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Résumé

This work is devoted to the Marsden–Weinstein reduction problem for Kaehle-
rian metrics [34]. We focus the attention on Kaehlerian manifolds (M , !, J) whose
underlying symplectic structures (M , !) are homogeneous under symplectic actions
of completely solvable Lie groups. Homogeneous symplecticmanifolds of this type
always admit lagrangian foliations. In this setting the starting Kaehlerian reduction
problem yields new problems involving the topology of affinely flat manifolds [36].
The KV cohomology of these affinely flat structures is computed using techniques
of spectral sequences. Questions close to bi-lagrangian structures are discussed. The
KV cohomology of affinely flat manifolds is used to give new proofs of some known
deep theorems. For instance we revisit the fundamental conjecture of Gindikin,
Piateccii–Sapiro and Vinberg [18], [19]. The global geometry of compact symplec-
tic solvmanifolds admitting Kaehlerian metrics is revisited. Various additonal items
which are closely related to the reduction problem and to lagrangian foliations are
discussed.

Ce travail est consacré à l’analogue Kähĺerien du probl̀eme de ŕeduction des
variét́es symplectiques d’après Marsden-Weinstein [34]. L’accent est mis sur les
variét́es Kähĺeriennes (M , !, J) dont les structures symplectiques sous-jacentes
(M , !) sont homog̀enes sous des actions symplectiques des groupes de Lie
compl̀etement ŕesolubles. Les variét́es symplectiques homogènes de ce type portent
toujours des feuilletages lagrangiens. Du problème initial de ŕeduction Kähĺerienne
surgisent des nouvelles questions liéesà la topologie des variét́es affinement plates
[36]. La KV cohomologie de ces structures affinement plates est calcuĺee par des
techniques de suite spectrale. Des questions en relation avec les structures bi-
lagangiennes sont discutées. Dans ce même contexte la KV cohomologie est uti-
lisée pour donner des nouvelles démonstrations de certaines conjectures devenues
théor̀emes. C’est le cas de la conjecture fondamentale de Gindikin, Piateccii-Sapiro
et Vinberg [18], [19]. Nous avons aussi revisité la ǵeoḿetrie globale des soluvariét́es
qui admettent des ḿetriques Kähĺeriennes. D’autres prolongements sont explorés
mais non exploit́es.
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1. Introduction

A cause de ses applications en Physique mathématique, en Mécanique hamiltoni-
enne etc. les réductions des variétés symplectiques sont d’un immense intérêt [33], [34].
Un procédé de réduction des variétés symplectiques admettant une action hamiltonienne
propre avec application moment d’un groupe de Lie est dû à J. Marsden et A. Weinstein
[34]. La première partie de ce travail concerne le problème de réduction de Marsden-
Weinstein des variétés Kählériennes. A cause de certaines applications que nous avons
en vue, les efforts sont concentrés sur les variétés Kählériennes dont les variétés sym-
plectiques sous-jacentes supportent des systèmes dynamiques différentiables résolubles
[50]. Plus précisement on se limite aux variétés symplectiques admettant des actions
simplement transitives d’un groupe de Lie complètement résoluble. Le contexte arrêté
conduit á la confrontation de la géométrie des variétés bi-Lagrangiennes avec la géo-
métrie des variétés localement plates au sens de Koszul, cf.[28], [38], [49], [50], [55].
De cette confrontation surgissent plusieurs problèmes dont deux sont étudiés en détail
dans ce travail. Le premier problème prend racine dans la situation suivante.

Soit (M, !, L) un triplet formé d’une variété symplectique (M, !) équipée d’un
feuilletage lagrangienL. Une structure presque complexe (M, J) est adapatée à (M,!)
si (M, !, J) est une variété presque Kählérienne dans le sens qu’en toutpoint x 2
M, X, Y 2 Tx M ! !(J X, Y) C p�1!(X, Y) est un produit hermitien défini positif.
Dans cette situation (L, J(L)) est une paire de distributions lagrangiennes transverses.
Immédiatement surgit la question de savoir si la deuxième distribution lagrangienne
J(L) est complètement intégrable.

Lorsque cette distribution LagrangienneJ(L) est complètement intégrable (M, !)
est équipé de la paire (L, J(L)) de feuilletages Lagrangiens transverses. Ces deux feuille-
tages sont des feuilletages en (sous-)variétés localementplates [56]. Quand il en est ainsi
M porte une unique connexion linéaire sans torsionD telle que pour tout champ de vec-
teursX on aDX!D 0, DX L D L et DX J(L)D J(L) [23]. La question cruciale est alors
de savoir si le tenseur de courbure deD est identiquement nul. PosonsDJ D D. Si le
tenseur de courbure deDJ est nul alors la structure localement plate de chaque feuille
de L (respectivement la structure localement plate de chaque feuille de J(L)) est induite
par la structure localement plate (M, DJ) [23], [38]. On dit alors que la paire (L, J(L))
est localement (ou affinement) plate.

Les questions soulevées ci-dessus ont conduit à l’étude du problème P2 de l’exis-
tence de structures presque complexes intégrables (M, J) qui sont adaptées à uneF L-
structure (M, !, L) et qui donnent naissance à des structures bi-Lagrangiennes locale-
ment plates définies par (L, J(L)), (i.e. tel que le tenseur de courbure deDJ soit nul.)
Le problème généralP2 ainsi posé est difficile. En effet il existe des variétés symplec-
tiques n’admettant pas de structure Kählérienne. Nous recommandons les reférences
[6], [16], [33], [52]. Nous avons limité notre ambition au cas des F L-structures in-
variantes à gauche dans les groupes de Lie complètement résolubles. Nous avons donné
une solution complète du problèmeP2.
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En réalité pour résoudre le problèmeP2 il a fallu étudier un premier problèmeP1

lui aussi génériquement difficile. En voici l’énoncé. Au départ soit (M, J) une struc-
ture holomorphe adaptée à uneF L-structure (M, !, L). A priori on ne fait pas d’hypo-
thèse de nullité du tenseur de courbure de la connexion symplectique DJ qui en est
issue. On suppose donnée une action hamiltonienne (propre)avec application moment
équivariante� d’un groupe de LieH dans (M, !, L). On suppose que zéro est une va-
leur régulière de l’application�. Ainsi ��1(0) possède un quotient qui est une réduction
de Marsden-Weinstein de (M, !, L). Alors se pose le problèmeP1 de savoir si (M, J)
accompagne cette réduction. En d’autres termes, (M, J) possède-t-elle une réduction
qui est adaptée à la réduction symplectique donnée par��1(0) ? C’est ce problème de
réduction (Kählérienne) qui légitime le titre de cet article. Dans le cas desF L-structures
invariantes à gauche dans les groupes de Lie complètement résolubles nous résolvons
complètement ce problèmeP1, voir les Théorèmes 21 et 23. Les solutions du problème
P1 servent d’ingrédients puissants pour l’étude et la résolution du problèmeP2 (voir
les Théorèmes 16 et 25). Soit (G, !, L) une F L-structure invariante à gauche,G étant
un groupe de Lie complètement résoluble. A propos des problèmes P1 et P2 on observe
que chaque structure holomorphe (G, J) qui est adpatée à (G,!, L) définit une structure
localement plate (G, DJ) qui en général n’est pas invariante à gauche. On a prolongé
notre champ d’intérêt pour la structure localement plate (G, DJ) à notre intérêt pour
la KV cohomologie de (G, DJ) ainsi pour quelques applications de cette cohomologie
à des questions d’apparence éloignées de nos préoccupations de départ. La KV co-
homologie scalaire de (G, DJ) est calculée à l’aide des suites spectrales fournies par la
paire (L, J(L)). Les paires de feuilletages Lagrangiens sont utiles à la méthode BKS
de quantification géométrique [58]. Ce prolongement n’est pas abordé dans ce travail.
Nous avons mis en évidence des liens étroits entre la KV cohomologie de (G, DJ) et
divers aspects de la géométrie globale de (G, DJ) tels que :
(i) le problème de complétude de (M, DJ) [10], [17], [36] ;
(ii) le problème d’hyperbolicité des variétés localement plates [26], [28], [29], [54].
D’autres ramifications de la KV cohomologie de (G, DJ) sont signalées sans toute fois
être traitées en détails,e.g. (i) le couplage entre la KV cohomologie et la KV homo-
logie, (ii) la KV cohomologie et les réductions de Dirac des structures de Poisson. Cette
dernière relation entre la KV cohomologie des algébroides de Koszul-Vinberg [39] et les
travaux de Blaszak et Marciniak [8] sur les réductions de Dirac des structures de Poisson
nous a été signalée par Jim Stasheff [51]. D’après Karin Erdmann et Simon Salamon [15]
les méthodes de réduction Kählériennes mises en évidence dans ce travail suggèrent un
autre angle de lecture des travaux de Dorfmeister [13] sur laconjecture fondamentale
énoncée par S.G. Gindikin, I.I. Piatecckii-Sapiro et E.B.Vinberg concernant la fibration
des variétés Kählériennes homogènes au-dessus des domaines bornés [14], [18], [19].
Cette suggestion est examinée à la section 4. L’utilisationde la KV cohomologie per-
met en effet de redémontrer plus rapidement le cas (c) de la conjecture fondamentale,
cf. Théorème 49.
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Ce travail comprend quatre sections.
Section 1. Cette section est consacrée à l’introduction.
Section 2. Elle est consacrée à la réduction des groupes de Lie symplectiques et

aux rappels des théorèmes de construction des structures bi-Lagrangiennes affinement
plates Kählériennes dans certains espaces symplectiques homogènes [37].

Section 3. Elle est consacrée aux réductions des structuresholomorphes (G, J) qui
sont adaptées à uneF L-structure invariante à gauche (G,!, L). Sur le plan technique les
principaux résultats sont les Théorèmes 16, 21, 23, et 25. Leproblème de platitude de la
connexion symplectiqueDJ fait l’objet de la sous-section 3.5 (cf. Théorème 31). En vue
de certaines applications (e.g. deux conjectures de Benson-Gordon, cf. Théorème 43), le
Théorème 33 est l’ âme de la sous-section 3.5.

Section 4. Cette section est consacrée entre autres à des applications variées du
Théorème 33. Le cas (c) de la conjecture fondamentale ainsi que deux questions for-
mulées par C. Benson et C. Gordon sont revisitées. Dans le cadre de la géométrie des
F L-structures un cas particulier de la première conjecture deBenson-Gordon se déduit
du Théorème 43. Ce qui est qualifié de Conjecture 42 est infirmée par un exemple ;
(cf. Remarque 45). La sous-section 4.3 est consacrée à des KVcomplexes de chaine
attachés aux algèbres de Koszul-Vinberg. Des exemples et diverses applications de la
KV cohomologie sont donnés. En particulier cette cohomologie est utlisée pour donner
une nouvelle démonstration du cas (c) de la conjecture fondamentale, cf. Théorème 49.
Ce faisant nous avons répondu affirmativement à une interrogation de Karin Erdmann et
Simon Salamon [15]. Du point de vue de calcul effectif on a construit quelques suites
spectrales qui convergent vers la KV cohomologie des algèbres de Koszul-Vinberg. En
outre l’examen des KV complexes à coefficients dans les fibrésdes tenseurs a per-
mis de construire une suite spectrale mettant en lunmière unisomorphisme canonique
entre la cohomologie des formes différentielles d’ordre supérieur introduite et étudiée
par Jean-Louis Koszul dans [30] et la cohomologie du complexe pionnier de Albert
Nijenhuis étudié dans [44], cf. Théorème 60. Cette suite spectrale fournit des interpréta-
tions inédites de ces deux cohomologies. Le Lemme 50 est en fait la première tentative
réussie de définition d’une théorie d’homologie des KV algèbres. De ce point de vue
ce lemme est fondateur de la théorie d’homologie des algèbres de Koszul-Vinberg à
coefficients dans leurs bi-modules. En dimension finie on a rappelé le couplage naturel
entre la KV cohomologie et la KV homologie lorsque le module des coefficients est
un module à gauche. Ce couplage a été introduit dans [41]. On arappelé également
l’utilisation de la KV cohomologie pour construire les structures de Poisson et leurs
réductions de Dirac [8], [39]. A la sous-section 4.7 on signale l’existence desk-tissus
Lagrangiens dans certaines variétés Kählériennes. Le seulrésultat concernant ces tissus
est leur linéarisation locale.
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2. Groupes de Lie symplectiques

2.1. Réductions d’une 2-forme différentielle fermée. Tous les groupes de Lie
qui sont considérés sont réels, résolubles, connexes et simplement connexes. SoitG
un groupe de Lie. L’algèbre de Lie deG est la sous-algèbreg des champs de veteurs
invariants par les translations gauche dansG. On désigne par�2

l (G) l’espace vectoriel
des 2-formes différentielles fermées qui sont invariantespar les translations à gauche.

Etant donné! 2 �2
l (G) on s’intéresse aux suites finies (H j , G j ) de paires de sous-

groupes de Lie connexes fermés deG satisfaisant la condition suivante : la sous-algèbre
de Lie qui détermine le sous-groupeH j engendre le noyau de la 2-forme! j D i ?!
où i : G j 7! G est l’application inclusion. Pour tout! 2 �2

l (G) il existe une suite
(H j , G j ) satisfaisant les deux conditions suivantes :
(1) G jC1 � G j ,
(2) codim(G j ) D j .
Un groupe de Lie complètement résoluble est un groupe de Lie résoluble satisfaisant
la condition suivante : les valeurs propres de la représentaion adjointe deG sont des
fonctions réelles. Dans la suite on se servira des suites de paires (H j , G j ) dont l’exis-
tence est garantie par le résultat élémentaire suivant.

Lemme 1. Soit G un groupe de Lie complètement résoluble. Soit ! 2 �2
l (G) une

forme symplectique. Alors il existe une suite(H j , G j ) de paires de sous-groupes de Lie
fermés jouissant des quatre propriétés suivantes:
(1) dans chaque paire(H j , G j ) le sous-groupe Hj est distingué dans Gj ,
(2) H j � H jC1 et GjC1 � G j ,
(3) la codimension de Gj dans G est égale à j,
(4) la sous-algèbre de Lie hj qui définit le sous-groupe de Lie Hj engendre le noyau
de ! j D i ?!, i : G j ! G est l’application inclusion.

Démonstration. On procède par recurrence sur la dimension de G. Si la dimen-
sion deG est deux alors la conclusion du Lemme 1 est trivialement vraie. Supposons
que le Lemme 1 soit vrai jusqu’à la dimension 2m. Considérons un groupe de Lie
complètement résolubleG de dimension 2mC 2. On suppose queG porte une forme
symplectique! 2 �2

l (G). Soit g l’algèbre de Lie deG. L’algèbre de Lieg contient
un idéal de dimension 1,h1. Soit H1 le sous-groupe de Lie distingué connexe deG
déterminé par la sous-algèbre de Lieh1. Désignons parg1 le sous-espace vectoriel
orthogonal symplectique deh1 dansg. En d’autres termes on a!(X, Y)D 0, 8X 2 h1,8Y 2 g1. Puisque! est ferméeg1 est une sous-algèbre de Lie de codimension 1 deg.
Soit G1 le sous-groupe de Lie connexe déterminé parg1 et soit!1 l’image inverse de! par l’application inclusion deG1 dansG. De la forme différentielle!1 le groupe de
Lie quotient G1=H1 hérite d’une forme symplectique invariante par les translations à
gauche. Puique dim(G1=H1) D 2m l’hypothèse de recurrence du Lemme 1 assure que
G1=H1 possède une suite de paires (H 0

j , (G1=H1) j ) satisfaisant les quatre proppriétés du
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Lemme 1 pour la forme symplectique héritée de!1. L’image inverse de (H 0
j , (G1=H1) j )

par l’homomorphisme� de G1 sur G1=H1 détermine dans (G, !) une suite (H j , G j )
qui satisfait les quatre propriétés du Lemme 1.

Corollaire 2. Tout groupe de Lie complètement résoluble G muni d’une forme
symplectique! 2 �2

l (G) contient un sous-groupe Lagrangien.

Démonstration. On procède par recurrence sur la dimension de G. Soit! 2 �2
l (G)

une forme symplectique. En dimension 2 la conclusion du corollaire est vraie. En di-
mension 2mC 2 on choisit un sous-groupe connexe distingué de dimension 1H1 � G.
Conformément à la notation adoptée dans la démonstration duLemme 1 on désigne par
G1 le sous-groupe de Lie connexe dont l’algèbre de Lieg1 est le sous-espace vetoriel!-orthogonal à l’algèbre de Lieh1 de H1. L’argument de recurrence assure l’existence
d’un sous-groupe de Lie LagrangienLm dansG1=H1. L’image inverseLmC1 D ��1(Lm)
par l’homomorphisme canonique� : G1 ! G1=H1 est un sous-groupe de Lie Lagrang-
ien du groupeG. Ceci termine la démonstration du corollaire.

Dans la suite un couple (G, !) avec! 2 �2
l (G) est appelé groupe de Lie sym-

plectique si! est une forme symplectique. D’après le Corollaire 2 du Lemme1 tout
groupe de Lie symplectique complètement résoluble possèdeun feuilletage Lagrangien
L invariant par les translations à gauche. La démonstration du Lemme 1 assure que
l’on peut en fait choisir la suite (H j , G j ) et le sous-groupe LagrangienL de sorte que
L se projette sur un sous-groupe LagrangienL j � G j =H j dans chaque groupe de Lie
symplectique (G j =H j , ! j ).

Conformément à la notation utilisée ci-dessus! j désigne (abusement) à la fois la
restriction de! au sous-groupeG j et la forme symplectique du groupe de LieG j =H j

héritée de! j . Notonsi l’homomorphisme inclusionG jC1 ! G j alors la forme différenti-
elle ! j et la forme symplectique! jC1 2 �2

l (G jC1=H jC1) sont liées par� ?! jC1 D i ?! j .

DÉFINITION 3. Une structure bi-Lagrangienne dans une variété symplectique
(M, !) est une paire (F1, F2) de feuilletages Lagrangiens partout transverses.

Dans la suite une structure bi-Lagrangienne dans (M, !) sera présentée sous la forme
d’un quadruplet (M, !, F1, F2). Il existe une unique connexion symplectique sans tor-
sion D qui préserve chacun des feuilletagesF1 et F2. (Voir Section 3 pour la définition
précise deD).

DÉFINITION 4. Une structure bi-Lagrangienne (M,!, F1, F2) est dite Kählérienne
si la connexion symplectiqueD qu’elle détermine est la connexion de Levi-Civita d’une
structure Kählérienne (M, h) dont la forme de Kaehler est!.
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Dans la définition 4 ci-dessus dire que! est la forme de Kaehler de (M, h) signifie
que M porte une structure presque complexe intégrable (M, J) dont le tenseurJ définit
le produit hermitienh par la formule

h(X, Y) D !(J X, Y)Cp�1!(X, Y).

Retournons aux feuilletages LagrangiensL j dans les (G j =H j , ! j ). Alors dans chaque
G j =H j le feuilletage L j est facteur d’une structure bi-Lagrangienne Kählérienne
(G j =H j , ! j , L j , N j ) [37], [38]. Plus précisement on a

Théorème 5. Il existe dans chaque(G j =H j ,! j ) un deuxième feuilletage Lagrang-
ien Nj transverse à Lj tel que la structure bi-Lagrangienne(L j , N j ) est affinement plate
et se projette sur(L j C 1, N j C 1) dans le sens suivant: � et i étant respectivement la
projection de GjC1=H j sur GjC1=H jC1 et l’inclusion de GjC1=H j dans Gj =H j on a�?(i �1? (N j )) D N jC1.

En conjuguant la géométrie affine et la géométrie symplectique des groupes de Lie
complètement résolubles [37], on a plus précisement

Théorème 6. On peut construire les feuilletages Lagrangiens Nj de sorte que
chaque structure bi-Lagrangienne(G j =H j ,! j , L j , N j ) soit affinement plate Kählérienne.

REMARQUE 7. Tout groupe de Lie symplectique complètement résoluble possède
une structure bi-Lagrangienne affinement plate Kählérienne (L, N) compatible avec une
suite (H j , G j ) dans le sens du théorème énoncé 5 ci-dessus.

3. Problème de réduction des structures analytiques complexes adaptées aux
FL-structures

3.1. Notation-Définitions. Soit (G,!) un groupe de Lie symplectique complète-
ment résoluble. On fixe une fois pour toutes une structure bi-Lagrangienne affinement
plate Kaehĺreienne (L, N) et une suite (H j , G j ) satisfaisant les conditions suivantes.
(1) Le feuilletageL est invariant gauche,
(2) H j est distingué dansG j ,
(3) Chacun des groupes de Lie symplectiques (G j =H j ,! j ) hérite de (L, N) d’une struc-
ture bi-Lagrangienne affinement plate Kählérienne (G j =H j , ! j , L j , N j ),
(4) (L jC1, N jC1) est la projection de (L j , N j ) dans le sens de Théorème 5 ci-dessus.
On désigne parJj le tenseur de la structure presque complexe du produit hermitien de
(G j =H j , ! j , L j , N j ).

En particulier le produit hermitienh0 de (G, !) est donné par la formule

h0(X, Y) D !(J0X, Y)Cp�1!(X, Y).
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Ainsi le triplet (G j =H j , !, Jj ) représente la structure Kählérienne plate définie par
(L j , N j ). Conformément au formalisme de réduction de Marsden-Weinstein la variété
Kählérienne (G jC1=H jC1,! jC1, JjC1) est une réduction (Kählérienne) de (G j =H j ,! j , Jj ).
Dans la variété holomorphe (G j =H j , Jj ) les feuilletagesL j et N j sont totalement réels
et orthogonaux pour la métrique Riemannienneg j (X, Y) D ! j (Jj X, Y). En d’autres
termes on aJj (L j ) D N j .

REMARQUE 8. On observe que dans le quadruplet (G j =H j ,! j , L j , N j ) seuls sont
invariants par l’action du groupe de LieG j le couple (! j , L j ).

DÉFINITION 9. Une F L-variété symplectique (ouF L-structure symplectique) est
une variété symplectique (M, !) munie d’un feuilletage LagrangienL.

Chaque feuille de tout feuilletage LagrangienL porte une connexion linéairer dont
les tenseurs de torsion et de courbure sont nuls. La dérivation covarianter de cette
connexion est donnée par la formule suivante

!(rX(Y), Z) D (L X iY!)(Z),

dans laquelle les champs de vecteursX, Y sont tangents au feuilletageL, L X et iY

sont respectivement la dérivation de Lie dans la direction du champ de vecteursX et
le produit intérieur par le champ de vecteursY.

Soit (M, !, L, N) une structure bi-Lagrangienne. Comme on l’a signaléM porte
une unique connexion symplectique sans torsionD qui vérifie la condition suivante :
pour tout champ de vecteursX et tout champ de vecteursY tangent àL (resp. tangent
à N) DX(Y) est tangent àL (resp. est tangent àN). Pour écrire la fomrule explicite
donnant la connexionD on décompose tout champ de vecteurs tangents àM comme
il suit X D (X1, X2) 2 T F � T N. Alors la dérivation covarianteD est donnée par la
formule suivante

D(X1,X2)(Y1, Y2) D (rX1(Y1)C [X2, Y1]1, rX2(Y2)C [X1, Y2]2).

Les composantesrX1(Y1) et rX2(Y2) ont été définies ci-dessus par la formule!(rX(Y), Z)D (L X iY!)(Z). Rappelons que la structure bi-Lagrangienne est dite affine-
ment plate si le tenseur de courbure deD est nul.

DÉFINITION 10. Une structure bi-Lagrangienne (G, !, L, N) est dite complète si
la connexion symplectiqueD qu’elle définit est géodésiquement complète.

La géométrie Kählérienne d’uneF L-variété consiste en la compatibilité entre la géo-
métrie analytique complexe et laF L-structure dans le sens de la défintion suivante.



RÉDUCTIONS KÄEHLÉRIENNES DANS LESGROUPES 245

DÉFINITION 11. Une structure presque complexe intégrable (M, J) est adaptée à
une F L-structure (M, !, L) si les conditions suivantes sont vérifiées
(i) le triplet (G, !, J) définit une structure de variété Kählérienne,
(ii) le quadruplet (G, !, L, J(L)) définit une structure bi-Lagrangienne.

Toute structure symplectique (M, !) possède des structures presque complexes (M, J)
qui lui sont adaptées dans le sens queJ est une isométrie de! et qu’en tout point
x de M la forme quadratiquehqi définie dans l’espace vectoriel tangent par la for-
mule hqi(X) D !x(J X, X) est définie positive. Dans ce cas (L, J(L)) est une paire de
distributions Lagrangiennes qui sont transverses en tout point. Il existe des structures
symplectiques ne possédant aucune structure presque complexe intégrable adaptée [11],
[16], [33], [52].

PROBLÈME 12. L’étude du module des structures presque complexes intégrables
adaptées à uneF L-structure dans le sens de la définition 9 est sûrement un problème
largement ouvert. Nous allons en traiter un aspect plus modeste en nous limitant à cer-
tainesF L-structures symplectiques homogènes.

En effet soitT L � T M le sous-fibré tangent à un feuilletage LagrangienL ; T L est un
algébroide de Lie. L’algèbre de Lie0(T L) des sections deT L est l’algèbre des com-
mutateurs de l’algèbre de Koszul-Vinberg dont la multiplication est définie parX, Y !rXY, 8X, Y 2 0(T L) [37], [38], [56]. Compte tenu de l’unicité de connexion sym-
plectique sans torsion associée à une structure bi-Lagrangienne, une structure presque
complexe intégrable (M, J) adaptée à uneF L-structure symplectique (M, !, L) donne
lieu à une unique connexion symplectique sans torsionD qui preserve la structure bi-
Langrangienne (L, J(L)) [23], [37]. La restriction deD à chaque feuille du feuilletage
L (resp. du feuiletageJ(L)) y définit une structure localement plate dans le sens de
Koszul. Le tenseur de courbure deD est l’unique obstruction à l’existence des coor-
données (locales) de Darboux constituées des intégrales premières respectives deL et
de J(L), (cf. les conditions (1), (2), (3), (4) du théorème 17 ci-dessous).

EXEMPLE 13. Considérons le plan réel (x, y) 2 R2 muni de la forme différentielle
sympectique! D exp(xy) dx^ dy. Les deux feuilletages par les droitesx D constant et
par y D constant sont Lagrangiens. Le tenseur de courbure de la connexion symplec-
tique correspondant n’est pas nul. Par contre si! D (exp(x)C exp(y)) dx^ dy alors la
même paire de feuilletages Lagrangiens ((x D constant), (y D constant)) done lieu à une
connexion linéaire dont le tenseur de courbure est nul.

PROBLÈME 14. Un autre problème intéressant est le problème de réduction (à
la Marsden-Weinstein) des structures presque complexes (resp. des structures presque
complexes intégrables) adpatées à uneF L-structure symplectique.
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Nous allons étudier les problèmes 12 et 14 ci-dessus en nous limitant auxF L-structures
symplectiques homogènes des groupes de Lie complètement résolubles. La principale
raison de cette restriction est que nous disposons de Théorème 5 de la section 2. Dans
la sous-section qui suit on va s’intéresser aux structures presque complexes intégrables
qui sont quasi-adaptées (dans le sens de la définition somme toute classique ci-dessous
[7]) à une F L-structure symlectique donnée. En voici la définition

DÉFINITION 15. Une structure presque complexe intégrable (M, J) est quasi-
adaptée à uneF L-structure symplectique (M, !, L) si (M, !, J) est une structure
Kählérienne.

3.2. Réduction des tenseurs presque comlexes quasi-adaptés. Comme il a été
annoncé on se limite auxF L-structures symplectiques homogènes des groupes de Lie
complètement résolubles. Nous allons traiter en détail le cas des groupes de Lie sym-
plectiques. Soit (G, !, L) une F L-structure invariante à gauche dans un groupe de Lie
symplectique complètement résoluble (G, !). Posons (G0, !0, L0) D (G, !, L). On se
place dans la configuration du Théorème 5. En vertu de ce théorème 5 on fixe une suite
(H j , G j ) qui satisfait le Lemme 1 et qui donne lieu à la suite (G j =H j , ! j , L j , N j )) des
structures bi-Lagrangiennes (affinement) plates Kählérienne. La structure Kählérienne
plate du groupe de Lie symplectique (G j =H j , !) est définie par une structure presque
complexe intégrable (G j =H j , Jj ) adaptés à laF L-structure (G j =H j , ! j , L j ).

En outre (G jC1=H jC1, L jC1, N jC1) est une réduction de (G j =H j , ! j , L l , N j ) dans
le sens du Théorème 5 ci-dessus. Un des résultats principauxde cette sous-section est
le suivant

Théorème 16. Les notations étant celles ci-dessus toute structure presque com-
plexe intégrable(G, J) quasi-adaptée à la F L-structure symplectique(G, !) lui est
adpatée dans le sens de la définition11.

La démonstration du Théorème 16 répose sur d’autres théorèmes intéressants que nous
allons énoncer. Ceux de ces théorèmes qui sont classiques seront énoncés sans démonstra-
tion mais la reférence sera donnée. Ceux de ces théorèmes quisont nouveaux seront
démontrés en détail. On va se placer au niveau des deux premiers termes (H1, G1) et
(e,G), de la configuration du Théorème 5,e est l’élément neutre du groupe (symplectque)
G. Soienth1, g1 et g les algèbres de Lie respectives des groupes de LieH1, G1 et G.

A partir de maintenant on fixe une structure presque complexeintégrable (G, J)
qui est quasi-adptée (G, !, L). Le produit hermitienhJ de (G, !, J) est défini par la
formule

hJ(X, Y) D !(J X, Y)Cp�1!(X, Y).

Retenons au passage que nous sommes en présence de deux métriques Kählériennes
suivantes :
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(i) la métrique affinement plateh0(X, Y) D g0(X, Y)Cp�1!(X, Y) avecg0(X, Y) D!(J0X, Y),
(ii) la métriquehJ(X, Y) D gJ(X, Y)Cp�1!(X, Y) définie par (G, !, J).
Soit T G le fibré tangent holomorphe de (G, J). NotonsT1 et T2 � T G les sous-fibrés
vectoriels réels engendrés parh1 et parJ(h1) respectivement. NotonsTo le sous-fibré qui
est orthogonal àT1�T2 relativement à la métrique RiemanniennegJ(X, Y)D !(J X, Y).
La décomposition suivante estgJ-orthogonale

T GD To � T1 � T2.

En tout point
 2 G1 les sous-espace vectorielsTo(
 ) et T1(
 ) sont tangents à la sous-
variété
G1. La restriction àG1 de T1 est tangent aux fibres de la fibration principale

H1 ! G1 ! G1=H1.

En restriction àG1 le sous-fibréTo est le sous-fibrégJ-othogonal àT1. De toute évidence
To est un sous-fibré analytique complexe deT G.

Intéressons nous maintenant à l’action par translation à gauche deH1 dans (G,!).
Cette action est hamiltonienne. Par réduction à la Marsden-Weinstein on obtient le
groupe de Lie symplectique (G1=H1, !1). Intéressons nous également aux structures
bi-Lagrangiennes affinement plates définies par (L, J0L) et par (L1, J1(L1)). On sait
que (L, J0L) se projette sur (L1, J1L1) dans le sens du Théorème 5.

Voici un énoncé extrait d’un théorème démontré dans [37].

Théorème 17. On conserve la notation ci-dessus, à savoir (G j =H j ,!, Jj , L j , N j ).
Soit 2C 2m la dimension de G. Alors tout point de G possède un voisinage ouvert U
domaine des fonctions coordonnées locales q1, : : : , qmC1, p1, : : : , pmC1 qui satisfont les
conditions suivantes
(1) ! DP

i dqi ^ dpi ,
(2) les pi sont des intégrales premières locales du feuilletage L,
(3) les qi sont des intégrales premières locales du feuilletage ND J0(L),
(4) le système(qi , pi ) est un système de coordonnées affines de la structure localement
plate définie par la structure bi-Lagrangienne affinement plate (L, J0(L)),
(5) les fonctions complexes zi D qi Cp�1pi sont de coordonnées locales de la struc-
ture presque complexe intégrable(G, J0).

DÉFINITION 18. Un système de coordonnées locales qui vérifient les condi-
tions (1) à (4) est appelé coordonnées de Darboux-Hess de (G, !, L, J0(L)).
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REMARQUE 19. La condition (5) du Théorème 17 ci-dessus équivaut à la sui-
vante
(50) si (q0, p0) et (q, p) sont des systèmes de coordonnées vérifiant les conditions (1),
(2), (3), (4), (5) et dont les domaines ont une intersection non vide alors le change-
ment coordonnées (q0, p0) D A(q, p) est une transformation affine rigide (i.e. A est une
isométrie de l’espace euclidien [57]).

Dorénavant nous fixons un atlasAD dont les fonctions coordonnées locales satisfont
les conditions (1), (2), (3), (4), (5) du Théorème 17 ci-dessus.

Notons Si le champ de vecteurs hamiltonnien de la fonctionpi . Les conditions
(1), (2), (3) assurent queJ0(Si ) est le champ de vecteurs hamiltonien de la fonction
qi . Il en resulte que le système de vecteurs (Si , J0(Si )) est orthonormé pour la métrique
Riemannienneg0(X, Y) D !(J0(X), Y).

Considérons maintenant la structure presque complexe intégrable (G, J) qui est
quasi-adaptée à laF L-structure (G, !, L).

Lemme 20. Les champs de vecteurs Si sont liés au tenseur J comme il suit:
(a) [Si , J(Sj )] est une section locale de J(L) ;
(b) [J(Si ), J(Sj )] est une section locale de L.

Démonstration. On se restreint à l’ouvertU domaine des fonctions coordonnées
(q, p). Soit RU le fibré trivial U � R2mC2 que nous identifions avec le fibré tangent
TU, (dim(G)D 2mC2). Soit LU la restriction àU de L. On définit l’homomorphisme
injectif � de LU dans RU défini par

�(x, v) D (gJ(S1, v), : : : , gJ(SmC1, v), gJ(J0S1, v), : : : , gJ(J0SmC1, v))

D (!x(J S1, v), : : : , !x(J SmC1, v), !x((J J0S1), v), : : : , !x((J J0SmC1), v)).

L’image �(LU ) est un sous-fibré trivial deRU . Soit c1, : : : , cmC1 une base des
sections localement constantes de�(LU ). Chaquec j est une application constante non
nulle deU à valeurs dans�(LU )� RU . Soit � j D ��1(c j ). Le système (�1,:::,�mC1) est
une base des sections deLU satisfaisant les conditions suivantes!(J Si , � j ) D constant
et !(J J0Si , � j ) D constant.

Utilisons g0(X, Y)D !(J0X, Y) et la base orthonormée (Si , J0(Si )) pour décomposer
les J(�i ). On a ainsi

J(�i ) DX
k

!(J0(Sk), J(�i ))Sk CX
k

!(J(�i ), Sk)J0Sk.

Rappelons les faits suivants : d’une part les!(J(Si ), � j ) et les!(J(J0(Si )), � j ) sont
des constantes, les champs de vecteursS1, : : : , SmC1, J0(S1), : : : , J0(SmC1) commutent
deux à deux ; d’autre partJ0 et J sont des isométries de!. De ces observations on
déduit la propriété de commutation [Sk, J(�i )] D 0 pour j , k WD 1, : : : , mC 1.
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Considérons un triplet (�i , Sj , Sk). De l’identité [Sj , J(�i )] D 0 on déduit les sui-
vantes

!([Sj , J(�i )], J(Sk)) D 0,

!([Sj , J(Sk)], J(�i )) D 0.

Puisque lesJ(�i ) engendrent le sous-fibré LagrangienJ(LU ) les [Sj , J(Sk)] sont des
sections locales deJ(L). L’assertion (a) est démontrée.

(b) On sait que les champs de vecteursSj commutent deux à deux. Ainsi la nul-
lité du tenseur de Nijenhuis deJ se réduit à l’dentité suivante

[ J(Si ), J(Sj )] C J([ J(Sj ), Si ]) C J([Sj , J(Si )]) D 0.

Compte tenu de l’assertion (a) et du fait queL est Lagrangien, [J(Si ), J(Sj )] est une
section deL. Le Lemme 20 est démontré.

Le Lemme 20 sert d’ingrédient pour la démonstration de plusieurs thèorèmes dont
le suivant

Théorème 21. Les distributions T1 � T2 et T0 sont complètement intégrables.

Démonstration. Sans perte de généralité on suppose queS1 est une section locale
de T1. On utilise le produit scalairegJ(X, Y) D !(J(X), Y) pour décomposer ortho-
gonalementL

L D T1 � orthgJ (T1).

Considérons l’isomorphisme� du fibré LU dans le fibré trivialU � RmC1 défini par

�(t S1, v) D (!(t J0(S1), v)C t!(J(S1), v), !(J0(S2), v), : : : , !(J0(SmC1, v)))

pour (t S1,v) 2 T1�orthgJ (T1). On peut supposer que le sous-fibré�(orthgJ (T1)) est trivial
sur l’ouvertU . Soit (w1, : : : , wm) une base des sections locales constantes de orthgJ (T1)
au-dessus deU ; posons� j D ��1(w j ). Les� j sont des sections de orthgJ (T1) satisfaisant
les conditions suivantes

gJ(S1, � j ) D !(Js1, � j ) D 0,

!(J0(Sk), � j ) D constant.

pour j WD 1, : : : , m et k WD 1, : : : , mC 1.
Maintenant on utlise le produit scalaire!(J0(X), Y) pour décomposer les� j dans

la base (Si , J0(Si ))

� j DX
k

!(J0(Sk), � j )Sk.
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Maintenant on tient compte du fait que les!(J0(Sk), � j ) sont des constantes. On en
déduit alors les identités suivantes

[Sk, � j ] D 0

pour j WD 1, : : : , m et k WD 1, : : : , mC 1.
Pour terminer on suppose queU est un voisinage de l’élément neutre deG. Alors

le sous-fibré orthogonal deT1 dansT G1 pour le produit scalaireg0(X, Y)D !(J0(X), Y)
est engendré par les sectionsS2, : : : , SmC1, J0(S2), : : : , J0(SmC1).

Nous sommes maintenant en mesure de conclure.
Les sous-fibrésT1� T2 et To sont analytiques complexes. Nous allons appliquer le

résultat classique suivant [4], [24].

Théorème 22. Soit (M,!, J) une variété Kählérienne et V une distribution holo-
morphe complètement intégrable dans M. Soit K D V? la distribution orthogonale
à V. Si K est holomorphe alors il est aussi une distribution complètement intégrable.

En vertu du Théorème 22 énoncé ci-dessusT0 est complètement intégrable si et seule-
ment si T1 � T2 est complètement intégrable. PuisqueS1 est un champ de vecteurs
hamiltonien on a

S1!(J(S1), � j ) D !([S1, J(S1)], � j )C !(J(S1), [S1, � j ]).

En vertu de Lemme 20 [S1, J(S1)] et � j sont des sections deJ L et de L respec-
tivement. D’un autre côté on vient de montrer que [S1, � j ] D 0. On déduit de ces
considérations l’identité

!([S1, J(S1)], � j ) D 0.

On a également

S1!(J(S1), J(� j )) D !([S1, J(S1)], J(� j ))C !(J(S1), [S1, J(� j )]).

Les champs de vecteursJ(� j ) et [S1, J(S1)] étant des sections deJ L on est conduit
à l’identité suivante

!([S1, J(S1)], J(� j )) D 0.

Ainsi relativement au produit scalairegJ(X, Y) D !(J(X), Y) le champ de vecteurs
[S1, J(S1)] est orthogonal au sous-fibré engendré par les sections� j , J(� j ). Ce der-
nier n’est pas autre chose que le sous-fibréT0. Par consequent [S1, J(S1)] est une sec-
tion de T1 � T2. Le sous-fibréT1 � T2 est donc complètement intégrable. En vertu du
Théorème 22 le sous-fibréT0 est aussi complètement intégrable. Le théorème 21 est
démontré.
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3.3. Théorème de réduction des structures complexes quasi-adaptées. On
conserve les notations et les données des sous-sections précédentes. La variété holo-
morphe (G, J) porte deux feuilletages analytiques complexesT1 � T2 et T0 qui sont
partout transverses. En outre le feuilletageT0 est subordonné au sous-groupeG1 dans
le sens que les feuilles deT0 passant par les points deG1 sont contenues dansG1. Par
ailleurs le Théorème 21 et l’identité [S1, � j ] D 0 montrent que la restriction àG1 de
T0 est une connexion principale plate duH1-fibré principal

H1 ! G1 ! G1=H1.

Les groupes de LieH1 et G1 étant simplement connexes chaque feuille deT0 est difféo-
morphe àG1=H1. Soit 3 la feuille de T0 passant par l’élément neutre. En identifiant
la variétéG1 avec le produit directH1 � 3 la fibration principale ci-dessus revient à
projeter sur le facteur3. On identifie ainsiG1=H1 avec la variété Kählérienne3. Notons
encore (G1=H1, J) la structure presque complexe de cette structure Kählérienne. En vertu
du Théorème 21 la structure Kählérienne (G1=H1, !1, J) est obtenue par adaptation de
(G1=H1, J) à la F L-structure symplectique homogène (G1=H1,!1, L=h1). Résumons ces
conclusions sous la forme suivante

Théorème 23. Soit(G,!, L) une F L-structure invariante à gauche dans un groupe
de Lie complètement résoluble et H1 � G le sous-groupe distingué connexe dont l’algèbre
de Lie est h1. Soit G1 le sous-groupe de Lie connexe qui est!-orthogonal à H1. On
suppose que L est inclu dans l’algèbre de Lie g1 de G1. Alors toute structure presque
complexe intégrable(G, J) quasi-adaptée à(G, !, L) possède une réduction(G1=H1, J)
qui est quasi-adaptée à la réduction(G1=H1, !1, L=h1).

REMARQUE 24. Comme convenu nous ne nous intéressons qu’auxF L-structures
homogènes. Cependant cette propriété d’homogénéité n’estpas exigée des structures
complexes qui sont quasi-adaptées auxF L-structures homogènes.

3.4. Problème de complète intégrabilité de structures bi-Lagrangiennes quasi-
adaptées à uneFL-structure. Soit (G, !, L) une F L-structure homogène. Le groupe
de Lie G est supposé être complètement résoluble. On fixe une paire (H1, G1) qui nous
place dans la configuration du Théorème 23.

On fixe une structure complexe auxiliaire (G, J0) adaptée à (G,!, L) et satisfaisant
les cinq propriétés du Théorème 17. Sous ces contraintes (G,!, L, J0(L)) est affinement
plate et Kählérienne. En outre (G, !, L, J0(L)) se projette sur une structure analogue
(G1=H1, L=h1, J0(L=h0)) qui est affinement plate et Kählérienne.

En vertu du Théorème 23 toute structure holomorphe (G, J) qui est quasi-adaptée à
(G,!, L) se projette dans (G1=H1) sur une structure holomorphe que nous notons aussi
(G1=H1, J) qui est quasi-adaptée à (G1=H1,!1, L=h1). Une fois fixées ces données nous
sommes en position de démontrer le Théorème 16. Traduit en termes de problème de
complète intégrabilité le Théorème 16 est équivalent au suivant.
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Théorème 25. La distribution J(L) est complètement intégrable.

Démonstration. On va procéder par recurrence sur la dimension de G.
Si G est une surface le Théorème 25 est vrai.
Nous admettons que le Théorème 25 est vrai juqu’à la dimension 2m. Nous considér-

ons une configuration du Théorème 23 dans laquelle la dimension de G est égale à
2mC 2. Pour continuer on utilise la structure affinement plate Kählérienne auxiliaire
(G, !, L, J0(L)). On fixe une fois pour toutes un atlasAJ0 dont les fonctions coor-
données locales vérifient les cinq proprit́és du Théorème 17 pour (G, !, L, J0, J0(L)).

On projette (G, !, L, J(L)) et (G, !, L, J0(L)) sur leur réduction respective
(G1=H1, !1, L=h1, J(L=h1)) et (G1=H1, !1, L=h1, J0(L=h1)). Dans cette configuration,
en vertu de l’hypothèse de recurrence Théorème 25 est vrai dans (G1=H1, !1, L=h1).
C’est à dire queJ(L=h1) est complètement intégrable. SoitU un ouvert domaine des
coordonnées de Darboux-Hessq1, : : : , qmC1, p1, : : : , pmC1 de (G,!, L, J0(L)). Soit � la
projection deG1 sur G1=H1. Sans perte de généralité on suppose queU1 D �(U \G1)
est un domaine des coordonnées de Darboux-Hess de (G1=H1,!1, L=h1, J0(L=h1)). En
outre les fonctions coordonnées localesq2, : : : , qmC1, p2, : : : , pmC1 sont supposées être les
images inverses par� des coordonnées de Darboux-Hess de (G1=H1,!1, L=h1, J1(L=h1)).
Ces coordonnées étant définies dans�(U \ G1)) seront (abusivement) notées aussi
q2, : : : , qmC1, p2, : : : , pmC1.

Nous conservons les notations du Lemme 20. En vertu de l’assertion (b) du Lem-
me 20 les champs de vecteurs [J(Si ), J(Sj )] sont des sections deL=h1 pour i , j :
2,:::,mC1. L’hypothèse de recurrence assure queJ(L=h1) est complètement intégrable.
On en déduit que [J(Si ), J(Sj )] D 0 pour i , j WD 2, : : : , mC 1.

L’assertion (a) du Lemme 20 dit que les champs de vecteurs [S1, J(Sj )] sont des
sections du fibréJ(L). Nous sommes en position de pouvoir appliquer un théorème de
[24], [25] dont voici un énoncé partiel écrit sous la forme utilisée ici.

Théorème 26. Soit 4 un feuilletage totalement géodésique dans une variété
Riemannienne(M, g) dont la métrique Riemannienne g est quasi-fibrée(par rapport
au feuilletage4). Soit 4? la distribution orthogonale à4. Si 4? est complètement
intégrable alors4? est aussi totalement géodésique.

Maintenant continuons la démonstration du Théorème 25. On observe que la restriction
à G1 de la métrique RiemanniennegJ(X, Y) D !(J(X), Y) est�-quasi-fibrée,� étant
la projection deG1 sur G1=H1. En vertu du Théorème 21 les distributions intégrables
T1 et T0 sont totalement géodéques pour la connexion de Levi-Civitar de la mtrique!(J X, Y). PuisqueJ est intégrable et que! est fermée on a

JrX(Y) D rX(JY)
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quels que soient les champs de vecteursX, Y [7]. ChaqueSj étant un champ de vec-
teurs hamiltonien on a

!(Sk, [J S1, J Sj ]) D J S1!(Sk, J Sj ) � J Sj!(Sk, J S1).

Pour j , k WD 2,: : : , mC1 le membre de droite de l’égalité ci-dessus vaut zéro. Calculons
maintenant

!([ J S1, J Sj ], J Sk) D !(rJ S1(J Sj ), J Sk) � !(rJ Sj(J S1), J Sk).

La connexionr étant également une connexion symplectique on a

!(rJ Sj (J S1), J Sk) D J Sj!(J S1, J Sk) � !(J S1, rJ Sj (J Sk)).

On observe que pourj , k WD 2, : : : , mC1 les champs de vecteursJ Sj et J Sk sont des
sections deT0. Puisque la distributionT0 est totalement géodésique et est orthogonale
à J S1 le membre de droite de la dernière égalité ci-dssus est donc nul, c’est à dire que
l’on a

J Sj!(J S1, J Sk) � !(J S1, rJ Sj (J Sk)) D 0.

On a donc

!([ J S1, J Sj ], J Sk) D !(rJ S1(J Sj ), J Sk) � !(rJ Sj (J S1), J Sk) D !(rJ S1(J Sj ), J Sk).

Il faut maintenant tenir compte du fait queJr D r J. Alors le calcul ci-dessus
donne

!([ J S1, J Sj ], J Sk) D !(rJ S1(J Sj ), J Sk) D !(JrJ S1(Sj ), J Sk) D !(rJ S1(Sj ), Sk)

D !([ J(S1), Sj ], Sk)C !(rSj (J S1), Sk).

PuisqueSk et rSj (Sk) sont orthogonaux àJ S1 le calcul ci-dessus conduit à

!([ J S1, J Sj ], J Sk) D !([ J S1, Sj ], Sk).

Maintenant on tient compte de ce queSk est un champ de vecteurs hamiltonien. On
en déduit

!([ J S1, Sj ], Sk) D J S1!(Sj , Sk) � Sj!(J S1, Sk) D 0.

A ce stade on conclut que [J S1, J Sj ] est orthogonal àT0. En vertu du Lemme 20
[ J S1, J Sj ] est colinéaireS1. PuisqueS1 et J S1 sont sans singularité dans l’ouvertU
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et sont orthogonaux àT0 posons f D 1=!(J S1, S1). On a alors!( f J S1, S1) D 1. Rap-
pelons queS1 est un champ de vecteurs hamiltonien. On a alors d’un côté

!([ J( f S11), J Sj ], J S1) D !(J[ J( f S1), Sj ], J S1)C !(J[ f S1, J Sj ], J S1)

D !([ J( f S1), Sj ], S1)C !([ f S1, J Sj ], S1)

D J( f s1)!(Sj , S1) � Sj!(J( f S1), S1)

C f S1!(J Sj , S1) � J Sj!( f S1, S1)

D 0.

De l’autre côté on a

!([ f (J S1), J Sj ], J S1) D f !([ J S1, J Sj ], J S1) � ((J Sj ) f )!(J S1, J S1)

D f !([ J S1, J Sj ], J S1).

Il s’en suit que!([ J S1, J Sj ], J S1) D 0 pour j WD 2, : : : , mC 1.
On conclut que les champ de vecteursJ S1, : : : , J SmC1 commutent deux à deux.

Cela termine la démonstration des Théorèmes 16 et 25.

3.5. Structures affines issues des structures complexes intégrables adaptées
aux FL-structures. Soit (G,!, L) une F L-structure homogène dans un groupe de Lie
complètement résolubleG. Les Théorèmes 16 et 25 assurent que toute structure holo-
morphe (G, J) adaptée à (G,!, L) définit une structure bi-Lagrangienne (G,!, L, J(L)).
Cette sous-section est consacrée à l’examen du tenseur de courbure de la connexion
symplectique définie par la paire (L, J(L)) de feuilletages Lagrangiens.

On recourt de nouveau à la machinerie utilisée dans les sous-sections précédentes.
En occurrence on se place dans la configuration du Théorème 23. Pour alléger la notation
on va continuer de noter (G1=H1, !1, J) la structure Kählérienne de (G1=H1, !1) obte-
nue par réduction (cf. Théorème 23). Plus précisement les structures (G,!, J0, L, J0(L)),
(G1=H1, !1, J0, L=h1, J0(L=h1)), (G, !, J, L, J(L)) et (G1=H1, !1, J, L=h1, J(L=h1))
satisfont la conclusion du théorème 23. En outre (G, !, J0, L, J0(L)) et sa réduction
(G1=H1, !1, J0, L=h1, J0(L=h1)) sont affinement plates Kählériennes. On fixe égale-
ment un système (q1, : : : , qmC1, p1, : : : , pmC1) des coordonnées de Darboux-Hess
de (G, !, J0, L, J0(L)). Ces fonctions coordonnées sont définies dans un ouvertU et
vérifient les conditions (1), (2), (3), (4), (5) du Théorème 17. Le sous-système
(q2, : : : , qmC1, p2, : : : , pmC1) se projette en un système des coordonnées de Darboux-
Hess de (G1=H1, !1, J0, L=h1, J0(L=h1)) et que nous désignons aussi parq2, : : : , qmC1,
p2, : : : , pmC1. Elles sont définies dans l’ouvert�(U \G1). Comme dans les sous-sections
précédentesSj est le champ de vecteurs hamiltonien dep j et J0Sj est le champ de vec-
teurs hamiltonien deq j .
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La variétéG porte les métriques Riemanniennesg0(X,Y)D !(J0X,Y) et gJ(X,Y)D!(J X, Y). Nous notons l’isomorphisme deLU dansU � RmC1 ainsi défini :v étant
une section deLU on pose

 (v) D (gJ(S1, v), : : : , gJ(SmC1, v)).

Soit b1, : : : , bmC1 la base canonique deRmC1. Nous notonsc j la section constante de
U � RmC1 définie parc j (x) D b j , 8x 2 U . Les c j forment une base des sections de
U � RmC1.

Soit � j la section deLU définie par (� j ) D c j . En d’autres termes on a

 (� j ) D (0, : : : , !(J Sj , � j ), 0, : : : , 0).

Cela montre que les� j vérifient donc!(J Sj , �k) D Æ jk . Rappelons au passage que les
Sj forment une base des sections locales deLU .

Proposition 27. Les champs de vecteurs J(� j ) sont des champs hamiltoniens.

Démonstration. Puisque [Sj , Sk] D [ J Sj , J Sk] D 0 on a

diJ(�i )!(Sj , Sk) D diJ(�i )!(J Sj , J Sk) D 0.

En vertu de Lemme 20 [Sj , J Sk] est une section deJ(LU ). On a donc

diJ(�i )!(Sj , J Sk) D !([Sj , J Sk], J(�i )) D 0.

La Proposition 27 est démontrée.

REMARQUE 28. On rappelle que les fonctionsp1, : : : , pmC1 sont des coordonnées
parielles de l’atlasAJ0. Si les fonctionsp01, : : : , p0mC1 proviennent aussi deAJ0 alors

(p01, : : : , p0mC1) D A(p1, : : : , pmC1)

où A est une transformation affine rigide deRmC1.

Nous allons suposer que les ouverts de l’atlasAJ0 sont des domaines de définition des
bases symplectiquesS1, : : : , SmC1, J(�1), : : : , J(�mC1). Nous sommes en mesure de
démonstrer l’énoncé qui suit

Théorème 29. Les fonctions hamiltoniennes locales(y, p) D (y1, : : : , ymC1,
p1, : : : , pmC1) dont les champs de vecteurs hamiltoniens sont les champs de vecteurs
(S1,:::, SmC1, J(�1),:::, J(�mC1)) forment un système des coordonnées de Darboux-Hess
de (G, !, L, J(L)) jouissant de la propriété(5) du Théorème 17.
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Démonstration. Compte tenu des résultats mis en évidence ci-dessus on a

!(Si , [Sj , J(�k)]) D Sj!(Si , J(�k)) D 0.

Ce qui montre que les [Sj , J(�k)] sont des sections deLU . En vertu de l’assertion (a)
de Lemme 20 on a donc les identités suivantes

!([Sj , J(�i )], J(Sk)) D !([Sj , J Sk], J(�i )) D 0.

Cela montre que les crochets [Sj , J(�k)] sont tous nuls. La Proposition 27 assure que
les champs de vecteursJ(� j ) commutent deux par deux. Par conséquent le système
(S1,: : : , SmC1, J(�1),: : : , J(�mC1)) est une base symplectique formée des champs de vec-
teurs hamiltoniens commutant deux à deux. On rappelle que les fonctionsp1, : : : , pmC1

vérifient la propriété (4) du Théorème 17. (Sj est le champ de vecteurs hamiltonien
de la fonctionp j et J� j est le champ de vecteurs hamiltonien dey j ). Consiérons les
systèmes

(y j , p j ) D
�Z

i J� j!, p j

�

définis par les systèmes (Sj , J� j ). Ces fonctions forment des systèmes de coordonnées
de Darboux-Hess de (G, !, L, J(L)).

Il reste à s’assurer que ces systèmes vérifient la propriété (5) du Théorème 17. Sup-
posons définies sur le même ouvertU les fonctions (y, p)D (y1,:::, ymC1, p1,:::, pmC1) et
(y0, p0) D (y01, : : : , y0mC1, p01, : : : , p0mC1) qui sont des hamiltoniennes locales de
(S1,:::, SmC1, J(�1),:::, J(�mC1)) et de (S01,:::, S0mC1, J(�01),:::, J(�0mC1)) respectivement.
Alors on aura

(y0, p0) D (a(y)C c, (at )�1(p)C d).

Nous savons que la transformation affinep ! p0 D (at )�1(p) C c est rigide. Ce qui
veut dire que sa partie linéairep ! (at )�1(p) est orthogonale. Donc le système des
coordonnées locales (y, p) jouit des propriétés (1), (2), (3), (4), (5) du Théorème 17.

REMARQUE 30. Les fonctions (y, p) du dernier théorème 29 ci-dessus forment
un atlas notéAD? .
D’après H. Hess [23] l’existence de système des coordonnéesde Darboux-Hess pour
une structure bi-Lagrangienne (M, !, L, N) est équivalente à la nullité du tenseur de
courbure de la connexion symplectique définie par (L, N). Comme corrolaire du théo-
rème 29 on a
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Théorème 31. Soit (G, !, L) une F L-structure symplectique invariante à gauche
dans un groupe de Lie complètement résoluble G. Alors les tenseurs de courbure des
connexions symplectiques définies par les structures presque complexes intégrables(G, J)
adaptées à(G, !, L) sont tous nuls.

REMARQUE 32. La connexion bi-LagrangienneD? déterminée par (G,!, L, J(L))
est la connexion de Levi-Civita de la métrique Kählérienne plate qui s’écrith? D dzdNz0
dans l’atlas dont les coordonnées complexes locales sont les fonctionsz D (y, p) D
y C p�1p du Théorème 29. Notons (G, J?) la structure presque complexe de l’atlas
déterminé par les coordonnées (y, p). Il est facile de vérifier que tout automorphisme de
(G,!, L, J(L)) préserve la connexionD?. Par conséquent si� est un automorphisme de
(G, !, J, L) alors � préserve la structure affinement plate (G, D?). Cependant il n’est
pas garanti que� préserve la métrique Kählérienneh?.
La technique de réduction nous permet de démontrer un théorème d’invariance des
champs de vecteurs hamiltoniens deAD? . En voici l’énoncé précis

Théorème 33. Soit 0 un sous-groupe de G dont l’action par les translations à
gauche en fait un groupe d’automorphismes de(G, !, L, J).

Alors 0 contient un sous-groupe d’indice fini0� � 0 dont les éléments
 2 0�
laissent invariants les champs de vecteurs hamiltoniens des fonctions coordonnées
de AD? .

Démonstration. Nous allons procéder par recurrence sur la dimension deG.
Si G est une surface le théorème 33 est vrai. En effet0 est (entre autres) un sous-

groupe du groupe des transformations affines de (G, D). Les éléments de0 préservent
le tenseurJ, la forme symplectique! ainsi que les deux directionsL et J(L). Nous
savons par ailleurs que le feuilletage LagrangienL est engendré par un sous-groupe
distingué H1 de G. Soit h1 l’algèbre de Lie deH1. Soit � une base deh1. La paire
(� , J� ) est une base des sections globales de (L, J(L)). Soit 
 2 0 et x 2 G. On
munit TxG et T
 (x)G des bases (� (x), J(� (x))) et (� (
 (x)), J(� (
 (x)))) respectivement.
Dans ces bases soitX D (s, t) 2 TxG, on a alorsd
 (s, t)D (�(
 )s, t=�(
 )) et J(s, t)D
(�t , s). Traduisons en coordonnées la propriété de commutationd
 (J(X))D J(d
 (X)).
Cela donne l’identité

�2(
 ) D 1.

Dans les coordonnées de l’atlas affine (AD? ) les 
 2 0 sont des transformations affines
rigides dont les parties linéaires sont l’identitéI2 ou �I2. Soit 0� � 0 le sous-groupe
formé des
 2 0 tels que�(
 ) D 1. Ce sous-groupe0� jouit des propriétés réquises.
Cela achève la démonstration pour la dimension 2.

Nous supposons que le Théorème 33 est vrai jusqu’à la dimension 2m. Alors on
se place dans la configuration de réduction du Théorème 23 (cf. aussi Théorème 29). En
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d’autres termes (G,!, L, J) possède une réduction (G1=H1, L=h1, J) avec dim(G1=H1)D
2m. Par construction l’atlasAD? est compatible avec cette réduction (voir Théorème 21).
Le groupe0 préserve (!, J, L, J(L)) ; il préserve aussi la métrique Riemannienne
gJ(X, Y) D !(J X, Y) ainsi que la décomposition orthogonale

T1 � T2 � T0.

Par ailleurs l’action de0 dans (G, !, J, L) induit une action similaire dans le quadru-
plet (G1=H1, !, J, L=h1). En vertu de l’hypothèse de recurrence le Théorème 33 est
vrai pour l’atlas de (G1=H1,!, J, L=h1, J(L=h1)) qui est la projection deAD? . Chaque
feuille F� de T0 a une structure affinement plate Kählérienne isométrique à celle de
(G1=H1, !, J, L=h1, J(L=h1). En plus,la sous-variétéF� est une transversale globale
du feuilletageT1� T2. Soit E la variété des feuilles du feuilletageT0 ; E est une sur-
face de Riemann isométrique aux feuilles deT1� T2. PuisqueT1� T2 est invariant par
le sous-groupe0, E hérite de (!, J, T1 � T2) d’une F L-structure Kählérienne notée
(E, !, J, T1� T2). Cette dernière structure est l’analogue de (G, !, J, L� J(L)). L’ac-
tion de 0 passe au quotient pour y définir une action de0 dans (E, !, J, T1 � T2).
Mutatis mutandis, chaque feuilleE� de T1� T2 est une transversale du feuilletageT0.
On est fondé à identifier (G, !, J, L) avec le produit direct de (E�, !, J, T1 � T2)
par (F�, !, J, T0). Puisque (E�, !, J, T1 � T2) et (F�, !, J, T0) sont isométriques à
(E, !, J, T1 � T2) et à (G1=H1, !, J, L=h1) respectivement nous sommes fondés à
procéder à l’identification

(G, !, J, L, J(L)) D (E, !, J, T1, J(T1)) � (G1=H1, !, J, L=h1, J(L=h1)).

Cette identification est compatible avec les actions du sous-groupe0 dans les deux
membres de l’égalité. L’identification est compatible avecles projections AD? (E)
et AD? (G1=H1) de l’atlas AD? dans les deux facteurs (E, !, J, T1, J(T1)) et
(G1=H1,!, J, L=h1, J(L=h1)). En outre le Théorème 33 est vrai dans chacun des deux
projections deA?D. Ainsi il existe un sous-groupe d’indice fini00 � 0 qui satisfait
la conclusion du Théorème 33 dans (G1=H1, !, J, L=h1, J(L=h1)) muni de l’atlas
AD? (G1=H1). On fait agir le sous-groupe00 dansE muni de l’atlasAD? (E). Alors 00
contient un sous-groupe d’indice fini0� � 00 qui satisfait la conclusion de Théorème 33
dans (E, AD? (E)). Au total chaque élément
 2 0� laisse invariant les champs de vec-
teurs hamiltoniens de l’atlasAD? . Le sous-groupe0? est d’indice fini dans0. Le Théo-
rème 33 est démontré.

REMARQUE 34. Le Théorème 33 ci-dessus montre que les coordonnées locales
de l’atlas A� définisent dans (G,!, L, J(L)) une structure Kählérienne affinement plate
(G, !, J�) dont la connexion de Levi-Civita est la connexion bi-Lagrangienne définie
par (L, J(L)). Cette structure Kählérienne (G,!, J�) est invariante par l’action du sous-
groupe0�. Si 0� � G est fermé alors la variété symplectique (0�nG, !) hérite d’une
métrique Kählérienne (affinement) plate [17], [27], [36].
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4. Quelques conséquences du Théorème 33

4.1. Conjecture fondamentale de Gindikin-Pjateckii-Sapiro-Vinberg [18]. La
conjecture qui nous intétéresse est devenu Théorème [14]. Rappelons qu’un système
dynamique différentiable sur une variétéM est la donnée d’un groupe de Lie de trans-
formations deM [50]. La dynamique différentiable dans les variétés Kählériennes a
suscité beaucoup d’inérêt et ce dépuis assez longtemps [9],[31], [35]. Comprendre
certaines perspectives de la géométrie globale a conduit à la conjecture fondamentale
de S.G. Gindikin, I.I. Piatecckii-Sapiro et E.B. Vinberg différentiable. A l’origine la
conjecture fondamentale est l’énoncé suivant

Conjecture 35. Toute variété Kählérienne homogène(M, !, J) est l’espace to-
tal d’un fibré analytique complexe au dessus d’un domaine borné � � Cn et dont la
fibre type est le produit direct d’une variété Kählérienne homogène simplement connexe
compacte et d’une variété Kählérienne homogène simplementconnexe localement plate.

Avant [13] et [14] on sait que la conjecture est vraie dans lescas suivants.
(a) Le groupe de Lie Aut(M,!, J) des automorphismes de (M,!, J) contient un sous-
groupe de Lie semi-simple transitif [9].
(b) Aut(M, !, J) contient un sous-groupe de Lie réductif transitif [35].
(c) Aut(M, !, J) contient un sous-groupe de Lie complètement résoluble transitif [55]
(voir aussi [18], [19]).

Dans [13] Dorfmeister propose une autre démonstation de la conjecture dans le
cas (c). K. Ermann et D. Salamon m’ont suggéré l’idée d’utiliser le procéssus de réduc-
tion mis au point dans ce travail (cf. Théorème 23) pour simplifier la démonstration
de [13]. Il est clair que dans le cas (c), c’est à dire lorsque Aut( , !, J) contient
un sous-groupe de Lie complètement résoluble transitif, lafibre tpye de la fibration
de M au dessus d’un domaine borné ne peut pas contenir un facteur compact sim-
plement connexe. Dans les deux démonstrations du cas (c) parGindikin et Vinberg
(voir [18] et [19]) d’une part et par Dorfmeister [13] d’autre part on déploie des efforts
supplémentaires pour montrer que l’on peut ramener (c) au cas où un sous-groupe de Lie
complètement résoluble transitif agit localement librement. A la suite d’une interrogation-
suggestion de Karin Erdmann et Simon Salamon [13] je vais donner du cas (c) de la
conjecture fondamentale une démonstration (cf. Théorème 49) qui est basée sur la réduc-
tion Kählérienne et sur la KV cohomologie des algèbres de Koszul-Vinberg [40]. Le pre-
mier outil est le théorème ci-dessous (toutes les données sont simplement connexes). Ce
théorème a été démontré par Gindikin-Piatecckii-Sapiro-Vinberg dans ([19], Part II, Para-
grahe 4, Proposition 3). J’en donne ici une autre preuve qui utilise le théorème de réduc-
tion Kählérienne.

Théorème 36. Soit (M, !, J) une variété Kählérienne homogène sous l’action
d’un groupe de Lie complètement résoluble G. Alors l’action de G dans(M, !, J) est
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libre. En outre si un autre goupe de Lie complètement résoluble G0 opère simplement
transitivement dans(M, !, J) alors G et G0 sont isomorphes.

Démonstration. Nous allons procéder par recurrence sur la dimension de la variété
M. Supposons queM est une surface de Riemann. Soitxo 2 M un point de base.
Notons Gxo � G le sous-groupe stabilisateur dexo, gxo l’algèbre de Lie deGxo et� : G ! M l’application orbitale�(
 ) D 
 (xo). Nous identifions ainsiM avec l’es-
pace homogèneG=Gxo. L’action deG dansM est supposée être effective. SoitH1 � G
un sous-groupe connexe distingué de dimension 1 et soith1 son algèbre de Lie. Fixons
une base� de h1. Alors On peut identifierM avec le sous-groupe de Lie connexe
G� � G dont l’algèbre de Lie estg� D h1 � J(h1). La représenation d’isotropie de
Gxo est le quotient de la représnetation adjointe deGxo dans g. Nous choisissons�
de sorte que la base (� , J� ) soit orthonormée pour le produit hermitienh(X, Y) D!(J X, Y) C p�1!(X, Y). Cette base est propre pour les éléments deGxo elle est
également une base de Darboux pour la forme symplectique!. En outre les
 2 Gxo

préservent la forme symplectique!. Toutes ces contraintes surGxo entrainent que la
représentation d’isotropie est triviale. Puisque l’action de G dans M est effectiveGxo

est réduit à l’élément neutre.
Supposons le théorème vrai jusqu’à la dimension 2m. Soit (M, !, J) une variété

Kählérienne de dimension 2mC 2. On suppose que (M, !, J) est homogène sous l’ac-
tion d’un groupe de Lie complètement résolubleG d’algèbre de Lieg. Soit xo 2 M
un point de base etGxo � G le sous-groupe stabilisateur dexo. Fixons le sous-groupe
connexe distinguéH1 � G dont l’algèbre de Lie esth1. Soit G� � G le sous-groupe
de Lie connexe dont l’algèbre de Lie esth1� J(h1). L’action de G� dansM est libre
et y définit un feuilletage holomorpheF1 qui est invariant par l’action deG. La distri-
bution orthogonaleF?

1 est holomorphe, donc complètement intégrable. Soitg1 � g la
sous-algèbre de Lie définie par

� ?!(g1, h1) D 0.

Visiblement h1 et gxo sont inclus dansg1. Soit G1 le sous-groupe de Lie connexe
d’algèbre de Lieg1. NotonsGxo � H1 le produit semi-direct deGxo par H1. Le groupe
de Lie G1=H1 agit effectivement dans la variété symplectique réduite (G1=Gxo�H1,!).
En vertu du Théorème 23 (M,!, J) possède une réduction (G1=Gxo �H1,!, J) qui est
isométrique à l’espace des feuillesM=F1. En outre on a l’inclusion suivanteG1=H1 �
Aut(G1=Gxo � H1, !, J). En vertu de l’hypothèse de recurrence cette action deG1=H1

dans (G1=Gxo � H1, !, J) est necessairement libre. Or les sous-groupes d’isotropie de
cette action sont des conjugués deGxo. Toutes les variétés en jeu étant simplement
connexes le sous-groupe de LieGxo réduit à l’élément neutre deG.

La dernière assertion est évidente. En effet soite (resp.e0) l’élément neutre de
G (resp. deG0). On considère les applications orbitales�xo et  xo de (G, e) et de
(G0, e0) respectivement dans (M, xo). Alors on munitG (resp.G0) de l’unique métrique
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Kählérienne invariante à gauche (G,!o, Jo) (resp. (G0,!0o, J 0o))) telle que�xo (resp. xo)
est un morphisme de variétés Kählériennes. A chaque
 2 G on associe l’unique
 0 D �1

xo
(�xo(
 )) 2 G0 défini par
 0(xo) D 
 (xo). Cette correspondance


 0 ! 

est un difféomorphisme deG sur G0 qui envoie l’algèbre de Lie des champs de vec-
teurs invariants à droite dansG sur son analogue dansG0. (Ce sont des isométries in-
finitésimales). PuisqueG et G0 sont connexes et simplement connexes le Théorème 36
est démontré.

OBSERVATION. La dernière assetrion du Théorème 36 est exactement le Corol-
laire 1 de Proposition 3 de [18] (cf. [18] Part II, paragraphe4 où l’énoncé est formulé
en termes de j-algèbre d’après Koszul).

J’ai signalé que la démonstration du cas (c) de la conjecturefondamentale par
Gindikin-Piateccki-Sapiro-Vinberg a été reprise par J. Dorfmeister [13]. J’en propose
ici une démonstration (plus simple qui répose sur le Théorème 37 ci-dessous (voir le
Théorème 49 plus loin)).

Théorème 37. Soit (M, !, J) une variété Kählérienne homogène sous l’action
d’un groupe de Lie complètement résoluble G. Alors M admet une paire de(F1, F2)
feuilletages transverses dont les feuilles sont des variétés Kählériennes homogènes. En
plus, en identifiant M avec G, F1 est un feuilletage b-invariant dont les feuilles sont
toutes isometriques à une même variété Kählérienne homogène (localement) plate.

Démonstration. En vertu du Théorème 36 on peut identifier (M, !, J) avec le
groupe de Lie simplement connexe complètement résolubleG muni d’une structure
Kählérienne invariante à gauche (G, !, J). Soit H1 � G un sous-groupe connexe dis-
tingué de dimension 1. Soientg et h1 les algèbres de Lie deG et de H1 respective-
ment. Soitg1 � g la sous-algèbre de Lie qui est!-orthogonale àh1. Le sous-espace
vectorielg� D h1� J(h1) est une sous-algèbre Kählérienne de (g,!, J) qui engendre un
feuilletage KählérienF1 qui est invariant à gauche dans (G, !, J). Puisque la métrique
hermitienneh(X, Y) D !(J X, Y)Cp�1!(X, Y) est invariante à gauche la distribution
orthogonaleF?

1 est aussi invariante à gauche. De plusF?
1 est analytique complexe. En

vertu du Théorème 22F?
1 est complètement intégrable. La feuille deF?

1 qui passe
par l’élément neutre deG est un sous-groupe de LieG� qui est transverse au sous-
groupeG�. Pour terminer la démonstration du théorème on va montrer que (G�, !, J)
est localement plat. SoitQ� le champ de vecteurs invariant à droite qui coincide avec� en l’élément neutre deG, c’est un champ de Killing de la métrique Riemannienne
gJ(X, Y) D !(J X, Y). En outre on a [Q� , J Q� ] D 0. Notons encorer la connexion de
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Levi-Civita de (G�, !, J). On a alorsgJ(r Q� Q� , Q� ) D 0. Cela nontre quer Q� Q� est porté
par la directionJh1 Calculons directement

!(r Q�rJ Q� Q� � rJ Q�r Q� Q� , J Q� ) D Q� (!(rJ Q� Q� , J Q� )) � !(rJ Q� Q� , r Q� J Q� )

� J Q� (!(r Q� Q� , J Q� ))C !(r Q� Q� , r J Q� J Q� )

D 3

2
([ Q� , J Q� ]!( Q� ), J Q� )

D 0.

Cela montre que (G�, !, J) est (localement) plate. Il reste à montrer queF1 est
bi-invariant. Ce qui équivaut à dire que le sous-groupe connexe G� � G est distingué.
Comme auparavant on identifie l’espace des feuillesG=F1 avec la réduction Kählérienne
(G1=Gxo � H1, !, J). Comme variété Kählérienne homogèneG=F1 est canoniquement
isomorphe à (G=G�). Le sous-groupeH1 agit trivialement dansG=G�. Les sous-groupes
d’isotropie de

G=H1 � G=G� ! G=G�
sont conjugués au sous-groupe à un paramètre [expt J� , t 2 R]. On suppose que le
sous-groupe [expt J� , t 2 R] � G=H1 n’est pas distingué. Alors en vertu du Théo-
rème 36 l’action deG=H1 dans (G=G�, !, J) est libre. Cela est exclu pour la raison
de dimension. Par conséquent le sous-groupe [expt J� , t 2 R] � G est distingué.

OBSERVATION. En fait en vertu du théorème 37 (G,!, J) est un théorème d’exten-
sion de (G�, !, J) par (G�, !, J). On a ainsi la fibration Kählérienne suivante

(G�, !, J) ! (G, !, J) ! (G�, !, J).

Si (G, !, J) n’est pas localement plate on peut itérer le procédé de réduction pour obte-
nir une fibration Kählérienne comme ci-dessus telle que (G�, !, J) est une sous-variété
Kählérienne homogène localement plate maximale dans (G, !, J).

On utilisera cette observation dans la démonstration du Théorème 49. Une autre
conséquence des Théorèmes 36 et 37 est qu’en fait l’extension

(G�, !, J) ! (G, !, J) ! (G�, !, J)

est triviale. Pour le voir on identifie (G�, !, J) avec (G, !, J)=G� et on applique le
Théorème 36 pour conclure que l’action deG� dansG=G� est triviale.

4.2. Deux conjectures de Benson-Gordon.La topologie rationnelle des variétés
Kählériennes compactes est étroitement liée à leur type de cohomologie réelle [1], [12].
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Cette liaison étroite a permis de mieux comprendre pourquoicertaines variétés sym-
plectiques compactes n’admettent pas de structures Kählériennes [3], [5], [6], [11].
D’un autre côté la cohabitation dans la même variétéM de certains systèmes dyna-
miques différentiables transitifs et de certaines structures géométriques peut imposer
plusieurs contraintes soit sur la géométrie globale deM soit sur la topologie deM.
Les conjectures de C. Benson et C. Gordon [5], [6] rendent compte de certaines de ces
contraintes pour les variétés Kählériennes compactes. Rappelons certaines définitions.

Une nilvariété est un espace homogène compact0nG quotient d’un groupe de Lie
nilpotent simplement connexeG par un sous-groupe discret fermé cocompact0 � G.
Un tel sous-groupe est appelé un réseau cocompact deG. L’algèbre de de Rham d’une
nilvariété 0nG est isomorphe à l’algèbre (de cohomologie) de Koszul de l’algèbre de
Lie de G [45]. Voici l’énoncé précis de ce résultat classique

Théorème 38. Soit G un groupe de Lie nilpotent dont l’algèbre de Lie est g. Si
G contient un réseau cocompact0 � G alors l’algèbre de de Rham réelle H?(0nG, R)
est isomorphe à l’algèbre de Koszul H?(g, R).

Ce résultat est encore vrai pour certains espaces homogènesdes groupes de Lie résolubles
[22], [47].

Théorème 39. Soit G un groupe de Lie complètement résoluble d’algèbre de Lie
g et contenant un sous-groupe discret cocompact0 � G. Alors l’algèbre de de Rham
réelle H?(0nG, R) est isomorphe à l’algèbre de Koszul réelle H?(g, R).

W. Thurston a été le premier à découvrir un exemple de nilvariété symplectique com-
pacte n’admettant pas de structure Kählérienne [52]. Dans l’exemple de Thurston l’obs-
tacle vientde la pariété des nombres de Betti de dégré impair.

Par une combinaison ingénieuse du Théorème 35 de Nomizu, du Théorème dur de
Lefschetz et du Théorème de nullité des triples produits de Massey dans les variétés
Kählériennes compactes C. Benson et C. Gordon ont démontré le théorème suivant [5].

Théorème 40. Si une nilvariété symplectique de dimension2m (0nG, !) porte
une structure Kählérienne(0nG, !, J) alors la variété0nG est difféomorphe au tore
plat T2m.

Dans [32] Dusa McDuff a donné une autre démonstration du Théorème 40 de Benson-
Gordon en utilisant une version faible du théorème de Lefschetz et la théorie d’applica-
tion moment des actions hamiltoniennes du cercle. Il a été signalé que le Théorème 40
était connu de Jean-Louis Koszul (voir [5]).

Le Théorème 40 montre que génériquement l’existence de structure Kählérienne
dans une variété compacte peut y exclure celle de certains type de systèmes dyna-
miques différentiables transitifs et réciproquement (voir aussi notre la Remarque 45
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plus loin). Ce Théorème 40 a été fertile pour la recherche d’autres exemples de variétés
symplectiques compactes n’admettant pas de structure Kählérienne (e.g. [11], [16]). Pour
s’en tenir à l’aspect topologique signalons qu’il existe des variétés symplectiques
simplement connexes n’admettant pas de structure Kählérienne [33]. Le groupe des
symplectomorphismes d’une telle variété ne contient pas desous-groupe de Lie transitif
complètement résoluble.

Concernant les soluvariétés symplectiques C. Benson et C. Gordon ont en marge de
la Conjecture 41 ci-dessous évoqué (dans [6]) une autre interrogation que je formule
sous la forme de Conjecture 42.

Conjecture 41. Soit G un groupe de Lie complètement résoluble de dimension
2m et contenant un réseau cocompact0 � G. Si la variété compacte0nG admet une
structure Kählérienne(0nG, !, J) alors la variété0nG est difféomorphe au tore plat
T2m D R2m=Z2m.

La Conjecture 42 ci-dessous sonne comme une réciproque partielle de la Conjecture 41.
En voici l’énoncé

Conjecture 42. Soit G un groupe de Lie résoluble contenant un réseau cocompact0. On suppose que0nG admet une structure Kählérienne. Si la variété0nG est difféo-
morphe au tore plat R2m=Z2m alors G est complètement résoluble.

La Conjecture 41 a fait l’objet de plusieurs travaux [3], [21], [46], [53]. Concernant
cette Conjecture 41 nous allons limiter notre ambition à en déduire une démonstration
du Théorème 33 lorsque la forme de Kaehler est homogène dans le sens de [32]. En
voici l’énoncé

Théorème 43. Soit(G,!, L) une F L-structure invariante à gauche dans un groupe
de Lie complètement résoluble G de dimension2mC 2. Soit0 � G un sous-groupe dis-
cret cocompact opérant dans G par les translations à gauche. S’il existe une structure
presque complexe intégrable(G, J) qui est quasi-adaptée à(G, !, L) et qui est inva-
riante par0 alors la variété0nG est difféomrphe au tore plat Z2mnR2m.

Démonstration. En vertu de Théorème 25 (G, J) est adapté à (G, !, L). On ap-
plique les théorèmes 29 et 33 qui assurent que la paire de feuilletages Lagrangiens
(L, J(L)) définit dans (G,!) une structure affinement plate (G, D?) qui est Kählérienne
dans le sens du Théorème 17 (cf. aussi Définition 4). SoitAD? un atlas comme dans
le Théorème 33. Soit�D? l’ensemble des différentielles des systèmes

(y, p) D (y1, : : : , ymC1, p1, : : : , pmC1)

des fonctions coordonnées locales de l’atlasAD? . On applique Théorème 33 en vertu
duquel0 contient un sous-groupe0� qui est d’indice fini et qui laisse invariants les
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champs de vecteurs hamiltoniens des fonctions coordonnéeslocales deAD? . Cela en-
traine que les éléments de l’ensemble�D? qui est formé des diffŕentielles

(dy, dp) D (dy1, : : : , dymC1, dp1, : : : , dpmC1)

sont0�-invariants. Le sous-groupe0� étant fermé dansG l’ensemble�D? se projette
dans la variété symplectique compacte (0�nG,!). Notons��

D? l’image de cette projec-
tion. La paire (L, J(L)) est invariante par0�. Notons [Y, P]� l’ensemble des fonctions
primitives locales des éléments de��

D? . Alors [Y, P]� est l’ensemble des fonctions co-
ordonnées locales d’un atlasA� de (0�nG, !, J, L, J(L)). En outre les systèmes des
coordonnées locales (y�, p�) 2 [Y, P]� vérifient les conditions (1), (2), (3), (4), (5)
de Théorème 17. Ainsi la variété compacteM� D 0�nG porte une structure de variété
Kählérienne plate. Ainsi on voit que la variété0nG est difféomorphe à un quotient fini
du tore plat [57]. Autrement dit, à difféomorphisme près on a

0nG D 8nT2mC2

où 8 est un groupe fini de difféomorphismes deT2mC2.
Soit g l’algèbre de Lie du groupe de LieG. Soit b1(M�) le premier nombre de

Betti de la variétéM�. D’une part on a l’égalitéb1(M�)D b1(T2mC2)D 2mC2. D’autre
part en vertu du Théorème 39 de Hattori-Raghunathan énoncé ci-dessus on ab1(M�)D
codim([g, g]) D dim(H1(g, R)) D 2mC2D dim(G). Il en résulte que le groupe de Lie
G est commutatif. Ainsi à difféomorphisme près la variété0nG est le tore platT2mC2.
Ceci termine la démonstration du Théorème 43.

Voici un Théorème ancien de Hano [20] qui est un Corollaire duThéorème 43.

Théorème 44. A isométrie près toute variété Kählérienne de dimension2m qui
est homogène sous l’action(Kählérienne) localement libre d’un groupe de Lie complète-
ment résoluble est le tore plat T2m.

Avant de nous intéresser à la Conjecture 42 observons que dans les Théorèmes 33 et 40
l’invariance de (G,!, J) par l’action du sous-groupe discret cocompact0 est essentielle.
Par exemple soitG un groupe de Lie nilpotent non commutatif simplement connexe de
dimension 4. AlorsG admet desF L-structures invariantes à gauche. De plus chaque
F L-structure invariante à gauche (G, !, L) possède des structures presque complexes
intégrables (G, J) qui lui sont adaptées mais aucune de ces structures presquecom-
plexes intégrables n’est invairiante par un réseau.

Nous allons nous occuper de la Conjecture 42. Pour cela on considère le plan com-
plexe C2 muni de la loi de composition suivante

(z1, z2) . (z01, z02) D �
z1 C z01 exp

�p�1� y2

r

�
, z2 C z02

�
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avec r 2 R?, zj D x j Cp�1y j , j WD 1, 2. Cette loi de composition munitC2 d’une
structure de groupe de Lie réel de dimension 4. NotonsGr le groupe de Lie ainsi ob-
tenu. Désignons par0r le sous-ensemble

0r D (Z Cp�1Z, Z C r
p�1Z).

Lorsquer 2 R est rationnel0r est un réseau cocompact virtuellement commutatif. En
particulier sir D 1=4 alors01=4 est un réseau cocompact commutatif. De plus les trans-
lations à gauche par les
 2 01=4 sont des translations ordinaires

l
 (z1, z2) D 
 C (z1, z2).

Le produit hermitien canonique deC2 est invariant par les translations à gauche dans
Gr . En fait la translation à gauchel (z1,z2) est une isométrie de l’espace euclidienR4.

La variétéM1=4 D 01=4nG1=4 hérite d’une structure Kählérienne. Le groupe de Lie
résolubleG1=4 n’est pas complètement résoluble. Cependant la variété compacte M1=4
est difféomorphe au tore platT4. Cela infirme la Conjecture 42.

REMARQUE 45. Du point de vue de dynamique différentiable [50], Théorème 43
implique qu’aucun groupe de Lie complètement résoluble de dimension 4 n’opère transi-
tivement dans la variétéM1=2 D 01=2nG1=2. En effet le rang du groupe abelien [0, 0]n0
est égal à 2. On a ainsib1(M1=2) D 2. Ainsi l’existence de structure Kählérienne ex-
clut certains systèmes dynamiques différentiables transitifs. D’un autre côté tout groupes
de Lie nilpotentG de dimension 4 contient un réseau0 et admet uneF L-structure in-
variantes à gauche (G, !, L). Le Théorème 40 montre qu’aucune structure holomorphe
(G, J) adpatée à (G, !, L) n’est invariante par un réseau0 � G. Ainsi l’existence de
système dynamique transitif localement libre dans la variété compacte0nG exclut celle
de structure Kählérienne.

4.3. KV cohomologie des variétés bi-Lagrangiennes.Nous allons examiner
quelques aspects des variétés localement plates et de leur KV cohomologie [40]. On
va limiter cette évocation à la mise en évidence de quelques aspects desF L-variétés
qui méritent plus d’attention. En particulier nous mettonsen évidence des complexes
de cochaines susceptibles de fournir des nouveaux invariants géométriques de ces struc-
tures

A. Modules sur les algèbres de Koszul-Vinberg. Nous entendons par algèbre
réelle un espace vectoriel réel muni d’une structure d’anneau dont la multiplication
u, v ! uv est bilinéaire.

DÉFINITION 46. Une algèbre de Koszul-Vinberg réelle est une algèbre réelle dont
l’application associateuru, v,w! (u, v,w) D u(vw)� (uv)w est symétrique par rapport
aux deux premiers arguments à gaucheu et v.
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Soit V un espace vetoriel etA une algèbre de Koszul-Vinberg. On suppose données
deux applications bilinéairesA � V ! V : a, v ! av et V � A ! V : v, a ! va.
Les applications tri-linéairesa, b, v ! (a, b, v) et a, v, b! (a, v, b) aveca, b 2 A etv 2 V sont définies en posant (a, b, v) D a(bv) � (ab)v, (a, v, b) D a(vb) � (av)b et
(v, a, b) D v(ab) � (va)b

DÉFINITION 47. Les trois applications tri-linéaires ci-dessus munissent V d’une
structure de (bi)mondule sur l’algèbre de Koszul-VinbergA si elles satisfont les iden-
tités (a, b, v) D (b, a, v) et (a, v, b) D (v, a, b), 8a, b 2 A et 8v 2 V .

On note J(V) � V le sous-espace formé desv 2 V tels que (a, b, v) D 0, 8a, b 2 A.
En particulier J(A) est une sous-algèbre associative deA.

Le produit tensorielV 
W de deuxA-modules est unA-module sous les actions
à gauche et à droite suivantes :a(v
w)D (av)
wCv
(aw) et (v
w)aD v
(wa).
L’espace Hom(V , W) des applications linéaires deV dansW est un (bi)module surA
sous les actions suivantes. Soitf 2 Hom(V , W), a 2 A, alors pour toutv 2 V on pose
(a f )(v) D a( f (v)) � f (av) et ( f a)(v) D ( f (v))a.

EXEMPLE 48. (i) Soit (M, D) une variété localement plate. SoitA l’espace vec-
toriel des champs de vecteurs différentiables surM. A l’aide de la connexion linéaireD
on munit A de la multiplication définie parXYD DXY. La nullité des tenseurs de torsion
et courbure s’exprime par [X, Y] D XY�Y X et (X, Y, Z) D (Y, X, Z), 8X, Y, Z 2 A.
(ii) Toute algèbre associative est une algèbre de Koszul-Vinberg.
(iii) Soit (M,!, L) une F L-variété symplectique. Pour mémoire rappelons ce qui a déjà
été dit : chaque feuilleF de L a une structure de variété localement plate (F , r) dont
l’opérateur dérivation covarianter : X, Y !rXY est donnée par la formule suivante :
X et Y étant des champs de vecteurs tangents aux feuilles deL on a

!(rXY, Z) D (L X iY!)(Z).

(iv) Si (M, !, L, N) est structure bi-Lagrangienne affinement plate on rappelle que la
dérivation covarianteD de la structure localement plate définie par (L, N) est définie
par la formule suivante : soientX D (X1, X2), Y D (Y1, Y2) 2 T L� T N,

D(X1,X2)(Y1, Y2) D rX1Y1 C [X2, Y1]1, rX2Y2 C [X1, Y2]2.

Soit G un groupe de Lie complètement résoluble muni d’uneF L-structure homogène
(G, !, L). Notons parA (resp.AL ) l’espace vectoriel des champs de vecteurs tangents
à G (resp. l’espace des champs de vecteurs tangents aux feuilles deL). L’exemples (iv)
montre que chaque structure holomorphe (G, J) qui est adaptée à (G,!, L) donne nais-
sance à deux idéaux à gaucheAL et AJ(L) de l’algèbre de Koszul-VinbergA de la
structure de variété localement plate (G, D) déterminée par (G, !, L, J(L)). L’espace
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C1(G, R) des fonctions différentiables réelles est un module à gauche sur chacune des
trois algèbresA, AL et AJ(L). Nous allons décrire quelques suites spectrales générées
par cette situation. Ces suites spectrales sont en fait des invariants géométriques de la
F L-structure (G, !, L).

B. Complexes attachés à un module d’une algèbre de Koszul-Vinberg.
Complexe de cohomologie. Soit V un bi-module sur une algèbre de Koszul-

Vinberg A. Soit C?(A, V) l’espace vectorielZ-gradué par les sous-espaces homogènes
Ck(A, V) suivants :Ck(A, V) D 0 si k 2 Z est un nombre entier négatif,C0(A, V) D
J(V) et Ck(A, V) D Hom(A
k, V) si k 2 Z est un nombre entier positif.

On définit l’opérateur linéaired : Ck(A, V) ! CkC1(A, V) en posant

(dv)(a) D �av C va
si v 2 J(V). Si k � 1 alors on pose

(d f )(a1, : : : , akC1) DX
j�k

(�1) j ((a j f )(a1, : : : , Oa j , : : : , akC1)

C ( f (a1, : : : , Oa j , : : : , ak, a j ))akC1).

Dans la formule de définition de l’opérateur cobord ci-dessus la fonctiona j f est dé-
finie par

(a j f )(b1, : : : , bk) D a j ( f (b1, : : : , bk)) � X
1�i�k

f (b1, : : : , bi�1, a j bi , biC1, : : : , bk).

L’espace graduéC?(A, V) avec l’opérateurd est un complexe de cochaine appelé com-
plexe de cohomologie de la l’algèbre de Koszul-VinbergA à valeurs dans leA-(bi)module
V (ou KV complexe deA à valeurs dansV). Sonkieme espace de cohomologie est noté
H k(A, V ). Les pionniers dans la recherche d’une théorie de cohomologie des algèbres de
Koszul-Vinberg ont été Jean-Louis Koszul et Albert Nijenhuis (voir [44]). Pour plus d’in-
formations sur les KV complexes et leurs diverses applications en géométrie des variétés
localement plates hyperboliques et en géométrie de Poissonle lecteur pourra se référer à
[39], [40].

Toute algèbre associative est une algèbre de Koszul-Vinberg. Par conséquent outre
la classique théorie de cohomologie de HochschildH H ? la catégorie des algèbres asso-
ciatives possède la théorie de KV cohomologieH ?

K V . Les deux théories sont différentes.
Cependant siW est un module à gauche sur une algèbre associativeA alors on a
H H1(A, W) D H1

K V (A, W) et H H2(A, W) � H2
K V (A, W) (cf. [40]).

Un retour à la conjecture fondamentale. Soit (M,!, J) une variété Kählérienne
homogène sous l’action d’un groupe de Lie complètement résoluble G. L’énoncé exact
de la conjecture fondamentale stipule queM est l’espace total d’un fibré au dessus
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d’un domaine borné dont la fibre type est une variété Kählérienne homogène simple-
ment connexe (localement) plate. J’en ai signalé plus haut deux démonstrations par
Dorfmeister [13] d’une part et par Gindikin, Piatecckii-Sapiro et Vinberg [18] d’autre
part. Je vais en donner une troisième démonstration basée sur l’utilisation de la KV co-
homologie des structures bi-Lagrangiennes. De ce point de vue en voici la formulation

Théorème 49. Soit (M, !, J) une variété Kählérienne homogène sous l’action
d’un groupe de Lie complètement résoluble G. Alors M est l’espace total d’un fibré
au dessus d’une variété globalement hessienne(ou si l’on veut au dessus d’un domaine� muni d’une métrique de Bergmann

P
j ,k � j N�k(log') dzj dNzk où ' est une fonction

réelle positive) et de fibre type une variété Kählérienne homogène simplementconnexe
(localement) plate.

Démonstration. On suppose que (M,!, J) n’est pas localement plate. En vertu du
Théorème 36 ci-dessus on peut identifier (M,!, J) avec un groupe de Lie complètement
résolubleG équipé d’une structure Kählérienne invariante à gauche (G,!, J). En vertu
du Théorème 37 joint à l’observation qui le suit, la variété Kählérienne (G, !, J) est
isométrique au produit direct de deux sous-groupe de LieG��G� tels que la métrique
hermitienne induite (G�, !, J) est (localement) plate maximale et que (G�, !, J) n’est
pas localement plate. Nous allons montrer que la variété analytique (G�) est difféo-
morphe à un domaine borné. ConsidéronsG� muni de la métrique induite invariante
à gauche (G�, !, J). On applique le Théorème 29 de ce travail, alors (G�, !) porte
une F L-structure (G�, !, L) telle que la paire (L, J(L)) définisse une structure bi-
Lagrangienne Kählérienne localement plate (G�,!, QJ). Cela veut dire que la connexion
symplectique affinement plateQD définie par (L, J(L)) est la connexion de Levi-Civita
de la métrique hermitienneQh(X, Y) D !( QJ(X), Y)Cp�1!(X, Y). Considérons main-
tenant le KV complexeC?(G�, T?G�) D C?(A, �(G�, R)) ; A est l’algèbre de Koszul-
Vinberg de la variété localement plate (G�, QD) et �(G�, R) est le A-module à gauche
des 1-formes différentielles. NotonsQg(X, Y) D !( QJ X, Y). Que QD soit la connexion de
Levi-Civita de Qg entraine queQg est un 1-cocyle du KV complexeC?(A, �(G�, R)).
PuisqueG� est simplement connexe le premier espace de cohomologieH1(A,�(G�, R))
est nul (cf. [36]). Donc il existe une 1-forme différentielle � 2�(G�, R) dont la dérivée
covariante est égale àQg, c’est à dire que l’on a

Qg(X, Y) D X�(Y) � �( QDXY).

Visiblement la 1-forme� est fermée,i.e. � est un 1-cocyle du complexe de de Rham de
la variétéG�. PuisqueG� est simplement connexe il existe une fonction différentiable
partout positive' 2 C1(G�, R) telle que � D d(log(')). Ainsi l’espaceC1(G�, R)
contient une fonction (convexe) dont laQD-hessienne est définie positive. Il en résulte
que la variété holomorphe (G�, QJ) possède une métrique (hermitienne) de Bergmann.
PuiqueG� est simplement connexe (G�, QD) est difféomorphe à un domaine borné [18],
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[19], [26], [28], [54], [55]. Ceci termine la démonstration.

Complexe d’homologie. On a signalé plus haut le travail pionnier de Albert
Nijenhuis concernant la théorie de KV cohomologie dont la définition vient d’être donnée.
En ce qui concerne la théorie de KV homologie des algèbres de Koszul-Vinberg aucune
tentative n’a abouti avant [41] qui est la première tentative réussie de définition d’un com-
plexe de chaine d’une algèbre de Koszul-Vinberg à coefficients dans un bi-module. A
tout A-(bi)module V on va associer l’espaceC?(A, V) qui est Z-gradué par les sous-
espaces homogènesCk(A, V ) suivants :Ck(A, V ) D 0 si k est négatif ;C0(A, V ) D J(V),
Ck(A, V) D A
k 
 V si k est un nombre entier positif.

Supposons quek soit un nombre entier positif. Soit� D a1 
 a2 
 : : : 
 akC1 2
A
(kC1) et v 2 V . On pose� j � D a1 
 : : : 
 a j�1 
 a jC1 
 : : : 
 akC1 et �2

j ,kC1� D
a1
 : : :
a j�1
a jC1
 : : :
ak. Maintenant nous désignerons encore pard l’opérateur
linéaire CkC1(A, V) ! Ck(A, V) défini comme il suit :d D 0 pour k � 1. Si k � 2
on pose

d(� 
 v) DX
j�k

(�1) j [� j � 
 va j � a j (� j � 
 v)C (�2
j ,kC1� )
 a j 
 vakC1].

Nous allons esquisser la preuve de Lemme suivant

Lemme 50. Le couple(C?(A, V), d) est un complexe de chaine.

Esquisse de démonstration. Soit k � 2 et � D �
v D a1
a2
 : : :
amC1
v 2
AmC1 
 V . Il s’agit de montrer qued2� D 0. Pour ce faire fixons deux indicesi , j
tels que 1� i � j � m. L’application de la formule de l’opérateur bordd donne

d� D (�1)i [�i � 
 vai � ai (�� 
 v)C �2
i ,mC1� 
 ai 
 vamC1]

C (�1) j [� j � 
 va j � a j (� j � 
 v)C �2
j ,mC1� 
 a j 
 vamC1]

C les autres termes.

En fait le calcul ded2(�
v) se réduit pour l’essentiel à l’addition des expressions�i , j , �i , j et �i , j ,m où

�i , j D (ai a j � a j ai )(�2
i , j � 
 v) � ai (a j (�2

i , j � 
 v))C a j (ai (�2
i , j � 
 v)),

�i , j D ai ((�2
i , j � 
 v)a j ) � (ai (�2

i , j � 
 v))a j � (�2
i , j � 
 v)(ai a j )C (((�2

i , j � 
 v)ai ))a j ,

�i , j ,m D �2
i , j � 
 ai 
 [(a j , v, amC1) � (v, a j , amC1)].

Les axiomes de structure de (bi)module sur une algèbre de Koszul-Vinberg entrainent

�i , j D �i , j D �i , j ,m D 0.
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Cela termine l’esquisse de démonstration du Lemme 50.
Le Lemme 50 fonde la théorie d’homologie des algèbres de Koszul-Vinberg à coef-

ficients dans leurs (bi)modules. Dans le cas duA-module trivial R le complexe de chaine
C?(A, R) est le dual algébrique du complexeC?(A, R) de KV cohomologie réelle. Le
complexe de cochaineC?(A, V) est appelé complexe d’homologie deA à coefficients
dans leA-bimoduleV . Son espace d’homologie de dégrék est notéHk(A, V).

4.4. Digression. Signalons quelques applications de la KV cohomologie attachée
à une variété localement plate. Soit (M, D) une variété localement plate. Nous identi-
fions le revêtement universel de la variétéM avec les classes d’homotopie des chemins
c(t) d’origine fixe xo 2 M.

Pour 0� s� 1 soit �s : Txo M ! Tc(s)M le transport parallèle le long du cheminc.
On définit l’application développement

Q(c) D Z 1

0
(� (s))�1c0(s) ds

où c0(s) est le vecteur vitesse dec à l’instant s. Le vecteur tangentQ(c) 2 Txo M ne
dépend que de la classe d’homotopie [c] de c [29]. Le resultat suivant est classique
(voir par exemple [17], [27])

Théorème 51. Les deux assertions suivantes sont équivalentes.
(i) La connexion linéaire D est géodésiquement complète.
(ii) L’application développement[c] ! Q(c) est un difféomorphisme.

Soit (M, D) une variété localement plate. Soit�xo(M) le groupe fondamental deM au
point xo 2 M. Le transport parallèle� le long des lacets d’originexo est une représenta-
tion linéaire de�xo(M) dansTxo M. L’image de� (�xo) est l’holonomie linéaire de (M, D).
Voici l’énoncé de la conjecture de Markus.

Conjecture 52. Si l’holonomie linéaire d’une variété localement plate compacte
(M, D) est unimodulaire alors(M, D) est complète.

Cette conjecture a été démontrée dans un certains nombre de cas au prix des hypo-
thèses supplémentaires, par D. Fried, W. Goldman et Hirsch [17] lorsque l’honomie
linéaire est nilpotente ; par Y. Carrière [10] lorsque l’holonomie linéaire est Lorentz-
ienne. D’autres variations par F. Dal’bo, par J. Smilie. . . .La KV cohomologie abrite
une obstruction à la complétude des variétés localement plates. Soit (QM, QD) le revête-
ment universel de (M, D). Si l’holonomie linéaire de (M, D) est unimodulaire alors le
sous-espaceZm(M, R) � Cm(M, R) des KV cocyles scalaires de dégrém D dim(M)
contient une forme volume�. On évoque la conjecture de Markus pour signaler le
résultat suivant [40]
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Théorème 53. La notation est celle ci-dessus avec M compacte. On suppose que
l’holonomie linéaire de(M, D) est unimodulaire. Soit � un cocycle qui est une forme
volume dans M. Pour que(M, D) soit complète il est necessaire que la classe de co-
homologie[�] 2 Hm(M, R) soit nulle.

Pour terminer avec cette digression, rappelons que (M, D) est dite hyperbolique si
l’image de l’application développementQ est un domaine convexe ne contenant au-
cune droite entière [26], [29], [54]. Une propriété remarquable de ces variétés est leur
non rigidité. Plus précisement on doit à Koszul le théorème suivant.

Théorème 54. Supposons que(M, D) soit une variété hyperbolique dont l’image
de l’application développement est un cône convexe. Alors (M, D) admet des déforma-
tions non triviales.

Quand Koszul démontre ce théorème dans les années soixante Nijenhuis et lui même
sont à la recherhe d’une Théorie de cohomologie des algèbresbâptisées par les deux
intéressés algèbres de Vinberg (cf. Koszul : Sur les algèbres de Vinberg, Cours à l’uni-
versité de Genève, 1968, [44]). En terme de cohomologie des algèbres de Koszul-
Vinberg le théorème de Koszul prend la forme suivante [40].

Théorème 55. Si l’image de l’application développement Q est un cône convexe
alors le deuxième espace de cohomologie H2(A, A) est non nul.

Du point de vue de la complétude géodésique on voit que les variétés localement plates
hyperboliques sont pour ainsi dire les plus éloignées des variétés localement plates
complètes [17], [27], [36]. En fait Koszul obtient une condition necessaire à l’hyper-
bolicité. Puisque nous travaillons dans les groupes de Lie simplement connexes l’énoncé
suivant se déduit facilement de [29], Théorème 3.

Théorème 56. Soit(G,!, L) une F L-structure invariante à gauche dans un groupe
de Lie complètement résoluble. Soit (G, J) une structure presque complexe intégrable
adaptée à(G, !, L). Pour que la structure localement plate(G, D) définie par la struc-
ture bi-Lagrangienne(G, !, L, J(L)) soit hyperbolique il est nécesaire qu’il existe une
fonction positive f2 C1(G, R) dont la différentielle logarithmique dln f a sa dérivée
covariante D(dln f ) définie positive. Si G contient un réseau cocompact0 et s’il existe
une fonction positive f2 C1(G, R) telle
(i) D(dln f ) est définie positive,
(ii) dln f est invariante par les
 2 0 opérant dans G par translation à gauche alors
(G, D) est hyperbolique.

Couplage homologique. Considérons le corps des basesR comme module trivial
sur A. l’espace vectoriel dualV? d’un A-(bi)module V est un A-module à gauche. Le
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complexe d’homologieC?(A, V?) n’est en général pas le complexe dual du complexe
de cohomologieC?(A, V ). Cependant lorsqueV est unA-module à gauche le couplage
canoniqueV? � V ! R induit une application bilinéaire canonique� : C?(A, V?) �
C?(A, V) ! R d’où dérive un couplage canonique

H k(A, V?) � Hk(A, V) ! R.

Voici la définition de l’application bilinéaire�. Soit f 2 Ck(A, V?) et � D � 
 v D
a1
: : :
ak
v 2 Ck(A, V). Alors on pose�( f , �) D ( f (� ))(v). Le lecteur vérifiera par
un calcul direct que pour8 f 2 Ck(A, V?) et 8� 2 CkC1(A, V) on a

�(d f , �) D �( f , d�).

Cela montre que le couplage� descend au niveau homologique pour définir un couplage
entre la KV cohomologie et la KV homologie. Mais cela ne fonctionne de manière cano-
nique que pour les modules à gauche. Cette relation est utilisée dans [41] pour associer
à touteF L-structure (M, !, L) une intégrale qui en est un invariant géométrique.

Homologie à coefficients distributions. On termine l’apsect couplage homologi-
que par un dernier exemple. Soit (M, D) une variété localement plate. SoitA l’algèbre
de Koszul-Vinberg de (M, D). L’espaceC1(M, R) est muni de la structure deA-module
à gauche définie par la formule

(a f )(x) D (Da f )(x) D d f (a(x)).

Soit Dis(M) l’espace des distributions surM. Considerons le corpsR commeA-module
trivial, alors Dis(M) est unA-module à gauche. Soita 2 A et Æ 2 Dis(M), alors la distri-
butionaÆ est définie par la formule (aÆ)( f )D�Æ(a f ), 8 f 2 C1(M, R). Le couplage ca-
noniqueDis(M)�C1(M, R) ! R induit une application bilinéaire� : C?(A, Dis(M))�
C?(A, C1(M, R)) ! R. Ce couplage homologique est visiblement un invariant géo-
métrique de (M, D). L’application bilinéaire� descend au niveau des espaces d’homo-
logie pour définir le couplage canonique

H k(A, Dis(M) � Hk(A, C1(M, R)) ! R.

4.5. Suites spectrales des structures holomorphes adaptées à uneFL-structure
homogène (G,!,L). Les suites spectrales sont des outils puissants pour le calcul homo-
logique. On se propose de mettre en évidence certaines suites spectrales canoniques qui
convergent vers la KV cohomologie des algèbres de Koszul-Vinberg.

Soit G un groupe de Lie complètement résoluble. Soit (G, !, L) une F L-structure
invarainte à gauche. Considérons une structure presque complexe intégrable (G, J) qui
est adaptée à (G, !, L). On sait que la paire (L, J(L)) définit une structure de variété
localement plate (G, D). Il convient d’observer que la connexion linéaireD n’est pas
invariante par les translations à gauche. Conformément à lanotation déjà utiliséeA,
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AL et AJ(L) sont les algèbres de Koszul-Vinberg des champs de vecteurs tangents à
G, tangents aux feuilles deL et tangents aux feuilles deJ(L) respectivement. L’espace
vectoriel C1(G, R) des fonctions différentiables est un module à gauche sur chacune
des algèbresA, AL , AJ(L).

Nous appelons KV-complexe scalaire de (G, D) le complexe de cochaineC?(G, R)D
C?(A, C1(G, R)).

De manière similaire on définit pour chacun des feuilletagesson complexe scalaire
C?(L, R) D C?(AL , C1(G, R)) et C?(J(L), R).

A la paire (AL , A) on va associer une filtrationF j C?(G, R). Auparavant on va
rappeler un équivalent du produit intérieur par un champ de vecteur.

Soit f 2 Ck(A, V) avec 2� k. Soit j 2 Z, 1� j � k. La signification de l’égalité
e((AL )
 j ) f D 0 est la suivante : parmi les variablesa1, : : : , ak si j variables ou plus
sont dans le sous-espaceAL � A alors f (a1, : : : , ak) D 0.

Revenons à la filtration du complexe scalaireC?(G, R) par les sous complexes

F j C?(G, R) DX
k

F j C?(G, R) \ Ck(G, R).

Par définition f 2 F j C?(G, R) \ Ck(G, R) si e((AL )
(k� jC1)) f D 0.
On a l’inclusion évidente

F jC1C?(G, R) � F j C?(G, R).

Chaque sous-espace vectorielF j C?(G, R) est un sous-complexe du complexe de co-
homologie C?(G, R). Nous allons examiner la suite spectrale dérivée de la filtration
F j C?(G, R). Nous convenons de poserF j C?(G, R) \ Ck(G, R) D Ck(G, R) si j � 0
et F j C?(G, R)\Ck(G, R) D 0 si j � kC1. Ainsi la filtration F j C?(G, R) est bornée.

On observe qu’en posantFkC1C?(G, R) \ Ck(G, R) D 0 on a l’identification ca-
nonique

FkC?(G, R) \ Ck(G, R) D Ck(J(L), R).

L’espace de cohomologieH ?(G, R) est filtré par les imagesF j H ?(G, R) des
H ?(F j C?(G, R)) par l’application dérivée de l’application inclusionF j C?(G, R) �
C?(G, R).

Soit E D (Ep,q
r ) la suite spectrale générée par la filtrationF j C?(G, R). Pourr D 1

on a

Ep,q
1 D H pCq(F pC?(G, R)=F pC1C?(G, R)).

En particulier on peut identifierEp,0
1 avec H p(AJ(L), C1(G, R)). Puisque la filtration

est bornée on a

Ep,q1 D F pH pCq(G, R)=F pC1H pCq(G, R).
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La suite spectrale ci-dessus est l’analogue de la suite spectrale de Hochschild-Serre
d’une paire (h� g) d’algèbres de Lie. Ce qui est remarquable est qu’au régard du com-
plexe C?(G, R) les feuilletages LagrangiensL et J(L) sont permutables. En d’autres
termes en substituant àAL l’algèbre de Koszul-VinbergAJ(L) on obtient une suite spec-
trale qui converge aussi vers l’espace de cohomologieH ?(G, R).

Soit G un groupe de Lie complètement résoluble. En vertu du Théorème 17 l’en-
semble=L des structures presque complexes intégrables adaptées à une F L-structure
invariante à gauche (G, !, L) n’est pas vide. Nous pouvons résumer la digression sur
les suites spectrales.

Théorème 57. Soit G un groupe de Lie complètement résoluble et(G, !, L) une
F L-structure invariante à gauche. Alors à chaque structures presque complexe intégr-
able (G, J) 2 =L adaptée à(G,!, L) correspond une suite spectrale Ep,q

r qui converge
vers la KV cohomologie scalaire H?(G, R) de (G, DJ) où DJ est la connexion sym-
plectique définie par la structure bi-Lagrangienne(G, !, L, J(L)).

REMARQUE 58. On a vu qu’en substituant àAL l’algèbre AJ(L) on obtient une

suite spectraleEp,q
r dont les termesEp,0

1 et la limite Ep,q1 ne dépendent pas du choix
de la structure presque complexe intégrable (G, J) 2 =L adaptée à (G, !, L). En effet
on a obtenu les égalités

Ep,0
1 D H p(AL , C1(G, R)).

On obtient ainsi des invariants géométriques de (G, !, L)�=L . Ces invariants peuvent
être considérés comme des invariants du module de classes d’holomorphisme des struc-
tures holomorphes qui sont adaptées à (G, !). On observe au passage que le groupe
Aut((G, !, L)�=L ) est un groupe de Lie de dimension inférieure ou égale àm(mC1)
où m est la dimension deG.

4.6. Une suite spectrale canonique deC?(A,V). Soit V un (bi)module sur une
algèbre de Koszul-VinbergA. On se propose de mettre en évidence une suite spectrale
canonique qui converge vers la cohomologieH ?(A, V). NotonsAi D A^: : :^A la i -ème
puissance extérieure deA et posonsC j ,i (A, V) D Hom(A j 
 A
i , V) � CiC j (A, V ). On
filtre l’espace vectorielC?(A, V) par les sous-espaces vectorielsF j C?(A, V) définis par

F j C?(A, V) DX
i

C j ,i (A, V) DX
i

Hom(A j 
 A
i , V).

Pour tout nombre entier positfk on voit que

F j C?(A, V) \ Ck(A, V) D Hom(A j 
 A
(k� j ), V).
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Soit f 2 F j C?(A, V) \ Ck(A, V) l’expression de l’opérateur cobord

d f (a1, : : : , akC1) DX
i�k

(�1)i [(ai f )(a1, : : : , Oai , : : : , akC1)

C ( f (a1, : : : , Oai I : : : , ak, ai ))akC1]

montre qued f 2 F j C?(A, V)\CkC1(A, V). Par conséquentF j C?(A, V) est un sous-
complexe du KV complexeC?(A, V). On a visiblement l’inclusion suivante

Hom(A jC1 
 A
(i�1), V) � Hom(A j 
 A
i , V).

On a en outreF1C?(A, V)\Ck(A, V) D Ck(A, V) et FkC1C?(A, V)\Ck(A, V) D 0.
Ces observations montrent que la filtrationF j C?(A, V ) est décroissante et bornée. Soit
Ep,q

r la suite spectrale dérivée de la filtrationF j C?(A, V). En filtrant H ?(A, V) par les
imagesF j H ?(A, V) D i ?(H ?(F j C?(A, V))) on a

Ep,q1 D F pH pCq(A, V)=F pC1H pCq(A, V).

Dans le cas desA-modules à gauche la suite spectraleEp,q
r permet de retrouver les

résultats pionniers de Albert Nijenhuis [44]. Pour mettre en évidence le rapport entre
la suite spectrale canonique et le travaux de Nijenhuis on vacommencer par rappeler
le complexeCN(A, V) de Nijenhuis.

L’algèbre des commutateurs deA est l’algèbre de LieAl dont le crochet est donné
par [a, b] D ab� ba. Si V est un A-bimodule alorsA, V et Hom(A, V) sont natu-
rellement des modules (à gauche) sur l’algèbre de LieAl . On note alorsCN(A, V) le
complexe de Chevalley-EilenbergC?

ce(Al , Hom(A, V)) de l’algèbre de LieAl à valeurs
dans leAl -module Hom(A, V). LorsqueV est unA-module à gauche Nijenhuis définit
l’espace de cohomologie (de dégrékC 1) de l’algèbre de Koszul-VinbergA à valeurs
dansV en posant

H kC1
N (A, V) D H k

ce(Al , Hom(A, V)).

Retournons à l’identification

FkC?(A, V) \ CkC1(A, V) D Ck
ce(Al , Hom(A, V))

pour rappeler un théorème (cf. [40], Appendice)

Théorème 59. Si V est un module à gauche sur A alors l’opérateur cobord
de Chevalley-Eilenberg dce : Ck

ce(Al , Hom(A, V)) ! CkC1
ce (Al , Hom(A, V)) et le KV-

opérateur cobord d: FkC?(A, V) \ CkC1(A, V) ! FkC?(A, V) \ CkC2(A, V) coinci-
dent.
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Ainsi conformément à la notation utilisée ci-dessus on a

H kC1(FkC?(A, V)) D H kC1
N (A, V) D H k

ce(Al , Hom(A, V)).

Du point de vue de la filtrationF j H ?C?(A, V) � H ?(A, V) on part du morphisme
(inclusion) de complexei : C?

N(A, V) ! C?(A, V) pour voir que

Fk H ?(A, V) \ H kC1(A, V) D i ?(H kC1
N (A, V)).

Ainsi on voit qu’il existe une application linéaire canonique de la cohomologieH ?
N(A, V )

dans la filtrationF j H ?(A, V).
Sous une autre perspective la suite spectrale canonique d’une algèbre de Koszul-

Vinberg est fortement liée à la cohomologie des formes différentielles d’ordre supérieur
de Koszul [30].

Soit (M, D) une variété localement plate de dimensionm. Soit A l’algèbre de Koszul-
Vinberg de (M, D). Le fibré cotangentT?M est un module à gauche sur l’algébroide de
Koszul-VinbergT M. Le KV complexeC?(T M, T?M) n’est pas autre chose que le KV
complexeC?(A, Hom(A, C1(M, R))). Ce dernier est un sous-complexe deC?(M, R) D
C?(A, C1(M, R)).

On filtre le complexeC?(M, R) par les F j C?(M, R) définis plus haut. On a en
particulier

F j C?(M, R) \ Ck(M, R) D Hom(A j 
 A
(k� j ), C1(M, R)).

Cette filtration est fortement bornée dans le sens queF j C?(M, R) D 0, 8 j � mC 1
et F1C?(M, R) D F0C?(M, R) D C?(M, R).

PuisqueC1(M, R) est un A-module à gauche on peut procéder aux identifica-
tions que nous avons déjà utilisées. SoitAl l’algèbre des commutateurs deA ; Al n’est
rien d’autre que l’algèbre de Lie des champs de vecteurs différentiables dansM. Soit
C?(Al , T?M) le complexe des formes différentielles d’ordre supérieurà valeurs dans
le fibré cotangent deM. Soit C?(M, R) D C?(A, C1(M, R)) le KV complexe sca-
laire de (M, D). Enfin soit C?

N(A, C1(M, R)) le complexe de Nijenhuis deA à va-
leurs dansC1(M, R). On a déjà fait remarquer que pour tout nombre entier positif k
Ck

N(A, C?(M, R)) n’est rien d’autre queCk�1(Al , T?M). On peut énoncer.

Théorème 60. Il existe une suite spectrale Ep,q
r définie par une filtration

F j C?(A, C?(M, R)) du KV complexe C?(M, R) jouissant des propriétés suivantes:
(i) Ep,q

r converge vers la KV cohomologie H?(M, R) lorsque r tend vers l’infini;
(ii) pour chaque nombre entier positif j on a les égalités suivantes

H j
N(A, C1(M, R)) D H j�1(Al , T?M) D H j (F j�1C?(M, R)).
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Réductions de Dirac des tenseurs de Poisson.Notre dernière observation concer-
nant lesF L-structures tient à leur rapport à la réduction de Dirac des structures de Poisson
[8]. Si (M, !, L) est uneF L-structure alors notonsAL l’algèbre de Koszul-Vinberg des
champs de vecteurs tangents aux feuilles deL. NotonsgL D AL � C1(M, R) l’algèbre
de Koszul-Vinberg dont la multiplication est définie par la formule suivante

(a, f )(a0, f 0) D (aa0, (d f 0)(a)C f f 0).
Les cochaines du KV complexeC?(gL , C1(M, R)) sont en fait des opérateurs multi-
différentiels. Posonsg j ,i

L D A
 j
L 
 (C1(M, R))
i . On décompose chaque espace de

cohomologie comme il suit

H k(gL , C1(M, R)) D X
iC jDk

H i , j (gL , C1(M, R)).

Pour une classe de cohomologie homogène [c] de dégrék D j C i son appartenance

[c] 2 H k(gL , C1(M, R)) \ H i , j (gL , C1(M, R))

signifie que [c] est représentable par un cocylec 2 Hom(g j ,i
L , C1(M, R)).

J’ai dit plus haut que les cochaines du complexeC?(gL , C1(M, R)) sont des
opérateurs multi-differentiels. Rappelons qu’une cochaine c 2 Ck(gL , C1(M, R)) est
d’ordre� l si en tout pointx 2 M sa valeur (c(a1, : : : , ak))(x) dépend des jets d’ordrel
j l
xa1, : : : , j l

xak, [30]. Un (0, 2)-cocyclec 2 Hom(g0,2, C1(M, R)) est appelé cocycle de
Koszul-Vinberg s’il définit dansC1(M, R) une structure d’algèbre de Koszul-Vinberg
(C1(M, R), c) dont la multiplication estf , f 0 ! c( f , f 0). Le symbole�c de � est
aussi un cocycle.

Un théorème de [39] assure que sic est un (0, 2)-cocycle de Koszul-Vinberg
d’ordre � 1 alors l’algèbre des commutateurs de l’algèbre (C1(M, R), �c)) est une
algèbre de Poisson. Cela signifie que le 2-tenseur

5 : f , f 0 ! 5( f , f 0) D �c( f , f 0) � �c( f 0, f )

est un tenseur de Poisson. Ainsi le sous-espaceH0,2(gL , C1(M, R)) contient un sous-
ensembleH0,2

P (gL ) qui est constitué des classes représentables par un tenseur de Poisson5 2 Hom(g0,2, C1(M, R)). Il est aisé de voir que ces classes de Poisson sont conte-
nues dans l’imagne dansH2

K V (C1(M, R), C1(M, R)) de la cohomologie de Hochschild
H H2(C1(M, R), C1(M, R)) de l’algèbre associative commutativeC1(M, R). De plus
le tenseur de Poisson5 préserve le sous-espaceIL des intégrales premières du feuille-
tageL. Naturellement un tel tenseur5 est unique dans sa classe de cohomologie. Nous
dirons que le couple (L, 5) est un feuilletage Poissonien transversalement Poissonien.
Si L est simple alors5 possède une réduction de Dirac dans l’espace des feuilles deL
[8], [51].
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Nous supposons maintenant qu’il existe une structure presque complexe intégrable
(M, J) qui est adapatée à (M,!, L) dans le sens de la défintion 11. La variété symplec-
tique (M, !) en hérite d’une structure bi-Lagrangienne (M, !, L, J(L)). Notons DJ la
dérivation covariante de la connexion symplectique définiepar (L, J(L)). On sait que
pour X D (X1, X2), Y D (Y1, Y2) 2 T L� T J(L), D est défini par la formule suivante

DXY D (rX1Y1 C [X2, Y1]1, rX2Y2 C [X1, Y2]2).

Mutatis mutandis on a une algèbre de Koszul-VinberggJ(L) D AJ(L)�C1(M, R) et son

KV complexe de cochaineC?(gJ(L), C1(M, R)) ainsi que le sous-ensembleH0,2
P (gJ(L))

des tenseurs de Poisson projetables le long des feuilles deJ(L).
Soit (5L , 5J(L)) 2 H0,2

P (gL ) � H0,2
P (gJ(L)) une paire de tenseurs de Poisson. Leur

crochet de Schouten [5L ,5J(L)] est un 3-tenseur antisymétrique. Soitw est une 3-forme
différentielle. Le crochet [5L , 5J(L)] est défini par la formule suivante

w([5L , 5J(L)]) D (di5J(L)w)(5L ) � (di5Lw)(5J(L)) � dw(5L ^5J(L)).

Les deux tenseurs sont dits compatibles si leur crochet [5L , 5J(L)] est nul. Lorsque
[5L , 5J(L)] D 0 toute combinaison linéaire à coefficients constants�5L C �5J(L) est
un tenseur de Poisson. Ainsi soit (5L , 5J(L)) une paire compatible. Soit5 D 5L C5J(L). La paire (L, J(L)) équipe la variété de Poisson (M, 5) de deux feuilletages de
Poisson transverses. SiM est simplement connexe alors les feuilletagesL et J(L) sont
simples. Le procédé de réduction de Dirac conduit aux deux fibrations de PoissonL !
(M,5) ! M=L et J(L) ! (M,5) ! M=J(L). On peut identifier l’espace des feuilles
M=L avec une feuilleFJ(L) de J(L) et M=J(L) avec une feuilleFL de L. Alors FL

et FJ(L) sont des sous-variétés de Poisson de (M, 5). Naturellement la varietéM est
difféomorphe au produit directFL � FJ(L) mais ce produit direct n’est pas un produit
direct des variétés de Poisson. Sous la perspective de la variété de Poisson (M, 5),
la paire (FL , FJ(L)) sonne comme un analogue Poissonien de paire de Drienfeld. Que5 2 Hom(g0,2

L , C1(M, R)) soit un cocycle se traduit par (a5)( f , f 0) D a(5( f , f 0))�5(a f , f 0) � 5( f , a f 0) D 0. On note AL (5J(L)) l’ensemble desa5J(L), a 2 AL . On
conclut par

Théorème 61. Si (5L , 5J(L)) est une paire compatible différente de la paire tri-
viale (0, 0) alors l’ensemble(AL (5J(L)), AJ(L)(5L )) n’est pas réduit à(0, 0).

Esquisse de démonstration. Supposons que5L soit non nul et que l’on ait
AJ(L)5L D 0. PuisqueT L � T J(L) D T M tout champ de vecteurs est un champ
hamiltonien de la variété de Poisson (M,5L ). Il en résulte que le tenseur5L est inver-
sible. Ainsi (M, 5L ) est l’inverse d’une structure symplectique dont l’espacechamps
de vecteurs hamiltoniens coincide avec l’espace de tous leschamps de vecteurs. Cela
est absurde en dimension positive.
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4.7. Tissus Lagrangiens. Dans cette courte sous-section je me limite à signaler
que chaque structure holomorphe (M, J) qui est adaptée à uneF L-structure (M, !, L)
dans le sens de la définition 11 determine une application injective de R dans l’en-
semble de feuilletages Lagrangiens de (M, !). J’indique comment on en déduit des
tissus Lagrangiens.

DÉFINITION 62. Un k-tissu Lagrangien dans (M, !) est la donnée dek feuille-
tages Lagrangiens (L1, : : : , Lk) qui sont deux à deux en situation générale.

Proposition 63. Soit (M,!, L) une F L-structure. S’il existe une structure presque
complexe intégrable(M, J) adaptée à(M,!, L) alors pour tout nombre entier k(M,!)
possède un k-tissu Lagrangien.

Démonstration. En vertu du Théorème 25 la distributionJ L est complètement
intégrable. La nullité du tenseur de Nijenhuis deJ entraine que pour toutt 2 R le
grapheL t D XC t J X, X 2 L � T M du tenseurt J est une distribution Lagrangiennne
complètement intégrable quel que soit le nombre réelt . Si t , t 0 2 R sont deux nombres
réels distincts alorsL t et L t 0 sont transverses. En effet considérons des champs de vec-
teurs non nulsX, X0 qui sont tangents àL et tels queX C t J X D X0 C t 0J X0. Alors
d’un côté le nombre réel!(J X� t X, X0C t 0J X0) D (1C t t 0)!(J X, X0) est positif. De
l’autre côté le nombre réel!(X C t J X, X0 C t 0J X0) D t!(J X, X0) � t 0!(J X, X0) D
(t � t 0)!(J X, X0) est nul. Cette dernière condition entrainet D t 0. Ainsi la famille L t ,
t 2 R est une courbe continue dans l’ensemble des feuilletages Lagrangiens. On en
déduit la conclusion de la proposition.

Corollaire 64. Les hypothèses sont celles deProposition 63.Si la structure bi-
Lagrangigenne(L, J L) est affinement plate alors pour tout couple(t , t 0) de nombres
réels (L t , L t 0 ) est affinement plat.

Esquisse de preuve du corollaire. Soit (x1, : : : , xm, y1, : : : , ym) un système de coor-
données de Darboux-Hess de (L, J L). Ceci signifique entre autres que siXi est le
champ de vecteurs hamiltonien de la fonctionyi alors J Xi est le champ de vecteurs
hamiltonien de la fonctionxi . Alors les fonctions locales

�
1

t 0 � t
[y1 C t 0x1, : : : , ym C t 0xm], y1 C t x1, : : : , ym C t xm

�

est un système de coordonnées de Darboux-Hess de (L t , L t 0).
Une autre digression non discuté ici est la méthode BKS (Blackner-Kostant-Stenberg)

d’utilissation des structures bi-Lagrangiennes pour construire des fibrés en droites com-
plexes utiles à la pré-quantification géométrique [58].
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