Title	Factor rings of a hereditary and QF-3 ring
Author(s)	Harada, Manabu
Citation	Osaka Journal of Mathematics. 1980, 17(1), p. 1- 8
Version Type	VoR
URL	https://doi.org/10.18910/3808
rights	
Note	

Osaka University Knowledge Archive : OUKA
https://ir. library.osaka-u.ac.jp/

FACTOR RINGS OF A HEREDITARY AND QF-3 RING

Dedicated to Professor Goro Azumaya on his 60th birthday

Manabu HARADA

(Received April 19, 1979)

We have been studying many interesting properties of small submodules. W.W. Leonard [8] and M. Rayar [12] defined small modules and gave elementary properties of them. Recently, the author has studied non-small modules and given a class of rings which are concerned with non-small modules and located between QF -rings and $\mathrm{QF}-3$ rings [4] and [5].

In this note we shall consider two conditions (*) and (*)* in [4] and [5] (see §1) and study a semi-primary ring whose every factor ring satisfies either $(*)$ or $(*)^{*}$. We shall show such a ring with condition (QS) (see §1) coincides with a generalized uni-serial ring of the first category in the sense of Murase [9].

1. The main theorem

Let R be a ring with identity. We always assume that R is a semi-primary ring, namely the Jacobson radical J of R is nilpotent and R / J is artinian, and every R-module is an unitary right R-module unless otherwise stated. Let M be an R-module. By $E(M)$ and $J(M)$ we denote an injective hull and the Jacobson radical of M, respectively. If M is a small submodule in $E(M)$, we say M is a small module [8], [12] and if M is not a small module, we say M is non-small module [5]. As the dual concept to the above, we define a non-cosmall module N as follows: there exist a projective module P and an epimorphism $f: P \rightarrow N$ such that $\operatorname{ker} f$ is not essential in P.

In [4] and [5] we have introduced two conditions:
(*) Every non-small module contains a non-zero injective module.
$(*)^{*}$ Every non-cosmall module contains a non-zero projective direct summand.
We have shown that if R satisfies either (*) or ($*)^{*}$, then R is a right QF-3 ring [13] $\left(E(R)\right.$ is projective by [7]) and every QF-ring satisfies both $(*)$ and $(*)^{*}$. Thus, a class of rings satisfying either (*) or (*)* is located between a class of QFrings and one of QF-3 rings when R is a left and right artinian ring. If R is left and right artinian and $e R, R e$ have unique composition series for every
primitive idempotent e, we call R a generalized uni-serial ring [10]. It is easily seen that every generalized uni-serial ring satisfies both $(*)$ and $(*)^{*}$ (Corollary 1 to Lemma 1 below).

Following Murase [9] we say a two-sided indecomposable generalized uni-serial ring is in the first category, if there exists a primitive idempotent e such that $e R$ is simple. In order to show that some rings in the new class coincide with the above rings, we introduce the conditions:
($\mathrm{F} *$) (resp. ($\left.\mathrm{F} *^{*}\right)$) Every factor ring of R satisfies (*) (resp. (*)*).
(FQF-3) Every factor ring of R is right QF-3. And
(QS) If a factor ring of R is a QF-ring, then it is semi-simple.
Now, we can state our theorem.
Theorem. Let R be a semi-primary ring. Then the following statements are equivalent.

1) R satisfies ($\mathrm{F} *$) and (QS).
2) R satisfies ($\mathrm{F} *^{*}$) and (QS).
3) R satisfies ($\mathrm{FQF}-3$) and (QS).
4) R is isomorphic to a factor ring of QF-3 and hereditary ring. And
5) R is a direct sum of generalized uni-serial rings of the first category.

We know from [2], Theorem 2 and [9], Theorems 17 and 18 that the ring R in the theorem is a direct sum of factor rings of rings of tri-angular marices over division rings when R is basic. Hence, it has a perspective form.

We shall give remarks on the above conditions.
Remarks 1. If R is a generalized uni-serial ring of the second category [9], R satisfies ($\mathrm{F} *$), ($\mathrm{F} *^{*}$) and ($\mathrm{FQF}-3$) but not (QS) (see §2).
2. If R is a left and right artinian, then R is a generalized uni-serial ring if and only if R satisfies (FQF-3) [6].
3. Let $K \subsetneq L$ be fields with $[L: K]<\infty$ and

$$
R=\left(\begin{array}{cc}
K & L \\
0 & K
\end{array}\right)
$$

Then R satisfies (QS) but not any of ($\mathrm{F} *$), ($\mathrm{F} *^{*}$) and ($\mathrm{FQF}-3$).
4. If R is a commutative artinian ring and satisfies (QS), then R is a direct sum of fields.

Because, we may assume R is a local ring with maximal ideal M. If $M \neq 0$, we could find a maximal one M^{\prime} among ideals contained in M. Then R / M^{\prime} is a QF-ring and so $M / M^{\prime}=0$.

2. Proof of Theorem

We always assume that R is a semi-primary ring with identity and every
R-module M is an unitary right R-module. We shall denote the Jacobson radical and the injective hull by $J(M)$ and $E(M)$, respectively. Let R be as above and $1=\sum_{i=1}^{n} \sum_{j=1}^{p(i)} g_{i j}$, where $\left\{g_{i j}\right\}$ is a set of mutually orthogonal primitive idempotents such that $g_{i j} R \approx g_{i 1} R$ for any j and $g_{i j} R \approx g_{i^{\prime} j^{\prime}} R$ for $i \neq i^{\prime}$. We put $g=\sum_{i=1}^{n} g_{i 1}$ and $R_{0}=g R g$ i.e. $g R g$ is the basic ring of R [11] and [2]. It is well known that the category of right R-modules is Morita equivalent to one of right R_{0}-modules. We have a one to one mapping between the set of two-sided ideals A in R and one of those A_{0} in R_{0} such that $A_{0}=g A g$ and $A=R A_{0} R$.

Lemma 1. Let A be a two-sided ideal. We put $\bar{R}=R / A$ and $A_{0}=g A g$. Then $\bar{R}_{0}=R_{0} / A_{0}$ is the basic ring of \bar{R}.

Proof. It is clear that $\overline{1}=\sum_{i=1}^{n} \sum_{j=1}^{p(i)} g_{i j}$ and $\bar{g}_{i j} \bar{R} \approx \bar{g}_{i 1} \bar{R}$. If $\bar{g}_{i j} \neq \bar{o}, \bar{g}_{i j}$ is also a primitive idempotent and $g_{i j} g_{i j^{\prime}}=\delta_{i i^{\prime}} \delta_{j j^{\prime}} g_{i j}$. We assume $g_{i 1} \bar{R} \approx g_{j 1} \bar{R}$ for $i \neq j$. Then there exists x in $g_{i 1} R g_{i 1}$ such that $x g_{i 1} R+g_{j 1} A=g_{j 1} R$. Since $g_{i 1} R$ $\approx g_{j 1} R, x g_{i 1} R \subseteq g_{j 1} J(R)$. Hence, $g_{j 1} A=g_{j 1} R$ by Nakayama's Lemma and so $g_{i k} \in A$ for any k. Thus, \bar{R}_{0} is the basic ring of \bar{R}.

Corollary. R satisfies one of ($\mathrm{F} *$), ($\mathrm{F} *^{*}$), ($\mathrm{FQF}-3$) and (QS) if and only if so does the basic ring of R.

Lemma 2. Let R be a generalized uni-serial ring. Then every idecomposable non-small (resp. non-cosmall) module is injective (resp. projective).

Proof. Every indecomposable module is uni-serial by [10]. Hence, the lemma is trivial from the defintions.

Corollary 1. Every generalized uni-serial ring satisfies ($\mathrm{F} *$), ($\mathrm{F} *^{*}$) and (FQF-3).

Corollary 2. Let R be left and right artinian. Then the following statements are equivalent.

1) R satisfies (FQF-3).
2) R satisfies ($\mathrm{F} *$).
3) R satisfies ($\mathrm{F} *^{*}$). And
4) R is a generalized uni-serial ring.

Proof. 1) $\leftrightarrow 4$) is proved in [6]. Corollary 1 gives 4$) \rightarrow 2$) and 3). We know 2) $\rightarrow 1$) and 3) $\rightarrow 1$) from [5], Propositions 2.5 and 3.4.

In order to prove the theorem, we may always assume from Lemma 1 that R is basic and $g_{i 1} R g_{i 1} / g_{i 1} J g_{i 1}=\Delta_{i}$ is a division ring. Let $M_{i j}$ be a $\Delta_{i}-\Delta_{j}$ bimodule $(i<j)$. We defined the ring of generalized upper tri-angular ma-
trices $T_{n}\left(\Delta_{i} ; M_{i j}\right)$ [3]. When $\Delta_{i}=\Delta$ for all i and $M_{i j}=\Delta$, we shall denote the usual upper tri-angular matrix ring by $T_{n}(\Delta)$ and the set of matrix units by $\left\{e_{i j}\right\}_{i<j}$.

Lemma 3. Let Δ_{i} be division rings and $R=T_{n}\left(\Delta_{i} ; M_{i j}\right)$. 1) We assume $e_{i i} R$ is injective and $M_{i k} \neq 0$ and $M_{i t}=0$ for all $t>k$. Then $\operatorname{Hom}_{\Delta_{k}}\left(R e_{k k} /\left(M_{i-1 k}\right.\right.$ $\left.\oplus M_{i-2 k} \oplus \cdots \oplus M_{1 k}\right), \Delta_{k}$) is isomorphic to $e_{i i} R$ by multiplications of elements in $e_{i i} R$ from the left side. Hence, $M_{i p} \neq 0$ if and only if $M_{p k} \neq 0$.
2) If R is a right $\mathrm{QF}-3, e_{11} R$ is injective.

Proof. 1) Since $M_{i k}$ is the socle of $e_{i i} R,\left[M_{i k}: \Delta_{k}\right]=1$. We have the natural homomorphism $\varphi: e_{i i} R \rightarrow \operatorname{Hom}_{\Delta_{k}}\left(R e_{k k} /\left(M_{i-1 k} \oplus \cdots \oplus M_{1 k}\right), \Delta_{k}\right)$. Since $\varphi\left(M_{i k}\right) \neq 0, \varphi$ is monomorphic. Let f be in $\operatorname{Hom}_{\Delta_{k}}\left(R e_{k k} /\left(M_{i-1 k} \oplus \cdots \oplus M_{1 k}\right), \Delta_{k}\right)$ $=\sum_{p=i}^{k} \oplus \operatorname{Hom}_{\Delta_{k}}\left(M_{p k}, M_{i k}\right)$ and $f=\sum f_{p} ; f_{p} \in \operatorname{Hom}_{\Delta_{k}}\left(M_{p k}, M_{i k}\right)$. Put $F_{p} \mid M_{p k}=f_{p}$ $F_{p}\left(M_{p t}\right)=0$ for $t>k$. Then $F_{p} \in \operatorname{Hom}_{R}\left(M_{p k} R, e_{i i} R\right)$, since $M_{i t}=0$ for $t>k$. Hence, there exists an element x_{p} in $e_{i i} R$ such that $F_{p}\left(m_{p k}\right)=x_{p} m_{p k}\left(x_{p} \in M_{i p}\right)$ for every $m_{p k}$, since $e_{i i} R$ is injective. Therefore, $f=\varphi\left(\sum x_{p}\right)$. Hence, φ is isomorphic. 2) If R is right QF-3, $E(R) \approx \sum_{i \in K} \oplus\left(e_{i i} R\right)^{n_{i}}$ since R is semi-primary. Being $e_{i i} R e_{11}=0$ for $i>1$, the index set K must contain 1 . Hence, $e_{11} R$ is injective.

Let $R=T_{n}(\Delta)$ and A a two-sided ideal. It is clear [9]

$$
R / A=\left(\begin{array}{llll}
\Delta & & \llcorner & 0 \tag{2.1}\\
& \Delta & & \\
& & \ddots & \\
& 0 & \ddots & \\
& & & \Delta
\end{array}\right)
$$

We call such a form the standard form of R / A. It is easily seen that R / A is a generalized uni-serial ring of the first category. Hence, from Lemmas 1 and 2 and [2], Theorem 2 (consider $e_{n n} R$) we have

Lemma 4. Let R be a factor ring of $a \mathrm{QF}-3$ and hereditary ring. Then R satisfies $(\mathrm{F} *),\left(\mathrm{F}^{*}\right),(\mathrm{FQF}-3)$ and (QS).

Now, we shall consider the converse case.
Lemma 5. If R satisfies one of $(\mathrm{F} *),\left(\mathrm{F} *^{*}\right),(\mathrm{FQF}-3)$ and (QS), then so does every factor ring of R.

It is clear.
Lemma 6. Let $R=T_{2}\left(\Delta_{1}, R_{2} ; M_{12}\right)$. If R is two-sided indecomposable and $e_{11} R$ is injective, then R_{2} is indecomposable, where Δ_{1} is a dirision ring and R_{2} is a
semi-primary ring.
Proof. From the assumptions $e_{11} R$ contains a unique minimal submodule. Hence, R_{2} is indecomposable if so is R.

Lemma 7. Let R be a semi-primary, two-sided indecomposable and basic ring. We assume $J^{2}=0$. If R satisfies (FQF-3) and (QS), then R is isomorphic to $T_{n}(\Delta) / J\left(T_{n}(\Delta)\right)^{2}$, where Δ is a division ring.

Proof. Let $R=\sum_{i=1}^{n} \oplus e_{i} R \oplus \sum_{j=1}^{m} \oplus f_{j} R$ be a decomposition of R with indecomposable modules $e_{i} R$ and $f_{j} R$, where the $e_{i} R$ is injective and the $f_{j} R$ is small (see [5], Theorem 1.3). We quote here the argument in [6], Lemma in pp. 404-405. We know $\sum \oplus e_{i} R$ is faithful. Let $x \neq 0$ be in $f_{j} R$. Then $\left(\sum \oplus e_{i} R\right) x$ $\neq 0$ and so there exists $e_{i} r$ such that $0 \neq e_{i} r x=e_{i} r f_{j} x \in J x$. Hence, $x \notin f_{j} J$ since $J^{2}=0$. Therefore, $f_{j} R$ is simple if $f_{j} R \neq 0$. Since $e_{i} R$ is injective and $J^{2}=0$, $e_{i} R$ is uni-serial. Accordingly, R is right artinian. First, we assume $m=0$. Then R is self-injective and so a QF-ring (see [1], Theorem 1). Therefore, R is a division ring by (QS). Thus, we may assume $m \neq 0$. We know from the above that $f_{1} R$ is simple. Hence, $f_{1} R g=0$ for any primitive idempotent g $\left(\not \approx f_{1}\right)$ and $f_{1} R f_{1}=\Delta$ is a division ring. Thus, we have

$$
R=\left(\begin{array}{cc}
R_{1} & F R f_{1} \tag{2.2}\\
0 & \Delta
\end{array}\right)
$$

where $F=1-f_{1}$ and $R_{1}=F R F$ satisfies (QS) and (FQF-3). We first assume $s=n+m=2$. Then $n=m=1$. Hence, R_{1} is a division ring from the case $m=0$. Therefore, $R \approx T_{2}(\Delta)$ by [2], Theorem 2 and [3], Theorem 1. Now, we shall prove the lemma by induction on $s=s(R)$ (we assume $m \neq 0$). We have done it when $s \leqslant 2$. Since $s(R)>s\left(R_{1}\right), R_{1} \approx \sum \oplus T_{n_{i}}\left(\Delta_{i}\right) / J\left(T_{n_{i}}\left(\Delta_{i}\right)\right)^{2}$ by the induction, where the Δ_{i} is a division ring. Hence, we obtain $R=T_{s}\left(\Delta_{1}, \Delta_{2} \cdots\right.$, $\Delta_{s-1}, \Delta ; M_{i j}$). Lemma 3,2) shows that $e_{11} R$ is injective. It is clear $e_{k k} R e_{11}=0$ for $k \neq 1$. We put $F^{\prime}=1-e_{11}$ and $R_{1}{ }^{\prime}=F^{\prime} R F^{\prime}$. Then we have

$$
R=\left(\begin{array}{cc}
\Delta_{1} & e_{11} R F^{\prime} \tag{2.3}\\
0 & R_{1}^{\prime}
\end{array}\right)
$$

Here $R_{1}{ }^{\prime}$ is two-sided idecomposable by Lemma 6. Hence, $R_{1}{ }^{\prime} \approx T_{s-1}\left(\Delta^{\prime}\right) /$ $J\left(T_{s-1}\left(\Delta^{\prime}\right)\right)^{2}$ by the hypothesis of induction. Now R is of the form

Since $e_{11} R$ contains a unique (minimal) submodule, only one A_{i} is not zero. If $i \neq 2, A_{2}=0$ implies $M_{i-1 i}=\Delta^{\prime}=0$ by Lemma 3. Hence, $A_{i}=0$ for $i>2$. Since $s \geqslant 3$, we have $\Delta^{\prime} \approx \Delta_{1}$ and $A_{2}=\Delta_{1}$ by the induction (cf. [3], Lemma 13).

Lemma 8. If R satisfies (FQF-3) and (QS), then R is isomorphic to a factor ring of a semi-primary hereditary ring R^{\prime} such that $R / J(R) \approx R^{\prime} \mid J\left(R^{\prime}\right)$.

Proof. We know $R / J^{2} \approx \sum \oplus T_{n_{i}}\left(\Delta_{i}\right) / J\left(T_{n_{i}}\left(\Delta_{i}\right)\right)^{2}$ by Lemmas 5 and 7. Hence, gl. $\operatorname{dim} R / J^{2}<\infty$ by [3], Theorem 3. Therefore, we obtain the lemma by [3], Theorem 5 and its proof.

Since $R / J(R) \approx R^{\prime} \mid J\left(R^{\prime}\right), R^{\prime}$ is basic and $R^{\prime} \approx T_{n}\left(\Delta_{i} ; M_{i j}\right)$ by [3], Theorem 4^{\prime}. Let $\left\{f_{i j}\right\}$ be the usual matrix units in R^{\prime}. Then $g R^{\prime} f_{11}=0$ for any primitive idempotent g with $g R^{\prime} \not \approx f_{11} R^{\prime}$. Let $\varphi: R^{\prime} \rightarrow R$ be the ring epimorphism. Then $J\left(R^{\prime}\right)=\varphi^{-1}(J(R))$ and $\left\{e_{i i}=\varphi\left(f_{i i}\right)\right\}$ is a complete set of mutually orthogonal primitive idempotents in R. If $0 \neq e_{j j} R e_{11}=\varphi\left(f_{j j} R^{\prime} f_{11}\right)$ implies $j=1$. Furthermore, $e_{11} J(R) e_{11}=\varphi\left(f_{11} J\left(R^{\prime}\right) f_{11}\right)=0$. From now on, we shall denote $e_{i i}$ by e_{i}. Then $\Delta_{1}=e_{1} R e_{1}$ is a division ring from the above.

Lemma 9. If R satisfies ($\mathrm{FQF}-3$) and (QS), then R is isomorphic to $\sum \oplus T_{n_{i}}\left(\Delta_{i}\right) / C_{i}$, where C_{i} is a two-sided ideal in $T_{n_{i}}\left(\Delta_{i}\right)$.

Proof. We may assume R is a two-sided indecomposable. We shall use the notations above. Put $F=1-e_{1}$. Then

$$
R \approx\left(\begin{array}{cc}
\Delta_{1} & A \tag{2.5}\\
0 & R_{1}
\end{array}\right)
$$

We shall prove the lemma by induction on n, where $1=\sum_{i=1}^{n} e_{i}$. If $n \leqslant 2$, the lemma is true by Lemma 7. We assume $n \geqslant 3$. Then since $e_{11} R$ is injective by Lemma 3, 2), $R_{1} \approx T_{n-1}(\Delta) / C$ by Lemma 6 and the induction. Thus, we obtain

$$
R=\left(\begin{array}{ccccc}
\Delta_{1} & A_{2} & \cdots & \cdots & \cdots \tag{2.6}\\
& \Delta & L & A_{n} \\
& \Delta & \ddots & 0 & 0 \\
& & \ddots & \Delta & \Delta \\
0 & & & \ddots & \Delta
\end{array}\right)
$$

If we take a two-sided ideal $R e_{n}$ and use the induction hypothesis, we know $\Delta_{1}=\Delta$ and $A_{i}(i<n)$ is equal to either zero or Δ (cf. [3], Lemma 13). We assume $A_{n} \neq 0$. Since $e_{1} R$ is injective and has a simple socle, $\left[A_{n}: \Delta\right]=1$ as a right Δ-module. Put $A_{n}=u \Delta$. We know by Lemma 3 that every Δ-endomorphism of $u \Delta$ is given by a unique element of $\Delta=e_{1} R e_{1}$. Let x be in $e_{1} R e_{1}$,
then $x u=u \delta(x)$, where δ is a ring homomorphism of Δ. Therefore, $\delta(\Delta)=\Delta$ from the above and so $A_{n}=\Delta$ as a two-sided Δ-module, if $A_{n} \neq 0$. Now we may assume $A_{k}=\Delta$ and $A_{k+1}=\cdots=A_{n}=0$. We shall show $A_{2} \neq 0$. Assume $A_{2}=A_{3}=\cdots=A_{s-1}=0$ and $A_{s}=\Delta$ for some $s \leqslant k$. We put $D=\sum_{p>s+1}^{n} \oplus R e_{p}$. Then $\bar{R}=R / D$

$$
\approx\left(\begin{array}{ccccc}
\Delta & 0 & 0 & \cdots & \cdots \tag{2.7}\\
& \Delta & \Delta \\
& & \ddots & 0 & E_{2} \\
& \ddots & \Delta & & E_{3} \\
& 0 & \ddots & \vdots \\
& & & \ddots & E_{s-1} \\
& & & & \Delta
\end{array}\right)
$$

Since $\overline{e_{1} R}$ is \bar{R}-injective, $E_{2}=\cdots=E_{s-1}=0$ by Lemma 3. However, R_{1} is indecomposable and is of the standard form. Hence, $E_{s-1} \neq 0$, which is a contradiction. Accordingly, $A_{2} \neq 0$ and $e_{2} R e_{k} \neq 0$ by Lemma 3. Again, since R_{1} is of standard form, $e_{j} R e_{k} \neq 0$ for $j \leqslant k$. Therefore, $R \approx T_{n}(\Delta) / C$.

Lemma 10 ([9], Theorems 17 and 18). Let R be a two-sided indecomposable basic and generalized uni-serial ring. If there exists a primitive idempotent e such that $e R$ is simple, then R is isomorphic to $\mathrm{T}_{n}(\Delta) / C$.

Proof. R satisfies ($\mathrm{F} *$) by Corollary 1 to Lemma 2. First we assume $J^{2}=0$. We use the same notations in the proof of Lemma 7. We assume $m=0$ and $e_{n} R$ is simple. Since R is a QF-ring, $e_{n} R$ is a two-sided ideal. Hence, R is a division ring. If $m \neq 0$, we obtain the form (2.2) and so (2.3). Hence, we can use the same argument. In general case, noting that $\epsilon_{1} R$ is not simple in (2.3), we can use the induction. Therefore, Lemma 8 is true for the ring in the lemma. Again we can use the same argument in the proof of Lemma 9.

References

[1] C. Faith: Rings with ascending condition on annihilators, Nagoya Math. J. 27 (1966), 178-191.
[2] M. Harada: QF-3 and semi-primary PP-rings I, Osaka J. Math. 2 (1965), 357368.
[3] -: Hereditary semi-primary rings and tri-angular matix rings, Nagoya Math. J. 27 (1966), 463-484.
[4] -: Note on hollow modules, Rev. Un. Mat. Argentina 28 (1978), 186-194.
[5] -: Non-small modules and non-cosmall modules, to appear in Report of Conference of ring theory at Antwerp, 1978.
[6] Y. Kawada: A generalization of Morita's theorem concerning generalized uniserial algebras, Proc. Japan Acad. 34 (1958), 404-406.
[7] J.P. Jans: Projective, injective modules, Pacific J. Math. 9 (1959), 1103-1108.
[8] W.W. Leonard: Small modules, Proc. Amer. Math. Soc. 17 (1966), 527-531.
[9] I. Murase: On the structure of generalized uni-serial rings I, Sci. Papers College Gen. Ed. Univ. Tokyo 13 (1963), 1-22.
[10] T. Nakayama: On Frobenius algebras II, Ann of Math. 42 (1941), 1-21.
[11] M. Osima: Notes on basic rings, Math. J. Okayama Univ. 2 (1952-53), 103-110.
[12] M. Rayar: Small and cosmall modules, Ph. D. Dissertation, Indiana Univ. 1971.
[13] R.M. Thrall: Some generalizations of quasi-Frobenius algebras, Trans. Amer. Math. Soc. 64 (1948), 173-183.

Department of Mathematics Osaka City University
Sugimoto-cho, Sumiyoshi-ku Osaka 558, Japan

