Factor rings of a hereditary and QF-3 ring

Harada, Manabu

Osaka Journal of Mathematics. 17(1) P.1-P.8

1980

Publisher

https://doi.org/10.18910/3808

10.18910/3808

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/repo/ouka/all/
We have been studying many interesting properties of small submodules. W.W. Leonard [8] and M. Rayar [12] defined small modules and gave elementary properties of them. Recently, the author has studied non-small modules and given a class of rings which are concerned with non-small modules and located between QF-rings and QF-3 rings [4] and [5].

In this note we shall consider two conditions (*) and (*)* in [4] and [5] (see §1) and study a semi-primary ring whose every factor ring satisfies either (*) or (*)*. We shall show such a ring with condition (QS) (see §1) coincides with a generalized uni-serial ring of the first category in the sense of Murase [9].

1. The main theorem

Let R be a ring with identity. We always assume that R is a semi-primary ring, namely the Jacobson radical J of R is nilpotent and R/J is artinian, and every R-module is an unitary right R-module unless otherwise stated. Let M be an R-module. By $E(M)$ and $J(M)$ we denote an injective hull and the Jacobson radical of M, respectively. If M is a small submodule in $E(M)$, we say M is a small module [8], [12] and if M is not a small module, we say M is non-small module [5]. As the dual concept to the above, we define a non-cosmall module N as follows: there exist a projective module P and an epimorphism $f: P \rightarrow N$ such that $\ker f$ is not essential in P.

In [4] and [5] we have introduced two conditions:

(*) Every non-small module contains a non-zero injective module.

(*)* Every non-cosmall module contains a non-zero projective direct summand.

We have shown that if R satisfies either (*) or (*)*, then R is a right QF-3 ring [13] ($E(R)$ is projective by [7]) and every QF-ring satisfies both (*) and (*)*. Thus, a class of rings satisfying either (*) or (*)* is located between a class of QF-rings and one of QF-3 rings when R is a left and right artinian ring. If R is left and right artinian and eR, Re have unique composition series for every
primitive idempotent e, we call R a generalised uni-serial ring [10]. It is easily seen that every generalised uni-serial ring satisfies both (*) and (*) (Corollary 1 to Lemma 1 below).

Following Murase [9] we say a two-sided indecomposable generalised uni-serial ring is in the first category, if there exists a primitive idempotent e such that eR is simple. In order to show that some rings in the new class coincide with the above rings, we introduce the conditions:

- $(F*)$ (resp. $(F**)$) Every factor ring of R satisfies $(*)$ (resp. $(*)^*$).
- $(FQF-3)$ Every factor ring of R is right QF-3. And
- (QS) If a factor ring of R is a QF-ring, then it is semi-simple.

Now, we can state our theorem.

Theorem. Let R be a semi-primary ring. Then the following statements are equivalent.

1) R satisfies $(F*)$ and (QS).
2) R satisfies $(F**)$. and (QS).
3) R satisfies $(FQF-3)$ and (QS).
4) R is isomorphic to a factor ring of QF-3 and hereditary ring. And
5) R is a direct sum of generalised uni-serial rings of the first category.

We know from [2], Theorem 2 and [9], Theorems 17 and 18 that the ring R in the theorem is a direct sum of factor rings of rings of tri-angular matrices over division rings when R is basic. Hence, it has a perspective form.

We shall give remarks on the above conditions.

Remarks 1. If R is a generalised uni-serial ring of the second category [9], R satisfies $(F*)$, $(F**)$ and $(FQF-3)$ but not (QS) (see §2).

2. If R is a left and right artinian, then R is a generalised uni-serial ring if and only if R satisfies $(FQF-3)$ [6].

3. Let $K \subseteq L$ be fields with $[L:K]<\infty$ and

$$R = \begin{pmatrix} K & L \\ 0 & K \end{pmatrix}.$$

Then R satisfies (QS) but not any of $(F*)$, $(F**)$ and $(FQF-3)$.

4. If R is a commutative artinian ring and satisfies (QS), then R is a direct sum of fields.

Because, we may assume R is a local ring with maximal ideal M. If $M \neq 0$, we could find a maximal one M' among ideals contained in M. Then R/M' is a QF-ring and so $M/M'=0$.

2. **Proof of Theorem**

We always assume that R is a semi-primary ring with identity and every
FACTOR RINGS OF A HEREDITARY AND QF-3 RING

Let M be a unitary right R-module. We shall denote the Jacobson radical and the injective hull by $J(M)$ and $E(M)$, respectively. Let R be as above and $1 = \sum_{i=1}^{\infty} \sum_{j=1}^{n} g_{ij}$, where $\{g_{ij}\}$ is a set of mutually orthogonal primitive idempotents such that $g_{ij}R \cong g_{ii}R$ for any j and $g_{ij}R \cong g_{ji}R$ for $i \neq i'$. We put $g = \sum_{i=1}^{\infty} g_{ii}$ and $R_0 = gRg$. gRg is the basic ring of R. It is well known that the category of right R-modules is Morita equivalent to one of right R_0-modules. We have a one to one mapping between the set of two-sided ideals A in R and one of those A_0 in R_0 such that $A_0 = gAg$ and $A = RA_0R$.

Lemma 1. Let A be a two-sided ideal. We put $\bar{R} = R/A$ and $A_0 = gAg$. Then $\bar{R}_0 = R_0/A_0$ is the basic ring of \bar{R}.

Proof. It is clear that $1 = \sum_{i=1}^{\infty} \sum_{j=1}^{n} g_{ij}$ and $g_{ij}\bar{R} \cong g_{ii}\bar{R}$. If $g_{ij} = 0$, g_{ij} is also a primitive idempotent and $g_{ij}g_{i'j'} = \delta_{ij}\delta_{ij'}g_{ij'}$. We assume $g_{ii}\bar{R} = g_{ii}\bar{R}$ for $i \neq j$. Then there exists x in $g_{ii}Rg_{ii}$ such that $xg_{ii}R + g_{ii}A = g_{ii}R$. Since $g_{ii}R \cong g_{ii}R$, $xg_{ii}R \subseteq g_{ii}J(R)$. Hence, $g_{ji}A = g_{ii}R$ by Nakayama’s Lemma and so $g_{ii}A \subseteq A$ for any k. Thus, \bar{R}_0 is the basic ring of \bar{R}.

Corollary. R satisfies one of $(F*)$, $(F**)$, $(FQF-3)$ and (QS) if and only if \bar{R} does the basic ring of \bar{R}.

Lemma 2. Let R be a generalized uni-serial ring. Then every indecomposable non-small (resp. non-coflatMap) module is injective (resp. projective).

Proof. Every indecomposable module is uni-serial by [10]. Hence, the lemma is trivial from the definitions.

Corollary 1. Every generalized uni-serial ring satisfies $(F*)$, $(F**)$ and $(FQF-3)$.

Corollary 2. Let R be left and right artinian. Then the following statements are equivalent.

1) R satisfies $(FQF-3)$.
2) R satisfies $(F*)$.
3) R satisfies $(F**)$.
4) R is a generalized uni-serial ring.

Proof. 1)\iff4) is proved in [6]. Corollary 1 gives 4)\iff2) and 3). We know 2)\iff1) and 3)\iff1) from [5], Propositions 2.5 and 3.4.

In order to prove the theorem, we may always assume from Lemma 1 that R is basic and $g_{ii}Rg_{ii}g_{ii}Jg_{ii} = \Delta_i$ is a division ring. Let M_{ij} be a $\Delta_i - \Delta_j$ bimodule ($i < j$). We defined the ring of generalized upper tri-angular ma-
traces $T_n(\Delta_i; M_{ij})$ [3]. When $\Delta_i=\Delta$ for all i and $M_{ij}=\Delta$, we shall denote the usual upper tri-angular matrix ring by $T_n(\Delta)$ and the set of matrix units by $\{e_{ij}\}_{i<j}$.

Lemma 3. Let Δ_i be division rings and $R=T_n(\Delta_i; M_{ij})$. 1) We assume $e_{ii}R$ is injective and $M_{ik}=0$ and $M_{it}=0$ for all $t>k$. Then $\text{Hom}_{\Delta_i}(Re_{ii}/(M_{i-1k} \oplus M_{i-2k} \oplus \cdots \oplus M_{1k}), \Delta_i)$ is isomorphic to $e_{ii}R$ by multiplications of elements in $e_{ii}R$ from the left side. Hence, $M_{ik}=0$ if and only if $M_{pk}=0$.

2) If R is a right QF-3, $e_{ii}R$ is injective.

Proof. 1) Since M_{ik} is the socle of $e_{ii}R$, $[M_{ik}: \Delta_i]=1$. We have the natural homomorphism $\varphi: e_{ii}R \to \text{Hom}_{\Delta_i}(Re_{ii}/(M_{i-1k} \oplus \cdots \oplus M_{1k}), \Delta_i)$. Since $\varphi(M_{ik}) \neq 0$, φ is monomorphic. Let f be in $\text{Hom}_{\Delta_i}(Re_{ii}/(M_{i-1k} \oplus \cdots \oplus M_{1k}), \Delta_i) = \sum_{i=1}^{\Delta} \oplus \text{Hom}_{\Delta_i}(M_{jk}, \Delta_i)$ and $f=\sum f_{ij} f_{ij} \in \text{Hom}_{\Delta_i}(M_{jk}, \Delta_i)$. Put $F_{ij}(M_{jk})=0$ for $i>k$. Then $F_{ij}(M_{jk})\in \text{Hom}_R(M_{jk}R, e_{ii}R)$, since $M_{it}=0$ for $t>k$. Hence, there exists an element x_{ij} in $e_{ii}R$ such that $F_{ij}(m_{jk})=x_{ij} m_{jk} (x_{ij} \in M_{jk})$ for every m_{jk}, since $e_{ii}R$ is injective. Therefore, $f=\varphi(\sum x_{ij})$. Hence, φ is isomorphic. 2) If R is right QF-3, $E(R) \approx \sum \oplus (e_{ii}R)^*$, since R is semi-primary. Being $e_{ii}R e_{ii}=0$ for $i>1$, the index set K must contain 1. Hence, $e_{ii}R$ is injective.

Let $R=T_n(\Delta)$ and A a two-sided ideal. It is clear [9]

$$R/A = \begin{pmatrix} \Delta & 0 \\ \Delta & \Delta \\ \vdots & \ddots & \Delta \\ 0 & \cdots & \Delta & \Delta \end{pmatrix} \quad (2.1).$$

We call such a form the *standard form* of R/A. It is easily seen that R/A is a generalized uni-serial ring of the first category. Hence, from Lemmas 1 and 2 and [2], Theorem 2 (consider $e_{ii}R$) we have

Lemma 4. Let R be a factor ring of a QF-3 and hereditary ring. Then R satisfies $(F*)$, $(F*^*)$, $(FQF-3)$ and (QS).

Now, we shall consider the converse case.

Lemma 5. If R satisfies one of $(F*)$, $(F*^*)$, $(FQF-3)$ and (QS), then so does every factor ring of R.

It is clear.

Lemma 6. Let $R=T_2(\Delta_1, R_2; M_{12})$. If R is two-sided indecomposable and $e_{ii}R$ is injective, then R_2 is indecomposable, where Δ_1 is a division ring and R_2 is a
semi-primary ring.

Proof. From the assumptions \(e_i R \) contains a unique minimal submodule. Hence, \(R_2 \) is indecomposable if so is \(R \).

Lemma 7. Let \(R \) be a semi-primary, two-sided indecomposable and basic ring. We assume \(J^2 = 0 \). If \(R \) satisfies (FQF-3) and (QS), then \(R \) is isomorphic to \(T_\alpha(\Delta)[J(T_\alpha(\Delta))]^2 \), where \(\Delta \) is a division ring.

Proof. Let \(R = \sum_{i=1}^n e_i R \oplus \sum_{j=1}^m f_j R \) be a decomposition of \(R \) with indecomposable modules \(e_i R \) and \(f_j R \), where the \(e_i R \) is injective and the \(f_j R \) is small (see [5], Theorem 1.3). We quote here the argument in [6], Lemma in pp. 404-405. We know \(\sum \oplus e_i R \) is faithful. Let \(x \neq 0 \) be in \(f_j R \). Then \((\sum \oplus e_i R)x \neq 0 \) and so there exists \(e_i R \) such that \(0 \neq e_i x = \phi f_j x \in J x \). Hence, \(x \notin f_j J \) since \(J^2 = 0 \). Therefore, \(f_j R \) is simple if \(f_j R \neq 0 \). Since \(e_i R \) is injective and \(J^2 = 0 \), \(e_i R \) is uni-serial. Accordingly, \(R \) is right artinian. First, we assume \(m = 0 \). Then \(R \) is self-injective and so a QF-ring (see [1], Theorem 1). Therefore, \(R \) is a division ring by (QS). Thus, we may assume \(m \neq 0 \). We know from the above that \(f_j R \) is simple. Hence, \(f_j R_g = 0 \) for any primitive idempotent \(g \) (\(\neq f_i \)) and \(f_i R f_i = \Delta \) is a division ring. Thus, we have

\[
R = \begin{pmatrix} R_1 & FRf_i \\ 0 & \Delta \end{pmatrix}
\]

where \(F = 1 - f_1 \) and \(R_1 = FRF \) satisfies (QS) and (FQF-3). We first assume \(s = n + m = 2 \). Then \(n = m = 1 \). Hence, \(R_1 \) is a division ring from the case \(m = 0 \). Therefore, \(R \approx T_2(\Delta) \) by [2], Theorem 2 and [3], Theorem 1. Now, we shall prove the lemma by induction on \(s = s(R) \) (we assume \(m = 0 \)). We have done it when \(s \leq 2 \). Since \(s(R) > s(R_1) \), \(R_1 \approx \sum \oplus T_\alpha(\Delta_i)[J(T_\alpha(\Delta_i))]^2 \) by the induction, where the \(\Delta_i \) is a division ring. Hence, we obtain \(R = T_\alpha(\Delta_1, \Delta_2, \ldots, \Delta_{s-1}, \Delta; M_{ij}) \). Lemma 3,2) shows that \(e_{ii} R \) is injective. It is clear \(e_{kk} R e_{kk} = 0 \) for \(k \neq 1 \). We put \(F' = 1 - e_{ii} \) and \(R_1' = F' RF' \). Then we have

\[
R = \begin{pmatrix} \Delta_1 & e_{ii} R F' \\ 0 & R_1' \end{pmatrix}
\]

(2.3)

Here \(R_1' \) is two-sided indecomposable by Lemma 6. Hence, \(R_1' \approx T_{s-1}(\Delta') \) by the hypothesis of induction. Now \(R \) is of the form

\[
\begin{pmatrix}
\Delta_1 & A_2 & \cdots & A_s \\
\Delta' & \Delta' & & \\
& & \ddots & 0 \\
& & & 0 & \cdots & \Delta' \\
& & & & & \Delta'
\end{pmatrix}
\]

(2.4)
Since $e_{ij}R$ contains a unique (minimal) submodule, only one A_i is not zero. If $i \neq 2$, $A_2 = 0$ implies $M_{i-1} = \Delta = 0$ by Lemma 3. Hence, $A_i = 0$ for $i > 2$. Since $s \geq 3$, we have $\Delta' = \Delta_i$ and $A_2 = \Delta_i$ by the induction (cf. [3], Lemma 13).

Lemma 8. If R satisfies (FQF-3) and (QS), then R is isomorphic to a factor ring of a semi-primary hereditary ring R' such that $R/J(R) \approx R'/J(R')$.

Proof. We know $R/J^2 \approx \bigoplus T_n(\Delta_j)/J(T_n(\Delta_j))^2$ by Lemmas 5 and 7. Hence, gl. dim $R/J^2 < \infty$ by [3], Theorem 3. Therefore, we obtain the lemma by [3], Theorem 5 and its proof.

Since $R/J(R) \approx R'/J(R')$, R' is basic and $R' \approx T_n(\Delta_i; M_i)$ by [3], Theorem 4'. Let $\{f_{ii}\}$ be the usual matrix units in R'. Then $gRf_{ii} = 0$ for any primitive idempotent g with $gR' \cong f_{ii}R'$. Let $\varphi: R' \to R$ be the ring epimorphism. Then $J(R') = \varphi^{-1}(J(R))$ and $\{e_{ii} = \varphi(f_{ii})\}$ is a complete set of mutually orthogonal primitive idempotents in R. If $0 \neq e_{jj}Re_{ii} = \varphi(f_{jj}R'f_{ii})$ implies $j = 1$. Furthermore, $e_{ii}J(R)e_{ii} = \varphi(f_{ii}J(R')f_{ii}) = 0$. From now on, we shall denote e_{ii} by e_i. Then $\Delta_i = e_iRe_i$ is a division ring from the above.

Lemma 9. If R satisfies (FQF-3) and (QS), then R is isomorphic to $\sum \oplus T_n(\Delta_i)/C_i$, where C_i is a two-sided ideal in $T_n(\Delta_i)$.

Proof. We may assume R is a two-sided indecomposable. We shall use the notations above. Put $F = 1 - e_i$. Then

$$R \approx \begin{pmatrix} \Delta_i & A \\ 0 & R_i \end{pmatrix}$$ (2.5).

We shall prove the lemma by induction on n, where $1 = \sum e_i$. If $n \leq 2$, the lemma is true by Lemma 7. We assume $n \geq 3$. Then since $e_{ij}R$ is injective by Lemma 3, 2), $R_i \approx T_{n-1}(\Delta)/C$ by Lemma 6 and the induction. Thus, we obtain

$$R = \begin{pmatrix} \Delta_i & A_2 & \cdots & A_n \\ \Delta & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \Delta \end{pmatrix}$$ (2.6).

If we take a two-sided ideal Re_a and use the induction hypothesis, we know $\Delta_i = \Delta$ and $A_i (i < n)$ is equal to either zero or Δ (cf. [3], Lemma 13). We assume $A_n \neq 0$. Since e_iR is injective and has a simple socle, $[A_n: \Delta] = 1$ as a right Δ-module. Put $A_n = u\Delta$. We know by Lemma 3 that every Δ-endomorphism of $u\Delta$ is given by a unique element of $\Delta = e_iRe_i$. Let x be in e_iRe_i,
then \(xu = u\delta(x) \), where \(\delta \) is a ring homomorphism of \(\Delta \). Therefore, \(\delta(\Delta) = \Delta \) from the above and so \(A_s = \Delta \) as a two-sided \(\Delta \)-module, if \(A_s \neq 0 \). Now we may assume \(A_s = \Delta \) and \(A_{s+1} = \cdots = A_s = 0 \). We shall show \(A_s = 0 \). Assume \(A_s = A_s = \cdots = A_{s+k} = 0 \) and \(A_s = \Delta \) for some \(s \leq k \). We put \(D = \sum_{s=0}^{k} \oplus Re_s \). Then \(\overline{R} = R/D \)

\[
\begin{pmatrix}
\Delta & 0 & 0 & \cdots & \Delta \\
\Delta & _ & 0 & \cdots & _ \\
_ & \Delta & _ & \cdots & _ \\
_ & _ & _ & \cdots & _ \\
0 & _ & _ & \cdots & \Delta
\end{pmatrix}
\]

(2.7)

Since \(e_1 \overline{R} \) is \(\overline{R} \)-injective, \(E_s = \cdots = E_{s-1} = 0 \) by Lemma 3. However, \(R_1 \) is indecomposable and is of the standard form. Hence, \(E_{s-1} \neq 0 \), which is a contradiction. Accordingly, \(A_s = 0 \) and \(e_1R_1 \neq 0 \) by Lemma 3. Again, since \(R_1 \) is of standard form, \(e_jR_1 \neq 0 \) for \(j \leq k \). Therefore, \(R \cong T_n(\Delta)/C \).

Lemma 10 ([9], Theorems 17 and 18). *Let \(R \) be a two-sided indecomposable basic and generalized uni-serial ring. If there exists a primitive idempotent \(e \) such that \(eR \) is simple, then \(R \) is isomorphic to \(T_n(\Delta)/C \).*

Proof. \(R \) satisfies (F*) by Corollary 1 to Lemma 2. First we assume \(J = 0 \). We use the same notations in the proof of Lemma 7. We assume \(m = 0 \) and \(e_nR \) is simple. Since \(R \) is a QF-ring, \(e_nR \) is a two-sided ideal. Hence, \(R \) is a division ring. If \(m \neq 0 \), we obtain the form (2.2) and so (2.3). Hence, we can use the same argument. In general case, noting that \(e_1R \) is not simple in (2.3), we can use the induction. Therefore, Lemma 8 is true for the ring in the lemma. Again we can use the same argument in the proof of Lemma 9.

References

Department of Mathematics
Osaka City University
Sugimoto-cho, Sumiyoshi-ku
Osaka 558, Japan