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Let R be a ring with identity. When we study almost relative injective
modules, the following problem is essential: Assume that an i?-module V is
almost C/y-injective for i?-modules Uj (/=1, 2, •••, ή)> then under what conditions
is V also almost ΣjφUj-injective}

This problem is true without any assumptions, provided V is t/y-injective
[2]. Y. Baba [3] gave an answer to the problem, when all V, Uj are uniform
modules with finite length, and the author [6] generalized it to a case where the
Uj are artinian indecomposable modules. Extending and utilizing the arguments
given in [6], we shall drop the assumption "artinian" in this short note.

The proof will be completed by following the arguments given in [6].
Hence we shall explain only how we should modify the original proof in [6].

1. Preliminaries

Let JR be a ring with identity. Every module in this paper is a right unitary
i?-module. We shall follow [3] and [6] for the terminologies. In [6], Theorem
2 we assumed that every module contained the non-zero socle. In this note we
shall drop this assumption. Let W1 and W2 be i?-modules. Take a diagram
with V2 a submodule of W2:

\g

Consider the following two conditions:
1) There exists g: W2-^W1 such that g\ V2=g.
2) There exist a non-zero direct summand W of W2: W2—WQ}W and

g: W1-^W such that gg=π\ V2, where π is the projection of W% onto W.
If either 1) or 2) holds true for any diagram (1), then we say that Wx is almost
W2-injective (if 1) always holds true, then we say that Wx is W2-injective [2]).

We assume in the above that W2 is indecomposable. If Wx is almost
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(#) we always obtain 1), provided g is not a monomorphism.

Lemma 1. The above (#) is 'equivalent to the following fact: Wx is W2jW-
injective for any non-zero subomdule W of W2.

Proof. If g is not a monomorphism, then taking g~\0)=W> from (1) we

obtain the diagram:

W2 < γ < o

W2\W+- V2/W*-0

where g is the induced map from g and v\ W2->W2\W is the natural epimor-
phism. Hence if Wx is Wy PF-injective, we have g': WJW-+ Wx such that
S—S'\VJW. Putting g=g'v, gI V2=g. The converse is also clear from the
above diagram.

Lemma 2. Let U be an R-module and Ux an indecomposable R-module.
Assume that U is almost U^injective. If U is not U^injectίve, then there exist
a non-zero submodule T of Ux and a monomorphism g: T-*U, which is not ex-
tendible to an element in Homje(C/1, Ux). In this case we obtain the same situation
for any non-zero submodule T' in T andg\T\

Proof. The first half is clear from definition. Consider a diagram for a
non-zero submodule T' in T;

u.
Assume that there exists g: U^U such that g\ T'=g\T. Vutg*=g—(g\ T):
T-+U. Then 5*-1(0) D f φ O . Then from (#) there exists | * : Ux-» U such
that £* | T=g*=g—(g\ T). Hence g*-\-g is an extension of g, a contradiction.

From the above proof we obtain

Corollary. Consider the diagram (1). Assume that there exists a non-zero
submodule V in V2 such that gjV is extendible to an element in HomR{W2, Wx)
and Wx is W2jV-ίnjective. Then g is extendible.

Lemma 3 ([6], Proposition 2). Let U, U2 be R-modules and Ux an in-
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decomposable R-module. Assume that U is almost Ό\-injective , but not Ux-injecttve.
Under those assumptions 1): if U is U2-injectίve, then Ux is U2-injective. 2):
Assume that U2 is indecomposable. If U is almost U2-injective, but not U2-injec-
tive, then we obtain th following fact: i); Ux is U2jV2-ίnjective for any non-zero
submodule V2 of U2 and hence ii); if U1 and U2 do not contain isomorphic
submodules, U1 is U2-injective. iii) Assume that U2 (resp. Ux) contains non-zero
submodule Tx {resp. T2) such that g: Tx*& T2. Then we have the following equivalent
conditions:

a) Ux {resp. U2) is almost U2-(resp. Ux-) injective.
b) Either g or g~ι is extendible to an element in HomR(Ux, U2) or in

HomR(U2, Ux)for every pair (Γ2, Tx).

Proof. The first half and 1), 2) are dual to [7], Proposition 1. However
we shall give a proof for the sake of completeness.

1) By Lemma 2 there exist a submodule Vx of Ux, a monomorphism g:
VX->U and /: U^UX such that fg=lVj- Put £,=£([/,), the injective hull of
t/f . Then there exist λ: EX-*EO and σ: E0-+Ely which are extensions of g and/,
respectively. Since Ux is uniform from [6], Theorem 1, <τλ is an automorphism
or Ex and hence £Ό=Z?ί0ker σ, where E{=\(E1). Further since σ\E{ is an
isomorphism, we can take a submodule U{ in E{ with σ(U{)= Uv On the other
hand σ(U)=f(U)dUι = σ(Uί). Hence ΐ / c £/ί®ker σ. Now we may show
that U{ is C/2-injective. Let s be any element in HomR(U2f Ei)<Z.HomR(U2, Eo).
Since U is C/2-injective s(U2)d Ua U{φkerσCZE{ ®kerσ by [1], Proposition
1.4 (cf. [4], Lemma 9). Hence s(U2)czEί Π(C/ί®kerσ-)=[/ί, and so U{ is U2-
injective again by [1], Proposition 2.5.

2), i-ii) Since U is [/2/F2-injective by Lemma 1 for any (non-zero) sub-
module V2 of U2, we can see from the above argument that Ux is U2jV2-
injective.

2), iii) a) implies b) from definition. Assume b). Take a diagram with
V2 a submodule of U2

If g is not a monomorphism, then there exists g: U2-
J>U1 with g\V2—g from

2), i) and Lemma 1. Hence we can assume that g is a monomorphism. As a
consequence Ux is almost [/2-injective by b).

Lemma 4. Let U be an R-module and Ux, U2 LE R-modules. Assume
that 1): U is almost U^injective, but not Ό\-injective, 2): there exist submodules
Tχy T2 as in Lemma 3 and 3): U is almost UX(B U2-injective. Then either g or g

_ i
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is extendible, and hence Uλ is almost U2'injective.

Proof. Since U is almost C^© C/2-injective, U is almost C/2-injective. We
show that U} is almost [/2-injective. If U is £/2-injective, Ux is (almost) U2-
injective by Lemma 3-1). Hence we assume that U is not C/2-injective. Now
there exist a non-zero submodule Vλ and h: V^U given in Lemma 2. Since
U1 is uniform by [6], Theorem 1, we may assume Vι<Z.Tι from the last part of
Lemma 2. Take a diagram

u

Since h is not extendible, by assumption there exists an indecomposable direct
summand Y of UX®U% and h: U->Y such that X(A+Asp-1)=»l(^iθί<F1)),
where π is the projection. Then either g\ V1 or (^| V^)~ι is extendible (cf. the
proof of [5], Proposition 5). If g | Vx is extendible, so does g from Corollary
to Lemma 2, since U2 is UJV^ -injective by Lemma 3, 2)-i). Finally assume
that (#| Vx)~ι is extendible. Consider the diagram

Since U1 is ϊ/g/^J^-injective by Lemma 3, 2)-i), we obtain an extension g2:
U2-*Ul of g~ι from Corollary to Lemma 2. Therefore Uλ is almost C/2-injec-
tive by Lemma 3-2), iii).

2. Main Theorem

In this section we shall give the desired theorem related to [3] and [6].
First we show the first half of the main theorem.

Lemma 5. Let {U^f^i be a set of uniform R-modules and U an R-module.
Assume that U{ and Uj are mutually almost relative injective for any pair {i, j)
and U is almost Urinjective for all i>o. Then U is almost X?.i®Urinjective.

Proof. Put W=Ί,Tmι®Uh and consider a diagram with V a submodule of
W:

iλ

u



ALMOST RELATIVE INJECTIVE MODULES 755

In order to show the lemma, we may assume that

(*) V is essential in W (see [3] or [6], (#)).

Putting Vj=V Π Uj and hj=h\ VJy we obtain the derived diagram:

(2) ' '

U '

Since U is almost Z/y-injective, there exists

a) h'j\ Uj-*U with h'jij—hj or

b) hj'. U->Uj with ij=hjhj.

We quote here the arguments given in [6]. From the argument in Step 3 in
[6], namely from [3], Lemma C, (*) and induction on m> we know

if we obtain a) for all z, then there exists h: W-+U with h\ V=h.

Hence we assume that we have b) for some i, say / = ! , i.e.

(3) ι,
u

is commutative, which corresponds to (4*) in [6]. Before proceeding the proof,
we note the following fact from the argument in Steps 7 and 8 in [6]: We as-
sume

(3) and there exists h): Uj-^Ux for a l l jΦl such that

(4)

is commutative, which corresponds to (8) and step 7 in [6]. Then we obtain a
new decomposition of W:=Uι®U'2® — ®U'tn andh*: U^Ux such that
(p is a permutation on {2, •••, m}) and
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< V « 0

(5) U \h

k h- U
is commutative, which corresponds to (7) and step 8 in [6], where πx is

the projection.
(In [6] we needed the assumption "artinian" to get the above (4). We

note that the above (5) is shown by induction on m and the argument given
after (10) in [6].)

Now we resume the proof of the lemma. Put Wk='Σi^k®Ui and hence
W= Wm. We shall show by induction on k that there exist a new decomposition
Wk=Uί®U2®^'®Ul and h(k): U-*U'τ such that £/f^£/P'(») (ρf is a permuta-
tion on {1, •••, k}) and

E/ίθ ΘE/ί = Wk^— WkΠV < 0

(5,k) Li \h\{WkΓ\V)

* fck)

Uί« U
is commutative, which implies

pj) and

(6) l^h'j = fc»h I (V Π Ufi=πί(V Π U',) = 0 for j Φ1, where

(3) is nothing but k—\ in (6). We assume that Wk has the above decomposition
and # » : U^ U[. Wk+1 =Wk® UM = Uί® U'2 0 - 0 U't@UM. Take the
diagram:

V,
k+1

o

,. Since U{ is almost ί7t+i-injective, we obtain either
i) there exists hk+1: Uk+1-*Uί with hk+1ii+1=g,
or
ii) £: t/ i^t/ m with*Vu=|&.

Case i) By taking h1=h(k\ h'j=O (l<j^k) and hk+1'=hk+1, the condition
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(4) on Wk+1 is satisfied from (6). Hence we obtain a new decomposition Wk+1=
U'1®U'2'®-@U'k'®Uk+ι"(U'i'^U'μω) and fck+»: U->U'ly which satisfies

Case ii) If we put %h+l=gfrh): t/-» Uk+l9 then from (6)

k+l

and for / =t= 1

are commutative. Therefore from (3) and (4) there exists a new decomposition

'k'
 s u c h t h a t

Uk+ι®Ui'®-®Ui'=Wk k+l wt+1nv • o
(5, k+l)

is commutative. Thus we have completed the proof.

u

In general let {Ah=i be a set of indecomposable i?-modules and U and
ϋ-module. Assume that U is almost Σ, θ A ~ m J e c t i v e Then U is almost
Drinjective for all i. We shall divide {D{} into two disjoint parts {D{} =
{Ui} U {/*} as follows:

1) U is Ik-injective for all k and

2) U is almost Urinjective, but not Urinjectiυe for allj.

Then we note that all Uj are uniform from [6], Theorem 1. Finally we give the
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main theorem

Theorem. Let U be an R-module. Further let {ϊ//}/Jϊ be a set of in-

decomposable R-tnodules and {/*}*.? a set of R-moduks. We assume that {Uj, Ik}

satisfy (7). Then if Uif Uj are mutually almost relative injectivc, then U is almost

Σ/Jϊ θ Uj 0 S*-ϊ θ Ik-injective. Conversely if U is almost Σ*JΪ θ Uj ® Σ*-ϊ θ

Ik'injective and the Uj are LE modules, then Uiy Uj are mutually almost relative

injective for any pair (i, j).

Proof. The second half is clear from Lemmas 3,2-ii) and 4. We study

the first half. From (7) and Lemma 3 Uj is 7^-injective for any j and k. If

U{ is t/m-injective in the proof of Lemma 5, then we always obtain the case

i). Therefore using Lemma 5, we can follow the proof in [6], Theorem 2 and

get the theorem.
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