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                               PIUilFACE

     It is a widely spread belief that the electronic structures of atoms

and molecules can, at least in principle, be described completely by

quantum mechanics. The view is gaining increasing support from the

current uplift of the computational accuracy which has been brought about

by both the advances in the methodology of quantum theories and the
           'improvement of high-speed digital computers. Conversely, theoretically

essential understqnding of the atomic and molecular phenomena cannot be

obtained without solving, even approximately, the Schrb'dinger equations.

Thus, the methodology of solving the equations has in itself been a

traditional problem of quantum chemistry.

     This thesis is concerned mainly with the methodologica! approaches

to the electronic structures and scattering-processes of atoms and

rnolecules. For the bound states a spin orbital theory will be presented,

and a variational theory will be developed for the scattering problem.

In each branch, a new theoretical scheme will be proposed, which can

supply an evidently more accurate wavefunction than does any other

existing theory.

     Part I proposed a new orbital theory, named the theory of spin-
                                            '                                 'optimized SCF general spin orbitals. It provides the most general and

flexible wavefunction in the realm of orbital scheme. The wavefunction

                    .t                                                                   'is expected to yield a highly accurate energy as well as models of the

electronic structures of atoms and molecules.

     In Part II, a new guiding variational principle to construct

wavefunctions in the scattering theory is proposed. This is aimed at
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analyzing and avoiding the spurious resonances inherent in some
                                              '
traditional approaches. The interrelationship between the algebraic

theories (or the expansion ones) and the variational approaches is also

elucidated.

     The present thesis is a collection of the author's studies which

have been carried out at the Department of Chemistry, Faculty of engi-

neering Science, Osaka University from 1973 to 1978. It is a great

pleasure of the author to acknowlege Professor Takayuki Fueno for both
                             '                                                   t tthis introducing the author into the field of quantum chemistry and his

guidance through profound discussions. Without these, it would have

been an extreme hazzard for the author to accomplish the study.

     The author are indebted to Dr. Kizashi Yamaguchi and Dr. Shigeru

                                                                  'Nagase for their constant encouragement and exciting discussions. He

also thanks to Dr. Tadashi Okuyama, Dr. Kunihisa Yoshida, and Dr. Okitsugu

Kajimoto for their stimulating him through their active studies, and to

Dr. Takashi Okada, Dr. Kazuyuki Tatsumi, Mr. Yasunori Yoshioka, Mr. Akinobu

Nishio, Mr. Satoshi Yabushita, and many other members of the Fueno

Laboratory for their helpful discussions. Miss Emiko Inoue is also

indebted to for laborious typing of the manuscript. F.inally, the author
                                                            '
thanks to his wife Kazuko Takatsuka and their parents.

                                                       Kazuo Takatsulca

February, 1978
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                            CHAPTER ].

                             '

                           lntroduction

                                  '

     The orbital theories have doubtiessly played a great role in the

field of quantun chemistry. For exainple, the H{ickel rnethodl and the

semi-empricaz2 (or ab initio3) scF-melecular orbital theory lie in the

fundamental part of aimost aZi theories in this fie]d.

  , The orbital theories may be classified into three categorie if they

are looked at from the viewpoint of the canonieal Hartree-Fock orbitals.

     (1) Hartree-Fock orbitals which ate unitarily transformed into

convinient fonns for physical purposes. The localized moiecular ,orbital

is a typica! example. Although these orbitals appear to differ greatly

from the original Hartree-Foek orbitals, the wavefunctions themselves

                                                          'are invariant except for the phase factor.

     (2) Correlated orbitals. The>r are designed so as to incorporate

the correlation effects into the orbital form. This kind of theory was

developed mainly by L6wdin,6 Goddard,7 and their co-workers. ,

     (3) Purely mathematical orbitals. The orbitals of this type, such

as the natural orbita18 and the Mc-scF orbitals,9 are made use of mostly

in order to simulate the configurations invoived in the configuration-

                        8interaction wavefunction. •• -                                                            '
    The purpose of this Part is to explore the orbitals of the second

                                -• 1-
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kind. A new method is proposed, in which the general spin orbitals (two-

component spinors) are introduced into the so-cal!ed spin-optimized SCF
                                                    '(so-scF) scheme.6 The new wavefunction (so-scF-Gso function) is rnore

extended or general in forrn than any other single-configuration fu"ction

hitherto available. NaturaZly, it takes account of the electron

correlation to a paaximal extent that orbital theories can incorporate.

In Chapter 1, .theoretical formulation and general properties of the SO-

SCF-GSO wavefunctions are presented in. a general manner. rn Chapter 2,

the theory is applied to the 22s and 22p states of the lithium atom.

Through the comparison with other methods, the SO-SCF-GSO wavefunction

is analyzed especially in connection with the relation between the energy
                  '
and the spin density at nucleus. The results have had enough as a

motivation of Chapter 3, in which the distribution function for odd

electrons which are generated in ground--state molecules having even

electrons is described. These odd electrons are regarded to show up in

strong correlation systems such as the biradical species and the

intermediate states of concerted reaction.

             '
                  ' ' ' References
                       '                             '                      '
    E. HUckel, Z. Physik 70, 204 (1931); ibid. 76, 628 (1932).1.

                         --                                                          '                             '                          '    For example, ' '2.

                                   '
    J. A. Pople and D. L. Beveridge, A roximate Molecular Orbital Theo

                                                        '                                   '    (McGraw-Hill, New York, 1970).
                                               '
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3.

4.

5.

6.

7.

8.

9.

For example,

H. F. Schaefer TII                  '
(Addison-Wesley,

D. R. Hartree, Proc

Z. Physik, 61, 126
           -
C. Eclmiston and,K.

J. Chera. Phys• f!i3L,

P.-O. L6wdin, Adv.

W. A. Goddard I!I,

Goddard ill, J.

P.--O. L6wdin, Phys.

              'For example,
             ttt
A. C. Wahl and G.

      tt .         '
The Electronic Structure of Atoms and Mo1ecu1es

 Massachusetts, 1972).

   hg!loll?Fdge Phil• Soc• 2Lt, sg (lg2s); v. Fock,

                               '
   Ruedenberg, Rev. Mod. Phys. EI5L, 457 (1963);

   597 (1965). '
   Chem. Phys. 19, 283 (1969). .
   Phys. Rev. 157, 73, 81; R. C. Ladner and W. A.

                                  'Chem. Phys. 51, 1073.
           -                                    '
    Rev. 97, M74 (1955).
        -
        '   '  '

  Das, Adv. Quantum Chem. 5, 261 (l970).

`
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                 CHAPTER 2

Formulation of the Spin--Optimized SCF

                   '
           General Spin Orbitals

     A new orbital theory is proposed, in which general spin orbitais
  '    '
(GSO) are introduced in the spin-optimized (SO) SCF scheme. In this
                       .SO-SCF-GSO theory, the effective Hamiltoniah for each orbital takes the

form of a 2Å~2 matrix composed of the eigenfunctions for two-cornponent

spinors. !t is found that the GSO's thus defined should still satisfy a

                                  'general form of Kooprnans' theorem. The SO-SCE GSO's are to be obtained
                                       'by solving two sets of coupled SCF equations for the spin coupling

coefficients and the linear combination coefficients for basis functions.

Using an STO-6G basis set of the double C qua!ity, sample caleulations
                                                        '
have been carried out for the doublet state of the linear H3 system for

                                                     'which the bond lengths are fixed at 1.470 and 2.984 bohrs. The total
               '                        'energy obtained is ca. 3 kcal/mol lower than the values which have
     '                                                               'resulted from the SO-SCF-DODS and the spin-extended Hartree-Fock(SEHF)

GSO calcuiations with the same basis set. The resulting orbitals are
       'found to be more delocalized over the entire system than those obtained
                                  '                                            'by the SO-SCF-DODS theory.

                                  -4 --



I. INTRODUCTION

     The Hamiltonian operatox H for any electronic state of spin-

independent quantum systems in the Born-Oppenheimer approximation

satisfies the symrnetry relations:

           [H, s2] =o a)
and .               A           [Hs S,]=O ' (2)
where s is the total spin operator and s" z is its z-component. The spin

                        .1symetry condition (1) is equivalent to

                                                  '              tt t           [H, P]=O, (3)
            '

where P is an arbitrary permutation operator for the spatial variab!es.

Because of these conditions together with Pauli's exclusion principle,

any trial wave function shouid necessarily be spin-symetry adapted and

                                                                'antisymmetrized.

     The simplest spin-symmetry adapted wave function is the restricted

Hartree-Fock (RHF) wave function,2 which is composed of doubly occupied

                                                           'spatial orbitals. As is well known, however, the RHF wave functions

provide results which are seriously in error for ,molecular systems whose

geometry is far apart from that in equilibrium.3 The difficulty can be

overcome by removing the strong constraint of orbital double occupancy

and instead by assuming different orbitals for different spins (DODS).

Tlie spin polarized Hartree-Fock (SPHF) or unrestricted Hartree-Fock (UHF)

orbitals4 thus derived are stin defective in that the wave functions

                                 -5-



                   '
built up thereof are contaminated by those for some irrelevant spin

states.5 To cope with the situation, LE';wdin proposed, some twenty years

ago, the projected Hartree-Fock or spin--extended Hartree-Fock (SEHF)

method,6 in which a spin-projected slater determinant is optimized for

the total electronic energy.

                     7fonoj:i.lnl9:llileGgdfdwaravde Pfiil:!i.oendse.n SCF procedure (Gi-method) for.the

          iPGI=(20e}• '. (4)
    '
where e}. is the iiLth spin eigenfunction of s2 with the permutation '

symmetry X, Åë is the product of nonorthogonal orbitals,, and ais an

antisymmetrizer. Equation (4) is a special case of the generel wave

                                           8functions  set forth earlier by Kotani et al. .

          y= i. aÅëie}•• , . (s)
                      '
Recently, Ladner and Goddard 9a and Kaldor and Harris9b perforrned the

optimization of the wave function which is a linear combination of Eq.

                                                     '     ,, ivA=aÅëg.ciel). ' ' (6)
Equation (6) is called the spin-optimized self-consistent-field (SO-SCF)

wave function. According to Goddard,10 the sEHF-DoDS theory is rnerely a

special case of the SO-SCF theory applied to the DODS nonorthogonal

orbitals (SO-SCF-DODS).

' Alternativeiy, a number of workersli have explored the utiiity of

the general spin orbitals (Gso) defined as the t yo-component spinors

                                                        '                          '                                                              ,                                                             '                          ' -6-             '



          (Pk =(ba.l>=akoc+ bkB ' , . . . (7)

                                                              '
                                                 '
where ak and bk are the apatial functions for the ct- and B-spin

components, respectively. So far, the best wave function for many-

electron systems that explicitly retains the concept ef the orbitals for

                                              '                                                                  12electrons without recourse to eonfiguration interaction treatments,

appears to be the one based on the sEHF procedure for Gso,s (sEHF-Gso).ll

               11dIn fact, Lunell has pointed out that for systems of a limited number

of electrons the SEHF-GSO theory is seemingly more accurate than the SO-
    '               'SCF-DODS theory. It now appears very iikely that, when GSO's are

introduced into the SO-SCF scheme (SO-SCF-GSO), then both the SEHF-GSO

and the SO-SCF-DODS theories would be embraced as special cases of the

                                                       'SO-SCF-GSO formalism. Scrutiny of this last point is the purpose of the

present paper. In Table l, several existing orbital theories are

classified in order to clarify the position of the Se-SCF-GSO method to

                    ttbe developed herewith.

                                                                    '     The scope of this work is briefly outlined as follows. First, the

spin-optimized general-spin-orbital (SO-GSO) wave function is defined in

Section Ir. Next, in Section III, a set of SCF equations to be used for
   '
the determinations of the orbitals and spin coupling coefficients are
                          '
presented in a general manner. In Section IV, we will deal with some

properties of our SO-SCF-GSO wave functions and energies. Se, ction V

will be devoted to sample calculations of a linear H3 molecule in order

                                                                 '                                            'to demonstrate how the SO-SCF-GSO method improves the results obtained

by the already farniliar SO-SCF-DODS and SEHF-GSO theories.

                            '
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II. WAVE FUNCTION AND THE ENERGY EXPRESSION

A. The SO-GSO wave function

                                      '                                                      '     We will be concerned primari'ly with a spin state of the least

                                                                '                                                              '            Anonnegative Sz-eigenvalue, q. By use of the Sz-projection operator

                 .A                    S-2 •          PS "2!q :-2 ' '.. (8)
                                                                      '                       '          '
and the fundamental unitg e}.j of the algebra for a symmetric group S'N

(Appendix A), we express the SO-GSO wave function as

                                                        '              '                                                                 '                     N         .'Y: = PS ii.el• i• e}•jCjÅëiÅë2••••ÅëN , (g)

where the orbitals Åë1,Åë2,...,ÅëN are the two-component spinors, Eq. (7).

In Eq. (9), the spin syrnmetry of the systern is characterized by the '

irreducible representation X. The synbol X denotes the conjugate

representation associated with X. The suffixes i and j refer to the ,
                                                      N                                                                     'relevant spin eigenstates. A convention that e}.j and e}.j operate 1

respectively on the spin and spatial coordinates, is employed throughout

                                '                                                        'this paper. The coefficients Cj's are called the spin coupling coefficients
                                                                        '                                                             '                                                                '                                                           'and to be determined by variation.

     The wave function defined as Eq. (9) satisfies the following

                                       'eigenvalue equations: ' •
                                        '                                   '                                                                    '                                                 '          s21vll.sA(sA.1)iv,ll - (lo)

          g,y}=qya ' ' ' al)

                                -8-



          piy)L .E iyX, ' '•' (12)
            q• p                   q

where P is an arbitrary element of the symmetric group SN, the quantity

                                                         'ep being its parity. .
         A     The Sz- projected funetioh of the simple product of GSOts can be

expanded as follows:
                                              '
                           '          P:Åë1Åë2•••ÅëN= 2xP .n. a3)
                        u

where nu is the yth spin function of simple product of the ct and B

functions with the net eigenvalue q, thu being the spatial function

associated with nu. We then make use of the irredueible representation
matrix rX and the linear combination coefficients k' s for the spin

products (Appendix A) to obtain the normalized wave function: .
                      x          y: - i5[liL, ii gicjrl•i(top"i)ky•(tth.)e}. , (i4)

                                                              '
                                       '
where fX is the dimension of the irreducible representation X, ' t is an

element of sN, and e}. is the Sth spin eigenfunction of s2 and s"z with the

eigenvalues SA(SA + 1) and q, respectively. '

     Clearly, the SEHF wave functions are obtained by taking all the

spin coupling coefficients identical, i.e•, Cl = C2 = •;• = C fx• If one•

forces either ak or bk (k=1,2,...,N) to be O, then the DODS wave

functions are attained. Further, the RHF wave function, for which each

orbital is doubly occupied, results from the constraints that al=b2,

                                                'a3=b4 and so forth. ,
   ' The SO-GSO wave function can also be written as the linear

                                -9 -•



combination of the DODS wave functions, viz.,

          Yll .= 2.. Ci aÅëi (rl,•••,rN) e}• . . os)

The spatial functions Åëi are obtained by operating

          pi : i5[1]+t,Erll.i(t-i)t"•ttc ' , a6)

                    t'
on a primitive spatial function

         .tp=al(rl)b2(rl)a3(r3)••• e E17)
in Eq. (i6), rl.i denotes the a,i) eiement of rA, and tn'and tC the

perrnutation operators which operate respectively on the numberings of
                                                     '
the a- or b-functions and on the spatial coordinates. The number of the

a•-functions present in Eq. (17) should exceed that of the b-functions by

2q.

B. S inless density matrix and the energy ex ectation value

    ,We will formulate explicitly the second-order spinless density
                                              -
matrix for our SO-GSO wave function. The expression for the energy

expectation value can readily be derived from it. ..

     By use of the wave function (14), the ISth-order spinless density

                 13' tmatrix defined as '                           '                      '

          p(N).(r',r) = fy'(rlsl,.••,.rrGsN)'Y(rlsl,•••,rNsN)dsl•••dSN (18)

                            '                                             '                         'is transformed into •

-- 10 -



          p(N)(r',r) = 2 2,(s:g(tip.(r'))de(sg,.(r)), (i9)

                       uv ts '                                                                 '                                            'where

         ,e:g' --- c"K:gc (2o)
                                             '                                                           '
                                                            '
                                               '          C= COI(Cl,C2,••..,CfA) ' '(21)
                                                   '          (K:ll),j = '(i5•?l)2kl.tkY.r]X.,(,-it). (,,)

                       '
     The second-order spinless density matrix for our use can be

                                            'expressed as ' . • .• • -
                    '         p(2)(yl,y>;yl,y2) = fp(N)(r',r)D2(yl,yi;y!,y2lr',r)dr'dr. (23)

                            --          '                           tt                 'Here, yl etc. are the spatial coordinates and D2 is a density matrix

                                       'generating function defined as

         D2 (yl ,y> ;yi ,y2 1r' ,r) = N (N -i i) .i.6 (r,l, ' yl) 6(r. ' yi)

                            '                             t't t'                        •Å~ 6(rn - y2)6(rn - y2)hsk,.6(rh - rh) , (24)

                    '         tfwhere 6(rm - yl) etc. are Dirac's 6-functions.
                                           '                                     ' '     Let HR(yi,y2) be a reduced Hamiltonian given by

                                '                                                            '                                                    '         HR(yi,y2) =lil (hi+h2) +(ll)gi2 , . . • ' <2s),

                                                 '
where hl and h2. are the one-electron Harniltonians operating on yi and y2,

respectively, and g12 is the electron•-repulsion operator. The energy

expectation value E is then simply given by

                                 '            '

                              -11-



                                           '      . E= Tic{HR(yl,y2)p(2) (yl,yi;yl,y2)}. . (26)
            '                                    '
                                                        'By virtue of the symmetric property of D2 with respect to r and r, E

                          'can be expressed as - ,                                                 '
                         '
         E- E 2elllll fdr'drdyidy2U,I](r')iP.(r) ' '
             uv ts
              Å~ [HR(yi,y2)D2(yl,y>;yi,y21rt,t'isr)] . (27)

   '      '                                                           '
ln Eq• (27), use should be made of the usual convention13 that y; and y>

tahree SinetteEil:talollOflll j)irdalz'yll?SPeCtiVeiy, immediateiy before performing

 , Our attention is now focused on the kth orbital Åëk in particular.

                                 ttClearly, any tpu is the product•of a s and b s involving either ak or'bk.

In case where ak is involved in thu, we may write ,

                                    t tt         iP. (r) = ak (rk) Ai"e (Tk) , (2sa)
                             '
where Tk denotes all the spatial coordinates except for rk. Conversely,

if bk happens to show up in Vu, then ipu(r) should be written as ,

                  '    '         U,. (r) = bk (rk) BX (T k) • • • ' -, (2 8b)

Because of this dual character of tpu(r), E should take the form

  . . p - f(ali (ril)b{ (ril)) Gk (rk,r,) (Zi [ill) dri2dr, , (2g)

where Gk(rk,rk) is an effective reduced HaJniltonian operator whigh.is

defined as follows: ' ,                             '

                                          '
                                                '                                                                '                                 '
                 '                                                           J'
                              -12-



                    -,          dk(ril,rk) = .5 ti fyi.yi,y5.y2 dTildTkdyidy2

           '                                                       '                     '                     Å~ qUV, [HR(yi,y2) D2 (yl,yi;yi ,y2lr',t"i sr)]

                                                             '
                        /A"i(*(Tft)AVi((T,) A"i(*(T,)BX(Tk)X

                     X kiB:*(Tk)Al((.k) 'B:*(.k),l((.k)1 . ' (30)

III, THE SCF PROCEDURE

' In the light of the variational principle, we now search for the

optimum form of the wave function. In doing this, two conditions are

imposed: (1) The norm of the tbtal wave function should be finite and

(2) the norm of each orbital should be finite. Condition (1) permits

unique determination of the spin coupling coefficients. The pseudo-

eigenvalue equations to obtain the SCF orbitals are derived by use of

both conditions (1) and (2),. The wave function in question should
   'satisfy the generalized Brillouin theorem9b,llb,14:

          <6iylH-Eliy> = <iYk..ktlH-ElY>

                    =O, (31)
                          '
where g' k.k, is the wave function with a virtual orbital k'  in place of

                                                                'the ground-state orbital k.

A. Determination of the orbitals

     In this subsection, we formulate two types of one-body Schr6dinger

equations to determine the orbitals; one is the direct consequence of

-13-



Eqs. (29) and (31) while the other is a modification of the former such
                                                                 tt            '
that the orbital energies are given as the solutions of an eigenvalue

prob1em.
                                                     '     Let us now define,an operator Sk(rR,rk) by replacing HR(Yl,Y2) by 1

in Eq. (30). It is then obvious that

          <YIHIiY>=<ÅëklGklÅëk> (32a)
a"d .yly. .-. .ÅëklsklÅëk.. , ' (32b)

                                               '               . k k
Noting that neither G nor S depends on Åëk itself, we can take the

variational form of Eq. (31)

             '
          <6ÅëklGklÅëk> =E <6ÅëklsklÅëk>, (33)

which directly leads to

          GklÅëk>=EsklÅëk>. ' (34)
                                               '                                          '                              tt                                                               'It should be noted that in Eq. (34) both Gk and sk are the function of

all the orbitals other than Åëk but'that the spin coupling coefficients

involved in both of them still rernain to be determined.

     We are now in a position to formulate an ei•genvalue problem which
                                                            'gives the orbital energies. In the integral <Yl(H-E)l'Y> one finds two

types of elements; one is proportional tb <ÅëklÅëk> while the other is not.

Ihe situation permits the forrnal expression:

                '
          <ivl(H-E)liv> = <ÅëklFklÅëk> - ek<ÅëklÅëk> , ' (35)

                  '
where ek is a constant and <ÅëklFklÅëk> is the matrix element not

                                -14-



proportional to <ÅëklÅëk>. It follows that .

 '          <6ÅëklFklÅëk> - ek<6(t}klÅëk> =o (36)

provided Fk is not a function oÅí Åëk. As a consequence, one may write

          FklÅëk> --- eklÅëk>• ' (37)
Since 6<(l)klÅëk> = O, Ek has been treated as a Lagrangian multiplier as

usual and may be regarded as the orbital energy of Åëk. It is given as

an eigenvalue of the operator Fk whose explicit form has not yet been

 .glven.

     The explicit expression of Ek can be obtained in the following

manner. In the expression <YI(H-E)IW>, one finds the elements

          Ak<aklak>+Bk<bklbk>, (3s)
II:e.r73(ll)f acna: bBke li:rSi.1:eenCOansStantS WhiCh Ma>" be dependent on orbitai Åëk.

Ak<aklak> + Bk<bklbk> = } (Ak + Bk) (< akl <bk l) (g 1) (lba kk ll )

       ' +. "}(Ak' Bk)(<aki <bki) (:l -2) (lbakkll) • (3g)

The first term of the right-hand side of Eq. (39) is all that is

ehrO.Pgili.Ondai.l.llilO l2k:9k.>,.l.g,ak. ial:l 'f.i9gi2kig.:hereas the 2Å~2 matrix in

          ek=-•i(Ak+Bk)• (4o)
                                                      '
                                                             '                  '                               -- 15 -



      Explicit formalation of Ak and Bk is straightforward. Thus, Ak is

                               ' giVe" aS Ak6(.i, - .k) .-. 2 2(k),e:g fd-[i,dTkdYld>T2

                         uv ts
                  Å~ A"ie*(Tk)AVk('rk) Å~ (s-it).

                                                                '
. Å~[ N.(ik)6(rth - yi)6(r. " yi)h(g.)6(rA - rh)h(yi)

                  + N(N S i).x.Zk)6(r,l, - yi)6(r. - yi)6(rA ' y2)6(rn - y2)

                                                             '                  Xh(#i,.)6(rS,'- rh)g(Yl,y2) -E] , (41)

                                                                  tt

:lizfi si(:i,m:.:".g,:2e,xgm:zllg: o,vli a,il ilii3.:f,gleve:xg :i,i].of sN•

 denotes the permutation operator operating on coordinate r• Bk6Cril - rk)

 can be obtained by introducing B:(Til)BkV(Tk) in place of Ali(Til)Al((Tk) in

                                                                     '
              '' it is interesting to reiate Gk(rft,rk) and sk(ri2,rk) with Fk(rft,rk).

 From Eqs. (32) and (35), we have

                                                    '                                                     '                   '                                         t.          Fk(ril,,rk) = Gk(ri!,,rk) - Esk(Ti!,,rk) + ekl2 l (42)

                                                                     '
                                        '              '                '          i,=6(ri-r,)(8 9>• (43)
                                                               tt                '                                                  '
 It is evident from Eq. (42) that, when Eq. (34) holds, so does Eq. (37)

 automatically, and vice versa. In this connection, it must be cautioned

 that Eq. (37) may hold oecasionally even when

                    '
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          GklÅëk> =o, sklÅëk> =o. (44)
                        '                   '
Obviously, this is an artefact arising as a consequence of the violation

of Pauli's exclusion principle. Such false solueions are liable to

diverge as has often been encountered in actual SCF computations.

     Both equations (34) and (37) are cowpled integro-differential

equations, but the expansion technique ma>r be applied as usual. Thus,

the GSO Åëk js expanded in terms of basis functions {Xi,X2,ee•,XM} aS

          thk" 2ArkXrct"2BrkXrB' (45)
               Xr
Both Eqs. (34) and (37) are reduced to a set of simultaneous pseudo-

eigenvalue equations in the matrix forms:

        (:l: gkli)(Si).,(gl,il S,l•i)(3,) (46)

and
           kk        (ikll F,li)(Cl,`> - e,(i :)(Cl,<)• (47)

         '
where

          (Glin)rs=`XrlGIXnlxs' (48)
                                                            '          (Slin)rs"`xriS:nlxs' (4g)
              tt          (Flin)rs 'm- `XrlFIIInlXs' (rn,"=1,2) (5o)

          Xrs=<XrlXs> ' ' (51)
and

                               -17-



          "k=(ill'lk)• Bkw( :ll:kl)• (s2)

                                                      '                                                               '
the operators GXn, slXn and F:n being the (m,n) eiements of Gk, sk and Fk,

respectively.

!t}:bny-SRULS9YR!!iiE}gk-99afgl,Sleq!E-SnCOln ff t

     The energy expression, Eq. (29), is quadratic in form in regard to

the spin coupling eoefficients, Eq. (21). That is,

                                                 '           ,                     +          C(ilC=EC OC (53)                                                                       '                                                              '                                                            '                                 '
where the matrices Q and O are defined using the matrix K, Eq. (22), as

                   '
                                                      '
          Qij f t,5 ,i <ii,.IHt-iglip.>(Kl:ll)ij ' , .(s4.)

                                                                     '                                                         '                   '                                                               '          Oij =.15 ti <zp.ltiislip.>(Klll)l)ij • , ' (s4b)

                                                             '
          '                                        tt                           '
     Direct application of the variation principle to Eq. (53) with

                                             'regaTd to C leads to a secular equation

            '

          (Q-EO)C= O. . (5S)
                          '                                            '
The total energy and the spin coupling coefficients are obtained by

solving Eq. (55). ' Equation (34) or (37), or more practically Eq. (46)

or (47), is coupled with Eq. (55), so that they may be solved for the

SO-SCF--GSO's in an iterative manner.
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IV. SOME CHARACTERISTICS OF THE WAVE FUNCTION AND ORBITALS

A. Orthogonalit and the unitary transformation ro erty of orbitals

     In both the SEHF and RHF formalisms, all the spin-orbitals are

automatically chosen to be orthogonal to one another. This is not

generally the case with the SO-SCF-GSO wave function. The N-body SO-SCF-

GSO wave function has at best [N!2] orbital g'roups, each containing two

GSO's which can be chosen to be mutually orthogonal and are allowed to

transform to new GSO's by unitary transforniation. Here, [N!2] denotes

the largest possible integer not exceeding N12.

     The above statement can be proven as follows. By the aid of
                                                                    '                        15Serber's spin functions,                          which diagonalize the representations of'the

permutations Pk = (2k - 1, 2k) for k = 1,2,e••,[N12], we express the

fundamental unit eili in a ket-bra form (Appendix A):

          eti=Iel• xel•l• • (s6)
           '                                                               'It can then be readily seen that e}.i commutes/ith such Pis. Hence,

                                                        '                                          '          yfx = a(Eciel•i)(Oi''" Åë2k"iÅë2k''' ÅëN)

                  i
          ' n 4(i.Cie}•i)PkOP{(Åë1''" Åë2kÅë2k-1'"' ÅëN)

                                            '                                                                   '            -= -' a(\Cieii)(Åë1''' Åë2kÅë2k-1''' ÅëN) , , ' (S7)
                   1
               '                                          '
where p2 and p2 are the permutation operating on the space and spin

coordinates, respectively. Equation (57) states that the functional

ComPOnent Åë2k..1 inVolved in Åë2k, which has been the origin of their

                                                 '               '                       '
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nonorthogonality, should disappear automatically. The unitary

                                                 '                                         'transformation between Åë2k-1 and Åë2k (k = 1,2,••.,[N12]) are thus assured.

                                                           '
B. Hellman-Feynman theorem
                       '                           '
                                                                        16     The SO-SCF-GSO wave function satisfies the Hellman-Feynman theorem

                              18                     17                                   18                                                     9ajust as Hartree-Fock,                                      and SO--SCF-DODS                        SEHF,                                 GI wave functions do.
                                                'The proof of this theorem for the SO-SCF-GSO wave function is exactly

identical with that for other wave ftinctions.

          "t .yHy. ds <yl-gl/iily> .

!t!:.--ILg!}UgS2,g!}.g!!g-!!Sgg]2u!AnE-L!l!!gg!:guL!Inzt andKo anstheoe

     ln the SO-SCF scheme, a state of pure spin symmetry turns upon
                    '
ionization to a mixed spin symmetry state. This may have a bearing

               19the observation                  that both singlet and triplet states are generated
                                                     tt
from a doublet state by ionization. The (N - 1)-body wave function

                                                          'given by deleting any one orbital, say the Mth orbital, from the
                                           -                                                              '
parent wave function should be a mixture of the singlet and triplet

states with certain weighting factors. Figure 1 illustrates an
                               '                                              20ionization process by use of Young's diagram, the ground state X

                                                      '[N - p, p] ionizing into two different states denoted by Xl = [N - p,

p- 1 .] and A2 = [N -p -- 1, p]. In'addition, in the GSO scheme, the

                                                               Awave function of the ionized state is not an eigenfunction of Sz•

     According to the present SO-SCF-GSO theory, the energy of the Mth

orbital in the parent N-electron system is given by

<Y Y>
(58)

with
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         eM = "t p.21,2{<ig:P.1!2liYaP.112>(Eo - El 112)

                                  '      -, i <iYlll.lii21'Ylleii2>(Eo - EqAP-i!2)} Å~ <iyllliyll>'i , ' (sg)

                                        '                        '
where Y'l is an N-bodY wave functionxpwith the spin symmetr\ X, the S"z

                                  qÅ}112 are the ionized-stqte (N - 1).eigenvalue q and energy Eo, while V

                                                            Abody wave functions with the s:Sn symetry Ap (p = 1,2), tiie Sz-

            qÅ}112 and energY EqÅ}y2'eigenvalues

     Equation (59) expresses that the orbital energy eM is just the
         'difference in energy between the ground and ionized states with proper

                                'weighting factors associated with the extent to whiÅëh the two ionized-

state wave functions contribute to the ions. Therefore, Eq. (S9) may be
                                                                 '                                                 '                                                         21regarded as an extention of the familiar Koopmans theorem.                                                             For a
                                                           '
special case where N = 2, Eq. (59) reduces to

              '          e2 "}(Eo -,<Åëi lHilÅëi>) , • (6o)
                                                                      '                                                           '                                               '
where Åël stands for the first orbital and Hl is the one-body Hamiltonian

for the ionized state. This last equation is exactly what was derived
         11c'
by Lilnell for a two-electron system in the SEHF-GSO formalism.

                                      '                                                           '
D. Excitation and virtual•'orbitals

                                                         '                 '                         '
     The eigenvalue equation (34) provides solutions otheT than the

                     'ground-state filled orbitals. They are called virtual orbitals. To
                '                    '        tt                              .tdistinguish between these two classes of orbitals, we will denote the

former orbitals by ÅëfO) and the latter bY Åë{n), n>O. '' ' ''

                            '
                                                 '
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     Lunen22 and Goddard23 showed for the cases of the Hartree-Fock and

                                                         ,                                                '
the GF methods, respectively, that the resulting virtual orbitals are

sufficiently accurate to describe the excited electronic states to a

zeroth-order approximation. More specifically, the energy gaps between
               '                '
the virtual and ground-state orbitals are good' approximations to one-
                                         '
electron excitation energies. ' ' •
     Similar trends can we11 be expected of our Åë{n). Let us denote by

YÅín) the wave function for the excited state arising from the one- ''

electron transition Åë{O) -F Åë{n). Th6n, it can readily been shown that

the W{n) functions have the following properties:

       '<y{n)IHIy> =o ' , (61)
                                      '                                                '          <y{") IHIy{M)> =o ' , (m \ n) ., ' ' (62)
                                               '                                         '                                                  'A's a result, YEn) (n -- 1,2,•••) together wSth'iv{O) completely diagonalize

                                                (n)                                                    (n = 1,2,''') couldthe Hamiltonian matrix in each k-space, so that Ek

                                        'in principle be good approximations to one-electron excitation energies.,

                                                          'V. SAMPLE CALCULATIONS, • •                                                             '                                        tt
     '
     For the purpose of il,lustration, we here apply the present theory

to the dp, ublet state of a linear H3 system with two bond lengths fixed

              b'. , t,. ,,. .at 1.470 and' 2.984 bohrs. Comparisons of the results attained by the
              '                                                                '                                                '  '         'vatious theories, RHF, SEHF-DODS, SO-SCF-DODS, SEHF-GSO and SO-SCF--GSO,

                                 '                                  '                  tttare another purpose. ''
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     The three-electron doublet system is the simplest possible system

                                   20b .                                       arises. According to Eqs. (9)in which the spin degeneracy problem

and (13), the SO-SCF--GSO wave function pertinent to the system in

     --tquestlon ls

                             -k/2          "Yso..scF.NGso " a[Ci2                                  (alb2a3 #- bla2a3)ex

                            -if2                        + C26 (alb2a3 ÅÄ bla2a3 - 2ala2b3)e2] , (63)

where

                -1!2          el :2 (ctBct -- Bocoe) (64a)
                                                   '                                                              '                -112          e2 =6 (orBct + Bctct - 2ororB) . (64b)

                       '
As stated in seetion IVA, two GSO"s can be chosen to be orthogonal to

                                                                  8each other. Since we have adopted the genealogical spin functions, the

GSO's, Åë1 and Åë2, are mutuall>r orthogonai, aRd the wave function is

invariant to any unitary transformation of Åë1 and Åë2. Also, we have

Åëhosen the unitary transfomnation so as to maximize the norms of al
         'and b2 (or to minimize the norms of bl and a2), <allai2 + <a21a2>2 and

<bllbl>2 + <b21bi2 being invariant to any unitary transformation.

     For the DODS cases, we simply set bl = a2 = bs = O. Thus, the
                                                                '
SO-SCF-DODS wave function takes the form

          Wso-scF"DoDs = CZ•[alb2a3(Clel + 3-1!2c2e2)] . • (6s)
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The SEHF functions corresponding to Eqs. (63) and (65) arise from the

                                                               'constraint Cl " C2:

          }ISsEHF-Gso= (Nl'so-scF..Gso)cl.c2 ' ' (66)
                            '
          aVsEHF-Dops = (iYso-scF-DoDs)ci=c2 (67)
                                                               tt                                                                   '
     Needless to say, the DODS theories lack the elements which allow

the tmo spin cornponents, or and B, to mix with each other. As a result,

GSO .solutions generally cannot be attained when DODS solutions are used

                                'as initial guesses. It is worth noting that, none the less, the SO-SCF-

DODS wave function occasionally gives a local minimum in the GSO space.

Conversely, when ealculations are started from eertain GSO's the

solutions may in cases converge to the SO-SCF--DODS results. In actual

computations, therefore, several trial GSO's as initial guesses were

tested in order to confirrn the convergence of the iterations to the

SO-SCF-GSO results.
                                         '                                                                  '     The SOLSCF-GSO calculations were carried out by use of the double

q basis functions (ls and ls' Slater-type orbitals) for each hydrogen

atom. For the sake of simplicity, p orbitals were set aside. The STO's
were assigned the exponents given by shavitt et ai.24 "ihey were expanded

                 'in terms of six Gaussian t>rpe orbitals. In order to compare the results

on a common base, the saJne basis functions were used for the other

             'orbital theories. The SCF procedure was iterated until the energy

                                                        .t6difference between successive two steps did not eXceed 10                                                          hartree.

     Table.II shows the LCAO coefficients for the SO-SCF-GSO's obtained.

Functional profiles of these GSO's are presented in Fig. 2. The first

    '
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and the second orbitals, Åë1 and Åë2, are mutually orthogonal and

delocalized over the whole molecule. The third orbital Åë3 is somewhat

localized on the H3 atom, which will become an isolated atom in the

dissociation limit. In all these orbitals the or- ana B-components have

different nodal structures, thus making different contributions to the

chemical bonds. '
     In Table III, the total (E), electronic (E ), kinetic (T), nuclear-
                                              e
attraction (Ven) and eleÅëtron-repulsion (Vee) energies caleulated by

means of the various orbitai theories are compared. It can be seen that

the SO-SCF-GSO method gives the lowest total energy. Ihe difference in

E(O.O0474 hartree) between the SO-SCF-DODS and the SO-SCF-GSO theories

is much greater than that (O.OO098 hartree) between the SO--SCF-DODS and

the SEHF-GSO methods. The SEHF-GSO total energ>r was improved

significantly by the SO-SCF--GSO method as a result of the orbital

nonorthogonality and the spin-optimization; Cl =i= C2. The energy

improvement (O.O0376 hartree) is comparable in magnitude to the .

difference (O.O0526 hartree) between the RFIF and the SEHF-DODS total

     .energxes.
                                                         '
     Although the SO-SCF-GSO wave function provides apparently better '

results than does any other existing orbital theory, the total energy

obtained is still too high by ca. 12 kcallmol as compared with that

resuiting from the ci treatment.24 A great part of this energy difference

is no doubt due to the dynamical correlation; orbital approximations are

incapable of taking due account of the dynamical motion of electrons.
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VI. CONCLUDING REMARKS

                                '
     The SO-SCF-GSO theory as an extention of the SO-SCF-DODS and SEHF-
   '
GSO methods takes maximal acceunt of the degrees of freedom for variation.

As g consequence, the theory is in principle by faT more flexible than

any other orbital theory so far presented, thus providing the most

accurate results for atomic and molecular systems which are represented

by given basis set functions.
                               '
  . Generally, GSO's are expected to gain further flexibility by the

introduction of`complex variable; wliile real GSOts have only two-

dimensional spin structure, the complex component of GSO's should give-

an additional dimension, i.e. the component in the y direction. The

treatment of Eq. (34) involving complex variables is straightforward.

We believe that such a treatment will be important not only for the

consideration of the electron correlation effect, but also for the
                                       '                                    '
argument of the continuity of the orbital phase when the electronic

                    t -tstates of highly symmetric molecules or degenerate states are ''

investigated. It would hardly be possible to deal with this latter

problem properly by means of any other orbital theory.

   . In this paper we have examined only the energy to compare the SO-

SCF-GSO method with other methods. However, it is expected that the
                                               'theory will be capable of providing improved expectation values for

other quantities, such as the Fermi contact shift of atoms, as well.

This phase of the problem will be discussed elsewhere.
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APPENDIX A: GROUP ALGEBRA AND k-COEFFICIENT

                  20                     may be considered as a set of all linear combinations     Group algebra

of the elements of a group. The structure of a group algebra is

eharacterizedbymeans of the fundamental units el.j's for an irreducible

                x                 , which satisfy the following fundamental relation:representation r

           xv                          x          eijekÅí=6Ap6jkeiÅíe (Al)
e".'s are constructed in various ways. lt was shewn by wigner25 that,
 i)

foragiven group G, '
          e}•j=1-E:XiL tiGrJ)•Vi(t")t • (A2)

where f is the dimension of r.                                 The essential properties of the algebra
    '
                                                                      'for a symmetric group SN are

                                                 '          s 2e l. i : sx (sx + i) e}. i (A3)
                                                                 'and
                    -v          ilrt pOpSile}.jei.jgj = pOpSa;.ciel.i

                           = - aEciel• i (A4)
                                i

where PO and PS are the permutations operating concurTently on the

spatial and spin coordinate, respectively. A very wide and profound

review was given by Lb'wdin and Goscinski.20b

     In treating a spin syTrmietry X, the Lth spin function e}. is written

in terrns of the linear combination of the products of one-electron spin

funetions (ct or B) such that
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          e}• '=Zk\•'n. (As)
               u.
where n. = ct(1)B(2)••• (with a given Sz value). With the aid of the
orthogonalÅ}ty <nulnv> = 6uv and the ket-bra expression e}.j = le}.><e}.I,

which evidently satisfies the fundamental multiplication relation (Al),

                                                     'one can easily derive the relationship:

          e.ljn. --- kY•e}• (A6)
The relation (A6) has been used to derive Eq. (14). In particular, since

          el• ln. = k\• e }• , (A7)
the diagonal element e}.i is regarded as an operator which projects an'

                           '                                                               xarbitrary spin product nu on the space of a given spin function ei.

APPENDIX B: PROOFOF ',KOOPMANStTHEOREMtt

wave

The theorem is

function, Eq.

proven

(9), can

for

 be

Mth orbital here. The N-particle SO-GSO

wntten as

where

and  (O
   1
   AAn S

-,

z

w = pS CI.(.ZRije}•j)(Åë1•'' ÅëN"'' ÅëN-1ÅëM)

         IJ

Rij• = - iil rl•.(p)r}•I (p)c.

''  ÅëN'"' ÅëM) = P(Åë1''' ÅëM''' ÅëN), i•e•, p = (M,N).

-projection of the product of GSO!s can be split into

(Bl)

(B2)
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      PS(Åël••• ÅëN'"' ÅëN-1ÅëM)

                                               '       . {ps-112Åë1... ÅëN... ÅëN-1}(' oaM) + {pS+112Åë1•-• ÅëN•••ÅëN-1}( gM >

       =fM aM ct+fiil bMB (B3)
It follows that

       <Yi(H - E)liy>

                   '       = i. i. .X R/lj R.. <e l• j (fili a),f]t + fillbMB) kH - E) atrN i

         ' xeA. ('fMaMct+fMbMB)>. (B4)

Tlie term proportional to <ÅëMltoM> = <aMiaM> + <bMlbM> should be the

object of our search.

     FiTst, let us derive the term proportional to <aMlaM>e It now

                                'suffices to consider

       ii. .X R;'jR.n <e}•jfiliaMctl(H ` E) aNieil.fglaMot> e (Bs)

The GSO product fM is expanded as

         fM -2 ipE nG• (B6)
              u
                              'where RG is the simple product of one-particle spin functions with the

                       A-net eigenvalue q-1/2 of Sz, while tpu is its associated spatial function.

We can write

         i. Rije}•jfM aM ct = xl• aM e}• (B7)

with
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          xl• "' i.5.Rij<e}•inllor> vll

             '                              '
Hence, Eq. (BS) becomes

                       '                                     '
      . ii. <xl• aM e,lI(H - E) aNlxJ• aM eJX.> .

                   'On the other hand, ei? is known to be decomposed into two parts:8

          ei.lr = d}i el. lq-i/2 or + dii ellq.y2 B

                                             . Xl
                                       for i= 1,2                                                    '''''f

          '                                  '          6}. '= d}2 el. iq-y2 ct + 'di2 el• iq.y2 ,B

                                                  XI X
                                       for i=f                                                     + 1,...,f

where
          d}i = -[(sx - q + i)/(2sx + 2)]i!2

           Xl                                        1/2          d. = [(Sx + q + 1)1(2Sx. + 2)]

                                    '           X2          d- = [(SA + q)12sx]i/2

          d}2 = [(sx - q)/2sx]112 '.

                                     '
lhe decomposition stated above is as illustrated in Fig.'  1. The

IEo,:;r:iz"ls}s:,`)lg$,ls.ell'a:ti2d,i.r;:.i:.s.E?il,wi;2,g\e,eeip

          AM =k ip i(l.Plxl• el•te,q-ii2i(HN..i - E)aN-iixJ• e]•?q-i/2>
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(B1Ob)

  (Bll)

terln

of Eq.

, (B12)



Where HNNI and aN.1 are the (N - 1)-body HaJniltonian and antisymmetrizer,

respectively.

     In exactly the same manner, the term proportional to <bMlbM> can be

obtained. The resulting factor BM is simply what is obtained from Eq.

                   -- +(B12) by replacing xi and q-1/2 by xi and q+1!2, respectiv,ely.

     Because

       '          AM<aMlaM> + BM<bMlbM> = 21- (AM + BM)<.ÅëMlÅëM>

                    + ll' (AM - BM) (<aMlaM> - <bMlbM>) , (Bi3)
                                  s
                                     '
the orbital energy eM, according to Eq. (40), is

                 1          eM = - 7 (AM + BM)

             =' iiilt .Ep i(;iE'. )(`xl• el•Ilq-y2i(HN.i - E) CZN-ilxi' ei'?q-i!2'

                     xx               + <x:• eillq-ii21(HN-i - E)aNfiilxJ• ejeq-ii2>) e (Bi4)

             '

!f the (N - 1)-body wave functions is denoted as

          iglll.l.y2= aN-i(i].NP)xi ell.)i],q,y2 (p=i,2) , (Bis)

Eq. (B14) reduces to

     eM = ft ip{<iy:llii2lNvl!ilii2>(E - Ellei!2) + <igl)P-y21iyliP-i/2>(E - EqAP-ii2)},

                                   '
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with

This

GSO.

the energies of the ionized state expressed as

     E:i,,,-Ei'iilisl:IXIilllfiiei<ii:iiiill,ili2'

                        ,
completes the proof of "the Koopmans theorem" for the Mth

(Bl7)

SO-SCF---
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TABLE I. Typical SCF orbital theories

Orbital HF SEHF se-scF

DOUBLY
OCCUPIED

DODS

GSO

   aRHF

    bSPHF

   cSDW

         dSEHF-DODS

        eSEHF-GSO

           fSO-SCF-DODS

so-scF-Gsog

a Roothaan (Ref. 2).

c Spin Density Wave,
                    .
Lett. 4, 462 (1960).

e L6wdin et al. (Ref.

Goddard (Ref. 9). g

 b Pople et al. (Ref.

A. W. Overhauser, Phys.

 d Lb'wdin (Ref. 6).

 6,11). f Kaldor et

                   ttThis study
               '

4)

Rev.

al. and
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TABLE rl. LCAO coefficients for the SO-SCF-GSO's of a linear H
                          3

      asystem

Basis
        bfunction

Åë1 Åë2 Åë3

al bl a2 b2 a3 b3

Hl IS
      '
    IS

H2 IS
      '
    IS

H3 IS
      t
    IS

(O.986)

(1.371)

(1.054)

(1.297)

(O.943)

(1.066)

  O.45745

  O.24500

 -O.Ol121

'- O.15022

 -O.30363

 -O.33610

 O.35669

-O.04475

 O.39468

-O.15237

-O. 31282

 O.33864

-O.22212

 O.64441

-O.50520

 O.91679

 O.27430

 O.20588

-o..

Q•

-o.

 o.

 Q.

-o.

04429

14466

28896

06588

37s13

O0533

-o.

 o.

-o.

 o.

 o.

 o.

21085

11832

09574

26743

40388'

44645-

-o

o

-o

r.o

o

d- O

.

.

.

-•

.

.

27085

io2o4

17880

16162

91787

60572

.

a The coordinates

H3 = (2.984, O, O).

fTom Ref. 24.

(x,' y, z)

  b The

in bohr

values

 of each H-atom are Hl
'    '
in parentheses are the

= (-1.47

orbital

, o, o),

exponents

H2 =

 for

(o, o,

STO,s,

o) ,

taken



TABLE r!!

obtained

.

by

Cempari$ons of

typical orbital

the energies

 theoriesb.

                      a(hartree) for linear H
                      3

ooDS GSO
Energy RHF SEHF SO-SCF SEHF SO-SCF

t

ta
N

t

EC

Ed
,g

Venf

veeg

c21Cl

-1.61796

-2.85787

 1.61725

-5.64887

 1.1737S

•- l.62322

-2.86313

 1.62189

-5.64283

 1.15781

`• 1. 6 3 84 7

-2.87838

 1.66168

-5.67909

 1.13902

 O.105959

-1.63945

-2.87936

 1.65911

-5.67618

 1.13771

:1.64321

-2.88312

 1.65607

-5.66824

 1.12905

 O.277304

a

b

c

d

f

Geometry is the same as given in Table II.
 '        '
The same orbital exponents as listed in Table I! were

Total energy; the CI treatment in which a 2p orbital

gives E = -1.66304 hartrees (Ref. 24).

Electronic energy. e Kinetic energy.

Nuclear-attraction energy. ,g Electron--repulsion

 used.

is a!so

energy.

incorporated
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Figure 1. Ionization to two species with different spin symmetries.
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   1
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system
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 bond
      '
is denoted

-39-



                    CHAPI'ER 3

  Spin-Optimized SCF General Spin Orbitals

in the 22s and 22p states of the Lithium Atom

                                                  '          '                                                                    TThe spin-optimized SCF general-spin-orbital (S9-SCF-GSO) Tnethod, which

has previously been proposed by us, is applied to tbe 22s and 22p states

of a lithium atomr- ' The energies obtained are -7.448522 and -7.381053

hartrees, respectively, which account for as much as g9.70-o (22s) and

97.70-o (22p) of the radical limits of electron correlation. However, the

Fermi contact terms calculated, 2.7so (22s) and -o.lgs3 (22p), are not

necessarily improvernents over the values obtained by hitherto-known
                               '   '
orbital theories.' This latter result is ascribable to the functional

forms of the orbitals, which cannot fully account for the electron'

correlation without unduly reducing the weight for the configurations

of spin polarization. The situation has been clarified for the case of

Ihheeo:.:sitate thrOUgh COrnparative anaiyses of various existing orbital
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I. INTRODUCTION
  '
       '                                        '   '                                                   '     The spin-optimized SCF general--spin"orbital (SO --SCF-GSO) wave•-

                                'function is definedi as
                                   t ttt t
       'yf = p,qa/:Aci61iÅëiÅë2•'••ÅëN, 1 ' ' • (i)

                                       '                                                              'where Åëk is a two-cornponent spinor

                                 '
                                              '        Åëk = ak (r) = ak (r) ct + bk (i•) B, , (2)
                                                 '               bk (r)

                                                    tt t
which is termed a general spin orbital (Gso).2 6Z and pz9 are the

                                                '                        Aantisymmetrizer and the Sz-projection operator for the least nonnegative

sA z eigenvaiue q, respectiveiy; el.i is the lth generating operator for •

the spin function of the symmetry X; and Ci is a variation parameter

caned the spin-coupling coefÅíicient associated with el.i. General

properties of the SO--SCF--GSO wavefunction have been discussed in

detail previously (part Il of this seTies). suffice it to mention here

that our GSO theory can be reduced to a one-body quasieigenva!ue

                          '                                        '                                          'problem expressed as
                                                  '
                                                   '        •:,ij,l':l,iz'::[.r] --•E,gkglgl,ii ,#,k[': ,'(3)'

                                                         'For expiicit functionai forms of the operatoTs G5.j and s5.j, paper ii

should be referred.
                                  '                               '                                 '     The GSO wavefunction thus defined should in principle embrace all

                                                        '                       tt                               '
                                   '                             '                                                              tt       '                                                        '
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the known orbital functions of correct spin symTnetry. ' ThUs, the

                                      3restricted Hartree-Fock (RHF) function, the SO--SCF function in the
different-orbiÅí'als-for-different-spins scheme (SO-SCF-DeDs),4 and the

spin-extended Hartree-Fock functions2'5a in both the DoDs (sEHF--DoDs)Sa

and Gso (sEHF-Gso)2'5 schemes could an be regarded as its special

                                    '                 '                                        '                                               '                  '
                                                       '
     The purpose of this paper is to apply the SO--SCF -GSO theory' to

     22the 2 S and 2 P states of a lithium atom and to compare the results with

those6 that have been obtained by the various other theories. It has

                                                                '
been found that the present GSO theory can indeed give the lowest
                                                                 '                      '                                     'energy as expected but is not necessarily best suited to the prediction

                                    tt                                'of hyperfine structural parameters. 'The problem of the coupling between
                                             '                                 '                    '          'energy and spin polarization inherent in each orbital theory will be
                                        i                                                              'discussed in a comparative manner, taking the'22p stat6 as an exampie.

      t.t . .t tt . . tt/tt               '                              '                                                                '                                                          '                               '                                                                '                                  '                          '                       t/II. BASIS FUNCTION ''
           '                                                                  '                 '     '
                                          1     For a three-electron doublet system, f is 2 and-the spin functions

              Agenerated by eii are

              -1!2        el=2, (orBct-Bcxot), (4a)
            '                 '                            '                                 '                      '        e2 =6'- i12 (6tBor + Bi tct - 2ctctB). ' (4b)

      '
Using these spin functions together with the spatial functions

        oi(ri, .r2, r3). = 2-l,i?[ai(ri)b2(r2)a3(r3) - bi(ri)a2(r2)a3(r3)]

                                                                 (5a)
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     Åë2(rl', r2, r3) = 6 -112[al(ri)b2(r2)a3(r3) + bl(rl)a2(r2)a3(r3)

                      -2al (rl) a2 (r2) b3 (r3)] , (s b)
                                                     '

one can rewrite the SO--SCF-GSO wavefunction, Eq. (1), into

        Y=a[ClÅëlel+C2Åë2e2]• • ' • (6)
                  t.
                                                  '
For the sake of brevity, the SO-SCF-GSO rnethod will hereafter be

referred to as the "OG" theory.

     The SEHF-GSO, SO-SCF-DODS, and SEHF-DODS wavefunctions, which

will be abbreviated as the "EG,'H'OD," and "ED" functions, are obtained

by imposing the following conditions on Eqs. (5) and (6):
                                        '
(i) SEHF-GSO (EG), bY letting Cl = C2;

ai) .so-scF-DoDS (OD), by setting bl = a2 = b3 = O;

(m) SEHF --DODS (ED), by adopting the two constraints Cl = C2 and bl =

a2 = b3 = O, sim.ultaneously.
                                  '
     Calculation of the GSO's, Eq. (3), were performed on the basis of

                                   3.the expansion technique of Roothaan. One crucial problern in this

conneetion is how to select a basis set such that the cusp condition is

fulfilled. However, we will not be strict to those extrerne!y complicated

                                             7cusp conditions to be imposed on the orbitals. Instead, we will be

cautious about the cusp conditions for both the charge and spin densities

                                                   8-denoted by yc and ys, respectively. Steiner showed, on the basis of
                                              'Kato's theory,9 the fonowing identity for the exact charge density:

       ?il.T y.(')I..o='2zy.(o) ' (7a)
                                                           '            '
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where Z is the nuclear charge. The basis-set dependence of ys(O) should

also be considered. As will be shown in Appendix A, the cusp condition

pertaining to the spin density is

                                                                 tt                                          tt                                      '        Eil.T Y, (r) l..o = -2 Zy, (O) • ' (7b)

                                                           '                                         'The cusp values of'Zc = -yt(O)/2yc(O) and Z.s = -yg(O)12ys(O) resulting

                                  'from the use of a trial wavefunction must not deviate greatly from Z in

order for the function to be acceptable as a sufficiently good

      --•approxlmatlon.

     The basis set actually selected for use for the 22s state was the

same as'' that used by Kaldor and Harris.4b The various orbital wave-

                'functions of the 22p s` tate were calculated on the basis of the basis

set given by Lunell,10 although we neglected two Slater-type orbitals

having very small coefficients in his OD calculation,10 narnely, the 3s

and 2p. orbitals with the exponents O.8451 and 4.5, respectively. The

wavefunctions of 22s fulfilled the cusp condition for the spin density,

Eq. (7b), but those of 22P gener' ally did not. Incidentally, all the

            'wavefuhctions under stndy can only accbunt for the radical electron

correlation, because the 6asis Sets contain s-tYpe functions alone for

                                                       tt

III. RESULTS OF THE SO--SCF-GSO COI,(EPUTATION

A. Orbitals

                                                            2     The amplitudes of the spatial orbitals obtained for the 2 S and
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 22 P states are shown in Figs. 1 and 2, respectively. As has been

mentioned previously,1 orbitals 1(Åë1) and 2(Åë2) (both being the core

orbitals) have been transformed so as to maximize the norm of the ct(B)-

spin part of Åë1(Åë2). They are orthogonal to each other in the sense of

spin-orbital orthogonality; <ÅëllÅë2> = <alla2> + <bllb2> = O•

     The most striking feature of Figs. 1 and 2 is the presence of a

    4,11,13anode             in one component of each spinor. The components al, b2,

a3 are nodeless just as those of the OD orbitals. On the other hand,

the cornponents bl and a2 for either of the 22s and 22p states exhibit a

functional form analogous to that of the 2s Hartree-Fock orbital, which

does possess a node. b3 for the 22S state also has a node and is rnore

                                   .2attracted toward the nucleus than is a3. In the 2 P state, neither a3

nor'b3 has a node. As in the case of 22S, a3 is diffused but b3.has a

large maximum in the vicinity of the nucleus. Such nodal properties of

the GSO's will e.ventually allow the wavefunction to take more electrQn

correlation into account as compared with other types of wavefunctions,

B. Expectation values
                                           '                                                         '
     The total energy E, the radical electron correlation AE, the

hyperfine structure parameters f and 2, and the electron density at

nucleus yc(O) calculated by the OG method are listed in Table I, tegether

                                                                      12with those obtained by other orbital theories (including the RHF theory

as well as the radical cl treatment.5g For the sake of reference, the

experimentai datai4-i6 are aiso given. For the 22p state, the ED, oD

and EG calculations were repeated by use of the same basis set as used

                             '                                                '                                                            '

                                                              tt
                                -4S-
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for the present OG calculati'on.

      Inspection of the total energies given in Table I shows that the OG

theory has improved both the EG and OD results by ca. 60-o in electron

correlation. Obviously, the improvement is a consequence of the reality

that the OG method is variationally more general than the other two

theories. '' Notice that the OG method 'is able to'account for as much as

                                                                    'gg.70-o (22s) and g7.7o-o (22p) of the radical electron correlation. '

     Considered next are three hyperfine parameters, i.e., the Feirmi

contact term f, the orbital azl'muthal index Åí and the spin dipole d

which are defined respectiVely by '

                               t .tt                                 tt        f= 8rr<\6(ri)gz.>, '- . . (sa)
                 11 •        '
                             '                 2 --        2.<\. :i>, . . 1 . (8b)
                                     t tt               lr. ,, -.                  1,

              tt    t tttt t tt .                   .t tt . t

       ' ' 3Z?-r? ''' ''        d-<Z isi sAz.>. (s.)
               1 r. 1                      1.                                                             '

The relationship d, = -2/5 holds exactly for the basis set chosen in this

work.... The absolute values of f obtained by the OG theory are smaller

than those calculatgd by other theorles. The agreements of the OG f

values with the experimental data are apparently worse than those of

the PD, EG, and CI f values. As for the Åí and yc(O) values, the

calculated results are not much different from one another, even though

the ED theory tends to give sornewhat smaller values of yc(O).
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     Table I also lists the cusp values Zc and Zs• Seemingly, all the

                       'wavefunctions satisfy the cusp condition for the charge density. The
                                                           '
spin cusp condition, however, seems to be more difficult to be satisfied,

These results together strongly suggest that Zs 'is generally more
                                                        '
sensitive to the ehoice of basis sets than is Z .
                                              c

IV. COMPARATIVE ANALYSES OF VARIOUS ORBITAL THEORIES

     Although our OG (i.e., SO-SCF --GSO) theory provides the state

energies of a lithium atom more accurately than does any other orbital

theory hitherto proposed, it is apparently less reliable for the

prediction of the Fermi contaet term f. For Li(22p), the state energy

                 'decreases in the order '
                      '

        ED ' OD .>., EG > .9Lt .>. CI (9a)

while lfl diminishes in the order as follows:

              '        ED>Cr)EG)OD>OG ,. (9b)                           -
                                                        '
     It is generally accepted that the spin polarization configurations,

which dominantly govern the spin density distribution, do not strongly

contribute to the correlation energy. It is mainly the doubly-excited

configurationsi7 that can account for the correiation energy. These

two types of configurations should be varied independen' tly if both the
                             '
spin density and energy are to be calculated with fair accuracy. In

orbital theories, however, these configurations are coupled with each

other through some parameteTs involved in the mathematical formalisms

                                '                 '
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              •1 '
for the detemnination of orbitais.i8'i9 Thus, the orbitai forrn

most favorably for the energy tends to place a sturnbling block

reliable evaluations of the f values. In what follows, we will

in sorne detail how the energy and the spin polarization are to

::.::lped).with each other in the various orbital theories applied

                                                     '

A. Spin-optimization of the DODS wavefunctions (ED vs. OD)

     The OD theory is apparently superior to the ED in both

trend which suggests a basic significance of the spin optimization

effect. We will take a closer look lat this effect frorn the

of the core orbital splitting.

     Denoting the two core orbitals by a and b and the valence

bY V'  O" i,oC Dall lllrllti:b(iilg,(:n]21illll#giz:1) DoDs wavefunctio. .,

where U(= C21Cl) is fixed at unity in the ED theory whereas

optimized by variation in the OD method. Since v's of ED and

coinc ide with each other to within lo-3 in the coefficients

orbitals,, we will leave v eut of discussion.

     The DODS core orbitals a and b can be expanded over a

:l:itda.i.,S.:Iiiilkla..iiillllll.O,SeTil'!t.ge8 eXPa"ded orbitais are expressibie

   • a= Åëi + 2 (Ak ' Tk)Åëk,

                k=1

                               -48-
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        b=Åëi-kZ.i(Aic -' Tk)Åëk• . ' (nb)

The DODS wavefunction would then take the forih:

        yDoDs = aÅë:el + uaÅë;e2,                                                                 (12)

where the first term represents the singlet-type core structure

        aÅë;e1 = CZ(Åë1thlve1) + 2illTkcZl(ÅëkÅëlve1)

                 - kii 2; (Ak " Tk) (AÅí - T2)CZ (ÅëkÅë2vei), a3a)

while the second, the core structure of the triplet type

                     '          Åë;e2 . 2• 3-ii2 2 eq a(ÅëkÅëive2) '•
                       kl1
                 - 3-i12kii 22g (Ak + Tk) (A2 -- T2) cZ (ÅëkÅëÅíve2)• a3b)

     Both the ED and OD core-orbitals for Li(22p) were expanded over

the natural orbitals derived from the ED orbitals. The results are

given in Table II. The most salient points of Table II are the following:

                     '                                                       L
(i) !n the ED case, the core orbitals a and b are pnly slightly

polarized (IAkl << 1) in asymmetric manner (Tk -N O); •

                                                            '                                                  tt
(ii) In the OD case, the spin polarization is not only relatively large

but less symrnetrical (OiITkl << IAkl<1)• •

     As is apparent from Eq. (13), an increasing spin polarization,

IAkl, tends to lower the energy of the singlet-type part Ell =

                              '
                                                             tt
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<f aÅëOellHlaÅëeel> but elevate that of the triplet-type counterpart ' •

                                                'E22 = (aÅë8e21HlaÅë;e2>• The, total DODS energy is determined by a

 compromise between these two opposing contributions. In the ED formalism,
                                                          '
 in which u is fixed at unity, it is a necessity to keep the core spin

          . 20                                in order to avert from a rapid rise ofpolarization relatively small

E22 as the function of lllAkl2 (Fig• 3). By contrast, the oD wavefunction,

 for which u is optimized to be O.O060, requires no such suppression of

 the core-orbital splitting. It gives a far lower energy deterrnined
                           'principally by aÅë:'el to which the doubly--excited configurations

 CZ(ÅëkÅë2Vel) are allowed to contribute appreciably. Clearly, the SEHF

 condition o = 1 lays a strong restraint on the DODS scheme.

     As for the Fermi contact values, it is most illuminating to cornpare
                                                                  '
 the two theories in an iterative manner as follows. By use of the ED

             '                                   'orbitals, we obtain a first-order OD approximation to cr:

          (o) Hi2
        U =- H22 --EEDs22 . (14)
                                '            '                                          '
where Sij and Hij respectively stand for the overlap integral

 (C2Åëieil<ZÅëje.j> and the corresponding Haniiltonian matrix element.

Evaluation of Eq. (14) result' s in ti(O) = O.8460, which in turn gives the

                                                          '                                          ' first-order approximation tO foD:

                               '        f8D =2<CZ ÅëOlel l;lu aÅë; e2> = O.8460 fED , (15)

                                                       '
       oThus, foD = -O•2514 while fED = -O.2972. It is quite natural that the

OD orbi'tals adjusted by use of u(O) will further iower u at the expense

                  ' of core spin polarization. The net effect is to diminish the.lfl value
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further. It is expected,therefore, that in the limit of spin optimization

we have

                               '        lfEDI>lfoDl• • '• a6)
                          '           '
     The OD energy (-7.380119 hartree) agrees nearly perfectly with the

                                                                 13aenergy (-7.38011S hartree) obtained by the Gl--SCF (u = O) theory.

Thus, it seerns reasonabie to consider5a'2i that the oD orbitais are

variationally fixed by the electron correlation effect due to a(Åëkth2vOl)

rather than by the spin polarization arising from a(ÅëkÅëlve2). Ladner

and Goddard4a aonfirmed this point by direct calculations of Gl and OD

                 2orbitals for Li(2 S).

     The above view can be rationalized from a similarity between the

OD and Gl orbitals (Appendix B). !t is thus definite that,- like the Gl

orbitals, the OD orbitals are split almost exclusively by electron

correlation. This supports the conclusion reached by Ishida and

        .21            from the results of MC-SCF calculation. In fact, we canNakatsuji

reproduce the OD f-value by use of the Gl orbitals through the

approximate expression

        f6D = -. gsii(H2iHl2EGis22) [aO(o)2 - b.o(o)2] ,

            =-O.213 (17)
                            ttin good agreement with foD = -O..2142. '

B. Spin rotation in the SEHF theor (OD vs. EG)

The SEHF condition Cl = C2 places a serious restriction on the DODS

                          -51-



scheme, as was argued in the preceding subsection. However,

can well be remedied within the framework of the SEHF scherne

introduction of Gso22 in piace of DoDs.

     If the spin functions quantized in the x axis

        ctx = 2-112(ct + B)

              -112        B =2                  (or - B)
         x

are used in the SEHF scheme, a simple EG function results:

        yE, - } pSa(eii + e22) (:] ('C)(O

Since PS and a(en + e22) commute with each other and since

                      '        P21 ctxBx9t = -(ctB - Bct)ct/2

                 . -2'l12e
                   . • 1'
                   '

Eq. (19) reduces to
  '
        iyEG = 2'-i12(IZabvei

Equation (21) is essentially equivalent to the Gl function,

adverse effect of the triplet-type core structure on E has

     Let us now examine the relationship between the OD and

An OD wavefunction can readily be obtained by introducing the
                                                        '                                             'optimization pararneter u into Eq. (19):

        yoD - } pSa (ell +' 62 2) ( .a )( 'g)( .;)

the

by

 defect

the

(18a)

(18b)

(19)

(20)

 so that

been removed.

 EG theory.

   sp!n-

(21)

 the

(22)
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Correspondingly, the exact EG function is obtained by the optimization

through further distortion of each spatial component: '

     iyEG .= /1- pEa(eii ' e22)(.a "- 66a.)('bb :ibb)(o. I 61,) ' • (23)

                '                                            '

where 6a, 6b and 6v are the first-order variations in orbital. It

                                                     'follows that

        iYEG=XYoD+6YEOPGt (24)
                                               'with

        6iygPGt = 3-'i12CZ.I(6ab - a6b)v + ab6v]e2, (25)

                                       'as a first-order correction of spin poiarization.23

     Equation (24) together with Eq. (25) suggests the following:

(o ,6iygPGt is not expected to greatly improve EoD• In fact, EEG - EoD

is only -O.OOOI05 hartree, narnely, O.6e-o of the radical electron

corre1ation.

(ii) 6}g8PGt must correct the somewhat rigid property of (jZ02e2 of the OD

formalisrn, to assure

        lfci - fEGI ` Ifci - foDI' .,. , ' ' - (26)

     According to numerical calculations, lfcll = O.2306 is greater than

lfoDl ---' O.2141. The relationship (26) is, therefore, tantaJnount to the

   '        lfEGI'' lfoDl, i ' (27)
                           '                                                     '

                                                            '
                                               '
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insofar as lfEDI can never exceed lfcll•

C. Spin-optimization of the GSO wavefunctions (EG vs. OG

     The OG wavefunction can formally be derived from YEG [Eq. (23)] by

introducing a spin optimization parameter T(= C2!Cl):

        y,, -} pSa(e,, + Te,,)(:: g:)(',b : i,b )(.. )I ,. ,)

            = iYoD + (T - 1)utlZ Åë;e2 + T6iY8PGt (2 s)

                                          '       owhere Åë2 is the OD spatial function. In the special case where T = 1,

                             'Eq. (28) reduces to Eq. (24). Note that, when YoD is expressed in the
  '                                                                '    '        .form of Eq. (12), Eq. (28) takes the form

        'Y6G =aÅëOlel,+ T(O aÅë20e2 + 6iYgPGt). (29)

     Starting from the EG function (T = 1,, 6YEOPGt = O), we ma>] now

exainine the effect of spin-polarization in the OG function. Just as in

the case of DODS functions [Eq. (14)], one obtains upon spin optimizat' i' on

an approximate T value:

                     H        T(O) =- H22 -lgEGs22 (3o)

Becau'se of the inequality Sn >> S22 (S221Sn nt 10-5), we can neglect

the effect of renormalization. By reoptimizing the orbitals with this
 (o)     and recycling the process, one could reach a fully optimized OGT

wavefunction. However, preliminary calculations showed that the

convergence of this SCF process is very slow, which suggests that the EG
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solution is considerably stable in the variational space of the OG

solution. At this conjuncture, we have decided to look into the

relationship between the EG and OG theories indirectly, adopting the 'OD

wavefunction as a common basis.

     In conformity to Eq. (24), the Fermi f value in the EG theory is

expressed as

                                                '        fEG cr foD + 2 (CZÅëOlell?I6YEOPGt>. (31)

Likewise, Eq. (28), when combined with Eq. (30), leads to a first-order

approximatiOn Of foG:

        f8G bl foD + 2(T(O) - 1)(CZo:elll}luCZÅë2e2>

                  + 2T(O)< 6ZLÅëlel13}l61YgPGt>. (32)
                    '

Noting that

        foD=2(dZÅëOlellAfluaÅë2e2> (33)
                       '                                                  e                                                    .one can readily show from Eqs. (31) and (32) that foG can never be more

                   'negative than foD unless

                f        T(O)> fEODG = IOoiils421 =o.ggs (34)
                                                         '                       '                            tt    '                                 'In reality, the T(O) valiie (O.953) calculated from Eq. (30) d6es not

satisfy the condition (34). This is due mainly to the third term of Eq.

(2s), 3'1/3(Zab6ve2, which takes account of the core-valence correlation

effect. Because this additional configuration is of high energy, the OG
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function involving it should na!urally have T(O) which is at least

discernibly.smaller than unity. The nature of the configuration in

question will. be discussed in greater detail in the next subsection.

     Using foD = -O.2141 IEq. (33)] and fEG -- foD = -O.OOII [Eq. (31)]

                                        (o)in place of the integrals and adopting T                                           = O.95'3, we can evaluate the

first-order approximation f6G [Eq• (32)]• The result is f8G = foD '

O.O090 = -O.2051, in reasonable agreement with foG = -O.1953. The

ordering

                                   '        IfEGI '- lfoDl'lfodl . (3s)
                                                                 '

has thus been rationalized.

                      '                          '                       '
D. Structure of aÅë2g2 (ED, OD and EG vs. OG

     As has been, stressed above, CZÅëlel and aÅë2e2 couple with each other

through common parameters involved in both of them. Hence, it strongly

depends on the functional structure of aÅë2e2 whether or not the wave-

functions could yield good f values. Here we expand CZÅë2e2 of the four

                                                  '                                                                    .functions over the common natural or6itals which have been derived from

the ED solutions. Denote the s- and p-type natural orbitals by {Åëi} and

{ilii} (i = 1, 2,...), respectively. Then the f value is given

principally by the matrix elements between the ground cbnfiguration

Fn = IÅë16Tlil)ll and the singly-excited configurations

                             '        Fkl - 6'112{Iq)k671ipll + lailkd)lv,II - 21ÅëkÅëIVII} (k x 1) (36)

which are contained in (Z02e2•

                                 -56-



     Table III sumarizes the expansion coefficients dkl's (k = 1) in

the normalized Åë2e2. rn'  the GSO theories (i.e.,.EG and OG), the total
     '
weights of Fkl's are relatively small; O.4523 for EG and O.3939 for OG.

Other configurations which should contribute appreciably to the GSO '

functions are the doubly-excited configurations - '
                                                       '                               '
        Fkm = 6-1!2{lÅëk15TIWml " l61kÅë1thml - 2IÅëkth1tpml} (k,M t 1) (37)

                                                              '
This is due to the orbital b3 in Eq. (5b); it has large expansion

coefficients over tpm (m i 1), in contrast to a2, which is almost identical

with VJI itself. Because the configurations Fkin hardly contribute to f,

the increase in the weights of these configurations should in effect

diminish lfl. Obviously, this diminution depends on the spin-coupling

                   '
     On the basis of the expansion eoefficients for Fkl (Table III)

together with the relevant u values, each contribution fk from Fkl tO

                                                         '
        fk =2(s221sl!)112dklo <FllllCIFkl> • . (3s)

           '                                                           '
has been evaluated. The results are sumarized in Table IV.

     Table lV indicates7 first, that , '

        f2 2fk-, ' (39)            kSl

Second, the distribution patterns of fk's in the OD and OG descriptions

are similar to each other, and so are those of the ED and EG formalisms.

In these latter cases, the contribution of f2 is dominant over the resti
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It is interesting to note that the OD and EG have different structures

                    'of f while the net f values agree closely with each other.

     In concl,usion, we emphasize two important types of electron

correlation effects gn f, which are characteristic of the OG scheme.

0ne is the effect based on the interaction between core and valence-shell

electrons, as is endorsed by the significantly large contributions of

Fkm's to the GSO functions. The other is based on the interaction

between core electrons themselves, which brings forth the relatively

large expansiop coefficients to Fkl's in the SO --SCF functions. Both

these effects, which can be interpreted in terms of the functional

                                                   '                            'structure of (L02e2, are implicitly reflected in E22 (Table III); the

greater the weights of the excited configuration, the less stable is the

triplet-type state (ZÅë2e2. !t is noteworthy that the f values calculated

by the four .orbital theories increase in the saine order as the E22 values.
                                                                      '                                                               '                                           '                                                                    '                                                  '                                                         '
                                                                       'V. DISCUSSION
   '     '
                       '                                                     '                                               2     In connection with the spin density in Li(2 P), wg will briefly

                                   'discuss a special si-gnificance of the functional form of natural spin

orbitais5a (Nso) as well as the ocdupation nunbefs of natural orbitalsSa

(NO). The charge and Spin density functions, denoted by yc and ys,

respectively, are split into the s and p components:

        y..=yg+yP. - ,, ,' (4o)
                                                                      '                                             '        y,-y'S,+yg ' (4i)
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Here, we will focus our attention on the s-component because what we are

considering about is specifically the splitting of the core due to the

spin and electron correlations. . '
         '
A. NSO and spin density

     The NSO's with the s-symetry are slightly split symmetrically frorn

the corresponding NO in such a manner that

      '                        tt        Åëi mÅëi+6i ' . (42a)
                            t/                          '                           tt t                                          '               '        Åë,B. =Åëi-6i - • (42b)
                                               '                                             '                                                                    '                                     '                       '                                                           '
This is simply because, in the expressions -
                                '                                                               '                                           '                                    '        yg =}y2 +}yg, .(43.)
and

                                                                     (43b)        YB='2-- Yc "7Ys . ,
yg is sufficiently smal!er than yc ,to be treated as a small perturbation.

     using an approximate oD wavefunction, Lunell5d demonstrated that

the f value for Li(22p) can be calculated alrnost exclusively from the

                                '
first natural deterrninant which involves the first three NSOts of large

occupation numbers. tarsson and smith24 confirned this for Li(22s) on

                                                 '
the basis of a highly accurate wavefunction. We have checked this

problem for the various wavefunctions of our concern. The results are

shown in Table V. In every case studied, the fo value arising from the

first natural determinant has proved to be a sufficiently good

approximation to f. Thus, it seems generally valid that the spin density

                                   '                                                              '
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yg(O) is determined primarily by the functional form of the first NSO Åë1:

                                          '                '                                                                     '

        Y,(O)=4Åë1(O)61(O) i (44)
B. NO and electron correlation '

     The oozing of. the two core electrons out of a doubly occupied

orbital by their dynaniical correlation must be represente.d in terms of

the first-order density matrix, just as the spin polarization can be

expressed by a first-order spin density matrix. We have previously

                           25defined a density function

                                    ttt        D(r) =2y.(r, r) -- fy.(r,r)y.(r, r)dr (45)

which represents the spatial distribution of split-pair electrons and

unpaired spins, both being regarded as sort of odd electrons in the 1ump.

The trace of D(r), which is expressible in terms of the occupation '

number.s ni of the NOts in'the forrn

        TrD (r) =Eni (2 -ni) •• (46)
                 i
                       '                '
is essentially the total number of such odd electrons.
               '                                         tt     D(r) could also be divided into s and p components, narnely,

        D(r) =DS (r)+DP (r). (47)
TrDS(r) could then be considered to represent the number of core odd

electrons arising as a result of both spin and dynamical polarizations.

     Table VI shows the values of TrDS(r) for Li(22p) in various orbital

treatments. Because the generation of odd electrons in the ED scheme is
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due exclusively to the spin polarization, and because the spin po!arization

is allowed to an utmost extent in ED, the contribution from the spin
                                 'polarization to TrDS(r) will in no case exceed O.OOO060 (TrDS(r) of ED).

The values of TrDS (r) calculated decrease in the order

                                                     '        OG>EG )' OD >> ED • (48)                                               '
                                           '                                                 '
which is in agreement with the decreasing order of the correlation

energies involved in the ealculated total energies. The extent of the

electron corre!ation is considered to be reflected most vividly in the

distribution of the occupation nunbers of NOVs.

VI. CONCLUSIONS

     Of the orbital theories hitherto proposed, the SO--SCF --GSO wave-

function is the most extended one. Application of the theory to a

lithium atorn ha$ improved the OD and EG results by 5tv6 O-o in electron.

correlation, to approach the radica! linit most closely. This can also

be confirmed by the trace of DS(r). However, it is also true that the

electron correlation can only be taken into account to a maximal extent

at sacrifice of the functional structure of aÅë2e2. The effects of this
                                                      'distortion in dZÅë2e2 h'ave been examined in a cQinparative manner for

various orbital theories. The resu!ts shed light on the roles of. spin-

optimization in the orbital theories, especially in the GSO treatment.
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APPENDIX A: CUSP COND!SION FOR SPIN DENSITY

                                   27                                                   28     According to Cohen and Frishberg                                      and N ak atsuj i' ,                                                      the exact first-
                                                      'order density rnatrix5a,29 . .
                                                          '                    '        Pl(Xi,Xl) = Yct(r;,.rl)ct(Ui)ct(Ul) + yB(ri,rl)B(ui)B(cr1) (Al)

                   '
should satisfy the reduced Sohr6dinger equation

                              '        hlPl = EPI - 2f(h2 + V12)p2dx2 - 3fV23p3dx2dx3, (A2)

where p2 and p3 are the second- and thiTd-order density matrices,

                                      'respectively, Vij is the electron repulsion between electrons i and•j,

and hi is a one-body Hamiltonian

       hi -(- S- li2 +',;'i. )- llr (' lii;. +z) 1 (A3)

with Z as the nuclear charge. The right-hand side of Eq. (A2) is finite

everywhere. Therefore, removal of the singularity for s functions in

hlpl necessitates the following re lationship:

                              '             '                    '                                          '                                                     '                             '        a9i P(Xl' Xi)lri=o = -ZP (xl' xi)lri=o - (A4)

                                           tt                                                        ) and                                                B (u) B (oMultiplying both sides of Eq. (A4) by ct(cr)ct(o ) or

integrating the products over u' and 6, one obtains

                             '       a9i Yct(ri" ri)Iri=o " -Zya(ri, ri)lri.o ' '. , (A5)

                          '                                                                '
       aili YB(rl, ri)lri=o = "'ZyB(rl, ri) lri.o •' (A6)'

        '
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The cusp conditions,

respectively, can be

subtracting Eq. (A6)

Eqs. (7a)

obtained

from (A5)

 and (7b)

simply by

 after rl

, for the charge and spin

adding Eq. (A5) to (A6)

has been set equal to rl

 densities,

or by

.

APPENDIXB: THE OD AND GI E(l!UATIONS

     For the 22p state, the oD equations relates to the corresponding

Gl equations in a simple manner. wtien the Gl equation for the core

orbital aO and bO are given as13a

        HGIad.eo aO (Bla)         aa
                                                   '        HGblbO.eg bO, ' (Blb)
            . 30the OD equatzeRs                become

        (Hgl+Eilt-aKv)a st e.a (B2a)

 i (Hgl-iltt uKv)b st-ebb, , (B2b)
where

        K.iP(1) = fV(1).l2 v(2)ip (2)dr2• CB3)

According to the results of OD calculations, lul = O.O12 and both

< alKvia > and < blKvib > are of the order of lo'3 hartree. Hgnce, the

exchange terns in Eqs. (B2)'s can be neglected relative to both HG al and

 GlHi; , so that

         '                        '                                   '        ll a- aO ll re, ll b- bO ll st o. (B4)
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1

aN
l

TABLE I. Expectation values obtained by various orbital theories.

Method -E (hartree) AE(O-,) f k Y (o)
 c

z'
c

Z
s

Ref.

RHF

DODS

GSO

CI

Expt.

RHF

ooDS

GSO

CI

Expt.

ED

OD

EG

OG

ED

OD

EG

OG

7.432727

7.432813

7.447565

7. 44 75 96

7.448522

7.448S71

7.47807

7.365069

7.365091
7.365097

7.380119
7.380119a

7.380191
7.380224
7.3slos3b

7.381428

7.41016

 o
 O.5
93.6

 93.8

 99.7

100

  o

  O.1
  O.2

 92.0
 92.0

 92.4
 92.6

 97.7

100

      Li (22s)

2.094 O
3. o20 O
2.849 O
2.802 O
 2.750 O
 2. 801 O
 2.906 O
      Li (22p)

 O.O O.05848
-O.2895 O.05861
-O.2972 O.OS878
-O.2132 O.05876
-O.2141 O.05881
-O.2243 O.05926
-O.2152 O.05928
-- O. 19S3 O. 05 89S

-O.2306 O.06070
-h O.2128 O.06258

13.8160

13.8159

13.8646

13.8672

13.8669

3. 0

3.0

3.0

3.0

2.999

2.997

2.996

2.996

3.0

3.0

3.0

3.0

13.6505

13.6942

13.6952

13.6989

13.6576

2.770

2.916

2.745

3.I70

12

13b

4a 4b  '
5g

This work

5g
14C' lsd
   '

4a

4a
This work

10
This work

5g
This work

This work

5g
14C 16d
   '

a'
  C21Cl = O. O060. b  C2/Cl = O.Ol17. C For E• d

  For f and 2.



TABLE II

natura1

. Expansions

orbitals'.

of the DODS core orbitals over the ED

Natural
       aorbital

ED OD
a (r) b (r) a (r) b (r)

Åë1

Åë2

Åë3

Åë4

Åë5

Åë6

Åë7

 O.99999

-O.O0473

 O.OOOOI

 o.ooooo

.O. OOOO,1

 O.OO031

-O.OOOO-3•

 O.99999

 O.O0473

 o.ooooo

 o.ooooo

•- o. ooooo

-O.OO031

O.OOO07

 O.98199

 O.12175

 O.13228

 O.05371

 O.O1794

-O.O1283

 OLO0213

 O.98157

-O.12540

-O.13293
        '
-O.05167

-O.O1733

 O. O1264

-O.O0209

a  Åëk denotes the kth ED natural orbital having k -- 1 nodes.
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TABLE III.

aÅë2e2 of

Coefficients d

Li(22p).

   ofkl the                   in the'configurations F               kl normalized

DODS GSO
k ED OD EG OG

2

3

4

5

6

7

Total weight

          'E22(a.u.)

 O.9978

 O.OO06

 O.OO05

-- O. OO06

-O.0652

 O.O100

 O.9999      9
-5.136218

o

o

o

o

-o

o

o

-2

.6501

  -.6979

.2772

.0929

.0671

.Ol12

.9998

.4436S6

 O.6674

-O.0571

-- O.0313

-O.O066

-O.0507

 O.O063

 O.4523

-2.924433

 O.4785

 O.3931

 O.OOII

 O.0737

-O.070S

-O ., OO03

 O.3939

-- 1.3l5152
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TABLE IV.

F to f. kl

Contributions of the exeited configurations

DODS GSo
fk

ED OD EG OG

f2

f3

f4

f5

f6

f7

Rf,

fa

-o

-o

-o

-o

-o

o

-o

•-o

.3324

.OO05

.OOI3

.OOI9

.0487

.0726

.3122

.2972

-O.0531

-O.IOOO

-O.1224

 O.0524

.b O.O123

 O.O195

-O.2159

•- O.2141

-o.

 o.

 o.

-o.

--
o .

 o.

,•- o.

-o.

3180

0477

0808

0218

0540 -

0636

2017

2152

-o.

-o.

-o.

 o.

-o.

-- o.

•-
o.

•-o.

1091

1573

OO13

1159

0359

OO15

1892

19S3'

a Table I•
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TABLE V. The

obtained from

deterninant

Fermi contact term f
        tt
the first natural

State Method• f o

22s

22s

eG

ED

OD

EG

OG

 2.747

-O.2972

-O.2139

-O.2103

-O.1921

TABLE Vr. Trace of  s  (r) forD Li (2
2P).

Method TrDS (r)

RHF

ED

OD

EG

OG

o.

o.

o.

o.

O.

o

OOO060

Oll198

OllS90

O12017
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           CHAPTER LI

Distribution of Odd Electrons

  in Ground--State Molecules

     A density function D(r) = 2y(r,r) --Jy(r,rt)y(r',r)drt, where

y(r,rb is a spinless first-order density matrix, has been proposed as
                                                              '
fundarnental formula representing the spatial distribution of odd

electrons in molecules. The bonding properties of 1 electrons in some

representative triatomic species have been examined in the light of D(r).

The density function can also be used successfully to assess the di-

radical character of unstable singlet ground-state molecules.
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I. INTRODUCTION

     when electron correlation is utterly ignored, each orbital in the

       ttt
singlet ' ground state of atoms and molecules can be considered to be

doubly occupied by a pair of electrons having cc and B spins. The concept

of such a double occupancy of spatial orbitals has provided a useful

guiding principle to the understanding of electronic structures of stable

molecules, as is endorsed by the success of the restricted Hartree-Fock
   '             1(RHF) theory. However, the concept apparently breaks down, when the

                                               2electron correlation is duly taken into account. An RHF orbital is

then more or less split into two spatial orbitals, each of which now

accomodates either one of the paired electrons separately. An electron

pair will thus be split spatially to assume a partial odd-electron

character even in a singlet ground-state molecule. The nature of such

                                        'split electron pairs should have a particularly significant bearing on

the properties of the so-called singlet diradical species3 as wen

                                         '                                        '                                                      4as the transition state of certain concerted reactions.
                                                               '
     The electronic structure of molecular systems involving the electron

pair splitting can be represented satisfactorily well by some specific

                                                                     5wavefunctions such as the generalized valence bond (GVB) wavefunction.

Yet, it seems desirable to invent a general method of drawing

informations about the splitting of electron pairs from exact or any

trial wavefunctions. Particular efforts along this line are the main

purpose of the present work. It is also a formal complement to our

generai considerations6 of Lewis' eiectron pair concept.
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II. DEFINITION OF THE ODD ELECTRON DENSITY

     Consider a singlet ground state. The first-order reduced density

    .7matmx is written as
             '               '
     p(i) (x,x') = {lr y(r,'r') {ct (s)ct(s') + B(s)B(s')], (O

      'where r and s respective!y denote the space and spin coordinates and

where yCr,r') is the spinless first-order density matrix. The necessary
and sufficient condition7 for a wavefunction to be reduced to a

                                       '
single Slater determinant is

                '
     p(i) (x,x') - Sp(i) (x,x")p(i) (x",x)dx"

     = i} [2y (r,r ',) - Sy (r,r") 'y (r" ,r') dr"] {ct (s) ct (s ') + B(s) B(s ')]

               '

It follows that

     2y(r,r') -y2 (r,r ') =e (3)
       2where y (r,r') has been defined as

                               '                    '     y2 (r,r') =Sy (r,r")y (r" ,r') gr" .. (4)

     Equation (3) means that the natural orbitals7 should be doubly

                                                     'oc"cupied, as long as the wavefunction for which <s2> = o can be

represented by a single Slater determinant. On the contrary, when the
                                             '
exact wavefunction cannot be expressed by one determinant alone,
                         '2y(r,r') - y2(r,r') should be nonzero. In sucE latter cases, at least

          '
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one of the natural orbital pairs must be spl-it to a certain extent.

Thus, a spinless density function defined as

     D(r,r') = 2y (r,r') -y2 (r,r') ' (s)
     '                                                                  '                                                         '
is expected to provide a theoretical clue to the spatial splitting of

electron pairs in a given molecular systern. Each counterpart electron

of an electron pair which is thus split to occupy different portions of

space orthogonally will hereafter be referred to as an "odd electron."

The extent of generation of such odd electrons and their distribution

in molecules are the central problem of our present concern.

     Let us concern ourselves here priinarily with the diagonal element

of Eq. (5). We will express the diagonal element as

     D(r) =2y (r) -y2 (r). c6)
The density function D(r) can be expanded diagonaly in teTms of the

natural orbitals Åëk's and their occupation numbers nk's (O 5 nk E 2).

The result is written as
                                                            '
                                                tt tt
  . Dgr) =i nk (2 -- nk) Åëft (r) Åëk (r)• ' (7)

     Equation (7) indicates that the intensity factor of a natural

orbital Åëk contributing to the density function D(r) is nk(2 - nk)•

Obviously. the factor nk(2 - nk) takes a maximal value of 1 when nk = 1,

and diminishes monotonously down to O as nk approaches O or 2. This

could be taken as an implication that nk(2 - nk) is the probability that

the electron(s) in Åëk is left unpaired as if it were an odd electron in
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the singly occupied molecuiar orbital of a doublet radical. Our density

function D(r) could then be regarded as a formal expression giving the

spatial distribution of the total odd electrons in a given molecule.

     In open-shell ground states, unpaired spin densities do exist at

the outset. The first-order density matrix is

      (1)     p (x,x') = yct(r,r')ct(s)ct(s') + yB(r,r')B(s)B(s') , (8)

                                                        'the spinless first-order density matrix being written as

                                                                   '
    Y(r,r') = Yct (r,r') +YB(r,r') . (9)

In this case, the density function for odd electrons D(r) is formally

                             'expressed as

                    2     D(r) =2y (r) -"f (r) .
         = 2[{ya(r) - y.2(r)} + {yB(r) - yB2(r)}] + (y. -- yB)2(r) (io)

                                                    'where the term (yor - yB)2(r) is the diagonal element of the integrated

square [Eq. (4)] of the custornary spin density function yct(r) - YB(r)•

Clearly, yorgr) - yB(r) is due to the presence of unpaired spin(s) in the

ground configuration. !n case where the wavefunction happens to be , .

                                                             'given byasingle detenninant, we have .

     yct(r) -y.2(r) =o, \B(r) -yB2(r) =o, (n)

                                    '
which give an obvious result for the unpaired spin(s):

                                           '                           '                    2     D(r)=(Y.-YB) (r)• (12)
                                                          '
             '           '
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Thus, the unpaired spin(s) has already been incorporated in our D(r) as

a part of the odd electron density. It is the first tenn of the right-

hand side of Eq. (10) that represents the splitting of paired electrons

themselves. -                                                            '                                        '
     With the distribution function D(r) at hand, we can readily
      '                                     'calculate the populations of the odd electrons on given atomic sites in

a given molecule. Thus, D(r) is expanded oyer the atomic orbitals '

{Xt(r)}, •
                           '             '                                         '                                   '                                                       '                                          '                                                '     D(r) =2tidt.xt (r) x. (r)• • . a3)
                                                     ' '                       'After the manner of Mulliken [8], the atomic-orbital population of odd

                             'electrons can be defined by

     Dt =2 dtu`XtlXii'' ' ' (14)
          u-                                                                    '                                                         'The gross po' pulation on atom A is simply a sun

          A
                                                              '

          t'
Needless to say, the total sum of DAts over the atorns involved should be

                             '                 '     XDAfTrDgr) S,N, . ' (16)
                             'where N is the total nunber of electrons.
                           '
                                   tt
                '
IIr. APPLICAT!ONS TO SOME-SPECIFIC ORB!TAL THEORIES

Prior to the application of the theory to existing molecules, we
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will here derive the expressions of D(r)•pertinent to a few typical

orbital theories. It is hoped that such expressions will assist a ,

proper understanding of the features of numerical results for rnolecules

which will be presented in $ection 4.

ADbl dbtlCI ft                                                               '      .                              '
     For the sake of simplicity, we choose the configuration-interaction

                                                                   9(CI) wavefunction composed of doubly occupied (DO) spatial orbitals

     y. coÅëo.o2c.c unscc c;. Åëi.i, . . a6)
                 la
where Oo stands for the ground configuration and fpia.ia. is a Slater

deterrninant having two (ct- and B-spin) virtual orbitals Åëa in place of

two occupied ones Åëi. Forrn Eq. (7), D(r) becomes

                               unocc             occ unocc     D(r) = 4 i. [ 2. (C.a•)2 - { 2. (c.a-)2}2]Åë1.(r)Åëi(r)

            . 4un20CC[02C.C(c.a.)2 o {02C.C(c5, 2}2]Åë;(r)Åë.(r) . (17)

                 al 1
     In the simplest DOCI theory, we only consider the highest occupied

(HO) and the lowest vaeant (LV) MO's as the Åëi and Åëa, respectively.

Further, if we reoptimize ÅëHo and ÅëLv simultaneously with CHLV o, the

                                            10optimized double-configuration (ODC) version will be obtained. In

either case, Eq. (17) is simpl ified into ' .
                                                                   '     D(r) = 4(cHLVo)2[i - (cllg)2][Åëfio(r)ÅëHo(r) + Åëiv(r)ÅëLv(r)]e ' (i8)

The expression is useful for the consideration of the diradical character

                                  -- 81 -



of singlet rnolecules, as will be discussed later.

!t}.:--Sl,nglg!!-!!I!E-wglygg!!!g!llg!!SletUHFwavefunct

     By use of the corresponding orbitals,il the unrestricted Hartree-

Fock (uHF) wavefunction for a singlet state can be written as12

     Y'= lal'b"la2'if2•e••e•l, • (lg)

where the bar denotes B-spin orbitals. The corresponding orbit.a.ls •

satisfy the following relation:

                                                                 '                                                '                                                 '     <aklbi>=Sk6kie (2o)
Since the UHF wavefunction is a single Slater determinant, D(r) should

consist only of the spin density term. Thus, ,
                                                           '    '
     D(r) = (y. - yB)2(r) • .

          -.i{<(r)%(r'lglF.'.?\,(i,',.,.,,,.,t(r)]}• • (2')

                  '                               '
     Equation (21) suggests sepqrate contributions of.ak(r) and bk(r)

to the D(r) function.. The spatial splitting of the ct- and B-spin .

electrons is thus apparent in this case. '

                               '                            '
C. Generalized valence bond GVB) wavefunction

     The GvB wavefunction5

                 13diradical species. It is
                   '
     Y = i,tC ai (i) bi (2) (ctB -

                         '

                         '

has also been applied to the

generally written as

                        '
ilk)e) a2 (3) b2 (4) (ctB• -- Bot) • e "
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where .,4L is an aiiti$ymmetrizing operator. The orbitals ak and bk

constitute a pair, and every pair is orthogonal to others, i•e•, <aklal>

=<bklbi>=<aklbi> =O (k\i). •
                                                                 '     Use of Eq. (22) leads to . .                                              '                                                 '                                   '                  2.'              1-S     D(r) = llT(/i'-;-gi5ii + s )2 {ai(r) ak(r) + b<(r)bk(r)

                     * de               - Sklit (r) bk (r) + bk (r)%(r) ]} . c23)

Aside from the factor (1 - s()/(1 + sZ)2, Eq. (23) is identical in form

with Eq. (21). It is likely that the UHF and GVB theories provide

similar distribution patterns of split spins, insofor as the spatial

orbitals used in these theories do not differ appreciably.

               '

IV. NUMER!CAL EXAMPLES
                                     '

     In this section, we will apply the present theory to some existing

three-atom species and to the transition state of concerted reactions.

A. Triatomicsecies '
                                    t.
     A few triatomic three-electron T systems (together'with their two-

and four-electron family systems) were chosen as examples. They include

allyl raidcal C3Hs(C3Hs", C3Hs- ), formyl radical HC02(HC02", HC02"' ).

nitric oxide N02(N02", N02-) and ozone cation 03'(032". 03).. For all of

these species. various types of wavefunctions were calciilated by Linnett

et al.14 Among others, their RHF, full-CI and Heitler-London CHL)

wavefunctions will be adopted for our present purpose. The populations

                         '
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of odd T electrons calculated therefrom .are sumarized in Table 1.
                                                                      -
  ' The salient points noticed in Table 1 are the following:

1) The odd eiectron populations given by the HL method is always larger

 ' than those given by the CI treatment, as is expected. The populations

   obtained from the RHF wavefunction reflect the dnpaired spin term,

   Eq..C12), only. -                                                     '
2) In the CI case, the results for the two- and four-electron systems

   nearly coincide with each other. rn either system, the splitting of

   pairs is due almost exclusively to t'hat of the highest occupied rvIO.

3) rn both the CI and HL treatrnents, all the triatomic speeies examined

   have a fairly large odd electron density on thier centrai atoms.

4) Roughly speaking, the population of odd electrons increases with the

   decreasing ovelrlap <xalxb> between the neighboring atomic orbitals

5) For 03' the total population (2.437) ealculated by the C! method

   exceeds 2, indicative of a partial triradical character. .

     As has been shown in the above examples, D(r) could be used for

the cornparisons of the features of various raode! wavefunetions. For

preciser displays of these features, it will be more advantageous to use

contour density maps of D(r). , .
                                               'B. Concerted reactions

                    '
  , We here treat two types of cycloaddition reactions. One is a.

(2s + 2s) cyclodimerization of ethylene, which is a typical orbital-

syinmetry forbiddgn reaction. The other is a (2s + 2s + 2s) allowed
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reaction of three ethylenes to give cyclohe.xane. The wavefunctions of

these two concerted reactions were traced by porter and Raffi5 and by

                16Wilson and Wang, respectively. The latter workers noted that in

                    .tforbidden reactions the occupation numbers of the natural orbitals

norrnally show a crossing between the orbitals of high and low occupation

numbers but that no such crossing takes place in allowed reactions. The

crossing should naturally be accompanied by the generation of odd

                                                'electrons.
                                                                 '
     The populations of odd electrons on a carbon atom at the transition

states were calculated by use of the occupation numbers given by Wilson

         16             The results were O.55 and O.2 for the (2s + 2s) andand Wang.

(2s + 2s + 2s) reactiens, respectively. In the allowed reaction,
                                                           'apparently rnore electrons are kept paired during the course of bond
                                                              -                                                    'interchange. -

C. Diradical character

     In connection with the foregoing argument, it seeras particularly

interesting to consider the diradicai character of singlet species. The

diradical character is believed to show up also in the intermediary state
of the woodward-Hoffmann forbidden reactions.4

                  17                     defined the diradical character by     Hayes and Siu

                         '

     y= 2(cfi.L)2, • (24)
                                                                '                             '        '                      '
where (CHd

.-

L)2 is the weight of the doubly excited configuration due to

                                                                   .the electron transition from the highest occupied to the lowest '
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unoccupied molecular orbital. Although Eq. (24) can well be understood
  '                                                                'intuitively, it is yet unsatisfactory en the following three grounds:

                                                            '1) Virtual rnoleeular orbitals to be made use of in the Cl calculation

   can aiways be transformed unitariiy among them,i8 so that no '

                                      '   uniqueness can be attached to the v,alue's of (CS.-L)2. '

                                        '2) The existence of more than two odd electrons as in a triradical
      ,
                                                '   should not be precluded in ,general cases.

3) It provides no inforrnation at all about the distribution of odd

   electrons.

     All these ambiguities can be removed by use of our D(r). To

clarify the situation, let us consider the D(r) function in the DOCr

appr.oxiTltation, Eq. (18). Obviously, the trace of D(r)

     TrD(r) = s(cHLVo)2Ii - (clib2] (2s)
                                                                 '
satisfies

              '                                         '     OS TrD (r) S2.• ' (26)                                                                     '                                     '                  'as long as - -                                            '     os (ckg)2si/2. ' (27)
Hence, one half of TrD(r) must correspond to the diradical character

                            '     yD= (1/2) TrD (r) `' . . (2 s)
                              '                                                             '                                                                  '
The yD here deÅíined is always larger than ortequal to the Hayes--Siu

quantity, Eq. (24), so far as the condition (27) is satisfied. The

diradical characters of the various two-electron systems obtained by the
                                                              '                                                         2++full CI treatment were O.546, O.295, O.318 and O.235 for 03 , N02 ,

HCOi and C3Hs", respectively.

             '
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     The diradical character which can be defined likewise form Eq. (17)

should be more general than that based on Eq. (18). The VHF and GVB

expressions, Eqs. (21) apd (23), may also be used. rn either oÅí these

latter formalisms, it is apparent that the diradical character of.a '
 '
singlet state stems froin the splittings of the corresponding orbital pairs.

Clearly, the diTadical character should be the greater, the smaller the

orbital overlap Sk•

V. CONCLUDING REMARKS

     We have defined a density function D(r) which describes the

distribution of odd electrons in molecules. The definition is based on

the spinless first-order density matrix, so that it precludes all the

uncertainties originating from the arbitrariness in selecting the basis

sets, virtual orbitals and configurations. Use of the density function

sheds light on the nature of thermal reactions as well as isolated molecules.

It is emphasized that the traditional term 'tdiradical" is a physically

acceptable one. Further, in the sense that D(r) expresses the distribution

of electrons still capable of forming a new pairing, it could also been

                                                               19taken as a conceptual generalization of Coulsonts free valence.
                                                                     '
     Although we have defined DCr). for the ground state only, it may also

be applicable to excited states. However, in the virtual orbital approxi-
                                                                 '
mation, excited singlet and triplet states of homopolar molecules cannot
be distinguished; the former state should be zwitterionic3 (not

necessarily identical with zwitterion itself) while the latter,'diradical.
              d
In such a case, recourse to the second-order density matrix would'be
                   '
unavoidable.
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Table 2. Over1ap integrals between the atomic         aorbitals.
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              PART II

VARIATIONAL THEORETICAL APPROACHES

TO THE ELECTRON SCATTERING PROBLEiVIS



                             CHAPTER 1

                            '
                            Introduction

     It is well known that useful informations about the electronic

structures of atotns as well as molecules and about the vibrational

structures of molecules can be obtained by the experiments of electron

                              1impact on atoms and molecules. In order to interpret and moreover to
predict the results, help of the quantum scattering theory2 is

indispensable. Although the history of quantum scattering theory is

almost as old as that of quantum mechanics itself, the theories which

are really applicable to the electron irnpact on electron systems have not

                                  3                                     This is because accurate calculationsbeen developed until recent years.

of the electronic structure of bound states have become possible only

quite recently by means of recent high-speed digital computers. The

                  2-4                      seems to be a promising tool with which to dealvariational theory

with the scattering processes.

     The variational theory was initiated by Hulthe'n and developed by

                                          2,3Kohn, Rubinow, Schwinger, Kato, and others.                                               Although the theory has

many advantages over the other methods as an alternative theory, it is

inherently faced with some difficulties. In the Kohn method,5 divergent

solutions which have nothing to do with true resonances appear inevitably,
                                    '                               6as was pointed out by Schwartz. In Chapter 2, two kinds of divergence
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are mathematically distinguished. One of them shows up in the Kohn

method a' s stated above and can be always avoided. The other is

                                                         'unavoidable by any ineans and occurs in some algebraic approaches at

common momentum, as long as ttiey use a common basis set. This

distinction is accomplished by the basis transformation. In this

connection, the methods for single-channel sgattering proposed so far

are treated in a unified manner. Further, a new method, which is to be

termed the minimum basis-dependence method, is proposed.

     In multi-channel scattering theory, some algebraic (or expansion)

approaches,7 such as the minimum-norm method,7 were seriousiy disadvan-

tageous in that they are not necessarily accompanied by a corresponding
                     '
variational functional. This means that the reactance matrix which is

yielded by the algebraic method has no unique first-order correction.

In Chapter 3, the existence of a general functional for the algebra' ic

method is proved explicitly. Use of the functional proposed makes the
                                                                       '
reactance matrix accurate to first order. Moreover, the correspondence

of the algebraic method to the variational theory is clarified. The

minimum basis-dependence method is extended to multi-channel scattering.
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          CHAPTER 2

    Optimized Kohn

               for

the Single-Channel

Method

Scattering

     A new algebraic variational procedure has been proposed for the

calculation of the phase shift p of the radial wavefunction for a

particle undergoing single-channel scattering. The method is essentially

an optimization of Kohn's theory with respect to the phase parameter e
                                        '              'as involved in Kato's wavefunction. Specifically. the basis set has

bee' n transformed linearly so as to permit distinction between avoidable

(spurious) and unavoidable (innate) singularities. On this basis,

various standard variational theories have been reformulated in a unified

rnanner, and their mutual relationships have been clarified. A criterion

of the minimum basis dependence (MBD) is proposed in this connection. '

Saniple basis-set calculations of p have been carried out for the Hazi-

Taylor model potentials in order to demonstrate the relative merits of

                          'the MBD method.
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I. INTRODUCTION

            '
     The wavefunction th(r) of a spin-less particle scattering off a

spherically synmetric potential V(r) can generally be expressed as

                              '                                    '                                         '         iP (r) = 2Åí A2r-IY2 (r)pÅí (cos e) , (1)

                                                                  '
where A2 is a constant and P2(cos e) is the Legendre polynomial of order

                               '2. The radial function Y2(r) in its exact form satisfies

          A         HW2 (r) =O, (2)
                                           '      Awhere H is an operator defined in atomic units as

         fi =E-I- ll- gi2+2(St'2;2i) +v(r)] (3)

                '
E = k212 being the total energy of the system.

     In the algebraic variational theories,1 the trial radial wavefunction

lg2(r) is expanded in basis functions. After Hulth6n,2'3 Kohn,4 and

                     5.6                                                    rnethods ,                           developedLippmann and Schwinger                                         variational                                    such                       had                                                             Kato

extended them into a slightly more general form involving a phase

parameter e. His trial wavefunction is written as
    '
                                      N
         W2e(r) = SÅíe(r) " X6C2e(r) " ii!DeiXi(r) , ' (4)

                       '
                                                   'where SÅíe(r) and C2e(r) are asymptotically

   '
         S2e (r)r.oo'tv k'1/2sin (kr - 2T/2 + e) (5a)
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          c2e (r)r... Nk'i12cos (kr - Åírr/2 + e) , (sb)

         '                                    '
and where xi(r)'s are square-integrable basis functions. The

coefficients Xe and Dei's are to be determined by variation of the
          '                 'functional '                                '
                        '
                             A          {Xe] •"' Xe"2<Y2e-IHIY2e>, (6)
                              '
   'namely, by imposing the conditions
                                '                         '
               A           <XilHIY2e> =O i= 1,2,•••,N (7)
and

                A          <C2elHIYÅíe> =O• (8)
The Ae value thus obtained is a trial (zeroth-order) Ae. The value [Ae]

correct to the first order is calculated by Eq. (6). 11ie procedures for

obtaining such [Ae] values have been a problem of central importance

since it is related directly to the phase shift p and eventually to the

cross sections for scattering.

   .. schwartz7 pointed out through his accurate and extensive

                                               ttcalculations that Kohn's rnethod (e = O) gives rise to anomalous singular

solutions at certain k's, none of which has anything to do with a

resonance phenomenon. Nesbest8 showed that Rubinow's method9 (e = T12),

which is also called the second Hulth6n or inverse Kohn method,1 never

gives this type of singularity at the k's of the Kohn singularity, and

thus proposed alternate use of the two theories. The procedure was named

the anomaly-free (AF) method. The optimized anomaly-free (OAF) method
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proposed recently by Nesbet and oberoilO has been aimed at a removal of

the discontinuity of X against k. The rninimum-norm (MN) method of
               '                 11                    can be regared, like the OAF theory, as one of theHarris and Michels

methods which search an optimum e automatical!y.

     In this paper, we will investigate the dependence of X upon e in

                                                                'single-channel scattering. !t seems natural tp consider that the

anomaly arises from the choice of e rather than from k; the singularity

is in cases avoidable depending on the e value chosen. In order to
                              '
demonstrate the situation, we will perform a specific transformation

aTnong the basis functions {S, C, and xi's} and propose two promising

methods to evaluate an optimum [X]. In this light, we will reformulate

the various other theories in a unified manner, clarifying the essential

properties of the singularities inherent in these theories.

II. THEORETICAL FORIvlULATIONS

A. Basis transformation

     For our purpdse, it is more advantageous to base the theory on

Kohn's original trial function (e = O) of the form:

                       N.         Iy =s+ xc+EDixi ' (g)                      i=1

where S and C are

          s.... "L k"1/2sin(kr-2T12) (loa)
                                              '
         Cr.,.. 'v k'1/2cos (kr- Åíir12) ' (lob)

i'
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and where X

simp1icity,

coordinate

     Using

            Se = cos e sin e

           Ce -sin e con e

one can rewrite Eqs. (7) and (8) into

              A          <xilHlv,> =o i= 1,2,

and

          <c -- (Ds lfi ly> - o ,

where Lo = tan e. A is related to X                                 e

         X= (co " Ae)/(1 "' coAe)•

Equations (12) and (13) are simple

variables A and D.'s such that
                i

                               A         K x -. <c -- ck}slHls>

                             A            DI <xl lHls>
            t - --            --                             .            b, <x,lfi ls>

where

 is the tangent of the phase shift P. For

 both the specifications of the subscript 2

r will be dropped off throughout.

the relation

s

c

...,N

'

accordingly:

simu1taneous

the

 and

equatlons

sake

 the

of

radial

in the

(11)

(12)

(13)

   (14)

unknown

(15')
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                                                                      '     K = <c - .sl "Hlc> <('c - ,, sl "Hlxl> ••• <c - to sl "HlxN> •• (i6)

            < x ,l "Hi C > < x ,i "HI x , > ••• < x il"Hl x , >

                                - -,                 .
                                --                 .                '                 ---            < xNl "Hl c > < x,l "Hlxi> < Å~,l "Hlx, >

                               '                                                               '                          '                                                         'The solutions of Eqs. (12) and (l3) should depend on e if the basis set

{xi} is not complete. Hereafter, we will refer'to Eqs. (12) and (13) as
                               '                                        .                                -.the first and second Kohn conditions. res.pectively.
                                                                    '
     It may be extremely difficult to find an explicit dependence of X

on ee (and, hence, on e) through the direct solutions of Eq. (15). Since

we are now discussing on the singularity of the inverse of K IEq. (16)],

it may be more beneficial to investigate the property of det K. To

accomplish this, we introduce a new basis set {ci} by transforming {S,

                                                           'C, xi's} in such a manner that

                     sc          gi -- xi+PiS+PiC (i=1,2,...N) a7)
                                                                     '

on the conditions

           '
              A          <SIHIci> =O asa)
          <clfilci> -o" asb)
The coefficients PiS. and P:. may be given by

                                               '

            ;i -M6i MMi; ./" ' ag)

             11•                                             J .,1 ,•
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with
         '
                        sc                  ss                 MM          Mo= Mes Mcc (20)
           tt                      '                        'Where :,i;..c,,ll:lllllr-,•,iXl.'

          MSS = <sl"Hls>, MSC = <sl"Hlc> , ,
          MCS= <rclfils>, 'Mcc. <clfilc >. , (22)

                                      '                                '
                          be nonzoro by adding some square-integrableWe can always make det M
                        o
functions to S and!or C. Furthermore if Mo = det Mo happens to be zero,

all the X's given by the methods of Kohn, Rubinow, and Hulth6n are

provedld,8,11b to coincide with one another•

           .  . By use of {4i}, the wayefunction is now rewritteh as

                           N•          iY=TSS+ TCC+ i;IDi Ci • (23)

Comparison of Eq. (23) with Eq. (9) brings about the equalities:

          TS + i.DiP;. = 1 (24a)
                          '

          TC + i.DiP:. = A . (24b)

The algebraic equation [Eq. (15)] is reduced to

                     '
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           Ko Tc = - Ts <('c - .slfils>

                                   A               D, <xi lHls>
               -o               -e                                          '               -e               DN. • <x,lfiIS> ,

where
           Ko - <c - coslfilc>l o
                 -'-- A- - -- l- '- d ""' -
                   <xillilC> l' x

                    <x,1filc> 1

                                I
                       '
with

                      AA                 <x,lkllC,> "•• (x,l\IC,>

           x= • •                 <x,lfilci> ••• <xNlfilgN>

From Eq. (26) we have

                             A          det Ko = <C - {DSIHIc>det X.

Note that X is independent of co. The determinant of X might vanish

certain energies and the singularities thus arising are unavoidable

the other hand, the singularity which originates from a specified tu

be perfectly avoidable. We will consider these two types of

singularities separately below.

uaB Avoidablesingulrt

     In order to gliminate Di from Eqs. (24), we will introduce the

                         'Kohn condition. Thus                      '

(25)

(26)

(27)

 (28)

at

. On

should

first
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          i. '<xilfiIcj>Dj ti T TS<x"filS> - TC<x,lfilc> . (2g)

                                                                   '                                                              '
Therefore, when detX is not zero,

          D.. x-IMSTS .x--IMCTC (3o)
                  '                                           '                                     'where D, MS, and MC are the column vectors constructed of {Di}, {M;.},

and {MiC.i;'respectively. Insertion of Eq. (30) into Eq. (24) leads to

                                         '                                 .        '                                                      '          AssTs.AscTc ..1 (31a)                                            '
                                            tt           cs 's cc c
                        =A, (31b)          AT                +A T
              '                 '                               '
where

          ASS .1- pSx-IMS .
          AS9 t . psx-IMc

          ACs .''.- pcx-IMs (32)
          ACC . 1 . pCx-IMC
                            '
                  '
and where PS and PC' are the row vectors of {Pi.} and' {PiC.}, respectively.

Notice that none of ASS to ACC depends on to.

     On the other hand, from the second Kohn condition [Eq. (13)] and

the property of Ci•IEqs. (18)], one obtains

                             '
          <c-toslfiITSs+TCc>=o. (33)

Use of Eqs. (31) and (33) gives

               3 - orto                                                                    (34)          A=               Yto -6
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           S MSCto-MCC .                                                                 (3S)          T'--'-;y7ar"="-`i!r--b-'co

                                        '           C MCS .- MSSco

         T.= 'yral -6 (36)
where
                     '
         ct = ACCMSS                    . ACSMSC

          B. ACCMCS-ACSMCC -
                                                                 (37)
         Y . ASSMSC - ASCMSS

         6 . ASSMCC .. ASCMCS

                                              '
     Clearly, A depends on to in a hyperbolic manner. That is, for any

given k, there exists one, and only one, spurieus singularity on the al

  .axls at

Conversely, if one chooses to different from cod, such a kind of

singularity can be avoided. "ierefore, it never concerns a true

resonance but is merely a spurious resonance. The singularity pointed

out by schwartz7 is to take place when k passes through the point at

which 6 = O.

C. Variational first-order correction

it

w Åíe

  In general, the A obtained by Eq. (34) is not sufficiently accurate;

                                                6eontains the first--order error. According to Kato, Ae involved in

 should be corrected by Eq. (6) to give (A6]. The [Xe] inay be

         '
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converted to the corresponding

relationship analogous to Eq.

as {X]k, it becomes

                  . - [Xe]
          IX]k = 1 - fxe] ed

                  x + }, 2. + 2 <iy lfi

 first-order

(14). If we

Y>
Hly> •

     of ee,

,viewpoint.

correctlon

denote this

of X by the

 correction of X

                  1 + Xto -- 2 <Y

            '                '     Before we express {X]k in

meaning of Eq. (39)'from

is essentially

          5[- - x + 2 <l ili-lfilig> ,

where Y is the exact

                         N
          if .s+ XC + iZ-1ffiXi

The square-integrable functions

approximate wavefunction Y.

the first Kohn condition, Eq.

          (i - 2<CIfiIY>)X" =A

                '                            '

If the basis set {xi} used for Y

sum in the right-hand side of

second order as to 6Y = Y- Y .

correction formula

      terms

another

we

                       (39)

 discuss the mathematical

                6                  Eq. (6),Kato's identity,

                                               (40)

wavefunction

               oo '           '" m.R.iZimXm' (4i)

           xm aTe those not to be used in the
                                            '         '        Inserting Eq. (41) into Eq. (40) and using

         (12), one gets easily

                                '                             oo            "2<SifiIY> "2 2 -d'.<XmlfiIY> (42)

              , m=N+1

            is sufficient, we may neglect the last

         Eq. (36). Apparently, this last terrn is

            Thus we have obtained a first-order
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                           A                 •A +2 SH Y>          [X]O= i-2<clH-ly>• . (e3)
                         tt
     Now, it is easy to show that [X]k is identical with [X]o.                                                                Owing

to the second Kohn condition, Eq. (i3), [A]k becornes

               - a + xw) (x + 2<sl fiIy> )
          IX]k ' a + Xto) e - 2 <cl fllig>)

                                                                      '               . [X]e•                                                                    (44)

In such cases as the minimum-norm method where we need not calculate Ck)

directly, calculations of IX]e just suffice. .

     Finally, we will express I)L] in terms ,of cJ as

                 (B - 2Mo) - a(D
          [A] -                                                                    (45)                 (Y ' 2Mo)ee '6 ,

It should be noted that {X] itself also has a singularity at co = 6/(y +

2Mo). However, we can expect this divergence to be seldom met with

because this divergence condition, <CIAIy> = 1!2, is hard to be

fulfilled if the basis is sufficient. In order words, a basis set ought

to be altered if the resultant [A] diverges.

It2:--!2ns!!g2slg!22,g-fiimala!:2,!zUn dbi it

     For any choice of to, all of the A and Di's may undergo a divergence

as E passes through certain energies. True resonances must have bearing

with such singularities. As was stated previously, this is ascribed to

det X = O and is unavoidable. Although Eq. (15) has no solution in this

case, we can instead extract a correct Kohn solution from the equality
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det X = O itself.

     If det X = O, then X should posses an eigenvalue of zero and the

corresponding eigenvector ct or  which is expressed by a linear cornbination

                                                         'of {ci}. According to a theorem of linear algebra one can always have
                     '                                                           ' trCo satisfy

          <x8rlAHkt,r> lo (46)
                                                    '
          (x{rl"Hk8r> =o,. k= 1,2,...N-1 (47)

       tr              tr       o and xk are given by a unitary transformation of {xi}.where x
                     '
Equations (46) and (47). together with Eqs. (18) give

                   '
         <' slfiklir> - o                                                                (48a)

          <clfik8'> - o                                                                (48b)

          <xil"Hlctor> -o. (i - i,2,...N)                                                                (48c)

                trIt follows that 4o is nothing but the solution of the Kohn rnethod.

Further, it fulfills Hulth6n's condition

          <c`,r'lfilct,'> -O. . (49)
                              '                                                    '

That is, at an unavoidably singular point, the solutions of Kohn's and

Hulth6n's methods coincide with each other. In addition, the energy

where this singularity occurs does not depend on the methods adopted but

on the basis set chosen as long as the first Kohn condition is used. '
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IU. PROPOSAL OF METHODS

                                   'mpAMinmumbasisdd CMBD) dt

     If the basis set {xi} by itself approaches a complete one, both the

coefficients TS and TC should come to zero. This is evident from the

the following two points. First, if the wavefunction is exact, neither A

nor Di's involved in lt depends on tu, $o that both TS and TC should be

constants, regardless of cD. Second, TS and TC shouid identically

fulfill Eq. (33), which forces thern to depend on tu unless TS = TC = O.

On the contrary, we may expect either TS or TC , or occasionally both ef

them, to depend strongly on co and moreover to have large magnitudes, if

the basis set chosen is insufficient or if the tu in Eq. (13) is fixed at

a wrong point, such as al = 61y•

     The situations delineated above provide a good reason for demanding

the norm

          IMBD= (TS)2+ (TC)2 (so)
                                     '                   '
to take on a ininimal value possible. There exists a single point which
                                                          '
minimizes I on the tu-axis. It is           MBD

               - 6Y + 2yZ               -- yy ,•(51)          CA}MBD

                       -
                        '
where
             '    .t
          y=2 ty {(MSC)2. (MSS)2} -2(MSCMCC . MSSMCS) (s2a)

                        '                                                           'and
                        '
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          z. (Mcc)2. (Mcs)2.tet {(Msc)2. (Mss)2} .. ' '(s2b)

                                   '
Once we obtain toMBD, the calculations of Y and P] are made i'n a

straightforward way. It is clear that A obtained by this rnethod does

not experience the avoidable singularity; if TS and TC are bounded, so

will X be IEqs. (34) -(36)]. The present minimuTn basis-dependence (MBD)

                                                       ttmethod can readily be extended to rnulti-channel scatterings.

B. Minimum error (ME) condition

     From Eq. (42), the origin of the error of [A] is seen to be

                  A AA          2ZEi'.<x.IHIy> - c;iU - x) -- 2<slHly> - 2;iCl<clHly,>. (s3)

           m

We will seek for the (D which minimizes

          iME = (;i L )L)2+4<slfily>2+ 4x'2<clfiIyf>2 . ' (s4)

Imposing the condition dleldn = O, we have

          [(.6 .- yB) (ct + jYy) + 45C'2Mg 6] (DME -

          ' - = (or6-yB) (X6+B) -4Mgy. (55)

Equation (55) as it stands is useless because X is unknown. We are thus

obliged to place X by Eq. (45). The resulting equation is eubic in co.

Of the three al values obtained by solving it, the to which aetually gives

the smallest lME is physically acceptable. , • .
    '
                                       '                          '

- 109 -



 IV. COMMENTS ON OTHER 'IHEORIES
                                                                     '
     ln this section, we will comment on some typieal variationai methods

to calculate x, Cr6m the viewpoint of our own. An 'the methods treated

                  +
here are reduced te the problem to search the respective tue

                                 '                                     'A. The Kohn and Rubinow methods

                                 '                                                '     Neither the Kohn4' (co = o) ner 'Rubinow9 (ca} = oo) rnethod can escape

from a spuri6us singularity. Eguations (34) and (4s) shows that the

Kohn method gives . -                                '
                                   '

                 2Mo -B ' '          [X],= 6, (57)
while the Rubinow method results in

          A- -. lll- , (58)
and

          IX] =-y.ct2Mo (59)
             '                                          '

B. Hulthen's method and its extension

Hulth6n2'3 used

     <,vlfilgf> =

the condition

o (60)
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in place of thg second Kohn condition. By

have •                                  '
          <yflfilw> = Mo OC("2 -('ylEB."6il[}co "

We consider tWo cases below.

                          2(i) The case where (B + y) - 4ct6zO.

     Equation (60) is equivaient to <S -

          x--!
                to             '

and
            - B+yÅ} {(B . y)2 - 4.6}l12

use

6
  .

of Eqs. (34) -(36) we

          al                           2ct

The choice of the sign in Eq.

IMBD, Eq• (50)• Here, the

(ii) The case where (B + y)2 --

     Nesbet8 and shirnamural2

    '
necessarily hold in the ' ' '

 <xilHlxi> as long as the

                 'such cases, Hulthen's method

co minimizes I<YlfiIY>I• The tu

                   '
          a)=--.---.96.( B)
               y(y + B) - 2ct6 .

It is easy to prove that the

continuously when k is varied.

(D everywhere. Calculations of

      (63) is also

         5c            condition   Demkov

       4or6 < O

     have already shown

vicinity of thq eigenyalues

   first Kohn condition

     had better be

        value is then

two co's of Eqs.

   The extension

  {X] are required

  -- 111 -

(61)

Clco1fiIY> = o, so that

                          (62)

                          (63)
 .

 determined by the function

    cannot be applicable.

              '
      that Eq. (60) cannot

          of the matrix
                            '
  ' is imposed on iY . For

 extended to a form such that

                          (64)

   (63) and (64) are connected

    enables to define Hulth6n's

      only in Case (ii);



in Case (i), [A] = X.

C. The minimum-norm method
                                                      '                                  tt
     Harris and Michelsll proposed the minirnum-norm (MN) rnethod

originally for multi-channel scatterings. The wavefunction is

determined so as to .minimize
                                              '
          iM - ( <Slfi IY> <cl fi lw> ) <slfi iy>

                                       <clfily>

and to satisfy the fiyst Kohn condition.
                                           '
     For single-channel cases, it is convinient to write TS and

                                           '          Ts - -<celfllc>f

 '
               'and

          Tc - <celfils>f •

By use of these expressions, one obtains

                22• •          I =Mf                o'           M

and

                               -1          f = (y sine - 6 cos e) .

IM may attain its minimum when

                           sc ss                 ASSM. SC -A M

          co = -             . AS SMCC - AS CMCS '

                               '
                         '
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as

(66a)

(66b)

 (67)

 (6 8)

 (69)



Because both <'slfllw> and <clfllY> have a singular point at co = 61y

as well as TS and TC , the above condition will avoid the spurious

singularity. The first-order variational correction of X ought to be

                                                10 .calculated by Eq. (39),. as was argued by Nesbet.
                                                  '
                                                  '
pmtTh tmizedanomalyfreemethod

                      10                         imposed the condition Xe = O as well as the     Nesbet and Oberoi

first Kohn condition on the wavefunction

          IVe -- S(cos e - Aesin e) + C(sine+ Aecos e) + i. DeiXi. (70)

                                                             t10The second Kohn condition, Eq. (13), is equiva!ent to their mlo = O

for the single-channel case. The wavefunction Eq. (70) reduces to

                                                          '          ye =scose+csine+ 2Deixi • (7i)

when Ae = O. Hence,

          A:- tane=cD (72)
   '                        '                  '
or using Eq. (34)

           B -. orto                   .- .. (73)           Yto - 6

Equation (73) does not necessarily have real solutions. In this case,

the procedure would have to return Eq. (11). There, the orthogonal

matrix has to be replaced by a unitary one. Further, even if real

solutions are obtained, a criterion with which to select the correct

solution, such as I                        will be needed.                   MBD'

     '
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V. NUMERICALEXAMPLES ,

     We have perfonned sample calculations of the phase shift p = tan-IX

          '
by the various methods mentioned in the foregoing sections: the Kohn

(Eq. (S6)), Rubinow (Eq. (58)), Hulth6n (Eqs. (63) or (64)), the minimuTn-

norm (MN, Eq. (69)) and optimized anomaly-free (OAF, Ect. (73)) methods

in addition to ouf minimum-error (ME, Eq. (55)) and ininimum basis-

dependence (MBD, Eq. (51)) methods. Their variational Åëorrections [P]
         '= tan'1 [A.] are a!1 given through Eq. (43). In place of the effective

                                    2potential Veff(r) = V(r) + 2(2 + l)12r , the model potential function of

              13                 was used:Hazi and Taylor

                  12         V(X) =( i/ l2e-a.2 [Xx <> g] (74)

                                     '
The square-integrable basis functions xi's used were the Hermite

functions. The size N of the basis was varied between 5 and' 40. As the

asymptotic functions S and C, the following functions were adopted:

                -112                    sin kx (x > O)         S= (i`"1!2e-bx2si. kx (.< o) ' (7Sa)

and

         C"[kklll/lieCO-:xk2Xcoskx ((Xx<>Ool (75b)

                                              '
                  '
with the damping factor b being fixed at O.15.
                                                 '
     First, we haye examined the energy dependences of the various phase
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shifts for two different potentials for which a = O.15 and O.225. The

results are summarized in Table r and !I, respectively. The size N = 20

of {xi} yielded fairly good Ip] values in all methods. .Especially, all

the results fpr a = O.225 (Table II) for which the potential barrier is

lower than for the case of a = O.15 (Table I), are nearly in the exact

limit. The very small deviations•from the exact values may be due to '

the choice of a fixed damping factor b. The results are satisfactory

for the relatively small size of {xi} used; the stabilization method

                            . 13                                        obtainwould need more x functions m order to                                              th9                                                   comparable accuracy.

     In Table III, the basis size dependences of both p and [p] are

shown for a case of E = O.1986012 and a = O.15. The [p] values are

sufficiently close to the exact phase shift (O.25441) when N is larger

than 15. With N greater than 30, exact p values are obtainable by any

of the methods here examined. For the sake of comparison, the values of

IMBD and IME calculated at varying N are also listed. Both these I's

converges to zero in a n}onotonous manner. However, in case where E is

in the vicinity of the critical E at which det X = O, these monotonous

behaviors break dewn. Nonetheless, we may regard these I' s as useful

measures of the accuracy of the basis-set calculations.

     Generally, the OAF method seems to give slightly more accurate
  '

results than do the MN and MBD. The latter two methods yield nearly the

same [p] values.. The agreement seerns to be essential, as will be .

discussed in a forthcoming paper. Both of them are also reliable enough.

Furthermore, they can be treated within a framework of real number, in

contrast to the OAF method. '
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     Finally, the way how A is corrected to [)L] is illustrated in Fig. 1
                               'for the case of a = O.15, N = 15, and E = O.3067471 (a.u.). Both X and

P] vary hyperbolically with :

          A = -O.33122 - O.07503                                                                    (76)                           co - Oe37129

          p]--o.3sgs6-.2'O,O.Zg2,,, (77)

The constant term for IX] (-O.35956) is much nearer to the exact value

(-O.35015) than is that forX(-O.33122). The numerator for P] (O.O0732)

is about one-tenth that for X (O.07503). The latter result indicates

that the dependence of [X] on w is relatively small and hence on the

methods. Further, the range of tu for divergence is narrower.

VI. CONCLUDING REMA.RKS

     We have examined the dependences both A and IA] upon cD = tan e in

a systematic manner, to clarify mutual relationships arnong various

variational methods. This was accomplished by the help of the basis

transformation. !n this connection we have proposed two new methods.

Another merit of the transformation lies in its character that enable to
                                                                       '
avoid the trouble originated from the singularity of the matrix

<xilHixj> , which schwartz7 took for the origin of the singularity of

Eq. (IS) itself. rncidentally, the procedure of constrtlcting ki} and
    ' -1x    does not require much of calculation time as compared to other

                        8methods such as Nesbet's procedure.

     Among the methods examined here, the MBD, MN (OMN) and OAF methods
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appear

method

'rhe MBD

channe1

to be equally promising. However, one major-drawback

is that it involves a procedure of solving non-linear

 as well as MN method can readily be extended to cover
                                             '
 scatterings, as will be dealt with in the succeeding

of the OAF

equations.

 mu1ti --

paper.
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TABLE I. Phase

The entries are

shifts calculated by various methods for the case
io5 times the deviations from the exact p vaiuea

of N = 20 and a = O.15.

Method
E

pexaCt

= O,1986012 O.3067471
= O.25441 --O.33681

O.4660346
O.19811

O.4661227
O.7!752

O.4662291
1.26965

O.4663029
1.50066

1

-No
l

Kohn

Rubinow

Hulth6n

rvlr,I

OAF

rvlE

MBD

p

[p]

p

[p]

[p]

p

[p]

p

[p]

'p

[p]

p

[p]

2804

 -25

-- 663

 -93

 -81

 636

 -67

5178

  21

-267

 -85

IS8S

 -48

-3812

  -82

  398

  -30

  -35

   -3

  -3S
b

b

134

-33

-- 68

-35

l455

  --9

4081

 234

-220

14 70

  -7

i498

  -4

!255

 -31

1455

  -9

 1176

  -18

13437

  262

  -50

 1244

  -16

 2000

   4
 660
  -•31

 1173

  -18

  306

  -61

13672

  110

  -66

  362

  -60

 3544

  -18

  l26

  -•63

  284

  'p61

    49
    -l9

-303252
      I    87
   -20
     o
   -19

b

b

 l5

-l9

-39

-20

a  Hazi
b
  Real

and Taylor ref.

solution was not

13.

 found.



TABLE II. Phase

The entries are

 shifts calculated by various
io5 times the deviations from

methods for the case
                 athe exact p value

of N = 20 and a = O.225.

Method E
pexact

= O.1829543
= 1.16758

O.4356381
1.00578

o
1

.4400106

.61273'
O.4426438
2.17635,

O.5338320
3.25045

O.7886753
 .078803

l

-N-
1

Kohn

Rubinow

     'Hulthen

mu

OAF

ve

MBD

p

[p]

p

[p]

[p]

p

[p]

p

[p]

p

[pl

p

[p]

-25

 -4

 47

 -4

 -4

  9

 -4

107

 -5

-- 13

 -4

-13

 -4

 -45

  -7

-212

  -7

  -7

 -57

  -7

 -97

  -7

 -33

  -7

 -47

  -7

  -8

 -lt

-- 295

 -11

 bll

 -24

 -11

•- 346

 -- 11

  -9

 -11

 -11

 -11 c/',•

  24

  -8

-199

  -7

  -8

  12

  -8

 139

  -8

   3

  -8

  22

  -8

 54

 -2

-18

 -2

 -2

 45

 -2

 57

 -2

 --6

 -2

 47

 -2

.

-313

  -2

   2

  -2

  -2

 -11

  -2

-469

  -2

   o

  --2

•.12

  -2

a  Hazi and Taylor ref. 13.



TABLE III. The

The entries for

basis

p and

size

[p]

 dependences
     5.are 10       tlmes

of the phase shifts

 the deviations from

at E

 the

= O.1986012 a.u.

exact p value (O

and a

.25441)

= O.15.

Methods N= 5 10 15 20 30 40

l

V..L

NN
l

Kohn

Rubinow

Hulth6n

rvlrliI

OAF

}LCE

MBD

p

[p]

p

[p]

[p]

p

[p]

  b,cIM

p

[p]

p

[p]

p

[p]

IMBDd,C o

    34650

  -146240

     8835

     8330
        a  -165881

    54455

   -99578

O.9646(O)

    82123

   -28123

    86077

   -20084

    27793

  -l58456

.96O7(--1)

     22161

     -9982

     91492

     16617
         a    -45555

     23182

     -8957

O.1276 C-1)

     28957

     --4021

     -4731

    -87684

     20!67

    -12150

O.1049(--2)

      8021

      -•617

     -7465

     "2917

     -1990

      5464

      -923

O.7277(-3)

     11103

      -230

     -•2656

     --2095

      6364

      -807

O.572S(-4)

      2804

       -2S

      -663

       -93

       -81

      .636

       -67

O.3422(-4)

      5178

        21

       279

       473

      15 85

       -48

O.3826(-6)

      -l34

         o

        -8

         o

         o

       -15

         o

O.1041(--7)

       •-68

         o

        -5

        o
       -15

        o
O.3729(-8)

      -• 1

       o

      -1

       o

       o

      -1

       o

O.6015 (-11)

      -1

      o
       o

       o

      -1

       o

O.7905(-12)

a  The extended
c  The figures

 Hulthen

given in

method, Eq.

parentheses

(64).

indicate

b  Eq. (6 7) .

the multiplicative power of 10.
d
  Eq. (50).
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          CHAPTER

    Optimized Kohn

               for

the Multi •-Channel

3

Method

Scattering

     The minimum basis-dependence (MBD) method previously proposed for

the single-channel scattering is extended to the multi'-channel case.

This is accomplished by the basis transformation just as was done in the

single--channel scattering. The minimuin-norm (MN) method, reformulated

within our scheme, is also discussed in connection with the MBD method.
       '
Both of them are accompanied by a set of simultaneous equation which is

more general than that of the Kohn method. A general variational

functional is proposed explicitly for a wavefunction which is deternined

by any algebraic equation. This functional can be made use of as a

                     'correction formula for a reactance matrix which is obtained as the solution
                                                                     '
of the algebraic equation.
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I. INTRODUCTION

     In our previous paperl (referred to as paper ! hereafter), we proposed

two methods to calculate the wavefunction for single-channel scattering,

and discussed other theoret.ical methods, such as the optimized-anomaly

free method2, on the basis of our own viewpoint. In this paper, we will

treat multi-channel scattering.

     To begin with, we will transform a basis set, and then extend the

minimum basis-dependence (MBD) Tnethodl by matrix calculus. The minimum-

norm (MN) method3 is also reformulated along our own way. The ' mathematical

similarity between the two will be clarified. The resultant equation are,
                                           '
in both methods, a siinple linear-algebraic one. In a later section of

this paper, we will concentrate, in a general manner, on a variational

functional, fr6m which the linear-algebraie equation can be derived by

varlatlon.
                       '
     In the single-channel scattering the relationship between a given
   '
linear-algebraic equation and the corresponding variational method was

very simple. By use of the wavefunction of e-normalization, namely Ye,

               4defined by Kato

          IVe=S(e) +XeC(e) '\DeiXi (!)
                                1

one can construct a variational functional, [Xe],

                            A          [Xe]=Ae'2<IYel HI Y'o> (2)
which gives the simple algebraic equations when it is varied by Xe and
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Dei's:

              A         <xi lHIY>= O, (3a)
                  A          <C d- alSIHIY>= O• (3b)
                            '
The various synbols appearing in Eqs.(1)--(3) have the same meanings as in

Paper I. Furthermore, the X, the tangent of the phase shift, and its

variational correction [X] were shown to depend on co in a hyperbolic manner.

Conversely, it can be said that the algebraic equations, Eq.(3), are always

accompanied by the variationa! functional, Eq.(2), which can be made use

of as a first-order correction.

     On the other hand, in rnulti-channel scattering theory, the situation

is neither so simple nor analogous. Let us assume that the following

algebraic equations similar to Eqs.(3) are valid:
              A         <xilHl'Yct>= O, Cfirst Kohn condition)s (4a)

                L.         <Sv " 5CvWvulHIYct>"O Csecond Kohn condition), c4b)

where Cv and Sp are the asymptotic functions of the channel v with cosine-

and sine-like behavior, respectively, and Wvp is a given numerical value.

The wavefunction of the channel or, Yct, is defined by the reactance matrix R

          iYor=Sct'ZCvRvoe'\XiDiof (5)
                    V1

The wavefunctions of both the MBD and MN must fulfill Eqs.(4). Our

problem now is to consider whether or not there exists a variational

functional from which the general algebraic equations, Eqs.(4), can be

yielded by variation. If it exists. what will its explicit form look like?

     In Section II, we will extend the basis transformation of Paper I to
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the multi-channel case. The minimum basis-dependence method will then

be proposed for the multi-channel scattering in a slightly different

manner. 'Section III will provide a general variational functional as

stated above. Further, we will discuss the conditions upon which the

variational functional exists. . •
                                                      '                                                  '                                                                 '                  '                                                    '

                        '                 '
A. Basis transforniation

     Define a new basis function {ni} by .
              A          <S. IHIni> =O (6a)
                                      '              A         (c. IH Ini> =o ' (6b)
                                                       '                                   for i = 1,2,...,N
              '                                       v= 1.2,...,L •
                                                       tt
and

                                                                '          ni=xi+:SpPfii+:CpPfii• (7)
The matrices PS and PC whose (p,i) elements, denoted as Pfii and PvCj,

respectively, are determined by

            pS MSS MSC -I MSX .
                 =- (8)          'PC MCS MCC MCX ,
where the (v,y) element of MSC, for instance is
                                                                       '                    A          Mgfi =<s.IHIcy> ' (g)
                                                  '
and the (v,i) element of MSX is

                               - 127 --

lt



          rv(ill•l =<s. lfilxi> -<xilfils,j>• (io)

The certainty for the existence oE the inverse matrix involved in Eq.(8)

is sintlar to that for the single-channel case.

     The wavefunction of channel ct, Eq.(s), is written in terms of the

                                                                '
  1
                                                  '               LN          Yct = il(SpTfior + CpTlict) + l.niDior, (io

or in a matrix notation
                                      '

          Y= STS+CTC+nD, (12)
where

          Yr='(IYI Yf2 ... YtL), (13a)
                                         '          S= (SI S2 ••• SL), (13b)
          C= (CI C2 .•. CL), (13c)
          n= (nl n2 ••• riL)• (13d)
Comparing Eq.(11) with Eq.C5). one obtains

                                      '          TS+PSD.I, C14a)
          TC+PCD.R. C14b)
     wrien we introduce the first Kohn condition, we have
                       '
          xD .- MX STS- MX CT C, ' C15)
where

                    A•          Xij =<xilHlnj>, (i6)
and MXS and MXC are the transposed matrices of MSX and MCX, respectivrly.
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When the determinant of X happens to be zero, unavoidable singularity

will occv"rl. in this case, the eigenvector which beiongs to the eigen-

value zero of Å~ is the solution of the Kohn5 method. The other wavefunctions

should be expanded by the new basis set in which the above eigenvector is

projected out of {ni}. A pew X. constructed of this new basis set should

have its own inverse. !n what fonows, we presume the existence of x-i'

Therefore, Eq.(15) will bring out D. Introdueing the D thus obtained

                              'into Eqs.(14), we get . .
         '
          (I " pSx-iMXS) TS .c- pSx-iMX C) Te -- 1, a7a)

          (. pCx-IMXS)TS . (! .. pex-IMXC)TC . R, .(17b)'

          AS STS+AS CTC. I, . •' asa)
                                          '

          ACSTS+ACCTC.R, • • (18b)
where the matrices ASC etc. are defined in correspondence to Eqs.(17),

and are independent of w. Here, we set the assumption: Both of the

Ma.triCeS  (AAil :IZcCv) and ASC have their inverse matrices. The assumption

seems to be acceptable because both TS and TC must be definitely obtained

when R is given by Eqs.(18a) and (18b)` and because TC should be yielded

by Eg.(17a) if TS is arbitrarily assumed. Judging from Eq.(18), one needs

to introduce another condition in order for all the TS,TC, and R to be

                                                               tt
                    .                                                      '
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B. Matrix calculus

     Lest any confusion should arise in later sections, we here

a few rules of matrix notation and its calculus. The n]atrix of
    '
eomposed of Sp and Cv is defined by

          <"slfilc>= <silfilci> •••t•e•• <SilfiICL>

                           - -"                           e-                           --                          AA                      <sLIHIc,> •••••••• (SLIHICL>

where t on the left shQu!der of S denotes the transposition. Tkte

position of <tSlfiIC>is

                 '
          t<tslAic>- <s,lfiIc,>e•••••••<SLIfiICi>

                           e-                           --                           AA                       < slIH Ic L> •••••t•• < SL IHIC ,> •

                                            '
     By use of a fundamentai identity
         <SlalfiICv> = "<CvifiISIa> - S- 6yv,

one gets

         <ts1fiic>= "<tclfils> - •}- !,

where the symbols * and t denote the complex and hermitian conjugate,

respectively. For two given (L,L)-dimensional matrices U and W, the

following equality holds:

         <tutslH"lcw> = t<twtctH"isu> •- -lltuw.

1ay
A
H=

down

E -• H

(19)

trans --

(20)

(21)

(23)
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III. MINIMUM BASIS-•DEPENDENCE METHOD

A. Minimum basis-de endence (MBD) rocedure

     The minimun basis-dependence (MBD) procedure in a single-channel

scattering is also applicable to multi-channel scattering with a slight

modification. In an exact wavefunction, it is true that
                                                                    '

         TS=TC=O, • (24)
                                    ,where O is zero-matrix. For an approximate wavefunction, therefore, we

may demmand the following functional TMBD to be minimum

    . IMBD=Tr(tTSTS+tTCTC), (2s)
where Tr denotes the trace of the rnatrix. The first-order variation of

IMBD With respect to TS and TC becomes ,

         6IMBD = Tr(6tTSTS + 6tTCTC + tTS6TS + +TC6TC). (26)

In Eq.(26) both TS and TC should be varied subject to the condition Eq.(18a),

narnely,

         ASS6TS .- ASC6TC. C27)
Defining t7Y = - (ASC)'IASS and a!so introducing it into Eq.(25), we have

                                                         '         61MBD = Tr[(tTS + tTCSr)()6TS+ 6tTS(TS . 1itTC)]. (2s)

                                    'The minimum condition 6IMBD=Onecessitates •
                                                  '

         TS+ ?STC.O, (29)
because 6TS is here completely arbitrary. Combining Eqs.(29) with (18a),

                      --- •we finally reach the obJective equation,

                                      '                          '
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           ASs AsC Ts =I c3oa)
            ! ?g TC O
or

         TC . "ASC(ASS+ASS . ASCtASC) -1. C30b)
         'TS is given by Eq.(29). The matrix (ASS+ASS + ASCtASC) is positive definite

as long as the determinant of ASC is not zero.
                     '

B. Minimum-norm rnethod (MN)

     We would like to formulate the MN in order to clarify the relationship

                                                    3between the MBD and MN. In the MN, Harris and Michels had the following
     '
functional minimized.

                                        '                     AA                                       AA         J - Trd<tclHlwXtclHiy>+t<"slHly><tslHly>)

           . ,.[,(Ts Tc)'< :.Sl :2[X :21 :l[)(I[)]

If we denote

          '(:s.l :s.[x:il :zc. =-(:gi [:[, (,,,

the variation of Q becomes

          6Q . 6't'TS(FSSTS . FSCTC) . 6't'TC(FCSTS . FCC-fC)

             . ('f'TSFSS . 'tTCFCS)6TS . (1'TSFSC . 'f'TCFCC)6TC. , (33)

                                                             '                                                    'As has been done in the MBD, Eq.(27) is introduced here:
                                          '                          '          6Q = 6'f'TS[(FSS + 7(FCS)TS . (FSC . 7(FCC)TC]

             + [+Ts+(Fss . )(FCS) . 't'TC`i'(FSC . 7<FCCj]6'l'TC, (34)
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so that

           (FSS . )(FCS)TS . (FSC .

The final equation to be solved is

            ASS ' ASC
         '
            FSS + ?(FCS FSC + 7(FCC

     AIthough•the original formula

Michels looks quite different from

is found through our formalisms.

more combersome to handle than is

Eq.(36) has an advantage over the

needed, even when the energy comes

values of the matrix <xilHixj>•

C. The second Kohn condition

     We have not used the second

the MBD and MN wavefunctions do

function Eq.(12) is inserted into

          (MSS . twMCS)TS . (MSC .

Both TS and TC have already been

?!CFCC)Tc o.

TS = I

TC O
 the MN

  MBD

us

 MBD

 ' MN:
    to

                                    of derived

                                    our expresslon,

                                   The formula,

                                   the expression,

                                   original

                                    61ose the

                                  Kohn condition

                                 have to satisfy

                                   Eq.(4b),

                                     twMCC)TC .

                                  obtained, so that

obtained from Eq.(37).

     If the W given above were accidentally a diagonal

variational funÅëtional might be simply reduced
          [Re] '-" Re " 2<tY'elfilYe>,

where
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                        (3S)

                        (36)

      by Harris and

   ' a kind of similarity

   Eq.(36), is somewhat

  ' Eq.(36). Yet,-

 No other formulation is

 vicinity of the eigen-

                  '

          However, both so far.

 Eq.(4b). If the wave

    W can be directly

        matrix, the

to

                        (38)



                                             e          yct = sct(ect) + gcv(ev)(Re)v. + i. xiDi., (3g)
and

          W= -cotel o (40)
                         - cote                               2
                                 -t
                       o '.
                                       - cote
                                             L
This is a simpie anaiog6 of Kato's expression4 for the singie-channei

scattering. However, the w to be obtained from Eq.(37) is not necessarily

diagonal. Therefore, a variational functional cannot easily be found.

In the next section, we will show an explicit variational functional for

a wavefunction satisfying both Eqs.C4a) and (4b).

IV. VARIATIONAL FUNCTIONAL

A. General wavefunction

     The wavefunction of our research is redefined as

          W= S(as+P,G) +CCa.+b.G) + xD, i (4i)
where as, bs, ac, and bc are certain given and fixed matrices, named

parameter matrices while both G and D are deterrnined variationally.

x is a row vector composed of {xi}. Then, the R matrix becomes

                                   -1          R= (ac +bcG) (as + bsG) , .                                                                        (42)

and the variationally corrected reactance matrix [R] is

                                         --1           [R] = (a. + b.[G ]) (a, + b,[G ]) , (4 3)
                                                                        '
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where [G] is a corrected G. Our aim in what follows is to search a

variational functional giving [G]. In addition, we will find the
         '
matrices which would facilitate the calcu!ation of [G].

the wavefunction of Eq.(41) coincides with Nesbetts one2 if

          B= ab                 s' s
                ab
                 cc
is chosen as a unitary matrix.

!B}.:--!S!}!ig:-fi-!!zRgm.liYag!A,g!}glKtot ft 1

     The most familiar type of variational functional is the one of

Kato's type4:

                         A          [G] - G + 2 <YIHIW>.

In this case, the variation of [G] becomes

         6[G] - 2<6tDtxlfiil,y> + 2<t,ylfllx6D>

                + 2 <6 tG(tb.ts + tb.tc) lfi l ly>

                + 2'i'<6tG(tb,ts + tb.tC) lfiligL> = O,

and hence
                    '          <txlH"ly> - o -
and
                          '
         (tb.ts + tb.tClfily> = O.

The last two equations are nothing but Kohn's conditions.
                               '                                                            '     We are now going to research the conditions imposed on the
                                                             '
matrices from which Eq.(45) can be resulted. With the help of the

Eq.(23), one has

         parameter

Incidentally,

(44)

(45)

 (46)

(47a)

(4 7b)

parameter
           '   equality,
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          2<thilfily> = dacas - tasac)

                      + t'd(tbcas - tb,a.)- 'r("bca, - fb.a.)G

                      "tZ:(tb.b,-tb,b.)G, ' (48)

      -where Y is the vector composed of the exact wavefunctions '
                                                                 '          if=S(a,+b.G) +C(a,+b.if) +Å~fi. (4g)
                         '
In order that we could obtain Eg.(45) from Eq.(48), the following three

conditions are necessary:

                 tt          (i) acas= asac, (soa)
          (ii) +b,a,-tb,a.=I, (sob)
                 'f'G'('l'b.b, -- 'f'b,b.)G=O• (50c)          "ii)

Then, we have
                       A         tG . G + 2<tiii'IHIY>

                       AA            =G+ 2<tYIHIW >- 2<6"VIHI6Y>, (51)
where 6Y = Y -- Y. The first-order error term as to 6Y involved in Eq.(51)

has been replaced by [G] to give Eq.(45).

     The first two conditions, Eqs,(50a) and (50b), are never essential

to define a variational functional; in comparison with Eq. (45), only

constant factors are mixed in Eq.(48). By contrast, the third condition

is of crucial importance. There are two possibilities to fulfill (iii),

i.e., (1) G = O and (2) tbcbs = tbsbc. The foTmer identity was adopted

by Nesbet and oberoi2 in their optimized anomaly-free (OAF) method.

However, in compensation for fixing G = O, another nonlinear search

procedure for the unitary matrix, Eq.(44), which should satisfy
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                         A          <tb.tS + tb.tCIHISa. + Ca. + xD>=O C47c)
                                             '
becomes necessary. Further, the second condition (ii), Eq.(50b), does not

necessarily hold. - i
     In the iatter case (2), G can be varied freely, but a severe restraint

is imposed on the matrix w of the second Kohn condition. w can be expressed

                                                                'in terrns of both bs and bc as

                  hl          W= bcbs' (52)As a direct consequence of tbcbs = tbsbc, we have tw = w, that is, w must

be a hermitian matrix. In usual case, it is sufficient for us to choose

the parameter matrices to be real, so that w should be a real symetric

matrix. This case corresponds to the optimized minimum-norm COMN) method

proposed by Nesbet and Oberoi2. Strictly speaking, however, their procedure

is theoretically unsatisfactory, because the w of rwtg which is defined by

Eq.(37) cannot be symmetric in general. As a result, Eq.(45) should be

applied to neither the MBD nor the MN.

C. General variational functional

     When the general wavefunction, Eq.(41), is expanded over the basis

set {n?, Eq.(18) should be modified into a form

          ( ,A S.g ,A2: )( Ii) - ( gs. i ::: ) (s3)

or
                             •- 1
         cs.)-(::S. ::.C) (:g1:2g
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               =(l[g.ll[iG,. (s4)

Because none of Ann (m,n = s,c) and the parameter matrices depend on D,

bOth TS an
(d66{t)C-.a-n(bKK:c66.ia>ke.n as the functions of G aione. Therefore,(ss)

     Now let us define a variational functional V,

                   A          v x <"ylHIY>

             . <tG(tets + tftc)IfiIsTS + cTC>

             + 'f<tG(tets + tftc)lfilsTS + cTC>

             +G/2. (56)
The variation of V is

          6v - <6tD"xIfi1iy>+ +<6`Dtxlfliiy>

              + <6tG{(tb. + te)ts + (tb. + tf)tc}IH"Iig>

              + t<6tG{(tb, + te)ts + (tb. + tf)'tc}lflliy>

                                   A              . <tG(tets + tftC)IHI(SK, + CK.)6G >

                                   A              . 'i'<tG(tets + tftc)IHI(SK. + CK.)6G>

                                                                         .
                                'In Eq.(57), the relations

          (iii') tb.b,=tb.b. (SOd)
have been used in addition to Eqs.C50a) and (50b). Further, the following

eonditions
                                                      '                                '                                                                 '           (iv) b.+e=I (S8a)
                                          '                                                              '
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          (V) bc 'f=W (5 8b)
                             A          (vi) <tets + tftCIHISK, + CK.>=O                                                                     C58c)

may bring about
          6V = <6tDtxlfily> + <6tGCtS + twtC)lfiliv>

               +(hermitian conjugate). (59)
It is easy to show that Eq.(59) leads to the Kohn conditions. We would

like to stress that w in Eq.(59) is not required to be a symnetric matrix.

     If an approximate wavefunction is such that the 6V calculated
   '
therefrom is zero, then the V may yield [G]/2 which is correct to first

order. Note that the exact V, namely V, for which the exact wavefunction

is used, is

          -A          V - Gl12 + <tii71Hlili'>

                                 A- -              + <tG(tets + tftc) IHIsTg + CTC>

              +'f'<tG(tets + tftc) lfilsiS + cliC>

                                              'In Eq.(60) iS = iC = O has been used. !n case like this, V is the first-

order crrection of G12, i.e., [G]!2.

pmtDt t fthaametermatrices

     In the preceding subsection, we have

imposed on the parameter matrices as well

obtained. These six conditions, Eqs.(50)

to define the matrices uniquely. In other

arbitrariness that we can make use of to

 shown the conditions to be

 as e and f, from which V can be

 and (58), are not sufficient

 words, there remains some

simplify the calculation.
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     One of the general approaches to this problem may be as follows:

Given two hermitian matrices Y and Z which satisfy

          ac=Yas (from condition (i)) C61)
and

          bs=Zbc, (from condition (iii')) (62)
the ac and bs can rewrite condition (ii) as

          -l-           b.(I-ZY)a.=I. C63)
On the other hand, using e=I- Zbc and f= w- be, one can easily show

condition (vi) to be converted to
         'Yb.<dezts + tclfilsK. + cK.> = <tS + twtClfiISK, + CK,>. (64)

A good choice of Z will give
          'f'b. = <ts + twtcti3IsK, + cK.><"zts '+ tctfltsK, + cK.>'ii. (6s)

     Although both Ks and Kc depend on bs and bc, we can eliminate bs

and bc from the right-hand side of Eq.(65) in the following manner.

From the definitions of Ks and Kc, Eq.(54), and of Z,Eq.(62), we have

          sK, -t- CK.=(S C>A(i)b., c66)

where

          fi '= (AAS.'S, ft[: )-i. c67)

Using Eq.C66), we finally obtain

          tb.-- <ts + twtc fiIcs c)AC)>

                    x<"z"s+tclfil(s c)A(f)>'-i. (6s)
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Here, Z must be chosen so as not to make the determinant of

            A'<tS + twtCIHI(S C)A (i)> vanish. If this is not fulfilled, the procedure

                                        'from Eq.(66) to (6s) is inconsistent with the assumption that bc'1 exists.

We have thus obtained both the parameter matrices, e and f.

     The simplest choice of Y and Z is to set Y = YI and Z = ZI, where

both Y and Z are constant. Further, if we set Y = Z = O the time required

for computation will be reduced appreciably. However, it should be noted

that
 det<ts + twtclfil(s c)A (9)> or det<tClfil(S C)A (9)>, both inciuded

in Eq.(68)will vanish at certain energies. Therefore, it is desirous to

let Z vary continuously with E.

V. CONCLUDING REMARKS

     We have shown that the MBD rnethod is also applicable to multi-channel

scattering. The "{N method was reformulated by our basis-transformation

scheme. In both cases, the second Kohn condition need not be used when

R is calculable, a result which is in clear contrast to the single-
                                                               '               'channel case.

     A general theory of variational functional has also been presented.

Any wavefunction which is defined to satisfy Kohn's conditions has been

shown explicitly to connect with the variational theory. These wave-

functions including the MBD and MN functions should be corrected by the

variational functional V when W is not symmetric. This explicit formulation
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of V is theoretica!ly irnportant, even though calculation of it may be a

somewhat cumbersome procedure. rn actual calculations, a correction

formuiai for the reactance matrix

          [tR] - (R + 2<tslfiliv>) (1 - 2<tclfiliy>) -i (6g)

will also be useful. Derivation of Eq.(69) is almost entirely analogous
                                                              '
to that for single--channel case. The error estimeted from Eq.(69) is

second order.
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