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Potential Theory and its Applications, J.

By Zenjiro KURAMOCHI

Preface
The Riemann surface deviced as an instrument to study multiform

functions of a complex variable in the z-plane, since it was defined
strictly, has been one of the main subject in the study of function
theory. The structure of the abstract Riemann surface has been
approached chiefly from two standpoints, i.e. the topological and the
metrical. But the latter is more complicated and it follows from this
that the Riemann surface can be classified as zero or positive-boundary
Riemann surface and so on.

From the theory of automorphic function, it is well known that
there exists a one-valued meromorphic function on any given Riemann
surface. It is quite natural to generalize the theorems obtained in the
case when the domain of the function is the z-plane on an abstract
Riemann surface.

In Chapter I, we discuss the topology of an abstract Riemann surface
as done by Stoilow1)3 and the conformal mapping of the Riemann
surface onto the unit-circle. In Chapter II, we study the behaviour of
a harmonic function or meromorphic function in the neighbourhood of
ideal boundary points of harmonic measure zero. Chapter III is
concerned with Green function, especially, with Green function with its
pole at an ideal boundary point. In Chapter VI the potential theory on
the Riemann surface" is discussed. The theorem of G. C. Evans in
the potential theory is the most useful in the theory of the function of
the z-plane. We generalize this theorem for an abstract Riemann surface
under certain hypothesis, which means that the ideal boundary point is
simple in a sense. The remainder of this paper is concerned with
applications of G. C. Evans' theorem to the theory of function.

Chapter I.

Abstract Rieman,n surface.
1. Riemann surface. When a two-dimensional and orientable

Hausdorff space satisfies the following conditions, it will be called a

1) The number indicates the reference at the end of this paper.
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Riemann surface F.
1° F is covered by at most, enumerable number of discs Kv , which

is mapped conformally and in a one-to-one manner on a circle of the
z-plane by means of a local parameter.

2° When two discs Kμ, and Kv have the common part which is cut
from Kμ, and Kv by analytic curves aμ, av, ending in two intersection
points of peripheries of Kμ and Kv, these two part can be mapped
conformally and directly each other.

3° For any point of Kμ there is another disc Kv containing the point
and between them correlating relation of 2° is defined.

4° Any disc has common points with only finite number of neigh-
bourhood discs.

5° Any two discs of F can be connected through a chain of a finite
number of discs with the correlating of 2°.

Whenever any set of an infinite sequence of points in F has at least
a limit point, then F is called a compact surface or closed surface, in
other words if and only if F is covered by a finite number of discs.

2. Exhausion. Ft is a part of Riemann surface composed of a finite
number of discs such that

.. Km Fi = F.

The sequence of Ft is an exhaustion. The boundary of Fo will be denoted
by Γo, and Ft has a boundary composed of a finite number of closed
analytic curves denoted by][]Γ^=Γ\

5

We indicate the bounded harmonic function with the boundary
values 1 on Γι and 0 on Γo defined in Ft — F0, by ω^x, Ft — F0) x G F,— Fo.
This ωt is monotonously decreasing with i.

If lim ωt(xy Fi — F0) = 0, then F is called a zero-boundary Riemann
surface, otherwise F is called a positive-boundary, this classification does
not depend on the choice of the exhaustion of F.

More generally, let Fr be a part of Riemann surface with a relative
boundary Γ and Ft(i = 1. 2 ... )be an exhaustion of Fr. Let us denote
by ωi(x, Fi9 Γ) the bounded harmonic function in Ft with the boundary
values 1 on Yi and 0 on Γ. If lim ω<(a?, Fi, Γ) = 0, we call that Fr has
a relative zero-boundary.

3. Boundary of Riemman surface. The boundary of Ft is made up of
a finite number of analytic curves Ynι,n2, ...*< : n^n* : ί = 1. 2. ... , which
are closed and have no common point each other. When a curve Γnl9n2,...ni
cuts F completely into two parts, then ΓMl, n2, ...nt will be named a proper
cut. We assume that all of Γwj,«q,...«£ are proper cuts,
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Ideal boundary. One of the two parts cut by Ynlin2,...ni t not
containing Fo is denoted by Vni,n2ί...ni9 if Vnlin2,...ni^Vnι,n2....nιni+ι, if
A Vnlyn2,...ni has no common point in F, then we say that the sequence

of Vnlin2i...ni determines an ideal boundary point a, and the sequence is
called a determining sequence of a, and Vnι,n2,...nt are called a system
of neighbourhood of a.

a^ \Vni9 Vniin2, ...\ = \nlf n2, ...}

Two determining sequences Vnlf Vnλin2 ..., and Vnl9 Vm,n2y... are equi-
valent if and only if there exists for any TV, ...«<, a certain Vnlt...nj
such as Vnl9...nicZVn1,...nj, and vice versa.

We say that two equivalent sequences determine the same ideal
boundary point. In the sequel we use for simplicity Vm,n2t...ni defined
by the exhaustion as the neighbourhood system Vni,... nt....

Let aλ. α2. ... ai £ F and a = (nlf n2,...) be a sequence of points of
F and an ideal boundary point. If for any given i there is a number
j0 such that

then we say that the sequence of α; converges to a. It is clear that
any subsequence of α; converges also to a.

- We say that all boundary points constitute a boundary point set R.
From the definition, if infinitely many points α/ of ί7 have no limit point in
F9 then α/ converges to #, and there exists at least a point α = (%!, w2,...)
and the subsequence such as lim ani = a.

i

Limit of the ideal boundary points: Let

P = l, 2, 3 . . .
tf = (Vnlt Vnιn2, ...)

be ideal boundary points, if for any given i, there exist po(i) such as
for p^>Po(i) there holds V% ^ ̂ nCiVnlt ...m where s depends on p;
s = s(p), then we say that lim ap = a.

3. Theorem 1. In this topology the boundary set R is compact ami
closed.

Proof. Let «i = 0 ^ . «2.

ι V1 Ί
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be an infinite number of ideal boundary points. Since there is only a

finite number of Vnι : 0 <L nλ <: n\, then there exists at least one F*

such as F ^ contains an infinite subsequence [cή\ of \a}\. and there exists

at least one V* W2 such as F* n contains an infinite subsequence {a)}

of \a}}. Thus we have

€ Vt

Put α* — CF* F*
r u t tt — i K f

It is clear that lim a\ = α* and <x*£R.

4. Let F be a relative zero-boundary Riemann surface with a relative
boundary Γ, and ΓΛl,«2f... Λ< be the proper cuts defined in 3. Gt = F« l f », ...«,
— F« l f... W ί + 1 is a tube with oan boundary curve Γ«lf... «< e Γ, and fc boun-
dary curves ΓΛ l f ...«<+1;l<;fc<^oo contained in Γ έ + 1 and has genus gt.

In Gi we make the conjugate loopcuts γ 2 , γ 2 ^ ••• Ίu 72

/ corresponding
to g( and γ<β Let us cut Gt along γ 2 , γ 2/... γ/ and γz, then Gt becomes
a /c+2 multiply connected domain G/, and take a point p on γ/ and
QJ ί = 1.2 ... k on ΓΛ l f... nj and connect ĝ  and p with an analytic curve

QJP for every /. After * cutting G/ along them, G/ becomes a simply
connected domain G/. In all Gi9 if we construct a system of cuts, then

F becomes a simply connected domain denoted by F and FW l,... nt becomes

a simply connected domain Vni,...m and further every boundary curve

Vn...Πi has only one intersecting point with the system of cuts.

We map F on to the unit-circle, making use of the universal covering
surface F™ of F. In this mapping the boundary Γ of F corresponds on
the system of arcs with linear measure 2π on the periphery \z\ = 1, and
the ideal boundary point set will be transformed to the linear measure
zero set on \z\ = 1, and F is mapped on to a system of equivalent funda-
mental domains. Let us take one of them which is the fundamental
domain containing z — z0, enclosed by the images of loopcuts and the
images of cuts and denote it by Do. In this mapping Γni,...m is trans-
formed to the curve connecting two equivalent points. In the sequel we
use the same notation with under-line for the image in | z | < l mapped
conformally of the figure (point, curve, domain) in F.

In the fundamental domain, ideal boundary point a corresponds in
one-to-one manner on the set R on \z\ = 1.

1) The image of curve I passing alf a2... lim at = <xf at 6 Vnly... m
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— Vm^.n^F does 7wt oscillate, otherwise, the image of I converges on
an arc A of \z\ = 1, then there is an arc Γ* of the image of Γ in A,
then there must be another fundamental domain D* with Γ*f this contra-
dicts that aL are contained in the former fundamental domain Do. Thus I
converges to a certain point on \z\ = 1. Γ«lt...Λ< cuts the fundamental
domain into two parts, one of them containing z = z0 and the other
corresponds to Vnlt...nt of a.

2) // a1Φa2, then ^ Φ ^ . Since <x1Φ<x2, there is a pair of
neighbourhoods such as VXa1)f\VJ{a2) = 0 on F, then there is a Jordan
curve aλa2 connecting <xλ and a2 on the boundary of Do, accordingly
there is at least an analytic curve to which a substitution s corresponds,
which must put Γ of Do on an image which is one of equivalent system
of Γ on \z\ = 1 between α^ and a2, this follows that a^^a Therefore
the set of ideal boundary points of Riemann surface corresponds in one-
to-one manner on the set R on the periphery of \z\ = 1 of a certain
fundamental domain.

We denote by C the periphery |z| = l, and by Do, the closure of Do

then.

Theorem 2. R = D0[\C-Y.

Proof. RCpo[\C—Y is clear, if D0f\C-Y3p9 then there exists a

sequence of aL such as lim a = p at € Do in the z-plane topology. In
i i

thinking the image at of at in F, which has no limit point in F, then

they have a subsequence ani such as lim ani = q£R. Let z(q) = Q, then
QeR, lim ani = Q€R but lim a,nί9 = p = lim at, therefore, we have

t " ~ i i

p = Q, QeR

hence, Do f\C-Y = R

Thus R is closed in the z-plane topology and every point of R is acces-

sible in F, then all boundary of Do are accessible in F9 then all boundary

of Do are accessible and the set of ideal point R is represented homeo-

morphically on Dof\C—T and the system of neighbourhood of a can be

defined on Do. as their image.

R lies on the periphery \z\ = 1, and moreover the number of all

fundamental domains is enumerable, then we have

Corollary. Let F be a relative zero-boundary Riemann surface and

if we map F conformally onto \z\<^l, then the set of image of the ideal

boundary point set is Fσ on \z\ = 1.
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5. Smoothing process.
Theorem 3. (L. Sario.8^)// zero-boundary Riemann surface is divided

into Fo ami other domains Fl9 F2, ... Fn, where Fi[\Fj = O, ίφj, ami
Fo and Ft have common boundary yif and in each Ft a harmmonic
function ut is defined and if

dn

is satisfied, then there exists a uniform harmonic function f except at the
singularity of in in Fι such that

The proof of this theorem is shown in C. R. Paris (1949), p 229.

Chapter II.

6. The Behaviour of the harmonic function and analytic function
in the neighourhood of the harmonic measure zero-boundary.

Theorem 4. (R. Nevanlinnaυ).
Let F be a Riemann surface having the relative boundary Γ and an

ideal boundary set R of harmonic measure zero. Let us denote by
dw = du + idv an uniform differential on F with finite Dirichlet Integral
over F. Then there exists a sequence of curves rγί — ΣΎU >' i = l 2. ...
enclosing R on which

i) lim J \dw\ = lim 6t = 0 .

ii) if u{x) is uniform ami if we denote by FΊi the non compact domain
bounded by yif then

min u(x)<LVίm u(x)^ϊim u(x)<Lmax

iii) if lim \u(x)\<^oo, then Du(x)<^oo.
xeF-u Fγ«

7. Theorem. 5. // lim \u(x)\<^oo αnί uniform, then for the first
xeF

kind of Stoϊlow's ideal boundary point p of R

lim u(x)
x*->p

exists, but if p is of the second kind, then lim u(x) does not necessarily
exist.

Proof. If p is of the first kind,3) then there exists a neighbourhood

V(p) of p which is planer, therefore every yf which is the part of γ< of
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theorem 4 contained in V(p) is made of only a proper cut £O2>
If we denote by Vι(p) the neighbourhoad of p cut by j t and contained

in V(p), then
min u(x) <; Km u(x) <ί lim w(#) ;> max u(x)

but |max u{x)—min w_O)| <1 I |dw| = εt : lim £< = 0
xt n χ^ϊi \

hence, lim u(x) exists.
x~->P

8. Example 1.

/„ is defined afterward : In — real.
The Riemann surface F* of y spread on the x-plane, composed of

two sheets and have first order branch points an = 2n, bn = 2n-hln on
the real axis, and x = oo is the only singular point of the second kind
ideal boundary point. We connect cross-wise the upper and lower sheets
at the intervals Sn = [bn αw] .

We denote by F the Riemann surface obtained after cutting two

discs \x\ < 1, from F*, then F has two boundaries, C19 C2 on \x\ = 1, and

zero boundary, Denoting by U(x) the bounded harmonic function with

the boundary values 1 on C< and O on C2. F has Green function (next

chapter) denoted by g(x9 x\), g(x, xl), where xl, i — 1, 0 means upper

and lower sheets, and XJ means the projection of x, then by Green's formula

if x e Sn , then

- j ξγ% g(x, xl) ds = ̂  I, xl) ds = ^ I V-gfr, xfids = Ό(x$ = U{x).
Ci

Km U(xl) = 1ST U{xl).

is harmonic bounded in the x-plane out of C^ and Σ Sw with the
22

boundary value 1 on Clf ϋ(x) on 2 S W , t7(a?) is bounded harmonic in the
lane out of C2 and with the boundary v

~ 1 2

Z7(α?) = U{x) — U(x) is bounded harmonic

« with the boundary value 1 on C, 0 on

x-plane out of C2 and with the boundary value 0 on Cΐf U(x) on Σ Sn .
~ 1 2

Z7(α?) = U{x) — U(x) is bounded harmonic in the x-plane except C and
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By z = —, we inverse, then ZJ(x) = U(z), U(z) is harmonich bounded

in \z\ ^ 1.
U(z) = 1: \z\ = l

where ~ = — = dn, £- = bή 5 ί = [α^ 6ίi] where 6« is defined by
an

the next equation, where C is a constant such as

b'n\/i—a 'n+a'ά

Let V{z) = l-U{z)t then

We shall show that Jim 7(0)<Ί

We denote by ωn(z) the harmonic function, 0^ω»(z)<ίl, in

— ΣS» such that

then F(z) ̂  Σα)Λ(z),

ωa{z) = 0 z e (7

ω,,(z) = 1 z € Sή ,

4O). We map | z | < l on to | w | < l by

where pw =

then -u,

α ; - * α . : 0 < α , =
&

^ 0 , = 0 , _ - 1 -a'Λ bί

S'n=[b'n o»] -* Tn = \_βn an~] on real axis. Denoting by ωn (iv) the function

which is harmonic and bounded in |w|<]l. 0<,ωn <LV, ωH(w)=l :we

on the circle of which diameter is \an\ = \β»\, and ωn(w) = 0 \w\ = 1,

then ωn{w) = | ^ g H
\™>n

on(w\ then Cίgή) = ωw(0')^G

Σω»(θ')>Σ«»(θ)>τ7(θ),
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but ωn(p0 = c ( ! ) n : C < J , therefore F(O)<2C<1, finally l-F(O)

= fr(co)>0, then lim \U(x)-U(x)\>0. Accordingly U(x) has no limit

when x converges to oo on F—^Sn. In reality x = oo is irregular for
Dirichlet problem,9) and

_, £ , where Kn = ΛJ
l - 3 # w ~ 2 V2

9. Theorem 6. Generalizaion of the identity theorem. Let F be a
Riemann surface with relative boundary Γ and an ideal boundary R of
a relative harmonic measure zero. If f(x) is in F a regular bounded,
ami non constant function, then for every ideal boundary point p€R

1. lim f[x) exists.
x*->p

2. f(x) is continuous in F + R.
3. For every constant C, the number of roots of the equation f(x)

= C in F + R is uniformly bounded.
Proof. Let us denote by front A, int A and A, the boundary,

interior point and the closure of set A.
Lemma 1. If F is the Riemann surface satisfying the conditions of

Theorem 6, then front (f(F)) — f(Γ) is a set of the logarithmic capacity
zero.

Since f(F): x G F is continuous and bounded, then
front /(F) + int f{F) = f(F)CKn = KF-R-T) + KRf\F)+KΓ).

Since f(x) is regular, if p e F, then f(p) e int f(F), therefore,

front KF)Cf(RίΨ) + KnCKF).
Let E = front /(F)-/(Γ) then, Ef\f{F) = 0, ^Λ/( Γ ) = ®> and /(Γ).

is closed.
We suppose that Cap £ f >0, we denote by Em the set of E having

distance larger than -- from /(Γ), then
Ύϊv

therefore there is a certain m0 such as Cap {Em0)^>09 then there is at
least one point w0 of Emo, such as for any small disc K of which is
centre is w0, Cap (Em0f\K)^>0, therefore there exists a closed subset
Em0 of Em havingno common point with the periphery of K and

1
Cap {EmQΓ\K)y{), and dia ϋC<κ—

Hence Eef(F)—f(V), we take a connected piece on K which is
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denoted by F , and hence Cap^^o f\K)^>09 there exists a bounded
w m0

harmonic function such as 0<LU(w)<Ll.
U(w) = 1 we(Emof\K): ϋ(w) = 0 : w eboundary of Kf

To Em0, a part of Riemann surface Fmo coerresponds which have
positive distance from Γ.

Ό(x) = Ό(f-\w)) U(x) is'harmonic in FMo.
We denote by ωn(x) the harmonic function such as 0^ωn(a?)<Il:

ωn(x) = 0: x € Γ, ω(a?) = 1: x € Γw boundary of i^w of exhaustion, then
ωw(a;)^C/(α;). But R is harmonic measure zero set therefore

0 = lim ωn0&) l̂7(a?) = 0, this is absurd.

10. Corollary. Let us denote by v(R) the non compact domain con-
taίnίng R in its interior and bounded by the illative boundary γ 7
= Σfyί>" ^n the w-plane denote by Z?γ the maximal compact domain
bounded by /(γ), Then

front f(v)-f(y)=.E9CDΎ.

We suppose that EΌ has at least one point in the exterior of Dr,
it will be denoted by p, as /(γ) is closed,

dist. (p. /(7))2>S0>0.

On the other hand there is at least an inner point q of + /(T7) such

as dist \p. g | < - j •

We can take a circular neighbourhood v*(q) of which the radius

<^ -± and composed of only inner point of f(y), let us take a non compact

and simply connected domain G containing the point at infinity and v*(q)

and denote its boundary by 33 satisfying dist. (SB. = 8
Hence f(v) is compact, <χ> is exterior point of f{v), dimension of

(Gf\f(y)) = 2, but (GAfront (/(?;))) = front {Gf\f(v)).

dim front (G^/(v))-») = 1, #» 3 (front (G f\f(y))-ϊ&)

but Cap £7* = 0.
This is a contradiction.
Proof of 1. DΊ is a connected set, because γ is connected by a curve

in v{K). Take a point peR, then there exists a sequence of curves yn

of theorem 4 on which

lim \dw\ — o

We denote by Fn(p) the neighbourhood of p determined by yn and
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denote its boundary by r.
If xe Vn+1(p)—R, then f{x) is regular, and Dvn is a connected set

We have KVn+1(p)-R)+Evn+iCDvn .

1 Γι . 6 i.

diameter Dvn ^ -Ξ- W^ = -s? * l i m βn = 0 .

/(A ^0*0) C A ^ » *s o n l y o n e P o i n t - Finally lim f{x) exists. It is clear

that /(#) is continuous in F + R.
11. Proof of 2. Take % points xlf x2... #» in the neighbourhood of

Γ and denote by Kt the disc of which the centre is x% and Kt contains
ff<-i» #*+i i n its interior

We connect xi and a?<+1 by a curve so that the image of the curve
in the w-plane may be a straight line *l< + 1, all straight lines λl29 2l3...
nix make up a polygon denoted by π. Because, let Kt be a disc with
centre p in F denote by K\ the maximal disc contained in f{K)9 of which
the centre is f(jp). Then we can connect p and the other point of f-\Kr

t)
with a curve of which the image in the w-plane is a straight line.

Let us denote by Π its outer polygon made of the outer side of π9

and the neighbourhood of R determined by f~\π) is denoted by VπF

or FπF;τrF = f~\π).
12. Lemma 2. Π f\ f(R f\ FπF) = 0 .
Suppose Hf\f{R f\FπF)3 p, we take a closed curves πF in the neigh-

bourhood of πF. As FπF—Vπ'F is compact, therefore f~\p) is finite
number of points xΎ ••• xs in JFVp — Vπ̂  , and take v^Xi) of neighbourhood
in F-V*'F, so that j/(α;)-ί>|^δo>O, if a? 6 inte ( ^ ~ F ^ ) - 2 ^ ( ^ ) .
In F we construct a non compact domain containing R bounded by
relative boundary γ* contained in F7ιF~F7ΐ^~^vi(xi) and denote by Π*
the maximal domain bounded by /(γ*) in the w-plane, then dist (jp /(γ*))
^ δ0 JΓ^> Π*, then p e exterior of Π*, but peVπF, this is a contradiction
from corollary of Lemma 1.

We denote by n(w) the number of times when w is convered by f{x) :
x eFπF and by Dn the set ^ [ ^ ^ ί ; ) ^ ^ ] , this is clearly open relative to π.

Lemma 3. If En = boundary of (Dn—(π)) is not zero : n<^oo,

then Cap En = 0..

Proof. Suppose that Cap En Φ 0, then the boundary En is the set
of point which is covered by f(FπF) at most n — \ times.

We denote by St the set which is covered i times by f(FπF) exactly

and denote by Sίm the set of St which has a distance larger than--from π.
m
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therefore there exists at leasts one point p0, and a number m0 and i0

such as Cap{SiQmof\K)y>O for any small disc K of which the center is

p0, and the closed subset Sicm0 of SιOf»o such as (Si0mQf\Boundary of

Ar) = 0, and Cap (S, o«o Λ # ) > °

Then there exist discs XΊ, K2,... ULm0 on p, and there is another disc

Ko which does not cover a positive capacity set Siomof\K = far from TΓ.

Therefore there exists a non constant bounded harmonic function

such as

U(w) = 0 : w e boundary of K .

This is a contradiction (see Lemma 1).

Since from Lemma, f(Rf\Fπ)P\H = 0, and f(R) is closed accordingly

dist (/(#), Π ) > £ 0 > 0 . Take a point q on Π, and denote by V&^q) a

circular neighbourhood of q of which radius is -£ .

If (inte Uf\V*o(q)—R)3w, then n(w)<^oo.
2

Proof. Suppose n{w0) = cx>, then there exists a sequenc of xl9 x2...,
such as lim ^ e i ί /(a;) = w0» consequently we have, / ( # ) 3 ^ 0 =

)eyδo(<2θ. This is absurd.
2

13. Since Dn is compact, therefore the outer boundary Un of Dn is
a continuum contained in π. Assuming that Un 3 q, we take a point p
in the neighbourhood of q such as V(q) 3 p e f(R), then %(p) = %0<^oo,
accordingly Dn0+1 does not exist in the neighbourhood of q, because if
it were not so, q € Dn0+1. As q e f(R), if we deform πF into πFr in adding
a small disc of which the centre is f'\q)9 so that #6int IT. Thus
rate) = n(p) = n0.

The complement of π in the w-plane is composed of a non compact
domain and a finite number of compact domains which have no common
point and their boundaries are made of π, we denote by 5)(p) the compact
domain of the complement of π devided by π and containing p, the
boundary of 2)(p) is a subset of ?r. 7Vie?& <£)(p)f\DnQ+ι = 0. Take another
compact domain next to ®(p), and denote by S the common boundary
of 35(p) and ?r, and take a point g on S. Then for any point t in the
neighbourhood v(q) such as t£v(q)f\®(p), we deform F π a little into
F κf so that g and t may be contained in ®r(p) where ©' is ®(p)
corresponding to TΓ', then w'(p) = ^r(g), where %' means the times when
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p, and q are covered by /(ίV), consequently the difference of v{q) and
n(p) by f{πF) is at most m which is the number of times when q is
covered by π.

then

But the number of domains is finite, therefore n(to)<fM for every w e Fτ..
In reality n(w) is equal to the order of w with respect to π.
Let f(R)3p, then p may be the image of only M different ideal

boundary points.
Proof. Suppose that p = fiQL) = /(Q 2)... KQM+i).... : Qt£R.

Take neighbourhoods v(Qt) of Qί9 each of them has no common

point and their boundaries may be denoted by j i , and by DΊί the maximal

campact domain bounded by /(γj, then the set of DΊi which is not

covered by f(v(QJ) is capacity zero set.

D is covered at least M + X times
except at most capacity zero set of D. This is a contradiction.

Consequently the number of roots of the equation fix) = C is <; 2M

in Fπ*
14 Corollary.

i 1/0*01 <C + °°,%£F + R, if the number of root of f(χ) = C is infinitely
many, then fix) = C.

ii. Let f{x) be non constant analytic function in F and the number
of roots is infinite for at least a value, then fix) is not boused and
further fix): x 6 F covers almost all point of the w-plane except at most
a non dense set for ano small neighbourhood V(p) of p£Ri

15. Definition. Generalized local parameter of which the center is
an ideal point p. If \fix)\ <C°° : x€F + R, then-we can take a small neigh-
bourhood vip) oίp so that f~ιfip) may have only p in v(p), then f(v(p))
covers at most finitely many times and fivip)) is compact then we call
vip) a generalized disc of p and fix) a generalized local parameter.

Chapter III.

16. Green function on the relative zero-boundary Riemann surface
F and its generalization.

Let p be an inner point of F which has harmonic measure zero set
ideal boundary R and has relative boundary Γ.

Definition. If G{x, p) is harmonic positive in F except only p where
Gix, p) has logarithmic singularity and zero on Γ and its Dirichlet
integral on F — Vip) is finite, then Gix,p) is called the Green function
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of F with pole at p.
Theorem 7.7) // we denote by x = m(z) the mapping function of

F onto \z\ <^ 1, then,

Γ

G(x, p) = Σg{z, s(p)): x = m{z\

where the summation is taken over all the substitutions of Fuchsoid
group, and g{z, s{p)) is the Green function of \z\ <^ 1 with pole at s(p).

Proof. From mes Σ SIΠ = 2^,

i) Σ 9tz> KP)) is harmonic in \z\ < 1 except at Σ s^p) hence
ί

i d n n f 3

g^ Σ gt*> slp))ds^ = 2 J — g{z9 s{p))ds =

n |*| = i

Σ SίCO
i

m{Γ) = Γ
ii) Let us denote by z0 a certain point in the circle |z|<[l, except

Σsi(P)f then there exists at least a fundamental domain Z)o which has
z0 at its inner point Do or an its boundary.

Case 1. z0 is in the interior of a fundamental domain denoted by
DOi which has the pole p and denote by a and β the two ends of Γo,
corresponding to Do, and connect with curve C , z and α and with C2, «
and s(α), where a and s(c&) are equivalent and situated on the two arcs
of Do which are nearest to Γo, so that the simply connected subdomain
of Do, bounded by, aa, Cl9 C2 and s(a)β does not contain p. Then
g(z, p) + (g(z, s(p)) is invariant with respect to the substitution s. In

n

denoting by Gn the sum Y^g{z, sJip))+g(z, ss^p)), this is also invariant
i • n

with respect to s and is harmonic in the circle except the poles Σ (.S£P)
n i

+ ssι(p)). All terms of this series are positive and zero on Σ^(Γ)-f ss*(Γ).
i

m(C1 + C2) in F enclose with Γ a compact domain FDo, and indicate by
ωθ) the harmonic function on FDo having the boundary values 1 at
miC^ + mifiz) and 0 on Γ, ω{x) = ω{m{z)) = ω(z) is automorphic in
\z\ <C 1> therefore by Harnack's theorem, there exists a constant q
depending continuously on C1 + C2 such as

— Gn(zo> P) ^Gn(z, p) <LqGn(z0, p): zfz0eJ1 + C2i

Gn(z, p) - G n «*) , p). ~ Gn{z)ds = | - Gn{s{z))ds{s).
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^— ω(z)ds = _—

By Green's formula we have

where integration is taken on ΓQ + C I + C ^

but

&d8 = 0, { CO^dS^O,

on the other hand

then we have

the last inequality holds for every n, therefore Σ#(z, S;(α)) is absolutely
•4

bounded except Σ s ί(P)+P

Case 2. z0 6 boundary of a certain fundamental domain Do, let us
denote by δ0 the side containing z0, then there exists at least a funda-
mental domain Dλ which has δ0 in common with Do, then we do in the
same way in D0-hDλ as in Do, in taking Do + D1 in the place of Do.

Therefore ^Σg{z9s(j>y) is convergent in \z\<^ 1 except at
s

iii) G{z, p) = Σ g(.z> s(p)) is evidently automorphic

1 = 0, if z

If « 6 Σ s ( Γ ) ^ t h e n t h e r e exists at least a s°(Γ) 9 z, and Z>° 3 s°(Γ) therefore
Gn(.z>V) is regular in Do except only so(p), and clearly

Gn(z, p) = 0 if « e s°(Γ), so 0 = lim Gn(^, p) = G(J?, p) .
n

Finally we have that G(%, p) = G{m(z), p) is harmonic positive in F and
0 on Γ, and has logarithmic pole at p.

17. Lemma ϊ. Lei w(#) be harmonic and positive on the iton
compact part F of zero-boundary Riemann surface with a relative
boundary Γ.
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| ^ d s = 0, then DF{u)< + oo.

Proof. If DF{u) = oo, by NevanJinna's theorem ^ is not bound in
F, therefore there exists a sequence of points plf p2 ..., lim ?>< = ideal
boundary point such as u(j>f) = Mt lim Mt = oo.

Take Mo > max u{z): x e Γ, and trace a niveau curve CMO on which
w(a?) = Λf0, Cfî f0 devides F into two parts CM0 and C[MQ in which w(α?)
is igilί0 respectively.

Proof. Case 1. Every C^. encloses the compact part with Γ and
does not intersect with Γ, hence

Cχt

then — = 0 on CM »
dn ι

lim Dr* (u)=\u~—ds— \ u^—ds
t z.Mi J dn J dn

Case 2. Γ and CML enclose non compact part.

Let be y19 γ2, ... a sequence of curves enclosing the ideal boundary

point and denote by y) the part of y3 lying in CM^ then it is evident

that Γ + τJ-fCflft enclose the compact part Cj

Mί of CM%

Denoting ωj the harmonic function in (VM. having the boundary

values 0 and Y + CMI and 1 on y), and denote by ωj being harmonic

and in F—V{yi), having the boundary values 0 on Γ and 1 on y3, we see

directly 0 < ω* < ωj for every i, /.
Since F has zero-boundary,

0 = lim ωό ;> lim ώ* = 0 .

Denote by u) the harmonic function in Cj

M. such as

M) = U on

u) = Mi on 7j»

0 ^ wj—^ ^ ω îkίi, for every i,

therefore ŵ  converges uniformly in C f̂. lim u) = u, but from

dn
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Γ Γ

this inequality holds for every Mi9 then

-foo.
an

r

18. Lemma 2. Lei C be a proper cut dividing F into two parts
—- ds = 0 .
cm

c

Proof. Let Cr be the image in the fundamental domain in \z\ <^ 1
and is ending in two points a and b and s(a) = b whene s is a substitu-
tion.

Case 1. s is parabolic.

ends in the fixed point of s on |z| = l

making a closed curve C not enclosing 2) by hypothesis, then we have

where the summation on the left is over all substitution and the right
is all over except s. The right side is the sum of closed curves not
containing (p) in their interior, finally

Case 2. s is hyperbolic.

is a Jordan curve ending in the two fixed points a and 6. Cf is trans-

formed by other substitution into s(Cf), every s(C') has on its outerside

the image of Γ, but mes Σ < Γ ) = 2?r, therefore Σ sCC) = Σ S(C') are

sum of closed Jordan curves not containing p in their interiors, then we

have as in the case 1:

From Lemma 1 and 2

19.1. Green function with its pole on an ideal boundary point.

Definition. Generalized module. Let y{ be a proper cut, we define
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a harmonic function cα>, in the surface bounded by γt, γs and Γ and has
the boundary value 0 on Γ, and 1 on 7*+7s, when 7S converges to ideal
boundary set R, ^s is decreasing monotonously, therefore *ωs converges
to {ω being non constant harmonic function

5 = 00

r

Then oo > - ^ ώs *> 0 is called generalized module of the surface F

bounded by Γ and yif

ϊi Tί Γ

and if Ft^Ft/ then ω^ω*/, in putting N= - — ^ — , we have iV̂  <" Nt/.

Definition. Regular ideal boundary point. From Harnack's theorem,
for positive harmonic function u(x), there exists a constant q depending
on the curve C in the defining domain such that

— u(x0) <L u{x) <L qu (a?0) : if x, x0 e C .

Let us denote q by q(C)
Jf for an ideal boundary point a, there exists a sequence yt of

proper cuts enclosing a, on which every positive and finite except a
harmonic function must satisfy 4(7*) <ί q, then α: is named a regular
ideal boundary point.

19.2. Theorem 7r. // α: is an ideal boundary point, then we can
define a Green function G{x, a), and further if a is a regular point,
then G{x, a) is uniquely determined.

Proof. Take a sequence of point pt in F9 such as p% e Vt(ct)—Vi+λ(a):
lim pt = a and sequence of Green function corresponding to pt

C(x9 pj, G(x, p2)

So long as pt is contained in F

Therefore

[ψ-ds = 2π
J an
r

and from Lemma 2, for every proper cut 7 of which the domain bounded
does not contain p,
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If p £ F(γ) and p e 2 ^(%), ^ e n G(a?, p) is regular harmonic in the
domain bounded by Γ+γ and Σγ*, accordingly

Finally
Γ3G 7 9

\ ^r— as = 2τr .
J 3w
y

As G(#, p) I> 0, there exists g for such that

G(a?0, p) ^ G(α;, p) ^ qG (a?Of p) α?, α:0 G γ ,

and if we denote by Fy the non compact domain not containing p
bounded by γ, then

ίϋr*-0-
accordingly

Then __
max G(x, p)^ ϊim G(x, p) x e Fy ,

after all
G(x, p,) ^ M/o : ^ F - y(γ / o ), V(γ«) 9 P ί : i ^ i0.

We can extract a sequence of G(x, p.L) which converges uniformly
in every compact domain contained in F,

lim G(x, p^ = G(x9 a).

Then the limit function G(x, a) is clearly non constant and f ^^-^Qds
J on

= f ZGt&a)ds = 2 b e c a u s e H m3G(x,P i) = 3 E m ^ γ ;
J dn i dn dn t
y

We call G(x9 a) a Green function also.
20. The behaviour of G(x, a) in the neighbourhood S of ideal

boundary points.
Case 1. When x converges in the other boundary point <xr, there

exists a number j 0 a proper cut jj j^>j0, such that the non compact
part FΎj of F cut by yj do not contain ^ : i > i 0 , hence by Lemma 1,
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[pίds = 0, then
J on
Γ max G(x, a) ;> lim G(x, a).

Case 2. We see directly that G{x> a) is not bounded in V{a)9 if a is
a regular ideal point there exist a sequence of pt such as

We make the curve C^. on which G(a?, α) = Mi9 these curves are
composed of a finite number of closed curves or open curves tending to
a and each of them divides F into two parts in which G(x9 a)^Mt

respectively. But in this case CMt does not tend to the ideal point a,
if it were so then there exists a certain γ such as γ intersects the
curve CMI where

Mi < — Ny2π : lim Ny = oo .

This is a contradiction.
Remark. When p e F, G(x, p) is expressed in a uniformly convergent

series of Green functions g(z, s{p)): |a?| <^ 1. But when p converges to the
ideal boundary set, this loses its meaning, because \s(p)\ -> 1 as p —• R
and all g(z9 s(p)) —• 0, but G(x, p) =ψ= 0, that is, an ideal boundary is
singular point with respect to this series.

21. For the regular boundary point a, there exists a sequence of
7 : on which

Max G(x9 a)
< Π2 γ £ ry

) ^ 9 ' Ύ ί '

If there were two Gλ(x9 a) and G2(%9 CL)9 thςn γ± is non constant* Let

us denote by kt

λ(x, a) — y , τ f L

then, kt is a constant and G1—kiG2^>0 in the domain bounded by Γ
and yi9 because other boundary is harmonic measure zero set, then

From the maximum principle k.t is taken on γ̂  and

fci>fc2> K> fe>-V^0.

O follows from that
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where Nt means the generalized module of the domain bounded by yt

and Γ. Let sn = kn —k, then lim£w = 0, and there exist xi on γt such

as Gι(xt)-kG2(xt) = etG2(xt)

0 < G ^ ) - kG2(x) < <^G2(*0: x e γ,.

is true for every i. That is on yu

Gλ(x) - kG2(x) = o (G2(a?)): as n -> 00 . (l)

But G[xt) — JcLG2{xt) for a certain a?f on %, for every i ,

G&*) - kLG2(x*) = e&ix*). (2)

(1) and (2) contradict each other for βι<^ — 9

g4^ but [dp
G2(x) ) J

finally G1{x9 a) = G2(x, a).
For closed Riemann surface a is a regular ideal boundary point.
G(x9 a) generally depends on the sequence of pt: lim pt = a and is

not always uniquely determined.
22. Example 2. Let us consider the Riemann surface of Example 1.

Let us denote by G(x, 1.5) the Green function with pole at 1.5 on the
upper sheet, then G{x, 1.5) has no limit. When x converges to on the
upper and lower sheets, it has no limit.

Take two sequences pίf qt on the upper or the lower sheet such a s :
lim Pi = oo, lim qi = oo and

ί i

lim G(po 1.5) = A Φ B = Jim G(qif 1.5)

1.5, pt) = G{pl9 1.5); G(1.5, qt) = G(qιf 1.5).

Then we have two Green functions

lim GiCl.5, p.) = G^l.5, oo) Φ G2(1.5, oo) = lim G(1.5, qt).
i i

Property of Green function 1.

23.1. Let F be a Riemann surface with relative boundary Γ and a
harmonic measure zero ideal boundary point set R. We denote by
G(x, p^ the Green function of F with pole pt: where pi eF+R—Y9 then

G(x9 pi) are not always uniquely determined, and denote by Gy, Cι

M9 C
ι

M

the niveau curve of G(x, p{) on which G(x9 pt) = M, domain in which
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G(x, p) = M, and domain in which g(xf p) <^ M, then

Proof. CM may converge to the ideal point set, we denote them

qλ... qt e Cjf, then we take a system of neighbourhood of ^Ί ... Ffc(?t) 3 ?ΐf

such as / \ ( Σ Vk(qi)) = R f\CM and the boundary of Vfc(<&) will be denoted

by 7*((ί')» ^hen Cj,—Σ^fcCβ*) * s a compact domain with the boundary

Γ, the part ΣJΪ^QΊ or Σ γ , ( ί ) , and the part kC'M of CM.

Denoting by kωM the harmonic measure of Σ γ ^ with respect to (CM

—Σ K^0» ^hen we have

Let fcω be the harmonic measure of Σ ik with respect to (F—2 Ffc), clearly

Hence harmonic measure of R is zero:

lim kωM = 0,

but by Green's formula, we have

f *>M

d-ψ*>d9= f
J dn J

lim f W*iΆ)ds =

From

then

£2 ί£
As G(a;, p j is bounded in the neighbourhood of pJy jφi, we have

lim f Gix,Pj)?ψltids = f
fc=oo j on j

Cί C
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and by Green's fonrmula we have the conclusion.
Since G(x, pt) is finite except for pt,

lim CMί =
Jf=oo

lim G i.
X-fPj

lim ( G(x,Pί)
 3G(Jf' pΛ ds = 2πG(Pj, P t ) .

M=OO J an

Especially if pteF—R—T,

G(Pi, P2) =
 GO2> Pi)

23.2 The properties of Green function. // G(x, a) is a Green func-

tion with pole a : lim pi= a^R9 aivl V2(a) d V-Jia) are two neighbour-

hoods and their bounday curves are denoted by C2, andClf then

m1 = min G(x9 a) <: min G(x, a) = m2.
Xζ Cι x € Cz

Proof. If m1 > m2, let us take δ such as mι—m2 > 8 > 0, then for

any small number 6 <] -^ there exists a number i0 = io(s) such as

|min G(x, p)—m1\<6, |min G(x9 pt)—m21< <? for every p f : j ^ i 0 ,
C C

hence ^ e F, lim G(a?, ̂ ) == oo, taking a small neighbourhood v(pt) of p 4 ,
x~>Pι

then Z?(G(a?,pt))< +oo

min G(a?f ̂ ) ̂  lim G{xt pt) ̂  lim G(^, p%) = min
x$C1 x£V2-v x€Vi-v x$C2

m1 — 6<^m2 + £, δ <^ m2 — m2 <^ 26 .
This is absurd.

23.3 If G*(x,a) is the function satisfying the following conditions
a° G*(x, a) ̂  0 : x e F, G*(a?, α) = 0 : a? € Γ
b° min G*(α;, a) < min G*(a:, α ) : • if V2(a) C Vλ(,a)

C C

c° f ^ f d s = 2τr, G * ( * , α ) < + o o : a;GF-/
j on
Γ

/or α7̂ 2/ point x0 € ί7, π>e ccm choose a sequence of piy lim pi= a such

that
lim G(α?0, pθ = G*(a?0, α ) .

Proof. Let us denote by C^ the niveau curve on which G*(a?, α) = M

CM such as G (̂α;, α ) ^ M , then Mι < Jlί? it follow^ that CMX ^
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from c°, [ ^ d s = 2π. ^ ^ 0 on CM.
J On dn

CM

Since lim CM = a : lim M = oo ,
If = 00

σj is a niveau curve of G(#, a?0), σ ? is a niveau curve of G*(α?f #), then

G*(*o, α) = ̂  J <?*(*, «) J^ Gfo *0) ds = ±- j G(*, x0) ξ- G*(*. tf )^s .

therefore there exists a point ^ on σ-/, such as G*(a?0, α) = G(pc, a:0), but
lim G(p€, x0) = lim G(Λ?0, ̂ ) = G*(x0, a), — lim G(xOf pt) and it is clear that

( ~ G(x,a)ds = 2τrψO.
J 3^ .

C

24. It is clear that G(x, a) is not bounded in the neighbourhood of
a, but not always '

lim G(x, a) = 00 ,

neverthless we see directly that if lim G(x, a) < + 00, then from 23,

there is a sequence of (7,¥ which converges into a.
Definition, If lim G(x, a) = 00, we call it a regular Green function.

X Oύ

It is easily seen that there is only regular function on the regular ideal
point or inner point.

When an ideal point a has at least one regular Green function, we
call a a regular ideal point for Evans' problem. This notion is a clearly
local property.

Theorem 8. It is necessary and sufficient for a to be regular for
Evans' Problem, that there is a certain neighourhood V(a) and a harmonic
function Ό{%) satisfying the following conditions:

1. U(x) is lower bounded in V(a) (V is V's closure),

2. C/O)< +00 %eV(a) — a,

3. U(x) is harmonic in V(a) — R ,
4. lim V{x) = + 00 .

x-+cύ

The necessity is clear, if U(x) exists we can make a regular Green

function. Let W(x) = 0 x e F—V{a), by the smoothing process we gain

a harmonic function H(x) such as

) dn

γ is the boundary of V(a),

d = —— cZs = — - ds ,
) d J 37Z
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| # - I 7 | < A Γ : x€V(a) , H = O:xeΓ,

accardingly π * • is the Green function which we regui/e.

25. Theorem 9. If there is a certain neighbourhood V(a) of a in
which a one-valued bounded analytic function f(x):x€F—V exists, then
all points of V{a) [\R is regular for Evans' problem.

Proof. By Theorem 7 there is a certain neighbourhood Vr(a) C V(a)
in which f{x)=f(oc) has no root except only a. — log|/O) — /O)l is
the function of theorem 9, accordingly a is regular for Evans' Problem.

Corollary. If f{x): x G V{a) f\ F remains a second Category set in
the w-plane in which n(w)<^ + 00 then a is regular for Evans' Problem.

If there is no generalized local parameter for any small V(a) then
by theorem 7, f(x) covers in V{d) the w-plane except at most non-
dense set, therefore

covers the w-plane infinitely many times except at most first category
set. This is a contradiction.

Corollary. When the Riemann surface F is given as the covering
surface of an other abstract Riemann surface F*f if F covers finitely
many times and all points of F* have generalized local parameter, then
all points of F have generalized local parameter.

We denote by #* the projection of x : x e F on F*. We define
/(#) = /(#*), this is clearly the generalized local parameter. Especially
if we take the w-plane as ground surface, if V(a) has finitely many
times covers the w-plane, then al) points of V(a) € R is regular for
Evans' problem.

Especially, let F* be the covering surface, being finitely many
sheeted on F, if F has finite numbers of genus then F is representable
conformally as a sub-Riemann surface of closed Riemann surface Fc, since
all point of Fc are regular for Evans's problem it follows that all point
of JF* are regular, however infinitely many times sheeted covering surface
on the w-plane F* may be represented.

The problem whether all ideal harmonic measure zero points are
regular for Evans' Problem is quite difficult but it seems very true and
admissible.

Extension of Cauchy's integral formula.
26. When a curve C on F converges to the ideal point set R, we

call C non compact. If F is bounded by a compact or non compact
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curve Γ, and ideal point set, we take a system of neighbourhood
such as

then Fk = F — Σ ^fc is compact domain with the boundary Γk which is

a part of Γ and yk which is a part of the boundary Σ Vk, we denote

by ωk(x) a positive bounded harmonic function in F with the boundary

value 1 on yk, 0 on Tk$ if lim ωk = 0, then we say that F has zero ideal

boundary point.

On the other hand we denote a neighbourhood systems

Vk(.p) :p€R f\T9 such as Σ Vk(p) ^ R f\ Γ, A Σ ^ = Λ A Γ »

Γfc = Γ - Σ Vt, Fk = F ~ Σ Vί yί = boundary of ( Σ ^ A ^ )

then Ffc satisfies the conditions of theorem 7 then ί1! has Green function

Theorem 10. // f(x) is a one-valued bounded analytic function in

+ oo on Γ — R ,in F, and
dn

: xoeτ .

Proof. Hence Fk is compact then Gk = 0; xeYk+yk. In denoting

by CM the niveau curve of Gk(x9 x0) then

ds = [ ^ d s = 2π (see Lemma 1 of Nr. 17)
i dndn

lim C^ = α?0, by theorem 7 lim /(a?) = /O0)

and in using Green's formula, we have

Let ωk(x) be the bounded harmonic function in F'k such as then we have

rί+τί

then cox ^ ω s : lim cô . ̂  0 .
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lim ^ ds — 0 but ^ > 0 on Γfc,
fc=oo Ĵ  dn dn — fc

then

fc J dn J cm

γ/ r

finally

~^- lim / —- ds exists and equal is to f(x0) .
Δπ ic J an

Remark. Gk(x, x0) is not always uniquely determined.

Chapter IV.

Potential theory on the abstract zero-boundary Riemann surface.

27. If we would like to establish the potential theory on the zero-
boundary Riemann surface, we must construct the function X(pf 0, q)

which has the same role as φ( —) in u(p)= \ φ( — Wg) in the general
* \ i / J \'pq I

potential theory, and study its fundamental properties which are very
useful.

Distance function X. Let H be the disc, that is simply connected,
and compact domain of zero-boundary Riemann surface F which is mapped
conformally on to the circle | z | <i 1 of the z-plane, and its centre is
denoted by 0. In the preceding we recognized that Green function
Gι(x,p) of F—H; exists where p is an inner point of F—H or the
boundary point R.

And we make the Green function of H with its pole at 0, which is
-\og\z-0\: zeH

\ ^G1(x)ds = 2π, and G2 =
1*1 = 1

By smoothing process, we can construct the function X(%, 0, p) such as

in this process we used an assistant curve Γ which is on the outer side
of the boundary of H. Then, in the neighbourhood of x = 0

%0,0, p) = - log I a? -01 + U(x),

where U(x) is harmonic in the neighbourhood of 0, and determine an
adequate constant so that
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X(x, 0, p) = I x I + £(%): lim s(a?) = 0 .

Theorem 11. After the normalization in the above process, X(x, 0, p)
is uniquely determined depending only on Gλ(x, p) and G2(x, 0), but not
on the assistant curve Γ.

Proof. If there exist two functions Xλ and X2 which have the same
singularty, then

^(^i-Ga(a?,O))+Z?^.fi(a:1-G1(α?,p))< -foo

DB(X2-G2{x, 0))+D F _ H (X 2 -G^x,p))< + oo

on the other hand Dθcλ - G,, %2-G,) ̂  ^ S ί ^ -G t) D(X2-Gt)

finally Df(X1-X2) < + oo ,

but %x—X2 is uniform, then X1—X2 = const, but this constant is zero by
the normalization at 0.

Remark, we can prove easily that

x(x,0,p) = X(p,0,x) : x,peF

X{x, 0, p) = J %(p, 0, a?) J ^ %(α?, 0, p) ds : p e R ,
V

where the integration is on the curve γ which is the niueav curve of
κ(p, 0, a?).

28.1. Property A. Let us denote by V(x) ami 7(0) the neighbourhood
of x and 0 respectively. Then X \ (x, 0, p) | <1 M(x) wherever the parameter
point p may be situated, including ideal boundary points, so long as
pG V(x) + V(0), where M depends on only xbut not on p.

Case 1. from x(x,0,p) = X(p,0,x): peF, xeF

\X(x,0,p)\^Mtx) if p

because %(#, 0, p) is harmonic in F — V(p) — V(0), | X(x, 0, p)| ̂ max | %(a?f 0, p)|
on the boundaries of V(x) and 7(0), (see Nevanlinna's theorem) Case 2.
when p converges in the set of ideal boundary point a, let us fix x at
present.

If p e F(α) :aeR, then there exist two neighbourhoods V(x) and 7(0)
such as if pe 7(0) + V(x) then, Z)(a?, 0, p ) < + oo, it follows that

F-vζθ)-r(χ)

ίίm I X(x9 0, p) I ̂  max | %(a;f 0, p) | on the boundary of 7(0) and 7(φ).
P£F-V(O)-VCX)

Property A'. If x e V(p) + 7(0), then
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: +00.

This can be proved in the same way.
28.2. Property B. In the neighbourhood of a positive pole p,

X(λ -P, 0, p) = log ^—. + UP(X),

where the distance is in the local parameter, and UP(X) is a harmonic
function depending on p, and UP(X) is continuous with respect to p, that
is to say for every positive number £, there exists a circle pCa with a
diameter d and the centre at p and S such as if \p—pf\<^δ, then
I UP(X)-UP'(\)\<C,£ •: λ e PCaf\p, Cd : d is larger than δ.

Proof. It can be considered that X(x, 0, p) is made by smoothing
process from two Green functions Gx and G2

G1(xί 0, p) = log j-±- + Up(x): x e pCd.

First we prove that Up(x) is a continuous function with respect to
p. G{x,p) seems that which is made by smoothing process from

Uo = log . in pCa, and ωo=O in F-H-pCd with assistant curve
\x p\

Γ traced in pCd.
ωλ is a harmonic function in the domain bounded by Γo and Γ, and

ωx = 0 on Γo, ωx — Uo on Γ where Γo is the boundary of H.
•D 2,cΛ(^i-ί 7o)< + 0 0

> U1 = ω1 on pC/s periphery.
Let S1 = U1 — U0 : S1 being harmonic in pCa

Sn =Un-Un_ι; ωn= Un on C's periphery ωn = 0 on Γo

Tn — ωn — ωn-ι -

If \p-p'\ is so small that ||C7o-t/o|< e9 on Γ, then \ω1-ω/

1\^t6

\S1 — Sλ I ̂  LI ω1 — ω1\

| ω 2 — ω 2 | ^ K\S1 — Sτ \

| o 2 — o 2 | ^ i v | ω 2 — G>I| <1 L J A | ω ω l

in general

after all G(a?, 2?) = Uo + Σ Sn — C700 : a:

therefore
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^ in PCaf\p,Ca

in pCaf\p,Ca,

in the same way we have \PU(x) — psU(x)\<L Ms .
29. The function X(x9 0,p) is harmonic when xeF except at 0,

where it is negatively infinite and p, where it is positively infinite
(p G ί7) or a regular ideal point, but if p is not a regular boundary point

1 C 7)Ύ

the function has no limit but in all cases —^ —- ds = 1. This fact
2π J 3n

means that a positive mass one is distributed on p in the sense of the
potential theory, then we can define ideal mass on the ideal boundary
point.

Definition. Mass distribution μ. Mass distribution is so defined as
in the general potential theory, μ is defined for the set in the Riemann
surface and its regular boundary (or all ideal boundary point set). The
family of which μ is defined must be additive class and μ is completely
additive. The corn of mass distribution is defined in the same manner
(of course μ is invariant with respect to conformal mapping).

Then the potential will be defined as the Lebesgue-Stieltjes-Radon
integral

vtx) = J X(x, 0, p)dμ(p) .

The value of the function X(x, 0, p) is not determined only by the distance

|#—p| as φ( — ) , but it depends on the location of x, and further dis-

tance is not defined in the Riemanian surface in general except locally,

so the potential defined with X is not homogenous.

We must verify to what extent the properties of general potential

will hold. We see directly

1° at x = 0 u{x) = j X{x, 0, p)dμ(p) = log | x \ j dμ{p),

and from the properties A and A', u(jp) is harmonic, continuous and
finite wherever no mass is scattered, for instance at inner point of F
or at the boundary, if only x is not situated in the corn of mass
distribution.

2° Hence u(p) = lim \XN(p<0,Q)dμ{Q), u(p) is lower semi-continuous,

where f =X, if X ^ N

( =ΛΓ; if %>2V.

3° From the definition of integral which expresses the potential,
it is necessary and sufficient for the potential to be bounded and con-
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tίnuous on the closed set T not containing x = 0, that there exists a
circles of radius δ, so as the potential engendered by the mass con-
tainded in this circle Cβ is <^£, for any positive number £.

30. Theorem 12. (G. C. Evans. F. Vasilesco) Let μ is zero out side
of the closed set T iuot containing x = 0. // the potential is continuous
as the function defined on T where the mass is distributed, then it is
also continuous in F.

This theorem will be proved by means of the property B.
Proof. In the sequel the distance is assumed that it is defined by

the local parameter.

From B %(α?, 0, p) = log π + Up(x) : x € pCa, where PCd is the
\x—p\

center at p of radius d and moreover Up(x) is continuous with respect
to p in this circle. We denote by us(p) the potential engendered by the
mass in the circle with its center at p and radius S. As u{p) is con-
tinous as the function on the corn of mass distridution, we can choose
2δ and d for any positive number £ so that the following condition may
be satisfied, at any point Q of the corn.

-ί-log2 : if

11.

iii. log
25

h)-UQ{Q)\._

^ 2UQ{Q)

IV. U2S(Q)\<L

1 + —
4 log 2

if

if

if

\ϋq{Q)\<5,

!*W)I>5,

UQ(Q) - | log 2

\UU(Q)\:_
l+-|log2

if \Uq{Q)\£5 .

Take a point p of F, and denote by us the potential engendered
by the mass in the circle with the centre at p of radius δ.

If the distance between p and the set of corn K of the mass
distribution is larger than S, then us = 0, and if this distance is smaller
than δ, then Cs(p) is contained completely in a circle C2S(Q) QeK.

Let Q be a certain point of K which is nearest to p, then



154 Zenjiro KURAMOCHI

, o,

_ f |Xθ,0,M)||X«2,0,

~J ~1%ΓQ,O7M)Γ

, 0, M) =

X(Q,0,M)

log QM
pM

+ UP(M)-UQ(M)

log

m

log 2

- I log 2

m — 1-h
| l o g 2

QM

: if ί/ e (Q)>5,

: if I

therefore | ιιδ (p) \ ^ m \ j | %(Q, 0, M) | |ώ/<Af) | < 8, consequently u (p) is

is continuous.

Remark. _^ y < 2, because their proportion is greatest when M is

situated at the point where Cδ and the extension of QP intersect each
other.

From the property of X{x, 0, p), u(p) is sub-harmonic except at 0,
and satisfies all conditions of logarithmic potential, accordingly energy
integral, problem of equilibrium, sweeping out process, capacity and the
transfinite diameter will be defined in the same manner and all theorems
of general potential theory will hold so long as we consider only the
set (point, curve, domain) of inner point of F being different from 0.

But it is neccessary and interesting to consider the problem regard-
ing the ideal boundary point set R, where %(#, 0, p) is not always
determined uniquely.

It is well known that the equilibrium problem becomes easy in the
case of logarithmic potential by making use of Green function, so called
Robin's problem.

31. Robin's problem. Let D be a domain compact or not (£. e.
bounded by ideal boundary point set) composed of a finite number of
domains Dt satisfying the following conditions : 1°. The boundary of Dt

are analytic curves Yi or more generally regular curves for Dirichlet
problem, 2°. Every Ό{ does not contain the point 0. 3°. Every curve Γi

does never converge to any ideal boundary point.
Theorem 13. The Equilibrium Problem is soluble with respect to D.
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Let us denote by gF-D{ξ9V)' ζ£F the Green function of F—D with

pole at 0 and call yD Robins constant of D. Defined by the next formula

where gF.J£9 0) = Green function of F-D with pole at 0. Hence

u{ζ, 0, x) = -X(ξ\ 0, aO + fl^.Λf, aθ-ff,-z>(f» 0)

is regular harmonic in F-D and finite in the neighbourhood of ideal
boundary point contained in F—D, and u = % on Σ< = *•

By Green's formula

u(£9 0, a?) = ̂  j %(*, 0, £*) J - ff *_»«;*, ?) cte ,
Γ

^QF-Ώ > o _ 1 f 9 ^ ds—Λ
3?2 27Γ J on

and hence lim (,gF-D(£, x) + %(f, 0, α?)) = γ^.

Case 1. If xeF-D-yD + gF_D{ζ,0) = ̂  J%(ff 0, ?*)^F-/>(f
Γ

Case 2. if a? € Γ, then gF.D(ζ, x) = 0

, o, r») ̂  ^,-^r*. o) dβ.
T

Case 3. If x £ D, gF-D(ζ9 %) is cancelled.

Γ

Here the potential u{x) engendered by the positive mass distribution

O-^J -DC?** 0) is continuous ( = yD) on Γ, where the mass is distributed,
C Ύb

on account of the theorem 14, w(a?) is continuous in F except 0.
The behaviour of u(x) in the neighbourhood of the ideal boundary.

We see directly that u(x) is bounded in absolute value depending on
D, on acconnt of property A, especially in side of C with respect to D,
by Nevanlinna's theorem u(x) = yD9 becase u(x) is harmonic except 0
and Γ and R where u{x) is finite, therefore u(x) is the potential being
the solution of Robin's problem.

Or more precisely we take Γ, near Γ. surrounding E which is the
part of R contained in D, since x€V(0), u{x)^M{pt)^> -oo in D and

!
r) TT

ds = 0, then by Lemma 1 of Nr. 7, DD.{u)<^ + oo, so we have
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u(x) = <yD : x G Zλ
From Case 1, we have

m i n - X O , 0, ζ) ^ gF_D(0, x)-jD ^ m a x -X{x, O,ζ):ζ£T

this follows that the theorems about the z-plane set in R. Nevanlinna'sΌ

(pp. 111-129) will be proved in the zero-boundary Riemanian surface.
Green's function of F,

H (ZF1C^F2... JimF( = F is the exhaustion of F, and denote by gn the

Green function of Fn with pole at 0, then

£i<#2<#

If F is a zero boundary Riemanian surface, then lim gn = <χ>. This
n

equivalency with limωw = 0, is proved by P. J. Myrberg4). Let us
n

denote by yn the Robin's constant of F—Fnt then capacity of F — Fn is
defined by C = e-tn: where F—Fn is non compact.

Clearly F.CFj follows gt<9j and C a ρ ( F - ί \ . ) > C a p ( F - i ^ ) .
Finally Km Cap (F—Fn) = 0 is equivalent with limωw = 0 and

n

lim gn = oo .
32. Let F be the Riemann surface with relative boundary Γo and

relative harmonic measure zero ideal boundary point set R.
Denote by G(x, p) the Green function of F with pole at p, then we

can discuss the potential defined with G(x9p) as in the case of X(x,0,p)

= ± i G(x,p)dμ(p),

u(x) has property A, Af, B and its lower semi-continuity and theorem
of Evans-Vasilesco is valid.

If the mass distribution μ is zero on Γo and on R, then we call

= ln \ G(p,

the energy integral10' with respect to μ.

33.1. Let D be a compact domain of F not containing Γo on D, F,
and the boundary of D is regular for Dirichlet Problem, then there
exists a positive mass distribution μ$ on D, of whLch total is 1 and the
energy integral is minimum, so called the equilibrium distribution, in
this case μ is zero out of the boundary of D and the potential engendered
by this distribution is constant on D which is equal to ID(μ*).

This is proved by using the following properties in the same way
as in general potential theory6):
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1. If μD = lim μnD9 then ID(μ) ^ lim ID{μn).
n

2. U(x) is harmonic in F except the corn of mass distribution μ.
3. U(x) is lower semi-continuous in F—R.

If D is not compact, denote by D f\ R the subset of R which is

contained in D. Let be G19G2f... a sequence of closed domains enclo-

sing D f\R, such as

and every boundary of Gi never converges to /?, then we define

for Iυ{μ*) decreasing function of set.

33.2. Lemma 1.

J X O = limID.G<ϊμ*) = ID-GlQ**) = '/>-<?>

If we denote by Γ^ the outer boundary of D, then

ΌJix)= j G(X - P)d μl_Gί(P) = ID_Gi(μ*

Όlx) is harmonic in F-D, but J 3^hds=l.

Since

D^Uάxϊ-Utix)) = {ID-Gl(μ*)-ID-Gt(μ*)) \ ~(U1(x)--ϋ2

1/xCar) = 17,(0?) : xeF-D :
therefore

'/>-(;>*) = Mm/ D . G < (^*).

33.3. Transfinite diameter9.

We denote by ΛZ?n, the transfinite diameter of order w of non-
compact set D.

~ = ~ lim ^ (min Σ G(ps. Pϋ))
j r , ^ ^7T 3 n^2 ps\ptZD-Gj

For D-QjDn is monotonously decreasing with respect to /.

Lemma 2.

DDn D-Gλ

Dn
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// we denote by C and Ct the boundary of D and G{ respectively
then all p ί(i = 1, 2, 3,...) lie on C.

If it were not so, there is at least one point p0 on Cj such as

~ ) — = o—ψr ( Σ G(Po Ps)+ Σ G(ps pt)) is minimum.

Hence lim G(p-ps), and U(po) = Σ G(Po Ps)<^ + °°, Po ^ f - Σ ^ f e ) :

where v(ps) is a neighbourhood of ps, and β is harmonic measure zero
therefore U(p0) takes its minimum on C, this is a contradiction, accord-
ingly we have the conclusion.

nDn is monotonously decreasing with n.
Then lim DDn = flβ is called the transfinite diameter of D.

Lemma 3. From general potential theory^

D-Gt

V

then

Lemma 4. We denote by ωD(x) the bounded harmonic function of
F—D; such that 0 <1 Dω(x) < 1, ωD(x) = 0 : a? £ Γ/>, ω̂ Cα;) = 1 : xeC,
and let

Then wD(x) is constant for x€C and ωJ^ < d g = 1 .
J σ%
Γo

We easily see that

± { V ι )
Let Vn(M) = ^L__ 9 : MeC .

Since C is closed Vn(M) is lower semi-continuous, V{M) attains its
minium Mn on C which is denoted by V(plf p2, ... pn). We take
Pi,P2> . . p» on C so that V(plf ... pn) may be its upper bound DVn and
pt; i = 1, 2,..., w and M converge

Pi -* P? I i = l,2,...,n.



Potential Theory and its Applications 159

then

VΠM) >DVn.

1 6 )

Lemma 5. DVn ;> - ~ —

Δπ W/ + 1

m i n ( Σ

Σ

1 /»+i \

'„ ̂  H- min ( Σ G ( p ft)).

p in the right hand term is p1, otherweise -jf— cannot be minimum,

because G(prps) = <

We have lim V* (M) ̂  min V*(M) ^ »Vn >, ^~ .
Men M£C D-^n + l

Let A be closed set contained in F + R-Vo, and denoted by DL

domains such as

We define ΛDn9IA(μ*), and WA in the following manner:

ADn = l i m D D n ,

IΔ =limIDi,

WA = \imWD.

If A is harmonic measure zero, then WA = co.

Theorem. // -A ύ harmonic measure zero set, then

IA — co, DA = 0, TFi4 = oo α ^ ?;ice versa.

34. Theorem 14. (G. C. Evans)6) Let A be a closed and a set of
relative harmonic measure zero of F + R with respect to F, and let every
point of A be regular for Evans Problem. Then there exists a positive
harmonic function satisfying the following conditions,

1°. E7O ) ^ 0 : xeF. 2°.. U(x) = 0 : α?eΓ0 . 3°.

Γo

4°. limΓ7(a?) = oo . 5°. lim U(x)

Proof.
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1 = 1 lim lim lim min

s < t l
= lim lD{μ*) = lim TFz)̂  = oo . lim — = = co .

J 3 3 J DjJJ

Therefore, for every number N, there exists jo(N) such as

— ί — = lim min - ^ Σ G f e . pt) ^ 2ΛΓ: ^ jo{N)

therefore there exists no(Dj)='no(N) such as

—ί-min Σ Gfe.p t)^N: n^no(N) .
w + i ^ 2 ps pt€ boundary of Dj

But since D'^D", it follows that — ^ — ^ F Γ ^ — f o r every

We can choose adequately τz+1 points p[,..., pn

j

+1 on the boundary

Dj'.j^JoW) so that

because harmonic measure of Djf\R is zero.

Since Djf DJ+1,..,9 lim Dn — A, and since A is closed,

we can choose from the sequence of systems ((p{, pi,..., ^ ) , ; =
1, 2, 3 ... a subsequence of £^>i0

such as (pΐJ. p n

2

J . . . pSO
2

lim p2J = pfc : ftGi : fc = l, 2,..., n .

Since from the hypothesis regular Green functions exist at pk (fc=l,2,
..., w), we denote them by G*(a?. pfc).

Let Vn(x) = ~±~ ^

Since lim ηn(x) = oo, there exists a system of neighbourhoods v (pk)

whose boundary is γfc curve in F, satisfying the following condition :
n

Ύt I 1* i "^-> /\/ * IT O ί̂ - > ^ 1)(w\ "̂
"7 n\ J ^- - y *™ ^- / 11/v Â 7̂  J

We choose a subsequence {fjj ΌΌl from ίf^(a;)J such as

: k=l, 2,..., «.
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Then ξn^x) has the properties,

3 ^ - ds = -ί . ξnj{x) £, 0 . ξn\x) = 0: x e Γo.

2°. ξ%Xx)<Lm(x) if ^ G 2 ( ^ ) + (i)/^4, for

3°. lim f

From 2° fjj ΌO constitute a normal family in F9 we can choose a

subsequence which converges uniformly in F to the limit function ξn(x)

Mm f *ί(αθ = f fl(a?).

The boundary of (.DJo-ilv(pky)=Cjo+ Σ τ f c

n ,

Since Z?^— ΣMϊO has no mass for ^? (a?), then
// //

ίίm I ξV (a?)-fn

therefore f«'(a?) uniformly converges to fn(a?) in Dj0—Σ<2>Λ.)

Then, Km |n(a?) = lim Km _. f ? J O ) ^ iV .

Let ζn(.x) = ξ(%) + vn(χ)> then fn(a?) has next properties,

1. harmonic positive when xeF—

2°. j ^ d s = l r»(*) = 0: a?ero

Γo

3°. IίS ζn{x)<

4°. lira ξjje) >, N.

We denote this function by ζN(%).

Take N^3, N1, ΛΓ2,..., ΛT : lim Nn=oo, and corresponding to

U(x) has the properties mentioned in the theorem.
1° and 2° are clear, because if F—R3p, U(x) is harmonic and
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If peR, peA, there exists j0 such as peDj;j^i0 therefore there
is a neighbourhood <?>), v{p)f\Dj0 = 0, but v(p) has no mass, then

lim Z7(α?)̂ max t/(»<-foo.
*€»:») *G boundary of «W

lim U(x)^U\x\ for every n .

) ̂  li Σ li Iζw () ^ l i Λ 2 ^ = oo .lim Γ7(a;)^ lim lim Un{x) ^ lim Σ lim Iζw (x) ^ liπΛ
x-fΛ X+A n n % x+A Δ N ^

If F is a zero boundary Riemann surface, let us denote by 0 an
inner point of F and take a dise of centre 0 then by the smoothing process
and normalization of constant we easily have the harmonic function U{x)
satisfying the next conditions:

1°. U(x) = lo^ \x\ in the nighbourhood of 0 and x is the local para-
meter.

2°. lim Ό(x) = oo.
x->A

S 'r)TT
ds=l: γ curve enclosing 0 or A.

We can discuss with X in the same manner as G.
35. Let F be a Riemann surface with the relative boundary Γ and

the ideal boundary point set R, If there exists a harmonic function U(x)
such that

lim U(x) = co.

Then R is of a set of relative harmonic measure zero.
Proof. Let us denote by CM the niveau curve on which V{x) = M,

and by CM the domain in which U(x)^M respectively. If oo>Λf:>max

U(x), then CM is compact curve and surrounds R, and lim CM = R.
M=oo

On the other hand we dedote by ωM(x) the bounded positive harmonic
function such as

1 : xeCM ,

then ~~~ <L0 on CMf where normal derivative is inner direction with
dn

respect to CM ,

0 ^ ω , ¥ + δ ^ : a?eΓ if δ ^ O .
dn dn

By Green's formula,

) dn M J dn
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then

but

J
Γ

is bounded for every M, on the other hand M—>oo and ^ p M > 0 then

lim ί ^ds = 0 , this follows that Km [^ds = 0,

CM

then
lim ω^ = 0 .

Thus R is a set of relative harmonic measure zero.
Corollary. Let F* be a Riemann surface of which every ideal

boundary point is regular for Evans's problem of zero boundary, and let F
be a covering surface of F*. We denote by n(p) the number of times
when p is covered by F and by Dn(F*) the set

If sup n(p) <1 N, then it is necessary and sufficient for F to be of zero
P£F*

boundary, that DF(F*) is a zero boundary Rienann surface.
Proof. The necessity is clear. We denote by Ff the sub-Riemann

surface which has its projection on DN(F*), and denote by 0 an inner
point of DN{F*). We can construct a harmonic function ϋ(x*):xeF*
such as negatively infinite at 0 and positively infinite at every point of
the boundary of Z?^(F*) and let

U(x) = Ϊ7*(a?*) x e Fr, x e DΛ-(F*).
Then from 32, Fr has zero boundary, accordingly, F(FZDF') is of zero
boundary Riemann surface.

Chapter IV.

Function theory on an abstract Riemman surface.

36. The function theory of the z-plane has made much progress
but in the Riemann surface, it is in infancy, this owing to the fact that
the z-plane has very adequate metric when z = oo is the only essential
singularity and even when the set of singularity is not one point but of
capacity zero set, the same metric in a sense can be constructed by the
benevolance of Evans' theorem of the potential theory. On the contrary
in the Riemann surface, there is no adequate metric except conformal
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distance from the automorphic function theory, that is an invariant metric
with respect to Fuchsoid group named hyperbolic metric.

It is clear that the metric defined by the Evans' theorem is the
best to study the function theory of Riemann surface, as in the z-plane.

We must begin with the notion of regularity of the function at x :
xeF, we call that f(x) is regular at x = x0, when f(x) is regular with
respect to the local parameter defined in the neighbourhood of x0, then
the notion of regularity will be defined at every inner point of F, never -
thless it loses its meaning at an ideal boundary point a, and when we
can prolong the Riemann surface F so that F may be contained as an
inner point in the prolonged surface, we can define regularity as the
preceding, for instance, if F has a finite number of genus then F is
contained in a closed Riemann surface25, in this case the essential
difference about the notion of the regularity or the singularity of the
function between the z-plane and in the Riemann surface does not occur.

But the fatal distinction between the z-plane and the Riemann
surface is that there can exist the genuin ideal boundary point, which
cannot be inner point in the other surface by no means as the second
kind boundary point of Stoilow, at this point the notion of regularity or
the singularity loses its meaning completely. Therefore in the theory

of function on the Riemann surface, there is two cases when /(#) is not
regular, one of them is the case when fix) is not regular with the local
parameter defined in the neighbourhood of x == x0, and the other case
is when fix) has no local parameter. When there is no local parameter
at χ = χ0, we call that fix) has a genuine singular point at x = x0.
The behaviour of the function in the neighbourhood of a genuine singular
point is most complicated, it can take any value without condition
perfectly. But the theorem 6 shows the behaviour of the function to
some extent. Thus even at a genuine singular point, we can define the
regularity of f(x) in the following manner, Let us denote by V(p) a
neighbourhood of p, 1°. We say that fix) is regular at p in extended
meaning, if fix) is regular in V(p)f\F and finite in F(p), and /(a?) is
meromorphic in V(p) extended meaning in the case when fix) is a rational
function of regular function 2°. If fix) is not meromorphic at p, then
we say that fix) has an essential singular point in extended meaning.
We see directly that fix) is meromorphic at p then the number of roots
of the equation fix) C is finite and if fix) is essential singular, then fix)
covers almost all the w-plane excepe at most a non dense set infinitely
many times for any small neighbourhood of p.
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Hypothesesis

In the sequel we presuppose that all boundary ideal point are regular
for Evans' problem.

The First fundamental theorem of Nevanlinna.

37. Let f(x) be one-valued and meromorphic function on the zero-
boundary Riemann surface and denote by E the set of genuise or
essential singular point set, then we see directly that ECΊF+R and
closed. If F—E is zero-boundary Riemann surface, we say that E is
capacity zero set, If E is capacity zero set, and all point of E is regular
for Evans'probrem, take an inner point denoted by 0 of F—E and call
it the origin.

By Theorem 14 there exists a harmonic function U(x) which is
negatively infinite at 0 and positively infinite at E and only there, take
a conjugate function h(x) of Z7(α?)

z = β t fc») + <Mo_ rei9

This parameter corresponds to z, 0<^|z|<^oo, in the z-plane. Let
Cr be the niveau curue r{x) = const r, then Cr consists of a finite number
of Jordan curves surrounding E, we remark that

(

J
dθ(x) = ί-f*-7 ds = 2π ,

J J on
Cr Cr

where ds is the arc length on CV and n is the inner normal of Cr, we
use the same notation in R. Nevanlinna's book.

As w(x) is meromorphic, it is expressed in a power series with
respect to the local parameter t in the neighbourhood of x = x0 and
the function z is one valued in the neighbourhood.

φ ) = c Γ ι + c ί"k+1 Co + ̂ f + ̂ + ^ + H ...
- J c

do + dλt
λ + dk+1ί

κ+1,... : xeF-E

w(x) can have a finite number of negative power terms but z(x) is finite
in F—E accordingly has no negative power terms exact at 0.

The differential c~^dt9 ~dt have the next transformation in the
Cί V Ct V

change of localparameter from t to r.

dw dw dt dz dz dr
dr dt dr ' dr ~di dt
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then

dw
dt
dz
dt

dw
dz

— <*^L i s one-valued and meromorphic function we denote it

by \wf{x)\. In the neighbourhood of 0,

where t* is the local parameter used in the normalization of constant
of U(x) or X(x, 0, p) in the neighbourhood of 0,

then ίj* = l $ " = ^ at * = 0.
dt dt dz

Theorem 1. Let the domain bounded by Cr be denoted by Δ r ,

n(r, α) = the number of zero point of w—a in Δ r .

V ^ dθ{x)

() { ) . dr
J r

Then o
m(r,where φ(r)<L\og \a\ + \ log |c|| + log2 and c is the first non-vanishing

coefficient of the Taylor's expansion of w-a in the neighbourhood of 0
with respect to t*.

Proof. I7(a?) is is one-valued, Cr does never intersect other Cr,, and
Cr is composed of a finite number of analytic, compact and closed curve.
They enclose a compact domain which is denoted by Δr therefore Δr

has only finite number of zero or poie of w(x), we denote by a , b, and
by fcv, hv their multiplicity, we assume that Cr has no a, b on it.

If gr(x, b) is the Green function of Δr with pole at 6, then log \w(x)\
—Σ^v£r(#>&v) — Σfcv0r(fff αv) is regular harmonic in Δr and log \w(x)\ on
Cr, accordingly by Green's formula

'log \w(xo)\ = f log | φ

r(α?Of α ) .

We put x — 0,

log |w(0)| « j log|w(α?)|d^ + ΣAvff^(0,6v)~Σfcvg.(0, αv).

If ^(0) = 0 or oo ,
^(a:) = cλί

>i<λ4-cλ+1 ί^λhl ... in the neighbourhood of 0. Since
|—λlog |2| = λlog|t*| + logcλ—λlog|ί*| +£, and \\ogz\ is logr on Cr
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log |cλ| = ^ - j log \w(x)\dθ + ̂ hygj$9 δ v ) ~ Σ ^ , ( 0 , α,) + λ log r .

On the other hand g(0, a) = g(a, 0) = — Z7(α) + logr = —log ra + log r,
where C7(α) = log ra then we have the theorem.

We denote by K the Riemann of diameter 1 contacting the w -plane
at w = 0, we put the cordal distance,

If 1

If we denote by A{r) the area on K, which is covered by w(x)

when x varies in Δr then

r

m*(r, a) + N(r, a) = ^ [ ^ £ U t + l o g > —.-*._ .
0

For if we denote by \dσ\ the line element on the ^-sphere

dw
Ίz

in an invariant,

ds^v ^-^r—ds is an invariant also,
dr dt dr

dfz = area element with respect to z.
In the same manner as R. Nevanlinna,

4 f VWΘ + 4* φ, oo) = 4 j ^ p -

rT^TTY2^^ ί s t h e a r e a o n ^ w h e n x v a r i e s ί n Δ ^ w e

integrate between r0 and r(0<^r0<><^oo) and make r0 converge to 0.
Then we have

log J - f logγ/l + \w2(reiθ~ψdθ + N(r, oo) = 1. j ^ d ί + logv/Γ+ |w(0)|

If we transform w into Ϊ ^ , by w! = - ί ^ , which this is the rotation

of the Riemann sphere, then
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v~ flogr , * -
c ί

If w(0) = α the right hand term is infinite but we cannot now
replace other term as in the case of the z-plane because z is not uniform
generally and has infinite number of periods corresponding to genus.
Accordingly we assume that w(0)φoo, which is always possible. We

r

denote T{r, <χ>)= [ \w\dθ + N(r, oo). T*(r, co)lf ^ψl dr. It is clear that

Cr o

\T(r, oo)-T*(r, oo)| ̂ log 2 + log ^ y ^ - ,

Theorem 2. T*{r) is a monotone and convex function of log r.

Theorem 3. l i m Ί ? ^ - > 0 .
log r^

If Urn T(r) = 0, w(x) must reduce to a constant.

Pr00f ]\
Theorem 3'. If f(x) has an essential singularity (classical or extended

meaning), then

— log r

Let p be an essential singularity and Vι^V2..^Vnf... -*p be a
sequence of neighbourhoods coverging to p and en be the set of values
ommitted by f(x) in Vn9 then ew is non dense, so that

e — Σ en is of first category.

Hence there exists a point w0, which does not belong to e, then w0

is convered by /(#) infinitely many times about p so that

l i m ^ - = oo .
log r

38. Meromorphic functions defined in a compact domain in the zero-
boundary Riemann surface. Let D be a compact domain in the zero
boundary surface bouded by Jordan curve C, then by theorem 11 we
can construct the domain function U(x) which is negatively infinite at
an inner point 0 of D. Accordingly we can discuss the function theory
as in the case 0<; z\<Ll in the z-plane.
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39. Meromorphic functions in a neighbourhood of a closed harmonic
measure zero.ideal bounbary point33.

Let D be a domain in the Riemann surface (positive or zero boundary)
boundes by Jordan curve C and closed set E of F+R of relative harmonic
measur zero, with respect to domain Zλ

We easily have all theorems studies about the behaviour of function
in the z-plane. Since harmonic measure E = 0, by theorem 15 we can
construct a harmonic function Ό(x) satisfying all conditions of Z7(a?).

Then we write results without proof because it is the same in the
z-plane.

Theorem 1'. First fundamental theorem of Nevanlίnna.

r

T(r, a) = T{τ) + 0(log r), where T(r) = -A f
7t J

t
7*0

dt

Theorem 4'. Second fundamental theorem of Nevanilnnas\
Let e be a bounded closed set of positive capacity on K. Then we can
distribute a positive mass dv(a) on e, such that

is bounded on K, hence by Theorem V,

T(r) = j N(r, α)ώ*(<0 + 0(log r),

and the order is defined by the formula lim ^f—^ = p ,
log r

Theoerm3'.

E is singular point set, but in the Riemann surface, E can consist
of only genuine singular points where w(x) may have its behaviour as
if it were regular point therefore we cannot expect that w{x) is not
bounded in the neighbourhood of E. But further if we suppose that E
has at least an essential singular (classical or extended meaning) point,
we can conclude that

l imΓ-—-= co,

as in the same way used in Theorem 3.
40. Some consequences of Fundamental theorems.
Theorem9 5'. Let D be a part domain which is bounded by Jordan

curves C and by a closed set of F + R of relative harmonic measure zero
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lying inside of C, and let w(x) be one-valued and meromorphic in D and

l*m r = °° ( o r E has at leust &n essential singular (classical or

extended meaning) point. Then,

1°, w(x) takes any value infinitely many times, except a set of

capacity zero. More precisely, ϊim Jϊr* α ' = 1, except values of capacity

zero.

2°. // further w(x) is of finte order p^>0 and xn = x(an) is the zero
point of w — a and rn(a) = r(zn9) then

W ^ < ° ° : foralla-

except values of capacity zero, where £ is any positive number.
41. Theoorem 6. (W. Gross)7\ Let w = w(x) be one valued and mero-

morphic in F —E have at least one essential singular point of E, and let
x = χ{w) be its inverse function.

i. // x{w) is regular at w, then we can contίnuate x(w) analytically
on half lines; to — w0 + re θ(0<Lr<^co) imlefinitely, except for values or
measure zero.

ii. // w(x) is regular on a segment w = Wo + r ^ ( ^ o \ r < C r i ) > then
starting from w = wo + r, tve can contίnuate x(w) analytically along
circles; w=w0re'\ — ̂ <^θ<^oo) hide finitely, except for r values of measre
zero.

42. Theorem 7. (Cartwright-Noshiro)12). From Theorem 6 under the
T(r)

same condition as Theorem 5f τvithout l i m Γ — = oo. Let x = x(w) be
— log r J

the inverse function of w = w(x) and F be its Riemann surface spread
over the w-plane aiid (w0) be its boundary point, whose projection on
the w-plane is w. Then (w0) is an accessible boundary point and w0 is
asymptote values of w(x), i.e., there exists a curve L in D ending at a
point on E, such that W(X)-+ΪVQ, when x-±x0 along L.

Theorem 8. Under the same condition as 5r and if E has further

at least one essential singularity, and if f(x) φ α in D, then there exists

a curve L in D ending at a point x on E such that w(x)-±a, when x->x0

along L.
43. Direct transcendental singularity.
Let x(w) be defined on a Riemann surface Fw spread over the w-plane

and (w0) be a boundary point of Fw, whose projection on the w-plane
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is w. F. Iversen called (w0) a direct transcendental singularity of x{w)
if w0 is lacurary for a connecten piece Fo of F which has (w0) as its b
oundary and lies above a disc K; \w—wo\<Lp about w0.

Theorem 9. Under the same condition as Theorem 5f, the set of
projection of direct transcendental singularity of the iverse function x{w)
of w(x) on the w-plane is of capacity zero}^

44. Behaviour of the inverse function x{w) of w(x) at its trans-
cendental singularity.

Let w = w{x) satisfy the same condition as theorem 5r and x = x{w)
be its inverse function and F be its Riemannian surface spread over
the w-plane. Let (w0) be its boundary point, whose projection on the
w-plane is w 0.

A 8-neighbourhood U of (w0) is defined by a connected piece of F
which lies above a disc (w—wo)<^δ and has (w0) as its boundary point,
let U correspond to a domain Δ on the Riemanian surface, then [w, w0]
<[δ in Δ and [w(x)—wo~] = 8 on the boundary /\ of Δ, except the point
on E. Since (w0) is an accessible boundary point of F, there exists a
curve on F ending at (wo\ which corresponds to a curve L in Δ ending
at a point x, on E. Let z = r(x)eίθW be defined as theorem 14 and the
part of Δ, such that r(x) <; r and r{x) = r be denoted by Δr and θr

respectively, let K be the Riemanian sphere of diameter 1, which touches
the w-plane at w = 0 we put n{r, a) = the number of zero point of
w(x)—a in Δ, where [α —

m{r9 a Δ) = A-f log r } _- d\x) ,

Γ(r, α Δ) = m(r, α Δ) + iNΓ(r, α Δ), .
A(r Δ), S(r Δ) are the same for Δ.
L{r) the sum of length of the curves on K, which

corresponds to Theorem V .
Theorem V. r

T(r, a Δ) = T(r, Δ) + 0( ( ^ f W ) + 0(log r),

where
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Ux) = 0Cι/Γ(2r, Δ) log r) : for all r^r0.

Ur) = OCj/ΓCrTΔjϊog Γ(r : Δ)~

except certain intervals In such that
oo Λ

Σ<ί log l o g r < + cx>,
w = l J

order δem# p = Πm —i~—' .
ί-=oo log r

Theorem 3". l i m

Γ ( r : Δ ^ 0
— log r ^ '

i/ Δ i,9 bounded by E which containg at last one essential singular
(classical or extended meaning) point, then

log r
More generally, if

logr
then

i. w(x) takes only values in [w, wo]<^δ infinitely many times in Δ,
except a set of values in \_w, wo]<^δ of capacity zero.

ii. // further w(x) is of finite order JO()>0) in Δ, then

1 : for all a in \w, %

except values in [w — wo~\<^8 of capacity zero, where 8 is -any small
positive number and r(an) — r{xn), xn being the zero point of w—a in Δ.

45. Applications to the theory of the cluster set.
Let F be an abstract Riemann surface with a relative boundary Γo.
In the sense of Stoilow, we call an ideal point a defined by the

system of the neighbourhood of a such as ΓXV^ct) = a.
i

¥^-V~(a) has another set of boundary point Rί defined by the system
of the neighbourhood W^R1) such as p\Wj(Ri) = Ri.

Let us denote by ω/α?) the positive harmonic function in F—V^a)

— Wj(R{) with the boundary values 1 on the boundary of Vι(ά) and 0

on Γo and the boundary of FFXB')-

If lim lim ω(x) == 0, then we call a a point-wise

boundary point.
Let D be an arbitrary connected domain of Riemnna surface F and
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C be its boundary point set of D included in F + R, and E be closed
relative harmonic measure zero boundary point defined as the preceding,
being contained in C and further suppose that a is a point-wise and
not isolated from C.

f{x) is one valued meromorphic function in D. We denote by [/(αΓf|
2?ζΛ7

the closure of the set attained by fix) in N.
Let us associate two cluster sets,

then we easily have the following theorems as in the case of D being
planer,

Theorem115. (F. Iversen, A. Beuring, K. Kunugi, M, Tsuji)
BiSa^)CSa'

c\ that is Ω = SΛ™-SΛ«»
is an open set, where Z?(SΛ

ccr)) is the bounday of SΛ

QDΛ.
Theorem12). (S. Kametani, M. Tsujii).
Let F have a boundary point set R of at most relative harmonic

measure zero and let all points of E are regular for Evans9 problem.
If iΩ) = SΛ

QD>—SΛ

(:σ:) is not empty, then fix) tskes any value, except a
set of at most capacity zero, belonging to O infinitely many times in any
neighbourhood of a.
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