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For a curve 7(s) in a riemannian manifold M we define two quantities:
the length L(fγ) and the total square curvature E(<γ). A curve γ is called an elas-
tica if it is a critical point of the functional E restricted to the space of curves of
a fixed Inegth L0. The notion of elastica is quite old. But modern approaches
to it in differential geometry are rather new. J. Langer and D.A. Singer classified
all closed elasticae in the euclidean space ([!]), and showed that Palais-Smale's
condition (C) holds for the space of curves in a riemannian manifold ([2]).

In this paper we consider elasticae restricted in a submanifold. For exam-
ple, let M be a compact surface of the euclidean space and C the set of all closed
curves of given length in the surface. Is there a closed curve in C which mini-
mizes the elastic energy E (defined as curves of the euclidean space) ?

We will affirmatively answer to the question in a more general situation.

Theorem. Let M be a riemannian manifold, M a compact submanifold of
M and L0 a positive real number. Let C be the space of all closed regular curves
of length L0 in M. For each y^C, we measure its (exterior) elastic energy #(7)
as a curve in the manifold M. Then the infimum E0 of the energy E on the set C is
attained by a C°° curve in C.

Let γ be a curve in M of unit speed. We denote by T and r its curvature
vector as a curve of M and My respectively. The difference of these two curva-
ture is measured by the second fundamental form a of M in M. That is,

T — τ+a(<γ, γ),

| τ | 2 = \r\*+\a(γ,γ)\*.

This formula leads us to a more general situation: elastic energy with "poten-
tial". That is what we treat in the following. Let M be a riemannian manifold
and φ a C°°-function defined on the unit tangent vector bundle over M. For a

(closed) regular curve γ in M, we reparametrize it by the arc length, and define the
energy density /(γ) and the energy F(eγ) by

= H2+Φ(<y),
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Since the curvature vector T is given by

τ* ~ — Ύ'+Γ' * — Ύ>— y*
Ί •> ' ~ J* 7 ' 7 'αr as as

for a unit speed curve γ, where Γ is the ChristoffePs symbol, the functional F
is defined on the space of all regular H2-curves. We will prove the following pro-
position, which implies our theorem as a corollary.

Proposition. Let M be a compact riemannian manifold and LQ a positive

real number. Let C be the space of all closed C°° regular curves of length LQj and

CQ a C1 connected component of C. Then the infimum F0 of the energy F on the

set CQ is attained by a C°° curve.

REMARK. The following proof also applies to equivariant situations. I.e.,
if a compact Lie group G acts on the manifold M as isometries and if it in-
variantly preserves the function φ, then we will get a G-invariant minimizer
ofF.

To prove this, we take a minimizing sequence {γ̂ ,} in CQ of the functional
F. We may assume that every curve jp has unit speed. Since the manifold M
is compact, all curves of unit speed and of bounded length are bounded in C1-
topology. Moreover, since the function φ is bounded, the boundedness of val-
ues F(<γp) implies the boundedness of the family {γp} in /P-gopology. There-
fore a subsequence converges into some C1 curve OΌo in (^-topology. Thus we
may assume that the sequence {jp} itself converges into OOo in (^-topology.

First, we consider the case that y^ is a geodesic of M. Then the energy
F(fγp) is greater or equal to the potential term fφ(yp)ds, which converges to
F(fγ00)=fφ(tγ00)ds. Thus, we see that F^F^*), hence y^ is the desired curve.

Next, suppose that y^ is not a goedesic. Note that even when y^ has
a self-intersection, we can take a covering of a neighbourhood of the image of
7oo, and may assume that yM has no self -intersections. Thus we can take a C°°
vector field F on a neighbourhood of the image of γ*, so that

-f U^expίFoγ^l,
at

because OΌo is not a critical point of the functional L.
For two points x and y which are sufficiently close in M we denote by

μ(xy y) their mid point on the distance geodesic joining x and y. Using it we
define the mean curve γpq of two curves γp and jq which are sufficiently close to
Too by

Since the length £(7^) may differ from L0, we normalize it by a diffeomorphism
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exp tV as follws: Note that the curve γ^ is close to γoo in (^-topology. There-
fore we can take a (small) real number tpq so that

The desired normalized curve γpq is defined by

Note that tpq converges into 0 and that the sequences {<γpq} and {γpq} converge

into γ oo in (^-topology.

To simplify the following calculation, we introduce the potential term T(fγ)

and the modified energies E(fγ) and F(7) by

Note that F(y) conicides with F(7) when 7 is so of unit speed. We set TQ=

T"(7oo) and EQ=F0—T0. We also denote by £ a positive quantity which converges
into 0 when p (and q) -> oo . For example, | T(γp) — T(jq) \ <, 6.

From the inequality

| τ | 2 =

we see that

%) = J \Dy7\2ds> 5 \7\4\r\2dS = J |τ | 3 | τ | 2 |7 |<fo .

Combining it with inequalities | \fypt\ — 1 1 ^£ and E^p^+T^p^^F^ we get

-e) J

Now we take a sufficiently small geodesic coordinate system around each

point 7~(ί) so that the metric tensor g{j and the Christoffel's symbol Γ, *; are
sufficiently close to δ, , and 0 respectively in C°-topology. Also we denote by

\*\e the euclidean norm denned by the coordinate functions. Then the expres-

sion
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'ds ds

leads the inequality

for a curve γ which is sufficiently close to γ^ in (^-topology. Moreover, γpq

differs from γpq only by a C°°-diffeomorρhism exp tpqV, where | tpq\ <>G. There-
fore we get

Combining it with (*), we see that

(**) %J>(l

The relation z=μ(x, y) is expressed by a goedisic η(σ):

d2 t i p i d j d k _ π
y,— ,— , -o,

Regarding -η to depend on a parameter t, we take second derivative with respect
to t at the origin: xf—y* =0, Γ .'t=0. Then we get

Λr Λ

which implies that μ is sufficiently close in C2-topology to the linear map : z'

i(*'+y') Therefore we see that

hence that

JLl a* ry __^!_ry |2<^_/1_£
A \~ΓΪΊP JΛ ϊq\e^C ^1 C
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Integrating this in sy we get

where the integration of the left hand side maens a finite sum of integrations
over small intervals of s.

Combining it with inequelity (**) and the fact that F(fγp) converges into F0,

we see that

which implies that the seqeunce {jp} converges in JF/2-topology. Therefore the
limiting curve TOO of {j^ is a 7?2-curve and F(γ*>)=F0.

Now it is standard to check that OΌo is in fact C°° and is a classical solu-
tion of the Euler-Larange equation. We complete the proof.
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