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1. Introduction

In this paper we are concerned with the Dirichlet problem (hereafter called (DP))
for the semilinear degenerate elliptic equation:

F [ ]( ) := − (| |) + (| | ) = 0 in(1.1)

= β on ∂(1.2)

where ={ ∈ R ; | | < }, ≥ 2 : [0 ] → + = [0 ∞) is a given continu-
ous function, is the Laplacian, andβ is a given real number.

In 1981 symmetry properties of positive solutions of nonlinear elliptic equations
were investigated by Gidas, Ni and Nirenberg [10, 11]. Since then there have been
lots of works published in this direction (See, e.g. [1], [2], [9] and [14, 15]). There
are also many works on the boundary value problem for elliptic equations whose co-
efficients are singular at the origin or on the boundary. See, e.g. Ebihara and Furusho
[7] and Senba, Ebihara and Furusho [17], H. Egnell [8], Conti,Crotti and Pardo [3]. It
is natural to ask whether solutions are radially symmetric for degenerate elliptic equa-
tions such as our (1.1). That is, we want to study the case when the degeneracy of
equations arises in the interior of domains. In this case it is well known that in gen-
eral we can not expect to have2-solutions.

In recent years, a considerable number of works have been done on the theory
and applications of viscosity solutions. We refer the reader to the Monograph by Cran-
dall, Ishii and Lions [4] for definitions, details and references. As regards earlier re-
lated works, in 1992, Crandall and Huan [5] studied the existence, uniqueness and
non-uniqueness of viscosity solutions of the two-point boundary value problem for the
linear ordinary differential equation:

{
− ( )

′′

+ ( ) = ( ) in (−1 1)

(−1) = γ− (1) = γ+

under the assumption that ∈ [−1 1], ≥ 0 and ≥ 0. Soon after, Tomita
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[19] generalized their work to the linear partial differential equation:

{
−|| | − 1|λ + ( ) = ( ) in = { ∈ R ; | | < }

( ) = β on | | =

where ≥ 2, > 1, 0 < λ < 2 andβ is a given number. It should be noted that
Ishii and Ramaswamy [12] recently studied uniqueness and comparison results for a
class of Hamilton-Jacobi equations with singular coefficients. See also Siconolfi [18].

The main purpose of this paper is to prove existence, uniqueness and nonunique-
ness of viscosity solutions of (DP), and to study the symmetry property for viscosity
solutions.

Our plan in this paper is as follows. In Section 2, we give a definition of standard
viscosity solutions, and state our main results. Section 3 is devoted to the existence
and uniqueness of radial standard viscosity solutions of (DP). In Section 4, we study
the uniqueness and nonuniqueness of viscosity solutions for (DP), and prove that all
viscosity solutions of (DP) must be standard, and hence radially symmetric under some
assumption (cf. (H3) in Section 2). We also prove that if we do not assume (H3) then
(DP) has infinitely many radial viscosity solutions.

2. Preliminaries and main results

Throughout this paper we make the following assumptions:
(H1) ( ) ∈ ([0 ] × R) is strictly increasing in for each fixed∈ [0 ].
(H2) There exists an implicit functionϕ( ) of ( ) = 0.
It is clear thatϕ( ) is continuous on [0 ] by (H1) and (H2). To state a notion of
weak solutions, we introduce the next notation:

Z( ) = { ∈ (0 ]; ( ) = 0}

DEFINITION 2.1. = ( )∈ ( ) is called a standard viscosity solution of (DP)
if (i) satisfies (1.1) in in the viscosity sense, (ii) ( ) =ϕ(| |) for all | | ∈ Z( ),
and (iii) ( ) = ϕ( ) on ∂ .

REMARK 2.2. From the proofs given below it follows that if ( )> 0 then the
boundary condition (iii) may be replaced by

( ) = β on ∂(iii) ′

whereβ is an arbitrary real number.

EXAMPLE 2.3. For in the equation (1.1), we take the following examples into
consideration.
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1) ( ) =
∏

1
=1 | − |λ , where 0≤ 1 < 2 < · · · < 1 ≤ , 1 ≤ ∞, and

λ > 0, = 1 2 . . . 1. In this case,Z( ) = { 1 2 . . . 1}; in other words, (1.1)
degenerates on spheres| | = , = 1 2 . . . 1

2) Z( ) = { 1 2 . . . 1} ∪ (∪ 2
=1 ), i.e., ( ) = 0 for = 1 2 . . . 1 and ∀ ∈

= [ ] = 1 2 . . . 2.

First we shall prove the existence of viscosity solutions of (DP). More precisely,
we establish

Theorem 1. Assume(H1) and (H2). Then there exists a unique standard viscos-
ity solution ∗ of (DP). Furthermore, ∗ is radial.

In order to state the uniqueness of viscosity solutions for (DP), we introduce some
notation and an assumption on . We denote the set of intervals = [ ] such that

( ) = 0 for all ∈ by I( );

I( ) = { ⊂ [0 ] | ( ) = 0 for ∀ ∈ }

Of course,I( ) may be empty. For every ∈ Z( ) \ I( ) and δ > 0, we put

+
δ ( ) := ( + δ) ∩ Z( ) and −

δ ( ) := ( − δ ) ∩ Z( )

(H3) For every ∈ Z( ) \ I( ), we have either

lim
δ↓0

∫

−
δ

( )
( )−1 = +∞ or lim

δ↓0

∫

+
δ

( )
( )−1 = +∞

We shall next prove the uniqueness of viscosity solutions for (DP):

Theorem 2. Suppose that(H1)-(H3) hold. Then there exists a unique viscosity
solution of (DP). Moreover, is radial and standard.

Finally we mention that uniqueness of viscosity solutions of (DP) does not hold
without the assumption (H3). To see this, for simplicity, we assume
(H4) ( ) = 0, 0< < , ( ) > 0 for ∀ ∈ [0 ] \ { }, and

∫ −0

( )−1 <∞ and
∫

+0
( )−1 <∞

Example: ( ) =| − |λ with 0< < and 0< λ < 1.
We shall at first prove the existence of a radial viscosity solution(̄ ) = (̄| |) ∈

1( )∩ 2(( \{ = 0})∪ ( )) of (DP). Denote the radial and standard viscosity
solution of (DP) by ∗( ). Then we have
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Theorem 3. Suppose(H1), (H2) and (H4). Let ∗ be the standard viscosity so-
lution and ¯ be the 1-viscosity solution of(DP). Then we have
(i) If (̄ ) = ∗( ) = ϕ( ) on | | = then every viscosity solution is standard, hence
viscosity solutions are unique.
(ii) If (̄ ) > ∗( ) = ϕ( ) on | | = , then ¯ is the maximum viscosity solution
of (DP), and ∗ is the minimum viscosity solution of(DP). Furthermore, the problem
(DP) has infinitely many radial viscosity solutions between∗ and .̄
(iii) If (̄ ) < ∗( ) = ϕ( ) on | | = , then ¯ (resp. ∗) is the minimum(resp. max-
imum) viscosity solution of(DP). Furthermore, the problem(DP) has infinitely many
radial viscosity solutions between̄ and ∗.

3. The proof of Theorem 1

In this section we shall prove Theorem 1. In order to prove the existence of a
radial and standard viscosity solution of (DP), we introduce two Dirichlet problems.
Supposing (| |) > 0 in ( ) = { ∈ R ; < | | < } and (| |) = 0 on
∂ ( ) with 0< < < , we consider the Dirichlet problem:

{
F [ ]( ) = 0 in ( )

( ) = ϕ( ) on | | = and ( ) =ϕ( ) on | | =
(P )

and under the conditions (| |) > 0 in 0 \ {0} and (| |) = 0 on ∂ 0 we consider
the Dirichlet problem:

{
F [ ]( ) = 0 in 0

( ) = ϕ( 0) on ∂ 0

(P0)

In what follows we consider (P0) and (P ) in the case = 2, since we can treat
them in case ≥ 3 by the same arguments. Clearly, ( ) = (| |) is a classical radial
solution of (P ) if and only if ∈ [ ] ∩ 2( ) is a solution of the two-point
boundary value problem:





L[ ]( ) := −
(

¨ ( ) +
1

˙( )

)
+ ( )−1 ( ( )) = 0 in ( )

( ) = ϕ( ) and ( ) =ϕ( )
(BVP )

Similarly, in the case where we consider a radial2( 0 \ {0})-solution ( ) = (| |)
of (P0), we are reduced to the boundary value problem:

L[ ]( ) = 0 in (0 0) ; ( 0) = ϕ( 0)(BVP0)

3.1. To establish existence results for (BVP ) and (BVP0), we shall apply the fol-
lowing proposition.
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Proposition 3.1. Let (H1) and (H2) hold. Suppose ( ) > 0 in ( ) and
( ) = ( ) = 0. Then there exists a unique solution∈ [ ] ∩ 2( ) of

(BVP ).

Proof. To prove this, we need the next lemma

Lemma 3.2. Let (H1) and (H2) hold. Let τ1 τ2 be any numbers satisfying <

τ1 < τ2 < , and letα1 α2 be any real numbers. Then there exists a unique classical
solution ∈ [τ1 τ2] ∩ 2(τ1 τ2) of L[ ] = 0 in (τ1 τ2) satisfying (τ1) = α1 and

(τ2) = α2.

Postponing the proof of Lemma 3.2 to Appendix, we proceed with the arguments
to prove Proposition 3.1.

STEP 1. We first prove that for each fixedτ0 ∈ ( ) and anyα ∈ R, the
boundary value problem:

L[ ]( ) = 0 in (τ0 ) ; (τ0) = α and ( ) =ϕ( )(BVP)+

has a unique solution. To this end, let{τ } ↑ . By Lemma 3.2, we get a solution
of L[ ] = 0 in (τ0 τ ) satisfying (τ0) = α and (τ ) = ϕ( ). From the proof of

Lemma 3.2 it follows that for each fixed there exist constants and such that
| ( )| ≤ , | ˙ ( )| ≤ for all ∈ [τ0 τ ], ≥ (cf. (A.5) in Appendix). Thus,
applying the Ascoli-Arzera theorem, we find a subsequence{ ( )} and a continuous
function +

α( ) such that ( ) converges to+
α( ) locally uniformly in [τ0 ). Remark-

ing that αβ( ) is a 2-solution ofL[ ] = 0 satisfying (τ0) = α and ˙(τ0) = β if and
only if αβ satisfies

αβ( ) = α + τ0β(log − logτ0) +
∫

τ0

(log − log ) ( )−1 ( αβ( ))(3.1)

˙αβ( ) =
1
(
τ0β +

∫

τ0

( )−1 ( αβ( ))

)
(3.2)

we see +
α( ) satisfiesL[ +

α] = 0 in [τ0 ). By (H1) and the maximum principle, we
see easily +

α( ) converges as ↑ provided we allow the limit to be±∞. We now
suppose lim→

+
α( ) = +∞. Then there is a ∗ τ0 < ∗ < , such that +

α( ∗) >
. Thus, for sufficiently large (∗) > and ∗ < τ < . Since (τ ) =

ϕ( ) has a local maximum (ˆ ) with ˆ < τ satisfying (̂ ) > . This
is a contradiction by the maximum principle. Similarly, the case lim→

+
α( ) = −∞

cannot occur. Thus +
α( ) converges to +

α( ) as → .
We next show +

α( ) = ϕ( ). In case: lim→

∫
τ0

(log − log ) ( )−1 <

+∞, we easily see +
α( ) = ϕ( ) by (3.1) and (3.2). We consider the case:
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lim →

∫
τ0

(log − log ) ( )−1 = +∞. Suppose +
α( ) > ϕ( ). Then, by (3.1),

lim →
+
α( ) = ∞; this is a contradiction. Similarly, +

α( ) < ϕ( ) cannot occur.
Therefore, we conclude that+α ∈ [τ0 ] ∩ 2(τ0 ) is a solution of (BVP)+.

We obtain the uniqueness of solutions of (BVP)+ by (H1) and the maximum principle.

STEP 2. For each fixedτ0 ∈ ( ) and everyα ∈ R, we denote the solution
of (BVP)+ obtained in Step 1 by +

α( ) in [τ0 ]. Put (α) := ˙+
α(τ0). In this step, we

prove that
(i) If α1 < α2 then +

α1
( ) ≤ +

α2
( ) for all ∈ [τ0 ] and (α1) > (α2).

(ii) (α) is continuous.
(iii) lim α→∞ (α) = −∞ and limα→−∞ (α) = +∞.

Proof of (i). It is easy to see, by (H1) and the maximum principle, that+
α1

( ) ≤
+
α2

( ) for all ∈ [τ0 ]. To prove (α1) > (α2) by contradiction, we suppose
(α1) ≤ (α2). Then, by (3.2), ˙α2( ) − ˙α1( ) > 0 for all ∈ [τ0 0]. Hence

α2( 0) − α1( 0) > 0; this contradicts α2( 0) − α1( 0) = ϕ( 0) − ϕ( 0) = 0.

Proof of (ii). Let {α } ↓ α as → ∞. By (i) above, (α ) ↑ ∗(≤ (α)) and
+
α ( ) → +( ) for all ∈ [τ0 ] as → ∞. Letting → ∞ in (3.1) replaced

by +
α , we see that + also satisfies (3.1) with = + α = α, and β = ∗. From

+
α ( ) = ϕ( )( = 1 2 . . .) it follows +

α ( ) → +( ) = ϕ( ) as → ∞. Thus +

is a 2-solution of (BVP)+, hence, by the uniqueness,+α( ) = +( ) and ∗ = (α).
This implies (α ) ↑ (α). Similarly, if {α } ↑ α as → ∞ then (α ) ↓ (α).
Consequently (α) is continuous.

Proof of (iii). Let {α } ↑ +∞ as → ∞. To prove (α ) ↓ −∞ by contradic-
tion, we suppose{ (α )} is bounded from below, i.e., (α ) ≥ − 0 = 1 2 . . .. Put
¯ = max ≤ ≤ |ϕ( )|. Since +

α (τ0) = α → ∞ as → ∞ and +
α ( ) = ϕ( ), there

exists a{˜ } ⊆ (τ0 ) such that +
α (˜ ) = ¯ and +

α ( ) > ¯ for all ∈ [τ0 ˜ ). By
(3.2), for τ0 ≤ < ˜ ˙ +

α ( ) > (τ0/ ) (α ) ≥ − 0. On the other hand, by the mean
value theorem, there is aξ ∈ (τ0 ˜ ) such that +

α (˜ ) − +
α (τ0) = ˙+

α (ξ )(˜ − τ0).
Hence we have

− 0 ≤ ˙+
α (ξ ) ≤

¯ − α

− τ0
−→ −∞ ( → ∞)

This is a contradiction; (iii) is proved.

STEP 3. We are going to complete the proof of Proposition 3.1. By similar ar-
guments in Steps 1 and 2, there is a unique solution−

α ∈ [ τ0] ∩ 2( τ0) of

L[ ]( ) = 0 in ( τ0) ; ( ) = ϕ( ) and (τ0) = α(BVP)−
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where τ0 is the same number as in Step 2. Denote˙−α (τ0) = (α). By the same way
as in Step 2, we see that
(i)′ If α1 < α2 then −

α1
( ) ≤ −

α2
( ) for all ∈ [ τ0] and (α1) < (α2).

(ii) ′ (α) is continuous.
(iii) ′ limα→∞ (α) = +∞ and limα→−∞ (α) = −∞.

By (i)-(iii) in Step 2 and (i)′-(iii) ′ above, there is a uniqueα∗ such that (α∗) =
(α∗). Putting

∗( ) =

{
−
α∗( ) ≤ ≤ τ0

+
α∗( ) τ0 ≤ ≤

we see that ∗ is a unique 2-solution of (BVP ), because the uniqueness follows
from (H1) and the maximum principle. The proof of Proposition 3.1 is complete.

REMARK 3.3. For our later argument, it is important to note the following: For
every τ ∈ ( ) and everyα ∈ R, let α be the unique solution ofL[ ]( ) = 0 in
(τ ) satisfying α(τ ) = α and α( ) = ϕ( ). Then
1) In the case lim↑

∫
τ (log − log ) ( )−1 = +∞. For everyτ1 ∈ (τ ) and

γ1 > α(τ1) (resp. γ1 < α(τ1)) there is a blowup (resp. blowdown) solution1 ∈
2(τ0 1) of L[ ]( ) = 0 in (τ 1) τ1 < 1 ≤ , such that 1(τ ) = α 1(τ1) = γ1,

and lim↑ 1 1( ) = +∞ (resp. lim↑ 1 1( ) = −∞).

2) In the case lim↑

∫
τ
(log − log ) ( )−1 < ∞ and

∫
τ

( )−1 = +∞. For
every γ1 > ϕ( ) (resp. γ1 < ϕ( )) there is a solution 1 ∈ [τ ] ∩ 2(τ ) of
L[ ] = 0 in (τ ) such that 1(τ ) = α 1( ) = γ1, and lim↑ ˙1( ) = +∞ (resp.
lim ↑ ˙1( ) = −∞).

Of course, we can show an analogous remark in the direction of the left.

3.2. We next consider the boundary value problem (BVP0) associated to (P0).

Proposition 3.4. Let (H1) and (H2) hold. Suppose ( ) > 0 in (0 0) and
( 0) = 0. Then there exists a unique solution∈ [0 0] ∩ 2(0 0) of (BVP0).

Proof. Let{τ } ↓ 0 as → ∞. Proceeding as in Step 1 in the proof of Proposi-
tion 3.1, we obtain solutions ∈ [τ 0] ∩ 2(τ 0) of

L[ ]( ) = 0 in (τ 0) ; (τ ) = α0 and ( 0) = ϕ( 0)

whereα0 > 0 is a large constant so thatα0 > max0≤ ≤ 0 |ϕ( )| + 1. Since

min
0≤ ≤ 0

ϕ( ) ≤ +1( ) ≤ ( ) for ∀ ∈ [τ 0]

{ ( )} converges to a continuous function∗0 locally uniformly in (0 0). By (3.2),
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{ ˙ ( )} also converges tȯ ∗
0 ( ) locally uniformly in (0 0). Now fix 0 < τ0 < 0.

Letting → ∞ in (3.1) with = α = (τ0) and β = ˙ (τ0), we obtain

∗
0 ( ) = ∗

0 (τ0) + τ0 ˙∗0 (τ0) log

(

τ0

)

+
∫

τ0

(log − log ) ( )−1 ( ∗
0 ( ))

(3.3)

for all ∈ (0 0), hence ∗
0 satisfiesL[ ∗

0 ]( ) = 0 in (0 0). By the same reason as
before, ∗

0 ( ) converges as ↓ 0. Denoting the limit by ∗
0 (0), we see ∗

0 ∈ [0 0] ∩
2(0 0) is a solution of (BVP0).

It remains to prove the uniqueness for (BVP0). To this end we divide our consid-
erations into three cases.

CASE 1.
∫

+0 log · ( )−1 > −∞. Clearly, in this case,
∫

+0 ( )−1 < +∞.
Writing (3.3) in the form

∗
0 ( ) = ∗

0 (τ0) − τ0 ˙∗0 (τ0) logτ0 +
∫ τ0

0
log · ( )−1 ( ∗

0 ( ))

+ ∗ log +
∫

0
(log − log ) ( )−1 ( ∗

0 ( ))

where ∗ = τ0 ˙∗0 (τ0) −
∫ τ0

0 ( )−1 ( ∗
0 ( )) , and noting ∗

0 ( ) converges to ∗
0 (0)

as ↓ 0, we get ∗ = 0. Thus

˙∗0 ( ) =
1
∫

0
( )−1 ( ∗

0 ( ))(3.4)

We now suppose that (BVP0) has two solutions 1( ) 2( ), and 1(0) > 2(0). Then
by (H1) and (3.4) for sufficiently small > 0, we have˙1( ) − ˙2( ) > 0, and hence
( ) := ( 1 − 2)( ) is increasing at = 0. Since (0) = ϕ( 0) − ϕ( 0) = 0, takes its

positive maximum over [0 0] at ˆ ∈ (0 0); this contradicts the maximum principle.

CASE 2.
∫

+0 log · ( )−1 = −∞ and
∫

+0 ( )−1 <∞. In this case we will
prove lim↓0

∗
0 ( ) = ∗

0 (0) = ϕ(0) by contradiction. First we suppose∗0 (0) > ϕ(0).
Without loss of generality we may takeτ0 > 0 as small as we like. Then we may
assume ( ∗

0 ( )) ≥ δ0 > 0 on [0 τ0] with some δ0 > 0. Let us write (3.3) in the
form: for all 0< < τ0

∗
0 ( ) = ∗

0 (τ0) − τ0 ˙∗0 (τ0) logτ0 +
∫ τ0

log · ( )−1 ( ( ))

+ ∗ log + log
∫

0
( )−1 ( ∗

0 ( ))

(3.5)
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where ∗ is the same constant as that in Case 1. We wish to show∗ = 0. Suppose
∗ > 0. Then, for all 0< < τ0,

˙∗0 ( ) =
1
(

∗ +
∫

0
( )−1 ( ∗

0 ( ))

)
>

∗

because ( ∗
0 ( )) > 0 for all 0 < < τ0. From this it follows ∗

0 ( ) ≤ ∗
0 (τ0) +

∗ log( /τ0). Then lim↓0
∗
0 ( ) = −∞; this is a contradiction. Similarly, ∗ < 0 cannot

occur, whence ∗ = 0. Thus, remarking the right-hand side of (3.5)−→ −∞ as ↓
0, we get a contradiction. Therefore,∗0 (0) ≤ ϕ(0). Similarly, we see ∗

0 (0) ≥ ϕ(0),
hence we conclude that∗0 (0) = ϕ(0). It is now easy to see, by (H1) and the maximum
principle, that the uniqueness for (BVP0) holds.

CASE 3.
∫

+0 ( )−1 = +∞. In this case, we also prove∗0 (0) = ϕ(0). Suppose
∗
0 (0)> ϕ(0). As in Case 2, we may assume (∗0 ( )) ≥ δ0 > 0 on [0 τ0]. Since

˙∗0 ( ) ≤ 1
(
τ0 ˙∗0 (τ0) − δ0

∫ τ0

( )−1

)
< −1

for all 0 < < ∗ with sufficiently small ∗ ∗
0 ( ) > − log + log ∗ + ∗

0 ( ∗). This
implies lim ↓0

∗
0 ( ) = +∞; this is a contradiction. Thus∗

0 (0) ≤ ϕ(0). Similarly, we
see ∗

0 (0) ≥ ϕ(0), hence ∗
0 (0) = ϕ(0). As usual, the uniqueness for (BVP0) is now

clear. The proof of Proposition 3.4 is complete.

REMARK 3.5. By the proof of the existence and uniqueness of solutions for
(BVP0), we can show the following which will be used in our later argument: Let
∗
0 be the unique solution of (BVP0). Then, for everyτ1 ∈ (0 0) and γ1 > ∗

0 (τ1)
(resp.γ1 <

∗
0 (τ1)), there is a blowup (resp. blowdown)2-solution 1 of L[ ] = 0 in

( 1 0) 0 ≤ 1 < 0, such that 1(τ1) = γ1 1( 0) = ϕ( 0), and lim↓ 1 1( ) = +∞
(resp. lim↓ 1 1( ) = −∞).

3.3. In this subsection we shall complete the proof of Theorem 1. We put

∗( ) :=





∗
0 (| |) ( ∈ 0)

∗(| |) ( ∈ ( ))

ϕ(| |) (| | ∈ Z( ))

where ∗ (resp. ∗
0 ) is the solution of (BVP ) (resp. (BVP0)) obtained in Proposition

3.1 (resp. Proposition 3.4). Then, it is clear that∗ is radial and standard, and satisfies
F [ ∗]( ) = 0 for all ∈ \{0} in the viscosity sense. Therefore, it suffices to verify
that ∗ satisfiesF [ ∗](0) = 0 in the viscosity sense. It is obvious that if 0∈ Z( ) is
a cluster point ofZ( ) then ∗(0) = ϕ(0); henceF [ ∗](0) = 0 in the viscosity sense.
Thus, it suffices to check that∗0( ) = ∗

0 (| |) is a viscosity solution of (P0).
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Since, in the Cases 2 and 3 in the proof of Proposition 3.4, (0) = 0 and∗
0(0) =

ϕ(0), it is clear that ∗
0 satisfiesF [ ∗

0](0) = 0 in the viscosity sense. It remains to
consider the Case 1 in the proof of Proposition 3.4.

CASE 1-1. (0)> 0. In this case, by (3.4), we have lim↓0 ˙∗0 ( ) = 0. Moreover,
noting lim ↓0 ˙∗0 ( )/ = (0 ∗

0 (0))/(2 (0)), we find

lim
↓0

¨∗0 ( ) =
1

2 (0)
(0 ∗

0 (0)) := ¨∗0 (0)

For every ( ) ∈ 2 + ∗
0(0), we have = ∗

0(0) = 0 and ∗
0( ) ≤ ∗

0(0) +
(1/2)〈 〉 + (| |2). On the other hand, ∗

0( ) = ∗
0(0) + (1/2)¨∗0 (0)| |2 + (| |2).

Hence − ¨∗0 (0) ≥ . Thus Tr( )≥ 2¨∗0 (0) (Note = 2). Since− (0) Tr( ) +
(0 ∗

0(0)) ≤ −2 (0)¨∗0 (0) + (0 ∗
0 (0)) = 0, ∗

0 satisfiesF [ ∗
0](0) ≤ 0 in the viscosity

sense. Similarly, we see that− (0) Tr( ) + (0 ∗
0(0)) ≥ 0 for all ( ) ∈ 2 − ∗

0(0);
this means ∗

0 satisfiesF [ ∗
0](0) ≥ 0 in the viscosity sense. Consequently,∗0 is a vis-

cosity solution of (P0).

CASE 1-2. (0) = 0 and
∫

+0 log · ( )−1 > −∞. Without loss of general-
ity, we may assume lim↓0

∗
0 ( ) = ∗

0 (0) > ϕ(0). Taking 0 > 0 sufficiently small,
we have ( ∗

0 ( )) ≥ δ0 > 0 for all ∈ [0 0] with some δ0 > 0. In this case,
we first note that ∗

0 satisfiesF [ ∗
0](0) ≥ 0 in the viscosity sense, and lim↓0 ˙∗0 ( ) =

lim ↓0 ( )−1 ( ∗
0 ( )) ≥ 0 by our assumption: ∗0 (0) > ϕ(0). It is easy to see that if

lim ↓0 ˙∗0 ( ) > 0 then 2 + ∗
0(0) = φ, hence ∗

0 satisfiesF [ ∗
0](0) ≤ 0 in the viscosity

sense. Therefore,∗0 satisfiesF [ ∗
0](0) = 0 in the viscosity sense. We next consider the

case when lim↓0 ˙∗0 ( ) = 0. In this case, from

∗
0 ( ) ≥ ∗

0 (0) +
∫

0
(log − log ) ( )−1 ( ∗

0 ( ))

it follows immediately

lim
↓0

∗
0 ( ) − ∗

0 (0)
2

≥ lim
↓0

δ0
2

∫

0
(log − log ) ( )−1

=
δ0

4
lim
↓0

( )−1 = +∞

This implies 2 + ∗
0(0) = φ, hence ∗

0 satisfiesF [ ∗
0](0) ≤ 0 in the viscosity sense.

Consequently, ∗
0 is a viscosity solution of (P0).

It remains to prove the uniqueness of standard viscosity solutions of (DP). To
prove this, we use the following assertion which will be applied frequently in our later
discussions.
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Lemma 3.6. Assume that is a domain, ∈ ( ) is nonnegative, and that
( ) ∈ ( × R) is increasing in for each fixed ∈ . Suppose that ∈ ( ) ∩
2( ) is a classical supersolution(resp. subsolution), and that ∈ ( ) is a viscosity

subsolution(resp. supersolution) of

{
− ( ) + ( ) = 0 in

( ) ≥ ( ) ( ( ) ≤ ( )) on ∂

Then ( ) ≥ ( ) (resp. ( ) ≤ ( )) on .

The proof of this lemma is standard and easy, and so we omit giving it here.
Suppose that is an arbitrary standard viscosity solution. It is easy to see by

Lemma 3.6 that if ( )> 0 in ( ) and ( ) = ( ) = 0, then ( ) = ∗( ) for
all ∈ ( ). In the case where| 0| is a cluster point ofZ( ), noting that the so-
lution ∗ ∈ ( ( )) ∩ 2( ( )) of (P ) satisfies| ∗( )| ≤ max ≤ ≤ |ϕ( )| for
∀ ∈ ( ), we have ∗( 0) = lim →| 0| ϕ( ) = ϕ(| 0|) = ( 0).

Finally we claim ∗
0( ) = ( ) for all ∈ 0 under the condition ( )> 0 in

(0 0) and ( 0) = 0. By virtue of Lemma 3.6 it suffices to verify∗0(0) = (0). Sup-
pose ∗

0(0) < (0). Then, putting ¯( ) = max| |= ( ), we have ∗
0( 0) < ¯( 0) for

0 > 0 small. By Remark 3.5, there is a2-solution ˆ of L[ ˆ ] = 0 in ( ˆ 0) such
that ˆ ( 0) = ϕ( 0) ˆ ( 0) = γ0 with ∗

0( 0) < γ0 < ¯( 0), and lim↓ ˆ ˆ ( ) = +∞ where

ˆ is the blowup time of ˆ . Putting ˆ( ) = ˆ (| |), we have ˆ(ˆ) = ¯(ˆ) for some

ˆ < ˆ < 0. Hence ˆ( ) ≥ ( ) on ∂ (ˆ 0). By Lemma 3.6, ˆ ( ) ≥ ( ) for all
∈ (ˆ 0) which is impossible becausê( ) = ˆ( 0) = γ0 < ¯( 0) on | | = 0. Thus

∗
0(0) ≥ (0). Likewise, ∗

0(0) ≤ (0). Hence, applying Lemma 3.6 again, we conclude
= ∗

0. The proof of Theorem 1 is complete.

4. The proofs of Theorems 2 and 3

In this section we are concerned with the uniqueness and nonuniqueness of vis-
cosity solutions for (DP).

4.1. In this subsection we prove Theorem 2, that is, the uniqueness of viscosity
solutions of (DP) under the assumption (H3). Let ( )∈ ( ) be an arbitrary vis-
cosity solution of (DP). Define for ∈

( ) = sup{ ( ); ∈ ( )} and ( ) = inf{ ( ); ∈ ( )}

where ( ) denotes the set of orthogonal× matrices. Since ( ) is compact
and closed (in the matrix norm), we see( ) = max{ ( ); ∈ ( )} and ( ) =
min{ ( ); ∈ ( )}. Denote

+( ) = { ∈ ( ); ( ) = ( )}
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−( ) = { ∈ ( ); ( ) = ( )}

In general, +( ) and −( ) may be multi-valued for ∈ .

Lemma 4.1. ( ) and ( ) are continuous on .

Proof. Let us prove that if → then ( ) → ( ). For simplicity, we de-
note +( ) = . By the compactness, there is a subsequence (denote this by{ }
again) such that → ∗ ∈ ( ) as → ∞. From

| ( ) − ( ∗ )| ≤ | ( ) − ( ∗ )| + | ( ∗ ) − ( ∗ )|
| − ∗ | ≤ ‖ − ∗‖ · | | → 0 ( → ∞)

| ∗ − ∗ | ≤ ‖ ∗‖ · | − | → 0 ( → ∞)

we see

lim
→∞

( ) = ( ∗ )(4.1)

On the other hand, it is clear, by the definition of+( ), that

( ∗ ) ≤ ( +( ) )(4.2)

( +( ) ) ≤ ( )(4.3)

Letting → ∞ in (4.3), we get ( +( ) ) ≤ ( ∗ ). Thus, by (4.2), ( ∗ ) =
( +( ) ), that is, ∗ ∈ +( ). Therefore, by (4.1)

| ( ) − ( )| = | ( ) − ( ∗ )| → 0 as → ∞

Similarly, ( ) is also continuous on . The proof of Lemma 4.1 is complete.

Lemma 4.2. (i) is a radial viscosity subsolution of(DP).
(ii) is a radial viscosity supersolution of(DP).

Proof. We first show that and are radial. Let 1 2 ∈ be such that
| 1| = | 2|. Then there exists 1 ∈ ( ) such that 1 = 1 2. From

( 1) = max
∈ ( )

( 1) = max
∈ ( )

( 1 2)

= max
∈ ( )

( 2) = ( 2)

here we used the fact ( )1 = ( ), it follows that is radial. Likewise, is
also radial.
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We next prove that is a viscosity subsolution. Let ∈ R and ( ) ∈
2 + ( ). Then

( ) ≤ ( ) + 〈 − 〉 +
1
2
〈 ( − ) − 〉 + (| − |2)

= ( +( ) ) + 〈 − 〉 +
1
2
〈 ( − ) − 〉 + (| − |2)

near . Noting ( ) ≥ ( +( ) ) and +( ) +( ) = , we have

( +( ) ) ≤ ( +( ) ) + 〈 +( ) +( )( − )〉

+
1
2
〈 +( ) +( )( +( )( − )) +( )( − )〉

+ (| +( ) − +( ) |2)

hence ( +( ) +( ) +( )) ∈ 2 + ( +( ) ). Since is a viscosity solution,

− (| +( ) |) Tr( +( ) +( )) + (| +( ) | ( +( ) )) ≤ 0

whence

− (| |) Tr( ) + (| | ( )) ≤ 0

Therefore, is a viscosity subsolution. Similarly, is a viscosity supersolution. The
proof of Lemma 4.2 is complete.

Now we are going to prove the following key lemmas.

Lemma 4.3. Let (H1), (H2) and (H3) hold. Let 0 ∈ be such that| 0| ∈
Z( ) and ( ) > 0 for all ∈ (| 0|− δ | 0|+ δ) \ {| 0|} with someδ > 0. Suppose that
either

∫ | 0|

| 0|−δ

( )−1 = +∞ or
∫ | 0|+δ

| 0|

( )−1 = +∞

holds. Then ( 0) = ( 0) = ϕ(| 0|).

Proof. For simplicity, we put =| 0|. We show ( ) ≤ ϕ( ) ≤ ( ) from
which it follows immediately ( ) = ( ) = ϕ( ), under the assumption

∫

−δ

( )−1 = +∞

We first prove ( ) ≤ ϕ( ) ≤ ( ) in the case lim↑

∫
(log − log ) ( )−1 =

∞. Suppose ( ) > ϕ( ). By Proposition 3.1, we find 2-solution (̄ ) of L[ ]̄ = 0
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satisfying (̄τ0) = (τ0) and (̄ ) = ϕ( ), where − δ < τ0 < . Choosingτ1(< )
sufficiently close to so that (τ1) > (̄τ1), we find a γ1 such that (̄τ1) < γ1 <

(τ1). Then, by Remark 3.3, there is a2 blowup solution ( ) ofL[ ] = 0 in (τ0 )
satisfying (τ0) = (τ0) and (τ1) = γ1 and ( )ր +∞ as → . Thus intersects

at someτ2(< ). Remarking that is a viscosity subsolution by Lemma 4.2, we
have, by Lemma 3.6, ( ) ≤ ( ) for all ∈ [τ0 τ2], hence (τ1) ≤ (τ1); this is a
contradiction. Thus ( ) ≤ ϕ( ). Similarly, in this case, we have ( ) ≥ ϕ( ).

We next prove ( ) ≤ ϕ( ) ≤ ( ) in the case when lim↑
∫

(log −
log ) ( )−1 < ∞. We again suppose ( ) > ϕ( ). In this case, by Remark
3.3, there is a unique solution ofL[ ] = 0 in (τ0 ) satisfying (τ0) = (τ0) and
( ) = ( ). By Lemma 3.6, we have ( ) ≤ ( ) for all ∈ [τ0 ]. Since ˙( ) → +∞

as ↑ by Remark 3.3,

lim ↑

( ) − ( )
− ≥ lim

↑

( ) − ( )
− = +∞(4.4)

We now claim 2 + ( ) 6= φ. Without loss of generality, we may assume thatis
nondecreasing in ( +δ′) with δ′ > 0 small, and that ( 1) > ( ) for some 1 ∈
( + δ′). Define

( ) := − ( − 1)2 + ( 1) for ∀ ∈ [ 1]

where = ( ( 1) − ( ))/( 1 − )2. It is easy to see thatL[ ]( ) ≥ 0 for all ∈
( 1] if δ′ is small so that 0< δ′ < . Hence, by Lemma 3.6, ( ) ≤ ( ) for all
∈ [ 1]. Combining this with (4.4), we have 2 + ( ) 6= φ. Recalling that is a

viscosity subsolution, we find that, for every ( )∈ 2 + ( ),

0 ≥ − ( ) Tr( ) + ( ( )) = ( ( ))

hence ( ) ≤ ϕ( ); this is a contradiction. Similarly, we have( ) ≥ ϕ( ).
In a similar way we can see that (| 0|) ≤ ϕ(| 0|) ≤ (| 0|) holds under the

assumption
∫ | 0|+δ

| 0|
( )−1 = +∞. The proof of Lemma 4.3 is complete.

Lemma 4.4. Let 0 ∈ be such that 0 ∈ ( ′ ′), where ( ) ≡ 0 in ′ =
[ ′ ′]. Then ( 0) = ( 0) = ϕ(| 0|).

Proof. To prove this, it suffices to note thatJ+ := { ∈ ( ′ ′)| 2 + ( ) 6=
φ} is dense in (′ ′), (cf. [6]). Indeed, there exists a sequence{ } ⊂ J+ such
that converges to 0 as → ∞. By definition of viscosity subsolutions, we have

( ( )) ≤ 0, hence ( ) ≤ ϕ( ). By the continuity of and ϕ, we obtain
( 0) ≤ ϕ(| 0|). Likewise, ( 0) ≥ ϕ(| 0|). The proof is complete.
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Lemma 4.5. Let (H1), (H2) and (H3) hold. Suppose ∈ Z( ) is a cluster point
of Z( ). Then

( ) ≤ ϕ( ) ≤ ( )

Proof. In view of (H3) and Lemmas 4.3-4.4, we may assume that there exists a
sequence{ = ( )} of intervals such that

< < +1 and ր as → ∞(4.5)

( ) = ( ) = 0 and ( )> 0 in = 1 2 . . .(4.6)
∫

( )−1 <∞ = 1 2 . . . and
∞∑

=1

∫
( )−1 = +∞(4.7)

We now suppose ( ) > ϕ( ). Without loss of generality, we may assume

( ( )) ≥ δ0 > 0 for 1 ≤ ≤(4.8)

By Remark 3.3, there exists a unique2-solution of L[ ]( ) = 0 in satisfying
( ) = ( ) and ( ) = ( ). By Lemma 3.6, ( ) ≤ ( ) on , hence

lim ↓
( ) − ( )

− ≤ ˙ ( ) and lim↑

( ) − ( )
− ≥ ˙ ( )(4.9)

We may assume

lim ↓ 1

( ) − ( 1)
− 1

> −∞(4.10)

and for =

lim ↑

( ) − ( )
− ≤ lim ↓

( ) − ( )
− = 1 2 . . .(4.11)

In fact, if lim inf ↓ 1( ( )− ( 1))/( − 1) = −∞ then 2 + ( 1) 6= φ. By definition of
viscosity subsolution, (1 ( 1)) ≤ 0 which contradicts (4.8). If (4.11) does not hold
for some 0, then 2 + ( 0) 6= φ, hence ( 0 ( 0)) ≤ 0 which contradicts (4.8).

Put

γ := lim ↓
( ) − ( )

− = 1 2 . . .

Clearly, by (3.2), (4.9) and (4.11) with = ,

γ ≥ ˙ ( ) ≥ ˙ ( ) +
∫

( )−1 ( ( ))(4.12)
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For everyδ > 0, we define

( ) := (γ − δ ) log

( )
+ ( ) for ≤ ≤ +1

Since ¨ ( ) + (1/ ) ˙ ( ) = 0 for all ∈ [ +1] and +1 − may be assumed to be
sufficiently small, we see is a 2 supersolution ofL[ ] = 0 in ( +1). Noting
that there is a ∗ such that 0< ∗− ≪ 1 and ( ∗) > ( ∗), and that ( )− ( )
is nondecreasing in [∗ +1], we have

lim ↑ +1

( ) − ( +1)
− +1

≥ lim
↑ +1

( ) − ( +1)
− +1

= ˙ ( +1) =
(γ − δ )

+1

(4.13)

Using (4.9), (4.11) with +1 = +1, and (4.13), we have

(γ − δ )

+1
≤ lim ↓ +1

( ) − ( +1)
− +1

≤ ˙ +1( +1)(4.14)

Therefore, by (3.2), (4.12), and (4.14),

˙ +1( +1) ≥ 1

+1

(
(γ − δ ) +

∫
+1

+1

( )−1 ( +1( ))

)

≥ 1

+1

(
˙ ( ) +

∫
( )−1 ( ( ))

+
∫

+1

+1

( )−1 ( +1( )) − δ

)

≥
...

≥ (1/ +1)

(

1 ˙1( 1) +
+1∑

=1

∫
( )−1 ( ( )) −

∑

=1

δ

)

Taking δ = 1/2 , we see, by (4.7) and (4.10), that˙ +1( +1) −→ +∞ as → ∞.
Thus, for arbitrary large > 0, we find ˙ ( ) > for large . Noting that˙ ( ) ≤
γ , and that ( ) − ( ) is increasing in (∗ ) < ∗ < , we have

lim ↑

( ) − ( )
− ≥ lim

↑

( ) − ( )
− =

(γ − δ)
>

− δ

2

which shows, from the arbitrariness of lim↑ ( ( )− ( ))/( − ) = +∞. Hence, by
usual arguments, 2 + ( ) 6= φ, which implies ( ( )) ≤ 0; this is a contradiction.
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In a similar way, ( ) ≥ ϕ( ) is proved. The proof of Lemma 4.5 is complete.

It is now easy to complete the proof of Theorem 2. Indeed, Lemmas 4.3–4.5 im-
ply that if | 0| ∈ Z( ) then ( 0) = ϕ(| 0|). By Lemmas 4.1, 4.2 and 3.6, we obtain

( ) ≤ ∗( ) ≤ ( ) in ( ), hence ( ) = ∗( ) on ( ). On the other hand,
by recalling the proof of Theorem 1, we have (0) =∗(0). Therefore, ( ) = ∗( ) on

0. Consequently, we see that =∗ on . The proof of Theorem 2 is complete.

4.2. In this subsection we prove Theorem 3, that is, the nonuniqueness of vis-
cosity solutions for (DP) under the assumption (H4). As before, for each givenα ∈ R,
let us consider two boundary value problems:

L[ ]( ) = 0 in (0 ) ; ( ) = α(BVP)−

and

L[ ]( ) = 0 in ( ) ; ( ) = α and ( ) =β(BVP)+

By Proposition 3.1, we find a solution−
α ( ) and +

α( ) of (BVP)− and (BVP)+, re-
spectively. We put

(α) := ˙−α ( ) and (α) := ˙+
α( )

As in the proof of Proposition 3.1, we verify that the following three assertions:
(i) If α1 < α2 then −

α1
( ) ≤ −

α2
( ) for ∀ ∈ [0 ] (resp. +

α1
( ) ≤ +

α2
( ) for ∀ ∈

[ ]) and (α1) < (α2) (resp. (α1) > (α2)),
(ii) (α) and (α) are continuous.
(iii) lim α→−∞ (α) < 0 < limα→∞ (α), limα→−∞ (α) = +∞, and limα→∞ (α) =
−∞.
Hence there is a uniqueα0 ∈ R such that (α0) = (α0). Define

α( ) =

{
−
α (| |) ( ∈ )
+
α(| |) ( ∈ ( ))

We now prove the assertions (i)–(iii) in Theorem 3. The assertion (i) is evident. To
prove (ii), suppose 0( ) := α0( ) > ∗( ) = ϕ( ) on | | = , where ∗ is the stan-
dard viscosity solution of (DP). Then fromα0 > ϕ( ) it follows that (α) = ˙−α ( ) <
˙+
α( ) = (α) for ϕ( ) ≤ ∀α < α0. Thus 2 +

α( ) = φ on | | = , hence α satisfies
F [ α]( ) ≤ 0 on | | = in the viscosity sense. On the other hand, it is also clear that
for ϕ( ) < α < α0 α satisfiesF [ α]( ) ≥ 0 on | | = in the viscosity sense. There-
fore, α ϕ( ) < α < α0, is a viscosity solution of (DP). By making use of the stabil-
ity theorem [16], α0 is a viscosity solution of (DP). To prove thatα0 (resp. ∗) is
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the maximum (resp. minimum) viscosity solution, we first note that ifα > α0 > ϕ( )
then ˙−α ( ) > ˙ +

α( ), hence 2 +
α( ) 6= φ for | | = (cf. [19]), which implies that α

could not be a viscosity subsolution of (DP). Remarking that ifα < ϕ( ) < α0 then
˙−α ( ) < ˙+

α( ), we have 2 −
α( ) 6= φ for | | = , hence α could not be a viscosity

supersolution of (DP). Now, let be an arbitrary viscosity solution of (DP). Define

( ) = max
| |=| |

( ) and ( ) = min
| |=| |

( )

By Lemma 4.2, (resp. ) is a viscosity subsolution (resp. supersolution). Therefore,
as shown above,

ϕ( ) = ∗( ) = ∗( ) ≤ ( ) ≤ ( ) ≤ α0( ) = α0( ) on | | =

Therefore, we conclude that∗ (resp. α0) is the minimum (resp. maximum) viscosity
solution. Thus the proof of (ii) is complete. Similarly, we can prove the assertion (iii).
The proof of Theorem 3 is complete.

Appendix. The proof of Lemma 3.2

We do not know that Lemma 3.2 has been proved elsewhere. For completeness,
we give a proof by applying the known result:

Lemma A.1. Suppose that ∈ ([τ1 τ2] ×R×R) is bounded. Then there exists
a solution of the two-point boundary value problem:

¨ ( ) = ( ( ) ˙ ( )) in (τ1 τ2) ; (τ1) = α1 and (τ2) = α2

Proof. See [13] for a proof.

Proof of Lemma 3.2. We wish to prove the existence and uniqueness of2-
solutions of





¨ ( ) = −1
˙( ) + ( )−1 ( ( )) in (τ1 τ2)

(τ1) = α1 and (τ2) = α2

(BVP)

First let us introduce some constants:

:= max{|α1| |α2| max
τ1≤ ≤τ2

|ϕ( )|}(A.1)

:= max
{

( )−1| ( )|; τ1 ≤ ≤ τ2 | | ≤
}

(A.2)

κ := max

{
τ2

τ1

8
τ1(τ2 − τ1)

}
(> 1)(A.3)
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:= max

{
κ

|α1 − α2|
τ2(τ2 − τ1)

}
(A.4)

Using these constants, we define functions ( ) and ( ) as follows:

( ) =





( )−1 ( − ) ( ≤ − )

( )−1 ( ) (| | ≤ )

( )−1 ( ) ( ≥ )

and

( ) =





τ2 + ( ) ( ≤ −τ2 )

− + ( ) (| | ≤ τ2 )

−τ2 + ( ) ( ≥ τ2 )

Since ( ) is continuous and bounded, we see, by Lemma A.1 and (H1),
that there exists a unique solution ∈ [τ1 τ2] ∩ 2(τ1 τ2) of

¨ ( ) = ( ( ) ˙ ( )) in (τ1 τ2) ; (τ1) = α1 and (τ2) = α2

To see is a solution of (BVP), we show

| ( )| ≤ | ˙ ( )| ≤ τ2 for ∀ ∈ [τ1 τ2](A.5)

It is easy to see| ( )| ≤ for all ∈ [τ1 τ2]. Let us verify | ˙ ( )| ≤ τ2 .
For the sake of simplicity, we denote by . We first show that if there is a1 ∈
[τ1 τ2] such that ˙ ( 1) = τ2 then ˙( ) ≤ τ2 for all ∈ [ 1 τ2]. Suppose there is
a 2 ∈ ( 1 τ2] such that ˙ ( 2) > τ2 . Then we find˜ ∈ ( 1 2] such that ˙ (˜) > τ2

and ¨(˜) > 0. Thus, by (A.2) and (A.3),̈ (˜) ≤ − + < − + κ ≤ 0; this is a
contradiction.

We next claim ˙ (τ1) ≤ τ2 by contradiction. Supposė (τ1) > τ2 . Then
there is a¯∈ (τ1 τ2) such that˙ ( )̄ = τ2 . Indeed, if ˙ ( ) > τ2 for all ∈ [τ1 τ2]
then, by (A.4),|α2 − α1| = | (τ2) − (τ1)| > |α2 − α1|; this is a contradiction. Noting
that ˙ ( ) ≥ τ2 ≥ τ2 κ for all ∈ [τ1 ]̄, we have by (A.3)

2 ≥ | ( )̄ − (τ1)| ≥ τ2 κ(¯− τ1) >
4

τ2 − τ1
(¯− τ1)

hence¯− τ1 < (τ2 − τ1)/2. Thusτ2 − ¯> (τ2 − τ1)/2. Therefore, by (A.1)–(A.3),
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2 ≥ | (τ2) − ( )̄| ≥ ¯̇ ( )̄ log
(τ2

¯

)
−

∫ τ2

¯
(logτ2 − log )

> ¯ (τ2 − )̄ −
4

(τ2
2 − 2̄) ≥ τ1κ

4
(τ2 − τ1) ≥ 2 ;

this is a contradiction.
Similarly, ˙ ( ) ≥ −τ2 for all ∈ [τ1 τ2]. We conclude, by (A.5), that is a

solution of (BVP). The uniqueness is obvious. The proof of Lemma 3.2 is complete.
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