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Abstract

In this thesis, methods for describing the software development process and for con-
structing software development environments based on this process description have been
studied. We call such development environments “process-centered environments.” The
process can be described by extracting limited properties of the process from a certain view
point. A view point, simply called a view, is represented as a model which specifies the
notation and its semantics.

There are various objectives for describing the process, such as documentation, analysis,
simulation, and enaction; however, no simple and universal process model exists that is
appropriate to all these objectives. Existing various software process models and process-
centered environments support only a few specific views. Therefore, depending on the
particular objective, we need to select or newly develop an appropriate model for the
process. v

This thesis proposes a new method for constructing various process models. Using this
method, a specific view of the software process is first selected and a simple abstract model
is defined. Using this model, the actual process is then described. The obtained description
is formalized and refined systematically in order to be enacted as a supporting system. A
functional process description language called PDL (Process Description Language) is used
to realize the supporting system.

Three models were created to investigate the proposed method: a behavioral model, a
concurrent task model, and a product relational model. Several prototype systems were de-
rived from these model descriptions, including an activity navigation system, a cooperative
development monitor (Hakoniwa), and a product manipulation system.

In Chapter 1, related topics in software engineering are briefly summarized to provide a
background for my research approach.

Chapter 2 describes my conceptual model of software development processes and process
models. Some related research in the area of process models is also discussed.

Chapter 3 introduces a new method for modeling the process. This method is described as
a sequence of five steps to be performed. The process model, which is defined and described
in the language PDL by this method, can be enacted by the PDL language interpreter. A
common ‘process modeling problem initially proposed by Kellner, is introduced to be used
as the sample description target in Chapters 4 and 5.

Chapter 4 proposes a model which focuses on the sequence of performed activities. Pro-



cess behavior is described using a formal grammar. This formal description is transformed
into the base structure of an activity navigation system.

Chapter 5 proposes a model whi‘ch focuses on concurrent activities where communica-
tion involves multiple people. The concurrent activities are represented as communicating
sequential tasks. The description was transformed into a team development supporting
system named Hakoniwa.

Chapter 6 proposes another model which focuses on the objects produced through the
process and the relations among the objects. Objects (called products) and their relations
are described as classes and instances in an object-oriented manner.

Chapter 7 discusses the capabilities of the proposed modeling approach, the defined
models, and the generated systems.

Chapter 8 presents a summary of the ideas represented in this thesis. Future research

goals are discussed, and key points for designing future development environments are
described.
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Chapter 1

Introduction

As the size of software systems increase, the overall development process becomes very com-
plex and hard to understand. The desire to describe such complex software processes has
inspired much research under the rubric of “software process engineering.” By describihg
software processes in some manner, the hope is that the previously tacit process may now
be explicitly studied and understood. Once the process description is created, characteris-
tics of the process can be ascertained. The notion of the process can be transferred to other
people through the description more easily and with less ambiguity. Furthermore, the pro-
cess description can be used to define the structure of a software development environment
which supports the development process[45].

Developing software process descriptions is not simple or easy. In general, the writer
of the software process description has to be familiar with all aspects of the development
process, €. g., process steps, computer resources, developer assignments, product structures,
time schedule requirements, tool and availability. However, knowing all of these aspects
before the project starts is very difficult; some of the aspects may only be determined as
the project proceeds. Even if they can be determined a priori, they may change during the
project. As research in this area progresses, the difficulties involved in creating appropriate
software process descriptions are being recognized.

A model-based approach to software processes seems to be one of the most promising
answers to this issue[49, 57]. In this approach, the target software development process is
first depicted with a model or process model, which is an abstract representation of process
architecture, process design, or process definition[12].

In this thesis, the terms model definition and model description are explicitly distin-
guished. Model definition means the general definition of the components of the model,

The Model description (or sometimes simply called the model) refers to an instance of a



description representing particular development process using the components of a model
definition. The model may be expressed in some formal manner using Petri nets or'regulé.r
expressions, or semi-formally using graphs annotated with natural language.

In general, a process model targets only limited views of software development. For
example, in the Petri net model, only the concurrency and synchronization of activities in
the process are described. The writer of the process description captures and understands
the structure of the software process through thee models. Other process information not
involved in the models may be added after the model is defined, creating a more complicated
description.

A model-based approach works best when the model and the nature of the development
process match well. Also, repeatedly developing models for similar kinds of processes helps
the writer to understand these types of processes. On the other hanci, when a new process
is encountered, a single and fixed model approach may not be sufficient. Various models
should be tried in order to analyze and characterize the unknown process.

This thesis presents an approach for describing various processes and for enacting (exe-
cuting) the associated model descriptions. The approach proposed here especially focuses '
on process construction activities, and provides a specific method for such activities. This
approach is analogous to the program derivation method: in order to get executable pro-
gram code, a model is first built, specifications are written based on the models, and finally
the specifications are transformed into executable programs.

An important feature for the model definition is flexibility. Many approaches for process
definition and enaction assume their specific kinds of process model or specific process
language paradigms[10, 34]. The kinds of process models proposed here, however, make no
such assumptions; in particular, you are not limited to a single process model definition.
model definitions can be chosen from existing ones or created as appropriate depending
upon the objectives for the process description. Some of model definitions may have formal
semantic definitions without any ambiguity, others may have semi-formal definitions.

Another important feature of the proposed method is that a single process language,
PDL (Process Description Language)[26, 27], is used as the implementation language for
various models providing a uniform and formal basis. After the model description has been
constructed from the model definition, this model description is transformed into a formal
description written in PDL.

PDL has been designed to describe and enact various software processes mainly in a



process-centered way using a formal semantic definition. PDL descriptions can be written .
at various levels of abstraction, each of which preserves its formality. With this abstraction
facility, the model description is transformed into a highly abstracted description in PDL
with a limited view of the model. The description is then refined into a concrete one
involving various information about the process, similar to the refinement procedure for
software specifications. The descriptions in PDL are enactable by the execution system
we have developed. Through this enactment, a software development environment which
supports the activities in the described process can be obtained, or simulation of various

factors in the process can be performed.






Chapter 2

Software Process Modeling Concepts

2.1 Software development process

Various approaches and methods for software development éuch as Jackson System Devel-
opment (JSD)[28], Structured Analysis (SA)[14], and object-oriented design[7] have been
proposed. A ambiguity remains in these definitions, and there is no unique interpreta-
tion and understanding of them. People have their own interpretation and understanding;
therefore, demand for a clearer definition of software development has emerged. T;o solve
this problem, attempts to describe software development processes in formal ways have
been made.

Since software development itself has many factors and characteristics, there are many
ways to describe it. One typical way is called process programming[45]. In prdcess pro-
gramming, a sequence of development activities is described mainly in a procedural way.
There are also attempts to describe software processes from many other perspectives (such
as object-oriented or rule-based approaches).

Many software developers, especially Japanese mainframe computer manufacturers, have
developed and applied their own standardized development processes. Most of these process
embody a management perspective and are based on traditional waterfall models[11]. Since
the process is standardized, it is assumed that the current development status can be
estimated[52]. However, actual development activities involve many interruptions, much
reworking, backtracking, and many other exceptions, which are not usually described by

in the standardized process.



2.2 Software process modeling and related works

There are various approaches to modeling and enacting processes. Some of these approaches
are summarized and compared in Mi and Schacci [43]. In this section, we focus on a few

of these approachés and evaluate how they deal with representing process sequences.

Process programming using Appl/A:

Osterweil has proposed a concept for describing the software development process as soft-
ware itself[45]. For the process description, he and his group have developed a language
called Appl/A, which is an extension of Ada[54]. In addition to many rich features of Ada,
Appl/A provides the features for describing relations between products and. Software de-
velopment‘processes can be described using Appl/A in a procedural way. However, one
the process is described as a program, the structure and behavior of the process are not
clear. Moreover, it is impossible to perform an activity that is not already described in
the program’s control sequence. Thus, process descriptions need to take into account all

exceptional activities.

Marvel:

Kaiser et al. have developed the software environment Marvel, which activates development
tools automatically and manipulates software products based on pre-defined rules[29, 30).
Marvel is composed of (1) Objects which control products and tools, and (2) extendable
rule sets which specify the order of activities. A rule is composed of a precondition, a
postcondition, and an activity. If the precondition of a rule is satisfied, the tool specified in
the activity part of the rule is activated. As compared to procedural descriptions, Marvel’s
description offers more flexible activity sequences and makes it easier to express exceptional
activities. On the other hand, it is difficult to predict from the Marvel description how
activities actually proceed. The overall structure o}' the development process still remains

unclear.

HFSP:

Katayama proposed a hierarchical process model named Hierarchical and Functional Soft-
ware Process (HFSP)[33] that uses attribute grammars to describe processes. Software

objects produced by processes are represented as attributes, and their synthesizing rules are



specified using a functional notation. Some useful mechanisms such as providing persistent .
objects for product representations and meta-operations for dynamic process modification

are employed by this model.






Chapter 3

View-specific Software Process
Modeling and Enactment

3.1 A View-specific modeling approach

Although various software process models have been proposed, actual development pro-
cesses are generally more complex. They are composed of various elements including activ-
ities, products, resource assignment, scheduling, and ﬁxany others. It is difficult to represent
such a complicated process with a simple monolithic model, and thus many of the proposed
models are fairly complicated. From the perspectives of documentation and formalization,
complex models have disadvantages; they are difficult to understand, evaluate and validate.

We advocate using a simple process model tailored for every specific purpose which is
regulated by a certain view of the software process. Various possible views are: a behavioral
view, a product-oriented view, a communication-oriented view, and an organizational view.
In this thesis, we study some of these views, and use these views as criteria for constructing
process models using the process modeling steps described below. These models were

consequently formalized, refined and enacted to create development support systems.

3.2 Overall procedure

Each model is defined and formalized by following a procedure consisting of five modeling
steps. Some of these steps may be performed implicitly and thus might not be clearly

distinguishable.



1 Model-type definition step

Depending upon the requirements of the specific target process, a model representing the
structure of the process from a specific view is defined. The result is called the model defi-
nition. Williams’ behavioral “Software Process Model” (SPM)[57], the Petri-net model[13],
and the context-free model(23] are all examples of such model definitions. In many cases,
only one model definition is selected for the actual description. Sometimes, more than one
type of model are chosen and subsequently these are unified into one model description in
later steps[26]. Previously defined and well-established model definitions can be chosen.
Alternatively, new model definitions may be obtained by modifying existing ones, or they
can be created >from scratch. This step may be repeated‘ until an appropriate model is

obtained.

2 Model description step

In this step, the target process is depicted using the selected model definition. The obtained
descriptions are called the model descriptions. Only the issues of concern for the target
process are sketched from the view of the selected model definition; details are not included
at this step. This step is one of the most intellectually challenging, in the sense that people
have to understand the target process and to determine the basic policy of the description.
Parts or all of the description may need to be repeatedly rewritten; sometimes the model
definition may need to be modified. Completeness and consistency are very important
properties for the model description produced during this step. However, no mathemat-
ically rigorous attempt is made to verify those properties here since the description may

involve informal components.

3 Formalization step

The model description is transformed into a formal notation in a process implementation
language. In this case, PDL is used. The obtained description is called the abstract formal
description. This transformation step is necessary since the model description produced in
step two is ambiguous and subject to multiple interpretations. For instance, sometimes the
model descriptions include graphical representations or natural language notations whose
meanings are not rigorously defined. After formalization into PDL, ambiguity in the in-
terpretation of the model is eliminated; thus the basis for later refinement is established.

In order to do this formalization step, we first have to determine correspondences between

10



the model definition and fragments of PDL descriptions, and then the overall model de- .
scription is transformed into the PDL description. The exact transformation method varies

depending on the model definition in use.

4 Refinement step

The formalized abstract description obtained in the previous step contains only limited
information about the process with respect to the view of the model definition. Depending
upon the final objectives for the process description, other information is repeatedly added
at this step until the description becomes rich enough. For example, if we create the
description in order to get a software development environment which supports the process,
we may add information concerning specific tools to use at each process step. The obtained

description is called the concrete formal description.

.~ 5 Enaction step

Finally, the concrete formal description is enacted(executed). Since the formal descrip-
tion is written in PDL, the PDL interpreter is used to enact the descriptions. There are
several objectives of enacting software process descriptions, such as automation, simula-
tion, demonstration, etc. Our objective here is to assist the developer. Thus, enacted

descriptions should act as development support systems.

3.3 The Software process description language: PDL

As mentioned above, the functional language PDL provides an uniform basis for our process
description formalism. PDL is a functional programming language based on an algebraic
specification language. Development processes in PDL may be defined at various levels of
abstraction.

PDL includes an abstract data type, type <state>. Functions for tool invocation that
possibly change the system status take a value of type <state> as one of their arguments;
they return a value of the type <state> which represents an updated system status resulting
from the operations. There is only one state value for the system at any point in the
execution.

Processes are described as PDL functions which take a state value S; and return a

modified state value S;. Therefore, PDL scripts (programs) describe definitions of state

11



transition functions such as tool invocations or window operations. For example, a simple

implementation of an “Edit, Compile, and Link” process can be written as follows:

Main(S) == 1if error(Trans.1(S)) then Main(Trans_1(S))
' else Trans_2(Trans_1(S));
Trans_1(S) == Compile(Edit(S));
Trans_2(8) == if error(Link(S)) then Main(Link(S))
else S;

The PDL interpreter provides various built-in functions for window operations, debugging
functions, and tool invocations, which are useful in constructing a development support

environment. Thus, a PDL program acts as a development support system.

3.4 Example problem illustrating process modeling

In this thesis, an example problem called the “Software Process Modeling Example Problem

" initially proposed by Marc Kellner(35], is used as a common basis for discussion on

modeling techniques and expressive powers. This problem defines various efforts, caused by .

a requirements change, with more than 10 pages of English text. Additionally it describes
various aspects of the software development, such as processes, products, human resources,
and management. Solving this problem means that we must read first and understand the
text and represent the described aspects with our modeling and description techniques.

The problem is organized into two parts: the core problem and extensions. The core
problem defines activities in an overall process step, named the Develop Change and Test
Unit. This step is composed of 8 sub-processes (we simply call these steps).

In this problem, the effects of the modification are assumed to be limited to a single
module only; i.e., and it does not affect other modules. Therefore, there is no need to
modify other modules or to check the consistency of related modules. This process starts
when the project manager has created the schedule and assigned the tasks. The entire
process terminates when the new code for the module passes unit testing.

Figure 3.1 shows an example of an informal view of this process. Steps, products, and

communications are specified by bubbles, icons, and arrows respectively.

12
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Figure 3.1: Process modeling example problem
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Figure 3.2: Time chart description of modeling problem

Many attempts have been made to extract certain views from this process. Figure 3.2

is an example of a simple time chart view. This time chart shows some characteristics of =

each step clearly such as initiation and termination; however, there are several difficulties,

as follows:

o This description does not clearly capture dependencies between steps. for instance,
both the Modify Code step and Modify Unit Test Package step must terminate before
the Test Unit step can begin. However, the time chart can’t describe that the order

of termination for those two steps does not matter.

e The description does not express which step to execute next when there are several
possible candidates. For example, if the first Test Unit terminates unsuccessfully,

then we may proceed to either Modify Code, Modify Unit Test Package, or both.

Figure 3.3 shows another description of the problem using a Petri net representation.
This description can appropriately express the properties of synchronization among the
steps mentioned above.

We can construct various kinds of models for fhis example problem. In the following

chapters, this example problem has been modeled in various views.
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Chapter 4

Behavioral Model

4.1 Behavioral view

In this chapter, the modeling focus is on the representa.tion— of the behavior of the software
process. Behavior is expressed as the definition of a sequence of development activities.
~ Other factors in the software process, such as the product model and its representation,
are not discussed here.

Describing complex sequences of activities corresponding to real work is not a simple task.
If the activities in the development sequence are fixed and predetermined, the flexibility
and performance of developers’ work will be greatly reduced. It is important to support the
developers by providing flexible activity sequences with simple descriptions. Mechanisms
are preferred to control the sequence of activities interactively with minimal restrictions.

A new method for development assistance that controls activities using a set of relatively
large possible sequences is introduced here. To define such a set, a formal context-free
grammar (CFG) is employed. Using this formal grammar, we can describe the behavior of
activity sequences simply and clearly.

Many previous works have used regular expressions or their extensions to represent pro-
cesses formally. These representations provide us with clear and straightforward views of
the processes; however, they lack the necessary expressive power. Some develdpment pro-
cesses may form inherently recursive structures — that is, the target problem is solved in
a certain way (or method, or strategy), and subproblems occurring in that process are re-
peatedly solved in the same way. These kinds of recursive structures cannot be represented

with regular expressions but can be easily expressed using CFGs!.

1We may choose a restricted CFG or an extended regular set which exist between a CFG and a regular

set. However, since no difficulty arises even with non-restricted CFG’s in the following discussions, we use
general CFGs.



A way to generate development assistant system from the description of the grammars
is also proposed here. As an example, a menu-based assistance system which navigates
the developer to the appropriate activities is constructed. It acts as a scheduler in a
development support environment. This system has been written in the functional language
PDL [26, 27] and is obtained by translating the grammar into PDL functions.

The key points of our method are as follows:

e By focusing on the sequences of activities, descriptions become simple and unam-

biguous.

¢ By using CFGs instead of regular expressions, any recursive process can be defined

naturally.

e By transforming the grammar systematically, menu-based assistance systems can be

constructed easily.

4.2 Definition of Behavioral model

In this view, we are not concerned with the details of each activity and instead focus on the
sequence of activities. Concrete information about the contents of activities are strongly
related to the structures, relations, and operating mechanisms of software products such
as documents or source code. .

Since the software development processes is assumed to consist of a sequence of devel-
opment activities performed by a developer on a workstation, an “activity” can be defined

as follows:
o The entire development process is an activity.
e Each activity may itself be decomposed and expressed as a sequence of activities.

e An activity which cannot be further decomposed corresponds to activation of a tool

or to a developer’s action.

With the assumption that development processes can be expressed as serial sequences of
activities, two models — a regular expression model and a CFG model — are assessed.

In both models, the following correspondences between grammar and process exist:
o The start symbol designates the activity sequence for the entire development process.
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¢ Nonterminal symbols designate partial activity sequences during the development.

e Terminal symbols designate atomic activities which should be carried out by the

developer or the development assistant system.

4.2.1 Regular expression model

Some activity sequences can be represented as regular expressions. For a simple example,

assume a traditional waterfall model, where all stages are performed sequentially:
Analysis — Design — Implement — Testing — Integration.

However, in actual development, a stage often is repeatedly performed and sometimes
development must backtrack to an appropriate previous stage. Therefore, the activity

sequence of the waterfall process model is expressed as:
((((Analysis* Design*)* Implement*)* Testing™)* Integration® )t

where “4” implies the sequence is performed one or more times. For another example,
consider the Edit — Compile — Link process. In this case, there are no iterations consisting

only of Comptile or Link. Thus, it is expressed as:
((Edit*Compile)* Link)*

Therefore, sequences such as Edit — Compile — Link and Edit — Edit — Compile — Edit —
Compile — Link are valid activity sequences. Sequences such as Compile — Edit — Link
and Edit — Compile — Compile — Link are invalid (underivable) activity sequences.

As shown above, some development processes can be expressed using regular expressions,
but some classes of development processes (e.g., processes including recursion) cannot be
expressed using regular expressions®. Therefore, context-free languages might be preferred
when defining the activity sequences.

Because regular expressions can be expressed with context-free languages, the rest of this

Chapter treats context-free grammars only.

4.2.2 CFG model

A context-free grammar G is defined as a quadruplet G = (Vy, Vi, P, S), where, Vi and Vy

are sets of nonterminal symbols and terminal symbols, respectively. P is a set of production

20f course, a more complex language may be needed for some of the development process, but we think
that a CFG is capable of expressing most of the interesting properties of activity sequences.
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rule, and S € Vy is the start symbol. Each element of P is formed as Xo — X;X»... X, ,
where X, € VyandX; € Vy UVp(1 < i< n).

Though the notation above is convenient for formal analysis, it is not easy to construct
the sentential forms. An extended notation of CFG, Backus-Naur Form (BNF) alleviate
this problem. We use an extension of BNF which uses the rheta. symbols shown in Table

4.1.

Table 4.1: Meta symbols for grammar description

Symbols Meanings

= Definition

XY Selection (X or Y)

; End of rule

X* Repeat X 0 or more times
X+ Repeat X 1 or more times
(...) Association of symbols

For example, the grammar notation :

S — N1 S
— €
N, — NoLink
Nz - N3 N2
— €
N3 — Ny Compile
Ny — FEdit Ny
- €

is expressed in our extended notation as:
S = ((Edit*Compile)* Link)*";

Terminal symbols are indicated in italics.

4.3 The example problem description

4.3.1 A topdown software development process

Activity sequences containing recursion can be expressed using CFG grammars. A descrip-
tion of a topdown development process is shown here as an example. Topdown development

is the development method in which a program is decomposed into modules, and then each
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module is further decomposed into its submodules recursively. Topdown development may -

be simply expressed by the following steps:

Step 1. Functionally decompose into submodules.
Step 2. Define interfaces between each submodule.
Step 3. Implement each submodule.

Step 4. Write code for the module body.

Implementing each module (step 3) is done by performing steps 1 through to 4 recursively.
In the case of the ‘smallest’ modules, requiring no further decomposition, only step 4 is
performed. Each step may be repeatedly performed, or feedback from step 2 to 1 or step

4 to 3 may occur.

The activity sequence in this example can be expressed as shown in Figure 4.1.

TopDown = MakeModule;

MakeModule = BreakDown | MakeSimpleModule;
BreakDown = MakeCombinedModule , Implement;
MakeCombinedModule = ( FunctionDecomposition | InterfaceDesign)*;
Implement = ( BodyCoding | MakeSubModule)™;
MakeSubModule = MakeModule*;

Figure 4.1: Grammar of activities in top-down development

4.3.2 Kellner’s example problem

In this example problem, the core problem and some extensions such as tool execution are
described. The resulting description is shown in Figure4.2. In this description, version
control tools (such as SCCS delta/get or RCS ci/co) are executed on every execution of
ModifyDesign and ModifyCode so that the latest version is registered. At the end of these
steps, progress notification mail is sent and updated products are printed.

The original problem specifies that steps are distributed to several people and performed
concurrently. However, our behavioral model can’t express this situation properly because
this model expresses single sequential behavior only. Therefore, the order of some concur-

rent steps has been predetermined.
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Process ::= Schedule_Assign_Tasks, Main;

Main ::=
(
(ModifyDesign, ReviewDesign)+,
(ModifyCode, (ModifyTestPlan,ModifyUnitTestPackage,
TestUnit)+)+
)+

ModifyDesign ::= .
CheckOutDesign, (EditDesign,CheckInDesign)+, Release;

CheckOutDesign ::= execute_sccs_get;
CheckInDesign ::= execute_sccs_put
ReleaseDesign ::=

execute_mail, execute_lpr, send_hardcopy_by_hand;
ModifyCode ::=

CheckQutText,

((EditText,CheckInText,Compile)+, (CodeCheckl|),)+,Release;
Schedule_Assign_Tasks ::= execute_scheduling_ tool;
CheckOutText ::= execute_sccs_get;

CheckInText ::= execute_sccs_delta;
Edit ::= execute_emacs;

CodeCheck ::= execute_browser;

Release ::= execute_mail, execute_lpr, send_hardcopy_by_hand;

Figure 4.2: Activity grammar for Kellner’s example problem
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4.4 Generation of an activity navigation system
4.4.1 Supporting issues

There are two uses of the model (activity sequence description) in constructing a develop-
ment assistance system. One approach is to generate a system which leads the developer
to follow the grammar by showing the range of possible activities at each step in the de-
velopment process. Another approach is to use the grammar for activity monitoring. The
developer’s activities are monitored while the process proceeds. If the developer attempts
to perform an activity deemed invalid according to the grammar, the assistance system
generates a warning and shows the developer possible legal activities upon request.

In this section, we show an application example based on the first approach. This system
displays menus and guides the developer to appropriate activities based on the grammar.

The following are the major features of the system:

Activity selection by menus: If several production rules are applicable at a given
time, the system provides the developer with a menu showing the possible choices.
Using the menu, the developer can select an appropriate rule. Menus restrict the
range of possible activities so inappropriate actions are prevented. Moreover, menu-
based user interface reduces the workload of the developer in terms of command

inputs required.

Automatic enaction of simple sequential activities: Activities expressed by rules
containing only linearly-ordered sequences (i.e.; having no branching) are automati-

cally enacted by the system.

Automatic invocation of tools: Primitive activities, which correspond to terminal
symbols in the grammar, are automatically performed if they are editor invocation or
compiler execution. This also reduces the developers’ workload as they do not need

to remember the names of tools, command options, and so on.

4.4.2 Generation of a menu-based assistance system

The menus show multiple selection candidates and prompt the developer to select one of
them. Figure 4.3 shows an example of the menus discussed in this thesis. These menus are

implemented in a window system with a “mouse” as a pointing device.
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new_xselec

Sample Menu

Edit Source

| Compile Source
Link Object
Execute
QUIT

Figure 4.3: An example of an activity selection menu

Development work proceeds by selecting from menus that are generated by the system

from the grammar. We constructed this menu system as follows:

Step 1. Determine the set of rules underlying the menu.
Step 2. If semantic sequence control is required, then append restrictions to the rules

Step 3. Define the action associated with each activity corresponding to a terminal sym-
bol.

The actions in in Step 3 depend on the environment in which the system is built. Thus,
details about Step 3 are not mentioned here. In the following sections, the generation of
the logical structure of the menus and also the restrictions that are added to each condition

are shown.

Generating menus from the grammar

A set of rules for the same non-terminal symbol corresponds to one menu component with
multiple entries (items).

For example, a production rule (this is actually a set of n rules):

[ Xo = X1 Xol...| X3 |

corresponds to a menu that is composed of selection items X .. X,,. An iterative expression

(e.g., +,*) is also a kind of a selection expression and corresponds to a menu also. For
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example, an expression Xt can be rewritten into a selection expression by introducing a -

new non-terminal symbol, X', and appending the following rules:

X'=X(redo_X|quit_X);
redo_ X=X';
quit_X=c¢;

As shown above, we can determine the items to be included each menu. The label of

each item to be displayed in the menu should be specified.

4.4.3 Adding restrictions to menu items
Role of restrictions

In actual development, all parts of an activity sequence might not be expressible using only
context-free grammars. Some parts of a sequence should be controlled semantically.

For example, in the development process described as:
S = ((Edit* Compile)*t Link)*;

the sequence Edit — Compile — Link is valid only if Compile has succeeded. It is invalid if
actual compilation has failed. For the case of the top-down development shown in Figure
4.1, the restriction, “The number of submodules specified in step 1 should be the same as
those specified in step 3,” can’t be represented using only the grammar.

To achieve this, restriction conditions to be satisfied for each menu item can be specified.
The restriction condition must be satisfied before an item can be selected. Visually, an
item whose restriction condition is not satisfied is displayed grayed as shown in Figure 4.3.
The developer can select any item whose restriction conditions are satisfied. Some menu

items may have no restriction conditions, thus, they are always selectable.

Semantics of restriction conditions

Actually, restriction conditions are defined as conditions on software products to be sat-
isfied. Here, “software products” means all information produced during the development
process. This includes not only program files but also intermediate documents such as spec-
ifications or design documents. Design decisions made by the developer are also considered
to be products. .

Assume a set of products {Dy, D,, ..., D,} to be an abstract state S. Thus, the develop-

ment process is a state transition function T on the (abstract) state, and each product is
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a function D; which extracts a value from the state. Each restriction condition is defined
as a predicate function P; on the state. Each P; is defined using the attributes of products
(for example, its existence, modification time, whether it satisfies the document syntax or
not, etc.).

For example, in the case of the Edit, Compile, and Link sequence, assume the products
to be {source, object, executable}. Now, the restriction condition of Link, “Current object
file has compiled successfully and it is newer than the current source file,” is described as

follows:

valid(object(S)) & (update.time(object(S)) >= update_time(source(S)))

The menu system explained above can be seen as a state transition machine, which
can be described easily with various programming languages. In our work, we have used
the functional language PDL. In' the rest of this section, a method for transforming the

grammar into a PDL program is shown.

4.4.4 Transformation of a CFG description into PDL
Menu functions in PDL

A primitive function, menubranch, has been implemented so that selections from menus
with restrictions may be simply described. Menubranch takes a list of tuples “[a label of
type string, a restriction value of type Boolean, a current state of type state]” as an argument,

and returns a modified status value. It is used in the following manner:

P(S) == menubranch({["s1",pre_s1(S),s1(S)],
["s2",pre_s2(S),s2(S)],
["s3",pre_s3(8),s3(8)1},8);

{..} and [..] indicate a list and a tuple respectively. When the function P is evaluated,
a menu including three selection items “s1,”“s2,” and “s3” is displayed. If a restriction
condition, pre_si(S), of an item returns false, its label is grayed and unselectable. After the
selection has been made by the developer, the state s_i(S) corresponding to the selected

item ¢, is evaluated and returned.

Transformation rules

Transformation of a CFG description into PDL proceeds as follows:
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1. The rule Xy = X;X>...X, is transformed into the definition of the state transition .

function X_0 as:
X_0(S) == X_n(...X_2(X_1(8))...);

2. The rule Xy = X;|X5|...| X, is transformed into the definition of the state transition

function X_0 as:

X_0(S) == menubranch({[*X_1",R_1(8),X_1(8)],
{"X_2",R_2(8),X_2(S8)],

["X_n",R_n(S),X_n(S)]
},8);
where R_1, .. ,R_n are the names of functions for the restriction conditions.

3. For each terminal symbol X;, a corresponding state transition function X_i(S) is
defined in PDL. For example, the terminal symbol Edit , which means editing the

source file using some editor, is described in PDL as:
Edit(S) == exec("vi " + SourceFile(S),S);

4. For every item in the menus, a Boolean function R_i(S) is defined which corresponds
to the restriction condition of an item. For example, a restriction condition for
Compile stating that the source file should be newer than the object file is described

as:
Res(S) == time_stamp(Sourcefile(S)) >= time_stamp(Objectfile(S));

The PDL program obtained by applying these transformations to the grammar in Figure
4.1 is shown in Figure 4.4. This program is executed by the PDL interpreter and acts as

the skeleton of the assistance system supporting top-down development.

4.4.5 Enacting example problem description

The PDL scripts for both topdown development process and for Kellner’s example have

the following features:

27



TopDownDevelop(S) == Makemodule(S);
Makemodule(S) ==

menu_branch("Make Module",{

[ "Break Down",Breakdown(S),true ],

[ "Implement" ,Construct(S),pre_Construct(S) ]

}. 8 )
Breakdown(S) ==

menu_branch("Break Down",{

{ "Complete",S,true ],

[ "Proceed", Breakdown main(S),true ]

}, 8);
Breakdown_main(S) == interface(divide(S));
divide(S) ==

menu_branch("Division",{

[ "Redo", divide(dividemain(S):S1), true 1],

[ "Quit", S1, true ]

1, s1);
dividemain(S) == exec( "emacs " + ModuleStructureDocument(S), S);
interface(S) ==

menu_branch("Division", {

[ "Redo", interface(interface main(S):S1), true ],

[ "Quit", S1, true ]

}, 81);
interfacemain(S) == exec( "emacs " + ModuleInterfaceDocument(S), S);
Construct(S) ==

menu_branch("Construction",{

{ "Redo", Construct(Construct main(S):S1), true ],

[ "Quit", S1, post_Construct(S) 1}

}, s1);
Construct main(s) ==

menu_branch("Construction",{

[ "Push Down",Makemodule(S),pre Makemodule(S) 1,

[ "Body Coding" ,makebody(S),true ]

}, 8 );
makebody(S) == exec( "emacs " + CurrentModuleSource(S), S);
// restrictions
pre_Construct(S) == NoErrorOfModuleStructureDocument(S) &

NoErrorOfModuleInterfaceDocument (S);
pre_Makemodule (S)== CurrentNumberOfSubmoduleToMake (5)>=0;
post_Construct(S)== CurrentNumberOfSubmoduleToMake(S)>=0 &
MadeCurrentModuleBody(S)

Figure 4.4: PDL script obtained from top-down development grammar description
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¢ They navigate activities by menus.
o They automatically execute tools such as editors and compilers.
e They store documents and source files in appropriate locations (e.g., directories).

Moreover, top-down development system manages the number and structures of modules

to be built.
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Chapter 5

Concurrent Task Model

In this chapter, we will discuss process models focusing on managing concurrent software
processes among multiple developers. The issues described. below are very important and
indispensable when monitoring and controlling large projects.

Actual software development is performed through the cooperation of many develop-
ers. However, many standardized processes do not explicitly deal with the various issues
relating to multiple developers. Such issues include coordination issues concerning the syn-
chronization of developers’ activities and data collection issues concerning data necessary

for estimating developer status.

5.1 Concurrent task view

The model has to cleary define activities performed by multiple developers and the relations
of these activities. Given such a model, navigation through these activities can be easily
provided and each developer’s progress can be easily monitored.

In this chapter, a process model concerning coordination issues in a multiple developers’
software process is proposed. The model proposed here is an extension of the one in
Chapter 4, which modeled development processes performed by a single developer using
a CFG to express activity sequences. The activities performed by a single developer are
assumed to be basically sequential, and formal grammars are considered to be a very good
vehicle for representing these activities. However, such a model can’t handle parallelism
which is essential for representing multiple developers’ work. The new model uses the
single developer model to define the activities of individual developers and uses additional
communication primitives to coordinate these activities.

Communication primitives control the progress of activities and organize the overall tasks



in the model. Each developer is responsible for accomplishing several tasks. Using this
model, reworking and backtracking are easily represented by repetitions of activities in the
regular expressions. Suspending and resuming work is denoted by communication of task.
Using this model, the current status of each task and each developer is easily tracked, and

the progress of the overall project can be determined by the project manager.

5.2 Definition of concurrent task model

The concurrent task model proposed here is based on a concurrent process model such
as Communicating Sequential Processes (CSP)[16]. This model is composed of several
concurrent tasks. There are many kinds of activities in actual development, and these ac-
tivities are performed by several developers concurrently. Each developer communicates to
other developers, and this communication coordinates and controls the progress of activities
(Figure 5.3).

If we model this process from a human-centered view point, the model becomes com-
plicated, since one developer might be responsible for performing several independent ac-
tivities which have to be described in the model. Therefore, an activity-centered model
is proposed here, where related activities are treated as a single task, and each developer

performs several tasks. The developers are assumed to be processors for the tasks.

5.2.1 Task identification

An activity can be a small unit of work such as “editing a file”, or a relatively large unit
of work such as “changing the system specification,” each of which is performed by several
people. An atomic unit of work such as tool execution or decision making is defined as
a primitive activity. A task is defined as a sequence of primitive activities! which can be
represented without concurrent actions. Although a CFG can be used to specify activity
sequences, a simple regular grammar (RG) is employed here. A task is defined as a regular
expression of primitive activities. Some operators representing iteration and selection useful
for specifying activity sequences are described in Table 5.1. Meta symbols (‘L 1) are
added to the ordinary regular expression operators. With these operators, we can easily
and simply describe the expressions generated by a RG.

For example, a task to repeatedly edit and compile a file until the compilation succeeds

can be specified as follows:

1From now on, we may refer to primitive activity simply as activity.

32



Table 5.1: Regular Expression operators used in task descriptions

A* Zero or more repetitions of symbol A
At One or more repetitions of symbol A
[ A 1| Zero or one appearances of symbol A
( ) | Grouping .
| Selection

task = (<Edit file>* <Compile file>)t;

An overall development process is represented as a set of tasks which may be performed
concurrently. Inter-task synchronization and cooperation are represented by simple com-

munications.

5.2.2 Communication primitive insertion

Communications are represented by asynchronous messages (strings of characters). Syn-
chronization of tasks and control of other tasks are performed by these communications.
Communication operators are categorized into two types: data transfer and task control.
The following are features of the data transfer operations:
o Data type of the transfer is “string.”
¢ One task may have several input ports for incoming data.

¢ To send data, a destination task and its input port should be specified.

¢ Input ports have operations for reading data and for checking the presence of data.

Specifically, there are three primitive operations shown in Table 5.2.

Table 5.2: Message transfer primitives

Operator | Argument Operation Return value
send task,port | send a string to another task e
recv port receive a string from a port string
peek port inspect existence of message in a port boolean

A send operation asynchronously sends a string to another task and then terminates.
There is a default port for every task, and if the port name is omitted, the default is
used. Recv and peek operations return values. A recv operation reads the first string in a

specified port, and returns it. This operation is blocked if there are no messages in the port.
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A peek operation is non-blocking. It checks for the existence of a message in a specified port.
If some messages are found, it returns true. Otherwise, false is returned immediately. The
returned values are used in the restriction conditions of selection expressions as mentioned
Chapter 4, and their values do not appear in the expressions explicitly.

These communication operations can also be used as events for synchronizing and con-
trolling tasks. For example, peek can be used to represent a process eﬁceéuting a job and

waiting for a message repeatedly (Figure 5.1).

Job-and-peek
peek ‘OK'

Job-B

send 'OK'

Figure 5.1: Task synchronization example

In Figure 5.1, taskA and taskB proceed concurrently, and taskB waits for an ‘OK’
message from taskA during the execution loop of its own job. This can be specified as

follows by using the peek operator:

task A
task B

<Job-A> <send taskB, OKport, ’0K’>;
(<Job-B> <peek 0Kport>)+;

Features of the second type of communication operators, task control operators, are:

o Initiation (activation) of other tasks
¢ Synchronization with another task’s termination

e Termination of other tasks

These features are represented with constructs shown in Table 5.3 by using message transfer
primitives procedurally. The Start operator is represented as a send message in one task
and a recv message at the top of another task. Thus, by default, every task has a recv
operation implicitly at the top of its sequence. The Wait operator is a special case of the
recv operation.

These communication primitives are also treated as activities, and together with other

activities, they constitute activity sequences. The activity sequences are represented as
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Table 5.3: Task control primitives

Operator | Argument Operation
start | task send a request to initiate (activate) another task
wait task wait for termination of another task
exit task inform other tasks of termination

regular expressions. Sequences which can’t be represented with regular expressions may be

decomposed into smaller tasks?.

For example, assume taskA activates taskB and taskC, and taskD waits for their termi-

i
(o) o)
start @ ".'wait

Figure 5.2: Example of concurrent tasks

nation (Figure 5.2).

This example can be specified in the concurrent task model as follows:

task A = <Job-A> <start B> <start C>;
task B = <Job-B> <exit D>;

task C = <Job-C> <exit D>;

task D <wait B> <wait C> <Job-D>;

Finally, each developer is assigned several tasks by the project manager, and performs

specified activities according to their regular expressions (Figure 5.3).

5.2.3 Task classification

Several tasks may have the same activity sequence but different properties such as in-
put/output module names. For example, assume taskl and task2 have the same activity
sequences but taskl modifies moduleA, and task2, moduleB. The common activity se-
quences are defined as task class, and tasks are defined as instances of the task class.
For this example, we may define task class Task 7, which modifies ModuleX. Proper-

ties depending on the particular instance, such as module name, are defined as instance

variables.

2The class of representation language will be discussed in Section 6.
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Figure 5.3: Overview of concurrent task model

5.2.4 Other alternative models

There are some alternative models for capturing concurrent tasks. For example, Kell-
ner uses a state transition model in STATEMATE system[36].. Although it provides a
simulation-based enaction mechanism with concurrent constructs, sophisticated communi-
cations can’t be established. Also, its state chart representation cannot express abstractions
such as task classification and parameterization. In [51], Saeki uses LOTOS (Language of
Temporal Ordering Specification) which is based on the CCS model. It has so many con-
structs that the descriptions are difficult to describe, understand, and execute. To express
specific perspectives of a process, this model would be overly complex.

Williams’s SPM[57] is similar to ours and uses regular expressions extended with the
“shuffle operator” to express concurrent activities. SPM also includes a message-passing
definition. Although the shuffle operator is for simply describing process concurrency, SPM
does not have sufficient functionality for the communications required for our purpose. In
SPM, all concurrency synchronization are expected to be handled by the shuffie operator.
Message-passing is subsidiary and does not provide additional synchronization mechanisms.
However, some activity sequences, such as how the previous example process waited on a

job, can’t be specified using the shuffle operators.

5.3 The example problem description

We consider the 8 substeps in the example problem such as ModifyDesign and ModifyCode
as tasks. The overview of the example process in the concurrent task model is shown in
Figure 5.4.

There are some constraints on the initiation and termination of the tasks, e.g., “Modi-
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Figure 5.4: Concurrent task view of the example problem

fyCode can’t terminate until ReviewDestgn terminates,” or “TestUnit can’t start until both
ModifyCode and ModifyTestPackage terminate.” These constraints are represented by task
communications in the concurrent task model.

Figure 5.5 shows the example task definitions. For example, task ScheduleAndAssign-
Tasks sends requests to 5 other tasks which are performed concurrently. ModifyDesign
first repeats (represented by ‘+’) actual modification work such as invoking an editor
(<modify design>), and sends an initiation request to ReviewDesign (<start
ReviewDesign>). These definitions are parameterized by the module names. By giving

the actual module name to the definitions, we get an instance of the task definition.
5.4 Generation of the concurrent task monitor/
navigator |

- 5.4.1 Supporting issues

In this section, we discuss ways of supporting and managing development using our con-

current task model.

Development support

The following issues are addressed here:
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ScheduleAndAssignTasks =
<start MonitorProgress> <start ModifyDesgin>
<start ModifyCode> <start ModifyTestPlan>
- <start TestUnit>;
ModifyDesign =
<modify desgin> + <start ReviewDesign>;
‘ReviewDesign = ‘ :
<review design>
( <start ModifyDesign> |
<send "ModifyCode", "Result", "OK"> );
ModifyCode =
( ( <edit>+ <compile> )+ <peek "Result"> )+
<recv "Result">; |
ModifyTestPlan =
<edit>+ <start ModifyUnitTestPackage>;
ModifyUnitTestPackage =
<edit unitTestPackage>+;
TestUnit=
( <wait ModifyCode>
<wait ModifyUnitTestPackage> <test>
[ ( <start ModifyCode> |
<start ModifyUnitTestPackage> |
<start ModifyCode>
<start ModifyUnitTestPackage> ) ] )+;
MonitorProgress = <wait TestUnit>;

Figure 5.5: Activity model description of the example problem
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(1) Navigating activity

When a developer has many complicated assignments (which can be considered as tasks),

it is difficult for the developer to know the following:

e How many tasks are there and which of these tasks are assigned?
e What activities follow each other in each task?
e Are there any tasks that are suspended and not yet resumed?
Information for answering these questions is essential when supporting the developer. auto-

matically providing such information and navigating the developers through the activities

are very important aspects to be considered.

(2) Communication support
By defining the processes based on the concurrent task model, the following would be clear:

¢ What kind of communication primitives are needed among the tasks ?

¢ What is the timing constraints of communication primitives ?

Using the definition, some simple communication primitives would be automatically exe-

cuted.

Management support

For project managers, the following benefits could be expected when using the concurrent

task model:
¢ The task definitions can be used as a measure of elaboration when assigning work to
each developer.

e In the case of distributed development, communication among the development sites
can be clarified by task communications in the model allowing communication costs

to be assessed and reduced.

¢ By monitoring each task status, progress and workload can be estimated. Moreover,
it is easier to find suspended tasks or frozen tasks (in dead lock) that still need to be

completed.

e The concurrent task model can be used as a milestone (measure) of project progress.
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We have developed a prototype system (Hakoniwa) for supporting and navigating the

developers and the manager based on these issues.

5.4.2 The Hakoniwa system
System overview

Based on the concurrent task model, we have developed a prototype of a cooperative
development support system called “Hakoniwa.”® Figure 5.6 shows an overview of the

system architecture.

#= Hakoniwa server (management supporty*
deveioper1 developer2 developer3

PHEHE

o] |
o
Al a2

Networlc,
taskA |idevelopert developer2 developer3
driver

taskB
driver |& Development support

task organizer

invocation

Figure 5.6: “Hakoniwa” system architecture

The concurrent task model description of all tasks in the development is defined in
a monitor of tasks and communications named Hakoniwa server. Support/navigation
managers for each developer are found in task organizers. A task organizer invokes and
controls several task execution engines (task driver) instantiated for each task. Each task
driver controls the sequence of activities. Products are manipulated through a product
server instantiated from the product relation model in the composite software process
model mentioned in Section 2.

Major features of the Hakoniwa system include:

3«Hakoniwa” is a Japanese word which means diorama or a small-scaled model or representation of a
scene.
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(1) Activity navigation

Based on the assignment of tasks to each developer (this may be made by a project man-
ager), task organizers for each developer and task drivers for each task are generated. A
task driver navigates the developer by providing menu selections for the next activities.
These menus are automatically generated from the definition of the activity sequence. If
an activity in the sequence is a primitive one accomplished by a tool invocation, the task

driver automatically activates the tool.

(2) Progress monitoring

Each task driver reports to the Hakoniwa server log information concerning the task
progress collected from the menu selection history. The project manager can assess the
current status of the entire project through the Hakoniwa server. It displays the status of

each task, and it also shows the history of activities for each developer.

(3) Communication support

All communications among the tasks are relayed through the Hakoniwa server. Simple
communication primitives such as task initiation requests and task termination notifications

are automatically executed without any action by the developers.

Implementation

The cooperative development environment is distributed over several distinct workstations
connected via networks. The underlying mechanisms are the TCP/IP communication
protocol of the UNIX™ operating system. The current implementation works on a Sparc
station running Sun OS 4.1.*,

A functional language for software process description, PDI[27], and its interpreter sys-
tem have been extended in order to be used as the task drivers. The PDL interpreter has
built-in functions for menu selection and tool invocation, and we have implemented the
communication primitives. A task organizer is implemented as an application program in
PDL. Each task organizer activates the task drivers corresponding to the assigned tasks.

The same approach as described in Chapter 4 is used to generate task drivers. Task
drivers are generated from the task descriptions (grammar), adding restriction conditions

for the selection expressions. Selection expressions such as ‘A|B’ are translated into menu
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selections in PDL. The sensitivities of selection items depend on their restriction conditions.
For example, the edit-compile-link activities expressed as (edit|compile|link)* are ac-
tivated by a menu which is composed of three items, “editB,” “compile,” and “link.”
The restriction condition for selecting “link” in this menu is the success of the previous
“compile.” Restriction conditions are determined by using the results of communication
operations or the attributes of the concerned products|24, 23]. These restrictions are sup--

plied to the generator as a set of PDL functions (Figure 5.7).

T e T
44 All task descriptions
PN —gaﬂagj‘}:u__
Assignmen 4 Assignment to developers
information| (by project manager)
a2 o
) I~
Task set 1 Task set N
_|v | d

" v
Restriction
conditions »( PDL g&erator) (PDL gaerator )

\—/\—/

Ne——————F ] I e— =
e R S ———=

\askonganizer/ (Jask organizer )

v b d
( PDL interpreter) ( PDL interpreter)
~ Developer-1 = e Developer-N -

Figure 5.7: Generation flow in the Hakoniwa environment

Task communication

Communication operations described in Table 5.2 and Table 5.3 are implemented as built-in
functions of the PDL interpreter. They are implemented using a server-client architecture,

and all messages are relayed and controlled by the Hakoniwa server.

Task status display

The project manager cannot get an intuitive understanding of the current status and
progress of the project by simply examining raw data such as the sequence of time stamps
for initiation and termination of each activity. It is not easy to grasp the current status of

the overall task given such limited information. The Hakoniwa system displays the activity
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history and current activity as a tree form illustrating the regular expression of the activity .-

sequence (Figure 5.8).

Regular expression
r CodeCheckOut ( Edif* Compile ¥ CodeCheckin —E

[—Tree representation of the structure of regular expressio
seq (start=11:05)

(start=11:05,end=11:05)
rep (start=11:06, repeat=1)
seq (stari=11:06)
rep (start=11:06, repeat=3)
L (&) stan=1123)

L (CodkCheckin)

“seq” represents sequential execution, and
“rep” represents repetition one or more times.

Figure 5.8: Regular expression and tree display of task

Figure 5.8 shows an example of a task defined by a regular expression and its structured
status information. In this example, the developer first retrieves a program from the
repository (represented by CodeCheckOut). After repeatedly editing (Edit) and compiling
(Compile), the code is stored back into the repository (CodeCheckIn). The structure of the
regular expression is shown with components seq and rep similar to those in Jackson’s tree
in the JSD method (seq means “sequel” and rep means “repeat one or more times” ), and
the overall tree shows the hierarchical structure with intermediate nodes for each sequel or
repetition. The Hakoniwa server records and displays the initiation time and termination
time for each node; for iteration nodes, it also displays the number of iterations. In this
example, Edit started at 11:23 and was repeated 3 times. To display this information, the
Hakoniwa server has an internal state transition map for each task. It keeps track of actual

state transitions which are advanced by the activity sequence.

5.4.3 Enacting the example problem process

Task organizers and task drivers are obtained by translating the instantiated definitions
into PDL programs.

By executing the obtained PDL programs, task organizers and task drivers are activated
and developers are navigated thrbugh activities using menus similar to the one shown in
Figure 5.9. The Hakoniwa server monitors the progress of each task and displays informa-
tion shown in Figure 5.10, 5.11, and5.12. Figure 5.10 shows the top view of the concurrent

task model description. Active tasks and communications are graphically displayed in real
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Figure 5.9: Menu displayed by the task organizer

time. Figure 5.11 shows a summary of activities performed by a developer. Figure 5.12
displays the internal status of a task.
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Figure 5.10: Overview display by Hakoniwa server

45




[®@] Memberinto

(]

m
g?odifgnesign 0 (Dinactive(last end=Hed Jun 16 03:03:25 1993 :
ReviewDesign 0 (O)start enable ]
ModifuCode 0 (Q)start enzble
=
v
4 |93-06-16 03:01 ModifyDesign 0 editDesign ’’ A
i 193-06-16 03:03 ModifyDesign O editDesign >’ Ad
e 193-06-16 03:03 Modifylesign 0 editDesign *’
Ty
v

StartRequest

in? P i1 ” Paiha™

Figure 5.11: Activity summarization display

= i{@| Taskinfo

ModifyDesign.0

seq n0 {(start=93-06-16 03:01)

rep nl1 (1) (start=93-06-16 03:01) (LN i

*term editDesign ’’ (start=93-06-16 03:01) “
start ReviewDesign

tRed
.0
. Y StartRequest
17,”sub2”} \ yStartRequest

Figure 5.12: Task status display
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Chapter 6

Product Relational Model

6.1 Product relational view

Both of previous models focused on the operations performed in the development process.
In this chapter, we present the software process from the products view point on which
operations are performed. We employ the object oriented approach for modeling products

and their relations. The key issues proposed here are as follows:

e Software products are organized in hierarchical tree structures. A node in a tree
represents a software product, or a set (composite) of software products and other
nodes. With this hierarchical grouping mechanism of software products, we can rep-
resent various relations on software products very naturally and flexibly. For example,
we can define correspondences between source code and object code, included and

including files, specification files and source code, etc.

o These tree structures are established using types of products, such as source-file type
and object-file type. We do not need to define the tree for each product one by one,
but we define skeletons (classes) of actual products through these types, which can

be applied to many different products in a project or in various different projects.

o The definition of activities applicable to each node is associated with the definition
of the node. Operations in software development such as editing, compiling, and
file-inclusion, are examples of these activities. Tools used for the operations, and
the conditions determining activation of operations, are defined. Also, the status of
a node, (e.g., the validity of products involved in the node) can be defined. Thus,
the definition .of a node is composed of two parts: the definition of the class ( the

hierarchy of types ), and the definitions of the processes. These definitions provide a



very simple and composite view of process and product relations, which are generally

shown in very complex and isolated ways.

¢ By defining every node, we can build an overall tree structure. Using the defined
tree, we can construct a software development environment where software developers
perform various operations automatically or manually, according to the definitions
of the processes appearing in each node definition in the tree. Constructing the
environment from the tree definition is very straightforward. The description of the
product relation model (i.e., the definition of the tree structure ) is transformed into

an executable PDL script by a simple translator.

6.2 Definition of product relation model

6.2.1 Software product identification & classification
Product identification

There are various sorts of software objects produced during the development process: spec-
ifications, design documents, source files, inclusion files, object files, and executable files.
They are categorized based on their properties, roles, and operations performed on them.

In this chapter, these objects (products) and the relations among these products are fo-
cused on. An object-oriented approach is used to describe the products. Compared to other
object-oriented descriptions, however, the frame work for describing product properties is
very simple and straightforward. We apply a grouping structure to the representation of
each product and its relation.

Since Kellner’s example problem, which is used in previous chapters, does not include the
detailed description of its products, a simple development process for C programs (Figure

6.1) is used in this chapter.

Product classification

Software products can be divided into groups (types) according to their properties and
their roles. For example, the types of files in C program development are categorized as

follows:
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srct.c { Compile| srci.o |

Objecti '\\
File

src2.0

Object
File

Figure 6.1: Example process of C programming

.h file def.h, function.h
.c file srcl.c, src2.c

.0 file srcl.o, src2.0
Executable file prog

Furthermore, we can create product types by combining these basic types:

Program composite of Modules and executable file
Module  composite of source and .o file
Source composite of .h files and .c file

This classification is expressed in a tree structure as shown in Figure 6.2. In Figure 6.2,
all of real files are assigned to terminal nodes ( leaves ) of the tree, and composite products
correspond to non-terminal nodes ( internal nodes ).

This structure applies not only to a specific project but to the general C program de-
velopment. For the each case of programming, a specific tree as shown in Figure 6.3 is

instantiated.

Notation

We introduce a notation for describing the logical structures and the operations of each
product. Note that this is not a notation for defining the physical structure of software
products, but rather the logical structure which represents systematic operations on soft-
ware products.

To define a composite type of software product ( product “class” in the object-oriented

world), we use the following notation:
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Figure 6.2: Product classification tree

e

)

# Class-Name( Component, ... )

{

MemberFunction( Arguments ) = Ezpression;

}

Here, “4” indicates that this name is a composite type. A composite type product con-

sists of component products and member functions. Each component may be defined as a
composite product or a primitive product. Member functions represent operations on the
product, and their notation is an extension of PDL [27].

For example, the product class #header , which is assumed to be a set of inclusion files,

is defined as:

#header(hdset:#htext*)
{

}

The postfix mark “*” means a composition of any number of #htext. Each component is

procedure() = textedit( oneof(hdset).body() );

public and may be referenced by parent products in the form of product.component.

6.2.2 Manipulation supplement

Two member functions, procedure and body , are treated as special ones. Procedure is
used to specify a sequence of actions to be performed. To define selective works, primitive

function menubranchis prepared. This function corresponds to a primitive function in PDL
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#module set

l srcl.o I #isource l src2.0 I

#.h file set ] l src2.c I

srcl.c I #.h file set

Figure 6.3: Product tree for a specific case

which allows user to select a work interactively from the system menu. Preconditions to be
satisfied can be specified in the procedure function using an “if” clause. The precondition
itself can be defined as a member function in the declarations of other related product.
Function body is used to define the sub-products required to represent the product.

Procedure and body do not always have to be defined in the product definitions. Except
for these two functions, there are no restrictions on defining the member functions which
represent properties of the product. These member functions are accessible from the parent
products.

For example, product class #source, which is assumed to be a composite of a C source

file and its inclusion files, is defined as:

#source(inc:#header, src:ffctext)
{
procedure () = if someprecondition() then
menubranch(
textedit( src.body () ),
textview( src.body () ) );
valid() = allexist(hdr.body ());
body () = src.body ();

}

There are two activities, ‘edit text’ and ‘view text’, for the source class products. There is

also a conditional function ,valid, that is evaluated by the other products as part of their
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preconditions. Function body specifies the subproduct that is used for the construction of
products in upper levels.

An example definition for all product types in C programming are shown in Figure 6.4.
These definitions are independent from the actual file names in a particular C program

development and they can be applied to many projects.

#htext { | #obj{
body() = text; | body() = text;
B

#header( ht:#htext* ) { H #module( so:#source, ob:#obj ){
procedure() = menubranch( i procedure() = if so.valid() then
edit(oneof(ht).body()), compile(so.body());
view(oneof(ht).body())); valid() = allexist(ob.body());
valid() = allexist(ht.body()); B body() = ob.body(); -

#ctext { #object( mo:#module* ){
body() = text; body() = mo.body();
} valid() = alltrue(mo.valid());

#source( hd:#header, ct:#ctext ){
procedure() = if hd.valid() then {
menubranch( edit{ct.body()), body() = binary;
view(ct.body())); }

valid() = allexist(ct.body()); 5

body() = ct.body(); i #program( obj:#object, ex:#exe ){
i procedure() = if obj.valid() then

link(obj.body(),ex.body());

Figure 6.4: Product class definition for C programming

6.2.3 Product instantiation

By using type definitions as mentioned above, we can instantiate an actual product struc-
ture. To do this, we declare the unique names of the products used in the current project.

For example, the real names of the inclusion files are described as:

#header headl = {“defh”},
head2 = {“def.h”, “function.h”};

In this example, head! and head?2 are instances of #header. All declarations of product
instances are shown in Figure 6.5. In Figure 6.5, we have assigned names to all non-terminal
nodes of the tree structure. These name assignments can be omitted as shown in Figure

6.6 (i.e. both Figures 6.5 and 6.6 show the same assignments ).
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#htext htext1,htext2; #obj obj1,0bj2;
htext1.body = "def.h"; R obji.body = "src1.0";
htext2.body = "function.h”; X obj2.body = "src2.0";

#header hed1,hed2; #module mdl1,mdI2;
hed1.body = {htext2}; 3 mdi1.body = (so1,0bj1);
hed2.body = {htext1,htext2}; mdi2.body = (s02,0bj2);

#ctext ctext1,ctext2; 3 #object objs;
ctext1.body = "src1.c”; 3 objs.body = {mdI1,mdi2};
ctext2.body = "src2.c";
- #exe execpro;
#source s01,502; execpro.body = "prog";
sol.body = (hed1,ctextt);
s02.body = (hed2,ctext2); #program pro;
pro.body = (objs,execpro);

Figure 6.5: Product assignment declaration

#program prog = ( { (( {"def.h"}, "src1.c" ), "src1.0"),

( ( {""def.h", "function.h"}, "src2.c" ), "src2.0")
}, "prog” );

Figure 6.6: Simplified form of the product assignment declaration
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6.3 Generation of a product manipulation system

6.3.1 Transformation of the description into PDL script

Each member function in the definition of the product structure can be transformed easily

into a PDL script by renaming. For example, assume the declaration is:

#source(h:#theader,c:#text)

condition() = allexist(ct.body());
procedure() = if h.valid() then
menubranch( edit(ct.body()),
view(ct.body()));

}

and the name assignment is :

#éource srcl;
srcl.body = ( hdrl, ctextl );

Member functions condition and procedure are translated into PDL as follows:

srcl_condition(S) == allexist(ctext1_body(S));
srcl_procedure(S) == if hdrl.valid(S) then
menubranch(”srcl-procedure” ,{
[*edit” edit(ct_body(S))],
[?view” ,view(ct_body(S))]
1,S) else S;

Here, argument S is a variable of type <state>, and functions such as srcl _procedure, edit,
and view are defined as state transition functions.

The obtained PDL script consists of function definitions. The definition of a product type
is translated into a set of functions. To execute (evaluate) these functions systematically,

the translator also outputs a scheduling function as an entry point for the execution.

6.3.2 Executing the script

Using the PDL interpreter, the obtained PDL script acts as a menu-based C programming
support system. It produces an o?eration menu for each product. The project proceeds by
selecting an operation from a menu associated with a product (Figure 6.7). As shown in
the figure, a product which does not satisfy its pre-conditions is grayed in the menu. This

means that there are currently no possible or needed activities to perform.
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The facilities provided by this system involve those provided by the make program in .
UNIX™ . According to the tree structure of the products, this system produces the target
products assigned to the non-terminal nodes of the product tree. Moreover, our system
shows the status of the products visually, and leads the developer through appropriate

actions.

Build the program (link "srcl.o" and "src2.0")

Main Menu
Compile mdll ( "srcl.c" )

#module mdl1 #source so1

Edit "srcl.c"

#source so1 View "srcl.c"

r Edit "defs.h"

Element Selection

"defs.h"

. #source s02

#header hed1
#header hed2

#header hed?2

EXIT

L1} H "
L_ Dark items means that those function.h

preconditions are not satisfied.

Figure 6.7: Menu images during execution
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Chapter 7

Discussion

7.1 Criteria for model selection

A model description is an abstract description of the target ﬁrocess with a specific view, and
it is often employed when use of the complete description is undesirable or impractical[12].
Although three specific models has been discussed, the factors presented here are applicable
to other models with different views such as resource assignment and project management.

It is reported that various goals and objectives of software process modeling can be
clustered into five objectives: Automated execution/control, Human interaction, Manage-
ment, Understanding, and Analysis[34]. Our primary concerns at model definition time
are “Understanding” the overall structure of the target process and “Automated execu-
tion/control” of process-centered development environments. Representative requirements
for understanding the process have been listed in Kellner[34]. These requirements are: (a)
easy to understand, (b) unambiguous, (c) compendious, (d) representing human procedu-
ral level of information, (e) supporting multiple levels of abstraction/refinement, (f) view
mechanism for various roles, and (g) representing multiple perspectives.

The criteria and the factors have been chosen based on the requirements for the model-
type definition step. These partly cover the above requirements (i.e., (a), (b), (c), (d),
(f), (g)), and the remaining requirement (i.e., (e)) is also reflected. Criteria and factors
guiding model selection, which may overlap or closely relate to one another, are described

as follows:

(1) Pictorial and Textual Representation of Models

Syntactic representations of models may be roughly classified into two categories: pictorial

and textual. In a pictorial representation, simple graphs often composed of boxes, circles,



and edges are used. In textual forms, both formal languages (subset/superset of various
computer languages or newly designed ones) and natural language annotations are widely
used. Selecting an appropriate representation is very important since the representation
heavily affects the comprehensibility of the structure of the processes and the expressiveness
of the model descriptions as discussed later. We have used simple pictorial representations
in most cases (as shown in Figure 1, for example), since the target processes we have
described were unknown to us and we had to understand them by repeatedly drawing

pictorial sketches.

(2) Formality of Semantic Definition

One major concern with the semantics of process models is formality. Some models have
formal semantic definitions based on their background mathematical definitions. For ex-
ample, pure Petri net and state transition diagram are mathematical models having formal
meanings. Since these pure mathematical models represent limited views of the processes,
we sometimes want to extend such models to involve informal expressions, such as natural
language annotations, or undefined pictorial structures.

Informality in the model is justified and sometimes essential, since when we first construct
a model for an unfamiliar development process, we may try various formal and semi-formal
models concentrating our attentions only on the points which interest us. Even using model
definitions with rigorous formal semantics, the consistency and completeness of the model
description cannot be guaranteed automatically. On the other hand, we would be able to ‘
write less ambiguous descriptions of the models if enough attention is paid.

Formal models are, for example, based on the Petri net graph and context free grammar,
and semi-formal ones contain pictorial structures which leave room for interpretation during
later refinement steps.

Criteria for choosing the level of formality are affected by the objectives of the process
descriptions. If we need the description only for understanding the overall structure of the
development and no detailed analysis or automatic enaction of the process description is
necessary, informal constructs may be used in the model. If enaction for a development
support environment and/or for machine simulation is expected, we should pursue high

formality at the initial steps.

58



(3) Clarity of Description

This factor is very important since one of the purposes of process modeling is to represent
the target development process in easily understandable ways. The clarity of the model
is a great contribution towards understanding the process. It seems that the clarity of a
model is directly based on the clarity of the syntactic and semantic definitions. We have no
established metrics for measuring these factors, although techniques for measuring graph
and text complexity would be used for measuring the syntactic complexity([32]. It seems

intuitive that clarity increases as complexity decreases.

(4) Compactness of Description

This factor is directly based on the complexity of the semantic definition. If a small model
describes abundant meaning, it generally seems that the semantic definition must be rather
complicated. Simple semantic definitions tend to require complex model descriptions in
order to depict a certain development process. In our framework, we generally.put higher
priority on clarity, as apposed to compactness. This is because we wanted to concentrate
on simplistic views of the processes so that we could easily grasp their overall structures.
The information included in the model definitions was limited and the model descriptions

became more verbose.

7.2 Language class of behavior specification
7.2.1 Language class of activity sequence

In the concurrent task model, the activity sequences of tasks are defined with regular ex-
pressions. However, there exist complex processes which can’t be specified well by regular
expressions. In some cases, such as interleaving sequences, one may split them into com-
municating parallel subsequences each of which can be expressed by a regular expression.
In other cases, as shown in Chapter 4, more powerful language classes such as context free
grammars are needed for more complex sequences containing recursion. Another problem
with regular expressions[24, 23] is that some constraints can’t be simply expressed even if
they were represented with a finite state machine. For example, a simple waterfall activity
sequence A-B-C which may contain backtracking loops (Figure 7.1a) is easily represented
by deterministic finite automaton (DFA) as shown in Figure 7.1b. However, the regular

expression representation does not efficiently reflect the nature of this process (Figure 7.1c).
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On the other hand, regular expressions are suitable for static analyses such as dead-lock
detection, since many operations on the regular expressions are decodable while those on
context free grammars are not in many cases. Another merit of regular expressions is the
simplicity of the history display. The Hakoniwa system displays the progress of tasks with
tree structures of regular expressions. If we used context free languages, the tree easily
grows huge in size since it allows recursion. Thus, it is difficult to display and we can’t

easily determine actual progress through the tree.

a
i I 1 a b c
A sl B el C > O—>O{>/O ((ab)* ¢ (b (@b)* ¢ )* )*
a b

(a) Activity Flow (b) DFA Representation (c) Regular Expression

Figure 7.1: Representations for simple A-B-C sequence

7.2.2 Process enaction

As mentioned in Chapter 3, process descriptions are enacted to provide software develop-
ment environments and to simulate process steps and check their validity. |

In Chapters 4 and 5, Kellner’s Example Problem has been enacted and the behavior
of each activity step has been checked through the actions of windows corresponding to
each step. It is possible to get statistical information concerning the development, if we
introduce into the description statistical operators having various probability distributions,
such as an operator whose active time period is given by a normal distribution.

A similar idea is presented in Kellner[36], in which a state transition model is assumed
and simulation is the main purpose. The approach proposed in this thesis has no specific
presumed models and uses descriptions for other purposes in addition to simulation.

By invoking various tools in the descriptions, different kinds of software development
environments may be established. These software development environments adapt a
workstation-based collection of tools to a particular organization, project, or individual
and integrate existing tools as proposed by Software Designers’ Associate (SDA)[37]. The
conceptual issues concerning development of SDA affected the design and implementation
of PDL.
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The Arcadia Project [54] has objectives similar to those of the SDA project. The Arcadia
project is attempting to create a development environment for very large and complex
projects by automating aspects of lifecycle activities and building up collections of tools.
Tame [5] has related goals, but focuses mainly on collecting information on a developer’s
activities and reflecting this information back to the developer so that the feedback can

positively affect productivity and quality may be obtained.

7.3 Process telemetering

7.3.1 Hakoniwa system as a monitoring environment

Research efforts into product metrics for determining development status have been
pursued(5, 39]. Product metrics such as lines of code, number of faults, number of control
paths, and many others are used for estimating completeness of the activities. However,
most of this research only proposes the product metrics without any underlying process
models. However, the metrics for measuring products closely depend on the development
process, and if the process changes then the metrics have to be changed also. Introducing
process models into product metrics environment is essential so that we can determine the
appropriate metrics and more accurately assess the current sta.tﬁs of the development.

As shown in Chapter 5, the Hakoniwa system provides data which helps to assess the

project’s progress, such as:

e Number of iterations of each activity
¢ Time duration of each activity (initiation and termination time)

o Current activities

An experienced manager may easily comprehend the project brogress from these data;
however, it is insufficient to only provide the data; it is also desirable to have goal values
for these data[5]. It is difficult to set such goals and to estimate progress only from single
project data. For example, even if we have the data on the number of iterations at a given
moment, we can’t predict the total number of iterations by the end. However, if we had
data for similar projects, we could assess the current status using this analogous data.

In order to perform this kind of statistical prediction effectively, it is essential to store
large numbers of project profiles. The Hakoniwa system collects such data automatically,

without incurring data collection costs. The collected data are more reliable than data
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collected by hand such as reports from developers. Furthermore, the collected data are

directly used for evaluation of the current status and for project profiling.

7.3.2 Dead-lock detection in the concurrent task model descrip-
tion

The concurrent task model contains dead-lock possibilities as do many other concurrent
models. Dead-lock is defined here as: “Infinitely waiting for a message, causing task
execution to freeze”l. According to the shape of the dependency graph depicting tasks

waiting for messages, we consider the following two kinds of dead-lock:

e Linear waiting — A non-circular path whose start node does not send a message.

o Circular waiting — A circular path.

.H Yv\aiting
‘ waiting
@ A

\ ‘waiting waiting

o

(a) Circular waiting (b) Linear waiting
Figure 7.2: Task deadlocking patterns

To statically detect the existence of dead-lock in the description, we focus on the types
of messages, especially on initiation requests and termination notification messages. For

these message types, we look for the following conditions:

e For linear waiting:
In a directed graph showing only the relation of initiation requests, there is a task

unreachable from the task initially activated.

1Here we do not consider task freezes caused by exclusive data access, since the product model is not
in the concurrent task model.
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o For circular waiting:
In a directed graph showing only the relation of termination notifications, there is a

cycle.

In the case of dynamic detection during the execution, linear wait dead-locks have to be
detected by human analysis, while circular wait dead-locks can be detected automatically

by checking for cycles in the message waiting paths.
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Chapter 8

Conclusion

8.1 Summary

This thesis has proposed a new method of modeling softwé,re processes and enacting the
modeled process descriptions. The modeling steps (the model definition step and the model
description step) do not rely on a specific model definition but allow appropriate ones to
be chosen. The formalization step is performed using the language PDL, and refinement
and enaction steps are made on the basis of PDL and its system. The overall structure
of this method is simple and straightforward but very effective, and actual applications of
this method have been demonstrated in this thesis.

In Chapter 4, a model based on a behavioral view was proposed, and an activity navi-
gation system was generated from the description of the model. A method for génerating
a development assistance system with flexible process control from the grammar descrip-
tion was shown. The obtained system allows for flexible activity selection, valid sequence
generation, and ease-of-use via a restricted menu mechanism.

In Chapter 5, a model focusing on concurrent development and communications per-
formed by several developers was constructed. The Hakoniwa process monitoring system
was constructed based on this model. Hakoniwa controls tasks performed by multiple devel-
opers and displays their progress status. It also provides menus that guide the developers
towards appropriate next steps. At the same time, data for analyzing the progress status
of the project are automatically collected and provided to the project manager. These data
are useful for estimation and prediction of the project as progress.

In Chapter 6, a simple product oriented model was defined and a product manipula-
tion system was obtained from the model description. Using this model, relations among

products are easily and naturally expressed for many cases of software development. The



hierarchical tree structure employed here is a very good representation for organizing prod-
uct relations.

Through these experiences, we find that similar models were repeatedly used. Thus,
model reuse, i.e.; retrieving existing models and adapting them to the target process are
very important issue. Mechanisms for supporting the reuse and evolution of process models
is an emerging research topic.

The method discussed here mainly targets modeling, describing, and enacting software
processes. Other activities in the software process lifecycle, such as requirement analysis,
process data analysis, and evaluation, are not studied here. These activities would need to

be included when creating a support environment for the entire process lifecycle.

8.2 Future work

Several types of view-specific process models have been proposed in this thesis. Composing
these models into one complex process model is a challenging theme. Since the proposéd
approach uses PDL as a basis for formalisms and semantics of model definitions, it may
be possible to define the interactions among these model definitions by describing the
correspondence rules of every element in the models in PDL. There is an on-going attempt
to extend Hakoniwa system prototype into an integrated development support environment
which supports multiple process views such as the concurrent task model, the product:
relation model, and an organization model. This version of the Hakoniwa system will
partially support dynamic modifications of the software process also. Moreover, the merger
of some existing product management server; such as Portable Common Tool Environment
(PCTE)[8], into this approach should be investigated.

Another important future topic is applying these process models to practical development
processes to collect data on real processes. Such data would be useful for examining the

models as well as for examining the processes.
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