Title	Germ－Line mutations of the APC gene in 53 familial adeno matous polyposis patients
Author（s）	三好，康雄
Citation	大阪大学，1992，博士論文
Version Type	VoR
URL	https：／／doi．org／10．11501／3060211
rights	
Note	

Osaka University Knowledge Archive ：OUKA
https：／／ir．Library．osaka－u．ac．jp／

Requen for opmion on manuscrip by Miyoshi, Ando, Nagase, Nishisho, Horii, Miki, Mori, Utsunomya Baba, Petersen, Hamilton, Kinzler, Vogelstein, Nakamura
Tite Germ-Line Mutations of the APC Gene in 53 Familial Adenomatous Polyposis Patients

> The Proceedings of the National Academy of Sciences, U.S.A., a multidisciplinary journal. publishes brief reports of original research of exceptional importance and novelty. I an writing to ask your opinion on the following points, together with any other comments you may offer. Please reply to all questions. The Editorial Board considers the first two the most important. Please note that the Editorial Policy states that the referees should remain anonymous.
> 1. Is this contribution of sufficient general interest to justify publication in the Proceedings rather than a specialty journal? P Yes \square No Don't know
> 2. Is the overall quality of this paper suitable for this journal? W Yes \square No Don't know
> 3. Does the evidence justify the conclusions drawn? F/Yes \square No Don't know
> 4. Is this puper clearly written for a diverse sudience of scientists? DFYes $\square \mathrm{N}_{\mathrm{o}} \square \square$ Don't know
> 5. Are the procedures described sufficiently well that the work can be repeated? \triangle Yes $\square \mathrm{N}_{\mathrm{c}} \square \mathrm{Not}$ relevant
> 6. Comments (use additional pages if necessary; send original and two copies): If the answers to questions 1 and 2 are Yes, please describe here the aspects of this paper that are novel and imponant:

This manuscript represents a very important and timely study of germline mutations at the APC locus. It is very timely, as the gene has only recently been cloned, and as the authors describe, there had been some reason to think that the phenotype of familial adenomatous polyposis might be attributable to mutations in any one of a famlly of genes located in a very small region based or the tumor specific mutations at the APC locus, as well as at the MCC locus. This is a thorougt study that examines the specifics of the mutations with some consideration of the mechanisms by which such mutations might arise as well as the implications for more broadly based genetic testing. The authors further emphasize the population aspects of the study with respect to the frequency of certain types of mutations found in different ethnic geaups.

There are only a few relatively minor comments:

1. In figure 1B, it is very difficult to see the alteration in upper band at arrow in lane 6.
2. In figure 2, the writing in the legend needs to be revised and clarified.
3. It would be helpful to describe with an additional sentence or two the quality control measures that were used in the study, such as the number of times the amplification reactions were repeated, use of sense and antisense strands in RNaso protection analysis, sequencing of the opposite strand of genomic DNA once the specific fragment with a suspected mutation has been identified, etc. They reference previous work but a simple statement of the procedures would be worth including.
There are a few minor grammatical or typographical errors:
4. On page 11 in the middle of the page, methylcytosine is misspelled.
5. On page 13 line 14, a word should be deleted, efther "are" or "ranged."
6. The last sentence on page 13 and continuing on page 14, needs some revision/ clarification:"these two patients 6 and 70 contain? Further in the same sentence on page 14 "two mutations at both alleles" should be either "both" alleles or "two" mutations.
7. Reference 15 (page 20) is misaligned.
8. If the manuscript is revised, 1 would be prepared to fereview it.

1) The last sentence on page 4 requries commas after Another and gene.
watl?
2) The lastisentence of Figure 2- The work each should be removed.
3) Since there 1 no scale for the number of mutations at each paid p

proceedings of the nationju. academy of sciences, u.S.a.

Request for opinion on mamuscript by Myosh1, Ando, Nagase, Nishisho, Horif, Miki, Mori, Utsumomy Baba, Petersen, Hamliton, Kinzler, Volgeste1n, Nakamura Tulte

Germ-Line Mutations of the APC Gene in 53 Familial Adenomatous Pozyposis Patients
The Proceedings of the Narional Academy of Sciences, U.S.A., a multidisciplinary journal, publlshes brief reports of original research of exceptional importance and novelty. I am writing to ask your opinion on the following points, logether with any other comments yuu may offer. Please reply io all questions. The Editorial Board considers the first two the most. important. Please note that the Editorial Policy states that the referees should remain atoonymous.

1. Is this contribution of sumfient general intcrest to justify publication in the Proccedings rather than a spectalty Joulitnal? X yes \square No \square Don't know
2. Is the overall quality of this puper suitable for this journal? Xies \square No Don't know
3. Does the evidence justify the conclusioms drawn? X Yes $1 / \mathrm{No} \square$ Don't know
4. Is this paper clearly written for a diverse audience oi scientists? Yes \square No \square Don't know
5. Are the procedures described sufficiently well that the work can be repeated? Xes \square No Not relcyant
6. Comments (use additional pages if neeessary; send originaf and (wo coples): If the aniswers tu questions 1 and 2 are Yes; please ; describe here the aspects of this paper that are novel and important:
This mamuscript examines the oorrelation between mutations in the APC gene and the presence of Famblial Adenometous Polyposis (PAP) in 79 unrelated patdikts. The authors present data showing that the majority of these patients contain mutations in this gene strongly implicating its involvement in PAP disease. The importance of these findings for diagnosis as well as genetic counseling are emphasized in the Discussion. The clustering of these mutat ions may also proride insights into the functions of the APC proteln.

This is genersily a well-written paper presenting a great asount of ifformations. I would suggest several changes before acooptanoe for publication to olarify some of the interesting points.

1) The rirst several paragraphs of the Discussion repeat mach of the Results sect iono these paragraphs should be shortened perhaps by combination. The authors also mention the coiled-coil motir of the APC protein. They should discuss t he offects of the observed mutations on this region of the proteln.
2) Tables 2 and 3 could be combined into one Table by using t ho outline of Table 3 to organize Table 2.
3) The legend to figure 2 requires clarification. Did the authors use a normal individual or a nomal PCR product from an affocted individualf The information in Figure $2 B$ and C needs botter illustration for the general audience of t his journal.
7. If the manuscript is revised, I would be prepared to rereview it.
(Classification; Medical Genetics)
Germ-Line Mutations of the APC Gene in 53 Familial Adenomatous Polyposis Patients
(APC gene / familial adenomatous polyposis / germline mutation)

Yasuo Miyoshi*, Hiroshi Ando*, Hiroki Nagase*, Isamu Nishisho* ${ }^{\circ}$, Akira Horii*, Yoshio Miki", Takesada Mori+, Joji Utsunomiya", Shozo Baba ${ }^{\ddagger}$, Gloria Petersen ${ }^{\prime \prime}$, Stanley R. Hamilton", Kenneth W. 'Kinzler", Bert Vogelstein*, and Yusuke Nakamura* $\dagger \dagger$

* Department of Biochemistry, Cancer Institute, Tokyo 170, Japan;
+ Second Department of Surgery, Osaka University School of Medicine, Osaka 553, Japan;
\ddagger The Second Department of Surgery, Hamamatsu Medical College, Shizuoka 43l-3l, Japan;
\S Department of Medical Genetics Biomedical Research Center, Osaka University School, Osaka 565, Japan;
\# The Second Department of Surgery, Hyogo Medical College, Hyogo 663, Japan;

I| The Oncology Center and Department of Pathology and Epidemiology, the Johns Hopkins University Hospital and Schools of Medicine, Hygiene, and Public Health, Baltimore, MD 21231;
** Molecular Genetics Laboratory, the Johns Hopkins

University School of Medicine, Baltimore, MD 21231;
†t To whom correspondence should be addressed.

Abbreviation: FAP, familial adenomatous polyposis.

ABSTRACT

We searched for germ-line mutations of the APC gene in 79 unrelated patients with familial adenomatous polyposis (FAP) using an ribonuclease (RNase) protection analysis coupled with polymerase chain reaction (PCR) amplifications of genomic DNA. Mutations were found in 53 patients (67\%); twentyeight of the mutations were small deletions and two were $1-2 \mathrm{bp}$ insertions; nineteen were point mutations resulting in stop codons and only four were missense point mutations. Thus 92% of the mutations were predicted to result in truncations of the APC protein. Over $2 / 3$ (68\%) of the mutations were clustered in the 5' half of the last exon, and nearly two-fifth of the total mutations occurred at one of five positions. This information has significant implications for understanding the role of APC mutation in inherited forms of colorectal neoplasia and for designing effective methods for genetic counseling and presymptomatic diagnosis.

INTRODUCTION

Familial adenomatous polyposis (FAP) is an autosomal-dominant inherited disease, affecting l in 5,000 and 1 in 17,000 of the American and Japanese populations, respectively (l). FAP is characterized by the development of hundreds to thousands of adenomatous polyps in the colon and rectum, one or more of which can progress to cancer if left without surgical treatment. Neoplasia is not limited to the colon and rectum of patients with FAP, as some patients are affected with desmoid tumors, osteomas, fibromas, and a variety of other neoplasms in addition to polyps.

Cytogenetic and linkage studies have localized the gene responsible for FAP to chromosome 5q2l (25), a region that is also deleted commonly in sporadic colorectal tumors (6-8). Hence, it was considered likely that germ-line or somatic mutations of chromosome $5 q 21$ gene(s) would lead to adenoma formation in familial and sporadic forms (6).

Recently, several novel chromosome $5 q 21$ genes were identified (9-13). One of them the MCC gene was shown to be somatically mutated in a subset of sporadic colorectal cancers. Another the APC gene was shown to undergo similar somatic mutations and
also to be mutated in the germ-line of patients with FAP. Both APC and MCC were predicted to contain coiled-coil proteins that might interact in vivo with themselves or with other proteins.

In our initial study, we examined three exons of APC in 103 kindreds with FAP, and found germline mutations in five of them (11). Groden et al. examined a large portion of the APC gene product but found only four mutations in 61 separate kindreds (12). These studies thus left open the question of whether other genes might be involved in a large number of kindreds.

To answer this question, and to further investigate the nature of inherited APC gene mutations, we have now examined the entire coding region of APC in 79 unrelated kindreds with FAP. We were able to identify presumptive mutations in 53 of these kindreds, suggesting that APC is responsible for the great majority of FAP cases. Remarkably, over 90% of the mutations resulted in truncations of the predicted protein product. These results have significant theoretical and practical implications for understanding etiology and diagnosing disease in susceptible individuals.

MATERIAL AND METHODS

FAP patients were identified on the basis of clinical manifestation. Genomic DNA of 79 unrelated patients including 55 American and 24 Japanese kindreds were prepared from white blood cells as described elsewhere (14).

PCR
The coding region of the APC gene was divided into 31 segments (see text), and each segment was separately amplified using PCR (15). The primer pairs used in this study are listed in Table l. PCR was performed with 38 cycles for 0.5 min at $95^{\circ} \mathrm{C}, 2 \mathrm{~min}$ at $51^{\circ} \mathrm{C}$ and 2 min at $70^{\circ} \mathrm{C}$ as described by Baker et•al. (l6).

RNase Protection Analysis

RNase protection assay was performed by the method of Winter et al.(17) as modified by Kinzler et al.(9). Briefly, PCR products were hybridized to ${ }^{32} p-l a b e l e d$ RNA transcripts corresponding to normal APC sequences, cloned and labelied as described by Nishisho et al.(ll). The hybrids were digested with RNase A, which cleaves at mismatches within DNA-RNA hybrids. The size of the digestion products was analyzed by polyacrylamide gel electrophoresis. Cloning and Sequence Analysis

PCR products showing abnormalities in RNase protection patterns were cloned into a plasmid vector (pBluescript $S K$ Stratagene), as described (11). DNAs from a pool of at least 50 subclones were used as a template for each DNA sequencing reaction. DNA sequencing was carried out according to the method described by Nigro et al.(18).

RESULTS

We examined the entire coding region of the APC gene in the germ-line of 79 unrelated FAP patients by an RNase protection assay. The coding region of the APC gene is contained within 15 exons (no. l-15) (9,11), preceded by at least one 5' noncoding exon (author's unpublished data). The coding region was divided into 31 segments. The first 14 segments corresponded to 14 individual exons. The coding region in the last exon (no. 15) is very large (6577 bp), and was divided into 17 overlapping segments each of approximately 400 bp in length. These 31 segments were individually amplified from each of the 79 patients and subjected to RNase protection analyses as described in Material and Methods.

Fig. l presents examples of RNase protection analyses, in which variations were observed. PCR
products in which variations were detected were cloned into a plasmid vector and sequenced (examples in Fig. 2). Patient 100 had a C to A transversion at the second nucleotide of codon 932 resulting in a change from serine (TCA) to a stop codon (TAA) (lane 2, Fig. 2 (A)). Patient 16 showed a 2 bp deletion (AG) of codon 1465 (AGT) (lane 2, Fig. 2 (B)) and a T insertion at the second nucleotide of codon $12 l l$ (ATTG) of patient 39 (lane 4, Fig. 2 (C)) beginning at arrows.

The results from the PCR-RNase protection analyses are summarized in Table 2. Presumptive mutations altering the sequence of the predicted protein product were observed in 53 of the 79 patients studied. No patient had more than one of these mutations, and none of these mutations was observed in the germ-line DNA of at least 100 individuals without FAP studied by RNase protection assay or direct sequencing of $P C R$ products.

Nature of Mutations

As summarized in Table 3,23 of the 53 alterations were point mutations. Nineteen of them generated stop codons. Two of the four amino acid changes were non-conservative (resulting in the substitution of cysteine for serine or arginine), and two were functionally conservative (serine to
threonine or leucine to phenylalanine,
respectively). Twenty-one of the 23 mutations
resulted in a change from C to some other
nucleotides in which C to T was the most common
(Table 4). The point mutations were scattered
throughout the gene and no "hot-spot" was detected;
only the mutations at codon 302 and 625 were
observed in more than one kindred (Table 2).
Thirty of the 53 mutations were associated
with frameshifts due to deletions (28 cases) or
insertions (2 cases) (Table 3). Deletions of lo to
5 bp were observed, with 5 bp being most common (l8
of the 28 deletion mutations involved 5 bp).
Interestingly, a 5 bp deletion at codon l309 was
observed in lo separate kindreds; this was so far
the most common genetic alteration observed among
the families. All the deletion and insertion
mutations altered the reading frame and created
stop codons at immediate downstream.
Distribution of mutations

The distribution of mutations in the APC gene in the 53 FAP patients is shown in Fig. 3. Point mutations were found in exon $5,6,8,9,12,13$, 14, l5. However, all but one of the 30 cases of deletion or insertion were found in exon 15 (one case was in intron 3). Thirty-six (68\%) of the
total mutations (including both point mutations and frameshifts) were clustered within the 5' half of exon 15 (codon 713 to 1597) represented less than one-third of the coding region. Five specific mutations were found in more than one unrelated kindred (Table 2 and Fig. 3).

DISCUSSION

Most of the mutations described in this study are predicted to have profound effects on the predicted gene products. Forty-nine (92 \%) of the mutations led to incomplete products of the APC gene due to translational termination; 19 of the 23 point mutations were nonsense mutations and all 30 frameshift mutations created new stop codons at immediate downstream. Missense mutations were observed in only 4 patients. In two of these four cases, the change to cysteine from arginine or serine is expected to have significant effects on the structure of the predicted protein. The other two changes were relatively conservative, and we cannot be sure that these substitutions represent true mutations rather than rare variations with no functional effect. However, this serine to threonine (patient 3) or leucine to phenylalanine (patient 89) change was the only change detected by

- RNase protection analyses of the entire coding region, except one amino acid polymorphism of patient 3 (describe later). As the biochemical and/or physiologic properties of the APC protein are undiscovered, however, these missense mutations might prove to be valuable for assessing function, and to provide clues for localizing the critical effector domains of the very large protein encoded by the APC gene.
$9 . \%$
-87% of the 23 point mutations resulted in a substitution for C, most commonly with a T.(Table 4). These occurred at 7 CA sites, 5 CG sites and one CT site. Deamination of 5-metylcytosine in the CpG dinucleotide has been implicated as a mechanism for point mutation from C to T (19). But only 5 of our cases involved CpG sites (Table 2). The mechanism for CPA to TPA and CpT to TpT change is not known. However, as the most common DNA polymerase error is thought to be a G mispairing with T (20) with a lack of repair at this mismatch (21), the CPA to TPA and CPT to TpT mutations we observed might have been generated in this manner. Twenty-eight of the 30 cases with frameshifts were associated with small deletions (Table 2). It is well known that deletions occur at repeated bases, perhaps because of mis-alignment; for
example, we observed a C deletion from CCC (at codon 1427), an A deletion from several A's (codon 142) and an AA from AAA (codon 1250). A model for generating mis-alignment within a stretch of common bases has been proposed $(22,23)$. Some deletions were observed at positions containing several copies of a direct repeat; for example, an $A G$ deletion was detected at the sequence of AAAGAGAGAGAGTG (codon 1465); an AAAGA deletion was observed at ATAAAAGAAAAGATT (codon 1309); an ACAAA deletion from ATAAAACAAAGT (codon l06l) and a TGAAA deletion from TCAAATGAAAAC (codon 1546). All of these deletions might have occurred during DNA replication as a result of slippage of the template strand and subsequent mis-alignment (24). After the synthesis of the first copy of the direct repeat, the template strand could slip and misalign with the second copy of the repeat, result in deletion of the intervening sequences.

All but one of the frameshift mutations due to insertions or deletions were detected only within exon 15 but point mutations were scattered from exon 5 to exon 15 . The most frequent mutation was observed at codon 1309. As this mutation was observed in Caucasian, Black and Japanese populations, a founder effect is excluded.

In the course of RNase protection analyses, we found several polymorphisms within the coding sequences resulted in both with and without amino acid changes. Four major polymorphisms are TAC/TAT (at codon 486), GCA/GCG (at codon 545), ACG/ACA (at codon 1493) and GGA/GGG (at codon 1678). All of these polymorphisms have not changed coding amino acids; tyrosine, alanine, threonine and glycine, respectively. The first polymorphism of the tyrosine coding sequences creates restriction fragment length polymorphism with Rsa I. This polymorphism and the last glycine coding polymorphism are the same reported previously (12). The allelic frequencies of these polymorphisms are ranged from 0.36 to 0.64 (data not shown). Including two amino acid polymorphisms, the other four rare polymorphisms of which allelic frequencies were less than 0.01 were also recognized (data not shown). Two amino acid polymorphisms were ATA (isoleucine)/ GTA (valine) at codon 1304 of patient 6 and TCA (serine) / TTA (leucine) at codon 2578 of patient 3 and 70. Because these two patients 6 and 70 contain other mutations of 5 bp deletion that have profound effect on the predicted gene products at codon 1309 (patient 6) and at 1061 (patient 70) (Table 2), we
think these amino acid changes might not alter the function of the predicted proteins. But, the possibility of two mutations at both alleles is not excluded. The others were TTA/TTG at codon 548 of patient 90 and ATA/ATT at codon 1055 of patient 22 without amino acid changes; leucine and isoleucine, respectively.

We detected mutations in 67% of FAP patients using an RNase protection assay. We did not find mutations in all patients because (i) some mismatches are protected from RNase digestion, in fact, the reported sensitivity of detecting mutations with RNase is only $35-50 \%(11,25,26)$. We attribute our higher success rate to the fact that so many of the mutations in the APC gene were small deletions or insertions, which are usually quite susceptible to digestion with RNase A; (ii) the promoter region of the APC gene has not yet examined; (iii) non-examined sequences within introns may have a significant influence to gene expression; (iv) there may be a second FAP gene. We think, however, that the latter possibility is now unlikely.

The results of the studies described above provide significant insights into the nature of the mutations leading to FAP. They suggest that the
carboxy-terminus is required for function, because deletions that remove this end of the protein (including a deletion that removes only the last 200 amino acids of the 2843 residue protein) result in disease. Further studies will be required to determine whether specific mutations are associated with specific phenotypes (such as early age at onset or a hi.gh prevalence of extra-colonic neoplasms). Already, however, these studies provide a basis for pre-symptomatic diagnosis. In 53 kindreds reported here, such diagnoses can now be made with virtually 100% accuracy simply by testing for the relevant mutation. In kindreds not yet studied, it would seem advisable to begin screening of mutation at the five positions accounting for nearly 40% of the total alterations detected (Table 2). If these were negative, the next logical step would be to examine the 5' half of exon 15, which contained over two-thirds of the mutations. Only if this failed would an analysis of the remainder of the gene be warranted. Finally, these studies suggest an alternative method of examination for APC mutations. 92% of the total mutations detected are predicted to result in truncated protein products. Thus, detection of these shortened proteins using
antibodies against the APC protein is likely to be a valuable screening method in a high fraction of kindreds.

REFERENCES

1. Utsunomiya, J. \& Lynch, H.T. (1990) Hereditary Colorectal Cancer (Springer-Verlag, Tokyo).
2. Herrera, L., Kakati, S., Gibas, L., Pietrzak, E. \& Sandberg, AA. (1986) Am. J. Med. Genet. 25, 473-476.
3. Bodmer, W.F., Bailey, C.J., Bodmer, J., Bussey, H.J.R., Ellis; A., Gorman, P., Lucibello, F.C., Murday, V.A., Rider, S.H., Scambler, P., Sheer, D., Solomon, E. \& Spurr, N.K. (1987) Nature 328, 614-616.
4. Leppert, M., Dobbs, M., Scmbler, P., O'Connel, P., Nakamura, Y., Stauffer, D., Woodward, S., Burt, R., Hughes, J., Gardner, E., Lathrop, M., Wasmuth, J., Lalouel, J-M. \& White, R. (1987) Science 238, 1411-1413.
5. Nakamura, Y., Lathrop, M., Leppert, M., Dobbs, M., Wasmuth, J., Wolff, E., Carlson, M., Fujimoto, E., Krapcho, K., Sears, T., Woodward, S., Hughes, J., Burt, R., Gardner, E., Lalouel, J-M. \& White, R. (1988) Am. J. Hum. Genet. 43, 638-644.
6. Vogelstein, B., Fearon, E.R., Hamilton, S.R., Kern, S.E.., Preisinger, A.C., Leppert, M., Nakamura, Y., White, R., Smith, A.M.M. \& Bos, J.L. (1988) N. Engl. J. Med. 319, 525-532.
7. Miki, Y., Nishisho, I., Miyoshi, Y., Horii, A., Ando, H., Nakajima, T., Utsunomia, J. \& Nakamura, Y. (1991) Jpn. J. Cancer Res. 82, 1003-1007.
8. Ashton-Rickardt, P.G., Dunlop, M.G., Nakamura, Y., Morris, R.G., Purdie, C.A., Steel, C.M., Evans, H.J., Bird, C.C. \& Wyllie, A.H. (1989) Oncogene 4, ll69-1174.
9. Kinzler, K.W., Nilbert, M.C., Vogelstein, V., Bryan, T.M., Levy, D.B., Smith, K.J., Preisinger, A.C., Hamilton, S.R., Hedge, P., Markham, A., Carlson, M., Joslyn, G., Groden, J., White, R., Miki, Y., Miyoshi, Y., Nishisho, I. \& Nakamura, Y. (1991) Science 25l, l3661370.
10. Kinzler, K.W., Nilbert, M.C., Su, L.K., Vogelstein, B., Bryan, T.M., Levy, D.B., Smith, K.J., Preisinger, A.C., Hedge, P.,

Mckechnie, D., Finniear, R., Markham, A., Groffen, J., Boguski, M.S., Altschul, S.F., Horii, A., Ando, H., Miyoshi, Y., Miki, Y., Nishisho, I. \& Nakamura, Y. (1991) Science 253, 661-665.
ll. Nishisho, I., Nakamura, Y., MiYoshi, Y., Miki, Y., Ando, H., Horii, A., Koyama, K., Utsunomiya, J., Baba, S., Hedge, P.,

Markham, A., Krush, A.J., Petersen, G.,
Hamilton, S.R., Nilbert, M.C., Levy, D.B.,
Bryan, T.M., Preisinger, A.C., Smith, K.J., Su,
L.K., Kinzler, K.W. \& Vogelstein, B. (l991)

Science 253, 665-669.
12. Groden, J., Thliveris, A., Samowitz, W.,

Carlson, M., Gelbert, L., Albertsen, H.,
Joslyn, G., Stevens, J., Spirio, L.,
Robertson, M., Sargeant, L., Krapcho, K.,
Wolff, E., Burt, R., Hughes, J.P.,
Warrington, J., McPherson, J., Wasmuth, J.,
Paslier, D.L., Abderrahim, H., Cohen, D.,
Leppert, M. \& White, R. (1991) Cell 66, 589-600.
13. Joslyn, G., Carlson, M., Thliveris, A.,

Albertsen, H., Gelbert, L., Samowitz, W.,
Groden, J., Stevens, J., Spirio, L.,
Robertson, M., Sargeant, L., Krapcho, K.,
Wolff, E., Burt, R., Hughes, J.P.,
Warrington, J., McPherson, J., Wasmuth, J.,
Paslier, D.L., Abderrahim, H., Cohen, D.,
Leppert, M. \& White, R. (1991) Cell 66,
601-613.
14. Sato, T., Tanigami, A., Yamakawa, K., Akiyama,
F., Kasumi, F., Sakamoto, G. \& Nakamura, Y.
(1990) Cancer Res. 50, 7184-7189. 15. Saiki,
R.K., Bugawan, T.L., Horn, G.T., Mullis, K.B. \& Erlich, H.A. (1986) Nature 324, 163-166.
16. Baker, S.J., Preisinger,"A.C., Jessup, J.M., Paraskeva, C., Markowitz, S., Willson, J.K.V., Hamilton, S. \& Vogelstein, B. (1990) Cancer Res. 50, 7717-7722.
17. Winter, E., Yamamoto, F., Almoguera, C. \& Perucho, M. '(1985) Proc. Natl. Acad. Sci. USA 82, 7575-7579.
18. Nigro, J.M., Baker, S.J., Preisinger, A.C., Jessup, J.M., Hostetter, R., Cleary, K.,

Bigner, S.H., Davidson, N., Baylin, S., Devilee, P., Glover, T., Collins, F.S., Weston, A., Modali, R., Harris, C.C. \& Vogelstein, B. (1989) Nature 342, 705-708.
19. Coulondre, C., Miller, J.H., Farabaugh, P.J. \& Gilbert, W. (1978) Nature 274, 775-780.
20. Kunkel, T.A. \& Alexander, P.S. (1986) J. Biol. Chem. 261, 160-166.
21. Topal, M.D. \& Fresco, J.R. (1976) Nature 263, 285-289.
22. Strisinger, G., Okada, Y., Emrich, J., Newton, J., Sugita,. A., Terzaghi, E. \& Inouye, M. (1966) Cold Spring Harbor Sym. Quant. Biol. 3l, 77-84.
23. Kunkel, T.A. (1986) J. Biol. Chem. 261, 13581-
13587.
24. Trinh, T.Q. \& Sinder, R.R. (1991) Nature 352, 544-547.
25. Myers, R.M., Larin, Z. \& Maniatis, T. (1985) Science 230, 1242-1246.
26. Lopez-Galindez, C., Lopez, J.A. \& Melero, J.A. (1988) Proc. Natl. Acad. Sci. USA 85, 35223526.
(A)
$\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$

(B)
$\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$

(B)

(C)

(Figure legend)
Fig. l. RNase protection analyses. In (A), lane l and 4 show the same variant RNase protection patterns (arrows) in patient 5 and 10 , respectively, using Ex l5-4 probe containing codon from 999 to 1139 and 426 bp in length (Table l) resulted in the same 5 bp deletion. In (B), lane 1 and 6 represented different abnormal patterns (arrows) in patient 15 and 91 with the probes of Ex 15-5 containing codon from 1125 to 1283 and 478 bp in length resulted in different mutations.

Fig. 2. Sequence analyses of normal and variant PCR products. Patient 100 (lane 2 in (A)) shows a C to A change (arrow) at the second nucleotide of codon 932 resulted in a change from serine (TCA) to a stop codon (TAA). Patient 16 (lane 2 in (B)) shows 2 bp (AG) deletion of codon 1465 (AGT) and patient 39 (lane 4 in (C)), a T insertion at the second nucleotide of codon $12 l l$ (ATTG) beginning at arrows. The each reaction samples of different patients are grouped so that mutations could be easily recognized.

Fig. 3. Distribution of germ-line mutations in the APC gene listed in Table 2 is shown with a bar. The length of a bar indicate the number(s). The positions of translational initiation (ATG) and termination (TAA) codon are described with arrows.

Table l. Sequences of primers used for $P C R$ of RNase protection analyses

Upstream primers	Exon	Downstream primers
G31 ATGGAATTCTTCTTAAACTGCTTAAGAG*	(Exl) Gl8 TTTACAAGAGGGAATACTGAAT	
G21 CCTGAATTCAAGAAATACAGAATCACGTC*	(Ex2) G22 ATGAAGCTTGTACTTGGATCTACACACC	

E9-15	CTCAGACAACAAAGATTCAAA	(-10)	C52	GAGAAAAGCAAACTGGAGTA
E9-17	AGTCATCCAAAGACATACCA	(-11)	E9-22	CTGAATCAGGGGATAGACC
C35	GATATACAGAGACCAGATTCA	$($	-12.)	C38	ACAGGACTTGTACTTGAGGA
C37	CGAGGCAGGACAATGATTC	$($	-13)	C40	GACTCACTTCTTGGAATACTA
C39	CAGATGAGCCAACAGAACC	(-14)	C42	GCTGGTCTAGATGATGGAG
E9-19	tGGAGGAATCTGCTTCATTT	(-15)	E9-16	TCCTTTTGCGGATACTTGG
E9-21	TGAACTCTATTTCAGGAACC	$($	-16)	E9-18	GTACGTTCCACTATAGAACT
E9-23	GTCCCTGTATCAGAGACT	$($	-17)	E9-20	TGTCTATATAGCAGTTGTAATT

* Exon 15 is divided into 17 overlapping segments each of approximately 400 bp in length. Primers are described from the 5^{\prime} to 3^{\prime} direction and some of them are created Eco RI (+), Bam HI (\ddagger) or Hind III (§) site within the primers.

Table 2. Germ-line mutations in the APC gene of 79 unrelated FAP patients

Patient	Codon	Nucleotide	change*	Amino acid change
13	142	aatag/GTC ->	atag/GTC	a deletion
102	213	CGA ->	TGA	Arg -> Stop
11	215	CAG \rightarrow	TAG	Gln \rightarrow Stop
33	232	CGA ->	TGA	Arg \rightarrow Stop
93^{*}	280	TCA \rightarrow	TGA	Ser \rightarrow Stop
$24^{+}, 34^{+}$	302	CGA ->	TGA	Arg \rightarrow Stop
21^{+}	414	CGC ->	TGC	Arg \rightarrow Cys
7	541	CAG \rightarrow	TAG	$G 1 n \rightarrow$ Stop
90	577	TTA \rightarrow	TAA	Leu \rightarrow Stop
86	622	TAC \rightarrow	TAA	Thr \rightarrow Stop
8,38,66	625	CAG \rightarrow	TAG	Gln \rightarrow stop
60^{+}	713	TCA \rightarrow	TGA	Ser \rightarrow Stop
3	784	TCT \rightarrow	ACT	Ser \rightarrow Thr
49	794	AGTC \rightarrow	ATC	G deletion
84	806	CATGA \rightarrow	CGA	AT deletion
80	827	AAT \rightarrow	AAATT	AT insertion
124	857	GGAATTGG ->	GGG	GAATT deletion
100	932	TCA \rightarrow	TAA	Ser \rightarrow Stop
62	1055	ATAATAGA \rightarrow	AGA /	TAATA deletion
5,10,70,103	1061	AAACAAAG \rightarrow	AAG	ACAAA deletion

104	1102	TAC ->	TAG	Tyr -> Stop
91	1156	GAAGAGA ->	GGA	AAGA deletion
43	1175	CAG ->	TAG.	Gln \rightarrow Stop
15	1191	CAGA ->	CAA	G deletion:
39	1211	ATG ->	ATTG	T insertion
1	1230	CAG ->	TAG	Gln \rightarrow Stop
47	1249	TGC ->	TGA	Cys \rightarrow Stop
51	1250	'AAAGT ->	AgT	AA deletion
6,17,20,22,25,	1309	GAAAAGAT \rightarrow	GAT	AAAGA deletion
29,46,57,59,61				
120	1427	CCTG ->	CTG	C deletion
16	1465	GAGTG ->	GTG	AG deletion
28,78	1546	AATGAAAA \rightarrow	AAA	TGAAA deletion
79	1567	TCA ->	TGA	Ser \rightarrow Stop
85	1597	ACTG ->	ACG	T deletion
19	2621	TCT ->	TGT	Ser \rightarrow Cys
18	2644	ATTTATC ->	ATC	TTAT deletion
89	2839	CTT \rightarrow	TTT	Leu -> Phe

* Lower and upper case letters indicate intron and exon, respectively
+ Reported previously (Il).

Table 3. Frequency of germ-line mutations in the APC gene

Point mutations				23
	Nonsense mutation Missense mutation		19	
			4	
Frameshift mutations				30
	Deletion	($1-5 \mathrm{bp}$)	28	
	Insertion	(1-2 bp)	2	
Total				53

Table 4. Summary of point mutations in the APC gene

From/To.	C	T	G	A	Total
C	-	13	5	3	21
T	0	-	0	2	0
G	0	0	-	-	0
Total	0	0	0	5	23

* Listed in coding strand.

