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論文内容の要旨

数理統計学のノンパラメトリック理論では，データの分布法則は未知として展開されているがその未知な分布関

数が推定できれば，効率の良いノンパラメトリック統計量が選択でき，したがって，データの持つ情報を無駄なく生

かせるようになる O 分布関数のもっとも標準的な推定量として経験分布関数がよく知られている。しかし推定したい

分布関数が連続であると仮定したとき，その分布関数の連続性を無視している O そこで従来用いられてきた標準的

な方法に代って，近年，滑らかな核関数を用いる方法が脚光を浴び，理論的にその良さが証明されている。本論文で

は核関数による平滑化に基づいた推定量と平滑化されたブートストラップを用いる推定量に関する積分平均二乗誤差

を中心として推定問題を考察する O

ある確率標本 Xl ， X2 ,… , Xn が未知の連続分布関数 F(x) に従うとする。対応する経験分布関数を Fn (x) とする。

ここで ， Fn は標本サイズ n個の観測値の各点で確率 l/n をもっ分布関数で、ある。適当な分布関数 K を核関数とし，

平滑化パラメータ九を用いる核型推定量 (Kernel-type estima tor) 
^ 1 cxコ

孔 (x) =才 'L K ( (x-X;)/hn )= し。K ( (x--y)/允) dFn~) 

が考えられる o hn は積分二乗誤差を最小にする意味で適当な平滑化パラメータとする。核型推定量丸に対する様々
な性質は多くの研究論文に発表されているO 特に平滑化パラメータの推定問題に関してはいろいろな推定方法が考え

()()八

られてきたが，分布関数の核型推定量は積分平均二乗誤差工。oE{Fn (x) -F(x)} 2 dF(x) の意味で経験分布関数を用

いた推定方法より良いことが分かっているO ところが積分平均二乗誤差の場合は平均して O となる項は無視される
αコ〈

が，もっと基本的な積分二乗誤差工。o{Fn (x) -F(x)} 2 dF(x) を用いた場合では正規分布に従う確率変数が表われ，

積分平均二乗誤差の場合の平均して O となる項は確率的には無視できないことが分かるO 本論文で，積分二乗誤差の

意味では単純に経験分布関数によって推定を行うことと核型推定量を用いることに確率的には本質的な差がないこと

を示した。

次にブートストラップ法に基づ、いて一つの平滑化パラメータを選択する問題を考える。近年経験分布関数を用い

るブートストラップ推定方式よりも平滑化されたブートストラッフ。法に基づ、く推定量の方が良い場合かあることが何

人かの著者によって明らかになった。本論文ではブートストラップ法を用いて最小の平滑化パラメータを選ぶことに

する O すなわち， FJ を経験分布関数 Fn からのブートストラップ標本 X! ， X2 , X,… , X:. にもとづく経験分布関数と
<

する。推定量 Fn のようにブートストラッピング核推定量 (bootstrapping kernel estimator) 
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^ 1 00 

F; (x) ニオヱK(x-Xt)/hn ) = ι∞K(x-y)/hn ) dF; ω 

が構成できるO 平滑化パラメータ hn は推定量分n の場合と同じように選ばれる。しかし，この標準的なブートストラ y
八八

プ法は推定量のバイアス項 EF;(x I x*) -Fn (x) が O になるため，ブートストラップ法の直接な応用はできない。そ

れを避けるため別のアプローチを行なう。そのブートストラップ標本による適当な平滑化パラメータふが選択でき

^ ^ ^ れば一つの核推定量 Fn (X)=l/nL i'=lK(X-X;)/gn が構成できる。したがって，バイアス項 EF;(X) -F; (X) が把
^ ^ 握でき，リサンプリング平滑化パラメータ gn とともに誤差 F;(x) -Fn (x) に基づいて解析することによって

八

ム (x) -F(x) が推定できるようになる。このことからブートストラップ推定量 F;の平均二乗誤差，積分平均二乗誤

差，そして積分二乗誤差を評価することができる。本論文で，上の事実から最適のブートストラップ平滑化パラメー

タが選択可能であることを示した。

論文審査の結果の要旨

Xl ， …， Xn を連続な分布関数 F (x) からの無作為標本とする O 統計的問題に対する多くのパラメトリックな接近

では少数のパラメータを除き関数 F(x) は既知とされるが ノンパラメトリックな接近では F(x) は未知として処理

される O ただし，ノンパラメトリックな接近でも F(x) が分かっていればより効率のよい手法が導かれ，データの持

つ情報を無駄なく引き出すことが可能となるO したがって， F(x) を効率よく推定することは重要な問題であるO

本論文では分布関数 F(x) の推定問題を考察している。第 1 章は導入部分であるO

第 2 章では経験分布関数と Kernel 型推定量の比較を行う。従来分布関数の推定では経験分布関数 Fn(x)=LI

(X三五 x)/n を用いるのが通常であった。ただし，経験分布関数は F(x) が連続であるという情報を無視している。そ
八 x-x

こで Kernel 型推定量 Fn(x)= L K ぐ う /n が提案された。ここで K(x) は適当な正則条件を満たす連続な分布
hn 

<

関数である。 h=九は O に収束する定数列であり 平滑化パラメータと呼ばれる。 Fn (x) は積分平均 2 乗誤差

(IMSE) 

^ ^ IMSE (Fn) = f E(Fn (X))-F(X)2)dF(x) 

の意味では Fn(x) より良いことがすでに多くの研究で示されている。ところが実際のデータに適用している現場で

はムω の優位性は疑問視されていた。そこで IMSE ではなく，平均をとらない積分 2 乗誤差(ISE)
八〈

ISE (Fn) = f (Fn (x) -F (x)) 2 dF (x) 

での比較を試みた。 ISE は確率変数で表現した誤差であり より正確な誤差解析が可能となる。本論文では Kernel
八

型が IMSE の意味で優位にある h に対しても n (ISE (Fn) - ISE (Fn)) が斬近的に平均 O の正規分布に従うことを示
<

した。したがって， IMSE の意味で Fn (x) の優位は平均 0 のランダムな項を無視した結果であり， Fn (x) と Fn (x) 
八

に本質的な差はないことを示した。したがって，推定量に連続性を要求すれば Fn (X) ， 要求しなければ計算の容易さ

から Fn(x) を用いることが合理的であることが分かる。

第 3 章では Kernel 型推定量における平滑化パラメータを選択する問題を扱う。 Kernel 型推定量には Kernel 関数

K(x) と平滑化パラメータ h が解析する者によって選択されるが Kernel 関数 K(x) は適当な広い範囲から選択し

ても推定の良さにはあまり影響せず，平滑化パラメータの選択が重要な問題であるo 平滑化パラメータを選択するた

めには誤差を評価する必要があるが，誤差は真の分布関数 F (x) に関係するので，それを推定しなければならない。

誤差伝ω -Fω を推定する方法としてブートストラップ法がよく知られている。ブートストラ y フ。推定量針ω
^ ^ を用い， F; (x) -Fn (x) によって推定するのが標準的な方法であるO ところが， Fn (x) は bias のある推定量である

が，この方法では bias が検出できない。そこでブートストラップのための平滑化パラメータ g=gn を導入し，それに
八 八八

よる推定量打 (x) と推定量 Fn (x) の差 F;(x) -Fn (x) によって誤差が推定できることを示した。これにより，

Kernel 型推定量の誤差が解析でき かっ最良の平滑化パラメータが選択できる。

以上のように本論文は分布関数の推定理論とその応用に寄与するものであり，博士の学位論文として価値あるもの

と認める。
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