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On the Theory of Representation of Finite Groups. .
By Hirosi NAGAO

The. ordinary representations of finite groups by linear transforma-
tions were first treated by G. Frobenius? and W. Burnside » in case
that the coefficients are complex numbers, and the theory were ‘extend-
ed by I. Schur® to the case where the field of coefficients is any
algebrarcally closed field of- Characteristic 0. Later E. Noether gave a
new foundation of the theory in her theory* of representation . of
algebras.

The modular representation of ﬁmte groups were first studied by
L. E. Dickson ® but the complete extension of the theory of ordinary
representations to the modular case has been recently established by
R. Brauer and C. Nesbitt in their remarkable joint paper.®’

It seems to us that the main theorems in the general theory of
group representations are the orthogonality relations for group charac-
ters and the theorems concerning the induced representations and the
Kronecker product of two representations, and the existing construc-
tions of the theory are all, even in the theory of R. Brauer and C.
Nesbitt in the modular case, based on the orthogonality relations for
ordinary characters

In this paper we shall intend to construct the theory in the most
general manner which involves the ordinary and the modular cases and
further the case of collineations.

The representations of finite groups by collineations in the ordi-

1) G. Frobenius; S!tzungsberlchte der Preussischen Akademie der Wissenschaften,
1896, p. 1343, 1897, p. 994 1899, p. 482, 1903, p. 401. ‘

For the Frobenius’ theory, see the accounts in L. E. Dickson, Modern Algebraic
“Theories, Chicago, 1926, Chapter XIV ;' G. A. Millar, H. F. Blichfeldt, L. E. Dickson,
Theory and Application of Finite Groups, Chicago, 1917, Chapter VI.

2) W. Burnside; Acta Mathematica, 28 (1904), p. 369, Procceedings of the London
Mathematical Society (2), 1-(1904) p. 117.

3) 1. Schur; Sitzungsber. déer Preussischen Akad. der Wiss. (1905) p. 406.

4) E. Noether: Mathematische Zeitschrift, 30 (1907), p. 389.

5) L. E. Dickson; Transactions of the American Mathematical Society, 8 (1907), p. 389.

6) R. Brauer and C. Nesbitt; On the modular representations of groups of finite
ordcr 1, University of Toronto Studies, Math. Series No. 4, (1937), refered to as' B. N. M,
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nary case were first treated by I. Schur”, later by K. Shoda and K.
Asano ®, and in the modular case by K. Asano, M. Osima and M.
Takahasi . From these theories we may reduce the problems of
group representations by collineations to the linear case and the theo-
rems concerning the induced representations and the Kronecker product
in the linear case may be easily extended to that case (see Theorem 1
and 2).

In section 1 we state some preliminary lemmas on algebras which
are essentially obtained by T. Nakayama'®. In section 2 and 3, the
theorems on the induced representations and Kronecker products are
proved in the most general case. The theorems on group characters are
stated in section 4, where we give another proof of the thorem 'V of
R. Brauer and C. Nesbitt on the fundamental relation between Cartan
invariants and decomposition numbers, which plays a principal réle in
their modular representation theory.

§1. Some Lemmas on Algebras.

Let A be a (finite dimensional) algebra with unit 1 over a field K.
A is directly decomposed 1nto directly indecomposable right (left)
1deals as follows :

’(-’1-1) A= Sy EmA( > Z AE ),

k=1 ¢=1 k=1 1=

where E., («=1, 2, ...... , k; i=1, 2, ..., f(x)) are mutually orthogonal
idempotents whose sum is equal to 1 and E A (AE,.,) is operator
isomorphic to E\A (AE»;) if and only if «=\. We shall denote
E:cl by En

- Denote the radlcal of A by N(A) and a subset S of 4 mod N(4)
by S. Then A= A/N(A)= }‘_,‘F,QA(— EAEM) is a direct decomposi-

tion of A into simple right (left) ideals EMA (AE ;) and E A (AE.,)
is operator isomorphic to E,;A (AE,,) if and only if «=A\.

The following lemma is a generalization of a theorem'* obtained
by T. Nakayama, and is proved in quite a similar way as it.

Lemma 1. - Let m be a- (finite dimensional) A-right module such

7). 1. Schur ; -Crelle 127 (1904), p. 20, 132 (1907), p. 85.

8) K. Asano and K. Shoda; Compositio Mathematica (1935).

9) K. Asano, M. Osima and M. Takahasi; Proceedings of the Physnco~Mathemat1cal
Society of Japan, (3) 19 (1937) p. 197.

10> T. Nakayama: Some studies on regular representations, maured representa
tions. Annals of Mathematics 39 (1938) p. 361.

11) See B. N. M. 3 4.

12) See the paper in the footnote 10).
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that z-1=x for all xcm. Then the number of the factor groups iso-
morphic to E.A which appear in a composition factor group series of
A-right module m is equal to the composition length of E(AE.-right
module mE.. When K is algebraically closed it is equal to the dimen-
sion of mE..

Proof. Let m=m, >m, > ... Dm, =0 be a composition series of an
A-right module m. Then m,E.==m,, . E. if and only if m,/m,,,~E.A4,
and then mE«/m, E. is a simple E.AFE. -right module since miE'x
/my Ee~(m,/m,,,)E.~E«AE.. This proves the first part.

- To prove the second part, suppose that K is algebraically closed.
Then E(AE,. is isomorphic to K. Let mE.=mj L« OmiE ... Omj,
E =0 is a composition series of EAE. -right module mE,, then m;E
/mi, .\ E is isomorphic to E.AE.  Hence miE.=(xK, mi, . F«)for
any element x, from m; E . not contained in m;, ., F«. Therefore (z,,
3, ..., &,) is a basis of mE. for K and t is equal to the dimension
of mE,, q.e.d.

For left moduli, we have of course the similar assertion to this
lemma.

Let B be a subalgebra of 4 containing 1 and B=q§;em B(=X

a,i
Be,,;) be a direct decomposition of B as (1.1). From Lemma 1 we have
immediately the following lemma, where we shall suppose that K is.
algebraically closed for the sake of simplicity and because in the follow-.
ing sections we shall be concerned only with that case.

Lemma 2.

i) If quHEaKqEKA then AEKHEam Bé, as B- left module
ii) If esA~ EquE'xA then AE, HZBmBeq as B-left module.
Here, for an A4 (or B)-right module m we indicate by

m <~>K2a,<EnA. (or ?‘__,Bqé,B)

that E.A (or &,B) will appear in a composition factor group series of
m with multiplicity a«(or 8,), and by

m == > a A
that m will be directly decomposed into «a,. components isomorphic to
E.A (=1, 2, ..., k). For left moduli those notations have the similar
significances.

Proof. i) From Lemma 1 ai: is equal to the dimension e, AE.
and this is equal to the number of factor groups isomorphic to Be,
which appear in a composition factor group series of B-left module
AE.. ‘ ‘ ‘
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ii) If e,A~ 3 BwEA then €4 <3} B«E«A, and hence we have
ra q
ii) in a similar way as in i).
§2. Induced Representations.

In the following, we shall always suppose that K is an algebraically
closed field. Let G={l, a, b, ...} be a finite group. We shall call
a set {&,,} of elements from K a factor set if it satisfies the condi-
tions ;

1) €1,a=E, 1=5a,a—1=1 for all a€d. ‘

1)  Ea o€atc = €a,0:€sc  for all a, b and ¢ in G.

If {&,,} is a factor set then

A(G, &)= Kus; UsUp = Eq, sUar
acG

is a symmetric algebra!®, and wu, is its unit element and uaflzu;%.
We shall call it a group ring of G with a factor set {&,,}. We denote
by A(G, 1) the group ring with: such a factor set that &,,=1 for all
@ and b in G.

By a (finite dimensional) A (G, €)-right module m we obtain a
representation of A (G, &). Let M(a) be the matrix corresponding to
%, in this representation. Then M(a)M(b)=6&,, . M(ab). We shall call the
mapping a—M(a) the representation of G by m with factor set {&,»}.
Every representation of G with factor set {&,,} may be obtained by
an A(G, &)-right module m.

Let H be a subgroup of G and G=Yt‘_, H:;, be the right coset decom-
. _ =Y '
position of G mod H. Then the subalgebra A(H, &)= 3 Ku, of
CEH

A(G, &) is the group ring with the factor set {&,,; ¢, d € H} and A(G,
&) is the direct sum of submoduli A(H, &) (i=1, 2, ..., t).
We shall define an A(G, &)-right module induced by an A(H, &)-

-~ t .
right module m as follows. Let m=>Imowvs, be a direct sum of
i=1

moduli m o vs, (i=1, 2, ..., t) which are isomorphic to m by the cor-
respondence &z o vy, When us,u,—=wus; (w € A(H, &)) in A(G, &) we
shall define the operation of «, for & owvs,(x €m) as (& o vs,) uy=(x+w)
owvs, . Then m becomes an A(G, &)-right module and disregarding an
operator isomorphism the definition dose not depend on the choice of
representative system {s,}, We shall call it an 4 (G, &)-right module

13) See T. Nakayama: On Frobeni‘usean ‘algebras 1, Annals of Mathematics 40 (1939)
p* 611.
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induced by m.
- Now let A=A(G, &)= FK,A(=2 AE,,) and B=A(H, &)= Zjeq,
K, Kyt q,
B(= 3] Be,;) be decompositions as (1.1) of A and B respectively. Since
A (B)is a symmetric algebras, ', A (e,B)and AE, (Be,)induce the same
representation of G (H). We shall denote by Uy Vo FK, 1, V and I,

representations by E.A, eB, E.A, &B, e,,B and e,,B respectively.
And when M is a representation of G (or H) we indicate by

M o alF, (or Mo 318,1,)

that F« (or I,) will appear in M as irreducible constituent with multi-
plicity a. (or B,), and by

M=~ E]a,tU,c (or M=~ ZB.,V,,)

that M will be directly decomposed into components U, (or V,,) with
multiplicity «.(or 8,).
Theorem 1.

i) If V,o S F,, then Uqo S ayl, as a representation of H.
K ]

i) If V,=3BUs, then F. o X Bul, as a representation of H.
" q .

iii) If I, & 2%, then U, = 37V, as a representation of H.
K q .

—~

Remark. Since e,B is operator isomorphic to (e,B) A=e,A and e, A
is a component of a direct decomposition of A into right ideals, any dire-

ctly indecomposable component of V, is equivalent with some U,. And
since 4 is, as a B-right module, a direct sum of submoduli 's;B(i=1,

2, ..., t) isomorphic to B (where {s;} is the left representative system
of G mod H), any directly indecomposable component of U, is equi-
valent with some V..

Proof. Fromi) and ii) in Lemma 2 we have immediately i) and ii)
in the theorem To prove iii), let AEK—Ev,cheq (as B-left molule)

and e,,B «—»ZVK.,E A (as A-right module). Since AEK/N(B)AE Z'YKdeq,
Yo iS equal to the dimension of eq(AEK/N(B)AE,c) On the other
hand, 7y, is equal to the dimension of (e,,A/eqN(B)A)E smce e,,B ==
/_\_/
(e,B/e,N (B))~e,Ale,N(B)A. Both e(AE,/N(B)AE,) and (e,A/e,N(B)
A)E, are isomorphic to e.AE./e,N(B)AE . as K- mod'ule, hence 7, ="
§ 3, Kronecker Product '
Let B> be the groupring A(G 1)——5‘_,Kuf,°)( Uy ;0)—"uab) and B
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. . Y (2 €2) 2
=(AG, 6V)=SKug" (ug uy =64 yitgy) and B>=A(G, &) ="Kty (s Uy
a s .

2) (2

=&, U ). And let A be their direct product (A=B" x B‘®). The subal-

gebra B® of A with the bases W) xw” is also- a group ring of G

with factor set {8:),,82),,=82)b§. We shall call B® the Kronecker pro-

duct of B and B®, and denote it by B’®B®. When m and m® are
respectively B’ and B®-right moduli, their direct product. m® xm®
is an A-right module. Of course this may be considered as B‘®-right.
module, and then it is also called a Kronecker product of m® and m®
and denoted by m®Q@m®,

A and B® may be considered in a different way. Let G and G®
be both isomorphic to G by the correspondence a<a® (i=1, 2) and.
G® the subgroup consisting of elements aVxa®(¢€G). Then G®
is also isomorphic to G, A is a group ring of GV x G® and B® is the
subalgebra corresponding to G,

(€3}

We shall denote by U, and F.’ (i=1, 2, 3) directly indecomposa-

ble constituents of the regular representation and irreducible represen-

tations of B (i=1, 2, 3) respectively, and by U, (F)’) the representa-

tion of A induced by U (F\’) of B®. Further when M™ and M®
are representations respectively by B‘’-right module m‘’ and B‘®-right
module m‘®, we shall denote by M“Q M the representation of G by
mPQm?. It will be easily seen that MPQM® (a)= M(a)x M*(a)
for all a¢ in G.

As K is an algebraically closed field, any indecomoposable consti-

tuent of the regular representation of A is equivalent with some U,"

xU. and any irreducible represntation with some F, x F, .. As the

immediate consequence of Theorem 1, we have

Lemma 3.
(1) \2) a @),

i) If UPQU o N aw,Fy then Uy o> 3 ey Fy x F
i) If FPQFP 0 3 8P then U0~ 3 8, U0 x U,
iii) If U, QU ~ éymvi” then ﬁff’(_f'zpmup
Now, let m be a B<:)—right module and 1?1“’91)e an A-right module

. , @7y, /) @) @2, « .
induced by m. A(G, E¥V)=3"Ku, (u, "uy =1 Uy ) IS TEcCipro-
a

(1 (2)
o XF ..

2)

[22¢/]
. . . @, | 2/)-1 ¢
cally isomorphic to B‘® by the correspondence u, & u, , BP=~B®

®B®”. B may be considered as B®*’-right module by defining the

— . (27) (2)-1 . .
operation as xu, =u, «(x¢€ B*®), and hence m x B‘® may be conside-

red as B®’® B -right module, namely B©-right module. On the other
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hand, m may be considered as B‘-right module by defining the opera-

tion as xu;m:a;(xem) and B as B“®-right module in a natural
manner. Then mxB‘® may be considered as B‘® B‘®-right module,
namely B®-right module. As is easily seen, these operations of ele-
ments of B and B® for mxB® are mutually commutative, and
hence m x B‘® may be considered as 4 (=B x B®)-right module.
Lemma 4. The above defined A-right module mx B*® is isomorphic

to m.

Proof. As a represetative system of G x G'® mod G we choose
{1xc¢?® ; ¢eG}. Then m is isomorphic to the direct sum of moduli
m(1xu;") isomorphic to m. If #€m, then

2)-1 (2) (2
a

a(1xu) (ug” xuy) = a(ug xuy ) (Ixug us uy)

3) (2)-1 (2) 2)
= (au; )(IXus U, u ).

On the other hand, in mx B*®

o (2 1) (22 3) (2)-1 (3) (2)
(X ug ) (U XUy )==2U; XUy U Uy

e . . 2)
Hence m is isomorphic to mxB‘® by the correspondence a(1xwu, )

2
O XU, .

Let BY = Yle, B (= 3BV, ) (v=1, 2, 2/, 3) be a decomposition
K, 1,1
- ’ < .
of B™ as (1,1), and suppose that B‘”efci) corresponds to efft B*” in
the reciprocally isomorphic correspondence between B® and B,
Then B%e. is, considered as B -right module, isomorphic to e, ‘B’

. Tros 1 2 ¢ ) . .
Since (mxB) (e, x e )=(mxB®e,) (e, x1), we have immedia-

tely :
Lemma 5. .Let m be o B®-right module. Then the number of
the factor groups isomorphic to é(pl)f?—“’xéﬁ:)ﬁm which appear in a com-
position factor group siries of A-right module m ‘is equal to the number

of the factor groups isomorphic to ééhl_?“’ which appear in o composition

factor group siries of BV-right module mx B®e”,

Now we have the main theorem concerning the Kronecker product
of representations.
Theorem 2.
i If -U;1)®UE¢2)H§](¥KPOF;3) then U}”@Uf’b;}a.‘poﬁ’;".
i) If F'@F o 3 BugoF'y then U @F =~ 3 B, Uy -
g 4

i) If Uy QU ~ D9, U then FUQUY o X qpeFo.
- e

[
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Proof. i) From lemma 3 U, o S a.,,Fs @F., hence from lemma
O au,, is equal to the number of the factor groups isomorphic to é;b
BV which appear in a composition factor group series of B™-right
module ei“B“' X B2 eff), and as is easily seen we have the representation
U x U’ of G by B-right module e¢,”B* xB™e.". This proves i).

T ————
.o =3) 1D (2) 3 53
ii) From Lemma 3, U, ~ 3 Bu,,U, xU, , hence e, B"~ 3 By,
™ o

D, e o T .. . gy p2
e, B xe. B . From lemma 4 e, B~ is isomorphic to e, B¥xB
considered as A-right module. Since

N

e;SDBf.S) % BCZ,/ (e;?})BTS‘: % B’.2J) (1 % N(B’b)) ~ e?)Bf?’) % Ef?\
¢ ¢ (2y==
= Z /5,"986;33\1) X EKLBLD,

K,P
3)p3  H2 2 33 H2HD (1 5D
(e, B"xB")(1xe: )=e, B XB e ~ ) fBxs,€, B
o ¢
_(2)==_(2) forr
X € Bér .

. _(2)==020_(2) . . . . .
And since &« B¢, is isomorphic to K, By, is the number of direct
(3) 503 H(2)_\2) . . . 12
factors of e, B’ x B ”e.  which are isomorphic to e, B™’. Further, as
. o . (3) 27 P .
is easily seen, we have the representation U, ®F. by B®-right

3)5(3)  FH21_12) . .e
module e, B" xB e, . This proves ii).

. . _(3)55(3) 353 . .
iii) Considering e, B> for e, B in the proof of i), we have iii)
in a similar way as in i).

§4. Group Characters.

When the field of coefficients K is of characteristi¢ ==0, we under-
stand the group characters as in the sense of B. N. M. § 6. We shall
denote by 7" and ¢ («=1, 2, ..., k) directly indecomposable charac-
ters and irreducible characters of G respectively, and by & (i=1, 2,
..., k*) ordinary irreducible characters of G, and further by c«, (x, A
=1, 2, ..., k) Cartan invariants ¥, by d. (i=1, 2, ..., k*; «=1, 2, ...,
k) decomposition numbers .

In section 3, if B®=B® then U, and F\ ’ are respectively
contragredient to Uy’ and Fi. We shall denote them by U, and F,-

As a special case of Lemma 3 iii), we have that if U, QU ~

T

Yeos Uy then F.” e SW,, F'x F\’ and then, from Theorem 2 iii),
I{,Ao

14) See B. N. M.
15) See B. N. M.
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FroUY oY, Fy. 1f we denote the unit representation by F,”
- ¢ 0 .
then Uy e S ve, F,  and hence ¢,=7«,. Therefore
2 . anc

(0

(4.1) FPo 3 e F x LS

Since F(axb)= (8 a-1xt)(2; row index, e 'ab; column index), F,’
(e xb) may be considered as a matrix with coefficients of complex
numbers and its trace coincides with the character in the sense of
B.N. M. for all p-regular elements a¢ and b in G. Further

(4.2) tr F;"(axb)=0 if ¢ is not conjugate with b in G.
. g . o e
=—_if @ and b are mutually coinjugate
o(a) 1ie
in G, where g(a) is the number of elements of the conjugate class
containing a.
From (4.1) and (4.2) we have the following orthogonality relation
for group characters. .

(4.3) M (@)pr(b)=0 if a is not conjugate with b in G.

=_9_if ¢ and b are mutually conjugate in G.

9(a)
Let K,, K,, ..., K,» be the conjugate classes of G and K,, K,, ...,

K, be p-regular classes among them. We denote 5“Y(a), »“X(a) by
7a’, s when a€K,. Further, suppose that U, and F,, are respec-
tively contragredient to U, and F, and K, is the conjugate class
consisting of inverses of elements in K.. Then (4.3) may be expressed
as follows.

Theorem 3.

€3]

(4.4) 2 o) = Louy for pyv=1,2 ., .

As an immediate consequence of the theorem, we have for ordinary
characters
Corollary.

i (0) (8) g
(4.5) S 60 = Dy for wy v=1,2, .., b~
i=1 gp

Further we can easily show that z=k.

. W G ) . .
We arrange ¢, , 7, , &, in matrix form

®=(p,), H= (") Z=(&")



20 Hirosi NAGAO

(¢=1, ..., k; row indices, A=1, ..., k; column indices in ®, H; i=l1,
..., k*; row indices, A=1, ..., k; column indices in Z). Then C=C’,
H=C®, Z=D®, and (4.4) and (4.5) show the equation

(4.6) 27 =H'® = (sy, y i)'

Let ®*=(@y,)(x; row index, 4s; column index) then from (4.6)
we have

g, 0
4.7) (I)*H( 1‘-. ) = gF (F ; unit matrix)
0 g.
This proves
Theorem 4.
(4.8) 3 gupur m = 9B,
From (4.6) ®'C® = ®'D’'D® and |P|=+0, hence we have
Theorem 5.1, C=D'D.

From Theorem 1 and 2 we have the following relations on induced
characters and multiplication of characters.
Let H be a subgroup of G. We denote by #“* ¢“* a directly

indecomposable character of H, and by 5%*, @®* characters of G in-
duced by them.
Theorem 6.

i) If 77“";*= 2 Qg™ for p-regular elements of G, then
7" = é}anqqo(‘“* for p-regular elemetts of H.
i) If no*= %]/3@97“) for p-regular elements of G, then
Pt = .KZqur/)(“>* for p-regular elements of H.
ii) If «;“’/‘*= qu,(,,go(’” for p-regular elements of G, then
7" = éwmc"?* for p-regular elements of H.
Theorem 7.
) If nP9" = tup™ then @ n™" = ;} ey,
ii) If g"kp)(/’(x):;leﬁpo?’m) then o p™ = 92,8@,,77“9?.
iii) If 5®g® =;7K,oo7](°) then p@n™) = 927x9a§0(‘°)-

(Received December 1, 1950)

16) The same proof of the theorem has been independently obtained by M. Osima.
For the existing proofs, see B. N. M., the paper in the foot note 10) and R. Brauer: Pro-
ceedings of the National Academy of Science, 25 (1939), p. 252.





