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On the Uniqueness of the Decomposition of a Link

By Yoko HASHIZUME

§0. Introduction.

A link of multiplicity # is a collection of # disjoint simple closed
oriented polygons in the 3-sphere S°. Especially a link of multiplicity
1 is a so-called knot. H. Schubert [1] showed that the genus of the
product of two knots is equal to the sum of their genera and that every
knot is decomposable in a unique way into prime knots. The purpose
of this paper is to extend his results to the case of links.

In §1, using some of the results and methods due to H. Schubert
[1], we define the product of links and prove some preliminary theorems.

In 8§82, we define decomposition systems for non trivial and non
separable links, and prove by the aid of the decomposition system the
following

MAaIN THEOREM. Every mon trivial and non separable link can be
decomposed uniquely into prime links.

For the links of multiplicity 1, this theorem coincides with H.
Schubert’s result. But our proof is simpler than his.

The author gratefully acknowledges the guidance of Professor H.
Terasaka and S. Kinoshita in preparing this paper.

§1. A link of multiplicity n is a collection of #» disjoint simple
closed oriented polygons in the 3-sphere S*®. Two links / and ! are
said to be equivalent and denoted by /=, if there exists an orientation
preserving semilinear mapping S*® onto itself which maps one of them
onto the other. Especially, a link of multiplicity 1 is a so-called knot.
Throughout this paper we shall denote by / a link, and by & a knot.

We shall say that / has p components, if there are p disjoint cubes
Q., -, Q,> for I/ such that InQ,=0@, InQ,==¢ (i=1, -, ) and there are
no wx+1 disjoint cubes with these properties. A link with multiplicity

1) In the following S® will be taken as the boundary of a 4-simplex in 4-dimensional Eucli-
dean space R* To simplify our observation, we chose “infinity” of S® as a vertex of this
4-simplex, and call the opposite 3-simplex the base simplex and denote it by 4°

2) Such expressions as cubes, spheres, surfaces, disks, arcs, etc. should be understood all
simplicial and mappings should be understood all semilinear S® onto itself.
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1 is said to be mon separable. A link ! is said to be #rivial, if each
component of / consists of a single triangle.

Let @ be a solid cube and let /=(k,, -+, k,) be a link which has an
arc v of k; in common with the boundary € of @, the remaining /—v

lying wholly within @ except for ». Setting /—v=1/[*, we shall say that
(I*, Q) is a representation of [ (with respect to k;), or I* represents | in
Q (with respect to k;). We shall call v a joining arc of I* on Q. If we
replace v by an arbitrary joining arc ' of /* on Q such that /*uv’
makes a link //, then we have [~/ by an analogous argument to Satz 1
of [1].

A cube Q will be said to be an admissible cube of I, if InQ consists
of just two points. We shall denote by Q° the complemental cube of @,
ie. $$—Q.

Let @ be an admissible cube of /. If /nQ represents /,=(k1, -, k})
in @ with respect to k; and /N Q° represents /,=(k?, ---, k%) in Q° with
respect to k3, then / is said to be a product of I, and 1, associated with
(k:, k%), and denoted by /=1, 5 l,. If we take no notice of the locality
of the product, then we say merely that / is a product of I, and I, and
denote / by /,-l,. We say also that @ cut out I, from ! and [, is the
rest link of 1 with respect to Q. Then we have

Lemma 1. For every two links [= (R}, ---,k.) and l,=(F%, -, k%),
there exists I, 5 I, uniquely, where i and j are a given pair of integers with
1<i<n and 1<j<m.

The proof is essentially the same as Satz 3 of [1] and is omitted.

We shall denote by m(/) the multiplicity of /. Then it follows
directly from the definition of the products:

Theorem 1. If [=I,-1,, then m(l)=m(l,)+m(l,)—1.
! is said to be prime, if [ is non separable and if, whenever /=/,./,,
one of /,, [, is trivial.

EXAMPLES.

(1) I, (Fig. 1) is a prime link.

(2) I, (Fig. 2) is a non prime link which is the product of two /,.

In the same way as the case for knots [2], we can span for an
arbitrary given link / a connected orientable singularity free surface F.
If we denote by g(F) the genus of F, the minimal number of g(F) for
all choices of such F will be called the genus of [ and will be denoted
by g(/). Then we have the following

Theorem 2. If [=1[-1,, then g(I)=g(l,)+ g(l,).
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REMARK. A product /=/, 5 [, depends in general on the pair (7, j),
but its genus is uniquely determined only by /, and /,.

Since Theorem 2 is proved by an analogous way to the proof of
Satz 4 of [1], using a lemma which is a generalization of Hilfssatz 7
of [1] for the case of links, the proof is omitted.

For the case of knots, we know that g(k)=0, if and only if k is
trivial and that if g(k)=1 then k is prime (cf. Satz 6 of [1]). But by

4,

Fig. 1.

~

£,

Fig. 2.

our definition of links, the circumstances are very different from the case
of knots. For example, /, (Fig. 1) is a link of genus O but non trivial, and
/, (Fig. 2) is a link of genus O but neither trivial nor prime. We can
only verify the following :

Theorem 3. If g(I)=0 and m(l)=2, and if I is non separable, then
[ is prime.

Proof. Let /=/,-/,. Then by Theorem 2 g(/,)=g(/,)=0. On the
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other hand, since m(/)=2, either m(/,)=1 or m({l,)=1. We may assume
without loss of generality that m(/,))=1. Then from g(/)=0 it follows
that /, is trivial. Hence / is prime.

We have further

Theorem 4. Let [=1[-1,. Ifomeof I, I, is a trivial knot, then the
other is equivalent to [. Conversely if one of [,, I, is equivalent to [, then
the other is a trivial knot.

Proof. The first part is clear (cf. Satz 5 of [1]). To prove the
second part, let /~/,. Then clearly m(/)=mi(l,). But since m(l)=m(l,-1,)
=m(l,) +m(l,)—1, we have m(/,)=1, what is the same, /, is a knot. From
Theorem 2, it follows that g(/,)=0, i.e. /, is a trivial knot.

§ 2. In this section we shall consider only about non separable links.

We shall use the following notations. Let @ be the admissible cube
of /, that is, a cube intersecting / in just two points, and let @,, -, @,
be admissible cubes of / in Int@ such that Q,J\Q.].=(b (i, j=1, - ,n).
Then take out all the maximal cubes® {Q,, -, @,,} from {Q,, --,Q,}.
Let v, v+, 0, be joining arcs of / on Q, in,--- ,Q,,m respectively.
Then IN(S*—(Q° V@, v - U@Q,,)) together with v, v,,, - ,v,, make a
link as shown in Fig. 3. We denote it by /—(Q°+Q,+ --- +@Q,).

Lemma 2. Let / =l“_} I, and let (I*, Q) be a representation of I. Then
there exists an admissible cube Q, of [ inside Q such that 1*=1*NQ,
represents I, in Q, with respect to k; and I—(Q°+Q,) is equivalent to I,
(Fig. 4).

Since Lemma 2 is easily proved almost in the same way as the proof
of Hilfssatz 8 of [1], we omit the proof.

D={{l;, @), -, (, @)} will be called a decomposition system of I,
if it satisfies the following conditions :

(D I) Each @; is an admissible cube of /.

(D II) For each pair of different @; and @Q;, @:NQ;=@ or
Q;CIntQ; or @, CIntQ;, or Q;=Q;.

(D III) S*=Q,v -+ vQ,.

(D IV) Let @, -+,Q, be all the cubes contained in IntQ;. Then
l;~l—(Q°+Q;+ - +Q,) and each /; is prime.

(D V) [is a product of 7, ---,1,.

3) Theorem 4 is the extension of Satz 5 of [1] to links.
4) We say that Q; is maximal in {Q,,...Q,}, if there is no @; in {Q,,..., @,} such th:t
Q;CInt@,.
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Fig. 3.

Fig. 4.

Now we shall show that

Theorem 5. For every non trivial and non prime link, there exists
at least one decomposition system.
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Proof. Since / is neither trivial nor prime, there exists an admis-
sible cube @, such that /=/-/,, where I*=InQ,, L*=InQ%.

From Theorem 1 and Theorem 2 we have
(m(l) + g(1))) + (m(l,) + g(1,)) = m()) + g(/) +1

Here m(l;)=1 (1=1,2). But if eg. m(/)=1 and g(/,)=0, then [,
must be trivial, contradicting the way of decomposition, therefore m(l,)
+g(l)=2. Thus we have

m(l)+g(l) <m(l)+g(l) i=1,2 (1)

Here we put @,=@Q°. If /; ({=1, 2) is not prime, then there exists
by Lemma 2 an admissible cube @;; in IntQ; such that /,=1[;-/;,, where
=0nQ,, l,=1;,—(Q;+Q,)). Next suppose /; (i=1, 2) is not prime.

Fig. 5.

Then we decompose /;, into two links with the aid of an admissible cube
Q,, of ! lying wholly within @; and such that Q;,NQ;=¢ as shown in
Fig. 5.
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We proceed with these decomposition procedures. Then these proce-
dures cannot continue indefinitely as will be seen easily from (1), and
each factor link comes finally to be prime.

Renumbering the cubes and links above obtained, we obtain a system
D={(, Q),-,(,, @,). From the way of the construction of ® it
is clear that 9®© satisfies the conditions (D I)-(D V). Thus Theorem 5
is proved.

Let ®= {(11; Ql)} Tty (ln; Qn)} and ¥'= {(ll/’ QII); Tt (l;nr ;n)} be
decomposition systems of a link. An element (/;, @;) of ® and an
element (/}, Q)) of ®© will be called equivalent and denoted by (/;, ;)
~(;, @), if ;=0;. D and ' will be called equivalent and denoted by
D~Y, if n=m and if there is a one-to-one correspondence between
the elements of ® and the elements of © such that the corresponding
elements are equivalent. (/;, @;) will be called ar end of D, if there is
no @; in ® such that @, CInt @;.

Lemma 3. For arbitrary given two decomposition systems D={(l,, Q,),
o (l,, Q)Y and D' ={(/, Q) -, UL, Q) of the same | and an end
of ¥, say (I, Q), there exists a decomposition system D= {(I{/, Q1),
s (I, QDY of I satisfying the following conditions :

(1) ¥"=D.

2) (7, Q) is an end of D" such that 1Y ~1' and either 1/*I7*
or [y* /%,

Proof. First we deform /, ® and © by an isotopic simplicial
deformation into the following forms without changing the other
circumstances® :

(1) @/ is a 3-simplex in the interior of the base simplex A®

(2) Let InQ/={A, B}. Then A and B are respectively in the

interior of certain 2-simplexes which are boundary simplexes
of Q..

(3) l) {Ql’ an}, {Qll’ Tty Q%}(Int Ad,

(4) Neither A nor B is a vertex of /.

Thereafter we give a simplicial decomposition 8 on / \J(\/Q,-) such

that B is so fine that if « is a simplex of 8 such that eNQ,’=0, then
there is no simplex o of 3 such that ¢/'n {(\/Q,—’)—Q{Hz(b and o’ N o==0.
From the above condition and (1)-(4), we can further deform @,/ and ®

such that it satisfies the following conditions, without moving / and
without changing the other circumstances.

5) See pp. 89-pp. 90 [1].
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(5) A, BEQ; (i=1, - ,n).

(6) Neither A nor B is a vertex of B.

(7) Every vertex of @, is not on Q,- (=1, -, n).

(8) The intersection of any edge of @, and any edge of B is null.
From the above conditions it follows that Q,’r\(\/Q;) consists of a

finite number of simple closed curves. We call them the cut lines on
Q.. By the usual method, we are going to delete these cut lines from
Ql’, replacing ® by an equivalent one. Take out one of the innermost
cut lines on Ql’, and name it ¢. Then there is a disk E on Ql’ bounded
ky ¢ such that there are no more cut lines on E. First we are going
to delete ¢ without getting new cut lines on Ql’. Suppose c(Q,-r\ Ql’.
Since Q,NE=c the following two cases are to be considered :

Case I: ECQ; and Case II: ECQ:.

Case I. ¢ divides @, into two disks D,, D, such that D,AD,=D,
=D2=c and D,UD2=Q,-. E divides @; into two cubes @;,, @;, such that
E=Q;NnQ;, @:,vQ;,=@q,; and Q;j-——DjuE (j=1,2). We put hereafter
InQ;= {C, D}.

The following three cases actually occur in this case.

(0) Neither A nor B is contained in E.

(1) One of the A, B is contained in E and the other is not con-

tained in E.

(2) Both A and B are contained in E.

Case I (0). ECQ;. A, B¢E.

In this case, either C, De D, or C, De D,, because lr\Q,.j=lr\Dj
(=1, 2) must consist of even number of points. Without loss of
generality we may assume that C, D€ D, as Fig. 6.

Then INnQ;,=@. For, if /nQ;,==@, then form the facts lr\Q,.2=q)
and /nQ:,==0(>C, D), it follows that / is separable, which contradicts
our first assumption.

Hence /NnQ;;=0. Therefore INnQ;=INQ;;. Then we cut off Q,,
from Q;. Shifting slightly all the vertices of a certain simplicial decom-
position of Q,-, on E to one direction, we can delete the cut line ¢ from
Q. as shown in Fig. 7, without giving rise to any new cut lines on Q/
and without changing the other circumstances. We write the cube thus
obtained still by the same symbol @;,. Then replacing (/;, @;) by (/;, Q;)
in the decomposition system D, we obtain a decomposition system ©
which is obviously equivalent to ©. Since ¢ is deleted, the number of

6) Such simplicial decomposition 3 is obtained by refining arbitrary given one.



Decomposition of Link 291

the cut lines on @, is diminished at least by one from the original one.
If C, De D,, then we may merely exchange the number 1 and 2 in the
above process.

Fig. 6.

Fig. 7.

Case I (1). ECQ;. AcE,B¢E.
In this case one of C, D is contained in D, and the other is contained
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in D,. We may assume without loss of generality that C€ D, and D€ D,.
By the definition of the decomposition system /;=/—(Q°+Q;+ -+ +@Q,),
where Q;, -+, Q, are all the cubes of ® in IntQ;. Let [*=1/—v;, where
v; is the joining arc of / on Q; and let ¥ Qy, I*NQ,;, represent I, I,
in Q;,, Q;, respectively. Then it is easy to see that /;=1{;,-I,,. Since [;
is prime, one of /;, /;, must be trivial. We may assume without loss
of generality that /; is trivial. Then by Théorem 4, /;~/; (Fig. 8).

C /P

Fig. 8.

Then we cut off @,, from Q;. Thereafter deforming ; in the same
way as Case 1 (0), we delete the cut line ¢ (Fig. 9). Replacing (/;, ;)
by (/1, Q) in D, we obtain a decomposition system © which is obviously
equivalent to 9.

Case I (2. ECQ;. A, B€E.

In this case, it follows without loss of generality that C, De D,.
Then we may assume that the joining arc »; of /¥ on Q, is contained
in D,. Let InQ; represent /;,, in @;, and let the rest link of /; with
respect to @;, be /;,. Then /;=/;-Il;, as shown in Fig. 10. Since /; is
prime, one of /;, /;, must be trivial.

First suppose that /;; is trivial. Then we cut off @; from @Q;.
Deforming then ;, by the usual way, we may delete the cut line c.
Since [;, is trivial, /;,~{;. Moreover Zr\Q,~2 clearly consists of just two
points A, B. Replacing then (/;, ;) by (/,, @3 in 9D, we obtain a
decomposition system ® which is obviously equivalent to ®.
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Fig. 9.

Fig. 10.

Next suppose that /7, is trivial. It is easy to see that either

INQ;, Q) or INnQ;, Q1.
Suppose that InQ;,;Q{°. Then /—(INnQ;,) Q. Let u be an arc
joining A and B on E as shown in Fig. 11. Then since (//, @,) is an

end of &, (I—(Un@;)vu=l'. Set (—(INQ,)vu=0V and I'nQ;=1;



294 Y. HASHIZUME

and let the rest link of [/ with respect to @; be /. Then obviously
!'=1[;-1". Since [/ is prime and since /;, is not trivial by assumption,
!” must be trivial. Then ® does not satisfy the condition (D IV), which
contradicts that © is a decomposition system of /.

Fig. 11.

Hence we have InQ;,CQ,/. Since (I, Q) is an end of ® and /,,
is trivial, one and only one cube of 9, say @, is contained in Q;, as
shown in Fig. 12. Then it is easy to see that (/,, @,) is an end of ® and
l,~1’ and *C/i*. When [, is trivial in Case I (2), thus Lemma 3 is
proved.

Case II. EC Q5.

E divides @; into two cubes M,, M, such that M,nM,=E,
M, M,=Q; and MJ.=E\JD]. (=1, 2). Since there is no cut line on E,
one of M, or M,, say M,, is contained in Qi°.

Let E, D,, D,, etc. have the same meanings as in Case I. There are
three cases, Case II (0), Case II (1) and Case II (2) to be considered.

Case II (0. ECQ;. A, B¢E. '

If /InM,=0, then replace @; by Q,—=Q,-\JM1. Then we delete ¢ by
the usual way as shown in Fig. 13, and replace (/;, Q;) by (/;, @;) in D.
D=A{, Q), -, U, Q.), -, (,, )} thus obtained is obviously a decom-
position system of / equivalent to ®. Therefore we assume below that
INM,== (.
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Fig. 13. Fig. 14.

From the above assumption and from the fact that A, B¢ E, both
C and D must be on D, since _l is non separable. We take a cube @ in

IntM, so close by M, that INQ= {C’, D’} and CC’, DD’ are line segments
and Qf\Q].::Q) (j=1, ---,n) as shown in Fig. 14. Let Q,, ---, @, be all
the cubes of ® contained in @ (there may be no such cubes). It is
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easy to see that /CC M,v@Q;. Since there is no cube in ® which contains
Q;, one of QF, Q;, -, Q%, say Q¢ must coincide with some cube of D,
say Q,. If weset I—(Q°+Q,+ - +Q,) =/, then clearly /~/,. Further
it is clear that l—(Q~+Qi+ <+ +Q,)~1;, where Q;,-,Q, are all the
cubes of ® in IntQ;. Then replacing (/;, Q) by equivalent (/, @) and
(/;, @;) by equivalent (1—(@+Q,-+ o +QI), Q°) in D, we obtain a decom-
position system ® of / which is equivalent to ®. Thus the cut line ¢
is deleted from @/, and from the way of the construction of D, there
arise no new cut lines on Ql’.

Case II (1). ECQ:i. A€E,B{E.

In this case, one of C, D is contained in D, and the other is contained
in D,. We may assume without loss of generality that Ce D,. We take
a cube @ in Int M, so close by M, that InQ={A, C’} and AA/, CC’
and line segments and QN Q=0 (j=1, - ,n). Let Q,, -, @, Q;, -, Q,
and / have the same meanings as in Case II (0).

Fig. 15.

If [ is trivial, then we replace Q; by Q;=Q;uM,. It is clear that
Q; is also an admissible cube of /. Then obviously /;=/—(Q¢+@Q JE e
+Q,)~l—(@;’+Qj+ o +Q,+Q,+ - +Q,). We then delete ¢ by the
usual way as shown in Fig. 15. Then replaing (/;, @;) by (/—(Q:+Q PR
+Q,+Q,+ +Q,), @) in D, we obtain a decomposition system D of /
which is equivalent to .
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If 7 is non trivial, then the following two cases actually occur: (A)
There exists a Q, in ® such that @, Int Q,. (B) There is no such @,
as (A).

Case (A). In this case we choose @, such that there is no @, in D
such as Q;CQ,Q, as shown in Fig. 16. Let @;, Q,, -, Q, be all the

Fig. 16.
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cubes in D contained in Q,. Then it is easy to see that /—(Q:+Q+Q,
+ - +Q)~1I;. Therefore D={(,, Q), -, [—(Q+Q+Q;+ - +Q,), Q,)
-+, (I, @)}, which is obtained by replacing (/;, Q;) by (I—(Q;+Q+Q,
+ - +Q,), Q,), is obviously a decomposition system of / equivalent to .

Case (B). By the definition of the decomposition system, one of
Q5, @5, ,Q; must coincide with some cube of ®. We may assume
without loss of generality that Q{=¢@,. Then it is easy to see that
I~1,. Replacing (4, Q) by (, Q) and (;, Q) by (—(Q°+Q,+ - +Q)),
Q°), we obtain a decomposition system ® of / which is equivalent to ®
(Fig. 17). Thus in Case II (1), the cut line ¢ is deleted without getting
new cut lines on Q.

Case II (2). ECQ;. A,BE€E.

We need not consider this case. For, if we choose any other one
of the innermost cut lines on @, then we can delete it, because it
belongs to Case I (0) or Case II (0). Next we delete another one of the
innermost cut lines. Thus finally there remains only one cut line ¢ on
Ql’. The ¢ is a cut line of Case I (0). Hence we can delete ¢ from Q.’.

Repeating step by step the above deleting process, we can delete
finally all the cut lines from Ql’. Let the decomposition system of /
finally obtained be 7= {(/{, 1), -, (&, @)}. Then Q{/\(\/Q,-):(/}.

From the condition (D V) it follows directly that there is at least one
cube of ®, say @7, such that Q7NQ,/= ¢. Then the following two cases
are to be considered :

(1) @V Int /. (2) @/ Int Q.

Case (1). Let /nQ{ represents /,. Then clearly //=1-(I—Q'°+Q})).
Since // is prime and 7 is non trivial, /—(Q°+Q{) must be trivial,
accordingly /=1 as shown in Fig. 18. Then there cannot exist any
cube of ®” in IntQY. Hence I/~ and (//, Q/) is an end of ®” and
obviously /{*=InQY=INQ,/=I/*. Thus in Case (1), Lemma 3 is proved.

Case (2). We may suppose that there is no Q7 of ®©” such that
Q,/CIntQ7. If (i, Q) is an end of D", then it is easy to see that
l/~l!, since the circumstances are the same as Case (1). Therefore
(, Q) ~(/, @) and L*i*-

Hence suppose that (/7, @) is not an end of ®”. Let Q7, -, QY
be all the cubes of ®” contained in Q7. Then take out one of the
maximal cubes from @7, .-, Q7 and put it @Y, i.e. there is no @7 such
that Y QY QY. Then it is easy to see that [Y~/’ and
Wal—QY+Q)+ - +Q/+ -+ +QF) as shown in Fig. 19. Therefore
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replacing (7}, Q/) by ((—(QU +Q7+ - +Q,/+ - +QY), Q) and (}/, QY
by (// @) in ®©”, we have a decomposition system of / equivalent to ®”,

which we write still by ©”. Then (//, /) is an end of ®©”. Hence
Lemma 3 is also proved in Case (2). Thus the proof of Lemm 3 is

complete.
A
. e

Fig. 18.

Fig. 19.
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Main Theorem. Every non trivial and mnon separable link can be
decomposed uniquely into prime links.

Proof. Let / be an arbitrary given non trivial and non separable
link and let ®= {(ll) Ql)) Y (ln) Qn)}’ Y= {(11/) Qll), T (l:n) :n)} be
decomposition systems of /. Then by the use of Lemma 3 we can find
an end of 9D, say (/,, ®,), and an end of ¥, say (//, @), such that
(l,, Q)=~(/, Q') and one of [* ['* is contained in the other. It is
obviously seen that /—Q,~/—@Q, and /~(—Q,)-l,~(—Q,)-l/. Then
D={(l, Q)+, (L, Q) and D ={(/, Q), -, (ln, @)} are decom-
position systems of /—@, and /—@,’ respectively. As is well known, there
exists a semilinear mapping ® which maps /—@, onto /—Q,. Then the
image »® = {(pl,, 9Q,), -, (Pl,, PQ.)} of D by @ is also a decom-
position system of /—@Q, and clearly @' ~%. Next we apply the above
method to © and ®’. Thus taking out the equivalent ends from D
and &’ step by step, we obtain finally the conclusion of the Main
Theorem.

(Received September 29, 1958)
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