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A nerve growth factor (NGF)-diphtheria toxin conjugate (NGDT) was found to selectively abolish or depress the activity of NGF 
receptor-bearing cholinergic neurons of the basal magnocellular nucleus (BMN). Bilateral cortical injections of NGDT impaired the retention 
of passive avoidance behavior in mice. A memory deficit was also revealed when cortical injections of NGDT were administered after the 
acquisition of a passive avoidance response. Thus, retrograde destruction of BMN cholinergic neurons by the cortical injection of NGDT 
interfered with both learning and memory processes. The animal model outlined here should be useful in analyzing the pathogenesis of 
Alzheimer's disease and the functions of the cholinergic system in the BMN. 

INTRODUCTION 

The selective loss of  acetylcholine from the cerebral  

cortex is one of the best established neurochemical  

findings in Alzhe imer ' s  disease 1'4'17'29, and deplet ion of 

acetylcholine has been used in several a t tempts  to 
produce  animal  models  of this disorder  3,5'11AaAS'23,24,28. 

The most common technique has been to electrically 

produce  a lesion of the basal nucleus of Meyner t ,  which 

is the main source of cholinergic fibers in the cerebral  
cortex 11"14"23. This method ,  however,  has the disadvan- 

tage of also destroying noncholinergic neurons in the 

nucleus and nerve fibers passing through it. A similar 

lack of specificity has been observed when toxic sub- 

stances such as quinolic acid is, kainic acid, and ibotenic 

acid have been used in place of an electrical current.  

Kainic acid or  N-methyl-D-aspart ic acid ( N M D A )  in- 

jected into the cerebral  cortex can destroy cholinergic 

neurons in the basal nucleus 3'6'24 by a mechanism that  has 

been a t t r ibuted to t ransneuronal  re t rograde degene- 

rat ion 25. However ,  changes also occur in non-cholinergic 

neurons in the BMN and extensive degenerat ion devel- 

ops in the cerebral  cortex and probably  in other  areas 

which project  to this region of the brain. Ventricular 

injection of a selective cholinergic neurotoxin,  ethyl- 

choline mustard  aziridinium ion (AF64A) ,  is also unable 

to produce a useful model ,  since this compound  affects 

almost all cholinergic neurons in the central  nervous 

system 28. One way to limit the damage to cholinergic 

neurons in the basal nucleus might be to inject A F 6 4 A  

directly into the basal forebrain,  but the destruct ion of 

non-cholinergic neurons and nerve fibers passing through 

the basal nucleus would still occur and the possibili ty of 

A F 6 4 A  diffusing into o ther  brain regions would exist. 

Accordingly,  we recent ly deve loped  a method  for the 

selective destruct ion of cholinergic neurons  in the basal 

forebrain area  as a new animal  model  of Alzhe imer ' s  

disease 1°,22. The presence of N G F  and its receptors  has 
been demons t ra ted  in the central  nervous system 9"21'23'26 

There  is agreement  that  N G F  receptors  are localized only 

on the basal  forebrain cholinergic neuron group ( C h l -  

4) 8'26, while o ther  cholinergic and non-cholinergic neu- 

rons lack N G F  receptors  in adult  animals.  Recent  

findings have demonst ra t ing  that N G F  receptors  have a 

role in binding,  internalizing and t ransport ing N G F  from 
the nerve terminal  to the soma 16"27. In addit ion,  N G F  

injected exogenously into the cerebral  cortex has been 

shown to be specifically accumulated in the cholinergic 

soma of the basal  forebrain  19"z°. 

Inject ion of an NGF-d iph the r i a  toxin (DT)  conjugate  

Correspondence: S. Shiosaka, Department of Neuroanatomy, Biomedical Research Center, Osaka Univeristy Medical School, 4-3-57 
Nakanoshima, Kitaku, Osaka 530, Japan. 



37 

(NGDT)  into the cerebral cortex of rats has been shown 

to result in a marked ipsilateral reduction of cholinergic 

neurons  in the horizontal limb of the diagonal band and 

BMN. No adverse effects due to this conjugate were 

detected in the cholinergic neurons of other regions of 

the brain or in the catecholaminergic neurons 1°. The 

selectivity of the damage to the cholinergic neurons in the 

basal forebrain suggested that this animal model could be 

very useful in analyzing the pathogenesis of Alzheimer 's  

disease. In the present study, to further establish the 

value of our model of Alzheimer 's  disease, we examined 

passive avoidance learning behavior in mice injected with 

the NGDT-conjugate .  

MATERIALS AND METHODS 

Preparation of NGDT 
Forty pl of 20/~M 2.5S-NGF (Collaborative Res.) were mixed 

with 7/zl of 63 pM diphtheria toxin (59 kDa) in a siliconized plastic 
tube. Following the addition of 40 pl of 1-ethyl-3-(3-L-dimethyl 

aminopropyl) carbodiimide-HC1 (100 mg/ml; Sigma, U.S.A.), the 
mixture was allowed to react for 12 h at room temperature, and then 
dialyzed against 0.02 M phosphate-buffered saline (PBS) for 24 h at 
4 °C. The production of NGDT and contamination by unconjugated 
free toxin were checked by SDS-polyacrylamide gel electrophoresis 
with silver staining and by HPLC. 

Preparation of primary cultured cells 
The basal forebrain of a rat embryo (gestational age: 17-19 days) 

was removed and dissected into small pieces with scissors under 
sterile conditions. The dissected tissue was then digested at 37 °C for 
10 min in a solution of 180 U of papain (Sigma, U.S.A.), 0.02% 
DL-cysteine-HCl, 0.02% bovine serum albumin (Sigma Type V, 
U.S.A.), 0.5% glucose, and 0.1% deoxyribonuclease (Sigma, 
U.S.A.) in PBS (pH 7.4). A precipitate was obtained by centrifu- 
gation at 900 rpm and was washed with Dulbecco's modified Eagle's 
medium (DMEM; Gibco, U.S.A.). The precipitate was resus- 
pended in DMEM containing 10% fetal calf serum (Sigma, U.S.A.) 
and triturated using a fire-polished pipette. Cells were counted using 
a Thoma's hemocytometer and were placed on a Flexiperm Mikro 
12 (Heraus Biotek, F.R.G.) with a poly-D-lysine-(M.W. 30,000- 
70,000; Sigma, U.S.A.) precoated coverglass (1 × 105 cells/well). 
Cultured cells were maintained at 37 °C in DMEM containing 10% 
fetal calf serum and 100 ng/ml NGF with a 95% CO2/5% 02 
atmosphere 7. 

Fig. 1. Immunostaining of cultured neurons using (A) anti-NGF-receptor antiserum, (B) anti-choline acetyltransferase antiserum, (C) 
anti-tyrosine hydroxylase antiserum, and (D) anti-neuron-specific enolase antiserum. 
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Assessment o f  the toxicity of  NGDT Jor cultured cells 
To observe the effect of NGDT on cultured cells, NGDT in PBS 

was added to culture wells at final concentrations of 5, 10, 20, and 
50 ng/ml. DT in PBS was added at concentrations of 3, 6, 12, 30, 
60, 120, and 300 ng/ml to observe the non-selective effect of DT on 
cultured cells. As a control, PBS alone was added to the wells. 

After one week, cultured cells were washed with PBS and fixed 
with 4% paraformaldehyde in 0.1 M phosphate buffer (pH. 7.4) for 
5 h at 4 °C. Cells were then rinsed 3 times in PBS for 1() min each 
time, followed by rinsing in PBS containing 3% bovine serum 
albumin and 0.3% Triton X-100 for 30 min. Immunocytochemical 
analysis was then undertaken for NGF receptors (NGF-R; donated 
by Professor Hatanaka, Osaka University), choline acetyltransfe- 
rase (CHAT; Chemicon), tyrosine hydroxylase (TH; Eugine Tech) 
and neuron specific enolase (NSE) as described elsewhere. 

Cell counts and data analysis 
Cultured cells were observed and photographed under a Nikon 

TMD interference microscope. After immunostaining was carried 
out by an immunofluorescent technique 2 and cells were photo- 
graphed under a Nikon fluorescent microscope, immunofluorescent 
cells were counted and recorded as a percentage with respect to the 
number of immunofluorescent cells of the control (no NGDT 
added). Experiments were performed 5-7 times, the data were 
pooled, and were subjected to analysis by Student's two-tailed t-test. 

Histochemical assessment o f  the selectivity of  NGDT toxicity for 
cholinergic neurons of  the BMN 

Male Wistar rats weighing 150-170 g were used in this study. 
NGDT solution (0.5/A; 0.4/tg//~l) was stereotaxically injected into 
the cerebral cortex on one side as described previously ~°. After 5 
days, the animals were perfused transcardially with 500 ml of a 4% 
paraformaldehyde-phosphate buffer solution under pentobarbital 
anesthesia. The brains were quickly removed and tissue sections 
were subjected to indirect immunofluorescence staining using 
CHAT. Photographs of the medial septal nucleus, the horizontal 
limb of the diagonal band, and the BMN were processed with an 
image analyzer (Argus-100, Hamamatsu Photonics, Japan). Cells 
with a fluorescence intensity above 85 as determined by the 
Argus-100 were designated as 'high intensity' cells, and cells with a 
fluorescence intensity below 85 were designated as 'low intensity' 
cells. The number of high intensity and low intensity cells in each 
section was compared between the NGDT-injected side and the 
PBS-treated (control) side. Data obtained using 11 sections from 3 
rats were pooled and analyzed using Student's two-tailed t-test. 

Passive avoidance learning test 
Animals. Male ddY mice weighing 30 g (Shizuoka Laboratory 

Animal Center, Japan) were housed individually in a temperature- 
controlled room (20-22 °C) with a 12-h light/dark cycle, and were 
allowed free access to food and water. 

Injection o f  NGDT. Under anesthesia, 0.2 /xl of the NGDT 
solution (0.4/~g//~l) was stereotaxically injected bilaterally into the 
frontal and parietal cortex using a Hamilton syringe. Control 
animals were given a similar injection of 0.2/A of saline instead of 
NGDT. 

ChAT immunoreactivity and assessment o f  lesions induced at the 
NGDT injection site. Several animals were taken from each group 
and post-injection changes in the brain were investigated immuno- 
cytochemically. ChAT immunoreactivity was used as a marker for 
cholinergic neurons. 

The NGDT-injected area was immunostained using antisera for 
neuropeptide Y, somatostatin, and substance P to determine 
changes in the interneurons of the cerebral cortex. The brains of 
some of the animals were embedded in paraffin and stained with 
hematoxylin-eosin to determine the histological architecture of the 
injected area. 

Passive avoidance learning test. A one-trial step-through passive 
avoidance task was set. In experiment 1, two groups of 26 mice 
underwent the injection of either saline or NGDT into the cerebral 
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Fig. 2. A: concentration-dependent decrease in the number of NSE 
immunoreactive cells in DT-supplemented culture medium. B: 
decrease of neurons immunoreactive for NGF-R (black bars) and 
ChAT (dotted bars), but not those immunoreactive for NSE (shaded 
bars) and TH (open bars) in NGDT-supplemented culture medium• 
Bars denote the mean + S.D. Significant difference from the 
control: *P < 0.05, **P < 0.01, and ***P < 0.001. 

cortex. Three days after the injections were given, training 
commenced with the mouse being placed in a small illuminated 
chamber (7 x 9 × 14 cm). The guillotine door was immediately 
raised, and when the animal had moved completely into a large dark 
adjoining chamber (14 x 14 × 14 cm), a 3-s AC current (0.5 mA) 
was delivered via the metal grid floor. Immediately following the 
electric shock, the mice returned to the illuminated chamber. 
Animals displaying an initial latency period of more than 120 s 
before re-entering the dark chamber were selected for further 
experimentation. The remaining mice were subjected to repeated 
trials and those still not exceeding the 120 s mark were excluded 
from further involvement in this study. 

Animals were then returned to their home cage and a retention 
test was given 8 days later. Retention latency was measured in a 
manner similar to that described above, except that an electric shock 
was not applied and the guillotine door was always open. Two kinds 
of latency were recorded, according to whether the body from the 
head to the first lumbar level (L1) (upper body latency) or from the 
head to the hind limbs (whole body latency) entered the dark room. 
If the latency period was longer than 300 s, the experiment was 
stopped and a value of 300 s was recorded. In experiment 2, two 
groups of 29 untreated mice were first put through the acquisition 
trials and then immediately treated by an injection of either saline 
or NGDT into the cerebral cortex. Eight days after the operation, 
these animals were subjected to the retention test. 

Data analysis for the passive avoidance learning test. The mean 
latency period (measured in seconds) before animals entered the 
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Fig. 3. Fluorescence photomicrographs showing changes in choline acetyltransferase-immunoreactive neurons in the BMN of NGDT-injected 
(A) and control (B) mice. Immunoreactive neurons showed weaker fluorescence and were less numerous in the NGDT-injected group. C: 
fluorescence photomicrograph showing somatostatin-immunoreactive neurons in the cerebral cortex. A number of immunoreactive cells were 
found close to the injection site (surrounded by a broken line). (D) Bright-field photomicrograph showing hematoxylin-eosin staining of one 
of the NGDT-injection sites (surrounded by a broken line). Abbreviations: I, injection site; M, basal nucleus of Meynert; V, lateral ventricle. 
Scale bars = 100/zm (A-C) and 300/zm (D). 

dark room during the retention test was compared between the 
NGDT-injected and saline-injected groups (n = 26 for experiment 
1 and n = 29 for experiment 2 in both groups) using the 
Mann-Whitney U-test (two-tailed). Fisher's exact probability test 
was employed for the analysis of latency periods of longer than 
300 s. 

RESULTS 

Selective effect o f  N G D T  on cultured NGF-R and ChAT 

immunoreactive neurons 
Before assessing the effects of  NGDT, the toxicity of 

unconjugated DT for cultured rat forebrain cells was 
determined. Phase contrast photography revealed that 
DT  had no effect on the cultured cells at concentrations 
of  up to 12 ng/ml. However,  at 60 ng/ml there was an 
obvious decrease in cell numbers (data not shown). An  
immunocytochemical  study using NSE antiserum was 

performed to determine the total number  of neuronal 

cells among the cultured forebrain cells (Fig. 1D). Figure 

2A shows the number  of  NSE-immunoreactive cells in 
cultures performed in media with and without DT. Cell 

numbers were not reduced by 12 ng/ml of DT  in the 

culture medium, but were significantly reduced at DT  
concentrations of  60 ng/ml (40% decrease) and 300 ng/ml 

(80% decrease) (Fig. 2A). The non-specific toxic effect 
of DT was obviously reduced by conjugating it with NGF, 

because cell numbers remained unaffected when 5-50 
ng/ml of N G D T  was added to the culture medium (NSE 
immunoreactivity in Fig. 2B). 

The effect of N G D T  on cells immunoreactive to 

NGF-R,  CHAT, TH,  and NSE (a marker  for all neuronal 
cells) was investigated using primary cell cultures and 
immunocytochemistry (Fig. 1). At  N G D T  concentrations 
of  10, 20, and 50 ng/ml, NGF-R-immunoreact ive  cells 
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Fig. 4. Image analysis of ChAT-immunoreactive cells in the basal 
magnocellular nucleus using the Argus-100 image analyzer (A-C). A 
decrease in ChAT-immunoreactive cells was noted on the NGDT- 
injected side in the horizontal limb of the diagonal band (HDB) and 
the basal magnocellular nucleus (BMN), but not in the medial septal 
area (MS) (A). A decrease in the percentage of high-intensity cells (B) 
and an increase in the percentage of low-intensity cells (C) was noted 
in the HDB and BMN, respectively. Bars denote the mean + S.D. 
Significant difference from the control: *P < 0.05 and ***P < 0.001. 

IOO 

~8o 

~_~6o 

c ~ 

':' (" 20 

C NGDT C NGOT 

L1 Hind limbs 

Fig. 5. During retention testing of the control group, a latency of 300 
s or more was seen in 48.3% or 82.8% of the animals depending on 
whether the end of latency was determined by entry into the dark 
chamber as far as LI (the first lumbar level) or the hind limbs. 
NGDT treatment before the behavior acquisition trial caused these 
percentages to decrease (L1, P < 0.05; hind limbs, P = 0.1149). 

were  s igni f icant ly  d e c r e a s e d  by 1 9 % ,  4 4 % ,  a n d  3 6 % ,  

r e spec t ive ly  ( P  < 0.01,  P < 0 .001,  a n d  P < 0 .01) ,  as 

c o m p a r e d  to t he  con t ro l  cu l t u r e  w i t h o u t  N G D T .  CHAT- 

i m m u n o r e a c t i v e  n e u r o n s  r e d u c e d  by  2 5 %  in cu l t u r e s  wi th  

20 ng /ml  of  N G D T  ( P  < 0 .01)  (Fig.  2B) .  T h u s ,  N G D T  

was r e v e a l e d  to inh ib i t  t he  g r o w t h  of  N G F - R -  and  

C h A T - i m m u n o r e a c t i v e  cells f r o m  the  basa l  f o r e b r a i n  a n d  

no t  t ha t  of  T H -  and  N S E - i m m u n o r e a c t i v e  cells. 

Histochemical assessment of the selective toxicity of 
NG D T  after injection into the cerebral cortex 

U n i l a t e r a l  i n j e c t i o n  of  N G D T  in to  the  c e r e b r a l  co r t ex  

r e su l t ed  in a s ign i f ican t  d e c r e a s e  in C h A T  i m m u n o r e a c -  

t ive  n e u r o n s  in the  ips i l a te ra l  B M N  in ra t s  a n d  mice  (Fig. 

3 A , B ) .  H o w e v e r ,  l i t t le  or  no  r e d u c t i o n  o c c u r r e d  in t he  

n u m b e r  of  C h A T - i m m u n o r e a c t i v e  C h l - 2  n e u r o n s  ( sep ta l  

r eg ion  a n d  ver t ica l  l imb  of  t he  d i a g o n a l  b a n d ) ,  wh ich  

p r o j e c t  to the  h i p p o c a m p u s  or  the  o l f ac to ry  b u l b  a n d  the  

occ ip i ta l  co r t ex  ]"'~~. Also ,  n o  d e c r e a s e  was n o t e d  in the  
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Fig. 6. Mean latency periods before entrance into the dark chamber 
during retention testing for control (C) and NGDT-lesioned mice. 
NGDT was injected just after the behavior acquisition trial. The 
bars represent the mean _+ S.E.M. for 26 animals. Retention latency 
in the NGDT-treated mice decreased for both the LI (P < 0.00l) 
and hind limb (P - I).0525) latcncies. 
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Fig. 7. Retention testing of the control group (treatment after 
behavior acquisition) showed a latency of longer than 300 s in 42.3% 
of the animals when entry as far as the L1 level (upper body) was 
used as the criterion for the end of latency and in 65.4% when entry 
as far as the hind limbs (whole body) was employed. These 
percentages were significantly with NGDT after avoidance behavior 
acquisition. 

laterodorsal tegmental cholinergic neurons which project 

to the frontal lobe of the cerebral cortex and display no 

NGF-R  immunoreactivity, in the intrinsic ChAT-immu- 

noreactive cortical neurons which have no NGF-R 

immunoreactivity, and in the intrinsic striatal neurons 1°. 

ChAT-positive cell numbers in the basal forebrain and 

the fluorescence intensity of positive cells were measured 

using an Argus-100 image analyzer. In the horizontal 
limb of the diagonal band and the BMN, a significant 

decrease of  immunoreactive cell numbers was seen for 

both all cells and high-intensity cells (Fig. 4A,B),  while 
the number  of  low-intensity cells in both nuclei was 

significantly increased (Fig. 4C). However,  in the medial 
septal area, there were no changes. 

Figure 3D shows a hematoxylin-eosin-stained section 
of an N G D T  injection site. The cerebral cortex exhibited 

a normal architecture except at the injection site where 
gliosis was found. 

Neuropeptide Y, somatostatin, and substance P im- 

300 
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C NGDT C NGOT 

L1 Hind limbs 
Fig. 8. Mean latency periods before entrance into the dark chamber 
during retention testing for control (C) and NGDT-lesioned mice. 
Injection of NGDT was performed 3 days before the behavior 
acquisition trial. The bars represent mean retention latencies _+ 
S.E.M. for 29 control and 29 NGDT-treated animals. Retention 
latency in the NGDT-treated mice was reduced when either 
penetration into the dark room as far as L1 (P < 0.01) or the hind 
limbs (P < 0.05) was used as the criterion for the end of the latent 
period. 
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munoreactive interneurons showed no decrease in im- 

munoreactivity, even close to the N G D T  injection site 

(Fig. 3C). 

Effect of bilateral NGDT injection on the retention of 
passive avoidance learning behavior 

N G D T  was bilaterally injected into the cerebral cortex 
of mice prior to the acquisition trial (experiment 1) or 

after the acquisition trial (experiment 2). No changes in 

gross behavior were observed in either the control or 

NGDT-trea ted  animals. Two mice were selected from 

both the control and NGDT-t rea ted  groups, and the 

activity of these animals was measured with a spontane- 

ous motor  activity measuring device (Nippon Medical & 

Chemical Instruments, Japan). No changes between the 

control and NGDT-t rea ted  mice were observed (data not 

shown). By the histochemical analysis, the ChAT-posi- 

tive cell number in the basal forebrain of  N G D T  injected 

mice was significantly decreased by 40% (P < 0.01) as 

compared to that of control mice. 

Experiment 1 
NGDT-  and saline-injected mice were habituated to a 

two-chamber test apparatus, so that upon being placed in 

the illuminated compartment  they promptly entered the 

dark compartment.  After  receiving an electric shock in 

the dark, the mice were inhibited from re-entering the 

dark room when subsequently placed in the illuminated 
chamber. 

When entrance of the upper body into the dark was 
used as the criterion (L1 = the first lumbar vertebra in 

Figs. 5-8) for determining the retention latency, 48.3% 

of the control mice did not enter for 300 s or more. With 
entrance of the whole body as the criterion ( 'hind limbs' 

in Figs. 5-8) ,  82.8% of the control mice did not re-enter 

for at least 300 s (Fig. 5). Pre-treatment with N G D T  
resulted in a marked decrease to 17.2% of animals 

displaying a greater than 300-s hesitation to place the 

upper body in the dark room, and a slight decrease to 
65.5% in those waiting for more than 300 s to enter it 
completely (Fig. 5). 

The mean L1 and hind limb latencies (_+ S.E.M.) for 
the retention test in the control group were 231.3 + 

14.4 s and 285.0 _+ 7.9 s (n = 26), respectively. N G D T  
treatment (n = 26) caused a decrease in the latency 

period during the retention test (Fig. 6). This tendency 
was more marked for L1 latency (151.9 +_ 16.9 s) than for 
hind limb latency (256.2 _+ 14.5 s). 

Experiment 2 
In this experiment, N G D T  was administered immedi- 

ately after the acquisition trial and retention was tested 
8 days later. The percentage of control animals staying 



42 

OUt of the dark for 300 s or more was 42.3% or 65.4% 

depending on whether  latency was determined for the 

upper  body or  the whole body. The respective values in 

the NGDT- t r ea t ed  group were significantly lower (11.5 

and 38.5%) (Fig. 7). 

As shown in Fig. 8, N G D T  treatment  immediate ly  

after the acquisit ion trial resulted in a shortening of both 

latencies, and part icular ly of the L1 latency. The mean 

L1 and hind limb latencies for the control  group were 

179.2 + 22.7 s and 252.3 + 15.3 s (n = 29), respectively,  

while in the NGDT- t r ea t ed  group respective values were 

105.0 + 20.7 s and 192.1 + 19.8 s (n = 29) (Fig. 8). 

DISCUSSION 

Quant i ta t ive  analysis using pr imary cell cultures clearly 

demons t ra ted  that N G F - R -  and ChAT-immunoreac t ive  

neurons were selectively affected by NGDT.  In addit ion,  

free DT (if present) was shown to have little or no toxicity 

at a concentration of less than 12 ng/ml. Histochemical 

studies showed a decrease in the number and intensity of 

ChAT-immunoreactive cells in the horizontal limb of the 

diagonal band and the BMN following N G D T  injection. 

Thus, both the quantitative analysis of cell cultures and the 

histochemical study showed that NGF-R-  and CHAT- 

containing neurons of the BMN could be selectively 

affected by N G D T  injection into their terminal field. 

In comparison with animals given a saline operat ion,  

N G D T - t r e a t e d  animals had a shorter  re tent ion latency. 

Thus, in the N G D T - p r e t r e a t e d  mice, the retent ion of 

passive avoidance behavior  was impaired,  a result con- 

sistent with many previous studies,  suggesting that the 

cholinergic neuron system extending from the basal 

forebrain area  to the cortex is closely involved with 
learning and memory  ml ' l s .  

It was also found that mice injected with N G D T  just 

after the acquisit ion trial exhibi ted a shorter  re tent ion 

latency per iod than did control  animals. This finding 

suggests that destruct ion of  the cholinergic neuron system 

in the basal forebrain area  was accompanied by impaired 

memory  or impaired retent ion of previously learned 

behavior  pat terns.  
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