (Ee), kinetic (T), nuclear-
attraction (Ven) and electron-repulsion (Vee) energies calculated by
means of the various orbital theories are compared. It can be seen that
the SO-SCF-GSO method gives the lowest total energy. The difference in
E(0.00474 hartree) between the SO-SCF-DODS and the SO-SCF-GSO theories
is much greater than that (0.00098 hartree) between the SO-SCF-DODS and
the SEHF-GSO methods. The SEHF-GSO total energy was improved
significantly by the SO-SCF-GSO method as a result of the orbital
nonorthogonality and the spin-optimization; Clz#:Cz. The energy
improvement (0.00376 hartree) is comparable in magnitude to the
difference (0.00526 hartree) between the RHF and the SEHF-DODS total
energies.

Although the SO-SCF-GSO wave function provides apparently better
results than does any other existing orbital theory, the total energy
obtained is still too high by ca. 12 kcal/mol as compared with that
resulting from the CI treatment.24 A great part of this energy difference
is no doubt due to the dynamical correlation; orbital approximations are

incapable of taking due account of the dynamical motion of electrons.
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VI. CONCLUDING REMARKS

The SO0-SCF-GSO theory as an extention of the SO-SCF-DODS and SEHF-
GSO methods takes maximal account of the degrees of freedom for variation.
As a consequence, the theory is in principle by far more flexible than
any other orbital theory so far presented, thus providing the most
accurate results for atomic and molecular systems which are represented
by given basis set functions.

Generally, GSO's are expected to gain further flexibility by the
introduction of ‘complex variable; while real GSO's have only two-
dimensional spin structure, th¢ complex component of GSO's should give-
an additional dimension, i.e. the component in the y direction. The
treatment of Eq. (34) involving complex variables is straightforward.
We believe that such a treatment will be important not only fbr the
consideration of the electron correlation effect, but also for the
argument of the continuity of the orbital phase when the electronic
states of highly symmetric molecules or degenerate stateé are‘
investigated. It would hardly be possible to deal with this latter
problem properly by means of any other orbital theory.

In this paper we have examined only the energy to compare the SO-
SCF-GSO method with other methods.. However, it is expécted that the
theory will be capable of providing improved expectation values for
other quantities, such as the Fermi contact shift of atoms, as well.

This phase of the problem will be discussed elsewhere.
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APPENDIX A: GROUP ALGEBRA AND k-COEFFICIENT

Group algebra20 may be considered as a set of all linear combinations
of the elements of a group. The structure of a group algebra is
characterized by means of the fundamental units e?j's for an irreducible

representation Fk, which satisfy the following fundamental relation:

A u A
eijekl = 6Au5jkeiz . (Al)

e?j's are constructed in various ways. It was shown by Wignerzs that,
for a given group G

A £A A -1
e.,., = T..(t t ’ A2
ij = T6T thG 57 (A2)

where fx is the dimension of Fk. The essential properties of the algebra

for a symmetric group SN are

2\ _ A
S es = SX(SA + l)eii (A3)
and
lX p%pS Jek et c. = poPSajc, el
£ i3 ij7ij 73 T ivid
= -ajc.e} (A4)
£¥i%4

o . .

where P~ and PS are the permutations operating concurrently on the

spatial and spin coordinate, respectively. A very wide and profound

. . e . . . 20b

review was given by Lowdin and Goscinski.
In treating a spin symmetry A, the ith spin function 6? is written

in terms of the linear combination of the products of one-electron spin

functions (a or B) such that
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o) = J k?qﬁ (AS5)

where Ny = o(B(2):-+ (with a given SZ value). With the aid of the
. _ . A AA QA

orthogonality <qu|qv> = duv and the ket-bra expression eij = i61><ej|,

which evidently satisfies the fundamental multiplication relation (Al),

one can easily derive the relationship:

A LU A
eijqu = kjei (A6)
The relation (A6) has been used to derive Eq. (14). In particular, since

A Luld
®iiMy = %% > (A7)

the diagonal element e?i is regarded as an operator which projects an

arbitrary spin product N, °on the space of a given spin function'ei.

APPENDIX B: PROOF OF "KOOPMANS' THEOREM"

The theorem is proven for Mth orbital here. The N-particle S0-GSO

wave function, Eq. (9), can be written as

A

- pd
¥=P a(igRijeij)(cbl--- Oy by (B1)
where
A A*
Ryj = - E rim(p)rjm(p)cm (B2)

and (Cpl"' ¢N"' ¢M) = P(q)l"' q)M"' ¢N)’ i'e', P = (MsN)-

An §z-projection of the product of GSO's can be split into
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p‘;(qsl... by b0y

- {pa-1/24 ..
- {Pz ¢1 ¢N"' ¢N—1

- +

It follows that

Y| - B)|¥>

=} TR.R <e;\j(f{4aMot s by G - B) |

.4 ij mn
ij mn
x e* ¢£la g+ £ ) (B4)
mn MM T MM
i = < > + <
The term proportional to <¢M|¢M> aMSaM + bMIbM> should be the
object of our search.
First, let us derive the term proportional to <aM|aM>. It now
suffices to consider
) R..R <ek fraalM - E)QA |eA foa o> (B5)
i5 mn ijmn Tij MM N!'"'mn"M™M :

The GSO product f& is expanded as
= L% ng (®6)

where q; is the simple product of one-particle spin functions with the
net eigenvalue g-1/2 of §z’ while w; is its associated spatial function.

We can write

A - -
§ Ri;®ijfm o @ = X; 2y 85 - BN

with
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- A - -
% =‘§§_Rij<6jlqua> Yy (B8)

Hence, Eq. (B5) becomes
L <X SAI(H - B)A,|x: o> (B9)
50 M Vi N'X5 A Y57

On the other hand, 6? is known to be decomposed into two parts:8

e ST B B10
0 =4 S q12% * 4 %1 g0 (B10a)
M
for i=1,2,...,f

- A, A A, A

A M2 M2 2 "2

% =4 9% g2 L O a2 B (B10b)

A
for i=f ! + 1, ,fk
where

N o 1/2
d "= -[(5 - q+ 1)/, + )]

a1 [(S. +q + 1)/(28, + 2)]1Y/?

+ AT d A

\ ' (B11)

2 1/2

%= 16, + @z

A

2 1/2

d+ - [(SA - C{)/ZSA]

The decomposition stated above is as illustrated in Fig. 1. The term
proportional to <aM|aM> is extracted from Eq. (B9) with the help of Eq.

P, 2 Ap.2 . . :
(B10) and (d+ )7 + (d.¥)" = 1. The proportionality factor is

=1y (;pi - exp | (H E Ix: exp >, (B12)
SV % i3 Xi O3 q-1/2!Wyy - BYQy 1 1%5 85 40172 -
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where HN_1 and CLN ) are the (N - 1)-body Hamiltonian and antisymmetrizer,
respectively.
In exactly the same manner, the term proportional to <bM|bM> can be

obtained. The resulting factor B, is simply what is obtained from Eq.

M
(B12) by replacing x; and q-1/2 by x; and q+1/2, respectively.

Because

1
A<aylay + Bysbylb > = o (A + B <O o>

1
+ i—(AM - BM)(<?MI3M> - <bM|bM>) . (B13)
the orbital energy €y according to Eq. (40), is

1
€y = = 7 (Ay + By

Lo Gy S
=" §K’§ i§ (X5 95 qo1721 My g = BY Ay I 85 0 y)0°
'
A A
+ .'P » : -~ 4P
s 05 o1yl Uy g - BYRy 1G85 o /07) (B14)
If the (N - 1)-body wave functions is denoted as
Yor1/2 = Yot g X; 05 qr172 @=L, (B15)
Eq. (B14) reduces to
A A A A A
1 P p p P P p
€M ~ EN'§ (¥ i1/2l¥qe1/2”® - Bory) * <¥ql12l¥q1/27 B - By d
P
(B16)
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with the energies of the ionized state expressed as

* %

A <Y

p 172/ Yger /2
E 41/ = (B17)
<y |¥ >
q¥l/2' qxl/2

This completes the proof of 'the Koopmans theorem" for the Mth SO-SCF-

GSO.
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TABLE I. Typical SCF orbital theories

Orbital HF SEHF SO-SCF
DOUBLY .
OCCUPIED RHF N —

b d £
DODS SPHF SEHF-DODS SO-SCE-DODS
GSO spw® SEHF-GS0° S0-SCF-GS0°®

a Roothaan (Ref. 2). b Pople et al. (Ref. 4)

¢ Spin Deﬁsity Wave, A. W. Overhauser, Phys. Rev.
Lett. 4, 462 (1960). d Lowdin (Ref. 6).

e Lowdin et al. (Ref. 6,11). f Kaldor et al. and

Goddard (Ref. 9). g This study
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TABLE II. LCAO coefficients for the SO-SCF-GSO's of a linear H systema

3
Basis ) ¢, ¢, ¢3
function a1 b1 a, b2 a3 b3
H1 1S (0.986) - 0.45745 0. 35669 -0.22212 -0.04429 -0.21085 -0.27085
1 .
1S (1.371) 0.24500 -0.04475 0.64441‘ 0.14466 0.11832 0.10204
H2 1S (1.054) -0.01121 0.39468 -0.50520  -0.28896 -0.09574 -0.17880
' B o7 )
1S (1.297) -0.15022. -0.15237 0.91679 0.06588 0.26743 -0.16162
H3 1S (0.943) ‘ -0.30363 -0.31282 0.27430 0.37513 ' 0.40388a - 0.91787
1S (1.066) -0.33610 0.33864 0.20588 -0.00533 0.44645 - -0.60572

a The coordinates (x, y, z) in bohr of each H-atom are H1 = (-1.47, 0, 0), H2 = (0, 0, 0),
H3 = (2.984, 0,'0). b VThe values in parentheses are the orbital exponents for STO's, taken

from Ref. 24.
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TABLE III. Comparisons of the energies (hartree) for linear H a

3
obtained by typical orbital theoriesb.
DODS GSO

Energy RHF SEHF SO-SCF SEHF S0-SCF
Ec -1.61796 -1.62322 -1.63847 ~-1.63945 -1.64321
Eed -2.85787 -2.86313 -2.87838 -2.87936 -2.88312
T 1.61725 1.62189 1.66168 1.65911 1.65607
enf -5.64887 -5.64283 -5.67909 -5.67618 -5.66824
eeg 1.17375 1.15781 1.13902 1.13771 1.12905
C2/C1 ' —e —_— 0.105959 —— 0.277304

a Geometry is the same as given in Table II.

b Tﬁe same’orbitallexponents as listed in Table II were used.

¢ Total energy; the CI treatment in which a 2p orbital is also incorporated
gives E = -1.66304 hartrees (Ref. 24).

d Electronic energy. e Kinetic energy.

f Nuclear-attraction energy. g Electron-repulsion energy.
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Figure 1. Ionization to two species with different spin symmetries.



H—H2——H3

Figure 2. Profiles of the GSO's for the linear H, system with bond

3
lengths 1.470 and 2.984 bohrs. The ith orbital ¢, is denoted

as ¢i = 3,0 + biB.
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CHAPTER 3

Spin-Optimized SCF General Spin Orbitals

2

in the 2°S and 22P States of the Lithium Atom

The spin-optimized SCF general-spin-orbital (SQ—SCF —GSO) method, which
has previously beeﬁ proposed by us, is applied to the ZZS and 22P states
of a lithium atom. The energies obtained are -7.44#522 and -7.381053
hartrees, respectively, which account for as much as 99.7% (225) and
97.7% (22P) of the radical limits of electron corfelation. However, the
Fermi contact terms calculated, 2.750 (228) and -0.1953 (22P), are not
necessarily improvements over the values obtained by hitherto-known
orbital theories. ' This latter result is ascribable to the functional
forms of the orbitals, which cannot fully;aécount for the electron
cofrelation without unduly reducing the weight for the configurations

of spin polarization. The situation has been clarified for the case of
the 22P state through comparative analyses of variogs existing orbital

theories.
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I. INTRODUCTION

The spin-optimized SCF general-spin-orbital (SO —SCF —GS0O) wave-

function is defined1 as
A

f
- p 4 A
¥ =P czg T P NT (1)

where ¢k is a two-component spinor

¢ = (0] =a @a+b (08, ()
b, (r)

which is termed a general spin orbital (GSO).2 A and qu are the

antisymmetrizer and the §Z—projection operator for the least nonnegative
§z eigenvalue q, respectively; e?i is the ith generating operator for
the spin function of the symmetry A; and Ci is a variation parameter
called the spin-coupling coefficient associatéd with egi. Generai
properties of the SO—SCF—GSO wavefunction have been discussed in
detail previously (Part I1 of this series). Suffice it to mention here

that our GSO theory can be reduced to a one-body quasieigenvalue

problem expressed as

k k \ k k

Gyp G2 | 2™ §11 S12 |/ & @
kK .k = Bl ¢ x (3)
Gy Gap /) \ i@ Sp1 Sp2/ \ b

For explicit functional forms of the operators ng and ng, Paper I1
should be referred.

The GSO wavefunction thus defined should in principle embrace all
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the known orbital functions of correct spin symmetry. Thus, the
restricted Hartree-Fock (RHF) function,3 the SO ~—SCF functiqn in the
different»orbiféls—fbr-different-spiné scheme (SO-—SCF-—DODS),4 and the
spin-extended Hartree-Fock functionsz’Sa in both the DODS (SEHF—~DODS)5a
and GSO (SEHF——GSO)Z’5 schemes could all be regarded as its special
cases.

The purpose of this paper is to apply the SO —SCF —GSO theory‘to
the 225 and 22P states of a lithium atom and to compare the results with
those6 that have been obtained by the various other theories. It has
been found that the present GSO theory can indeed give the lowest
energy as expected but is not necessarily best suited to the prediétion
of hyperfine structural paraméters. 'The problem of fhe coupling between

energy and spin polarization inherent in each orbital theory will be

. . . . 2
discussed in a comparative manner, taking the 2°P state as an example.

II. BASIS FUNCTION

For a three-electron doublet system, f} is 2 and the spin functions
A

generated by e;, are
61 = 2_1/2(u8u-—~80a), ' , (4a)
6, = 6'1/2(&Ba‘+ Bda - 200B). (4b)

Using these spin functions together with the spatial functions

Y22 )by (rag(ry) - by (r))ay(ry)ag(ry)]

0 (rys Ty, T3) = 2
(5a)
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- -1/2
0, (r;, T,, T3) = 6 [a,(r])b, (rp)az(rs) + by(rda,(ry)as(ry)
'zal (rl)az (rz)bs (rs)] 3 (Sb)
one can rewrite the SO—SCF —GSO wavefunction, Eq. (1), into
¥ = CZ[C1®;61 + CZQZGZ]. » (6)

For the sake of brevity, the SO —SCF —GSO method will hereafter be
referred to as the "OG" theory.

The SEHF —GSO, SO—SCF —DODS, and SEHF —DODS wavefunctions, which
will be abbreviated as the "EG," "OD," and "ED'" functions, are obtained
by imposing the following conditions on Eqs. (5) and (6):

(i) SEHF —GSO (EG), by letting C1 = C2;

(ii) SO —SCF—-DODS (OD), by setting b1 = a, = b3 = 0;

(iii) SEHF —DODS (ED), by adopting the fwo constraints C1 = C2 and b1 =
a, = b3 = 0, simultaneously.

Calculation of the GSO's, Eq. (3), were performed on the basis of
the expansion technique of Roothaan.3 One crucial problem in this
connection is how to select a basis set such that the cusp condition is
fulfilled. However, we will not be strict to those extremely complicated
cusp conditions to be imposed on the orbitals.7 Instead, we will be
cautious about the cusp conditions for both the charge and spin densities

denoted by Y and Yo respectively. Steiner showed,8 on the basis of

Kato's theory,9 the following identity for the exact charge density:

é%_yc(r)lr=0 = -227 (0) (72)
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where Z is the nuclear charge. The basis-set dependence of YS(O) should
also be considered. As will be shown in Appendix A, the cusp condition

pertaining to the spin density is
4@, -2 @ (7b)
dr 's r=0 s )

The cusp values of'ZC = —Y;(O)/ZYC(O) and Zs = —y;(O)/ZYS(O) resulting
from the use of a trial wavefunction must not deviate greatly from Z in
order for the function to be acceptable as a sufficiently good
approximation.

The basis set actually selected for use for the 228 state was the'
same as that used by Kaldor and Harris.4b The various orbital wave-
functions of the 22P state were calculated on the basis of the basis
set given by Lunell,10 although we neglected two Slater-type orbitals
having very small coeffiCients in his OD calculation,10 namely, the 3s
and 2p; orbitals with the exponents 0.8451 and 4.5, respectively. The
wavefunctions of 228 fulfilled the cusp condition for the spin density,
Eq. (7b), but those of 22P generélly did not. Incidentaily, all the
wavefunctions under study can only account for the radical electron
correlation, because the basis sets contain s-type functions alone for

the core.

ITI. RESULTS OF THE SO— SCF— GSO COMPUTATION

A. Orbitals

The amplitudes of the spatial orbitals obtained for the 228 and
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22P states are shown in Figs. 1 and 2, respectively. As has been
mentioned previously,1 orbitals,1(¢1) and 2(¢2) (both being the core
orbitals) have been transformed so as to maximize the norm of the a(B)-
spin part of ¢1(¢2). They are orthogonal to each other in the sense of
spin-orbital orthogonality; <¢1|¢2> = <31|a2> + <b1|b2> = 0.

The most striking feature of Figs. 1 and 2 is the presence of a

4,11,13a

node in one component of each spinor. The components 2, b2’

a; are nodeless just as those of the OD orbitals. On the other hand,

the components bl and‘a2 for either of the 225 and 22P states exhibit a

functional form analogous to that of the 2s Hartree-Fock orbital, which
does possess a node. b3 for the 225 state also has a node and is more
attracted toward the nucleus than is‘as. In the 22P state, neither az

nor'b3 has a node. As in the case of 225, a, is diffused but b3 has a

3
large maximum in the vicinity of the nucleus. Such nodal properties of
the GSO's will eventually allow the wavefunction to take more electron

correlation into account as compared with other types of wavefunctionms,

B. Expectation values

The total energy E, the radical electron correlation AE, the
hyperfine structure parameters f and £, and the electron density at
nucleus YC(O) calculated by the OG method are listed in Table I, together
with those obtained by other orbital theories (including the RHF theorylz)
as well as the radical CI treatment.Sg For the sake of reference, the

14-16

. 2 :
experimental data are also given. For the 2"P state, the ED, OD

and EG calculations were repeated by use of the same basis set as used
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for the present OG calculation.

Inspection of the total energies given in Table I shows that the 0G
theory hés improved both the EG and OD results by ca. 6% in electron
correlation. Obviously, the improVement is a consequence of the reality
that the OG method is variationally more general than the other two
theories. Notice that the OG method is able to account for as much as
99.7% (228) and 97.7% (22P) of the radical electron correlation.

Considered next are three hyperfine parameters, i.e., the Fermi
contact term f, the orbital azimuthal index £ and the spin dipole d

which are defined respectively by

f = 8ﬂ<§6(ri)§zi> , | | (82)
2. |
b=l ¥ - . (80)
1T, '
1
and
szi -t ' |
d= =75, 7" (8e)
1 I‘i 1

The relationship q = -%/5 holds exactly for the basis set chosen in this
work. = The absolute values of f obtainedvby the OG theory are smaller
than those calculated by other theorjes. The_agreements of the 0G f
values with the experimental data are apparently worse than those of
the OD, EG, and CI f values. As for the % and y_(0) values, the
calculated results are not much different from one another, even though

the ED'theory tends to give somewhat smaller values of YC(O).
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Table I also lists the cusp values ZC and Zs' Seemingly, all the
wavefunctions satisfy the cusp condition for the charge density. The
spin cusp condition, however, seems to be more difficult to be satisfied,
These results together strongly suggest fhat Zs is generally more

sensitive to the choice of basis sets than is Zc.

1V. COMPARATIVE ANALYSES OF VARIOUS ORBITAL THEORIES

Although our OG (i.e., SO —SCF —GS0O)} theory provides the state
energies of a lithium atom more accurately than does any other orbital
theory hitherto proposed, it is apparently less reliable for the
prediction of the Fermi contact term f. For Li(22P), the state energy

decreases in the order

ED > OD 2 EG > 0G > CI : (9a)

while |f| diminishes in the order as follows:
ED > CI 3 EG 3 OD > 0G .. (9b)

It is generally accepted that the spin polarization configurations,
which dominantly govern the spin density distribution, do not‘strongly
contribute to the correlation energy. It is mainly the doubly-excited
configurationsl7 that can account for the correlation energy. These
two types of configurations should be varied independently if both the
spin density and energy are to.be calculated with fair accuracy. In
orbital theories, however, these configurations are coupled with each

other through some parameters involved in the mathematical formalisms
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18,19 Thus, the orbital form fixed

for the determination of orbitals.
most favorably for the energy tends to place a stumbling block against
ireliable evaluations of the f values. In what follows, we will consider
in some detail how the energy and the spin polarization are to be

coupled with each other in the various orbital theories applied to

Li(22P).

A. Spin-optimization of the DODS wavefunctions (ED vs. OD)

The OD theory is appérently superior to the ED in both E and f, a
trend wﬁich suggesfs a basic significance of the spin optimization
effect. We will fake a closer 1obk’ét this effect from the viewpoint
of the core drbital splitting.

Denoting the two core orbitals by a and b and the valence p‘orbital

by v, one can write the (unnormalized) DODS wavefunction as

_ -1/2 |
Yoops = CZabv(el + 3 08,), (10)

where 0 (= C2/C1) is fixed at unity in the ED theory whereas it is
optimized by variation in the OD method. Since v's of ED and OD
coincide with each other to within 10-3 in the coefficients for atomic
orbitéls, we Qill leave v out of discussion.
Thé DODS cofe orbitais a and b can be expanded overla natural
orbital setv{¢k}. Suppose that the expanded orbitals are expressible
‘ 19

with deviation parameters Tk'S as

a= ¢+ L (A + T, | (11a)
k=1
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b=0¢ - 1 (& -T1)0. (11b)
k=1
The DODS wavefunction would then take the form:
y = 0.0 .0 12
pops = A28y + 92,8, (12)
where the first term represents the singlet-type core structure
(o0, = A(99,v8)) + zgrkawkcblvel)

-y YA T )M, ~ 1) ($,4,v0.), (13a)
L1k At T By - Ty k%eV01

while the second, the core structure of the triplet type

° -1/2

.6, =23 YA (9, $,v6.)
272 k#lAk k71 72
-1/2 :
- kzl zzl(Ak P T (A - T QO 0gv0;). (A3b)

Both the ED and OD core-orbitals for Li(22P) were expanded over
the natural orbitals derived from the ED orbitals. The results are

given in Table II. The most salient points of Table II are the following:

(i) In the ED case, the core orbitals a and b are only slightly

polarized (IAkI << 1) in a symmetric manner (Tk = 0);

(ii) In the OD case, the spin polarization is not only relatively large

but less symmetrical (0 % ITkl << |Akl <1).

As is apparent from Eq. (13), an increasing spin polarization,

IAkI, tends to lower the energy of the singlet-type part E11 =
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<f(l®°61|H|CZ¢é61> but elevate that of the triplet;type counterpart

Ey = (CZ@;GZIH]62¢;62> . The. total DODS energy is determined by a
compromise between these two opposing contributions. In the ED formalism,
in which o is fixed at unity, it is a necessity to keep the core spin
polarization relatively small20 in order to avert from a rapid rise of

E,, as the function of 2|Ak]2 (Fig. 3). By contrast, the OD wavefunction,
’ k

22
for which o is optimized to be 0.0060, requires no such suppression of
the core-orbital splitting. It gives a far lower energy determined
principally by CZ@;Bl to which the doubly-excited configurations
CZ(¢k¢2V61) are allowed to contribute appreciably. Clearly, the SEHF
condition 0 = 1 lays a strong restraint on the DODS scheme.

As for the Fermi contact values, it is most illuminating to compare
the two theories in an iterative manner as follows. By use of thebED

orbitals, we obtain a first-order OD approximation to o:

oo
@ - H -lé S (14)
22 T "ED"22

where Si' and Hij respectively stand for the overlap integral

(CZ@ieich¢jej> and the corresponding Hamiltonian matrix element.

0)

Evaluation of Eq.‘(14) results in © = 0.8460, which in turn gives the

first-order approximation to fOD:

£op = 2<U 20, |£]loQe,8,> = 0.8460 £ (15)

[]

Thus, fo

0D orbitals adjusted by use of ©

= -0.2514 while fED = -0.2972. It is quite natural that the
(0)

will further lower o at the expense

of core spin polarization. The net effect is to diminish the |f| value
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further. It is expected, therefore, that in the limit of spin optimization

we have
|fED| > |fODI' ) ' (16)

The OD energy (-7.380119 hartree) agrees nearly perfectly with the

energy (-7.380115 hartree) obtained by the G1 —SCF (o = 0) theory.133

5a,21 that the 0D orbitals are

Thus, it seems reasonable to consider
variationally fixed by the electron correlation effect due to CZ(¢k¢2v61)
rather than by the spin polarization arising from éZ(¢k¢1v62). Ladner
and Goddard4a confirmed this point by direct calculations of Gl and 0D
orbitals for Li(2°s).

The above view can be rationalized from a similarity between the
OD and G1 orbitals (Appendix B). It is thus definite that, like the G1
orbitals, the OD orbitals are split almost exclusively by electron
correlation. This supports the conclusion reached by Ishida and
Nakatsuji21 from the results of MC—SCF calculation. In fact, we can
reproduce the OD f-value by use of the Gl orbitals through the

approximate expression

o 2H12

0D 9511 (Hyy - EgS,

;127 % - b° %
2 |

-0.213 (17)
in good agreement with fOD = -0.2142,

B. Spin rotation in the SEHF theory (0D vs. EG)

The SEHF condition C1 = C2 places a serious restriction on the DODS
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scheme, as was argued in the preceding subsection. However, the defect
can well be remedied within the framework of the SEHF scheme by the
introduction of GSO22 in place of DODS.

If the spin functions quantized in the x axis

o = 2-1/2

(o + B) . (18a)
B = 2"1/2(a - B) | (18b)

are used in the SEHF scheme, a simple EG function results:

o 1 g : al [-b)/v
Yeo = 7 P, Al + &) (19).
a b 0

Since PZ and CZ(ell + e22) commute with each other and since

q C (ap
( PZ axBxa = ~(aB Ba)a/z
- _2‘1/261, (20)
Eq. (19) reduces to
o _ _-1/2
Yoo = 27 “dabve, (21)

Equation (21) is essentially equivalent to the Gl function, so that the
adverse effect of the triplet-type core structure on E has been removed.

Let us now examine the relationship between the OD and EG theory.
An OD wavefunction can readily be obéained by introducing the spin-

optimization parameter o into Eq. (19):

1 q a -b v
Yop = 7 P A (eyy + €33) : (22)
a b ov
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Correspondingly, the exact EG function is obtained by the optimization

through further distortion of each spatial component:

- 1.9
Yoo = 3 pz(Z(ell +ey)fa+ 8a\f-b- b v , (23)
- a - 8a b - 8 /Lov + &v

where 8a, 8b and 8v are the first-order variations in orbital. It

follows that

Yee = Yo

opt
+ GWEG (24)
with

swggt _ 3‘1/%Zj(6ab - ab)v + abSV]ez, (25)

as a first-order correction of spin polarization.

Equation (24) together with Eq. (25) suggests the following:
(i) Swggt is not expected fo‘greatly improve EOD' In fact, EEG - EOD
is only -0.000105 hartree, namely, 0.6% of the radical electron
correlation.
(ii) nggt must correct the somewhat rigid property of CZ@ZGZ of the OD

formalism, to assure

- f (26)

| £

c1 - feel < 1Ecr - fopl-

According to numerical calculations, ]fCI[ = 0.2306 is greater than
lfODI = 0.2141. The relationship (26) is, therefore, tantamount to the

inequality

l£e6] > 1Egpl (27)
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insofar as ]fED] ?an never exceed IfCII'

C. Spin-optimization of the GSO wavefunctions (EG vs. 0G)

The OG wavefunction can formally be derived from WEG'[Eq. (23)] by

introducing a spin optimization parameter T(= C2/Cl):

1 q a + 8a -b - &b v
oG ~ E'Pzézcell * Tezz) a - 8a b - 8bJlov + &v

e
|

opt
EG

1]

¥op * (T - 1)0(2@262 + TSY (28)

0]

where @; is the OD spatial function. In the special case where T = 1,

Eq. (28) reduces to Eq. (24). Note that, when Y_ _ is expressed in the

oD
form of Eq. (12), Eq. (28) takes the form

. o e opt
Yoo = 52@191 + T(ocZ¢292 + S¥ERT). (29)

Starting from the EG function (T = 1,~awggt = 0), we may now

examine the effect of spin-polarization in the OG function. Just as in
the case of DODS functions [Eq. (14)], one obtains upon spin optimization
an approximate T value:

H
70 o . — (30)
22 ~ FEg®22

, . . W 1a—S
Because of the inequality S11 >> 822 (822/511 = 10 “), we can neglect
the effect of renormalization. By reoptimizing the orbitals with this
T(O) and recycling the process, one could reach a fully optimized OG

wavefunction. However, preliminary calculations showed that the

convergence of this SCF process is very slow, which suggests that the EG
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solution is considerably stable in the variational space of the 0G
solution. At this conjuncture, we have decided to look into the
relationship between the EG and OG theories indirectly, adopting the 0D

wavefunction as a common basis.

In conformity to Eq. (24), the Fermi f value in the EG theory is

expressed as

- -] ~ opt
fro = fop * 2 (a¢161[f|6\1’EG D. (31)

Likewise, Eq. (28), when combined with Eq. (30), leads to a first-order

approximation of fOG:

[ . (0) o ~
£oo = Fop * 2(T0° - 120 |Elode.0,)
(0 ° “ opt
+ 2T )<d®161|f|6‘llﬁg >. (32)
Noting that
£ = 24d o8, |Elo@o,8, > (33)

one can readily show from Eqs. (31) and (32) that ng'can never be more

negative than fo unless

D
T(O) N fOD _ -0.2141 _ 0.995 (34)
fEG T -0.2152 T ¢

In reality, the T(O) value (0.953) calculated from Eq. (30) does not
satisfy the condition (34). This is due mainly to the third term of Eq.
(25), 3—1/3623b6v62, which takes account of the core-valence correlation

effect. Because this additional configuration is of high energy, the 0G
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(0)

function involving it should naturally have T which is at least
discernibly smaller than unity. The nature of the configuration in
question will be discussed in greater detail in the next subsection.

Using £y = -0.2141 [Eq. (33)] and £, - £, = -0.0011 [Eq. (31)]
(0)

in place of the integrals and adopting T = 0.953, we can evaluate the

(]

. . . -] .
first-order approximation fOG [Eq. (32)]. The result is fOG = foD +
0.0090 = -0.2051, in reasonable agreement with foG = -0.1953. The

ordering
el 2 1£5p] > [£46] (35)
has thus been rationalized.

D. Structure of CZ@ZQZ (ED, OD, and EG vs. 0G)

As has been stressed above, 62@161 and CZ¢262 couple with each other
through common parameters involved in both of them. Hence, it strongly
depends on the functional structure of 62@262 whether or not the wave-
functions could yield good f values. Here we expand 62@292 of the four
functions over the common natural orbitals which have been derived frém
the ED solutions. Denote the s- and p-type natural orbitals by {¢i} and
{wi} (i =1, 2,...), respectively. Then the f value is givenk
principally by the matrix elements between the ground configuration

Fii 7 |¢1$iw1| and the singly—excited configurations
R U ANRN AR IR A (36)
k1 k*1%1 k?1%1 k®1%1 (k % 1)

which are contained in CZ@ZGZ.
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Table III summarizes the expansion coefficients dkl's k = 1) in

the normalized @262. In the GSO theories (i.e., EG and 0G), the total

weights of F, .'s are relatively small; 0,4523 for EG and 0.3939 for 0G.

k1
Other configurations which should contribute appreciably to the GSO

functions are the doubly-excited configurations

Fon = 620080 ]+ 1500 | - 2lo00 |} Gomt D) (37)

This is due to the orbital b3 in Eq. (5b); it has large expansion
coefficients over wm (m 4 1), in contrast to 2y, which is almost identical

hardly contribute to f,
km

the increase in the weights of these configurations should in effect

with wl itself. Because the configurations F

diminish |f|. Obviously, this diminution depends on the spin-coupling
parameter o also.

On the basis of the expansion coefficients for Fk1 (Table III)
together with the relevant ¢ values, each contribution fk from Fkl to

the total £
) 1/2 -
£, = 2(5,,/8, )" %4 o (B 1EIR D (38)

has been evaluated. The results are summarized in Table IV.
Table IV indicates? first, that
7
f= £ (39)
k#1

Second, the distribution patterns of f 's in the OD and OG descriptions

k
are similar to each other, and so are those of the ED and EG formalisms.

In these latter cases, the contribution of f2 is dominant over the rest.
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It is interesting to note that the OD and EG have different structures
of f while the net fvvalues agree closely with each other.

In conclusion, we emphasize two important types of electron
correlation effects on f, which are characteristic of the 0OG scheme.
One is the effect based on the interaction between core and valence-shell
electrons, as is endorsed by the significantly large contributions of

F m's to the GSO functions. The other is based on the interaction

k
between core electrons themselves, which brings forth the relatively
large expansion coefficients to Fkl's in the S0 —SCF functions. Both
these effects, which can be interpreted in terms of the functional
structure of CZ®262, are implicitly reflected in E22.(Tab1e I1I); the
greater the weights of the excited configuration, the less stable is the

triplet-type state CZ®262. It is noteworthy that the f values calculated

by the four orbital theories increase in the same order as the E,, values.

V. DISCUSSION

In connection with the spin density in Li(22P), we will briefly
discuss a special significance of the functional form of natural spin
orbitaissa (NSO) as well as the océupation numbefs of natural orbitalssa
(NO). The charge and spin density functions, denoted by Y. and Yo»

respectively, are split into the s and p components:

v =y yE | (40)

C C C
= ~3 p ‘
Yo =Yg v Y (41)
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Here, we will focus our attention on the s-component because what we are
considering about is specifically the splitting of the core due to the

spin and electron correlations.

A. NSO and spin density

The NSO's with the s-symmetry are slightly split symmetrically from

the corresponding NO in such a manner that

o .
¢ = ¢; + 8 | (42a)
- ‘ , .

This is simply because, in the expressions

s _1.s 1.5 :
Yo S 7Y " 7Y v (4333
and
s 1 ._.s l s
Yg =7 Y. "7 7% . (43b)

Yz is sufficiently smaller than Y. to be treated as a small perturbation.

Using an approximate OD wavefunction, LuneilSd demonstrated that
the f value for Li(22P) can be calculated almost exclusively from the
first natural determinant which involves the first three NSO's of large
occupation numbers. Larsson and Smith24 confirmed this for Li(ZZS) on
the basis of a highly accurate wavefunction. We have checked this
problem for the various Qavefunctions.of our concern. The results are
shown in Table V. In every case studied, the fo value arising from the
first natural determinant has proved to be a sufficiently good

approximation to f. Thus, it seems generally valid that the spin density
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Yz(O) is determined primarily by the functional form of the first NSO ¢1:
YS(O) = 4¢1(0)51(0) (44)

B. NO and electron correlation

The ocozing of the two core electrons out of a doubly occupied
orbital by their dynamical correlation must be represented in terms of
the first-order density matrix, just as the spin polarization can be
expressed by a first-order spin density matrix. We have previously

defined a density function25

D(r) = 2v_(x, ) - [y (r, ¥ )y (r, r)dr (45)

which represents the spatial distribution of split-pair electrons and
unpaired spins, both being regarded as sort of odd electrons in the lump.
The trace of D(r), which is expressibie in terms of the occupation

numbers ni of the NO's in the form
TrD(r) = Zni(z - n,) (46)
i

is essentially the total number of such odd electrons.

D(r) could also be divided into s -and p components, namely,
D(r) = D°(r) + DP(r). (47)

TrDS(r) could then be considered to represent the number of core odd
electrons arising as a result of both spin and dynamical polarizations.
Table VI shows the values of TrDS(r) for Li(ZZP) in various orbital

treatments. Because the generation of odd electrons in the ED scheme is
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due exclusively to the spin polarization, and because the spin polarization
is allowed to an utmost extent in ED, the contribution from the spin
polarization to TrDS(r) will in no case exceed 0.000060 (TrDs(r) of ED).

The values of TrDS(r) calculated decrease in the order
0G > EG 2 OD>>ED : (48)

which is in agreement with the decreasing order of the correlation
energies involved in the calculated total energies. The extent of the
electron correlation is considered to be reflected most vividly in the

distribution of the occupation numbers of NO's.

VI. CONCLUSIONS

Of the orbital theories hitherto proposed, the SO —SCF -GSO wave-
function is the most extended one. Aﬁplication of the theory to a
lithium atom has improved the OD and EG results by 5v6 % in electron
correlation, to approach the radical limit most closely. This can also
be confirmed by the trace of Ds(r). However, it is also true that the
electron correlation can only be taken into account to a maximal extent
at sacrifice of the functional structure of cz¢262. The effects of this
distortion in CZ@zez.héve been examined in a comparativé manner for
various orbital theories. The results shed light on the roles of spin-

optimization in the orbital theories, especially in the GSO treatment.
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APPENDIX A: CUSP CONDISION FOR SPIN DENSITY

According to Cohen and Frishberg27 and Nakatsuji,28 the exact first-

order density matrixsa’29

t 1 t t !
Py (x15%9) = ¥y (xpprydalo)a(o)) + vo(r), T1)B(0;)B(0,) (A1)
should satisfy the reduced Sohrodinger equation
h,p, = Ep, - zj(h2 + Vio)p,dx, - sfv23p3dx2dx3, (A2)

where ) and p3 are the second- and third-order density matrices,
respectively, Vij is the electron repulsion between electrons i and j,

and hi is a one-body Hamiltonian

(%+z) (A3)

=

1
h=(—'2—

1 2 2 ) -

or 2r”~

with Z as the nuclear charge. The right-hand side of Eq. (A2) is finite
everywhere. Therefore, removal of the singularity for s functions in

hlp1 necessitates the following relationship:

2] ' _ t
'3_1._; p(xl’ xl) |I'1=O = “Zp (xr xl) lrl__.o (A4)

Multiplying both sides of Eq. (A4) by a(c)a(o') or B(O)B(o') and

1) .
integrating the products over ¢ and 0, one obtains

9

| 38 . ]
ary YaOr T lx 0 = 26Gp DL 20 | (A3)
2y rh )] Ly = ~Zyglr, )| (A6)
arl B*Y'r "1 r1=0 BV r "1 r1=0 :
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The cusp conditions, Eqs. (7a) and (7b), for the charge and spin densities,
respectively, can be obtained simply by adding Eq. (AS5) to (A6) or by

subtracting Eq. (A6) from (AS) after'ri has been set equal to Ty

APPENDIX B: THE OD AND G1 EQUATIONS

For the ZZP state, the OD equations relates to the corresponding

Gl equations in a simple manner. When the Gl equation for the core

orbital ao and b° are given asl:”a
HCla® = e° a° (Bla)
a a
G]_o_oo
Hb b = € b, (B1b)
. 30
the OD equations become
Gl 1 .
(Ha + 3-é-ol(v)a =€ a (B2a)
Gl 1 -
(Hb - EE'GKv)b = sbb, (B2b)
Qhere
1
KWV(1) = f[v()z— v(2)¥(2)dr,. (B3)
12 ’

According to the results of OD calculations, |o| = 0.012 and both

< a|KV|a > and <-blKv|b > are of the order of 107> hartree. Hence, the
exchange terms in Eqs. (B2)'s can be neglected relative to both Hgl and
Hgl, so that

la-a°) =0, JIb-5b°}| =o. (B4)
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TABLE 1.

Expectation values obtained by various orbital theories.

Method

AE (%)

-E (hartree) f YC(O) Zé | ZS Ref.
Li (2%8)
RHF 7.432727 0 2.094 0 13.8160 12
pops  ED 7.432813 0.5 3.020 0 13.8159 13b
oD - 7.447565 93.6 2.849 0 13.8646 3.0 3.0 4a, 4b
GSO EG 7.447596 93.8 2.802 0 3.0 3.0 Sg
06 7.448522 99.7 2.750 0 13.8672 3.0 3.0 This work
CI 7.448571 100 2.801 0 - 13.8669 3.0 3.0 5g
Expt. 7.47807 — 2,906 0 _  — — 14¢, 159
Li (2%p)
RHF 7.365069 0 0.0 0.05848 4a
DODS  ED 7.365091 0.1  -0.2895  0.05861 4a
7.365097 0.2  -0.2972  0.05878  13.6505  2.999  2.770  This work
oD 7.380119 92.0  -0.2132  0.05876 10
7.3801192 92.0  -0.2141  0.05881  13.6942  2.997  2.916  This work
GSO EG 7.380191 92.4  -0.2243  0.05926 5g
7.380224 92.6  -0.2152  0.05928  13.6952  2.996  2.745  This work
06 7.381053° 97.7  -0.1953  0.05895  13.6989  2.996  3.170  This work
CI 7.381428 100 -0.2306  0.06070  13.6576 5g
Expt. 7.41016 —  -0.2128  0.06258 S— — R 14%, 16%
*c,/c, = 0.0060. °c,/c; =0.0117. ©ForE. ¢ For £ and £.



TABLE II. Expansions of the

natural orbitals.

DODS core orbitals over the ED

Natural ED oD

orbital? a(r) b(r) a(r) b(r)

9, 0.99999 0.99999 0.98199 0.98157
¢, -0.00473 0.00473 0.12175 -0.12540
- 0.00001 0.00000 0.13228 -0.13293
o, 0.00000 0. 00000 0.05371 -0.05167
dc -0.00001 -0.00000 0.01794 ~0.01733
o 0.00031 -0.00031 -0.01283 0.01264
¢, -0.00003 0.00007 0.00213 -0.00209

a
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¢k denotes the kth ED natural orbital having k - 1 nodes.



TABLE III. Coefficients d, , of the configurations F, . in the normalized

k1 kl

.2
@®,8, of Li(2°P).

DODS GS0

k ED Oob EG 0G

2 0.9978 0.6501 0.6674 0.4785

3 0.0006 0.6979 -0.0571 0.3931

4 0.0005 0.2772 -0.0313 0.0011

5 -0.0006 0.0929 -0.0066 0.0737

6 -0.0652 -0.0671 -0.0507 -0.0705

7 0.0100 0.0112 0.0063 ~-0.0003
Total weight 0.99999 0,9998 0.4523 0.3939
Ezz(a.u.) ’ -5.136218 -2.443656 -2,924433 -1.315152
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TABLE IV. Contributions of the excited configurations
Fk1 to f.

DODS GSO
£y ED oD EG 0G
£, -0.3324 -0.0531 -0.3180 - -0.1091
£ -0.0005 -0.1000 0.0477 -0.1573
£, -0.0013 -0.1224 0.0808 -0.0013
£ -0.0019 0.0524 -0.0218 0.1159
£ -0.0487 -0.0123 -0.0540 - -0.0359
£ 0.0726 0.0195 - 0.0636 - -0.0015
Efk -0.3122 -0.2159 -0.2017 -0.1892
£2 ~0.2972 -0.2141 -0.2152 ~0.1953
2 Table I.
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TABLE V. The Fermi contact term f0

obtained from the first natural

v determinant
State' Method | ' fO'
2
2°s _ 0G 2,747
2
2 S ED -0.2972
oD -0.2139
EG -0.2103
0G -0.1921

| .2
TABLE VI. Traceof D°(zr) for Li(2°P).

Method TrD® (r)
RHF 0.0

ED 0.000060
oD 0.011198
EG 0.011590
oG - 0.012017
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AMPLITUDE

FIG. 1. Amplitudes of the SO—SCF—GSO's for the 22§ state of Li.
The core orbitals, ¢1 é a0 + bIB and ¢2 = a0+ bZBI’ should
be scaled by the left vertical axis, whereas the valence

orbital, ¢3 = a,a + bSB’ should be scaled by the right one.
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FIG. 2. Amplitudes of the SO-SCF—GSO's for the 22P state of Li.

The scales of the orbitals are the same as in Fig. 1.
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CHAPTER 4

Distribution of 0dd Electrons

in Ground-State Molecules

A density function D(r) = 2y(zr,T) -Jrf(r,r')y(r',r)dr', where
y(r,r') is a spinless first-order density matrix, has been proposed as
fundamental formula representing the spatial distribution of odd
electrons in molecules. The bonding properties of 7 electrons in some
representative triatomic species have been examined in the light of D(x).
The density function can also be used successfully to assess the di-

radical character of unstable singlet ground-state molecules.
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1. INTRODUCTION

When electron correlation is utterly ignored, each orbital in the
singlef ground state of atoms and molecules can be considered to be
doubly océgpied by a pair of electrons having o and B spins. The concept
of such a double occupancy of spatial orbitals has provided a useful
guiding principle to the understanding of electronic structures of stable
molecules, as is endorsed by the success of the restricted Hartree-Fock
(RHF) theory.l However, the concept apparently breaks down, when the
electron correlation is duly taken into account.2 An RHF orbital is
then more or less split into two spatial orbitals, each of which now
accomodates either one of the paired electrons separately. An electron
pair will thus be split spatially to assume a partial odd-electron
character even in a singlet ground-state molecule. The nature of such
split electron pairs should have a particularly significant bearing on
the properties of the so-called singlet diradical species3 as well
as the transition state of certain concerted reactions.

The electronic structure of molecular systems involvingvthe electron
pair splitting can be represented satisfactorily well by some specific
wavefunctions such as the generalized valence bond (GVB) wavefunction.5
Yet, it seems desirable to invent a general method of drawing
informations about the splitting of electron pairs from exact or any
trial wavefunctions. Particular efforts along this line are the main
purpose of the present work. It is also a formal complement to our

. . 6 . .
general considerations of Lewis' electron pair concept.
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II. DEFINITION OF THE ODD ELECTRON DENSITY

Consider a singlet ground staté. The first-order reduced density

matrix7 is written as
(1) o= L :
P (x,x") = s y(r,r')[a(s)a(s") + B(s)B(s")], (1)

where r and s respectively denote the space and spin coordinates and

where y(r,r') is the spinless first-order density matrix. The necessary
.. .. 7 )

and sufficient condition’ for a wavefunction to be reduced to a

single Slater determinant is

D(l) (X,X') - fp(l) (X,X")p(l) (X" ,X) dX"

= 3 [2y(r,r7) - fY(r,r")Y(r",r')dr"][aCS)a(s') + B(s)B(s")]

=0 ’ (2)
It follows that

2y(r,r') - Y2(r,r') = 0 (3)
where Yz(r,r') has been defined as

2 ) e (3} 1t

V) = [yevet et (4)

Equation (3) means that the natural orbitals7 should be doubly
occupied, as long as the wavefunction for which <Sz> = b can be
represented by a single Slater determinant. On the contrary, when the
exact wavefunction cannot be expressed by one déterminant alone,

2y(r,r') - Yz(r,r') should be nonzero. In such latter cases, at least
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one of the natural orbital pairs must be split to a certain extent.

Thus, a spinless density function defined as
2
D(r,r') = 2y(r,r') -y (r,r") (5)

is expected to provide a theoretical clue to the spatial splitting of
electron pairs in a given molecular system. Each counterpart electron
of an electron pair which is thus split to occupy different portions of
space orthogdnally will hereafter be referred to as an "odd electron.”
The extent of generation of such odd electrons and their distribution
in molecules are the central problem of our present concern.

Let us concern ourselves here primarily with the diagonal element

of Eq. (5). We will express the diagonal element as

D(r) = 2y(r) - Y () . )

The density function D(r) can be expanded diagonaly in terms of the

natural orbitals ¢k's and their occupation numbers nk's (0 g n < 2).

The result is written as
mﬂ=én¢2—%myﬂ%uy (7

Equation (7) indicates that the intensity factor of a natural

orbital ¢, contributing to the density function D(r) is n, (2 - n ).
k k k

Obviously, the factor nk(Z - nk) takes a maximal value of 1 when n = 1,

and diminishes monotonously down to 0 as n, approaches 0 or 2. This

k
could be taken as an implication that nk(2 - nk) is the probability that

the electron(s) in ¢k is left unpaired as if it were an odd electron in
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the singly occupied molecular orbital of a doublet radical. Our density
function D(r) could then be regarded as a formal expression giving the
spatial distribution4of the total odd electrons in a given molecule.

In open-shell ground states, unpaired spin densities do exist at

the outset. The first-order density matrix is

o (x,x1) = v (r,r0als)als") + Y, (r,r)B(S)B(s) (8)
the spinless first-order density matrix being written as

Y(r,T) = Y (T + vglr,rt) . ©)

In this case, the density function for odd electrons D(r) is formally

expressed as

2¢(x) - Y2 (x)

2[{7, (1) - 7, (01 + frg(®) - ¥ @N + (v, - v @  (0)

D(1)

where the term (Yu - YB)Z(r) is the diagonal element of the integrated
square [Eq. (4)] of the customary spin density function Ya(r) - YB(r).
Clearly, Ya(r) - YB(r) is due to th§ presence of unpaired spin(s) in the
ground configuration. In case where the wavefunction happens to be

given by a single determinant, we have
(@) - Y, (@) =0, Yg() - vg () = 0 (11)
Yo (X)) = ¥y (x) =0, Yg - Yg =0,
which give an obvious result for the unpaired spin(s):

D) = (v, - Y () - (12)
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Thus, the unpaired spin(s) has already been incorporated in our D(x) as
a part of the odd electron density. It is the first term of the right-
hand side of Eq. (10) that represents the splitting of paired.electrons
themselves.

With the distribution function D(r) ét hand, we can readily
calculéte the populations of the odd eiectrons on given atomic sites in
a given molecule. Thus, D(r) is expanded over the atomic orbitals

{xt(r)}:
D) = ] ] 4, xi(@x, @) - - (13)
tu : :

After the manner of Mulliken [8], the atomic-orbital population of odd

electrons can be defined by

D, = E dtu<xtlxu> . : (14)

The gross population on atom A is simply a sum

A
D, = ) D, - (15)
t
Needless to say, the total sum of DA's over the atoms involved should be
finite:
)) D, = TD(x) <N, . (16)
A : :

where N is the total number of electrons.

III. APPLICATIONS TO SOME SPECIFIC ORBITAL THEORIES

Prior to the application of the theory to existing molecules, we
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will here derive the expressions of D(r) pertinent to a few typical
orbital theories. It is hoped that such expressions will assist a
proper understanding of the features of numerical results for molecules

which will be presented in Section 4.

A. Doubly occupied orbital CI wavefunction

For the sake of simplicity, we choose the configuration-interaction
(CI) wavefunction composed of doubly occupied (DO) spatial orbitals9

OCC unocc

T aaa
Y = Cydy + E g C;%5; » _ (16)

where @O

determinant having two (a- and B-spin) virtual orbitals ¢a in place of

stands for the ground configuration and @?g is a Slater

two occupied ones ¢i. Form Eq. (7), D(xr) becomes

OCC unocc unocc

b =41 [ 1 €’-01) € mem
1 a a
unocc occ occ o
sa ) 1) €D -] €100, . a7
a 1 1

In the simplest DOCI theory, we only consider the highest occupied
(HO) and the lowest vacant (LV) MO's as the ¢i and ¢a, respectively.
. . s . . LV
Further, if we reoptimize ¢HO and ¢LV simultaneously with CHO’ the

optimized double-configuration (ODC) version10 will be obtained. 1In

either case, Eq. (17) is simplified into

D(x) = 4(Ch2[1 - () 1Mo (®) + 91y ()0, (], (18)

The expression is useful for the consideration of the diradical character
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of singlet molecules, as will be discussed later.

B. Singlet UHF wavefunction

By use of the corresponding orbitals,11 the unrestricted Hartree-

Fock (UHF) wavefunction for a singlet state can be written as12

¥ = fa,b.ab,...... |, (19)

where the bar denotes B-spin orbitals. The corresponding orbitals

satisfy the following relation:
<ak|b1> =568, - (20)

Since the UHF wavefunction is a single Slater determinant, D(r) should

consist only of the spin density term. Thus,

D) = (v, - Y @)

E{a]: (x)a (x) + by (x)b, (r)
- 8, [, (b (1) + bE(D)a ()]} . @D
Equation (21) suggests separate contributions oank(r) and bk(r)

to the D(r) function. The spatial splitting of the a- and B-spin

electrons is thus apparent in this case.

C. Generalized valence bond (GVB) wavefunction

The GVB wavefunction5 has also been applied to the studies of

diradical species.13 It is generally written as

¥ = fa (1)b,(2) (08 - Ba)ay(3)b,(4) (0B - B~ @)
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where Vi.is an antisymmetrizing operator. The orbitals a and bk
constitute a pair, and every pair is orthogonal to others, i.e., <akla1>
= <bk[b1> = <ak|b1> =0 (k £ 1).
Use of Eq. (22) leads to
1- S;'. * *
D(x) = E—(—l——rgi-)—z {ak (r) a (r) + b, () by (x)

- Sk[a;(r)bk(r) N b;(r)ak(r)]} . (23)

Aside from the factor (1 - Si)/(l + Si)z, Eq. (23) is identical in form
with Eq. (21). It is likely that the UHF and GVB theories provide
similar distribution patterns of split spins, insofor as the spatial

orbitals used in these theories do not differ appreciably.

IV. NUMERICAL EXAMPLES

In this section, we will apply the present theory to some existing

three-atom species and to the transition state of concerted reactions.

A. Triatomic species

A few triatomic three-electron T systems (together with their two-
and four-electron family systems) were chosen as examples. They include
. R - . ' + -
allyl raidcal C3HS(C3H5 , CSHS-), formyl radical HCOz(HCO2 R HCO2 ),
nitric oxide NOZ(N02+, NOZ') and ozone cation 03+(032+, 0;). For all of
these species, various types of wavefunctions were calculated by Linnett

et al.14 Among others, their RHF, full-CI and Heitler-London (HL)

wavefunctions will be adopted for our present purpose. The populations
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of odd 7 electrons calculated therefrom are summarized in Table 1.
The salient points noticed in Table 1 are the following:

1) The odd electron populations gi&en by the HL method is always larger
than those given by the CI treatment, as is expected. The populations
obtained from the RHF wavefunction reflect the unpaired spin term,
Eq. (12), only.' |

2) In the CI case, the resﬁlts for the two- and four-electron systems
nearly coincide with each_other. In either sysﬁem, fhe splitting of
pairs is due almést exclusively to that of the highest occupied MO.

3) In Both the CI and HL treatments, all the triatomic species examined
have a fairly lafge odd electron density on thier central atoms.

4) Roughly speaking, the population of odd electrons increases with the
decreasing overlap <xa|xb> between the neighboring atomic orbitals
(Table 2).

5) For 03+ the total‘popuiation (2.437) calculated by the CI method
exceeds 2, indicative of a partial triradical character.

As has been shown in the above examples, D(r) could be used for

the comparisons of the features of various model wavefunctions. For

preciser dispiays of these features; it will be more advantageous to use

contour density maps of D(r).

B. Concerted reactions

We here treat two types of cycloaddition reactions. One is a
(2s + 23) cyclodimerization of ethylene, which is a typical orbital-

symmetry forbidden reaction. The other is a (Zs + 2S + 25) allowed
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reaction of three ethylenes to give cyclohexane. The wavefunctions of
these two concerted reactions Qere traced by Porter and Raff15 and by
Wilson and Wang,16 respectively. The latter workers noted that in
forbidden feactions the occupation numbers of the natural orbitals
normally show a croséing between the orbitals ofAhigh and low occupation
numbers but that no such crossing takes place in allowed reactions. The
crossing should naturally be accompanied by the generatioﬁ of odd
electrons.

The populations of odd electrons on a carbon atom at the transition
states were calculated by use of the occupation numbers given by Wilson
and Wang.16 The results were 0.55 and 0.2 for the (2s + 25) and
(2s + 2s + 25) reactions, respectively. In the allowed reaction,
apparently more electrons are kept paired during the course of bond

interchange.

C. Diradical character

In connection with the foregoing argument, it seems particularly
interesting to consider the diradigal character of singlet species. The
diradical character is believed to show up also in the intermediary state
of the Woodward-Hoffmann forbidden reactions.4

Hayes and Siu17 defined the diradical character by

d 2 | ,
where (Cg L)2 is the weight of the doubly excited configuration due to

the electron transition from the highest occupied to the lowest
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unoccupied molecular orbital. Although Eq. (24) can well be understood
intuitively, it is yet unsatisfactory on the following three grounds:
1) Virtual molecular orbitals to be made use of in the CI calculation

can always be transformed unitarily among them,18 so that no

d .2
H-1) -

2) The existence of more than two odd electrons as in a triradical

uniqueness can be attached to the values of (C

should not be precluded in genera1 cases.
3) It provides no information at all about the distribution of odd
electrons.
All these ambiguities can be removed by use of our D(r). To
clarify the situation, let us consider the D(r) function in the DOCI

apppoximation, Eq. (18). Obviously, the trace of D(r)

Lv,2 LV, 2
satisfies
0 £ TrD(x) £ 2, (26)
as long as
LV, 2 .
0= (CHO) £1/2 . 27N

Hence, one half of TrD(x) must corfespond to the diradical character
Yp = (1/2)TrD(r) . (28)

The Yp here defined is always larger than or equal to the Hayes —Siu
quantity, Eq. (24), so far as the condition (27) is satisfied. The

diradical characters of the various two-electron systems obtained by the

2+

No.,*
3 >

full CI treatment were 0.546, 0.295, 0.318 and 0.235 for O 5 s

+ + ' .
HCO2 and C3H5 s respectively.
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The diradical character which can be defined likewise form Eq. 17
should be more general than that based on Eq. (18): The UHF and GVB
expressions, Eqs. (21) and (23), may also be used. In either of these
latter formélisms, it is apparent.that the diradical character of a
singlet state stems from the splittings of the corresponding orbital pairs.
Clearly, the diradical character should be the greater, the smaller the
orbital overlap S

k"

V. CONCLUDING REMARKS

We have defined a density function D(r) which describes the
distribution of odd electrons in molecules. The definition is based on
the spinless first-order density matrix, so that it precludes all the
uncertainties originating from the arbitrariness in selecting the basis
sets, virtual orbitals and configurations. Use of the density function
sheds light on the nature of thermal reactions as well as isolated molecules.
It is emphasized that the traditional term '"'diradical' is a physically
acceptable one. Further, in the sense that D(r) eipresses the distribution
of electrons still capable of forming a new pairing, it could also been
taken as a conceptual generalization of Coulson's free valence.19

Although we have defined D(r) for the ground state only, it may also
be applicable to excited states. However, in the virtual orbital approxi-
mation, excited singlet and tripleét states of homopolar moleculeé cannot
be distinguished; the former state should be zwitterionic3 (not
necessarily identical with zwitterion itself) while the latter, diradical.
In such a casé, recourse to the second-order density matrix would be

unavoidable.
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Odd 7 electron populations in some ground-state triatomic species

Table 1.
Wave- CSHS HCOZ N02 03+
function c,” ccb 0 C 0 N 0,* ocb
Two-electron systems
RHF 0 0 0 0 0 0 0 0
CI 0.164 0.141 0.239 0.158 0.214 0.162 0.393 0.306
HL 0.296 0.593 0.351 0.701 0.398 0.795 0.444 0.889
Three-electron systems
RHF 0.500 O 0.500 O 0.500 O 0.500 O
CI 0.663 0.326 0.632 0.265 0.675 0.350 0.859 0.719
HL 0.871 0.742 0.905 0.817 0.939 0.878 0.968 0.936
Four-electron systems
RHF 0 0 0 0 0 0 0 0
CI 0.188 0.141 0.295 0,133 0.295 0.163 0.411  0.297
HL 0.296 0,593 0.351 0,701 0.398 0,795 0.444  0.889
b. Cetral atom.

a, Terminal atoms.



Table 2. Overlap integrals between the atomic orbitals.?

03 NO2 HCO2 C3H5
01—02—0 : 01'—N»2--03 01-C2—03' Cl—Cz—C

<x1|x2>. 0.12179 0.17005 0.21130 0.25995
<X1|X3> 0.00862 0,01137 0.00865 0.03887

a. These overlap integrals are common to the ionized states of

.given systems.
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ParTt Il

VARIATIONAL THEORETICAL APPROACHES

To THE ELECTRON SCATTERING PROBLEMS



CHAPTER 1

Introduction

It is well known that useful informations about the electronic
structures of atoms as well as molecules and about the vibrational
structures of molecules can be obtained by the experiments of electron
impact on atoms and molecules.1 In order to interpret and moreover to
predict the results, help of the quantum scattering theory2 is
indispensable. Although the history of quantum scattering theory is
almost as old as that of quantum mechanics itself, the theories which
are really applicable to the electron impact on electron systems have not
been developed until recent years.3 This is because accurate calculations
of the electronic structure of bound states have become possible only
quite recently by means of recent high-speed digital computers. The
variational theory2-4 seems to be a promising tool with which to deal

with the scattering processes.

The variational theory was initiated by Hulthén and developed by

Kohn, Rubinow, Schwinger, Kato, and others.z’3

Although the theory has
many advantages over the other methods as an alternative theory, it is
inherently faced with some difficulties. In the Kohn method,5 divergent

solutions which have nothing to do with true resonances appear inevitably,

as was pointed out by Schwartz.6 In Chapter 2, two kinds of divergence
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are mathematically distinguished. One of them shows up in the Kohn
method as stated above and can be always avoided. The other is
unavoidable by any means and occurs in some algebraic approaches at
common momentum, as long as they use a common basis set. This
distinction is accomplished by the basis transformation. In this
connection, the methods for single-channel scattering proposed so fér
are treated in a unified manner. Further, a new method, which is to be
termed the minimum basis-dependence method, is proposed.

In multi-channel scattering theory, some algebraic (or expansion)
approaches,7 such as the minimum-norm method,7 were seriously disadvan-
tageous in that they are not necessarily accompanied by a corresponding
variational functionél. This means that the reactance matrix which is
yielded by the algebraic method has no unique first-order correction.
In Chapter 3, the existence of a general functional for the algebraic
method is proved explicitly. Use of the functional proposed makes the
reactance matrix accurate to first order. Moreover, the correspondence
of the algebraic method to the variational theory is clarified. The

minimum basis-dependence method is extended to multi-channel scattering.
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CHAPTER 2

Optimized Kohn Method
for

the Single-Channel Scattering

A new algebraic variational procedure has been proposed for the
calculation of the phase shift p of the radial wavefunction for a
particle undergoing single-channel scattering. The method is essentially
an optimization of Kohn's theory with respect to the phase parameter 6
as involved ianato's wavefunction. Speéifically, the basis set has
been transformed linearly so as to permit distinction between avoidable
(spurious) and unavoidable (innate) singularities. On this basis,
various standard variational theories have been reformulated in a unified
manner, and their mutual relationships have been clarified. A criterion
of the minimum basis dependence (MBD) is proposed in this connection.
Sample basis-set calculations of p have been carried out for the Hazi-
Taylor model potehtials in order to demonstrate the relative merits of

the MBD method.
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I. INTRODUCTION

The wavefunction Y(r) of a spin-less particle scattering off a

spherically.symmetric potential V(r) can generally be expressed as
-1 :
Y(r) = % Agr ¥, (r)P (cos 6) , (1)

where Ag is a constant and Pz(cos 0) is the Legendre polynomial of order

L. The radial function Wz(r) in its exact form satisfies
ﬁ?z(r) =0, (2)

"~
where H is an operator defined in atomic units as

2,2 2

A 2 +
H=E - {- 1da a1, V(r)} (3)
dr 2r

E = k2/2 being the total energy of the system.
In the algebraic variational theories,1 the trial radial wavefunction

2,3 Kohn,4 and

Wz(r) is expanded in basis functions. After Hulthén,
Lippmann and Schwinger5 had developed such variational methods, Kato6
extended them into a slightly more general form involving a phase

parameter 6. His trial wavefunction is written as

N
Yo = Spo@ + AgCya () + T Dgx; () )

whe?e Sze(r) and C%G(r) are asymptotically

Sze(r) N k-l/zsin(kr - /2 + 6) (5a)

T-»00
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Cpg(T) oy k2005 (kr - /2 + 0) (5b)

and where . (r)'s are square-integrable basis functions. The
Xg\T q g

coefficients ke and Dei's are to be determined by variation of the

functional
gl =2y + 2 (\Pze,m\\p%) , (6)

namely, by imposing the conditions

(;1Ae) =0 i=1,2,...N )

and

(CoglHl¥, Y =0 . (8)

The A, value thus obtained is a trial (zeroth-order) A The value [A

8 6° 6]
correct to the first order is calculated by Eq. (6). The procedures for
obtaining such [Ae] values have been a problem of central importance
since it is related directly to the phase shift p and eventually to the
cross sections for scattering.

. Schwartz7 pointed out through his accurate and extensive
calculations that Kohn's method (6 = 0) gives rise to anomalous singular
solutions at certain k's, none of which has anything to do with a
resonance phenomenon. Nesbest8 showed that Rubinow's method9 6 =mn/2),
which is also called the second Hulthén or inverse Kohn method,1 never
gives this type of singularity at the k's of the Kohn singularity, and

thus proposed alternate use of the two theories. The procedure was named

the anomaly-free (AF) method. The optimized anomaly-free (OAF) method
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proposed recently by Nesbet and Oberoi10 has been aimed at a removal of
the discontinuity ofbk against k. The minimum-norm (MN) method of
Harris and Michelsll_can be regared, like the OAF theory, as one of the
methods which search an optimum 6 automatically.

In this paper, we will investigate the dependence of A upon 6 in
single-channel scattering. It seems natural to consider that the
anomaly arises from the choice of 6 rather than from k; the singularity
is in cases avoidable depending on the 8 value chosen. In order to
demonstrate the situation, we wiil perform a specific transformation
among the basis functions {S, C, and Xi's} and propose two promising
methods to evaluate an optimum [A]. In this light, we will reformulate
the various other theories in a unified manner, clarifying the essential

properties of the singularities inherent in these theories.

II. THEORETICAL FORMULATIONS

A. Basis transformation

For our purpose, it is more advantageous to base the theory on

Kohn's original trial function (6 = 0) of the form:

N .
¥=S+AC+ ) DX 9)

i=1

where S and C are
172 .

S vk sin(kr - 27/2) | (10a)

-1/2
qn*w ~ k cos (kr - 2m/2) (10b)
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and where A is the tangent of the phase shift p. For the sake of
simplicity, both the specifications of the subscript 2 and the radial
coordinate r will be dropped off throughout.

Using the relation

S = | cos 6§ sin 6 S i, (11)

C -sin 6 con © C
one can rewrite Eqs. (7) and (8) into

(xIH]¥) =0 i=1,2,...,N a2

and

{C - us|l]¥) =0, ‘ (13)
where w = tan 6. A is related to Ae accordingly:

A= (w+ Ae)/(l - wke), (14)

Equations (12) and (13) are simple simultaneous equations in the unknown

variables A and Di's such that

K/a \ =-/(c - usl|i|s) (15)
D, {xq 108D
Dy <XN|ﬁ|S>

where
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K= /{c-ws|Bc) {c-ws|flx;) - €C-wslfilx) (16)

alifed  Ixglfilx > - (xllf}lx,@

<xN|ﬁIC> <xN|ﬁlx1> <leélxN>

The solutions of Eqs. (12) and (13) should depend on 8 if’the basis set
{Xi} is not complete. Hereafter, we will refer to Eqs. (12) and (13) as
the first and second Kohn conditions, reépectively.

It may be extremely difficult to find an explicit dependence of‘k
on w (and, hence, on §) through the direct solutions of Eq. (15). Since
we are now discussing on the singularity of the inverse of K [Eq. (16)],
it may be more beneficial to investigate the property of det K. To
accomplish this, we introduce a new basis set {gi} by transforming {S,

C, Xi's} in such a manner that
=y. +P2S+PC (i=1,2,...N) (17)
&g T X3 YRy i = Lalsen
on the conditions

(sliifz,)

=0 (18a)
and
(c|Hlz,) =0. (18b)
The coefficients Pi and P; may be given by
P LM | |
=M o (19)
ps O \uS
i i
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with

SC

M M
Mo = MCS  MeS
where ' '
M; = {S|H|x,> %\g“{xilfﬂS}
My = Lelfilx> = (xglHlc)
and

I
]

M° = (s|H|s), w*€

M = (clH|s), M°©

{s|nlc)
(clijc ),

(20)

(21)

(22)

We can always make det MO be nonzoro by adding some square-integrable

functions to S and/or C. Furthermore if M. = det M0 happens to be zero,

0

all the A's given by the methods of Kohn, Rubinow, and Hulthén are

1d,8,11b

proved to coincide with one another.

By use of {;i}, the wavefunction is now rewritten as

N
S C
Y =TS8+ TC+ ileiCi

Comparison of Eq. (23) with Eq. (9) brings about the equalities:

T + ¥p,P° = 1
ill

TS + §D.PT = ) .
ill

The algebraic equation [Eq. (15)] is reduced to
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Ky ™\ =-1°/{c- ws|H|s) (25)

D, {x; IHISD
Dy / { xylHIs)
where
A 1
Ko = [ LC-uslHlcp o (26)
A 1
{x ey 1 .
{xglRleY
[
with
{xg Mg o xg gD
= A A (27)
From Eq. (26) we have
det Ky = {C - wS|H|C) det X. (28)

Note that X is independent of w. The determinant of X might vanish at
certain energies and the singularities thus arising are unavoidable. On
the other hand, the singularity which originates from a specified w should
be perfectly avoidable. We will consider these two types of

singularities separately below.

B. Avoidable singularity

In order to eliminate Di from Eqs. (24), we will introduce the first

Kohn condition. Thus,
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JZ»('inﬁch) D, = - T (x, |fls> - 18{x, JH[c) . (29)

Therefore, when detX is not zero,

D=

I Vo S ' (30)

where D, M®, and M® are the column vectors constructed of {Di}, {Mi},

and {Mg}, respectively. Insertion of Eq. (30) into Eq. (24) leads to

ASSTS + A%CT =1 | (31a)
ASST® 4+ AC1C = 2, (31b)
where

ASS = 1 - PSX"IMS
Asc = . PsX—IMc

' (32)
Acs L chwIMs
ASC = 1 - pSx~InC

and where P° and P are the row vectors of {P;} and'{Pg}, respectively.

. S
Notice that none of A”> to A®C depends on w.

On the other hand, from the second Kohn condition [Eq. (13)] and

the property of &5 [Eqs. (18)], one obtains

{c - ws|H|T®s + TSC) = 0 . (33)

Use of Eqs. (31) and (33) gives

A=

L
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S M®w-M
T = Yo =5 (35)
cs Ss
c M - M w
T\ = Yo - 8 , (36)
where
o = Achss _ AcsMsc
8 = Achcs _ AcsMcc
(37)
y = AssMsc _ AscMss
5 = AssMcc _ AscMcs

Clearly, X depends on w in a hyperbolic manner. That is, for any
given k, there exists one, and only one, spurious singularity on the w

axis at
wy = 8/y (38)

Conversely, if one chooses w different from Wy such a kind of
singularity can be avoided. Therefore, it never concerns a true
resonance but is merely a spurious resonance. The singularity pointed
out by Schwartz7 is to take place when k passes through the point at

which ¢ = 0.

C. Variational first-order correction

In general, the A obtained by Eq. (34) is not sufficiently accurate;
it contains the first-order error. According to Kato,6 Ae involved in

Y, , should be corrected by Eq. (6) to give [Ae]. The [Ae] may be

26

- 104 -



converted to the corresponding first-order correction of A by the
relationship analogous to Eq. (14). If we denote this correction of A
as [A]k, it becomes

w - [Ae]
Dy =1 A

1l

2w + 2 Qi
o - 2 QYIR[YS

<+

A
1 (39)

+

Before we express [A]k in terms of w, we discuss the mathematical
meaning of Eq. (39) from another viewpoint. Kato's identity,6 Eq. (6),

is essentially
X o=+ 2({¥]H[¥) , (40)

where ¥ is the exact wavefunction
N o
¥ =s+Cc+ Jdx + I dx - (41)
i=1 m=N+1
The square-integrable functions X, are those not to be used in the

approximate wavefunction ¥. Inserting Eq. (41) into Eq. (40) and using

the first Kohn condition, Eq. (12), one gets easily

(A - 2ClAP¥DIT =+ 2(s|Al¥) + 2 § d (x Yy 2
. m=N+1

If the basis set {Xi} used for ¥ is sufficient, we may neglect the last
sum in the right-hand side of Eq. (36). Apparently, this last term is
second order as to 8¥ = ¥ - ¥ . Thus we have obtained a first-order

correction formula
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(], = A+ 2 {s|H|¥D (43)

1 - 2(ClA|Y)y -
Now, it is easy to show that [)\]k is identical with [k]o. Owing

to the second Kohn condition, Eq. (13), [A]k becomes

1+ a0+ 2¢slily))
1+ Ay - 24c|fij¥))

N, =

A1,. (44)

In such cases as the minimum-norm method where we need not calculate @
directly, calculations of [)\]O just suffice.
Finally, we will express [A] in terms of w as

(B - 2M)) - aw
N R ST

(45)

It should be noted that [A] itself also has a singularity at w = §/(y +
2MO). However, we can expect this divergence to be seldom met with
because this divergence condition, <C|ﬁ|‘¥> = 1/2, is hard to be

fulfilled if the basis is sufficient. In order words, a basis set ought

to be altered if the resultant [)\] diverges.

D. Unavoidable singularity

For any choice of w, all of the A and Di's may undergo a divergence
as E passes through certain energies. True resonances must have bearing
with such singularities. As was stated previously, this is ascribed to
det X = 0 and is unavoidable., Although Eq. (15) has no solution in this

case, we can instead extract a correct Kohn solution from the equality
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det X = 0 itself.

If det X = 0, then X should posses an eigenvalue of zero and the
corresponding eigenvector ggr which is expressed by a linear combination
of {;i}. According to a theorem of linear algebra one can aiways have

Cgr satisfy

trya, tr
<X0 IHI‘:O ) =0 (46)
tria; tr
{xg Ilgg > =0,  k=1,2,...N-1 (47)
tr tr . . .
where Xo and Xk are given by a unitary transformation of {Xi}'
Equations (46) and (47) together with Eqs. (18) give
oy tr
{S[H|gy"> =0 (48a)
{cliijggT> =0 (48b)
ay tr .
{x;I8lgg > =0.  ({=1,2,...N) (48c)
It follows that ggr is nothing but the solution of the Kohn method.
Further, it fulfills Hulthén's condition
tryn tr
{gg |Hlgg p = 0. | (49)

That is, at an unavoidably singular point, the solutions of Kohn's and
Hulthén's methods coincide with each other. 1In addition, the energy
where this singularity occurs does not depend on the methods adopted but

on the basis set chosen as long as the first Kohn condition is used.
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II1. PROPOSAL OF METHODS

A. Minimum basis-dependence (MBD) condition

If the basis set{xi}by itself approaches a complete one, both the
coefficients T° and TS should come to zero. This is evident from the
the following two points, First, if the wavefunction is exact, neither A
nor Di's involved in ;t depends on w, so that both T° and T should be
constants, regardless of w. Second, TS and T shouid identically
fulfill Eq. (33), which forces them to depend on w unless ™ =1 = 0.
On the contrary, we may expect either T° or Tc, or occasionally both of
them, to depend strongly on w and moreover to have large magnitudes, if
the basis set chosen is insufficient or if the w in Eq. (13) is fixed at
a wrong point, such as w = §/y.

The situations delineated above provide a good reason for demanding

the norm

Lygp = 192 « (192 (50)

to take on a minimal value possible. There exists a single point which

minimizes IM on the w-axis. It is

BD
_ 8Y + 2yZ ‘
“BD T T T Y GL
where
S sc., 2 ss. 2 sc,,CC SS. . CS
Y=27{(M)+(M)}—2(MM + M°MT) (52a)
and
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2 .
7 = (Mcc)z . (Mcs)z _ 374{(Msc)2 . (Mss)Z} ) (52b)

Once we obtain WvBD?

straightforward way. It is clear that A obtained by this method does

the calculations of ¥ and [A] are made in a

not experience the avoidable singularity; if TS and T° are bounded, so
will A be [Eqs. (34) —~(36)]. The present minimum basis-dependence (MBD)

method can readily be extended to multi-channel scatterings.

B. Minimum error (ME) condition

From Eq. (42), the origin of the error of [A] is seen to be
2Jd (x JH[Y) = (X - ) - 2(8|H[¥) - 2X{c|H]v). (53)
m
We will seek for the w which minimizes

L = (- 0%+ as|ily)? + s clify)? . (54)

Imposing the condition dIe/dw = 0, we have

[(@8 - YB) (o + AY) + 4X2M(2)<S]wME

= (ab - YBY(R6 + B) - 4M>

2, (55)

Equation (55) as it stands is useless because A is unknown. We are thus
obliged to place X by Eq. (45). The resulting equation is cubic in w.
Of the three w values obtained by solving it, the w which actually gives

the smallest IME is physically acceptable.
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IV. COMMENTS ON OTHER THEORIES

In this section, we will comment on some typical variational methods
to calculate A, from the viewpoint of our own. All the methods treated

here are reduced to the problem to search the respective w.

A. The Kohn and Rubinow‘methods

Neither the Kohn4 (w = 0) nor-Rubinow9 (w = =) method can escape
from a spurious singularity. Equations (34) and (45) shows that the

Kohn method gives

B

A= -5 (56)
2Mg - :

By =B )

while the Rubinow method resﬁlts in

4]
A= - = 58
Y (58)
and
o
A= - (59)
B. Hulthen's method and its extension
.. 2,3 .y s
Hulthén™’~ used the condition
(YY) =0 (60)
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in place of the second Kohn condition. By use of Eqgs. (34) —(36) we

have

aw2-(B+Y)w+6

{y|Rly) = M, 5 (61)
(Yyw - 6)
We consider two cases below.
(i) The case where (B + Y)° - 4ad > 0.
Equation (60) is equivalent to (S - C/w|ﬁ|4'> = 0, so that
1 v

e -k (62)

and
B+yt {(B+ )2 - 408}t/?
w = 5o (63)

The choice of the sign in Eq. (63) is also determined by the function

I (50). Here, the DemkovSC condition cannot be applicable.

D’ "%
(ii) The case where (B + y)z - 408 <0

Nesbet8 and Shimamura12 have already shown that Eq. (60) cannot
necessarily hold in the vicinity of the eigenvalues of the matrix
(inH]xi) as long as the first Kohn condition is imposed on ¥ . For

such cases, Hulthén's method had better be extended to a form such that

w minimizes | ¥|H|¥>]. The w value is then

_ S(y - B)
YTHH + B - 2a8 . (64)

It is easy to prove that the two w's of Eqs. (63) and (64) are connected
continuously when k is varied. The extension enables to define Hulthén's

w everywhere. Calculations of [A] are required only in Case (ii);
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in Case (i), [A] = A.

C. The minimum-norm method

Harris and Michels11 proposed the minimum-norm (MN) method
originally for multi-channel scatterings. The wavefunction is

determined so as to minimize

1, = (Ks|AlY>  elily))y [(s]HYY (65)
(clalY)

and to satisfy the first Kohn condition.

. S, s . . s c
For single-channel cases, it is convinient to write T° and T as

7]
i

~-{cglHjc £ | (66a)

and

[¢]
|

(celﬁls>f . (66b)
By use of these expressions, one obtains

I, =M f" | (67)
and

£= (ysin® - 8cos )" . (68)

IM may attain its minimum when

AS SMS C _ AS CMSS

W= - : . (69)
ASSYCS _ ASCS
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Because both < S|H|¥> and {C|H|¥) have a singular point at w = &/y
as well as T° and TC, the above condition will avoid the spurious
singularity. The first-order variational correction of A ought to be

calculated by Eq. (39),7as was argued by Nesbet.10

D. The optimized anomaly-free method

Nesbet and Oberoi10 imposed the condition ke = 0 as well as the

first Kohn condition on the wavefunction

We = S{(cos 8 - A651n 6) + C(sin6 + Aecos 8) + gDeiXi‘ (70)
The second Kohn condition, Eq. (13), is equivalent to their mio = O10

for the single-channel case. The wavefunction Eq. (70) reduces to

¥ = ScosB+ Csinf+ ZDeiXi (71)
when Ae = 0. Hence,

A= tanb = w (72)
or using Eq. (34)

B-aw _ (73)

Yyw - 6

Equation (73) does not necessarily have real solutions. 1In this case,
the procedure would have to return Eq. (11). There, the orthogonal
matrix has to be replaced by a unitary one. Further, even if real
solutions are obtained, a criterion with which to select the correct

solution, such as IMBD’ will be needed.
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V. NUMERICAL.  EXAMPLES

We have performed sample calculations of the phase shift p = tan_ll
by the various methods mentioned in the foregoing sections: the Kohn
(Eq. (56)), Rubinow (Eq. (58)), Hulthén (Eqs. (63) or (64)), the minimum-
norm (MN, Eq. (69)) and optimized anomaly-free (OAF, Eq. (73)) methods
in addition to our minimum-error (ME, Eq. (55)) and minimum basis-
dependence (MBD, Eq. (51)) methods. Their variational corrections [P]
= tan—l[Kj are all given through Eq. (43). In place of the effective
potential Veff(r) = V(r) + L(L + 1)/2r2, the model potential function of

Hazi and Taylor13 was used:

V(x) = i %—xz (x < 0)
2 (74)
%’XZe-ax (x > 0)

The square-integrable basis functions xi's used were the Hermite
functions. The size N of the basis was varied between 5 and 40. As the

asymptotic functions S and C, the following functions were adopted:

S = { k_l/zsin kx (x > 0)
2 (75a)
k_l/ze'bx sin kx (x < 0)
and
C = i'k—llzcos kx (x > 0)
2 (75b)
g~1/2-bx cos kx (x < 0)

with the damping factor b being fixed at 0.15.

First, we have examined the energy dependences of the various phase
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shifts for two different potentials for which a = 0.15 and 0.225. The
resulté are summarized in Table I and II, respectively. The size N = 20
of {Xi} yielded fairly good [p] values in all methods. Especially, all
the results for a = 0.225 (Table II) for which the pofential barrier is
lower than for the case of a = 0.15 (Table I), are nearly in the exact
limit. The very small deviations~from the exact values may be due to

the choice of a fixed dgmping féctor b. The results are satisfactory

for the relatively small size of'{xi} used; the stabilization method
would need more X functions in order to obtain the comparable accuracy.13

In Table III, the basis size dependences of both p and [p] are
shown for a case of E = 0.1986012 and a = 0.15. The [p] values are
sufficiently close to the exact phase shift (0.25441) when N is larger
than 15. With N greater than 30, exact p values are obtainable by any
of the methods here examined. For the sake of comparison, the values of
IMBD and IME calculated at varying N are also listed. Both these I's
converges to zero in a monotonous manner. However, in case where E is
in the vicinity of the critical E at which det X = 0, these monotonous
behaviors break down. Nonetheless, we may regard these I s as useful
measures of the accuracy of the basis-set calculations.

Generally, the OAF method seems tb give slightly more accurate
results than do the MN and MBD. The latter two methods yield nearly the
same [p] values. The agreement seems to be essential, as will be
discussed in a forthcoming paper. Both of them are also reliable enough.

Furthermore, they can be treated within a framework of real number, in

contrast to the OAF method.
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Finally, the way how ) is corrected to [A] is illustrated in Fig. 1
for the case of a = 0.15, N = 15, and E = 0.3067471 (a.u.). Both A and

[A] vary hyperbolically with

A = -0.33122 - 0.07503 (76)

@ - 0.37129
_ 0.00732
] = -0.35956 - ———5—2=er (77)

The constant term for [A] (-0.35956) is much nearer to the exact value
(-0.35015) than is that for A (-0.33122). The numerator for [A] (0.00732)
is about one-tenth that for A (0.07503). The latter result indicates
that the dependence of [A] on w is relatively small and hence on the

methods. Further, the range of w for divergence is narrower.

VI. CONCLUDING REMARKS

We have examined the dependences both X and [A] upon w = tan 6 in
a systematic manner, to clarify mutual relationships among various
variational methods. This was accomplished by the help of the basis
transformation. In this connection we have proposed two new methods.
Another merit of the transformation lies in its character that enable to
avoid the trouble originated from the singularity of the matrix |
'<XiIH|Xj> , which Schwartz7 took for the origin of the singularity of
Eq. (15) itself. Incidentally, the procedure of constructing {;i} and
le does not require much of calculation time as compared to other
methods such as Nesbet'ss,procedure.

Among the methods examined here, the MBD, MN (OMN) and OAF methods
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appear to be equally promising. However, one major drawback of the OAF
method is that it involves a procedure of solving non-linear equations.
The MBD as well as MN method can readily be extended to cover multi-

channel scatterings, as will be dealt with in the succeeding paper.
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TABLE I. Phase shifts calculated by various methods for the case of N = 20 and a = 0.15.

The entries are 105 times the deviations from the exact p value?

Method E = 0,1986012 0.3067471 0.4660346 0.4661227 0.4662291  0.4663029
p .. = 0.25441 -0.33681 0.19811 0.71752 1.26965 1.50066
exact
0 2804 -3812 1455 1176 306 49
Kohn
[r] -25 -82 -9 -18 -61 -19
o -663 398 4081 13437 13672 ~303252
Rubinow :
[p] -93 -30 234 262 110 87
Hulthén [p] -81 -35 -220 -50 -66 -20
N 0 636 -3 1470 1244 362 0
[p] -67 -35 -7 -16 -60 -19
0 5178 b 1498 2000 3544 _b
OAF b b
(o] 21 — -4 4 -18 !
VE P -267 134 1255 660 126 15
[r] -85 -33 -31 -31 -63 -19
p 1585 -68 1455 1173 284 -39
MBD
[p] -48 -35 -9 -18 -61 -20

? Hazi and Taylor ref. 13.

b Real solution was not found.
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TABLE II. Phase shifts calculated by various methods for the case of N = 20 and a = 0.225,

The entries are 105 times the deviations from the exact p value?

Method E = 0.1829543  0.4356381  0.4400106 0.4426438 0.5338320 0.7886753

o = 1.16758 1.00578 1.61273 2.17635 3.25045 3.07880

exact .

0 -25 -45 -8 24 54 -313
Kohn _ .

(o] -4 -7 -11 . -8 -2 -2

. P 47 -212 -295 -199 -18 2

Rubinow

[p] -4 -7 -11 -7 2 -2
Hulthén [p] -4 B -11 -8 =2 -2

P 9 -57 -24 12 45 -11
MN .

[0] : -4 -7 -11 -8 -2 -2

o 107 -97 -346 139 57 -469
OAF _

[p] -5 -7 -11 -8 -2 -2

p -13 -33 -9 3 -6 0
de .

[r] -4 -7 -11 -8 ) . -2

o -13 -47 -11 22 47 -12
MBD .

[e] -4 -7 -11 - -8 -2 -2

2 Hazi and Taylor ref. 13.



-zt -

TABLE III. The basis size dependences of the phase shifts at E = 0.1986012 a.u. and a = 0.15.

The entries for p and [p] are 105 times the deviations from the exact p value (0.25441)

Methods N = 5 10 15 20 30 40

0 34650 22161 8021 2804 -134 -1
Kohn [o] -146240 ~9982 617 _25 0 0
cubinoy 8835 91492 -7465 663 -8 -1

[p] 8330 16617 2917 -93 0 0
Hulthén [p] -165881% -455552 ~1990 -81 0

o 54455 23182 5464 636 -15 -1
MN [0] -99578 -8957 -923 67 0 0

IMb’C 0.9646(0)  0.1276(-1)  0.7277(-3)  0.3422(-4)  0.1041(-7)  0.6015(~11)
onr 0 82123 28957 11103 5178 68 -1

[p] -28123 -4021 ~230 21 0 0
" o 86077 4731 ~2656 279 -5 0

(0] 20084 -87684 -2095 473 0 0

o 27793 20167 6364 1585 -15 -1
MBD [r] -158456 -12150 -807 -48 0 0

IMBDd’° 0.9607(-1)  0.1049(-2) 0.5725(-4) 0.3826(-6) 0.3729(-8)  0.7905(~12)
2 The extended Hulthen method, Eq. (64). P Bq. (67).

 The figures given in parentheses indicate the multiplicative power of 10. d Eq. (50).
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CHAPTER 3

Optimized Kohn Method
for

the Multi-Channel Scattering

The minimum basis-dependence (MBD) method previously proposed for
the single-channel scattering is extended to the multi-channel case.
This is accomplished by the basis transformation just as was done in the
single-channel scattering. The minimum-norm (MN) method, reformulated
within our scheme, is also discussed in connection with the MBD method.
Both of them are accompanied by a set of simultaneous equation which is
more general than that of the Kohn method. A general variational
functional is proposed explicitly for a wavefunction which is determined
by any algebraic equation. This functional can be made use of as a
correction formula for a reactance matrix which is obtained as the solution

of the algebraic equation.
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I. INTRODUCTION

In our previous paper1 (referred fo as Paper I hereafter), we proposed
two methods to calculate the wavefunction for single-channel scattering,
and discussed other theoretical methods, such as the optimized-anomaly
free methodz, on the basis of our own viewpoint. In this paper, we will
treat multi-channel scattering.

To begin with, we will transform a basis set, and then extend the
minimum basis-dependence (MBD) method1 by matrix calculus. The minimum-
norm (MN) method3 is also reformulated along our own way. The’mathematical
similarity between the two will be clarified. The resultant equation are,
in both methods, a simple linear-algebraicbone. In a later section of
this paper, we will concentrate, in a general mamner, on a variational
functional, from which the linear-algebraic equation can be derived by
variation.

In the single-channel scattering the relationship between a given
linear-algebraic equation and the corresponding variational method was
very simple. By use of the wavefunction of O-normalization, namely ?e,

4

defined by Kato

We = §(6) + AeC(e) + ?Deixi (1)

one can construct a variational functional, [le],
] = A + 2€¥ H[Y¥p) (2)

which gives the simple algebraic equations when it is varied by Ae and

- 125 -



ei R

(x; 0¥ = 0, (3a)

{c - mslﬁl\y): 0. (3b)
The various symbols appearing in Eqgs.(1)—(3) have the same meanings as in
Paper I. Furthermore, the A, the tangent of the phase shift, and its
variational correction [A] were shown to depend on w in a hyperbolic manner.
Conversely, it can be said that the algebraic equations, Eq.(3), are always
accompanied by the variational functional, Eq.(2), which can be made use
of as a first-order correction.

On the other hand, in multi-channel scattering theory, the situation

is neither so simple nor analogous. Let us assume that the following
algebraic equations similar to Eqs.(3) are valid:

(x;IH|¥) =0 (first Kohn condition), (4a)
3

: |y ) iti 4b

<Su + 5vavu|ﬂ|wa =0 (second Kohn condition), (4b)

where CU and Su are the asymptotic functions of the channel u with cosine-
and sine-like behavior, respectively, and w\)u is a given numerical value.
The wavefunction of the channel o, Wa, is defined by the reactance matrix R

vy = S + ZC R + ?XiDia. (5)

The wavefunctions of both the MBD and MN must fulfill Eqgs.(4). Our
problem now is to consider whether or not there exists a variational
functional from which the general algebraic equations, Eqgs.(4), can be
yielded by variation. If it exists, what will its explicit form look like?

In Section II, we will extend the basis transformation of Paper I to
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the multi-channel case. The minimum basis-dependence method will then
be proposed for the multi-channel scattering in a slightly different ‘ .
manner. ‘Section III will provide a general variational functional as
stated above. Further, we will discuss the conditions upon Qﬁich the

variational functional exists.

II. PRELIMINARY

A. Basis transformation

Define a new basis function'{ni} by
{S,H[n;» =0 (6a)
A
{c,liin = 0 (6b)

for i

it
—
-
[S8]
-
-

and

- S c '
ng =Xt ﬁsuPui + iCuPui. )

The matrices P° and P® whose (u,i) elements, denoted as P;i and Pﬁi’

respectively, are determined by

PS MSS MSC ~1 MSX
= - ' (8)
pc MCS  Mc© MEX
where the (v,u) element of Msc’ for instance is
SC _ /o In
M35 = <Sv|HlCu> 9)

and the (v,i) element of M3X is
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M\)?l( = <S\)lHlXi> = (XilH'Sv)' (10)
The certainty for the existence of the inverse matrix involved in Eq.(8)

is similar to that for the sinéle-channel case.

The wavefunction of channel a, Eq.(5), is written in terms of the

{ni} as
L s c N

Yo = ﬁ(suTucx * G * 3Dy, (11)
or in a matrix notation

¥ = ST® + CT® + nD, (12)
where

Yo=Y ¥, . Y), (13a)

S = (5; 8, «-- SL), (13b)

C = (c1 C, ... CL), (13¢c)

n=(M0n, ... nL)- (13d)

Comparing Eq.(11) with Eq.(5). one obtains

T°+PD =1, (14a)

T¢ + P°D = R. (14b)

When we introduce the first Kohn condition, we have

XD = - MXSTS . MXSTS, (15)
where
Xi5 =< [ - (16)

and MX® and MX€ are'the.transposed matrices of M3X and M%X, respectivrly.
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When the determinant of X happens to be zero, unavoidable singularity

will occurl. In this case, the eigenvector which belongs to the eigen-
value zero of X is the solution of the Kohn5 method. The other wavefunctions
should be expanded by the new basis set in which the above eigenvector is
projected out of {hi}. A new X constructed of this new basis set should
have its own inverse. In what follows, we presume the existence of X'l'
Therefore, Eq.(15) will bring out D. Introducing the D thus obtained

into Eqs.(14), we get

(1 - PSXIMXSTS & ¢ - pSXTINXGTC - g, (17a)
¢ - PEXIMXS)TS & (1 - PEXTIMXCyTC = R, (17b)
or | |
ASSTS & NS¢ = 1, - | (18a)
ASSTS + A®CTC® = R, , (18b)

where the matrices A°C etc. are defined in correspondence to Egs.(17),
and are independent of W. Here, we set the assumption: Both of the
ASC

matrices ASS pSC and have their inverse matrices. The assumption

ASS  pcc
seems to be acceptable because both T° and T must be definitely obtained
when R is given by Eqs.(18a) and (18b)' and because T should be yielded
by Eq.(17a) if T® is arbitrarily assumed. Judging from Eq.(18), one needs
to introduce another condition in order for all the Ts,Tc, and R to be

determined.
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B. Matrix calculus

Lest any confusion should arise in later sections, we here lay down

A

a few rules of matrix notation and its calculus. The matrik of H=E - H

composed of Su and C, is defined by

Esiniey = [ (s [HCy) e {s,llc,) (19)
(sylmlc) .on.. (s lulcy /,

where t on the left shoulder of S denotes the transposition. The trans-

position of (tS[HIC> is

KSR R EN - e (s |H|c) (20)
(s{IBlc) . nnnnn, s, H|cp

By use of a fundamental identity
(syluley)y = e luls ) - 56, (21)
one gets
ten Totan 1
(*slujcy = "Celulsy - 5 1,
where the symbols * and t denote the complex and hermitian conjugate,

respectively. For two given (L,L)-dimensional matrices U and W, the

following equality holds:

tyteim _ttgtar s 1t
Cutsjufen) = "Curclu]su - 5 UW. (23)
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IIT. MINIMUM BASIS-DEPENDENCE METHOD

A. Minimum basis-dependence (MBD) procedure

The minimum basis-dependence (MBD) procedure in a single-channel
scattering is also applicable to multi-channel scaftering with a slight
modification. In an exact wavefunction, it is true that

T°=T1°=0, (24)

where 0 is zero-matrix. For an approximate wavefunction, therefore, we

may demmand the following functional IMBD to be minimum
Frsrs | fecrc
Lpp = TrCT°T + ™19, (25)
where Tr denotes the trace of the matrix. The first-order variation of
LD with respect to TS and T becomes
STypp = TE(8TTSTS + 671°TC 4 T7347% & Troa14y. (26)

In Eq.(26) both TS and T° should be varied subject to the condition Eq.(18a),

namely,

ASSSTS = - ASC6TC, 27
Defining +K = - (Asc)-lAss and also introducing it into Eq.(25), we have

8Ly = TrL(TT® + T19Thyer%s 6Tror® + K191 (28)
The minimum condition GIMBD = 0 necessitates

TS+ K1 =0, (29)

because 8T° is here completely arbitrary. Combining Eqs.(29) with (18a),

we finally reach the objective equation,

- 131 -



A% ASS\ [/ TS\ = [1 (30a)

1 X T¢ 0
or
TS = TAsc(Asszss . AscfAsc)-l. (30b)

Ass*l'Ass + Asc+Asc

TS is given by Eq.(29). The matrix ( ) is positive definite

as long as the determinant of A®°® is not zero.

B. Minimum-norm method (MN)

We would like to formulate the MN in order to clarify the relationship
between the MBD and MN. In the MN, Harris and Michels3 had the following

functional minimized.

J

(T Eeule el + ¢S ]y s | )

Tr[*(Ts TC)T M5S MSC© MSS MSC\ /TS ]
MES  MCC MES  MCC /L TS

= Tr Q. (31)

If we denote
iy MSS MSC MSS MSC\ = [ FSS fsc (32)
(MCS MCCX MCS  MSC (ch Fee/ |
the variation of Q becomes
5Q = 6+TS(FSSTS + FSSTS) 4 6+TC(FCSTS + FSOT)
+ (FToF5S + TTORCS) 61 & (TT9F°C 4+ TToFSS)e1C, (33)
As has been done in the MBD, Eq.(27) is introduced here:
5Q = STTS[(FSS + KFCS)TS + (FSC 4 kFcc)Tc]
+ [+T5+(Fs$ . kch) . +Tc+(Fsc N KFCC)]6+TC, (34)
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so that

(F5S + KFS5)TS + (F5C + KF°9)T° = 0. (35)

The final equation to be solved is '

ASS ASC TP l=/1 | (36)

Y L o LY Y

Although the original formula of the MN derived by Harris and

Michels looks quite different from our MBD expression, a kind of similarity
is found through our formalisms. The MN formula, Eq.(36), is somewhat
more combersome to handle than is the MBD expression, Eq.(36). Yet,
Eq. (36) has an advantage over the original MN: No other formulation is
needed, even when the energy comes close to the vicihity of the eigen-

values of the matrix <xi|H|Xj>.

C. The second Kohn condition

We have not used the second Kohn condition so far. However, both
the MBD and MN wavefunctions do have to satisfy Eq.(4b). If the wave
function Eq.(12) is inserted into Eq. (4b),

S « TwameSTS © sC 4+ TumseTC - 0, (37)
Both T° and T have already been obtained, so that W can be directly
obtained from Eq.(57).

If the W given above were accidentally a diagonal matrix, the
variational functional might be simply reduced to

Ry = Ry + 2(*¥,lH|¥y), (38)

where
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- )
wa - Sa(ea) * icvcev)(Re)va * ?XiDia’ (39)
and

W= - cote1 (40)

- cot@

- coteL

This is a simple analog6 of Kato's expression4 for the single-channel
scattering. However, the W to be obtained from Eq.(37) is not necessarily
diagonal. Therefore, a variational functional cannot easily be found.

In the next section, we will show an explicit variational functional for

a wavefunction satisfying both Eqs.(4a) and (4b).

IV. VARIATIONAL FUNCTIONAL

A. General wavefunction

The wavefunction of our research is redefined as

¥ = S(aS + bsG) + C(ac + ch) + xD, ‘ (41)

where as, bs’ a_, and bc are certain given and fixed matrices, named

c
parameter matrices while both G and D are determined variationally.
X is a row vector composed of {xi}. Then, the R matrix becomes
-1
R = (ac + ch) (aS + bsG) , (42)

and the variationally corrected reactance matrix [R] is

[R] = (a_ + b_[6D)(a  + b 6D, (43)
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where [G] is a corrected G. Our aim in what follows is to search a
variational functional giving [G]. In addition, we will find the parameter
matrices which would facilitate the calculation of [G]. Incidentally,

the wavefunction of Eq.(41) coincides with Nesbet's one2 if

S s

a b

c Cc

B={a b (44)

is chosen as a unitary matrix.

B. Kato's type functional

The most familiar type of variational functional is the one of
Kato's type4:
[6] = G + 2 (¥|H[¥). (45)
In this case, the variation of [G] becomes
s[6] = 2(s*D%|H|¥) + 2(%¥|A|xsD)
+ 2¢s%a(" s + *b_t0) [

» 2% (%, %S + b _t0)|R]Y) - o, (46)
and hence | |
(xHE) = 0 . (4723
and
t, t t, tein -
{"b%s + T _FClnl¥) = 0, (47b)

The last two equations are nothing but Kohn's conditions.
We are now going to research the conditions imposed on the parameter
matrices from which Eq.(45) can be resulted. With the help of the equality,

Eq.(23), one has
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t_ A
2( ‘¥|H|‘P> = (*acaS - +asac)
T, 1 T t ot +
+ G('ba - bal)- ( ba, - 'ba)é
T, T
+ 'G( bcbs - bsbc)G, (48)
where ¥ is the vector composed of the exact wavefunctions

¥=S( +bB +C@,+bB +xD. | (49)

In order that we could obtain Eq.(45) from Eq.(48), the following three

conditions are necessary:

. + _
(1) acas = asac, (50a)

(i1) 1‘bcas 1Lbsac= 1, (50b)

(iii) J’G’(*bcbs - 1"bsbc)ca = 0. (50¢)

Then, we have

g

G + 2¢F|H|Y)
G + 2(tw|§|\y>- 2<6tw|§]5w>, (51)

where 8¥ = ¥ - ¥, The first-order error term as to 8¥ involved in Eq. (51)
has been replaced by [G] to give Eq.(45).

The first two conditions, Eqs.(50a) and (50b), are never essential
to define a variational functional; in comparison with Eq. (45), only
constant factors are mixed in Eq.(48). By contrast, the third condition
is of crucial importance. There are two possibilities to fulfill (iii),
i.e., (1) G =0 and (2) +bcbs = +bsbc. The former identity was adopted
by Nesbet and Oberoi2 in their optimized anomaly-free (OAF) method.

However, in compensation for fixing G = 0, another nonlinear search

procedure for the umnitary matrix, Eq.(44), which should satisfy

- 136 -



(b *s + *b Fcln[sa_ + Ca_+ xD) =0 (47¢)
becomes necessary. Further, the second condition (ii), Eq.(50b), does not
necessarily hold.

In the latter case (2), G can be varied freely, but a severe restraint
is imposed on the matrix W of the second Kohn condition. W can be expressed
in terms of both bS and bc as

W = bcbs'l. (52)

+w = W, that is, W must

As a direct consequence of +bcbS = +bsbc, we have
be a hermitian matrix. In usual case, it is sufficient for us to choose

the parameter matrices to be real, so that W should be a real symmetric
matrix. This case corresponds to the optimized minimum-norm (OMN) method
proposed by Nesbet and Oberoiz. Strictly speaking, however, their procedure
is theoretically unsatisfactory, because the w of MN which is defined by

Eq.(37) cannot be symmetric in general. As a result, Eq.(45) should be

applied to neither the MBD nor the MN.

C. General variational functional

When the general wavefunction, Eq.(41), is expanded over the basis

set'{ni}, Eq.(18) should be modified into a form
ASS ASC\[T°) = a_+ b (53)
A®S A®C/\TC a +ba
c c

or

1
TS\ = (A% A°C) fa_+bG
T ASS A/ la +b 6
c c
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= (K2 + KG (54)
KO + K 6
Because none of A™ (m,n = s,c) and the parameter matrices depend on D,
both TS and T can be taken as the functions of G alone. Therefore,
8T°\= (K 86 | (55)
<6ch) (Kcae).
Now let us define a variational functional V,
v = (tylrje)
+ (acte®s + TFEC)|HISTS + TS
+ T(tactets + Tfty [H|STS + CT°)
+ G/2. (56)
The variation of V is
5V = (stotylale) + T(stntx|nY)
(556t + te)®s + (b, + TR ECHH|Y)
+<6tG{(tbs + T)ts 4 (tbc + tf)tC}lﬁl‘l’>
(Factets + tFtc) [H| (SK, + CK_)8G )
T(tactets + trE0) JH| (SKg + CK,)SG)
=0 (57)

o4

+

+

+

In Eq.(57), the relations
‘s + _t
(iii") bcbs = bsbc (504d)
have been used in addition to Egs.(50a) and (50b). Further, the following

conditions

(iv) bS +e =1 (58a)
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(v) b +f=w (58b)

i) (%e’s + tftCIQISKS +CK ) =0 (58¢)
may bring about

oV = {8t0y|u]w) + (stacts + twtey|u|v)

+ (hermitian conjugate). (59)
It is easy to show that Eq.(59) leads to the Kohn conditions. We would
like to stress that W in Eq.(59) is not required to be a symmetric matrix.
If an approximate wavefunction is such that the S8V calculated

therefrom is zero, then the V may yield [G]/2 which is correct to first

order. Note that the exact V, namely V, for which the exact wavefunction

is used, is

V = /2 + ('F)H|F)

+ (tactets + Tr0) |H|STS + CT°)

++(tG(tetS + ttey IHIS?s « CT%)

G/2. (60)

In Eq. (60) ?S = ?c = 0 has been used. In case like this, V is the first-

order crrection of G/2, i.e., [G]/2.

D. Determination of the parameter matrices

In the preceding subsection, we have shown the conditions to be
imposed on the parameter matrices as well as € and f, from which V can be
obtained. These six conditions, Eqs.(50) and (58), are not sufficient
to define the matrices wniquely. In other words, there remains some

arbitrariness that we can make use of to simplify the calculation.
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One of the general approaches to this problem may be as follows:
Given two hermitian matrices Y and Z which satisfy
ac = Yas {from condition (1)) (61)
and

b Zb

s o’ (from condition (iii')) (62)

the a_ and bs can rewrite condition (ii) as
T -
bC(I - ZY)as =1I. (63)
On the other hand, using e = I - Zbc and f = w - bc’ one can easily show
condition (vi) to be converted to
o o/¥ ot oyt t t teo
b {"Z%s + “ClH[SK, + CK) = (S + wEC|H|SK, + CK). (64)
A good choice of Z will give
+ t t torn *t tors -1
b, = (s « wiC|n|sK, + K )Zs + “ClH|SK_ + CK ). (65)
Although both KS and Kc depend on bs and bc, we can eliminate b5
and bc from the right-hand side of Eq.(65) in the following manner.

From the definitions of KS and Kc, Eq.(54), and of Z,Eq.(62), we have

SKs + CKC = (S C)A(Z)bc, (66)
I
where
- ' -1
A = ASS ASC (67)
(Acs Acc)

Using Eq. (66), we finally obtain
T = (% + ticlajs ©A[z|>
i
x 7% + tC| (s CA (z))’l. (68)

- 140 -



Here, Z must be chosen so as not to make the determinant of

(tS + twtCIHI(S C)A (Z)) vanish. If this is not fulfilled, the procedure
I

from Eq.(66) to (68) is inconsistent with the assumption that bc-l exists.

We have thus obtained both the parameter matrices, e and f.

The simplest choice of Y and Z is to set Y = YI and Z = ZI, where

both Y and Z are constant. Further, if we set Y = Z 0 the time required

for computation will be reduced appreciably. However, it should be noted

that det{"S + “w'C|H|(S C)A(O)) or det("C[H|(S ©A (0)>, both included
I I

in Eq.(68)will vanish at certain energies. Therefore, it is desirous to

let Z vary continuously with E.

V. CONCLUDING REMARKS

We have shown that the MBD method is also applicable to multi-channel
scattering. The MN method was reformulated by our basis-transformation
scheme. In both cases, the second XKohn condition need not be used when
R is calculable, a result which is in clear contrast to the single-
channel case.

A general theory of variational functional has also been presented.
Any wavefunction which is defined to satisfy Kohn's conditions has been
shown explicitly to connect with the variational theory. These wave-
functions including the MBD and MN functions should be corrected by the

variational functional V when W is not symmetric. This explicit formulation
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of V is theoretically important, even though calculation of it may be a
somewhat cumbersome procedure. In actual calculations, a correction
formula1 for the reactance matrix

[*R] = R + 2¢s|alv) (1 - 2¢clajy) (69)
will also be useful. Derivation of Eq.(69) is almost entirely analogous
to that for single-channel case. The error estimeted from Eq.(69) is

second order.
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