<table>
<thead>
<tr>
<th>Title</th>
<th>Finite groups admitting an automorphism of prime order fixing a cyclic 2-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Okuyama, Takashi</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 18(2) P.393-P.402</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1981</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/3753</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/3753</td>
</tr>
</tbody>
</table>
| **rights** | }
1. Introduction

In this paper, we shall give a proof of the following Theorem, which is a conjecture of B. Rickman [9]; in special case, \(C_G(\phi) \) has order 2, M.J. Collins and B. Rickman proved in [2].

Theorem. Let \(G \) be a finite group which admits an automorphism \(\phi \) of odd prime order \(r \) whose fixed-point-subgroup \(C_G(\phi) \) is a cyclic 2-group. Then \(G \) is solvable.

All groups considered in this paper are assumed finite. Our notation corresponds to that of Gorenstein [7].

An important tool that is brought to attack the problem is B. Baumann’s classification of finite simple groups whose Sylow 2-subgroups are maximal [1], and in analogy with Matsuyama [8] that used the results of [1], we shall prove that \(H_G(5;2) \), where \(S \) is a \(\phi \)-invariant Sylow 3-subgroup of \(G \).

C.A. Rowley has obtained a proof of the theorem under the additional hypothesis that \(G \) does not involve \(S_4 \), the symmetric group on 4 letters.

The Theorem is a contribution to the continuing problem of showing that finite groups which admit an automorphism \(\phi \) of odd prime order such that \(C_G(\phi) \) is a 2-group are solvable.

2. Preliminaries

We first quote some frequently used results.

2.1. (Thompson [12])

Let \(G \) be a group which admits a fixed-point-free automorphism of prime order. Then \(G \) is nilpotent.

2.2. (Rowley [10])

Let \(G \) be a solvable group admitting an automorphism of odd prime order \(p \) such that \(C_G(\phi) \), the fixed-point-subgroup of \(\phi \) in \(G \), is a cyclic \(q \)-group, \(q \neq p \). Then, for any prime \(r \), \(G \) is either \(r \)-nilpotent or \(r \)-closed.
2.3. (Glauberman [4])
Let G be a group with a Sylow p-subgroup P, either p odd or $p=2$ and S_4 is not involved in G, in which $C_2(Z(P))$ and $N_2(J(P))$ both have normal p-complements. Then G possesses a normal p-complement.

2.4. (Gilman and Gorenstein [3])
If G is a simple group with Sylow 2-subgroups of class 2, then $G=L_2(9)$, $q \equiv 7, 9 \pmod{16}$, A_n, $Sz(2^n)$, n odd, $n>1$, $U_3(2^n)$, $n \geq 2$, $L_3(2^n)$, $n \geq 2$, or $Psp(4, 2^n)$, $n \geq 2$.

2.5. (Gorenstein [7])
Let P be a Sylow p-subgroup of G, where p is the smallest prime in $\pi(G)$. If $p>2$, assume $d_\phi(P)\leq 2$, while if $p=2$, assume P is cyclic. Then G has a normal P-complement.

2.6. (Matsuyama [8])
Let Q be a 2-group admitting an automorphism ϕ of odd order $\neq 1$. If $d_\phi(Q)=1$, then $Q=E\ast R$, where E is ϕ-invariant, extra-special or 1, and R is ϕ-invariant, and R is cyclic, D_m, Q_m, or $S_m, m \geq 4$.

2.7. (Collins-Rickman [2])
Let T be an extra-special 2-group admitting an automorphism ϕ of odd prime order r acting fixed-point-freely on T/T'. Let S be the natural semidirect product $T\langle \phi \rangle$ and let K be a field of nonzero characteristic different from 2 and r. Assume that there exists a KS-module M for which $C_M(\phi)=C_M(T)=0$. Then

(i) $r=2^n+1$ is a Fermat prime,

(ii) $|T|=2^{2n+1}$, and

(iii) $T\cong Q\ast D$,

where Q and D denote the quaternion and dihedral groups of order 8, respectively, and \ast denote the central product.

2.8. (Glauberman [5] [6])
Let G be a solvable group with a Sylow 2-subgroup Q with $G\cong C(Z(Q))N(J(Q))$, and $O(X)=1$. Put

$Z=\langle Z^* | G \triangleright Z^* : 2$-subgroup and $O_2(G/C(Z^*))=1 \rangle$

and $J=\langle x \in G | x : 2$-element, $|Z/C_2(x)|=2 \rangle$

and $H=\langle J, C(Z) \rangle$. Then the following hold;

(i) there exists a normal subgroup G_i of H containing $C(Z)$, $1 \leq i \leq m$, such that, for $i=1, \cdots, m, G_i/C(Z)\cong S_3$, and $H/C(Z)=G_1/C(Z)\times \cdots \times G_m/C(Z)$.

(ii) let $V_i=[G_i, Z]$, $1 \leq i \leq m$, and let $V=V_1\oplus \cdots \oplus V_m$, then $Z=V \oplus C_2(H)$ and $V_i\cong Z_2 \times Z_2$, $1 \leq i \leq m$.

(iii) there is a 3-element x_0 of H such that, for each $g \in H$, $H = \langle Q \cap H, x_0^g, C(Z) \rangle$ and $G/C(Z) = H/C(Z) C_{G/C(Z)}(x_0^g C(Z))$.

2.9. (Matsuyama [8])

Let G be a group with a Hall τ-subgroup H, and let $1 \neq P \in \text{Syl}_3(H)$, Q 2-group. If $N_2(H) = HQ$, $d(Q) = 1$, $\Omega_1(Z(Q)) = \langle w \rangle$, $C_H(w) = 1$, and $\text{N}_G(P; \tau) = 1$, then, for each $P \neq P$, $g \in G$, $m(P \cap P^g) \leq 1$.

2.10. (Burnside's theorem [7])

If a Sylow p-subgroup of G lies in the center of its normalizer in G, then G has a normal p-complement.

2.11. (Burnside's theorem [7])

If P is a Sylow p-subgroup of G, then two normal subsets of P are conjugate in G if and only if they are conjugate in $N_G(P)$. In particular, two elements of $Z(P)$ are conjugate in G if and only if they are conjugate in $N_G(P)$.

2.12. (Smith-Tyrer [11])

Let G be a group with an Abelian Sylow p-subgroup P for some odd prime p. If $[N(P):C(P)] = 2$ and $P \cap N(P)^r$ is noncyclic, then G is p-solvable.

2.13. (Thompson Transitivity theorem [7])

Let G be a group in which the normalizer of every nonidentity p-subgroup is p-constrained. Then if $A \in SCN_3(P)$, $C_\sigma(A)$ permutes transitively under conjugation the set of all maximal A-invariant q-subgroups of G for any prime $q \neq p$.

2.14. (Collins-Rickman [2])

Let G be a group, and let p and q be distinct prime divisors of G. Assume that G has an Abelian Sylow p-subgroup P for which $m(P) \geq 3$ and that, whenever P_0 is a subgroup of P with $m(P/P_0) \geq 2$, $N_G(P_0)$ is p-constrained. Then $C_\sigma(P)$ permutes the elements of $\text{N}_G(P; q)$ transitively under conjugation.

2.15. (Frobenius theorem [7])

G is p-nilpotent if and only if $N_G(H)/C_\sigma(H)$ is a p-group for every nonidentity p-subgroup H of G.

3. The proof of the Theorem

Let G be a minimal counterexample to the Theorem, for the remainder of this paper.

Lemma 3.1. G is simple.

Proof. By Lemma 5.1. of [2].
Lemma 3.2. Let \(p \) be a prime divisor of \(G \) and \(P \subseteq \text{Syl}_p(G) \). If \(N_0(P) \) has a normal \(p \)-complement, then \(p = 2 \) and the symmetric group \(S_4 \) is involved in \(G \).

Proof. By Lemma 5.2. of [2], (2.2) and (3.1).

For the remainder of this paper, \(Q \) denotes the \(\phi \)-invariant Sylow 2-subgroup of \(G \), and let \(C_\phi = \langle x \rangle \) and \(\Omega(C_\phi) = \langle \omega \rangle \).

Then \(Q \) is a unique \(\phi \)-invariant Sylow 2-subgroup, and let \(p \) be an odd prime in \(\pi(G) \) and \(P \subseteq \text{Syl}_p(G) \), then, by (3.2), \(N_0(P) \equiv w \).

Lemma 3.3. \(d(Q) \geq 2 \).

Proof. If \(d(Q) = 1 \), by (2.6) and hypothesis \(Q = E \ast R \) where \(E \) is \(\phi \)-invariant, extra-special, and \(R \) is \(\phi \)-invariant, cyclic. If \(E = 1 \), by (2.5) \(G \) is 2-nilpotent, contrary to (3.1). So \(E \neq 1 \). Since \(c(c) = 2 \), by (2.4) this is a contradiction.

Lemma 3.4. Every \(\phi \)-invariant proper subgroup of \(G \) is 2-nilpotent.

Proof. Assume otherwise. Let \(M \) be a non-nilpotent maximal \(\phi \)-invariant subgroup of \(G \) without a normal Sylow 2-subgroup. If \(N(O_2(M)) \) is 2-nilpotent, \(M \) is nilpotent, a contradiction. By (2.2), \(N(O_2(M)) \) is 2-closed. Hence \(M = N(O_2(M)) \), \(O_2(M) = Q \), and \(M = N_0(Q) \). Thus there is an odd prime \(p \) dividing the index \([N_0(Q) : C_0(Q)] \).

By (3.3), there is a characteristic subgroup \(C \) of \(Q \) such that \(C \cong Z_2 \times \cdots \times Z_2 \), \(C \) contains \(\Omega(Z(Q)) \), and \([C, \phi] = 1 \). Let \(P_0 \) be a \(\phi \)-invariant Sylow \(p \)-subgroup of \(N_0(Q) \) and \(P \) be a \(\phi \)-invariant Sylow \(p \)-subgroup containing \(P_0 \).

We now claim that \([C, P_0] = 1\). We may assume that \(w \in C \). \([w, P_0] \subseteq Q \cap P = 1\). Since \(P_0 \) centralizes \(C/C_0(P_0) \), \([P_0, C] = 1\). Thus \(C \subseteq N_0(P_0) \).

Let \(M_0 \) be a maximal \(\phi \)-invariant subgroup containing \(N_0(P_0) \). If \(M_0 \) is 2-closed, \(M_0 = N_0(Q) \). Since \(N_0(P_0) = P_0 = P \). Let \(Q_0 \) be a \(\phi \)-invariant Sylow 2-subgroup of \(N_0(P) \). Then \([P, Q_0] \subseteq P \cap Q = 1\), so \(N_0(P) \) is \(P \)-nilpotent, and by (3.2), \(p = 2 \), a contradiction. Thus \(M_0 \) is 2-nilpotent. Hence \(M_0 = N_0(P) \). Since \(C \subseteq N_0(P) \), \(1 = [C, \phi] \subseteq C_0(P) \).

Now put \(Z_0 = [\Omega(Z(Q)), \phi] \). If \(Z_0 = 1 \), \(P, Q \subseteq C_0(Z_0) \). When \(C_0(Z_0) \) is 2-closed, \(P \subseteq N_0(Q) \), and \([Q_0, P_0] \subseteq Q \cap P = 1 \), a contradiction. Hence \(C_0(Z_0) \) is 2-nilpotent. Therefore as \(Q \subseteq N_0(P) \), \([Q, P_0] \subseteq Q \cap P = 1 \), a contradiction. Thus we may assume that \(Z_0 = 1 \), hence that \(\Omega(Z(Q)) = \langle \omega \rangle \).

Put \(\bar{Q} = Q/\langle \omega \rangle \) and let \(C_1 \) be the inverse image of \(Z(\bar{Q}) \cap \bar{C} \) in \(Q \). As \([C_1, x] \subseteq \langle \omega \rangle \), \(C_1 \subseteq N_0(Q) \). On the other hand, let \(y \in C_1 \). Then \([y, \phi] \in C_0(\langle x \rangle) \), since \((y^{-1}xy)^* = y^{-1}xy \). Put \(C_0 = [C_1, \phi] \), so that \(1 + C_0 \subseteq N_0(P) \), hence \(C_0(P) \) contains \(P_0 \) and \(x \).

Now let \(M_1 \) be a maximal \(\phi \)-invariant subgroup of \(G \) containing \(C_0(C_0) \). If \(M_1 \) is 2-closed, \(M_1 = N_0(Q) \), and \([Q_0, P] = 1 \), contradiction. Thus \(M_1 \) is 2-nilpotent,
i.e. $M_1 = N_G(P)$.

Put $\bar{Q} = Q/\Phi(Q)$. \([x, P] \subseteq P \cap Q = 1\). Since P_0 centralizes $\bar{Q}/C_{\bar{Q}}(P_0)$, P_0 centralizes Q. Hence $[P_0, Q] = 1$, a contradiction. Hence the lemma is proved.

For the remainder of this paper, in analogy with Matsuyama [8], we shall prove the following result:

(i) $3 \mid |G|$;
(ii) $|C_G(S)|$ is odd, where S is a ϕ-invariant Sylow 3-subgroup of G;
(iii) $U_0(S; 2) \neq 1$; and
(iv) $m(S) \geq 4$.

On the other hand, in analogy with Collins-Rickman [2], we shall prove that $U_0(S; 2) = 1$. Hence this contradicts above.

For the remainder of this paper, we shall write down the results which can be similarly proved as [8].

(3.5) $C_G(w) \subseteq Q$.

(3.6) If p is an odd prime in $\pi(G)$ and $P \subseteq Syl_p(G)$, then P is Abelian.

(3.7) If p is an odd prime in $\pi(G)$ and A is any p-subgroup of G, then $\text{Aut}_G(A) = N_G(A)/C_G(A)$ is a 2-group.

(3.8) If $\Omega_3(Z(Q)) \neq \langle w \rangle$, then $N_G(T)$ is a 2-group for any nontrivial ϕ-invariant 2-subgroup T of G.

Now put P be a ϕ-invariant Sylow p-subgroup of G for any odd prime p in $\pi(G)$. Let K_p be a normal 2-complement of $N_G(P)$ and $Q_p = Q \cap N_G(P)$. Then $N_G(P) = Q_p K_p$, $Q_p \subseteq Q$. Furthermore let $Q_p^* = C_{Q_p}(K_p)$, and then $Q_p^* = [Q_p^*, \phi]$, since $w \in Q_p^*$.

Hence, for any $s \in \pi(K_s)$, $K_s = K_s$, $Q_s = Q_s$, and $Q_s^* = Q_s^*$. In particular, K_p is a nilpotent Hall subgroup of G.

(3.9) $C_{Q_p}(P) = Q_p^*$.

(3.10) $d(Q_p/Q_p^*) = 1$.

Furthermore let $M_p = N_G(P)$ and $\bar{M}_p = M_p/Q_p^* K_p$. Then by (2.6) and hypothesis, $\bar{M}_p = \bar{E}_p$ Φ \bar{E}_p, where either $\bar{E}_p = 1$ or \bar{E}_p is ϕ-invariant, extra-special and \bar{K}_p is ϕ-invariant, cyclic.

On the other hand, by (3.4), $N_G(Q)$ is nilpotent, and then $N_G(Q) = Q$ by (3.5). Hence by (3.2), S_s is involved in G, yields $3 \mid |G|$. Furthermore let $S \subseteq Syl_3(G)$, and then $m(S) \geq 3$.

Lemma 3.11. Let p be an odd prime in $\pi(G)$. We can write $\bar{M}_p = E_p \Phi \bar{R}_p$, where either $E_p = 1$ or E_p is ϕ-invariant, extra-special, and \bar{R}_p is ϕ-invariant,
cyclic.
If \(E_p = 1\), then \(r = 2^s + 1\) is a Fermat prime.

Proof. By (2.7), it is immediate that \(C_{q(p)}(\phi) = C_{q(p)}(E_p) = 0\). By (2.7), it suffices to prove that \(\phi\) acts on \(E_p/E'_p\) fixed-point-freely. First we may assume that \(|R_p| = 2\). Then, since we can suppose that \(\phi\) centralizes an element of \(E_p\) of order 4, it is not necessarily trivial.

Now suppose that there exists an element \(y\) of \(E_p\) of order 4 such that \([\overline{y}, \overline{\phi}] = 1\). As \(E_p\) is extra-special, the conjugate class of \(y\) is \(\{\overline{y}, \overline{yw}\}\). Hence \([E_p, C_{\overline{y}}(\overline{y})] = 2\). Then \(\phi\) acts on the set, \(E_p - C_{\overline{y}}(\overline{y})\), fixed-point-freely. It is impossible.

Lemma 3.12. Let \(S\) be a \(\phi\)-invariant Sylow 3-subgroup of \(G\). If \([Q_3/Q_3^*, \phi] = 1\), then \(S\) is a T.I.-set.

Proof. If not, there exists an element \(g\) of \(G\) such that \(S^g \neq S\) and \(S^g \cap S = \pm 1\). First we shall show that \(C_{Q_3}(z) = Q_3^*\) for any \(z \in S^g\). It is immediate that \(C_{Q_3}(z) \supseteq Q_3^*\). If \(C_{Q_3}(z) = Q_3^*\) for some \(z \in S^g\), \(w \in C_{Q_3}(z)\), by hypothesis. But this is impossible. Next we will prove that, for any \(z \in S^g\), \(C_{Q_3}(z) = Q_3^*\) is 3-nilpotent.

Now put \(C_{Q_3}(z) = C\) and let \(S_1\) be a nontrivial subgroup of \(S\). By (3.7), \(\text{Aut}_C(S_1)\) is a 2-group. Put \(\text{Aut}_C(S_1) \ni t \neq 1\). Then \(t\) is a 2-element. Furthermore there exists an element \(y\) of \(S_1\) such that \(y^t = y\), i.e. \(y\) and \(y^t\) are conjugate in \(C_{Q_3}(z)\). By (2.11), \(y\) and \(y^t\) are conjugate in \(N_C(S)\). Thus we may assume that \(t \in N_C(S)\), and \(t \in Q_3^*\). Then \(t \in C_{Q_3}(z) = Q_3^* = C_{Q_3}(S)\), a contradiction. Hence \(C_{Q_3}(z) = Q_3^*\) is 3-nilpotent by (2.15), especially \(C_{Q_3}(z) = 3\)-constrained.

Furthermore put \(3 \equiv p \in \pi(K_3)\), and let \(P\) be a \(\phi\)-invariant Sylow \(p\)-subgroup of \(G\). \(N_{Q_3}(S) = N_{Q_3}(P)\). Thus \(C_{Q_3}(z) = \pi(K_3)\)-nilpotent.

Next put \(1 \neq y \in S^g \cap S\), and let \(M\) be a \(\pi(K_3)\)-complement of \(C_{Q_3}(y)\), and then we will prove that \(M\) is a 2-group.

\(S\) normalizes \(M\) and \(|S|, |M| = 1\). Now suppose that \(M\) is not a 2-group. There exists an odd prime \(q\) in \(\pi(M)\) such that \(q \in \pi(K_3)\). Furthermore there exists a Sylow \(q\)-subgroup \(Q_1\) of \(M\) normalized by \(S\). Since \(\text{Aut}_C(Q_1)\) is a 2-group, \(S \subseteq C_{Q_3}(Q_1)\), and hence \(Q_1 \subseteq K_3\). It is impossible. Thus \(M\) is a 2-group.

On the other hand, it is easy to show that \(M \supseteq Q_3^*\). Now suppose that \(M = Q_3^*\). Then \(C_{Q_3}(y) = Q_3^*K_3\), and since \(S, S^g \subseteq C_{Q_3}(y)\), \(S = S^g\), a contradiction. Hence \(M \supseteq Q_3^*\), \(C_{Q_3}(S) \subseteq N_{Q_3}(M)\).

Let \(\overline{M}\) be the intersection of all elements of \(U_{C_3}(S; 2)\). By (2.14), \(\overline{M} \supseteq M\). On the other hand, as \(\overline{M}\) is \(\phi\)-invariant, \(S\overline{M}\) is \(\phi\)-invariant. By (3.4), \(S\overline{M}\) is 2-nilpotent. Thus \([\overline{M}, S] \subseteq \overline{M} \cap S = 1\). Hence \(\overline{M} \subseteq C_{Q_3}(S) = Q_3^*\), a contradiction. This completes the proof of Lemma 3.12.

Now if \(E_p = 1\), \(r = 2^s + 1\) is a Fermat prime by (3.11), where \(r = |\phi|\).
On the other hand, when $E_3 = 1$, by (3.12), S is a T.I.-set, where S is a ϕ-invariant Sylow 3-subgroup of G.

By B. Baumann [1], Q is not a maximal subgroup of G, and thus there exists a proper subgroup X of G containing Q such that Q is a maximal subgroup of X.

In analogy with Matsuyama [8], we can say the following.

X is a solvable $\{2, 3\}$-subgroup with $O(X) = 1$, and X satisfies the hypothesis of (2.8). Thus the structure of X is one of the following two type.

\begin{itemize}
 \item \textbf{Type I}
 \begin{align*}
 X/O_2(X) \text{ is isomorphic to } S_3, \text{ the symmetric group on 4 letters.}
 \\
 Z(O_2(X)) \text{ contains } Z(Q) \text{ and } Z(O_2(X)) = [Z(O_2(X)), X] \oplus C_{Z(O_2(X))}(X),
 \\
 \text{where } [Z(O_2(X)), X] \text{ is isomorphic to } Z_2 \times Z_2.

 \end{align*}

 \item \textbf{Type II}
 \begin{align*}
 X \text{ has a subgroup } H \text{ containing } O_2(X) \text{ such that } [X:H] = 2.
 \\
 H/O_2(X) = X_i/O_2(X) \times X_i/O_2(X), \text{ for } i = 1, 2.
 \\
 Z(O_2(X)) \text{ contains } Z(Q) \text{ and } Z(O_2(X)) = [Z(O_2(X)), X] \oplus [Z(O_2(X)), X] \oplus C_{Z(O_2(X))}(H),
 \\
 \text{where } [Z(O_2(X)), X] \text{ is isomorphic to } Z_2 \times Z_2, \text{ for } i = 1, 2.

 \end{align*}
\end{itemize}

On the other hand, considering the structure of X, $Z(Q)$ is noncyclic, by (3.8), $Q_3^* = 1$.

Now we will show that $U_C(K_3; 2) \neq 1$. For the remainder of this paper, let S be a ϕ-invariant Sylow 3-subgroup of G.

\textbf{Lemma 3.13.} \quad $U_C(S; \pi(K_3)) = U_C(S; 2)$.

Proof. It is easy that $U_C(S; \pi(K_3)) \supseteq U_C(S; 2)$. If there exists an element A of $U_C(S; \pi(K_3))$ that is not a 2-group, by [7; 6.2.2], S normalizes some Sylow π-subgroup S^* of A. As $\text{Aut}_C(S^*)$ is a 2-group, $[S, S^*] = 1$. But it contradicts $C_C(S) = K_3$.

By (3.13), it suffices to prove that $U_C(S; \pi(K_3)) \neq 1$.

Now we suppose that $U_C(S; \pi(K_3)) = 1$. By Matsuyama [8], we can say the following.

\begin{itemize}
 \item (3.14) \quad If $S^g = S$, $g \in G$, then $m(S \cap S^g) \leq 1$.
 \item (3.15) \quad There exists a nontrivial proper subgroup Z_1 of $Z(Q)$ such that
 \[3/|C_C(Z_1)| \text{ and } [Z(Q); Z_1] = 2. \]
\end{itemize}

Furthermore, in analogy with Matsuyama [8], we can show the next lemma.

\textbf{Lemma 3.16.} \quad \textit{There exists a nontrivial element } a \textit{of } $\Omega_1(Z(Q))$ \textit{such that}
\[|a^{(h)} \cap Z_1| > \frac{1}{2} |a^{(h)}| \text{ or } \Omega_1(Z(Q))^* = \{a^{(h)}\}. \]
Proof. Put $a_i \in \Omega_i(Z(Q))^\delta$, $a_i \neq w$. Let $A_i = \{a_i^{(y)}\}$. If there exists an element of $\Omega_i(Z(Q))^\delta - A_i$ that does not equal w, let a_2 denote this element. So let $A_2 = \{a_2^{(y)}\}$, and then $A_1 \cap A_2 = \phi$. Inductively, if there exists an element of $\Omega_i(Z(Q))^\delta - \bigcup_{i=1}^r A_i$ that does not equal w, we let a_i denote this element. Then we can write the following:

$$\Omega_i(Z(Q))^\delta - \langle w \rangle = \bigcup_{i=1}^r A_i,$$

where $A_i \cap A_j = \phi$ if $i \neq j$, $1 \leq i, j \leq m$.

Now suppose that $m \geq 2$. Let $|\Omega_i(Z(Q))| = 2^m$, and as $[\Omega_i(Z(Q)) : \Omega_i(Z_i)] = 2$, $|\Omega_i(Z_i)| = 2^{m-1}$. If, any i, $1 \leq i \leq m$, $|a_i^{(y)} \cap Z_i| \leq \frac{1}{2} |a_i^{(y)}|$, then since $|a_i^{(y)}| = r$ is odd. $|\bigcup_{i=1}^r (a_i^{(y)} \cap Z_i)| \leq |\Omega_i(Z(Q)) - \Omega_i(Z_i)| = 2^m - 2$.

But, on the other hand, $|\Omega_i(Z(Q)) - \Omega_i(Z_i)| = 2^{m-1}$, and $|\Omega_i(Z_i)| = 2^{m-1} - 1$. It is impossible. Hence $m = 1$. $\Omega_i(Z(Q))^\delta = \{a_i^{(y)}\}$. This lemma is proved.

(3.17) a^δ normalizes some Sylow 3-subgroup of G, $0 \leq i \leq r-1$.

Now put $\Delta_i = \langle a^\delta \rangle^G \cap Q_3$, and then $\Delta_i \triangleleft \Phi$, and $\Delta_i^\Phi = \Delta_i^{i+1}$, $0 \leq i \leq r-1$. Furthermore, as $Q_3^* = 1$, $Q_3 = E_3^* R_3$.

If $E_3 = 1$, then S is a T.I.-set, by (3.13). In analogy with the above argument, we can show that $\Delta_i \triangleleft \Phi$, $0 < i < r-1$.

But, in this time, w is an only involution in Q_3. This is a contradiction.

Hence, for the remainder of this paper, we may assume that $E_3 \neq 1$, i.e. $r = 2^s + 1$ is a Fermat prime. Then (3.16) is reduced that there exists a nontrivial element a of $\Omega_1(Z(Q))$ such that $|a^{(y)} \cap Z_1| > \frac{1}{2} |a^{(y)}|$.

On the other hand, $m(S) \geq 4$.

(3.18) There exists an element b_i, b_j of Δ_i, respectively, $0 \leq i, j \leq r-1$, $i \neq j$, $[b_i, b_j] = 1$.

Next Δ is determined as the following.

Lemma 3.19. $\Delta_i = \{b_i, b_i^w\}, 0 \leq i \leq r-1, b_i \neq w$.

Proof. If $w \in \Delta_i$, then w centralizes some element of order 3, a contradiction. Thus $w \notin \Delta_i$.

For the remainder, we set $b = b_i$.

Suppose that $b, b^\varepsilon \in \Delta_i, g \in G, b \neq b^\varepsilon$. Then $b, b^\varepsilon \in Q_3$. Since $S = C_3(w) \oplus C_3(bw), \frac{1}{2} m(S) = m(C_3(b)) = m(C_3(bw)) \geq 2$.

Let S^* be a Sylow 3-subgroup of $C_3(b^\varepsilon)$ containing $C_3(b^\varepsilon)$. There exists an element h of $C_3(b^\varepsilon)$ such that $(C_3(b))^{b^\varepsilon} \subseteq S^*$. On the other hand, let S^* be a
Sylow 3-subgroup of G containing S^*, and then $S=S_0$ as $C_3(b^x) \subseteq S \cap S_0$. Since $(C_3(b))^x \subseteq S \cap S^x$, $gh \in N_3(S)$. Since $b^x=b^t$, b and b^x are conjugate in $N_3(S)$. As $N_3(S)=Q_3K_3$, b and b^x are conjugate in Q_3. Hence $\Delta_i=\{b, b^x\}$.

Now put $\Delta=\langle \Delta_i | 0 \leq i \leq r-1 \rangle$, and then, by (3.19), Δ is ϕ-invariant Abelian. Furthermore, as $[\Delta, \phi]=1$, $[\Delta, \phi]K_3$ is nilpotent, and

$$1+\phi[\Delta, \phi]=C_{\phi}(K_3)=Q_3^{*}=1,$$

this is a contradiction. Hence $\mu_3(S;2)=1$.

On the other hand, we will prove the next lemma, and then, in analogy with Collins-Rickman [2], the proof of the main theorem is complete.

Lemma 3.20. Let S_0 be a proper subgroup of S such that $m(S/S_0) \leq 2$. Then $N_3(S_0)$ is 3-solvable.

Proof. First we shall consider the case $m(S_0) \geq 2$. In this case, we will show that $C_3(S_0)$ is 3-nilpotent. Put $C=C_3(S_0)$, and let S_1 be a nontrivial subgroup of S. If there exists a nontrivial element t of $\text{Aut}_C(S_1)$, t is a 2-element as $\text{Aut}_C(S_1)$ is a 2-group. Then there exists an element y of S_1 such that $y^t=y$. Thus y and y^t are conjugate in $C_3(S_0)$. By (2.11), y and y^t are conjugate in $N_3(C)$. Hence we may assume that $t \in Q_3 \cap C=Z_2 \times \cdots \times Z_2$. As $t \neq w$, $S=C(t) \oplus C_3(tw)$. Hence

$$\frac{1}{2} m(S)=m(C_3(t))=m(C_3(tw)).$$

This is a contradiction. By (2.15), $C_3(S_0)$ is 3-nilpotent. $C_3(S_0)/S_0$ is 3-solvable. Hence $N_3(S_0)$ is 3-solvable.

Now we may assume that $m(S)=4$ and $m(S_0)=2$. In this case, similarly, if $C_M(S_0)=C_3(S)$, $M_3=N_3(S_0)$, then by (2.10), $C_3(S_0)$ is 3-nilpotent. Hence, furthermore, we may assume that $C_3(M_3(S_0))=C(S)$.

If there exists an element x_0 of $C_3(M_3(S_0))$ such that $|x_0|=4$, then $x_0^2=w \in C_3(M_3(S_0))$, a contradiction.

If there exists a four-group $\langle x_1 \rangle \times \langle x_2 \rangle$ in $C_3(M_3(S_0))$, then $S=\langle C_3(x_1), C_3(x_2), C_3(x_1x_2) \rangle$. On the other hand, S_0 is contained in $C_3(x_1), C_3(x_2),$ and $C_3(x_1x_2)$, and since

$$m(C_3(x_1))=m(C_3(x_2))=m(C_3(x_1x_2))=2,$$

$C_3(x_1)=C_3(x_2)=C_3(x_1x_2)=S_0$, a contradiction. Hence we can write the following;

$$C_3(M_3(S_0)=C(S) \langle t \rangle,$$

where $t^2 \in C(S)$ and $S=S_0 \oplus \{S, t\}$.

Put \(C_0(S_0) = C_0(S_0)/S_0 \). Then \(\overline{S} = S \cap N_{C_0(S_0)}(S)' \). By (2.12), \(C_0(S_0) \) is 3-solvable. Hence, in this case, \(N_0(S_0) \) is 3-solvable. This lemma is complete.

Now we already proved that \(\mu_0^*(S; 2) \neq 1 \). Next we will show that there exists a \(\phi \)-invariant element \(Q_1 \) of \(\mu_0^*(S; 2) \). Suppose false. Since \(\mu_0^*(S; 2) \) is \(\phi \)-invariant, \(r \) divides \(|\mu_0^*(S; 2)| \). On the other hand, by (2.14), the element of \(\mu_0^*(S; 2) \) permuted by \(C(S) \) transitively. This is a contradiction.

Let \(N = SQ_1 \). By (3.4), \(N \) is nilpotent. Hence

\[Q_1 \subseteq C_0(S) = C_0(K_3). \]

On the other hand, as \(Q_3^* = 1 \), \(|C_0(S)| \) is odd. This is a contradiction. The main theorem is proved.

Acknowledgement.
The author thanks to Mr. Fukushima and Mr. Matsuyama for this theme and for their helpful advices.

Reference

