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A Theorem with Respect to the Unique Continuation
for a Parabolic Differential Equation

By Taira SHIROTA

1. Introduction.

In the present paper we study the unique continuation of solutions
u(t, x) defined in the convex domain G of Euclidean #z+1-space R,.,,
satisfying the parabolic equation

1.1) Lw) =0,

2  <m 'u
(1.2) (£~ 5p)utt: 0 = Shsmsauft, 9226,

+ >

where we assume that the coefficients satisfy the following conditions :

(1.3) there are two positive numbers «, and «, such that

a5 Zat, )EE Z alEl”

for any real vector £=(¢§,, &,,---,&,) and for any (¢, x) €G,

2

au
L0 aft D), o), B D), s (1), ot ),

oxy

b; and ¢ are all continuous in G (¢, j, k, /=1, 2, --- , n).

In the case where the solution satisfies some boundary conditions
unique continuation theorems are considered by H. Yamabe, S. Ito® and
the author® using the unique continuation theorem of elliptic operator
established by N. Aronszajn”, H.O. Cordes® and applying the abstract
analyticity of solutions of parabolic equations which is investigated also
by K. Yosida in another point of view. On the other hand the uni-
queness of the solutions for Cauchy problem of (1.1) with non character-
istic initial surface is established by S. Mizohata®, modifying the methods
used by A.P. Calder6n®, whose result is recently strengthened by Li der-
Yuan'” using the idea of E. Heinz® and H. O. Cordes®.

The purpose of the present paper is to prove the following
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Theorem. Let € be a curve: {(t, x,(t)|te€la, b]} with x,f)€
C'(La, b)). If u is continuously differentiable with respect to x; of second
order and with respect to t of first order on the domain G and if u satis-
fies the following two conditions: there is a positive number M such that

(L.5) L) ) = M{Sh | 2t )+ att, D)1

for any (¢, x) €G, and for any a>0

(1.6) lim max {u(t, o), [2%@ 0|, | 2% x)}lx—x(t)|‘“:0,
70 }gﬂ]ﬂﬂ ox; ox;0x;

6,5=12-,n

then u vanishes identically in the horizontal component G {(t, x)|t€[a, b]}.

The following proof is the completion of my previous one, where I
made errors in calculation, improved by some modifications. It is also
based on the methods used by Heinz and Cordes. The main distinctive
feature from other authors is that I am concerned with a strong
unique continuation while they does only with the uniqueness of solu-
tions of Cauchy problem. Therefore I must consider convex lens-shaped
region and some damping factors in our estimates. Furthermore my
conditions with respect to a;(#, x), (1.4), is stronger than that used by

Li Der-Yuan in his last lemma, that is, I add the assumption more with
2

respect to 8Taa—ta,-j, which seems to be necessary, so far as we do not
k

employ other methods of consideration..(See p. 386)

2. Basic inequalities.

Before stating our results in this section we will describe some
notations. We shall use the following convention :

ou __ ou u _ Qou

Uy = —— Uz, = , = etc.
axi a¢o‘ ’

ot ’

Furthermore for a domain D of R, , denote by C?(D) and C?(D) the
sets of all functions » defined in D such that the derivatives of v of
order m with respect to x; (=1, 2,---,n) and with respect to ¢ are
continuous on D respectively.

We assume here that the parabolic operator (1.2) is reduced to the
following form :

@1) L) = @t s, + byt — quis
= P<u|rir+n—_—1ulr+ 12 Nu>“qu\t-
v r
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Here the coefficients are functions defined in D= {t|te[—¢ 1+&]}
X {x||x|< R} for some positive R and & and satisfy the following
conditions :

(i) for a finite number of systems of polar coordinates (7, ¢,) covering
the unit sphere of R, the Laplace-Beltrami operator N is represented in
the form

_ 1 2 _ 2
(2' 2) N - 7\‘(x) 877,,- A'(x) acr‘r(t’ x) a(P., ’

00,

Mp)= — T2,
OP, 0P, *++ OP,,_,

where 90, is the usual surface element of the unit sphere,

(ii) (¢, x) € CLA(D), q(r)e CH[O, K1), b:(2, x)€ L™(D),
a;(t,x)eL™(D), and a&,.(t, x)eC} (D),

(iii) there are positive numbers B8 and ¢ (8 >v) such that

(2.3) BN Pas,)r(, X) 1e1r = o, X) e Z7[7|*,

2.4) —p,=B and p,p7 ¢, ="

for any (¢, x)€ D and for any real vector = {%,, 7,, -+, 7,-.}, where B
is sufficiently large.
Furthermore for 7,<_R let D, g, be the domain:

{@# 2)|0<t<1, |x|<r,AKJ'tANK3'(1—1)} .

Denote by & the class of functions » such that i) v € Ci(D,, «,)N
C¥D,, x,) ii) the carrier of vCD, g, {(0,0), (0,1)} and iii) v vanishes
at x=0 as follows: for any ¢ >0

(2.5) lm max {lult, ), [wx(t, 2)], (w02 (8 2)]5 Tt 2) [} 7 = 0.

r—0 |x|=7

6,j=1,2,-,n

Finally let @(¢#) be the smooth function such that
_ 1
o(t) =t for te]O, 5

—1 for te[—z—, 3]
5’5
—1-¢ for te[%, 1], and

lp(t)| <1 for any ¢te€[O0,1].
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We are now in a position to state the basic lemma of this section.

Lemma 1. For sufficiently small r, and sufficiently large K,, there
are constants &, and C such that for any a_>a, and vE &,

(2. 6) S SS (Loyr*=** (2 p= dr dO, dt
=Ca? SSS vr>p(t)*p 'drdO,dt

where r,, K, and C depend only on the absolute value of derivatives of
Qgp, OF D and of q with respect to (L, r), (¢, x) and r of order 1 respec-
tively, on the absolute value of a;; and on the values of B and v. (In the
following we denote such a constant also by C; (=1, 2, ---, 8)).

Proof. After substituting z=vv"* into (2.1) the integral on the
left-hand side of (2. 6) becomes, denoting the integral by A,

Az ([[(@oapp+ @@y p+ 2L La®p}r e plty*drdo,dt,

where
Lz® = {a(@+n—2)z2+Nz+7°2,,.,} p

Lz® = 2a+n—1)rz,-p—qrz;.

The right hand side of the above inequality is denoted by >_, A,,
where the A, are defined in the obvious manner. We shall now reduce
A,, A, to simpler forms using integration by parts:

A, — m (Lz®Yr p~  p** dO, dr dt
— 2a+n—1y SSS 72, pp(t)y® dO, dr dt
+\{[reacrpedo.arat
—2@a+n-1) ([[ 2,429 d0,drat .
Furthermore
A, =2 S SS Lz®-Lz® p~'r~' p** dO, dr dt
> 2a(a+n—2)2a+n—1) SSS z+2,,-pdO,drdt
+2(({ a@+n—2)2-(—rgz) 9 a0, dr at

42 m (Nz+7°21,,) (20 +n—1) 21, p—rgz,) P** dO, dr dt
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— a(a+n—2)2a+n—1) m 2(—p,)dO,drdt
+a(a+n—2) Hj r-3ap,pqZ9**dO, drdt
+2 SSS Nz{(2a+n—1)z, p—rqz,)} p**dO,dr dt
+2 m 7 211,20+ n—1) 2, pp** dO, dr dt

—ZSSS 7 21,792, P**dO, dr dt

= Ez=l Aa,k ’

where the A, , are also defined in the obvious manner. The terms A,,
and A, are also calculated by using integration by parts :

A, = —2a+n—1){2 m r2, pp**dO, drdi + m rz., py, P dO,drdt}
and

A, = —2{{{ 2,420 d0,arat
= 2({{ rz,2,.09d0,arat+6 (([ #2049 d0,drar
+2{{{ #2210, 9*do.arat
= —2(([rasaqpippdo.darat—2 (| r2,.2.q9*d0.dr at
+6 SSS r 22,99 dO,drdt +2 m P 21,210, 9" dO, dr dt
- _2 m r2,°30q 0, ' 9" dOy dr dt +-2 m P 2102101, 9" dO, dr dt

+12 SSS 722,;2,,q9**d0O,drdt +4 SSS r’z,2,:q,9*d0,drdt,

therefore

A,,=6 SSS 7°2,:21,qP**dO,drdt —3 SSS ar’z,g’ e, 9**d0,drdt
+2 SSS r*z,,2,:9,9**d0O,drdt .

By combining the previous equalities and inequalities we see that
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Here we remark that since »r<7,AKg'tAKg*(Q—1¥),
(2.8) lrpp ' |= (K" Vr)k in D, x,,

where & depends only on @(f). Then from (2.4) and (2.8) we obtain
the estimate of the first term of the right hand side of (2.7): the first
term, which we denote by 1, is '

(2.9) [=aC, SSSzz-p"cp“’dO,drdt,

for sufficiently large @ and K, and for sufficiently small »,. 'In order
to estimate the last term we remark that

2 SS Nz-z,pdO,dr — —2 SS 210 (21, 1)1 dO, dr
— [} 200,21, pd0,ar
-2 SS 210@p, 521, P1cdO, dr .
Hence we obtain that the fifth term, which we denote by V is,
V= (@atn—1) m 210 D, )1y 2109 dO, dr dit
+SSSz.,,d,,,(,{—Z(a’nLn—1)2.,17;,—rz|,,-3a'q¢,,tp"l} P**dO,drdt

—{{§ 7210 01021, a 9 d0ar at
hence
(2.10) V={C2a+n—1)B—v)—3aqg(r,vki')—r,qC,} .
. Sﬁ 21000, s 21c P dO, dr dt
—aC, SSS 7z, 9**d0,drdt ,
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since |@.sppie]l <C,7, where we use (2.3), (2.4), (2.8) and take «, K|
sufficiently large and 7, sufficiently small.

Thus from (2.7), (2.8), (2.9) and (2. 10) we see that if the coefficient
of the second term of (2.7), i.e. of the term containing z;,” is larger than

[{Ca+n—1)—3—rq,q }rp+aCyr?], then A=a’ m 2 9 d0, dr dt.

But this condition follows also from conditions ii) and (2.8). (Q.E.D.)
From Lemma 1 we obtain the following basic inequality.

Lemma 2. Under the same assumption of Lemma 1,
S S (Loyr'=*"o(ty"dx dt
=C SS <ﬁ3|v[2+ﬁ S, |U'”i|2>r4_2w_n¢(l‘)3“dxdt .
ry 7,

Proof. From the relation
Z(vz) = zvf‘(v)‘*‘zaijleilej ’ P>

and the positive definiteness of the matrices ((;;)), we have

B =G (| S ire pogp(tyedxat

— gg vL@)r " p p** dx dt +% SS L(v)r22=n p-ipe d;rdt

[\

= { SS Vi g Y dx dit SS L)r " prp**dx dt}/*
+27'(2a+2n—5)(2a +3n—5) SS vyt dx dt

+27! Sg vzr-zw—n+4{3p—1(p“(])+(p~1)|t}q¢3wdxdt’

since
E*( p—lr—zw—n+4¢3w) — (ZC( +2n— 5)(2d +3n— 5) pRe— ¢3aa
+q(p—1¢3w)l'r—zm—n+4 .

Therefore from ii) and iii) using Lemma 1 repeatedly we see that

B=(2)" ([ Lorrerpyarar

+{27'Q2a+2n—5)2a+3n—5)+C.ar(r,v ks)+C, 72}
. SS vzr—zm—n+2¢3wdxdt

rs )1/2 rOCs{a2+aro(rovko—1)+r§}] o vm s o
§[<C¢x3 + ca? SS L(v)'r p(t)y*dxdt

from which we have the desired inequality.
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3. The proof of Theorem.

By certain coordinate transformations of R,,, we can reduce the
general operator (1.2) to (2.1) with the conditions i), ii) and iii) (in
particular the boundedness of a,,:). But in order to obtain such a
coordinate transformation, the existence of the derivatives of a;; of order
3 such as a;jix,ix,1x,,, and @;jix,x,: Will be required, if we use the geodesic
differential equation. To avoid this we use the transformations con-
sidered by Cordes®, where the constants 7»,, K,, C in §2 depend only
on the absolute values of functions of (1.4) on a certain small domains
and on the numbers «,, «, in §1. (See p. 386) Then it is not difficult to
show that our theorem is reduced to the following Lemma 3. For from
Lemma 3 we see that under the condition of Theorem # vanishes iden-
tically in a (small) lens-shaped region with axis € and such regions
cover the horizontal component mentioned in Theorem.

Lemma 3. Let L be the operator with the conditions i) ii) iii) in §2
on the domain D= {(t, x)|t€[—¢& 1+€], |xI<R}. If u(€CAD)NC¥D))
satisfies conditions (1.5) and (1.6) with respect to €=[—¢&, 1+&]x {0},

then u vanishes identically in the small domain {(t, x)|t€ [%, %],
x| <r,< R} for a sufficiently small r,.

Proof. Let p(r) and o(f) be the smooth functions such that p(r)=1
for any re[O, -43—], =0 for rE[%, oo] and|p()| <1 for any =0, and
such that |o(¢)—o ()| <bc(¢) for £€[0, 1] and for a sufficiently small $,
where o,(#) is the function such that

a(t) = K3't for tel0, K,7,],
=7, for tel[K,ry, 1—K,7,],
= K3'(1—-1%) for te[l1-K,7,, 1].
Now let wv=u(t, x)-p(r-o(¢)"). Then from (1.5) and (1.6) with
C=[—¢ 1+&]x {0}, we see that v € & Therefore from Lemma 2 we have

ac ([ tlor+ o3 rtemgmarar

Dk, r,
< SS L) r "o dxdt
Dry ro
< Sg T(w)r=2"+ o g df + SS Lyr =" gpwdrdt.

Dxg, ro/2 Dxy, rg-Daxcy, ro/2
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Accordingly from (1.5) we see that for sufficiently large

,\/(n—4) and K7, < % ,

« %<%>“+ gg \u|*dx dt

1x) < ro/3, t€ [2/5, 3/5]

a%“ lul?r2* " p**dxdt

DZKQ, ro/2

(%)”* S S L) dxdt

A

IA

DKo ro-Daxg, ro/2, L1/5, 4/5]

1\ -22- n+4 _ ’
(—) L(v)Ydxdt.
K,

DKo ro-Darg, ro/2, [0, 1/51 U [a/5,1]

Then letting a— oo, we see that u=0 for ({, x); |x|=7,, te[g 2]

Here we remark that the number 5 in the definition @(#), Lemma 1, 2
and 3 is chosen only for the convenience of descriptions, but 7, depends
on this number, therefore we obtain that =0 for a small lens-shaped
region surrounding the curve €. (Q.E.D.).

RemARK. If one is interested only in proving the uniqueness of
solutions for Cauchy problem of (1.1) with non characteristic initial
surface S, we have only to replace first S by a strictly convex surface”
by the use of a smooth transformation with the #-coordinate fixed and
then to apply the fact that the integral inequality of Lemma 2 with the
integral domain D= {(¢, x)| |#| <1, |x|<7,} and with @(f)=1 is valid for
any o with the condition (1.6), vanishing on the boundary of D. I have
learned this method of consideration from Prof. M. Nagumo early in my
investigation.

(Received September 16, 1960)
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Added in proof. We see in proof that in our theorem the conditions
with respect to @iz, in (1.4) can be removed. In fact, let a;;(¢, 0)
=90,;, then without using the coordinate transformation of the unit
sphere, applying only the transformation with respect to the distance
from the origin, we obtain by the same method used above the inequality
(2.6) and therefore the inequality in Lemma 2. To prove (2.6) we first
replace Lz and L®z as follows : setting

o6 X; X;
bo': "t) '*’U/ FANS] £
at]( x) X; axj azy(t x) 7’

L(l)z = {a(a+n_z)z+Nz+r(7z|r)lr+r(ba-zlo-)lr+>"_1(7\’bo-rzlr)\o'} 'p
L%z = Qa+n—2)(rz),+b,215)p—q-7°2 ,
and then calculate as above replacing (rz,,) in L®z(A,) by (rz,,+bs2,)

and considering the following conditions: for a fixed polar coordinate
system

'ba", |bu|p]§77, |bo-lr|’ 'bo-ulé')’ in Dro.KO'

Finally we remark that for calculations it is convenient to consider the
transformation 7»=e¢ °(s—o0).





