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Following James [7] we denote the stunted complex (F=C) or quaternionic
(F=H) projective spaces by FP,,,, (or P,,,,) for positive integers z and &,
that is

FP,.;, = FP, JFP, = FP**\|FP"-

Let d be the dimension of F over the real number field. Let i: S*=FP,,, ,—
FP, ., be the inclusion. By stable James number F {n, k} we mean the order of
the cokernel of

deg = i*: {FP,,;,, S*} — {8, S} = Z

where {X, Y} denotes the group of stable maps from a pointed space X to
an other pointed space Y. In the previous papers [5, 8, 9, 10] we used the
notations k(FP,**!, S*) instead of F {n, k} and estimated F {1, k}.

The first purpose of this note is to determine F {n, k} for small k, that is,
we shall determine H{n, k} for k=<4, estimate them for k=5, determine
C{n, R} for k<8 and estimate them for k=9 and 10. These shall be done in
§2and §3. The second purpose is to show that F {n, k} can be identified with
the James numbers defined by James in [6]. This shall be done in §4.

An application of this note to F-projective stable stems shall be given in
[11].

In this note we work in the stable category of pointed spaces and stable
maps between them, and we use Toda’s notations of stable stems and Toda
brackets in [14] freely.

The author wishes to thank Mr. Y. Hirashima for his kind advices.

1. Preliminaries

In what follows we shall be working with both real K-cohomology
theory KO* and complex K-cohomology theory K*. We use the following
notations. KO* and K* denote both the K-functors and the coefficient rings.
By the same letter £=£, we denote the canonical F-line bundle over FP,,
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the underlying complex or real vector bundle of it. Put x=§—d/2€K(FP,)
and t=(—1)"""%,,(£)e HY(FP,; Z), where c,(£) denotes the m-th Chern class
of £. Put also £=§,=f,—1€ I&})"(HP,,):IE\(—)"“(HP”). The formal power
series ¢x(x) are defined to be exp(x)—1 for F=C or exp(v/ x )+exp(—v/ % )—2

for F=H. The rational numbers az(n,j) are defined by (p7z'(x)/x)" =2a p(n,7)xl.

ch: K( )—=H*( ;0Q) denotes the Chern character. Then the followings are
well known.

Proposition 1.1. (i) K(FP,)=Z[=]/(z").

(i) KO*HP,)=KO*[E]/(E) and E,| yp, ,=E,-1.

(ii) H*(FP,; Z)=Z[t]/(t").

(iv)  ch(z)=x(?).

Let ¢=¢;: FP,., ,CFP,,,.;+,; be the inclusion for >0, g=q,: FP,.;,—
FP,.} - the canonical quotient map for 0<m <k, p,=py : S*~'—FP, the Hopf
bundle projection, and p,,; ,: S**¥4*—-FP,, , the composition of p,,, and g,_;:
FP,.,=FP,,, ,;;-,—FP,.,,. Let G, denote the k-stem of the stable groups of
spheres. Let e.: G,—Q/Z or ek: Gg3—> Q[Z be the Adams’ complex or real
e-invariant respectively [1]. Then we have

Proposition 1.2 (Adams[1]). ec: G\—=>Z,, ek: G3—>Zyy, ec: Gi—>Zyyy and
er: Gy—Zs, are isomorphisms, while there is a split exact sequence

€c

0— Z{nk} > Gy — Zyp—> 0.
In [10] we obtained the following.

Proposition 1.3. For f& {FP,., ,, S™} we have
ec(foPurp) = —deg(fas(n, k) .

Since e.=2e% on (8k+3)-stems [1], ez gives more precise informations about
2-primary components, so we compute ex(fo p,. ;) for the case of F=H and k=
1 mod(2) or F=C and k=2 mod(4).

We use the following notations. Let g€ K(S?) and gREEé(Ss) denote
the Bott generators. +J* denotes the Adams operation. Let ¢: KO*—K* be the

complexification and r: K*—KO¥* the real restriction. Put zO:r(z)EIaCPn)

and zjzr(géz)EIzb/‘zf(CP"). Put also y,,=gz*= KO%¥ and y,,.,= KO%*** the
generator satisfying ¢(Vy,.,)=2gc* 2 for integer k. For fe {X, Y},C(f) denotes

the mapping cone of f.
We consider the case of F=H and k=1 mod(2) or F=C and k=2 mod(4).
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Given f& {FP,;;, S™}, we have the commutative diagram

Sntkyd-1 ———&L—a FP,,H,,;, ——>FPn+k+1,k+l
|- o
Srkyd-1 fobuirs S C(foDusas) -

Apply KO™ and K* to this diagram; since IE?)/”"(S(”")"“):IZ”"(S("*")"‘I)

—R#-1(§")=0 and KO"~\(FP,,, ), K*{(FP,,, ) and KO"~1(S") are finite
groups, we have the following commutative diagram in which the horizontal
sequences are exact.

O(——— Eénd(FPn-frk,k) — I:;O’”d(FP”4_k4_l'k,,,l) (fl?énd(s("{‘k)d)'(—‘ 0

Sl e ]

0« K”d(FPsz,k) 1 K”d(FPn+k+1,lz+l) D K"d(s("ﬂ)d) «—0

0 <— Eénd(Snd) P D }Zénd(c(fopﬁk'k)) - k‘énd(s(ﬂm) «—0

f* / 1 / - /
3 VAN y
0<«— Kri(§n)y «— K""(C(fop,..yk,k)) <______an1(8(11+}¢)4) «—0
We can choose generators a, be IEZ"“(C(fop,ﬁ,,’k)) and a’, b'€K"(C(foPyirr))
such that a’'=c(a), 2b'=c(b), j*(a') generates K"(S*)=Z and f'*(b') =g, /2 a"**,

Here we identify K’”"(FP,,HH'HI) with the free subgroup of K"(FP,.,.,) gen-
erated by go "% 2", g " 2"t ... g 7m/2 g7tk Hence we can put

fH@) =g 3y a, 5+
for some integers a;. 'Then by the proof of (1.1) of [10] we have
a; = deg(f)ap(n,i) for 0=i<k—1,
(4 3 s, i) (B HF = d7(1—dYear(n, B)

And we have

Proposition 1.5. In case of F=H and k=1 mod(2) or F=C and k=2
mod(4) we have

() ehl(fopumsn) =y a——y deg(fets(r, K),

(ii) if F=H, a,=0 mod(2),
(iif) if F=C, n=1 mod(2) and deg(f) is known, a, mod(2) is computable.
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Proof. First consider the case of F=H and #=0 mod(2). By Bott pe-
riodicity we can use KO and K instead of KO* and K*. Then we have
Y(a) = 4"a+nb
for some integer A, and
ex(foPares) = MHF # 1))
We have
¥(a') = () = 4"a'+ 2N,
W H(a) = VA a2 = 2 ai(a+4a)"

:T\_‘ é a‘(i]{i::)4n+2i—jzﬂ+j ,

I

V(' *(a") = f*(Y¥a')) = f*(4"a’+21b")
= 4" Zho_‘, ;3" 20

Comparing the coefficients of 2"**, we have
20 = 44— D)ay+ S a (iiarss.
i=0
Then by (1.4) we have

1
e(fopusn) = 5 = deg(f)aa(m, &)
as desired. Next we show (ii). Put f’*(a):i} d;y,+:£". Then
5 st . .
C(f’*(a)) p— ;)dic(yn-l-i) (C(f))”+' — ;)d‘_eigc—Z(n+t)(gC23)n+t

= é dEx,
=0
where ;=1 (if 7 is even) or 2 (if 7 is odd). We have also
k :
o(f*(@) = f*(c(a)) = 25 a;z""" .

Therefore a,=d,&,=2d,.

In case of F=H and n=1 mod(2), (i) and (ii) can be proved by the quite
parallel arguments to the above. We omit the details.

For F=C (i) can be proved by the same methods as the above. We only
prove (iii). First we consider the case of #=3 mod(4). Put n=4m+3 and

k=4l+4-2. By Bott periodicity we can use KO and K instead of KO* and
K, By Theorem 2 of Fujii [4], it is easily seen that Eé‘z(CP4m+4,+5'4,+3) can
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be identified with the free subgroup of IEB‘Z(CP4M+4,+6) generated by 2,321,
2122, e 202,282 So we can put f'*(a)= 2:5;: d;z2,m 1% for some integers
d;. Then
(@) = S i) () = go $di(5—2) (32
where 2= —gz-}22—2%4-.--. We have also
o *(@)) = [*(e(a)) = ge 3 amH.
So we have
iﬁ:aiz”‘”“ = ngi(Zz—zZ—{—ﬁ— o) (RE—23 e )P
Calculating this equation over the mod 2 integers, we have

Z a z4m+3+l—— E d (22+23+ ”_)2m+2+i mod(z, z4m+4l+6)

41+1 2/+1 ; .
> Z d,(zg',ﬂf]— )zimteti mod(2) ,

ji=0 i=0

since (x4 --)" —E_,‘( 4«7, Then

(1.6) 52’2 d(niivi) mod(2) for 1<i<4l+2.

By (1.4) and (1.6) for 1=<i<4/+1,d; mod(2) is determined for 0=;=<2/, so
the equation

20+1 .
(1.6)' A2 = gdj(z'g;ilﬁzj—]) mod(2)
-1 .

= Z d2j+1(2m2;1§—12§'}r;2]) mod(2)
determines a,;,, mod(2), here we use the fact (;32,)=0 mod(2) for any 7 and j.
Next we consider the case of #=1 mod(4). Put n=4m+1. We use KO and
K5 instead of KO* and K*. Then we can put f’*(a):ﬂéld,-zszoz'"“ for some

i=0
integers d;. By the same arguments as the above we have
(1.7) a; = 23d,(*"3,777") mod(2) for 1<i<4l+4-2
and in particular
4

(L.7) Ayip = Zzodﬁ(z'”‘z‘,‘f,ﬁf,‘“) mod(2) .

These and (1.4) determine a,,,, mod(2). This completes the proof.



484 H. OsHiMA

To compute F{n, k} by inductive step on k we prepare the followings.
Proposition 1.8. F{n, k} is a divisor of F {n, k+1}.
Proof. It is trivial by definition.

Proposition 1.9. For f€ {FP,., ,, S™} with deg(f)=F {n, k} we have
Fi{n, k}ec(fo Purs i) | F {n, k+-1} | F {n, R} 4(f o Puss 1)

where #g denotes the order of g and a|b implies that a is a divisor of b.

Proof. Choose f'E {FP, 4 441, S™} with deg(f')=F {n, k+1}. Since
410 Pyrs s=0, we have

0 = ec(f'oto pyrr,e) = —deg(fotr)ar(n, k)
= —F{n, k+1}az(n, k) = —F {n, kYo p(n, R)F {n, k+1} |F {n, k}
— —eo(fopure)F {m, k-t 1} [F {n, B} .

Hence the first part of the conclusion is obtained. Since (4(f Pyt .4))f © Pass =0,
there exists &€ {FP, 41 411, S™} with hoiy=(#(fop,iss))f- Then deg(h)=
deg(f)B(foDursr)=F {n,R}4(f o Pyrs 4). Since deg(h) is a multiple of F {n, k+1},

the second part of the conclusion follows.

Proposition 1.10. For f& {FP,,,;, S*} with deg(f)=F {n, k} there exists
he {FPn+k,k—1’ S} with (F {n, k+1}[F {n, k})f°Pn+k,k:h°91°Pn+k,k-

Proof. Consider the exact sequence

* de
o o> {FPyiy hy S} Lo (BP0 5%} S8 {FP, ., ¥} — -

Take f'€ {FP,,p1 411, S} with deg(f)=F {n, k+1}. Then deg((F{n, k+1}/
F{n, k})f—f'01)=0. So there exists A& {FP,; ;-,, S™} with ¢¥(h)=(F{n, k
+1}/F {n, k})f—f'oi, by exactness. Then kog,op, , ,=((F{n, k+1}/F {n, k})f
—f'0ty)o pprrs=(F {n, k+1}|F {n, kR})f o P, s as desired.

Proposition 1.11. C {2n, 2k} is a divisor of H {n, k}.
Proof. Consider the commutative diagram
P CPyy gy D CPy, = S*
S4n+4k—l 17[ \l 7[/
HP, ., D HP,,,=S*"

in which all maps are the canonical ones. For our purpose it suffices to show
that 7z’ is a homotopy equivalence. Indeed this holds because in the following
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commutative diagram z'* is an isomorphism.

*

q .
H(CPyy a5 Z)T H4"(CP2n+21é,2k§ Z) ? H*"(S*; Z)

”*/[ =~ ”*)[ o~ 7[/*]\
*

H"(HP15 Z)‘—q:_ HY(HP, 143 2)— > H"(S"; Z) .

Next we compute e-invariants of some elements.

Lemma 1.12. Suppose that there is a commutative diagram
Sntkyd-1 Prik FPn+k,k cC FPn+k+1,k+1

l= ; lL lL'

Seimd-l_ = S FP,.,, —> C(p)
= Ul‘ ]\ i,

Snrkyd-1

FP,,,,—— C(s)

in which L denotes the multiplication by non-zero integer L. Then
k-1 .
ec(s) = L{X (D" 7C;+ (D)} /dN(d*—1)

where C,= C (n, k) is the coefficient of x"** in (pp(x))"*/.

Proof. Applying K to the above diagram we have the following com-
mutative diagram in which the horizontal sequences are exact.

0 K(FP”+kvk) A K(F‘Pn+k+1,k+1)(__——_ K(S®+0d)e—0
[ |-
OHK(FPrﬁk,k) A — K(C(ﬁ)) — K(S(n+k)d) —0
L [ |-

0 R(S") «———— R(C(s)) «—— R(S"+M1)e—0.

Choose a,& K(C(p)) for 0= j <k such that L'*(a;)=Lz"*/ for 0<j<k—1 and
L'*(a,)=2"**. 'Then i'*(a,) and i'*(a,) generate K(C(s)). We have
VA(E"™(a0)) = d"i"™*(a)+Ni"™(ay)

for some A& Z and
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ec(s) = Nd"(d*—1).
We compute . We have
L*((ar) = VAL (@) = YA(Le")= L (*+ds)’
= L3 ()dria

k-1

2 (';)dn—jLG+j+L(z)dn—kzn—i-k

I

<.
ol

k-1 .
= L™*{5 (" a;+L()d" " a} .
Since L'* is monomorphic, we have
E-1 .
V¥(ag) = ;}(;)dﬂ—]a,‘"‘l‘(z)d"—kak .

Next consider the following commutative diagram

_ ch
K(FP,ips1 441) — H*(FP, 41154015 0)

T L'* 1 L/*
h

R(C(F) —— s HHC®); Q)
R(C(s)) ———Z— HY(C(5); 0) -

Choose the generators x,.,€ H®*™(C(p); Z) for 0<j=<k such that L'*(x,,;)
=L for 0<j<k—1 and L'*(x,,,)=t""*. Then for 1<j<k—1

L™*(ch(a;)) = ch(L'™*(a;)) = ch(Lz"*7) = L(¢#(2))"*/
= L(t"*/+middle dim+C "**)
= L'*(x,,;+middle dim+-LC x,,)

where the terms middle dim mean elements of middle dimensions. Since
L’* is monomorphic, we have

ch(a;) = x,,;+middle dim+LC x,,, for 1<j<k—1,
and so

ch(i'*(a;)) = i'*(ch(a;)) = LC;i"*(x,1;) = ch(LC;i"*(a;))
for1<j<k—1.

Since ¢k is monomorphic now, we have

i"*(a,) = LCi"*(a;) for 1< j<k—1.
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Then
YA (a0)) = 1*(Y(a,)) = i'*{:z;]:(;’-)d"‘fa AL(D)d*ta,}
= d'i"™(a))+ {Z} (5"~ LC+L(3)d"*}i"(a)

— d”i’*(ao)—l—Ld""*{:Zj ()IC,+-()}i*(ay) -

Therefore we have

A = LaH{3 ()diC,+ ()}
and l
) = LI ()aIC,+ (@ —1) .
This completes the proof.

As a corollary of the above lemma we have

Proposition 1.13. In the same situation as (1.12) we have

(i) if (F,k)=(C,1), s=Lnn and in particular p,,, ,=nn: S**"'—-CP,,,,
:SZn’

(if) if (F,k)=(H,?2), ec(s)=Ln(5n—1)/25-32.5,

(ii)) #f (F, k)=(C,4), ec(s)=Ln(15n°+ 30n*+5n—2)[27.32.5,

(iv) if (F, k)=(C,5), ec(s)=Ln(3n*+10n*+5n>—2n+-216)/28. 32.5.

Proof. Since

x+a2[21 o331 for F=C

bel(¥) = {Zx/2!+2x2/4!+2x3/6!‘|‘"‘ for F=H,

we can easily compute e.(s) for small £ by elementary analysis, so we omit the de-
tails except (i). (i) follows from the fact that e.: G,—Z, is an isomorphism

and e(s) 2% Ln=e (Lnn).

RemMARK. (i) is well known.

In case of F=H and k=1 mod(2) or F=C and k=2 mod(4) we have
ec(s)=2e%(s) so the computation of e%(s) may give more precise informations
about the 2-primary components of the order of s. We do not require the
whole computations but we only compute e%z(s) for the case of (F, k)=(H, 1)
or (C,2). Let gy=p,: S™>S*=HP, be the Hopf map. Put g.={g,}<G,.
Then ek(g-)=1/24 and

Proposition 1.14 (James [7]). p,.,=ng..: S"*—HP,,, ,=S*
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Proof. We have the short exact sequence

P .* o~ * ——
0 — KO-%(HP,,,,) « KO HP,,,,) & KO-#-5S+%) 0.

It is easily seen by (1.1) that KO~~YHP,,, )=Z{g:£"}, KO YHP,.,,)

=Z{g:E", y_ £}, KO " Y8 =Z {e}, i*(g:E")=gzE" and g*(e)=y_&""".
We have

VA(8aE") = VHgR)W(E") = 2'ga {208 +m2 3y, B} .
Then
Ck(Pur1,r) = 2T In[(240—24") = 024 = e(ng.) -
This shows that p,., ,=ng., since ek: G;—Z,, is an isomorphism by (1.2).

Now consider the following commutative diagram in which the horizontal
sequences are exact.

——_ {S2n+1’ SZn—l} ﬁp”*ﬁ {S2n+l’ CP)} __ZL {82+, CP,,+1}

- P, l» i l

————y {S2n+l’ S2n—1} N {SZ)H-I" CPn,l}‘*—) {S’2n+1’ CP,,.H 2}

*
— {SZ;H—I’ SZn} 3 eee

J/ pn,l*

3 {SZrH—l" SZ”} 3 {SZn—H, SZn—l} S ees

By (1.13) g4(p,+1))=nn. Then we have
Proposition 1.15. If Ln=0 mod(2)

L rm—1). for n odd

9x(84) " (Lpyir) =
{%L(n+2)gw, (%L(n—l—Z)—HZ)gw} for n even.

Proof. The above diagram shows that ¢u(isx) ™ (Lp,+1)= (%) (Lps+12)-
Since {S™*!, §* '} =Z,{n*} and p, W(P*)=(n—1)P*=12(n—1)ge, (j%) ' (Lps+12)
is a coset of the subgroup of {S***!, CP, |} =G, generated by 12(n—1)g.. This
coset consists of a single element if z is odd or two elements if # is even. In
case of n being odd we have the following commutative diagram by the proof of
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(1.11), (i) of (1.13) and (1.14).
CP,,,,=S8"2V S#DCP, ;=82

P”V‘
Szl J /

(1/2)(n—1)g="3 HP(, 1y, =52

This diagram proves Proposition if #z is odd. If z is even, we have the short
exact sequence

0— {S2n+1’ SZn—l} — {S2n+1, S2n—2} ]_*) {SZ:H—I’ CPn+1,2} -0
since p, ;=(n—1)7 by (i) of (1.13). For our purpose it suffices to show that

()7 (Pur12) = {(n/24-1)geoy(n[2+13)g} -
For any f €(jx) '(ps+1 ) the equation
*) ex(f)=(n/2+1+12¢)/24 for some integer e
implies this, because ef((n/2-+1)g..)=(n/2--1)/24. We prove (*). We use KO

if n=0 mod(4) or KO if n=2 mod(4). The methods are quite parallel, so we
only prove (*) for the case of =0 mod(4). Put n=4m. There is the following
commutative diagram in which the horizontal sequences are exact.

0 e———.I'-(‘O’—Z(CPmH’Z) %k\o'—z(cpmﬂ,s).(_ Eé—z(ssmz) —0

P, L

0— KOY(S%) —— KOHC(f)) ¢—— KO8 0

By Theorem 2 of Fujii [4] it is easy to see that EO"Z(CP,;,,,H,Z):Z {z128" 1},
KO YCP,p1s)=Z {#,23""), 253"}, KOYCP,,, )=Z {w} with 2w—224""! and
KOYCP,4py)=Z{223"}. Take ac KO*(C(f)) with u*(a)=w. Then a and
v*(2,25™)=1"*(2,25™) generate K’B:Z(C(f)) By definition 2a=1"*(2,25" ')+ e1'*
(2125™) for some integer e. We have +r%(a)=2"a+\i'*(2,25") for some integer
A, and ekx(f)=n/2".3. We have also
c(2a) = c(i"* (25" Y+ et *(2,25™))
— goi"* {221 — (dm— 1)} (4P 2e) 21}
and
ol (555) = 2™ (")

and then
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c(V*(2a)) = (2" a4-20"*(2,25™))
— gci’* {24m+lz4m—1_24m(4m_1)z4m+(24m+2m2_|_24m+le_|_4)\‘)z4m+l} .

On the other hand

c(¥*(2a)) = Y¥(c(2a)) = W¥gci"* {25 —(4m—1)x*"+ (4m?+ 2e) 5"+ 7} ]
= 20 W?[i"* {221 — (4m— 1)2*"+ (4m?+2¢) 2" +1} ]
= goi/* {2imrigin=1_2m(4gm 1) gtm - 24m=1( 22 2m+ 1+ 16¢)24m 1} |

Comparing the coefficients of 2*"*!, we have
A = 2""32m+1+412¢)

and so

ex(f) = 2m+1+12¢)/24 .
This completes the proof.

In the sequel we shall need the explicit form of ay(n, k) for small 2. Since
the expansion of ¢r'(x) is known (see e.g. [10]), we can obtain the following
by elementary calculations.

Lemma 1.16.

ap(n,0)=1,

ay(n,1) = —n/22.3,

ay(n,2) = n(5n411)/25.3%.5 ,

ay(n,3) = —n(35n%+231n+-382)/27.34.5.7,

ay(n,4) = n(175n°4-2310n*+410181n+14982) /21 . 35.5%.7 |

ay(n,5) = —n(385n*+8470n+69971n%+257246n-+355128)/213. 3. 52.7.11,

ac(n,1) = —nj2,

ac(n,2) = n(3n+5)/23.3,

ac(n,3) = —n(n+2) (n+43)/2¢-3,

ac(n,4) = n(15n34150n°+485n+-502)/27.3%.5 ,

ac(n,5) = —n(3n*—30n°+785n*—78n+1240)/28. 32.5 |

ac(n,6) = n(63n°+4-1575n*+ 154357+ 73801n*+-171150n-+152696)
[21°.3%.5.7,

ac(n,7) = —n(9n%+315454-4515n"+ 338177+ 139020n*+-295748n
+252336)/2*.34.5.7,

ac(n,8) = n(135n"4 630075+ 124110n°-- 13347607+ 8437975n°
+74777100n*— 68303596n-138452016)/2'5. 3. 52.7 ,
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ac(n,9) = —n(15n8+4-900n"+23310n°+ 339752n°— 829745n* -+ 383545007°
+27449684n°+112877136n+-100476288)/26.35.52.7 ,

ac(n,10)= n(99n°+7425n5+244530n"+4634322n°- 5559823515
+-436886945n*+-2242194592n3-+7220722828n*
+38722058672.:—15239326848)/218.36.5%.7.11 .

2. H{n,k} for k<5

The results of this section are summarized as follows.

Theorem 2.1. (i) H{n,1} =1,

Gi) H{n, 2} — 24/(n, 24),

(i) H{n, 3} = H{n, 2}den[H {n, 2} ay(n, 2)],
(v) Hin 4} = Hin, 3}den[%H{n, 3}an(n, 3)] ,

(v)  H{n,5}/(H {n, 4}den[H {n, 4} ay(n, 4)])
_ {1 or 2 if n=1 mod(2°) or 34 mod(25)
RS otherwise,

where den(a) denotes the denominator of a rational number a when the fraction a
is expressed in its lowest terms.

Proof. (i) is trivial.
By (1.14), #p,+1,1=24/(n,24), since #g.=24. Then H {n, 2} |24/(n, 24) by
(1.9). Choose f€ {HP,,;, S*} with deg (f)=H {n,2}. Then

0= f°i1°Pn+1,1 = deg(f)PnH,l = H{”, 2} P11+

Therefore 24/(n,24)| H {n,2}. Hence (ii) follows.

Take fe {HP,.;,, S*} with deg(f)=H {n,2}. We have #ec(fop,+z2)=
#(foPyr22), since ec: G;—>Zy,, is an isomorphism by (1.2). They by (1.9) H {n, 3}
=H {n, 2} +fec(fopu+sz)- By (1.3) ec(fopuiz2)=—H{n,2}ay(n,2). Hence (iii)
is obtained.

For any he {HP, 5 ,, S*"} we have

eh(hogo Py ) = — - deglhogJatu(n, 3) = 0

by (1.5). Since ek: G,;—>Z;y, is an isomorphism by (1.2), Aogiop, 43 3=0.

Then by (1.10), for f& {HP,;;, S*} with deg(f)=H {n,3}, #(fop,+ss) is
adivisor of H {n,4} /H {n,3}. Conversely (1.9) implies that #(fop,., ;) is a multiple
of H{n,4}/H {n,3}. Hence #(fop,+ss)=H {n,4}/H {n,3}. On the other hand
eh(foPuss ) ——— H {n3}as(n,3) by (15). Hence #(fopy.as)—den| -H {n,3}
ay(n, 3)] . Therefore



492 H. OsHIMA

Hin, 4}/H{n, 3} — den[%H{n, 3}au(n, 3)]

and this implies (iv).
For the proof of (v) we prepare a lemma.

Lemma 2.2. If n=0 or 3 mod(4), the image of p,.sz*: {HP,.s, S*"}—
{S#*+15 S} comtains the element 1 E Gy;.

The proof of (2.2): Since all Toda brackets which appear in the proof have
zero indeterminacies, we have

i = <&, 2, V2> = <&, 20, v)> =<§, 280, g
Consider the diagram

Sént14 Sent15

\‘n+3)gm _ lpﬁ&'l
1

Sién+11 Duan HPn+3,1=S4n+8 cC HPn+4,z , Sntr2
N
S4n

By (1.14) pars s =(n+2)g and sy =(1+3)ge- 50 Pyig so(n-+3)g=EoPyus,1=0,
since 2g2=Eg.=0. Then there exists f& {HP,,,, S*"}with foi=¢, and by
definition of Toda bracket

f°Pn+4,2E<5, (n—{”z)gw, (n+3)gw>
and
<&, (n+2)ge, (n+3)g> = %(n+2) (n+3)E, 28, g

— %(n—I—Z) (n+-3)7ec .

Thus f op,m'z:% (n+2) (n+3)nx. Since the order of 7« is 2, the conclusion
follows.

Now we prove (v). Take fe {HP,,,,, S*} with deg(f)=H {n,4}. Then
ec(foDars )= —H {4 ay(n,4) by (1.3), and #(fo P,y ftec(fopura)=1 or 2 by
(1.2). From (1.9) H {n,5} /(H {n,4}den[H {n,4}a,(n,4)])=1 or 2. And by (1.2),
if vy(H {n,4}atn(n,4))<—1, we have #(fop,s)=Hec(foPpyrs)=den[H {n,4}ay
(n,4)] and

H{n, 5} = H {n, 4}den[H {n, 4}ay(n, 4)],
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where v,(n/m)=v,(n)—v,(m) for a prime number p and integers m and n. (1.16),
(ii), (iii), (iv) and elementary analysis show that v,(H {n,4}ay(n,4))=0 if and
only if #=3 mod(2%), 1 mod(2°), 34 mod(2°) or 0 and (2'°). Consider the case of
n=3 mod(2%) or 0 mod(2"). By (2.2) there exists A& {HP, 1,2, S*"} with hop,.,,
=nx. Then for f+hog, say f’, satisfies the conditions Hec(f' o Ppra ) =H(f 0 Pura.4)
and deg(f')=H {n,4}. Then by (1.3) #ec(f op,+4 )=den[H {n,4}ay(n,4)] and
the conclusion (v) follows from (1.9).

3. C{n,k} for k<10

In this section we determine inductively C{n, k} for k<8 and estimate
them for 24=9 and 10. The results are as follows.
Theorem 3.1. (i) C{n,1} =1,
(i) C{n, 2} = 2/(n,2),
24/(n, 24) if n==1 mod(4)
(i) C{n,4} = C{n, 3} = {12/(n,3) if n=1 mod(8)
6/(n,3) if n=5mod(8),
(iv) Cf{n,5} = C{n,4}den[C {n, 4}ac(n, 4)],
(v) C{n,6} = C{n,5}den[C {n, 5}a.(n, 5)]
_ { C{n, 5} if n=0 mod(2), 1, 11 or 27 mod(32)
2C {n, 5} otherwise,
) C {n,6}den[C {n, 6} ac(n,6)] if n=0mod(2) or 19mod(32)
(i) Cin 7} = {ZC{n, 6}den[C {n, 6} ac(n, 6)] otherwise
(vii) C{n,8} =C{n, 7},
(viii) C{n, 9}/(C {n, 8}den[C {n, 8} ac(n, 8)])
_ {1 or 2 if n=3 mod(2") or 1 mod(2?)

1 otherwise,
1 if n=0, 6 mod(2?), 10, 12 mod(2*),
(ix) C{n,10}/C{n, 9} = 18, 20 mod(2%), 34, 36 mod(25) or 4 mod(27)

1or 2 otherwise.

Proof. (i) is trivial. (ii) is proved by the same methods as the proof of
(i1) of (2.1). '

The proof of (iii): The first equality is a consequence of (1.9) and the
fact G;=0. We prove the second equality. Choose f& {CP,.,, S*} with
deg(f)=C{n,2}. Then C{n,3}/C{n,2} is a divisor of #(fop,..) from (1.9),
there exists ke {CP,,,, S} with (C{n,3}/C{n,2})fop,+22=hoqioP,,, from
(1.10), while gy0p,+5 ,=(n+1)7 from (i) of (1.13), so C {n,3} /C {n,2} is a multiple
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of #(fop,+2.) if nis odd, and therefore C{n,3}/C {n,2} =4#(fop,+.2) if nis odd.
From (1.5), ex(fo P,,+z,z)=%a2—-;—0 {n,2} atc(n,2) for some integer a,. If n=3

mod(4), say n=4m-+3, a,=0 mod(2) by (1.6)’, then ekx(fop,ss)=—(4m+3)
(6m+-7)/12 by (1.16) and (ii), hence #(fop,+2,)=den[(4m-3)/12]=12/(n,24) by
(1.2), and therefore the conclusion follows in this case since C{n,2}=2. If n=1
mod(4), say n=4m-1, a,=1 mod(2) by (1.4),(1.7),(1.7)" and (ii), then e%(f o p,+2 2)
=—(12m—1) (m+1)/6 by (1.16) and (ii), hence #(fop,+. z)=den[(m4-1)/6] and
the conclusion follows easily in this case also.

Next we consider the case of # being even. Take f& {CP,.;3 S} with
deg(f)=C{n,3}. First we show that C {n,3} is a multiple of 24/(n,24). Since
arguments are quite parallel we only consider the case of #=0 mod(4). Put
n=4m and consider the commutative diagram

T c b
KO(CP, 4m+3,3) — K(CP 4m+3,3)

[ [
KO(S™) ——— (5™ .
We can put f*(g7)=d,2"+d,25"** for some integers d, and d;. We have
o(f*(gR)) = do(z+2)""+di(3+2)""!
= dz*"—2dmz*"" "+ ((2mP+m)d,+-d,) 2",
c(f*(gR)) = f*(c(gR)) = ae*"+ a2 +az™?

for some integers a,, a; and a,. Comparing the coeflicients of the powers of
2, by (1.4) we have

dy=a,=C{n,3},
(2m*+m)dy+d, = a, = C {4m, 3}ac(4m, 2) = C {4m, 3} m(12m+-5)/6
and so d,=—C {4m,3}m[6. Thus C {4m,3} is a multiple of den(m/6)=24/(4m,
24) as desired. Second we show that C{n,3} is a divisor of 24/(n,24). We
define h: CP,,, ,=S*\ §**?— 8% by h| 2»=24/(n,24) and
0 if n=0 mod(16)

hl 2n+2 — {
§ n? for other even n.

Since p,,“,z:é—ngmvrz, hop, .z ,=(12n/(n, 24))g..~+-h| sz,,+207]=0. Hence there

exists f'& {CP,, .3 3, S} with f'|cp, , ,=h. Clearly deg(f")=24/(n,24),s0 C {n,3}
is a divisor of 24/(n,24). 'Thus C {n,3} =24/(n,24) if n is even. This completes
the proof of (iii).

The proof of (iv): By (1.3), ec(hogiop,is4)=0 for any he {CP,.,, S}
and then Zog,0p,,,,=0 by (1.2). So by (1.3), (1.9) and (1.10)
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C{n,5}/C {n, 4} = #(fopn+s4) = den[C {n, 4}a(n, 4)].

The proof of (v): First consider the case of #=1 mod(2). Choose f&
{CP, 55, S™} with deg(f)=C {n,5}. Recall that Gy=2Z,{ns} DZ,{n€} BZ,{n}
and the kernel of e;: Gy—Q/[Z is Z,{ns} DZ,{n€}. Hence, if e;(fop,s5)=0, we
can choose h& {CP,.s5,, S} =G, with (f4hog,)p,.ss=0, because gop,.55=
Pu+s1=7 by (i) of (1.13). Since deg(f+hog,)=deg(f)=C {n,5}, by (1.9) we have

C{n, 6} = C{n, 5} = C{n, S}fec(fopusss) -
If ec(fopnsss) %0, (1.9) implies
C{n, 6} = 2C{n, 5} = C{n, S}ftec(fopus,s) -

Since C{n,5} and a(n,5) are known, we can easily compute den[C {n,5}a(n,5)]
by elementary analysis. Indeed

#ec(f°Pn+5,5) = den[C {n, 5}010(”, 5)]
_ {1 if n=1, 11 or 27 mod(32)
"~ 12 for other odd n.

This completes the proof of (v) if z is odd. _
Suppose that 7z is even. It is easy to see that den[C {n,5}ac(n,5)]=1.
From (1.8) and (1.11)

C{n,5}|C{n, 6} |H{n/2, 3} .

By the previous calculations C{n, 5} and H {rn/2,3} are coinside if n=0
mod(4), 6, 10 or 14 mod(16), so C{n,5}=C{n, 6} in this case, while if n=2
mod(16) the odd components are coinside but

2 =y(C{n, 5})=<v,(C {n, 6})<v,(H {n/2,3}) = 3.
Put n=16m+2. We construct a commutative diagram in which deg(f)=

C{16m-+2, 5}.

S32m+13

/ JPIG»H—LS

CP16m+6,4 c CP16m+7,5

ot

z 7 1
CP16m+4,2=Smmﬂ\/S32er6 c CP1Gm+5,3 c CP16m+6,4 C CP16m+7,5
Lk L f

S32m+4 S S32m+4

C {16m+2, 5}/C {16m+2, 4}
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By (i) of (1.13), Gigm+5° Pr6m+7=P1sm+7,1=0 and so by (1.15) we have

Qiom+4+(t19) "(Prom+7) = {(Bm+-4)gw, (8m-+16)g..} .

Take ${E (11%) " (Prom+7) C {S"*13, CProp6} With gigpi408i=(8m+16)g... Put 5=
GQim+1°51. Then

430381 = Guem+4°3s1 = 3(8m+16)g. = 0.

Hence there exists s,& {S"*13, CPjg,,15 3} with 7,05,=3s;.  Since g;05,€ G;=0,
there exists s,& {S¥"*1%, CPyg,,.4,} With 7,05;=s,. Next we define & by k| ssem+4=
C{16m+2,4} and h|gzm+e=n Since Pigy.q,=(8m-+1)g. V7 by the proof of
(1.11), (1.14) and (i) of (1.13), we have

h°P16m+4,2 = C{16m+2’4} (8m+1)g..+7°

_ 24@mtD) o,
= (omt2,24) 51 1%

=0.
So there exists h’'E {CPigpss5 5, S?"} with h'oi=h. Since h'cpig,.s5,€ G5=0,

there exists A& {CPigpi64 S} with h”oi=h’. By (1.2), (1.3) and (iv) we
have

$(h o Promie,0) = Hec(h” o Prom+s,4)
= den[deg(h")ac(16m-+2,4)]
= C{16m-+2,5}/C {16m-+2,4} .
Hence there exists f& {CPigp75, S} with (C{16m-+2,5}/C {16m-+2,4})h"
=foi and deg(f)=deg(h”)C {16m+2,5}/C {16m+2,4}=C {16m+2,5}. This
completes the construction of the above diagram.

Now we proceed to the proof of (v). We may write s;=s%\V/ g;0s; for some
sje {S§%mt13) §¥m+s} By (iii) of (1.13)

ec(gs08;) = (16m—-3) (3840m*+2640m>+ 590m+-43)/23-3 -5
so by (1.2) g,°s, is divisible by 2. Then
f°P16m+7,5 =f°3P16m+7,5’ since 2G, =0,
= (C{16m-+2,5}/C {16m—+2,4} )hos,
= (C {16m-+2,5}/C {16m—+2,4}) (C {16m—+2,4} s5-+n%0q,0s,)
= (C {16m+2,5} /C {16m+2,4}) (04-0), since C {16m--2,4} =0 mod(2)

and 27 =0
=0.

Thus by (1.9), C {16m+2,6} =C {16m-+2,5}. This completes the proof of (v).
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The proof of (vi): First consider the case of # being odd. For any ke
{CP, 55 S™}, by (i) of (1.5) we have

elle(h°Q1°Pn+5,6) = % a

for some integer a. By (1.6) and (1.7) a iseven. Then hog,op,,s,=0 by (1.2).
Thus (1.9) and (1.10) imply

Cin, 7} = C{n, 6}4(f o puss,6)
for f&€ {CP, 6, S*} with deg(f)=C{n,6}. Again by (i) of (1.5)

efe(f °Pn+6,6) = % ae—‘%c {”; 6}ac("’ 6)

for some integer a4, and by the proof of (iii) of (1.5) we have

_ {0 mod(2) if n=3 mod(4) or 33 mod(64)
*~ 1 mod(2) for other odd .

Then since #(fopyrs.) is equal to #ek(fo p,,+6,6)=den[% as—% C {n, 6} ac(n, 6)]

by (1.2), elementary analysis draws the conclusion for odd # by (iii), (iv), (v) and
(1.16).

Next suppose that z is even. Choose f & {CP,.¢ ¢, S*} with deg(f)=C {n, 6}.
(1.2) says that e,=2¢%: G;,—Q/Z is monomorphic on the odd component, so (vi)
is true about the odd components by (1.3) and (1.9). So we only see the 2-
primary part. Recall that G, =Z{¢{}PZs;. By (1.3), (1.16) and elementary
analysis show that

VZ(#eC(f°Pn+6,6))§2 .

If vy(fec(fopures) =0, va(#(fopuise) =1 by (1.2) and (1.5). If vy(#(fopuse,))
=0, the result follows by (1.9). If v,(#(fop,+s6))=1, we have

fopaiss=4¢ mod (odd components).
Since 45=p7* and p, 6 1=45° Pr+6,6="1,
(f+ 1gs5)pn+6,6=0 mod(odd components).

Clearly deg(f+ pngs)=deg(f)=C {n,6}, so the result follows again by (1.9). If
Vz(#ec(f°Pn+6,6))=u=1 or 2’

vy(C {n, 6})+u=<v,(C{n, 7})
by (1.9), and

”2(#(f°f’n+6,6)) =u+1
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by (1.2) and (1.5), so

foPnies=22"*¢ mod(237*¢, odd components)
and then

(2* f+pngs)o po+s =0 mod(odd components).

Put #((2*f+pngs)opaiss)=2m~+1. Then there exists h& {CP,.; S™} with
hlcp, . oc=(2m+1) (2“f4ungs). Clearly deg(h)=2"(2m+-1)deg(f)=2"(2m+-1)-
C{n,6}. Since deg(k) is a multiple of C{n,7}, we have

v(C {n, 7})<v,(C {n, 6})+u
and hence

v(C {n, 7}) = v(C {n, 6})+u
= vy(C {n, 6})+-vy(Yec(f o Purss))
= v,(C {n, 6} den[C {n, 6} at(n, 6)])

as desired. This completes the proof of (vi).
The proof of (vii): Since G=2Z3{a,5:}, C{n,8}/C {n,7} =1 or 3 by (1.9).
In case of # being even, the relations
C{n, 7} | C{n, 8} | H {n/2,4}

and the previous calculations show that the 3-components of the first and the
third are equal so that the 3-components of these three are equal. Thus C {n,8}
=C{n,7} if n is even.

Choose ke {CP,,, ,, S} with deg(h)=C {n+5,2}. Then

ec(hogsopyiq ;) = —C {n+5,2} arc(n+5,2)
. (n45) (3nt 20)/(12(n+ 5,2)
so by (1.2)
#(hogso Pz 7)=0 mod(3) if and only if n3=1 mod(3).

Therefore if z3=1 mod(3), the image of
Pn+7,z* = (QS°P,;+7,7)*: {CPn+7,2) SZ"HO}—’{Sszy S} = G,

contains Z;{a,}.

Take f& {CP,.,, S*} with deg(f)=C{n,7}. Suppose that nz=1 mod(3).
If fopuir7=0,C {n,8} =C{n,7} by (1.9). If fop,.;,=40,thatis fop,.; ;== B,
the above implies that there exists '€ {CP,.;,, S} with h'ogsop,7,= Fay,
and we have
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(f+i81°h,°QS)°Pn+7,7 =0,
deg(f+Bioh’ogs) = deg(f) = C{n, 7}
and so by (1.9)
C{n,8 =Cin,7}.

Therefore C {n,8} =C {n,7} if n==1 mod(3).
We must prove (vii) for the case of #=1 mod(6). Put n=6m-1. Take

fE{CPy, 147, S*"*?} with deg(f)=C{6m-+1,7}. By the same methods as the
proof of (v) we can construct a commutative diagram

S12m+15

j/pﬁm+8'7

CP6m+8,7

|2

CPspirs © CPeyiss

R

7 1
CPgpiss C CPgi65 C CP,15 C CPy 157

|1

S12m+2

$1

$2

Take a€ {CPs,, 5 4, S*"*?} with deg(a)=C {6m+1,4} and be {CP%,, 5, S*"*?%}
with deg(b)=C {6m+1,2} =2. Consider the diagram

{SlZm+6’ S12m+2} — 0

* V
{S12m+8, S12m+2}?_){CP6m+5’4’ S12m+2}_) {CP6m+4,3! SlZm+2} — {S12m+7’ S12m+2} — O

v
{S12m+3’ S12m+2}77_>* {S12m+4, SlZm+2} s {CP6m+3,27 S12m+2} — {SlZm+2’ S12m+2}

in which the horizontals and the vertical are the parts of suitable Puppe exact
sequences. Then a generates a free part of {CP, .54, S*"*?} which is of rank
1, and so

[foioiot = (deg(f)/deg(a))a+t-g*(e)
= (C {6m+1,7} |C {6m—+1,4} )a+q*(e)

for some e {S2#+8 S1?m+2} —G,. Then
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2foPom+sz = 8f o Pem+sn since Gy = Z;
=f°ioioios3
= (C {6m-+1,7} |C {6m-+1,4} )aos;+eogos,
= (C {6m+1,7} |C {6m—+1,4} )aos,, since GgoG, = 0.

By the previous calculations and elementary analysis it follows that

3 if m=1 or 2 mod(3)
vy(C {6m+1,7}) = {2 if m=3 or 6 mod(9)
1if m=0 mod(9),
vy(C {6m+1,4}) =1
so if m=%=0 mod(9) we have
C {6m+-1,7} |C {6m—+1,4} =0 mod(3)
and so
foPomisz =0

and then by (1.9)
C{6m+1,8} = C{6m+1,7} if m=E=0 mod(9).

Next suppose that m=0 mod(9). By (iii) of (1.13) we can easily see that
vy(#ec(gs05)) = 0.

So by (1.13) and the same methods as the proof of (v), we can construct a com-

mutative diagram
S12m+15

X8P6m+8,7
CPG,,,+5,4 C CP6m+s,7

.

S5 CP6m+4,3 C CP5m+5,4 c CP6m+8,7

: :

C CP6m+s,7

|7

S12m+2

CP6m+3,2 C CP6m+4»3

Then
f°1’6m+s,7 = 64Of°P6m+8,7



STABLE JAMES NUMBERS OF STUNTED COMPLEX 501

= f | CPgy+3,2°%5

= (deg(f)/deg(b))boss
= (C{6m+1,7} [2)boss
=0, since C{6m+1,7} =0 mod(6)

so by (1.9)
C{6m+1,8} = C{6m+1,7} if m=0 mod(9).
This completes the proof of (vii).

The proof of (viii): Take f& {CP,.s5, S} with deg(f)=C{n,8}. First
consider the case of # being even. By (i) of (1.13) p,,5:=¢,0p,15s=7. Then
f or f4+kq, say f’, satisfies

#(f’°pn+s,8) = #BC(f'°Pn+8,8) = den[C {n, 8}ac(n’8)] ’
deg(f') = deg(f) = C {n,8}

by (1.2), and so the conclusion follows from (1.9). Next suppose that # is odd.
By (1.2)

#(fopﬁs,s)/#ec(f°P,,+g,g) =1lor2.

By the previous calculations and elementary analysis we have
v(den[C {n,8} ac(n,8)])=0 if and only if #=3 mod(2?) or 1 mod(2°).
Therefore if #3=3 mod(2”) and 1 mod(2°), by (1.2) we have

B(f o Purss) = Hec(foPrs,s) = den[C {m, 8}ac(n, 8)]
and so the conclusion follows.
The proof of (ix): Since 2G;;=0, by (1.9) we have
C{n,10}/C{n,9 = 1lor2.

In case of z being even, by the following relations and an elementary analysis
conclusion follows if #=0 mod(2?%), 10, 12, 14 mod(2*), 18, 20, 22 mod(2°),
34, 36 mod(25) or 4 mod(27)

C{n,9}|C {n, 10} | H {n/2,5} .
If n=6 mod(2°), the conclusion follows from the same methods as the proof

of (vii).

4. Relations with other James numbers

In this section we use the notations and terminologies of James [6,7] freely.
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Consider the fibration of Stiefel manifolds

On-l,k—l - On,k £) On,l = S"d—l

and the cofibration of quasi-projective spaces

q -
Ou-1p-1=> Qus = Oy = S™!
where n>£>0. Following James [6] we define non-negative integers O {n, k},
O’ {n,k}, O{n,k} and O°{n,k} by the equations
P*”ﬂd—l(on,k) = O{n, k} ”ﬂd-—l(S”d—l) ,
Ps7ia—r(0, ) = O {n, R} msa_(S™7),
q*”ﬂd—l(Qﬂ,k) = Q{nJ k} ”ﬂd—-l(Sﬂd_l) )
q*”;d—l(Qn,k) = Qs {n: k} ”:d—l(s”d—l)
here 7z;,(X)={S™, X} for a pointed space X. We have
Lemma 4.1. O{n,k} |O{n,k}, O {n,k} |O{n,k} and O’ {n,k} |Q{n,k}.

Proof. The first conclusion follows from the commutative diagram

Qn,k""—g—) Qn,l

n |-
?
0.,—t 0,

and the others follow immediately by definition.

Let M,(F) be the order of the canonical F-line bundle over FP, in the
J-group J(FP,) [3] which was determined by Adams-Walker [2] and Sigrist-
Suter [13]. We have

Lemma 4.2. Q' {n,k}=0"{n,k}.

Proof. For any m with m=0 mod(M,(F)) there exists S’-section w: Q,, ,
—Q,, 1» that is, gow=1. By James [7] we have the diagram

1%: w1 g

Qm,l*Qn,k —_> Qm,l*on,k I Qm,k*on_k — Qm+n,k

ll*q ll*p lq*p lq

Qm,l*Qn,l = Qm,l*on,l = Qm,l*on,l —~) Qm+n,1

in which g’o(w#1)o(1%7) is a homotopy equivalence by (7.3) of [7], the first
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square is commutative, the second is homotopy commutative and the third is
homotopy commutative up to sign from quasi-projective case of (5.2) of [7].
Applying m{mimqs-1 to this diagram we have the following diagram

; 8k
Zaa-1(Qa x) I 750-1(0,0) — 7 mwa-1Qom i On p)—— lmni- A Qmn p)

j/q* l Py l(q*‘b)* l g%

d_.
ﬂ;d—l(Qn,l) = 7"-':81:1—1(071,1)_9;971"fm+n)d—I(Qm,l*oﬂ,l)___;:9 ”in1+n)d—l(S(m+”) l)

in which the first and second squares are commutative and the third is com-
mutative up to sign. Hence O’ {m—n,k} |O’{n,k} | O’ {n,k}. Since Q°{m+n,k}
=Q°{n,k}, the conclusion follows.

We have also
Lemma 4.3. If n=2(k—1)+2/d, then
O’ {n,k} = O°{n, R} = O{n, k} = Q{n, k} .

Proof. Since Q,, and O, , are (n—k-+1)d—2 connected, the canonical
homomorphisms 7,,;_1(Q, 1) —=>7na-1(Q, ) and 7z,,,(0, 4)—>msa-1(0, ) are epimor-
phisms if #=2(k—1)4-2/d. Then Q°{n,k} =Q{n,k} and O°{n,k} =O{n,k} in

this case, and the conclusion follows from (4.2).

Atiyah [3] proved that Q,, and P,_,, are S-duals. His proof gives the
following precise theorem.

Theorem 4.4. For any j with jM(F)=n, there exists a (djM,(F)—1)—
duality u€ {Q s, m - nta,p /NPy s SO},

Consider the cofibrations
S (n—k)d Ci P > > S(n-k)d+1
nk n,k=1

Smd-2 _, Qm_u_l — Qm,l i Smd-1
We have

Proposition 4.5. If jM(F)=n, (diM(F)—1)-dual of i: S® PP, , is
9 Qiny (s p—> SO0 and hence F {n—k,k} = Q" {jM(F)—n+k,k}.

Proof. By Puppe exact sequences associated with the above cofibrations
it is easily seen that {S®~% P, .} and {Q;u,r - s p SUMFI 071} are infinite
cyclic groups with generators 7 and g respectively. Then the conclusion follows
from (4.4).
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As a corollary of (4.3) and (4.5) we have

Theorem 4.6. F{n,k} is equal to O {jM(F)—n,k} if jM(F)=n+2k—2
+2/d.

In case of F=C, Sigrist [12, Théoréme I] proved that a prime number p
is a factor of O{m,l} if and only if p is a factor of M ,(C)/(m,M,(C)). His

proof is valid for the case of F=H, since M,(H) is known [13]. Then by (4.6)
we have

Proposition 4.7. A prime number p is a factor of F{n,k} if and only if
b is a factor of M(F)/(n, M(F)).
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