|

) <

The University of Osaka
Institutional Knowledge Archive

Electronic Band Structures and Physical
Title Properties of Inter-calation Compounds of 1T-
Type TiS2

Author(s) |=FIB, &b

Citation |KPrKZE, 1992, {Bt:m

Version Type|VoR

URL https://doi.org/10.11501/3087973

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



Electronic Band Structures and
Physical Properties of
Intercalation Compounds of
1T-Type TiS2

Tatsuya TESHIMA

January 1992



Abstracts

Intercalation of 3d transition-metal atoms, silver atoms and
alkali-metal atoms into the layered transition-metal dichalcoge-
nide 1T—TiS2 has been studied extensively, and quite dramatic
changes in the physical properties of the host TiS2 have been
observeq depending on the intercalant species and concentration.
To provide a basis for understanding a rich variety of physical
properties of the intercalation compounds, knowledge of electro-
nic structures of a given compound holds an important key.

Electronic band structures of 1T—TiS2 intercalated with 3d
transition-metal atoms have been carried out for the non-magnetic
states of M1/3TiS2 (M=Ti, VvV, Cr) and for the ferromagnetic state
TiS, by using a self-consistent augmented-

1/3 1/3 2
plane-wave (APW) method. We have also made linearlized augmented-

of Cr TiS2 and Co
plane-wave (LAPW) band calculations for Agl/STiSZ’ Lil/3T182 and
Kl/STiSZ' The principal results are summarized as follows:

(a) The 3d states of the intercalant transition-metal atoms
hybridize with the Ti 3d and S 3p states and form a new band
between the bonding and non-bonding bands of the host TiSz. The
original‘band structures of the mother crystal TiS2 are modified
considerably by the intercalation and hence the so-called rigid-
band model cannot be applied. In contrast with Col/sTiS2 or
TiS

Ni the 3d states of the guest atoms in Ml/sTiS2 (M=Ti,

1/3 2°
V, Cr) hybridize mainly with the Ti 3d states and hybridization

with the S 3p states is small.



(b) The magnetic moment obtained from the ferromangetic band

calculation is close to the experimental value for Co but

1737152
for Crl/3TiS2 the calculated value is about four times larger
than the experimental one.

(c) The calculated densities of states at the Fermi level
explain well the observed M-dependence of the coefficient 7 of
electronic specific heat observed in Ml/BTiSZ (M= transition-
metal).

(d) In Agl/STisz’ the Ag 4d states hybridize strongly with
the S 3p state and destroy the covalent-like bond between the Ti
3d and the S 3p states, but the strong hybridization between the
Ag 4d and the S 3p states does not yield an energy gain because
almost all the states of the hybridized bands of the Ag 4d and S
3p states are occupied.

(e) In Lil/3T182 and K1/3Tis2 there is little hybridization
between the 2s or 4s states of the guest atoms and the host Ti 3d

or S 3p states. The modification of the electronic band

structure of the host is small.

As for stacking of the guest atoms along the c-axis, ABC-
stacking is realized in M1/3TiS2 (M=transition-metal atom, alkali
metal atom), and AB-stacking is realized in Agl/sTiSZ' In order
to discuss which stacking is most favorable we have performed the
total energy calculation for both the AB- and ABC-stacking of
Agl/3T182 and Fel/sTiS2 by using the band structures obtained by
the LAPW method. It is concluded that the AB-stacking is more

stable than the ABC-stacking in Ag1/3T182 whereas ABC-stacking is

ii



stable in Fel/BTiSZ' To get deeper insight into the difference

of cohesive properties of Fel/3T182, Agl/3T182 Li 82 and

l/3T1
K1/3T182, we have also carried out the total energy calculation

for Li and K and compared the total energies of

1737185 1737182
these compounds. It has been found that the energy gain due to
intercalation of Fe atoms is large compared with those of Ag atom
and K atom. This result corresponds to the experimental fact
that the guest alkali atoms can move easily in the van der Waals
gap layers and the guest Ag stoms shows the temperature-induced
order-disorder transitions.

To provide the starting point understanding the magnetism of
the low-concentration intercalates of the 3d transition element
and the intercalatisn compounds of the rare earth element, RKKY

interaction has been calculated by using the realistic electronic

band structure of the host Tisz.

- iii -



Acknowlegements

The author would like to express his sincere appreciations
to Professor K. Motizuki, under whose guidance this work has been
done, for helpful suggestions and valuable discussions. He also
would like to express his sincere appreciations to Assistant-
Professor N. Suzuki for stimulative and valuable discussions and
helpful suggestions. Also he thanks for their help in preparing
the manuscript. Without their continuous encouragement and help,
this work would not have been completed. His thanks are also due
to Doctor M. Shirai for valuable advice and discussions.

He thanks greatly Professor A. Yanase of University of Osaka
Prefecture for providing him the computer programs for band
calculations and for helpful advice on band calculations. He
also gratefully acknowledge helpful advice of Professor K.
Terakura of Institute of Solid State Physics on total energy
calculations. Thanks are also due to Doctor H. Harima for 7
helpful advice and comments on band calculations and operations

of computer.



(7]
[

s
(\)
.

s
W
.

[%2]
'S
!

s
92}

=%3% CONTENTS ===

Abstract

Acknowledgements

Introduction

Method for Calculations

2-1 Band Calculation

2-2 Calculation of Total Energy

Electronic Structure of Transition-Metal Intercalation

Compounds
3-1 Band Structure of Non-Magnetic M1/3Tisz (M=Ti,V,Cr)
3-2 Band Structure of Ferromagnetic Cr1/3T182 and 001/3T182

3-3 Discussion

Electronic Structure of Noble-Metal and Alkali-Metal

Intercalation compounds

4-1 Noble-Metal Intercalation Compound Agl/3TiS2

4-2 Alkali-Metal Intercalation Compounds, Lil/BTiSZ and
K1/3T18,

Total Energy

5-1 Practical Aspect for Calculation

5-2 Result

Magnetic Interaction of Localized Moments

6-1 Method for Calculation

iv

15

22

27
37

49

53

56

62

69

69

71

78

79



6-2 Result 83

§7. Summary 94

Appendix.1. Construction of Electronic Charge Density 99

Appendix.2. Exchaneg and Correlation Energy in Electron

Gas System 102
Appendix.3. Atomic Positions in Unit Cell 106
References 108

List of Publications

- vi -



§1. Introduction

The layered titanium disulfide Tis2 is a narrow-gap
semiconducter, and has the 1T-type (CdIz-type) crystal structure
which consists of a sequence of Ti layers sandwiched between two

S layers.l’z)

This compound is an important material as the
mother crystal for intercalation compounds. In fact, various
atoms and organic molecules can be intercalated into van der

In particular, intercalation of 3d
17-23)

Waals gap sites of TiSz.
2-186)

transition-metal atoms, silver atoms and alkali-

24-27)

metal atoms has been studied intensively, and quite

dramatic changes in the physical properties of the host TiS2 have
been observed depending on the intercalation species and their
concentration.

In the transition-metal intercalation compounds MXTiS2
(M=transition-metal atoms), intercalated M atoms occupy the
octahedral interstitial sites between the neighboring sulphur
layers (van der Waals gap layers) and form regular array for
particular x-values such as x=1/4, 1/3, or 1. For x=1/3 the
intercalant atoms form a /3ax/3a triangular lattice in the van
der Waals gap layer, and such triangular lattice of M atoms
stacks along the c-axis as ABCABC::+. Experimental
investigations, including electrical, optical and magnetic

measurements, have been made actively on MXTiS The analysis of

9
their physical properties had been done by using what 1is called

rigid-band model which assumes that the intercalant atoms



act as electron donors to the host-TiS., without changing its

2

original band structures, and the 3d states of intercalants are

assumed to be localized. However, the observed results reveal

itinerant character of the intercalant 3d electrons 6-8,13-15)

and they indicate also the inapplicability of the rigid-band
model. Recent measurements of the photoemission suggest strong

hybridization of the M-3d states with Ti-3d and S-3p states of

16)

the mother crystal. Furthermore, among Ml/STiSZ’ the three

compounds, Fel/3TlSZ' Crl/3T152 and COl/STlSZ’ become
6)

ferromagnets below Tc= 50K, 14K, and 118 K, respectively, and

the observed saturation moment of each compound is much smaller
than that expected from the localized M-3d states. This fact
also suggests an itinerant character of M-3d states.

In the silver intercalation compounds AgXTiS there are

2 ’
three intercalated phases, gas phase for small concentration, a

second-stage phase for intermediate concentration (x=1/6 being an

ideal concentration) and a first-stage phase for large

1)

concentration (x=1/3 being an ideal concentration).2
17)

The upper

limit of the silver concentration is x=0.42. For samples with

nominal composition x>0.42, the powder patterns show lines of
metallic silver. 1In the first-stage intercalate, Agl/STiSZ’ all
the van der Waals gap layers are partially filled by Ag atoms and

a super-structure due to three-dimensional order of Ag atoms,

22)

J/3axJ/3ax/2c, is present at low temperatures. The stacking of

18)

Ag atom layers along the c-axis is ABAB:--., in contrast with

TiS,. The transition to

the ABC stacking of M atom layers in Ml/S 9



the disordered structure at Tc=300K is of the second-order
nature.lg) In the second-stage phase the van der Waals gap layers
are alternatively partially-occupied and unoccupied by silver
atoms. In partially-occupied layer the Ag atoms form also
J/3axJ/3a super-structure at low temperatures, but along the c-axis
there is no ordering at low temperatures.20’22) The staging
structure and the temperature-induced order-disorder transition
of intercalant atoms are characteristic to silver intercalate
compared with transition-metal intercalate.

In the alkali-metal intercalation compounds, LiXTiS2 had

been studied for a cathode in chargable battery cell.24’26)

Experimental observation of transport properties of the guest
indicates that the Li-ions are hopping among octahedral sites in

interstitial layers with period of 10 165ec at 300K.27)

And this
suggests a weakness of bonding between the guest-Li and the host-
TiSz. In alkali-metal intercalation compounds, many workers have
been also studied for structural ordering of the guest and

modification of the host by intercalation. The Li atoms are

intercalated in T182 with small changes in lattice parameter

because of its small ionic radius. In contrast to LiXTiSZ, the
larger alkali metals such as K or Na are intercalated with
25)

changing in the structure of the host. The Na occupies an

octahedral site at low concentration ( x<0.3), and at mediate

concentration the stacking of the host are changed to trigonal

prismatic.ze) In KxTiSZ with x<1/3, only one sort of

superstructure which is /3x/3 has been found even in low



concentration and it coexists with non-intercalated region.zs)

This indicates that interaction between host and guest is weak
compared with that among the guests.

To provide a basis for understanding the physical properties
of the intercalation compounds, knowledge of electronic
structures of a given compound holds an important key. For that
purpose, Yamasaki et a1.28—31) have made the electronic band
structure calculations for the non-magnetic states of Ml/BTiS2
(M=heavy 3d transition-metal atoms, Mn, Fe, Co, Ni), and for the
ferromagnetic state of Fel/sTiSZ' A self-consistent APW method
was used. The calculated electronic band structures indicate
clearly the itinerant character of the M-3d electrons and also
inapplicability of the rigid band model. Furthermore, they have

calculated the bond orders in Fel/3T182 and FeTiS and found

2’

that in FeXTiS the Fe-dy orbitals hybridize strongly with the 3p

2

orbitals of the surronunding S ions whereas the Fe-ds orbitals
hybridize with the ds orbitals of the nearest neighboring Ti
atoms.

In this paper, first we have made, for completeness,
systematic APW band calculations for the non-magnetic states of
M1/3T182 (M=1light transition-metal atoms such as Cr, V, Ti) and

for the ferromagnetic states of Crl/3T182 and Col/STlSZ.

Secondly, we focus our attention to the electronic band
structures of silver intercalation compound Ag1/3T182 as well as
alkali-metal intercalation compounds, which show interesting

physical properties different from those of transition-metal



intercalation compounds MXTiS We have made band calculations

5
of the ordered Agl/STiSZ’ Lil/3T182 and K1/3T182 with use of the
linearized APW (LAPW) method. 1In order to compare the obtained
results directly with the eletronic structure of M1/3T152 in
which M atom layers stack as ABCABC- -+, the band calculation for
Ag1/3TiSZ have been carried out for hypothetical ABC-stacking as
well as for the first stage AB-stacking Agl/BTiSZ° Thirdly, to
make clear why AB-stacking is realized in Ag1/3T182 while

ABC-stacking is realized in Fe TiSz, by using the band

1/3
structures obtained by the LAPW method we have calculated the
total electronic energy for both AB- and ABC-stacking and
compared them. The total energy calculation has been also made

for Fe L11/3T182 and K1/3T182 to discuss cohesive

1/3T182’
property of each compoud. Finally we have calculated RKKY
interaction by using the realistic band structure of the
host—TiSz to provide the starting point for understanding the
magnetism of the intercalation compound of the rare earth element

and the low-concentrate intercalation compound of 3d transition

element.



§2. Method for Calculations
2-1 Band Calculation

2-1-1 Basic Concept in APW and LAPW Method

First-principle calculations of electronic band structures
based on Slater's APW method 32,33) have been performed for many
kinds of crystals, during the last 30 years. Recently linearized
versions of this method have been developed and applied to many
cases. In this section, the principles of APW and Linearized-APW

(LAPW) methods 34)

are reviewed for later use.
In general any kind of first-principle band calculations is
reduced to solve the following one-electron Schrodinger equation

(in atomic units):

[ -v% + V(r) 1¥ (r) = E ¥ (r) . (2-1)
where V(r) is the periodic crystal potential for an electron,
Wk(r) the eigenfunction which satisfies the Bloch condition, and
k the wave vector in the Brillouin zone. The potential V(r)
consists of the interaction of an electron with the nuclear
charges and with other electrons. The electron-electron inter-
action is usually treated within the local spin density

35-41) which will be described in detail in

approximation (LSDA)
section 2-2.

Both APW and LAPW methods use the Muffin-Tin (MT) approXxi-



mation to the crystal potential V(r). A unit cell is divided
into two kinds of regions, inside region of spheres (MT spheres)
centered at each atomic site and outside of it. Inside the MT
spheres the potential is assumed to be spherically symmetric, and
outside it is taken to be constant. The radii of MT spheres are
set as large as possible unless they overlap each other.
Eignefunction Wk(r) is expanded in terms of the what is

called augmented plane waves (APWs) Xﬂ(r) as follows:

H(r) = Z Cx, () (2-2)

where py represents kﬂE k+-Gu with G” being a reciprocal lattice
vector. The expansion coefficients C” can be determined by

variational principle. Outside the MT spheres the APW X”(r) is
represented by a single plane wave and inside the MT spheres it

can be expanded in terms of atomic-like orbitals as follows:

ik 'r
e # (outside MT spheres)
xlj(r) =
v - . . .
2 2 AQm(kﬂ,l)YQm(ru)RQ(ru,l) (inside vth MT sphere).
dmA
(2-3)
Here ru denotes r—RU with Ru being the position vector of the
center of the vth MT sphere, fu represents the angular components

of r YQm is a spherical harmonics, and RQ(ru;l) is a solution



of radial Schroédinger equation

2d Q(0+1) . - .
- (r a?) + 2 + Vu(r) ]RQ(r,l) = lRQ(r,l) (2-4)

D..ICL
~

L
2

where Vu(r) is the spherical potential inside the vth MT sphere.
At the present stage A is not an eigenvalue for the crystal, but
is only a parameter that determines the shape of the basis

function xﬂ(r). The expansion coefficients Azm(ku,l) in eq.(2-3)

can be determined by boundary conditions on the MT sphere given

in each method.

2-1-2 APW Method

In the APW method we use only one kind of A and the value
of A is set to be Ek’ the eigenvalue itself to be determined.
This choice of A may make the number of basis functions to be
small, however it also makes the secular equation highly non-

linear owing to the dependence of RQ(r) on E The expansion

K-
coefficients Azm(kﬂ,Ek) in eq.(2-3) are determined so that the

APW xﬂ(r) is continuous on the MT sphere:

ik ‘R
Y, _ . 4 [/ VIR : . -
AQm(ku,Ek) = 4 i’ e YQm(R”)JQ(kuSU)/R(SU,Ek) (2-5)

where R” represents the angular component of k”, Su denotes the
radius of the vth MT sphere and jQ is a spherical Bessel function

of order 0. In obtaining eq.(2-5) we have used the following



. ik'r
expansion formula for e :

Y
2 * L
217 gk )Y, (R)Y,, () (2-6)

It should be noted that the derivative of the APW basis
function, Xﬂ(r), is discontinuous on the MT spheres. Owing to
this discontinuity the momentum operator becomes non-Hermitian
and there appear additional terms in the variational energy
expression which are expressed by integration over the surface
of MT spheres. Details of the variational procedure in the APW

33)

method are given by Loucks. The final expressions of the

equations to determine the expansion coefficients C” are given as

follows:

S M

” (E}) Cu 0 (2-7)

En
and the secular equation to determine the eigenvalue Ek is

det| M, (B) =0 (2-8)

Here the expression of Mtu is given as follows:
-

R
gy TvLv -
M, (E Q S, any, STe G, (Ey) (2-9)

Eu k)



with

k) En

- 2(2Q+1)PQ(R§'Ru)jQ(k

: Su)Rb(Su;Ek)/RQ(Su;Ek)

£

where QO denotes the unit cell volume, PQ is the Legendre
polynomial of order £, and kEuElkg-kul. As seen from the above
expression, Mfu(Ek) is complicated as a function of Ek because it
contains the function RQ(r;Ek) which depends on Ek through

eq.(2-4). Thus it takes rather much computer time to determine

the eigenvalue Ek from the secular equaiton eq.(2-8).

2-1-3 LAPW Method

In the LAPW method we use two kinds of A for every (£€,v) and

their values are fixed to appropriate values, Eéu and Eﬁ
(E < zu) Then the expansion coefficients, (k E ) and

(k EQU)’ in eq.(2-3) can be determined so that both the value
and the derivative of X (r) are continuous on the MT spheres.
By making use of eq.(2-6) the expressions of A (k E ) (a=1,2)

are determined as follows:

nk, JEY ) = 4n.rgeik”'R n(E,) a¥ (2-11)
Qv Quypi
with
' B _ o
a® _ RQ(SU’EQU)JQ(kuSu) R (S E )k J (kusu) (B=a)
QU[I . 1 ' . -
RQ(SU’EQU)RQ(SU’EQU) R (S E )R (S EQU) (2-12)

- 10 -



Since in the LAPW method the APW basis functions are
continuous both in value and slope on the MT spheres, the usual
variational procedure can be used. As a result the expansion

coefficients Cu are determined from

S H,, EA, 1C, =0 (2-13)
U

and the eigenvalue Ek is determined from the secular equation

det | Hfu EkAfﬂ =0 (2-14)

Here H and A are elements of the Hamiltonian and overlap

En En

matrices, and their explicit expressions are given as follows:

- 12 1,,.2,,2 T .
ng = kugoasﬂ 2(k£+ku)D£ﬂ + 4nz(29+1)PQ(RE RH)AQEH
(2-15)
_ Ay . -
Afu = QOGEH Dfu + 4"E(ZQ+1)PQ(R5 Ru)BQEH (2-18)
where ng’ AQEH and BQEu are defined by
< 4nSU (2-17)
D,{: = 4 j (k;_- S) 2-
Eu y kfu 1 7&n v

11



- Y & @ a aa
Rogy = 22 Eov2ovedauiPoy
(2-18)
azf
ly¢ ¢ Q B N af
*S5 L 2 (EQV+EQU)(aQur Qu” QufaQuu)@
v a,B
. v .0 B afl )
Boeu a“BaQUSaQUHGQu (2-19)
with
@aB = JSU R (r . )R (r . )r dr (2_20)
Qv 0 Y] ’ Q

Comparing with the APW method the matrix elements Hrﬂ and Afu do
S S

not depend on the eigenvalue E Thus, determination of

K
eigenvalues in the LAPW method is reduced to usual
algebraic procedure for Hermitian matrix, which saves much

computer time.

2-1-4 Practical Aspects in APW and LAPW Band Calculations
For APW and LAPW calculations one has to prepare the

following parameters.

a) Parameters related to the crystal structure
(1) lattice constants.
(2) species of atoms and their positions in the unit cell.

These parameters are characteristic of the material.



b) Parameters related directly to accuracy
(1) Kmax: the absolute value of reciprocal lattice vector
which determines the number of basis functions. The basis sets
are built from reciprocal lattice vectors inside the sphere of
radius Kmax'

(2) Qmax: the maximum value of angular momentum quantum
number of spherical functions which are used to expand the
basis functions inside the MT sphere.

(3) k-points which are used to calculate self-consistently
the charge density (or partial DOS).

c) Parameters related to approximations

(1) MT radius of each atom.

(2) kinds of orbits which are solved self-consistently.
These orbits are called 'valence orbits'. Inner orbits (core
orbits) which are deep in energy are treated by frozen-core
approximation or by semil-core approximation.

d) Electron configuration of constituent atoms

The initail charge density (or potential) is constructed
by superposing the free atomic charge density (or potential)
determined by the given atomic electron configuration. It is
not always necessary to use the electron configuration of the
ground state. One often chooses an electron configuration
different from that of the ground state in order to achieve a

rapid convergence of the self-consistent calculation.

In actual calculations it is the spherically symmetric

13



charge desnity of valence electrons, pu(ru), in each MT sphere
that is determined self-consistently. pu(ru) is defined by the
spherical average of the valence charge density in the vth MT

sphere:

S a
pu(ru) = 1= p(ru)dru (2-21)

and the valence charge density p(r) is calculated in general from

occup 2
p(r) = T v (r)] (2-22)
nk

where wnk(r) represents the eigenfunction obtained for valence
electrons with n being the band index, and the summation is taken
over the occupied states.

In the APW method we have constructed the charge density by
using directly the eigenfunctions Wnk(r) In the LAPW method, on
the other hand, we have constructed the charge density by making
use of the partial density of state as described in the

Appendix-1.

14



2-2 Calculation of Total Energy

A total energy is the most reliable physical quantity in the

density functional theory.35’36)

It has been calculated for many
kinds of free atoms, molecules, simple metals and
compounds,37’38) by using the local spin density approximation

(LSDA).39_41)

The obtained results have been used in order to
discuss structural instability, lattice dynamics and cohesive
properties. We have evaluated the total energy for the
intercalation compounds of lT-T182 to discuss the bonding
strength between the guest atoms and the host. In this section
the density functional theory is reviewed briefly and an
expression for the total energy in the LSDA is given.

We consider a many electron system which is described by the

following Hamiltonian in the second quantized form (in atomic

unit):
H=T+V+U (2-23)
with
T = ’ 2 (r) (—vz) P(r) dr (2-24)
v 0*(r) v(r) (r) dr (2-25)
U N W*(r)@*(r')Ir_r.l@(r')@(r)drdr' (2-26)

- o

15



where ?(r) represents the field operator, T denotes the kinetic
energy, V is a contribution from the external potential v(r)
(interaction with the nuclear charges is included in this term),
and finally U represents the electron-electron interaction
energy.

35)

Acording to the Hohenberg-Kohn theorem the total energy,

E in the ground state of the above system is given by a

G’
functional of the electron density, p(r)=<G|®"(r)?(r)|G>, where
|G> denotes the ground state. We can express EG in the following

functional form of p(r):

Eg = Klp(r)] + Jv(r)p(r)dr . ”f—f—rﬂ(—f—'ldrdr + E_[p(r)].

(2-27)

Here the first term denotes the functional for the kinetic energy
when the electron-electron interaction is absent, the second term
the interaction energy with external field v(r) ,and the third
term the direct Coulomb (classical) interaction energy between
electrons. The fourth term represents the remaining energy
called exchange-correlation energy, and the explicit functional
form of Exc is unknown.

Now, the ground state energy E,. can be determined by a

G

variational procedure, 6EG=O, with respect to p(r) under the
condition fp(r)dr=constant. Then, the variational condition is

given by

[ ¢ oKL L wir)  Even(rar = 0 (2-28)

16



with

w(r) = v(r) + Vc(r) + ch(r) (2-29)
v (r) = zJ P(E )4y (2-30)
c [r-r’

SE_ [p(r)]
ch(r) = gg(r) (2-31)

where E is a Lagrange's multiplier, and 6K/8p and 6EXC/6p
represent functional derivatives. vxc(r) is called exchange-
correlation potential.

The variational condition given by eq.2-28 is equivalent to
that for a non-interacting electron gas system subjected to an
external potential w(r). Therefore, the electron density, p(r),

of the ground state can be obtained from

occup 2
p(r) = I ls(n) (2-32)
1

where ¢i denotes the one-electron eigenfunction of the following
Schrodinger equation for an electron under the external potential

w(r):

[ -v2 + w(r) 18,(r) = &6, (r) (2-33)

Once the charge density p(r) is determined, we can evaluate the

17



total energy from eq.2-27 or from the following equation:

occup '
_ e - [e(n)p(xr") _ J
EG = ? €5 J p— drdr ch(r)p(r)dr + Exc[p(r)].
(2-34)
This equation is derived by using the following relation:

occup

% &, = Klp(r)] + Jv(r)p(r)dr

i (2-35)

+ 2J£%{%§${lerdr' + JVXC(r)P(r)dr

In order to perform actaul calculations we have to determine

a functional form of Exc[p(r)]. Usually we assume the following
form for Exc:
E lp(r)] = Jsxc(p)p(r)dr , (2-38)

where 8xc(p) is called exchange-correlation energy density.

Then, the exchange-correlation potential, ch(r), is expressed as

SE de

Veo(T) = =55 = & () + p—52F

ap

(2-37)

This approximation is called the local spin density approximation
(LSDA). As for SXC(P) we usually employ the exchange correlation

energy density in the electron gas system. Even for the electron

- 18 -



gas system any exact expression of 8XC(D) has not been derived,

and many approximate expressions have been proposed for sxc(p) by

9) 40)

Moruzzi, Janak

von Barth and Hedin,3 Hedin and'Lunquist,

and Williams,37) Ceperly and Alder,42) and Gunnarsson and
Lundqvist.4l) Their expressions are summarized in Appendix-2.
In this paper we have used the following expression of €xe given
by Gunnarsson and Lundqvist:

XC_ _XC XC Xc (1+¢)4/3+ (1—{)4/3-2

€ —ep + (sf - ap ) 173

2(2 - 1)

where

eXC = - &% — 0.0666 [(1+ xg)ln(l+%p) +%x§—%]

(2-38)

Xe _ _ X _ 3 1,,1 .2 1

ep = e 0.0406[(]A-xf)1n(1+ Xg * 5 X 3] ,

X _(9m 1/3 _3 X _ _ ,89n 1/3_3

€ ° ( 4 ) Zn% , &p T ( 2 ) 2nr
and

r r
x = S X = S
P 11.4 , f 15.9

The Ts is a density parameter defined by rs=(3/4np)1/3, and the
polarization parameter ¥ is given by =(pT-pl)/p.
In actual calculation we first give an appropriate initial

charge density to evaluate the Coulomb and exchange-correlation



potential, Vc(r) * Veo(T). Then, we solve the one-electron
Schrodinger equation eq.(2-33) and construct the charge density
from eq.(2-32). Next, this newly determined charge density is
used to evaluate the Coulomb and exchange-correlation potential
and again we solve the one-electron Schrodinger equation and
construct the charge density. This iterating procedure is to be
repeated until the charge density is determined self-
consistently.

In band calculation the one particle states ¢k(r) are
regarded as the eigenstates for the bulk (Bloch states). Note
that the density functional formulation guarantees that the total
energy and the electronic charge density, ¢(r)=£|¢k| , will be
obtained exactly. The true ground state can be represented by
using the one particle states provided that the LSDA is
appropriate for the system.

In band calculation, once the eigenvalue and charge density
are obtained within a certain accuracy, the total energy can be
evaluated by using eq.(2-34) and eq.(2-38). In practice it is
difficult to evaluate total energy for compounds consisting of
many atoms to discuss the absolute magnitude of it. The self-
consistent band calculation for such compounds takes much more
computational resources compared with that for atoms or simple
metals; the larger number of atoms in the unit cell demands the
larger number of the basis set, then large capacity of computer
memory has to be occupied and CPU time for one iteration is

enlarged. Thus this brings hardness into the discussion for
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absolute value of total energy of the compounds. However it
should be emphasized that one can obtain the total energy with
sufficient accuracy to discuss relative magnitude of them. We

will discuss total energies within the order of 0.1 Ryd.



§3. Electronic Structures of Transition-Metal Intercalation

Compounds

We have made the band calculation for non-magnetic states of

M1/3T182 (M=Cr,V,Ti) and ferromagnetic states of Crl/BTls2 and

001/3T152 by using the self-consistent APW method. The MT
approximation has been used for the crystal potential and the
exchange and correlation interaction are treated in the local
spin density approximation by Gunnarson and Lundqvist. The core
states of all atoms have been assumed to be unchanged in self-
consistent calculation (frozen-core approximation).

The host 1T-type TiS., has the CdIz-type crystal structure

2

(Fig. 3-1(a)), which consists of a sequence of titanium layer
sandwiched by two layers of sulfur. Guest atoms occpy the
octahedral interstitial sites between the neighboring sulfur
layers. As the concentration of the guest is equal to 1/3, the
guest atoms form v/3ax/3a super lattice in the plane and a period

of the super lattice along the c-direction is 3c (ABC-

3-5)

stacking). The crystal structure of M TiS2 with ABC

1/3

stacking are shown in Fig. 3-2. The generators for a space group

of this structure (C i) are I and C The lattice parameters of

3

each compound are given Tabel 3-1.

3°
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Table 3-1.

LLattice constants

host-TiS2
Til/STiSZ

V1/3TiS2
1/3

Col/3T18

Cr TlSz

2

.410

.911

.911

.929

.887

3-5)

17.
17.
17.

16.

- 23 -

.690

151

094

133

887

(unit in R)



-

Fig. 3-1(a). The crystal structure of 1T-T182 (CdI2 structure) .
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Fig. 3-1(b). The first Brilloun zone of D (above) and C31

3d

1/3T182 (AB-stacking) is D3d'

TiSz (ABC-stacking) space group is C

(below). Space group for T182 and M

for M

1/3 3i°
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Fig. 3-2. The crystal structure of M

l/BTlSZ.
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3-1 Band Structure of Non-Magnetic M1/3T182 (M= Ti,V,Cr)

The APW band calculation for the non-magnetic state of
Ml/3T182 (M=Ti,V,Cr) has been performed first. We have used the

criterion, K X=3.8X(2n/a) and

=7, for all of the above three
ma X

ma

compounds. The number of basis APWs corresponding this Kmax is
about 300. The electronic configurations and MT radii are shown
in Table.3-2.
The dispersion curves along the symmetry lines for
Til/3TiSZ, V1/3TiS2 and Crl/STiS2 are shown in Fig.3-3, Fig.3-4,
and Fig.3-5, respectively. Lowest s1x bands consist mainly of 3s-
states of sulfur and the 38 bands above the gap are mixing bands
of Ti-3d, S-3p, and M-3d states (M=Ti,V,Cr). The gross feature
of the dispersion curves for these compounds resemble each other.
The densities of states (D0OS) calculated for the 38 mixing

bands of M 82 (M=Ti, V, Cr) are shown in Fig.3-6, Fig.3-7 and

173
Fig.3-8, respectively, together with the partial DOS. For all of
these compounds, the energy range in DOS may be divided into three
parts as shown in the figures.

The part (1) and (3) correspond to the bonding and anti-
bonding bands between S-3p and Ti-3dy, respectively. The part
(2) consists mainly of the Ti-3de and M-3d states. In part (1)
the majority components are the 3p-states of sulfur, and the 3de-
states of titanium are contained mainly in part (2). The

hybridization between the Cr-3d and S-3p states is small and the

hybridization between the Cr-3d and Ti-3d states is large as seen

27



from Fig.3-4. The Cr-3d states are hybridized with the Ti-3d
states chiefly in part (2), but there are certain hybridizaion
both in (1) and (3). These behaviors are also seen in Til/STiS2
and in V1/3TiS2 (see Fig.3-7 and Fig.3-8), but quite different
from those of M1/3T182 (M=heavy 3d-transition elements),28_3l) in
which the 3d-states of guests are hybridized mainly with the S-
3p states. This difference can be ascribed to the difference in
the atomic energy levels of the 3d-states of the guest atoms. In
light 3d-transition elements the atomic 3d-levels are higher than
those in heavy 3d-transition elements. Namely the energy level
of the 3d-states of light transition elements is close to that of
host Ti-3d and therefore the M-3d'states are mixed well with Ti-
3d. On the other hand, with increasing atomic number of the
guest the 3d levels of the guests are lowered and approach to S-
3p level. A small gap exits between (2) and (3) for the

intercalation compounds except for Ti TiS, and V1/3Tisz, and

1/3 2
its value increases with increasing atomic number of the guest
atom. With decreasing atomic number of the guest, the part (2)
is pushed up, and the gap vanishs for Vl/STiS2 and Til/STiSZ'
The width of the partial DOS of the guest 3d-states is more
than 0.1 Ryd for all intercalation compounds Ml/3TiS2
(M=Ti,V,*++,Ni). Thus it will be required that the guest 3d-
states are treated’as itinerant states rather than localized
states. Particularly, the width is large for Nil/3TiS2 or
Til/BTiSZ. The energy levels of the 3d states of Ni (or Ti)

atoms are near to those of the S-3p (or Ti-3d) states, thus the



guest-3d bands can be well hybridized to the host S-3p (or Ti-3d)
bands whose width is large. Thus the DOS at Ef becomes small

and therefore the compounds of Ni and Ti do not show magnetic
order, while the compounds of Cr, Fe and Co become ferromagnets
at low temperatures. The situation mentioned above is consistent
with the experimental results. Recently, Tazuke et.al.lS) have
measured the magnetic susceptibility in CuXTiSZ(x'<O.3).
Paramagnetic behavior was observed in a temperature range of
4.2K<T< 300K and effective Bohr magneton is 0.15-0.32 ”B’
It is also consistent with the tendency mentioned above.
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Table.3-2. The electronic configurations and MT radii for non-

magnetic M1/3T182 (M= Ti,V,Cr)

configuration M.T. radii (in a)
guest Ti S
Til/STiSZ Ti [Ar](3d)2(4s)2 0.1855 0.1850 0.2260
s [Nel(3s)Z(ap)*
Vl/BTiSZ A% [Ar](Sd)3(4s)2 0.1855 0.1850 0.2260
Crl/3T182 Cr [Ar](3d)4'4(45)l'6 0.1855 0.1850 0.2260

The orbits in [ ] are considered to be frozen.
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The dispersion curves of Til/STlsz.
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TiS,, and Co

3-2 Band Structures of Ferromagnetic Crll3 2 1/3T182

In Sec. 3-1, it has been shown that the 3d states of the
guest atoms are strongly hybridized to the electronic states of
the host and form a band whose width is larger than 0.1 Ryd.
TiS

Hence, to discuss the magnetism of M where M denotes

1/3 2°
transition elements; we must treat it on the basis of itinerant
picture. In this section we calculate the electronic band

by the self-

structures of ferromagnetic Crl/3T18 and C01/3T18

2 2

consistent APW method.

We have used the same values for Km . Qmax and MT radii as

ax
those used for the non-magnetic calculation. The initial spin
polarization has been assumed only on the site of the guest 3d
elements since the correlation effect on Ti and S sites 1is
expected to be small. The electronic configuration for up- and
down-spin states and MT radii are shown in Table.3-2.

We have evaluated the magnitude of the total magnetic moment
by using the total DOS. The magnetic moment on each atom has
also been obtained from the respective partial DO0OS, by
calculating the difference in the number of electrons for up- and
down spin-bands inside each MT sphere. 1In addition, for self-
consistency in the magnetic state we have introduced the
criterion that the magnetic moment at each MT are stationary.

/3T182

The DOS for up- and down-spin bands are shown in Fig. 3-9

3-2-1 Cr1
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together with the partial DOS. Splitting between up- and down-
spin states occurs mainly in the Cr-3d bands. Due to the
exchange splitting the DOS at the Fermi level, p(EF)= 39.1
states/(Ryd-Formula), is significantly reduced compared with that
of the non-magnetic. state 70.9 states/(Ryd:Formula). Both the up-
and down-spin states are well hybridized to the host. The down-
spin band of Cr-3d has a larger width than that of the up-spin
band, because exchange splitting raises the energy levels of the
down spin states toward the enegy levels of the Ti-3d states and
it brings about the large hybridization to the non-bonding and
anti-bonding bands of the host. Thus the gap between the non-
bonding and anti-bonding bands vanishes.

It should be mentioned that the hybridization nature of the
Cr-3d states is different for up- and down-spin states. Since
the shape of density of states is quite different for up- and
down-spin bands, the exchange spin splitting is not described by
a rigid splitting of the non-magnetic band.

The total magnetic moment per formula and partial magnetic
moment within each MT sphere are summarized in Table 3-2. The
magnetic moment at Cr site 1is 2.60uB, which is the largest value
among the intercalation compounds of 3d-elements. As shown in
Sec.3-1, the total DOS at the Fermi level of Crl/3TiS2 in the non-
magnetic band is large, and the peak of the partial DOS of Cr-3d
states was located at the energy very close to EF (see Fig.3-8).
This significant contiribution of Cr-3d at E. will cause the

F

large magnetic moment. The magnitude of the total moment, 2.9
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1y is about four times larger than the experimental value 0.73

7)
g

3-2-2 001/3T182

The calculated DOS is shown in Fig.3-10. The exchange
splitting between the up- and down-spin bands is about 0.05 Ryd.
For both spin states the electrons occupy the states below the
energy level higher than that of the peak of the Co-3d partial
DOS. The hybridization of the down-spin state of Co-3d with Ti-
3d is larger than that of the up-spin state. This causes a
difference in the number of up- and down-spin states below EF'
The obtained total magnetic moment per formula is 0.79 ”B' This
is comparable to the experimental value, 0.5 1y determined by

7)

the measurement of high-field magnetizaion. Such a small

magnetic moment cannot be explained in the localized picture.

The magnetic moment of Col/3T182 is much smaller compared with

l/3T182 or Fel/3T182. The DOS at the Fermi level of

Col/3TiS2 in non-magnetic state (p(EF)=48.8 states/(Ryd Formula))

that of Cr

is comparable to that of Fe
31)

1/3T182 (p(EF)=54.6

states/(Ryd‘Formula)). However the partial DOS of Co-3d

states near EF is much smaller than that of the Fe-3d states.

This small contribution of the Co-3d states near E. may be a

F
principal reason for giving rise to a small moment. In
Nil/BTiSZ’ the energy levels of the Ni-3d states are far from Ep
compared with that in Col/3Tisz. Thus the total P(EF) and the

contribution of Ni-3d states to p(EF) are much smaller. Indeed,

39



Nil/3T182 is non-magnetic. Such tendency is also found in

Y TiS, and Ti TiS namely the energy levels of the 3d-

1/3 2 1/3 2’
states of V and Ti are much higher than EF, thus Vl/BTiSZ and

T11/3T182 are non-magnetic.
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Table. 3-2. The electronic configuration for up and down spin

states and MT radii for ferromagnetic Col/STiS2 and Cr

up spin state

TiS Co [Ar](3d)5(4s)

Co, ,3TiS,
Ti [Ar](3d) (4s)
S [Nel(3s)(3p)>
M.T. radii
Cr, ,gTiS, Cr [Ar](3d)2°(4s)
Ti [Ar](3d) (4s)
S [Nel(3s)(3p)?
M.T. radii

41

Co

Ti

Co

0.1855

Cr

Ti

Cr

0.1855

1/3TlSZ'

down spin state
[Ar](3d)2(4s)

[Ar] (3d) (4s)
[Nel(3s) (3p)>2
Ti S

0.1850 0.2260

[Ar](3d)1-°(4s)

[Ar](3d)(4s)

[Nel(3s)(3p)”
Ti S

0.1850 0.2260



Table 3-3. The magnetic moment within each MT sphere and the

total magnetic moment per formula of M T182 (M=Cr, Co)in unit

1/3
of g -

guest Ti S total exp.=
Cr1/3Tls2 2.60 0.21 -0.20 2.92 0.73
Col/3T182 0.69 0.04 0.01 0.79 0.5

* Inoue et.al.7)

Negishi et.al.S)
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3-3 Discussion

One of the physical quantities which are directly related to
the DOS at the Fermi level is the electronic specific heat

coefficient, 7y, defined by

nzkgp(EF) (3-1)

BN
]
Wi

For the compounds of Crl/sTlsz, Fe TiS C01/3T182 which become

1/3 2°
ferromagnet at low temperatures, we have evaluated the value of 7
by using the value of pT(EF)+pL(EF) for p(EF) in eq.(3-1). Inoue

et.al.s)

have measured the specific heat C of the intercalation
compounds having 3d transition elements as guest atoms. In
their results, C/T is propotional to T2 in high and medium
temperature range, and to -0nT in low temperature range below
about 5K. Extrapolating the specific heat curve above 5K to OK,
they have evaluated the value of 7.

In Table 3-4 and Fig. 3-15, the theoretical values of 7 are
shown together with the experimental values. The partial DOS of
guest 3d-states has a large contribution to the total DOS, then

the relative position of E_. and the energy level of the guest 3d-

F
states affects the value of 7v. 1In T11/3T182 and N11/3T182 the

value of ¥ is small because the levels of the guest 3d-states are
much higher or lower than the Fermi level. The highest point of
the v curve shown in Fig. 3-15 is found for Mnl/STiSZ which is a

paramagnet. On the other hand, for the ferromagnetic Cr-, Fe-,
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and Co-compounds the exchange splitting reduces the contributions
of the guest 3d-states to p(EF), although the contributions are
not small in the non-magnetic state, especially in Cr (see
Fig.3-8) The absence of magnetism permits the large value of 7 in

Mn TiS,.

1/3 2

The dependence of ¥ on the species of guest, i.e. the
relative magnitude of y among different Ml/3TiSZ compounds is well
explained by our band calculation, although the calculated values
of v are 5 or 8 times smaller than the experimental ones. This
difference will be attributed to the effective mass enhancement
indueced by the electron-electron correlation effect and/or the
electron-phonon interaction. Here it should be noted that the
value of 7y obtained by the rigid band model is much smaller
compared with that obtained by the present band calculation.
Furthermore the dependence upon the sort of the guest atoms as
mentioned above can not be reproduced by the rigid band model.
Therefore we can say that the results of specific heat
measurements indicate clearly the inapplicability of the rigid
band model and suggest modification of the electronic band
structure of the mother crystal due to the intercalation.

As mentioned in Sec.3-2. the band calculation for ferromag-

netic Crl/3TiS2 predicts a magnetic moment much larger than the
experimental value. This fact may indicate that spin fluctuation

effects are important even at T=O0K 1in Cr The zero-point

l/3T182.
spin fluctuation may play an important role also in Mnl/3T182
because this compound does not show any magnetic ordering in

spite of its large value of p(EF).



Table 3-4. The density of states at the Fermi level, p(EF), and
the electronic specific heat coefficient y. For ferromagentic
Cr-, Fe- and Co-compounds the value of p(EF) is taken as

pT(EF)+pl(EF).

guest P(ER) v [mJ/mol k2] 7 (exp)”
Ti 35.9 6.2 --
\' 41.1 7.1 50
Cr 39.1 6.8 70
Mn 63.8%» 11 90
Fe 34.T*x 6.0 30
Co 25.8 4.5 30
Ni O.4%#» 1.6 10

8)

* Inoue et.al. (19886)
Negishi et.al.%) (1987)
+* Yamasaki et.a1.28)_3l) (1988)
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Fig. 3-15. The electronic specific heat coefficient 7 of

M T182 (M=Ti, V, Cr, Mn, Fe, Co and Ni). The open circles

1/3
denote the theoretical values evaluated from the band
calculations and the closed circles the experimental values

obtained by Inoue et al. The scale is different for the

theoretical values (right) and for the experimental values

(left).
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§4. Electronic Structures of Noble-Metal and Alkali-Metal

Intercalation Compounds

Electronic band structures of ordered silver intercalation
compound, Agl/3Tisz,kand alkali-metal intercalation compounds,

K TiS, and Li TiS are calculated by using the self-

1/3 2 1/3 2’
consistent linearized APW (LAPW) method. The muffin-tin approxi-
mation and local density approximation by Gunnarsson and Lund-
qvist have been used. In order to compare the obtained results
TiS

directly with the electronic structures of M (M=transi-

1/3 2
tion metal) in which M atom layers stack as ABCABC:-:-, the band
calculations have been carried out for the hypothetical ABC-
stacking Agl/3TiSZ as well as for the first-stage AB-stacking
Agl/STiSZ' The crystal structure of the AB-stacking is shown in
Fig. 4-1. The space group of the first stage Agl/3T182 is D3d
whose generators are I, {Cgl(0,0,l/z)} and C,, the unit call
contains twenty atoms in total, i.e. two Ag, six Ti and twelve S
atoms while the space group of ABC-stacking Agl/3T182 is C3i and
the primitive unit cell contains one Ag, three Ti and six S

TiS the

atoms. In the band calculations of Li and Kl/3TiS

1/3 2 2’

crystal structure of the ABC-stacking is assumed.
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Table.4-1. The lattice constats, MT radii and electronic

configurations for Agl/STiSZ' Li TiS, and K1/3TiS

1/3 2 2°

lattice constant 19,24-26) a c
Agl/3T152 (AB) 5.917 12.572
Agl/BTlSZ (ABC) 5.917 18.858
L11/3T182 5.934 17.584
Kl/BTls2 6.036 17.952 .
(unit in A)
M.T. radii Ag Ti S

Agl/3T132 (AB) 0.2208 0.1904 0.2210

Agl/BTlSZ (ABC) 0.2100 0.1800 0.2300

Li TiS 0.2220 0.2220 0.1900

1/3 2

Kl/3T182 0.2300 0.1730 0.2300

(unit in a)
electronic configuration
. 10
Agl/BTls2 Ag [Krl(4d) “(5s)

Li TiS Li [Hel(2s)

1/3 2

Tis. K [Ne(3s)2](3p)®(3d)°(4s)

K 2

1/3

- 54 -



=gy
Oe®
O

Fig. 4-1. The crystal structure of Agl/STiS2 with AB-stacking.
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4-1 Noble-Metal Intercalation Compound Ag'1/3TiS2
For AB- and ABC-stacking, the electronic configuration ,the
lattice constants and MT radii are summarized in Table.4-1. The

value of Km is 4.5x(2n/a) for AB-stacking and 4.1x(2n/a) for

ax
ABC-stacking. The value of Qmax=7 has been used for both kinds
of stacking.

The dispersion curves along the symmetry lines are shown in
Fig. 4-2 and Fig. 4-3 for AB- and ABC-stacking, respectively.
The lower 12 (AB-stacking) and 6 (ABC-stacking) bands consist
mainly of 3p states of sulfur. Above the energy gap, the mixing
bands among Ag-4d, Ti-3d and S-3p have a width of about 0.6 Ryd
for both AB- and ABC-stacking.

The densities of states of the mixing bands obtained for AB-
and ABC-stacking are shown in Fig. 4-4 and Fig. 4-5,
respectively. Overall feature of the DOS resembles each other.
Since the number of bands in AB-stacking is two times larger than
that in ABC-stacking, the peak of the non-bonding bands are
shrunk in the case of AB-stacking and the DOS curve is more
spiny. Comparing the DOS of the compounds of Ag with that of 3d-
elements the most striking aspect is the Ag-4d band, i.e. it
hybridizes strongly and overlaps energetically with S-3p bands.
The width of the guest-4d band of the intercalation compound of

Ag is larger than those of all M T182 (M = 3d transition

1/3
elements). This feature is consistent with the tendency that the
guest-d states are hybridized with S-3p rather than Ti-3d when

the guest belongs to the transition metal group of right hand
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side iIn the periodic table, for example in the compound of
Nil/sTiSZ. Now it should be noted that in the Ag intercalation
compound the hybridization between the guest-4d and Ti-3d is
remarkably small in contrast with the transition-metal
intercalation compounds in which the guest-3d states hybridize
fairly well with the Ti-3d states. In addition the mixing
between Ti-3d and S-3p is reduced because of the large
hybridization between Ag-4d and S-3p. As the result the bonding
between Ti and S of the host is weakened by intercalation of Ag.
Note that the large hybridizaion between Ag and S is not
favorable for energy gain because almost all the mixing states
are occupied. On the other hand the mixing bands which consist
of guest-3d, Ti-3d and S-3p are occupied partially for the
compounds of 3d-elements; for example Crl/3TiSZ(Fig.3—8). The
energy gain is, therefore, large in the case of intercalation of
3d-elements. These features of the electronic structure seem
to be related to the experimental results that the Ag atoms can

not be intercalated more than x=0.42 17)

and also that the Ag
atoms show the order-disorder transition in the interstitial
layer at finite temperature.

Next, we have calculated the total enegy both for AB- and
ABC-stacking to discuss which stacking is more favorable. The
obtained result will be presented in §5. Furthermore the

comparison of the total energies of the intercalation compounds

of 3d-elements, alkali-metal and Ag will be made also in §5.
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Fig. 4-2. The dispersion curves of Agl/3T182 (AB-stacking) .
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4-2 Alkali Metal Intercalation Compounds, Li 3TiS and K TiS

1/ 2 1/3 2

In our calculation for Li and K1/3TiSZ' it has been

l/3T182
assumed that the stacking along the c-axis is ABC. The space

group for these compounds is C The Km is taken to be

3i- ax

4.4%x(2n/a), and thus the number of basis function is about 470
for both L11/3T182 and K1/3T182. The electronic configurations,

the lattice constans and MT radii are summarized in Table.4-1.

4-2-1 L11/3T182

The dispersion curves along the symmetry lines are shown in
Fig.4-6. The lowest 6 bands consist mainly of S-3s states. The
higher energy 38 bands are mixing bands which consist mainly of
Ti-3d, S-3p states. The overall feature of the dispersion curves

resembles to those of M S, (M = 3d transition element).

173718,
The density of states for the mixing bands are shown in
Fig.4-7 together with the partial DOS. As seen in the figure, it
is clear that the small hybridization of the guest with the host
distinguishes Lil/STiS2 from M1/3TiS2 (M =3d transition elements)

or Agl/3TiSZ, although the dispersion curves of Lil/3TiS2 are
similar to both systems. Thus the bonding of Li atoms with the
host is weak, and it may correspond to the experimental result
that the Li atoms can move in interstitial layers. The shape of
DOS of Lil/3T182 is similar to that of the host-TiS,. Small

difference between Lil/3T182 and T182 should be derived mainly

from the effect of folding due to intercalation. As the
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unit cell is enlarged 3 times of original volume because of

intercalation, the curve of DOS of Lil/3TiS is more spiny

2
compared with that of the host and the peaks of DOS are somewhat

broadened in Lil/BTiSZ' The Fermi level is shifted toward higher

energy side compared with TiS For the electronic structure of

-
Lil/3TiSZ, therefore, we can say that the rigid band model is
applicable; the guest atoms provide the electrons to the host

without modifications of varying the electonic structure of the

host. For LiTiSz, the ASW (Augumented Spherical Wave) band

23)

calculation has been done by Dijkstra et.al. The obtained

results are similar to our results.
4-2-2 K1/3T182
The dispersion curves are shown in Fig. 4-8. The lowest 6
bands consist mainly of S-3s states and the others are the mixing
bands of Ti-3d, S-3p and K-3p states. The gross features of the
1/3T182 resemble those of L11/3T182,
the 3 bands 1lying around -0.15Ryd with small dispersion (about

dispersion curves of K except
0.05Ryd.)

The density of states of the mixing bands are given in Fig.
4-9. As seen in the figures the lowest 3 bands among the mixing
bands consist mainly of K-3p states and there are certain
admixture of S-3p states. The bands which consist of inner p-
states of the guest is not found in the mixing bands of
Lil/3T182 or NaTiS, (Dijkstra et.al.). For Li, obviously, there

is no p-symmetric orbits of the guests. As for NaTiSz, an
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absence of p-states in the mixing bands may be attributed to the
deep energy levels of Na-2p orbits compared to K-3p orbits: the
energy difference between Na-3s and Na-2p orbits is 2.26 Ryd for
free atomic sodium, while the energy difference between K-4s and
K-3p orbits is 1.43 Ryd. The above discussion may also be

applicable for Na Thus the shallow p-states of K

l/3TiSz. 1/3Tisz
are distinctive character for the intercalation compounds of

alkali metal. The 3p-bands of sodium raise the energies of the
bonding- and non-bonding bands of the host toward higher energy
side, then the gap between non-banding and anti-bonding bands is

reduced. The density of states at E_. increases because bonding-

F

and anti-bonding bands are approached each other.

gap between Ti-3de and Ti-3dy ( Ryd.)

Tis, 0.09
L11/3T182 0.08
LiTis, 0.02 23)
NaTis, 0.02 23)
K, /5TiS, 0.06
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§5. Total Energy

In the preceding sections we have shown the obtained band
strutures and discussed the differences between intercalation
compounds of 3d transition metal intercalates, Ag intercalates
and alkali-metal intercalates. For the strength of bonding
between the host and the guest, only the qualitative discussion
has been given. In this section we will show the results of
total energy calculation in order to give the quantitative
discussion for different bonding natures among the three kinds of

intercalates.

5-1 Practical aspect for calculation

We have assumed that the sandwiches are rigid, in other words
the intercalation causes only the displacement of the inter-
sandwich distance without changing the atomic structure within a
sandwich. We set the lattice parameters to the experimental
values. Although the optimization of total energy as regard to
the position of the host-Ti and -S has not been done, it should
be noted that the energy variation in the optimization for the
local displacement of the lattice is often in the order of
several mRyd for a few percent of the displacement. In our
calculations we have used the MT approximation for the crystal
potential. In becec or fcc iron, the difference between the total

energy obtained by MT approximation and that obtained by



including warping correction is usually the order of 10 mRyd.
(Terakura). If we use full potential instead of MT potential,
the extra correction for the total energy is the order of one mRyd
in metallic iron. Hence the approximation that we have used will
not change principal result, since we will discuss the energy
difference of the order of 0.1 Ryd.

For total energy calculation we have employed the criterion
of 0.001 Ryd for self-consistency. We have taken much more
number of plane waves for calculating total energy than that for
evaluating only DOS or dispersion relation: for Ag1/3TiSZ with
AB-stacking about 2100 APW's have been taken, and for other
compounds about 500-800 APW's. The number of k-points, which
have been used in calculating the charge density in each
iteration step of the self-consistent calculation, is 4 for
Agl/STiS2 and 6 for other compounds. The obtained total energies
are shown in Table 5-1.

We have evaluated also the cohesive energy Ecoh which is

defined as

Ecoh = Etot(atom) - Etot(bulk) (5-1)
where Etot(bulk) denotes the total energy for the bulk of the
object and Etot(atom) means the sum of the total energies of all
atoms which construct the bulk. By calculating ECoh we can
discuss formation property for different crystals: the large

E leads to more stability.

coh
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5-2 Result

The evaluated cohesive energies are summarized in Table 5-1
and Fig.5-1. Their magnitude is about 1 to 2 Ryd., which is
reasonable order of magnitude. Since the values in Table 5-2
are those for the total energy per unit cell which contains 10
atoms, the values per atom are the order of 0.1 Ryd. Note that
cohesive energy for an ionic crystal is more than 0.5 Ryd., about
0.1 to 0.4 for a covalency crystal and about 0.1 to 0.5 for a
simple metal.

As clearly seen from Fig.5-2 and Table 5-1, the Ag1/3T182
with AB-stacking is more stable energetically than that with ABC-
stacking. This result is consistent with the experimental result
because the observed stacking of Ag atom layers along the c-

direction is ABAB-".lS)

The energy difference between AB-
stacking and ABC-stacking is 0.153 Ryd/[AgTissG].

As for the alkali-metal intercalation compounds, the cohesive
energies of Lil/3T182 and Kl/3T182 are comparable to each other.
They are also comparable to that of Agl/3T182 with AB-stacking.
Furthermore they are considerably small compared to that of the

intercalation compound of transition metal, Fe This

1/3T182.
result indicates that the strengh of the bonding between the
guest and the host is weak for both Ag and alkali metal
intercalates. Here, it should be noted that the Ag atoms have
large hybridization to the host (sometimes it is larger than that

of 3d- transition element) while the alkali metals have weak

hybridization as shown in the preceeding section, although their

71



cohesive energies are comparable. This result may be explained
as follows. It is obvious for intercalation compound of alkali
metal that the small hybridization leads to the small energy
gain. For Agl/BTiSZ’ the hybridization between Ti and S is
lessened compared with that for the host-TiSz. This reduction is
caused by the large hybridization of Ag-4d with S-3p and it
brings the loss of bonding energy of the host. This energy loss
cannot be compensated by the energy gain arising from the
hybridization between the Ag and S atoms, since the mixing bands
of Ag-4d and S- 3p are almost occupied (see Sec.3-3 ). Thus the
will be ascribed to the

2
reduction of the bonding between Ti-3d and S-3p of the host due

small cohesive energy in Agl/sTiS

to the intercalation of Ag.

For Fe TiS the cohesive energy is markedly large

1/3 2’
compared with that of intercalation compound of alkali metal or
Ag. The 3d-states of the guest atom are hybridized not only to
S-3p states but also to Ti-3d states. Furthermore the mixing
bands of three kinds of atoms, Ti, S, and transition-metal, are
occupied partially. Therefore the energy gain due to
intercalation will be large and the bondings among Ti, S and the
guest atoms are expected to be large. This will lead to good
stability of the 3d transition-metal intercalates compared with

alkali metal or Ag intercalates.

We have also presented the sequence of magnitude of cohesive

iS.. However the
1737185 A&y /3 /37185

difference in cohesive energy among them are about 0.02

energy among Li TiS TiSz(AB) and K1
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Ryd/unitcell. We may only conclude that they have almost same
stability. To discuss the correct sequence of the magnitude of
the cohesive energy of them, it will be necessary to take farther
correction for potential (full potential) and to make
optimization of the total energy with respect to the atomic
structure within a sandwich. But it beyonds the scope of this

paper.

73



Table.5-1. The total energies and the cohesive energies for
M1/3T182 (M= Fe,Ag,Li,K) with ABC-stacking and'Ml/STlsz (M =

Fe,Ag) with AB-stacking. The E denote total energy per MTi

tot 35g"
it corresponds to unit cell for ABC-stacking and a half of unit

cell for AB-stacking: the value in () denotes the total energy

per unit cell. The Ecoh is defined by eq.5-1. The AEcoh is a
difference from the Ecoh of Agl/3T182 (ABC) .

(ABC) Etot(bUlk) Ecoh AEcoh [Ryd/MT1386]
Fel/3T152 12425.9439 1.756 0.744
Agl/3T182 20504.8070 1.012 0.000
Lil/3T182 9899.9981 1.165 0.153

K1/3TiS2 11086.1724 1.116 0.104

(AB)

Fel/3T1S2 12425.8412 1.653 0.641

(25851.6824) (3.308)
Agl/3T182 20504,9390 1.144 0.132

(41009.8780) (2.288)
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0.0 -+ Agl/3T182 0.000
0.1 -+ Kl/3T182 0.104
Agl/3T182 (AB) 0.132
L11/3T182 0.153
0.2 +
0.3 T
0.4 T
0.5 +
0.6 -+
Fel/3T182 (AB) 0.641
0.7 T
Fel/3T182 0.744
0.8 L

Fig. 5-1. The relative cohesive energy AEC [Ryd/MTiSSG] for the

oh
intercalation compounds. The AEcoh denotes the difference of the
i iti denotes
Etot from that of Ag1/3T182 (ABC). The lower position de

the more stability.
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§6. RKKY Interaction in M_TiS,
As mentioned in section 1, intercalation compounds MXTiS2 (M
= Cr, Fe, Co) show various magetism which depends on the sort of
M and the concentration x. In section 3-2 we have calculated
the band structures of the ferromagnetic state of Crl/3T182 and
COl/BTiSZ since the guest M-3d states are well hybridized to the
host electronic states and have itinerant character as shown in
section 3-1.
When the concentration x is small (xx0), modification of the

band structures of the host TiS, may be small and the distance

2
between the guest M atoms is large. Then it is expected that the
M-3d electrons are localized to form localized spin moments at
the M sites. In that case dominant magnetic interaction between
two localized spin moments will be an indirect exchange inter-
action via spin polarization of conduction electrons due to the
s-d exchange interaction between the conduction electron spins
and the localized spins. The exchange interaction between the
localized spins derived from the second order perturbation with
respect to the s-d exchange interaction has been known as
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction.43—46)
When the guest atoms are rare earth elements, the guest-4f
states will be well localized to form well defined localized mag-
netic moment and the rigid band model can be applicable. Thus we

may expect that the magnetism in MXTiSZ (M = rare earth element)

is explained by using the RKKY interaction even in case of rela-
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tively high concentration (x=1/4 or 1/3).
We have calculated for the first time RKKY coupling between

two spin moments in MxTiS by using the realistic band structures

2
of the host to provide the starting point for understanding the
magnetism of the low-concentration intercalates of the 3d tran-

sition element and the intercalation compound of the rare earth

element.

6-1 Method for Calculation

6-1-1 Expression for RKKY Interaction
We assume the guest atoms provide their electrons to the host
T182 without modifying the band structure of T182 (rigid band

model). We also assume the s-d exchange interaction Hs—d can be

expressed by using a 6-function as

H,_4(r.,R) = j 6(r-R) s(r) 'S(R) (6-1)

where s(r) denotes a conduction electron spin at r and S(R) is
a localized spin at the guest site R. This assumption is
reasonable approximation when the valence orbital of the guest
atoms (3d or 4f) does not spread compared with the wave length of
conduction electrons.

As the result of the second order perturbation the RKKY

interaction between two localized spins, S; at R and S, at R,,
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is obtained in the following form:
J(Rl—R2 Sl'sz (6-2)

where the exchange coupling J(Rl—Rz) is expressed as

J(R.-R. )=-L 5 ¢ nk n'k x (6-3)
17 Ry ) L
nkn'k' E. —E_ .\,
nk n'k

f b
1Mnk,n'k' (Rz) Mn'k' ,nk(R 1} h.c.’
Here n is the band index, k denotes the wave number in the B.Z.,
T (E tbpresents Fermi distribution function, and Mn.k,nk is a

matrix element of the s-d exchange interaction defined by

= * -
Mn'k',nk(Rl) = J wn'k'(r)JO(r R_ld’nk(r di—
(6-4)
= 3§ P (R ¥ (R))

Here ¢E1k(r denotes the Bloch eigenfunction of the host specified
by n and k. It has been assumed that the guest atoms occupy the
octahedral site in the van der Waals gap layers. Then we can use

the Bloch theorem

ik(R,-R, )
271 -
b (Ry) = e b (R) (6-5)
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because RZ—Rl must be a lattice vector. We write Rl—Rz as R and

consider the case of T=0. Then eq.(6-3) becomes

j2 occ unocc Iwn'k'|2|¢nl(|2
J(R) = r L cos(k-k') *R. (6-86)
2 nk n'k €k €n 'k

If we neglect the k-dependence of the s-d exchange matrix
elements Mn'k' nk and assume the electronic structure is an

electron gas-like, J(R) is expressed as follows:

.2 .
JlnkF cosZkFR 1n2kFR

3

J(IR]) =
(27) Sh2 R 2kFR4

) (6-7)

where m is an effective electron mass and kF is the Fermi wave
number. This expression is known as Ruderman-Kittel type
interaction.40)
In the present calculation we have used the band structure
of the host-TiS2 calculated by the APW method and we have also
evaluated the matrix elements of the s-d exchange interaction by

using the eigenfunctions obtained by the APW calculation. Then

RKKY interaction is written as

(n'k'),2 (nk) 2
j2 oCccC unocc ECE I I ECH
J(R) = z L > . cos(k-k') ‘R
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(n k)
M

where C is the g component of the eigenvector for E&lk in

eq.(2-2), and ¢ and ¢ denote the reciprocal lattice.

6-1-2 Practical Aspect in Calculation

In actual calculation we cannot perform exactly the summa-
tion over n and k in eq.(6-8). Wé have taken account of two
valence bands and three conduction bands near the Fermi level EF

(see Fig.6-1) since a large contribution comes from energy bands

near E_ because of the energy denominator in eq.(6-8). We have

F
confirmed that taking the other bands into calculation changes
the calculated value of J(R) only within 0.1 percent.

Accuracy of the calculated value of J(R) depends on the
number of sampling k-points more sensitively rather than the
number of bands. In order to estimate the influence of the
number of k-points upon the accuracy of J(R) we have calculated
J(R) with varying the number of k-points from 4000 to 15000.
According to the results the values of J(R=6a) calculated with
use of 12000 k-points and of 15000 k-points differ by one
percent. Thus, in the following section we have calculated J(R)
for |R|£6a by using 15000 k-points. It is noted here that if we
want to calculate J(R) for |R|>6a in the same accuracy as for
|[R|£6a we have to use sampling k-points more than 15000.

As noted in ref.28) our APW band calculation for the host
TiS, gives a semimetallic band structure with a negative gap of

2
-0.2 eV. Experimentally, on the other hand, stoichiometric TiS2
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is a semiconductor with a gap of 0.2 eV. Therefore, in actual
calculation of J(R) we have raised by 0.4 eV all the conduction
bands obtained by our APW band calculation in order that we

achieve the realistic electronic band structure of TiSz.

6-2 Result

On the basis of eq.(6-8) we have calculated the RKKY

coupling J(R) in MxTiSZ at T=0K. Actual calculations have been

performed for the following cases:

(1) x=0

(2) x=1/4, mM2*

(3) x=1/3, M?*
3+

(4) x=1/4, M

The case (1) corresponds to an ideal situation when only two spin
moments are put into the host T182 and hence the semiconducting
band structure of the host T182 is used for calculating J(R).
However, the results of calculation for this case will be
applicable also to a case of finite but low concentration. In
the case of (2)~(4) the conduction band is partly filled and
Fermi surfaces are formed because electrons are donated from the
intercalant to the host. The Fermi level for each case is

indicated in Fig.6-1.
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The RKKY coupling have been calculated for each direction
defined by Fig.6-2. Fig.6-3 shows coupling constants J(R)
calculated as a function of R for the case (1). Both values of
J(R) evaluated with and without k-dependence of the s-d matrix
elements Mn'k',nk are shown together. As seen in the figure the
value of J(R) oscillates and decays as a function of distance R.

Reflecting the semiconducting band structure the value of J(R)
decays faster than that of Ruderman-Kittel expression, eq.(6-7).
In fact it can be shown that J(R) is proportional1:0exp(-J7§R)/R3
for large R, where A denotes the energy gap. Although the
amplitude of J(R) along the c-direction is comparable with that
of the a- or x-direction, it should be noted that it is small at
octahedral site itself (R= Ne¢, N:integer). Thus the interaction
between adjacent layers will be small compared with the intra-
layer interaction.

As seen in Fig.6-3 the RKKY coupling for the nearest-
neighbor site (position at la along the a-direction) and for the
next nearest-neighbor site (position at J/3a along x-direction) is
antiferromagnetic while for the third neighbor site (position at
2a along the a-direction) it is ferromagnetic. This behavior of
the RKKY interaction may play an important role in spin glass
phase transitions observed at small concentration in FeXTiS2
(x<0.05).5-11:12)

In Fig.6-4 the RKKY coupling is shown for the case (2) (M?'
and x=1/4). The magnitude of J(R) is order of 10-5 around R x la

while it becomes less than 10_6 for |R| >4a in the a-direction
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and for |R| >5a in the x-direction. The value of J(R) in this
case decays gradually compared with that of the case (1). The
coupling in the c-direction is small on the guest sites, and thig
situation is the same as in the case (1). These features of J(R)
for the case (2) are also seen for the cases of (3) and (4) as
shown in Figs.6-5 and 6-6, respectively

In order to get an insight into the spin structure in the
interstitial layer we have calculated J(q), which is the Fourier
transform of J(R) for a superlattice of the guest M atoms. We
have considered that the M atoms form a 2a x 2a superlattice in
the interstitial layer when x=1/4, and a /3a x /3a superlattice

3-5) The result is shown in Fig.6-7. As

are formed when x=1/3.
seen in the figure the maximum of J(q) is located at the K point
(rn/3,n/3) in the case (2), and the stable spin structure is a
triangular arrangement. When we ignore the k-dependence of the
s-d matrix elements, J(q) takes the maximum value at the M point
(n/2,0). This indicates that the consideration of the k-
dependence of the s-d matrix elements is important. In the case
(3) (M2+, x=1/3) J(q) has the maximum value at the M point as
seen in Fig.6-7, and the stable spin arrangement is an antiferro-
magnetic structure corresponding to the M point. The maximum of
J(q) for the case (4) (M3+, x=1/4) is located at the I point (0,0).
It has been reported that the ferromagetic behavior is

6,7)

observed for Co TiS, and Fe while our obtained

1/3 2 1/3
results predict antiferromagnetic or triangular spin arrangement.

TiSz.

This disagreement is considered to indicate also inapplicability



of the rigid band model to the intercalation compounds of 3d

transition elements with high-concentration. As noted previously
the results obtained for the cases (2)v(4) can be applicable well
to intercalation compounds of rare earth elements. Unfortunately,
however, magnetic measurements for EuXT182 and YbXTiSZ have been

47,48)

done only for x<0.10. The measurement for higher concent-

ration intercalates of rare earth elements is desired.
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Fig. 6-2. The directions for which the RKKY coupling J(R) are
calculated are defined as above. The triangular lattice site in

the figure corresponds to the octahedral site in interstitial

layer.
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§7. Summary

In this thesis we have performed systematic calculation of
the electronic band structures and of the total energies for
intercalation compounds of 3d-transition metal, Noble metal and
Alkali metal as follows:

Band structure

3d-transition metal Til/3TiS2
intercalation V1/3Ti82
Crl/sTiS2
Crl/STiS2 (ferromagnetic)
Col/3T182 (ferromagnetic)
Noble metal intercalation Agl/3T182

Ag1/3T182 (AB-stacking)

Alkall metal intercalation Lll/3T182

K1/3Ti82
Total energy
3d-transition metal Fel/3T182
intercalation Fe, ,4TiS, (AB-stacking)
Noble metal intercalation Agl/3T182
Agl/STiS2 (AB-stacking)
Alkali metal intercalation Lil/sTiSZ
Ky1/3T18,

Based on the band structures and the total energies, we have

made clear the characteristic features of the three kinds of



compounds and have explained the difference among above mentionegd
compounds.

The principle results are summarized as follows:

3d-transition metal intercalation

(1) The guest-3d states are substantialy hybridized with Ti-3d
and S-3p of the host and form bands with certain band width (more
than 0.1 Ryd.). Then the guest-3d states have an itinerant
character rather than localized one.

(2) The mixing bands of Ti-3d, S-3p and guest-3d are occupied
partially by electrons, thus the energy gain due intercalation
will be large.

(3) The magnetic moment in Col/3TiS2 is 0.79 uB per unit cell
and is comparable to the experimental value O.SuB . The magnetic
is 2.92 p

moment of Cr and is four times larger than the

1/3T182

experimental value.

B

(4) The calculated densitied of states at the Fermi level
explain well the dependence of the specific heat coefficient 7 on
the sort of guest atoms, although the absolute magnitude of the
observed v is larger than the calculated one.

TiS, indicates that

1/3 2
the intercalation compound of 3d element is stable enegetically

(5) The total energy calculation in Fe

and the ABC-stacking is favorable than the AB-stacking.

Noble metal intercalation

(8) The 4d states of guest are strongly hybridized with S-3p

- 95 -



states of the host, whereas that with Ti-3d is small. The
hybridization of the guest 4d with S-3p is rather large in

Agl/3T182 compared with that in M T182 (M=transition element).

1/3
The strong hybridization between Ag-4d and S-3p destroy the
covalent-1like bond between Ti-3d and S-3p of the host, but does
not yield an energy gain because almost all states of the
hybridization bands of Ag-4d and S-3p are occupied by electrons.
This feature seems to be related to the fact that Ag atoms
cannot be intercalated more than x=0.42 and the Ag atoms show a
temperature-induced order-disorder transition.

(7) The total energy calculation in Agl/3TiS2 indicates that the
ABC-stacking is more stable than the AB-stacking. The cohesive
energy of Agl/3TiSZ (AB) is comparable to that of the

intercalation compound of alkali metals.

Alkali metal intercalation

(8) In the intercalation compound of Li or K the hybridization
of Li-2s or K-4s with the host is weak, and the modification of
the electronic structure of the host due to intercalation is
small compared with that in the compounds of Ag or 3d-transition
elements. Thus a rigid band model is applicable for the alkali
metal intercalation compounds, especially for Lil/BTisz‘ Since
the Li atoms can be intercalated without breaking the
intra-sandwich bond (Ti-S), the guest atoms can be intercalated
to x=1 in contrast to AgXTiSZ (6).

(9) In Kl/sTiSZ' narrow bands which consist of inner p states
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(K-3p) are situated between S-3s bands and S-3p bands. It is
distinguishable feature of Kl/3TiS2 from other alkali-metal
intercalation compounds.
(10) The guest atoms will be ionized nearly monovalency in both
l/3'1‘18 and Kl/STiSZ’ since the occupied states contain few
s-symmetric valence states of the guest. It corresponds to

experimental results of ionicity.26)

In the intercalation compounds of 3d transition-metal atoms
inapplicability of the rigid band model and strong hybridization
of guest-3d states with the host have been verified by
experimental mesurements of specific heat, electronic properties
and photoemission specta. The observed magnetic moments in
TlS )

TlS and Fel/sTlS are much smaller than those

1/3 1/3
expected from a free ionic state of the guest atom. Therefore
the physical properties of the intercalation compounds of 3d
transition element can be understood on the basis of the
electronic band structures obtained by the APW band calculations.
Now we should notice that the observed result specific heat
coefficient and the photoemission spectra analysed by using
cluster model (Fujimori and Suga14)) indicate a importance of the
electron correlation effect. Investigations on the electron

correlation effects in M TiS, (M= transition-metal) are left in

1/3 2
future.
In the intercalation compounds of alkali metal and Ag, the

weakness of bond between the guest and the host has been verified



by experiments: a diffusive motion of Li* was observed in Li Tis

,27) the order-disorder transition at finite temperature and the

presence of gas phase were observed in AngiSZ.Zl) Structural
ordering of the guest and modification of the host layer in the
intercalation compounds of Ag and alkali metal with large ionic
radius such as K, Na have been also attracted much interest. The
total energy calculation for the various arrangement of the guest
and for the inner structure will reveal the structural features
of the intercalation compounds of alkali metal. These
calculations have to be performed with structural optimization
and by the use of full potential, since the discussion of
structural variation demands an accuracy of 10 mRyd.

We have also calculated RKKY interaction between localized
spins on the guest atoms by using the realistic band structure of
the host—TiSz. The ground state spin arrangement evaluated by

using RKKY coupling does not explain well the magnetic order

observed in Co or Fel/ TiS,. This indicates that the

173718, 3TiS,

rigid band model is not adequate for these compounds. However we
emphasize that the calculated result of the RKKY coupling should
be applied to intercalation compounds with the low concentration

guest atoms such as FeXTiS with x<0.05, and also applied to

2

the intercalation compounds of rare-earth metal atoms, where the
guest atoms are expected to have localized spin. Experimental

(R =Eu,Yb) is desired.

study of magnetism in R1/3T182



Appendix.1l. Construction of electronic charge density

The MT potential V(r) consists of contributions from the
interaction between an electron and nuclear charges and the
electron-electron interaction. In the local spin density
approximation (LSDA) the latter is expressed in terms of the
electron charge density which should be determined self-
consistently. Thus the construction of the electron charge

density is an important task in the self-consistent band

calculations.
In general the charge density of valence electrons, p(r), is
calculated from
occup 9
p(r) = X ank(r)l (A1-1)
nk

where ?nk(r) represents the eigenfunction obtained for valence

electrons with n being the band index, and the summation is taken

over the occupied states. The spherically symmetric charge

density in the vth MT sphere, pu(ru) is defined by
pu(ru) = Jp(ru)dru

In the LAPW method the eigenfunctions Wnk(r) are not used

directly in constructing the charge density. Instead the charge



density 1s obtained by making use of the partial density of state

(DOS) as follows:

Ep

. 2
pu(ru) = pu,core(r )+ L Jdapgu(s)lRQ(ru,s)l (A1-2)

where pQU(s) denotes partial DOS in MT sphere respect to € which
is angular momentum quantum number. It is reliabele to construct
charge density in LAPW from partial DOS, because Ek S are
determined variationally though basis functions are not good in
comparison with APW. This notation (eq.Al-2) is exactly when one
chose APWs as the basis functions. If radial wave function
Rg(ru,;s)depends linearly on energy ¢, the second term in eq.Al-2
can be represented only first three energy moments of the
occupied partial DOS. When it has near limearly dependence, one
can adoquatly express the charge density using few number of
moments.

The charge density can be expressed as follows:

N

- : 2 -
pylx,) = pu,core(ru)+a§1 E QQaulRQ(ru’EQa)l (A1-3)

where the N is a integer, and the weight factor QQau and the

sampling energy EQa are determined by following relation:
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08v (B =0,1,...2N-1) (Al-4)

The MQBU denotes the moment of order fj

Ep

Mg = | £y, (e)e a8 (A1-5)

In this paper the first four moments are taken (or let N = 2),

then we can represent pu(ru) exactly until the term propotion
3 . . 2 .

to &° in IRQ(ru,s)I . The weight factor Q. *Epq are used to

make p(rv), EQQ are also used as EQl’ EQZ which are parameter

determines the form of basis functions.
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Appendix.2. Exchange and Correlation in Electron Gas System
The exchange energy density in eq.2-36 for electron gas is

Flo()] = -2 @)t/ (A2-1)

and the exchange potential energy density is defined by
X - d X
viip(+)] = @(pa [(p(-)1) . (A2-2)

Now we define density parameter rs by

4 3 _ 1 -
T g =, (A2-3)

Then eq.A2-1 become

X _ 3 _
& = 2nar (A2-4)
S
and the potential energy density is give by using rs
r
X S d X
- S _a_ A2-5
v (1 3 dr ) & (A2-5)
S
then
-4 _3 ) (A2-6)
3 2na%
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/3

where the « is given as a=(4/9n)1 .
The eq.A2-4 and eq.A2-6 for polarized state are given by
6)

following interpolation expression?

X1+ (213 1) £y (A2-7)

£X(2)

4

Vi) = 2+ Faren) /B

(c=+1,-1) (A2-8)

where the o denotes the spin T (+1) and ! (-1), €=(pT—bL)/p and

1
2(21/3.1)

4/3

£(x) = ((1+x) 334 (1-x)¥/3- 2y . (A2-9)

The correlation energy density are estimated by following

interpolation expression respect to rs36)

r r
c _ _ _S c_ _ _Ss -
8p = - ¢ g( 3 ) o Ce g ( rf) (A2-10)

where the p and f means the case of ¢=0 and ¢=1 respectively and

2

g(x) = (1+x°)gog(1+ %) - x +%x——é— (A2-11)

The Cp, C r_ and re are constant given in Table.A2. The

f° "p

correlation potential density is given as
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r r
c _ _ _S C - _ _S
vp = c, Qog( 3 ) Ve Cp Log( rf) (A2-12)

The interpolation for intermediate spin polarization state,

0<¢<1, are done by using following expression.

e€(2) = &5 + (g - e0) £(2) (A2-13)
Vo(2) = vp e (vE-ve- g (ef - ) £(2)
4 ¢ e (A2-14)
* 3 (e e ) ' (ag)
3 f P
where
£'(x) = 134y

In our band calculation, the exchange-correlation terms are
estimated by using eq.A2-4, A2-6, A2-13 and A2-14, and three
type of the expressions are available: the von Barth & Hedin, the

Gunnarson & Lundqvist and the Hedin & Lundqvist type.
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Table. A2. Constants for the interpolation experssion.

Cp Cf rp rf

vB-H* 0.0504 0.0254 30 75
c-L** 0.0504 0.0225 11.4 15.9
M-J-w***  0.0450 0.0225 21 52.9

24/3r

The Cf and rf are defined by C =Cp/2 and rf= D

f

*# von Barth and HedinBG)

#** Gunnarsson and Lundqvist38)

#%* Morruzi, Janak and William534)
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Appendix.3.

Ti

ABC-stacking

o,

o,

o,
0,

0,

1/3,

, 2/3,

1/3,

2/3,

1/6 )
1/2 )
5/6 )
u )
u )
u )
v o)
v o)
v o)
o )

Ti
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i i 1
Atomic positions in unit cel

AB-stacking

2/3,

1/3,

1/3,

2/3,

o )
1/2 )
0 )
0 )
1/2 )
1/3 )
t )
t )
u )
u )
v o)
v o)
W)
W)
t )
v o)
u )
wo)
1/4 )
3/4 )



Ti

Cr

Fe’

Co

Li

Ag

.4170

.4166

.4168

.4169

.4156

.4190

.4206

.4243

.5830
.5834
.5832
.5831
.5844
.5810
.5794

.5756

Fe

s 0.1247
t 0.3753
u 0.6247
v 0.8753
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Ag
0.1135
0.3865
0.6135

0.8865
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