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Introduction

Let & be the set of link isotopy types and X.L8-—>C a C-valued

invariant of links. For any positive integer r, one can define the

r-parallel version X(r):£—>C of X by putting

1@ k) _=X(K(r)), Ke X,

vhere K(r) is the r-parallel link of K obtained by applying the

"operation ¢(r) (see Figure 1) to each cross'ing peint of K.
Figure |

Recently, Morton-Short [24) and Yamada [34) independently noticed the
existence of a pair of knots which is indistinguishable by the Jones
polynomial [14], but is distinguishable by its Z-parallel version.
Moreover there exist mutant knots distinguishable by the 3-parallel
version of the two-variable Jones polynomial P(3) ([25]) and Section
6.2 of this paper). Thus it seems to be worth while studying the
r-parallel version of a link invariant from a general view-point.
Throughout this paper we assume that all the invariants of links are
of ‘trace’ type. A link invariant X is called of trace type iff X
satisfies the following conditions: (i) Let b~ be the closure of an
_h-braid b. Then X(b") can be written as a linear combination of
characters of representations of the braid group Bn' (il) The
characters in (i) satisfy some compatibility' conditions with respect to
the natural inclusion B —>B  , (n= 1,2,..) (see. Definition 1.1.4).
For example, the (two-variable) Jones polynomial [7], [14], [29] and the
Kauffman polynomial [17], [22) fulfill this assumption. (See also [2],
[10], [15], [26]).) The purpose of this paper is to give an efficient



method to calculate the r-parallel version XOO of the invariant X.

A direct calculation of XQO(K) is, in principle, possible, but the
degrees of the characters of the representations included soon become
enormous even for relatively small r. We show that the characters can
be reduced to a sum of those of much smaller degrees, and we have only
£o deal with representation matrices of much smaller sizes. See

Table 1.

Table 1

One of the main results of this paper is the following, which is an

immediate consequence of Theorems 1.49, 1.5.1, 441, Corollary 4.2.3 and
(4.1.10). '

Theorem. Let V be the one-variable Jones polynomial, r a

positive integer and b a 3-braid whose closure is a knot. Then we

have the following.

x 3({r-3)
© [E] [—2'—]
o P .
v b~y = go o, ( by a3(r_j)'i(V)Trace(n3(r_j),i(b)),
j= i=0
where
_r-23+1 (r+1‘
crtj— r+l \ j )’
v i " tk12+1/2~1 _ t—k/2—1/2+1
a 5 (V) = (-1) — ,
t -t )
and M,  are representations of B3 given in Theorem 441.




The degree of the representation “3r,i is equal to i+1 if
O<ic<r and 3r-2i+1 if othervise. Applications of the above
theorem are given in (4.4.4)-(4.4.10).

In the last section of this paper, we shall give a necessary

condition for the existence of mutant knots distinguishable by the

r-parallel version 29 of the link invariant X (Theorem 6.2.4). We

construct mutant knots Kl’ KZ’ K3, K4 for which the 3-parallel

version P(3)(Ki) (1<i<4) of the two-variable Jones polynomial are
all distinct (Section 6.2).
We shall give a formula for an invariant of cable links. Let X be

a link invariant of trace type. Then we shall construct several link
invariants X(r’l), X(r,Z)’ ... by 'decomposing' the r-parallel version

x(®) of X (Theorems 1.5.1 and 2.2.1). Let K be a knot, L a link
in the solid torus and KL the satellite link [4] coming from K and

L. Let XL be a knot invariant defined by XL(K)=X(KL). Then XL

. 2
can be written as a linear combinations of invariants X(r’l), X(r‘”),
if L is a ‘cable’ (Definition 1.6.3), or if X is the Jones

polynomial or the Kauffman polynomial (Theorem 1.6.4, 2.2.1, 43.2,
2.3.1).

We prove, in Sections 1.'—2, fundamental formulas for X(r) and show
some related results of general nature. In Sections 3-5 we apply the
results of Sections 1-2 to the r~parallel version of the (two-variable)

Jones polynomial and the Kauffman polynomial, and investigate them more

closely. It is discussed in Section 6 how X(r) works at mutant knots.
As a conclusion of this paper, we might say that the r-parallel
version of link invariants seems to be quite promising in attacking the

classification problem of link types.
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1. The parallel version of link invariants, | (the case of knots). -
We shall discuss in this and next sections general properties of a
'parallel version' of a link invariant of ‘trace' type. In this
section we first state and prove the results in the case of knots, and,

in Section 2, generalize them to the case of links.

1.1. Link invariants of trace type. Let B_ be Artin's braid

group on n-strings with standard genérators 0y, 02,..,0,_1 as in

Figure 2,
Figure 2
1.€,
By = <0y, 0y, 0y 10,0,,10,0,,10,0;,1 (1€1¢n-2),
0,0;,,=0,,,0, (1£i<3-1<n-2)>.

Let gnujZBn‘*’Bn+r be the group homomorphism defined by §n03(oi)==oi
for n, reEN={1,2,..} and 1<i<n-1. We regard B, as a subgroup of
Bpsr With respect to the inclusion §n00. Let B={(b, n) b € B, for
n=1,2,..}. A closure of a braid (b,n), written (b,n)" or simply
b, is the link formed by joining the n points at the top of (b, n)
to those at ﬁhe bottom without further crossings. Two links Kl, Kz
are called eguivalent.if Ky is ambient isotopic to K, in R3 ([31,
Chapt.],B)i

Theorem 1.1.1 (Alexander [1]p.42). Every link is equivalent to the

closure of a braid.

Oy



Definition 1.1.2 (Markov class). Let ~ be the equivalence

relation on B generated by the following:

(i) (bb, n)~(bb,n) for b, b € B,

(i) (b, n)~ (b0, *!, ne1) for b € B..
. n ! n

The equivalence classes of B by the above relation are called Markov

¢lasses.

Theorem 1.1.3 (Markov [1}p.51). The closures of two braids by, by

are equivalent if and only if b; and by are contained in the same

Harkov class.

Definition 1.1.4 (link invariant). A mapping X from B to a set

S is called a link invariant if X is constant on each Harkov class

of B.

Let C be the field of complex numbers and Bn“ the set of
eguivalence classes of finite diménsional irreducible C-linear
representations of Bn' Let £ be a C-valued function on B, We
assume that f can be written as a linear combination of characters of

the braid group, i.e. for b € B,

(1.1.5) . f(b,n)= > ap(f)xp(b),
REB”
is the corresponding character and a

(£)

where, for each LEB,”,

Ay b
~ is an element of C independent of b. Let (pH'VP) be the
representation of B, corresponding to REB.", i.e. VILL is the

representation space and pp is the group homomorphism from B, to



GL(VP). Then pu is extended uniquely to a C-algebra homomorphism
from the group ring CBn to End(Vp) and so its character x}L is
extended to a linear function on CB,, which are also denoted by pll
and X}L respectively. Hence the function £ is extended to a

function on CB={{b, n) IbECBn for n€eN} by {l1.1.5), which is also
denoted by f.

Definition 1.1.6 (associated algebra). Let A (f)"={p€B," |

a,(£)=0} for neEN and A (f)= & P(CBy). Ve call ay(f)

heA, (£)

(n=1,2,..) the associated algebra of f. Let pn:CBn —> An(f) be the

algebra homomorphism defined by p, = @ pp.
hea (f)”

Definition 1.1.7 (trace type). A C-valued function f on B is

called of trace type if f satisfies the following conditions:

(N AThe invariant f can be written as a linear combination of

characters of Bn as in (1.1.5).

(i) Let Aj(f),Ay(£f),.. be the associated algebras of £. Then

there are algebra homomorphisms CnZAn(f) —>Ap;1(£f) for which

n+1°§n =§n°pn-

Remark 1.1.8. Either the one(two)-variable Jones polynomial or the
Kauffman polynomial is of trace type for the generic values of its

parameter(s).



To specify the notations, we review the definitions of the
polynomial invariants of links mentioned in Remark 1.1.8. We also
recall the definitions of the regular isotopy invariants of unoriented
link diagrams called the bracket polynomial and the L-polynomial [16],
[17] which will be needed in Sections 2 and 3.

Definition 1.1.9 (writhe). The writhe of a link diagram K is the
sum of the signatures of all crossing points of KX (Figure J3) and is

denoted by w(K).
Figure 3

Definition 1.1.10. Fix a non-zero complex number t. The bracket
polvnomial <->=<-'>(t) with values in C is uniquely defined for
regular isotopy classes of the unoriented link diagrams by the

following formulas:

<K+>=t_ll4 <Kg> + th <K..>, <0>=1 for the unknot O,

¥here the K, are identical except within a ball whers they are as in

Figure 4.
Figure 4

Fix non-zero complex numbers a and x. The D-polynomial D(-)=

D{-)(a,x) with values in C is uniquely defined for regular isotopy

classes of the unoriented link diagrams by the following formulas:
D(K,) - D(K_) =x(D(Kp) ~D(Kw ) ),

DK ,) =aD(Kn), D(KQ_)=a“1D(Kn), D(0) =1,

where the K, are identical except within a ball where they are as in



Figure 4.
In the following, we define isotopy invariants of oriented links.

Fix a non-zero complex number t. The one-variable Jones polvnomial

V(-)=V(-)(t) with values in C is defined by
(L1111 ey, —evx )y = (212 - 12y vk, V(0)=1,

where the K, are identical except within a ball where they are as in

Figure 3. To specify the parameter t, we also denote V(K) by
V(K)}(t) for a link K. Let K be a link diagram. Then it is known

[16] that
(1.1.12) V{K)(t)= (-t314)W(K) <L"d>(.t)'
Figure 5

Fix non-zero complex numbers ¢ and m. The two-variable Jones

polynomial P(-}=P(-)(¢,m) with values in C is defined by
Q"lP(K+)+!2P(K_)+mP(K0)=0, P(0) =1,

vhere we use the notation in (1.1.11).

Fix non-zero complex numbers a and x. Let K be a link diagram

and

K| its unoriented link diagram. The Kauffman polynomial F(:)=

-w(K)

F(-)(a,x) with values in C is defined by F(K)=a D( IKI).



1.2. Parallel versions. Fix a positive integer r. Let ¢ (r):
n

B, -> Brn be the group homomorphism defined by Figure 1, or,
equivalently, by

(1.2.1) ¢(r)(oi)=

n
-r
O(ri-r+l1,ri-1) O(ri,ri+r-1) O{ri-1,ri+r-2) .. O(ri-r+1,ri)
(1<£i<n-1),

r
vhere U(i'j)=°i°i+1"'°j' Let (b( ):B—>B be the map defined by

05 = (6 Do), em).

Theorem 1.2.2. Let (by, ny) and (by, ny,) be two braids. Then

r
the links ((bnl( )(bl)' rnq)” and ((Dnz(r)(bz), In,)” are equivalent if

(by. n.)* and (by, n,)" are equivalent.

The following lemma and Theorem 1.1.3 yield the above theorem,

Lemma 1.2.3. Let ~ denote the Markov equivalence relation

{Definition 1.1.2). Then we have the following:

| (a)  For by, by € B.. (¢ (r)(blbz), rn} ~ (¢n(r)(b2b1)' rn},

n

(b) For b e B, ((I)n(r)(b), .rn) ~ (¢n+1(r)(b0nil), rn+r},

r
Froor. The part (a) holds since (bn( ) is a group homomorphism.

The following Lemma 1.2.4 shows the part (b). D

Lemma 1.2.4. For b e B, (n2r),

[0



(1.2.5) (b, n) ~ (bcnaj, n+r),

(1.2.6) (b, n) ~ (b(onoj)"l, n+r).

(x)

vhere Gn =0(n-r+l, n—l)_rc(n,n+r—l)0(n—l,n+r—2)...0(n—r+1,ri).~

Froof. We first prove (1.2.9) by induction on r. For r=1,
(1.23) is identical to Definition 1.1.2(ii). Suppose that (1.2.5) is

true for r=k-1. By Definition 1.1.2(i) and (ii) we have
(1.2.7) (bonoo, n+k)

-k
~{0(n-1,n+k-2)...0(n-k+1,n) bo(n-k+1,n-1) 0(n,n+k—2) c n+k)

n+k-1’

~(0(n-1,n+k-2) ...0(n-k+1,n) bG(n—k+1,n—l)—k0(n, n+k-2), n+k-1)
~ (bo(n—k+1,n—1)—k0(n,n+k—2) 6{n-1,n+k-2)...0(n-k+1,n), n+k-1).

By using the relation of the braid group, we have ok_lo(i, j)—l=

O(i,j)—10k+1_1, and so we get

(1.2.8) O(n-k+1, n—-l)_k+l

L6 (n-k+1, n-1)"k+2

o(n—k+2,n-1)"1on_k+1
-1

o(n-k+z,n-1)”1o(n—k+1,n-1)"k*zon_1

i

n

0(n-k+2, n-1)"%0 L o(n-k+1, n-1)¥*3g -1

n-k+1

o(n-k+z,n-1)'20(n—k+1,n-1)fk+3on_2—lon_l-l

= R = 0(n-k+2, n—l)—k+l 0n—k+1_l On_k+2"1 ...Cn_l_l.



By using the relation of the braid group, we have a(i,j)o0(i-1,j)=

0(i-1, ) 6(i-1, j-1)=04_10(i, j)0(i-1, j-1). Hence we get
(1.2.9) 0(n, n+k-2) 0(n-1, n+k-2) 6(n-2, n+k-3) .. 6(n-k+1, n)
= 0,_10(n, n+k-2) 0(n-1, n+k-3) 6(n-2, n+k-3)..0(n-k+1, n)
= 0p1 0,2 0(n, n+k-2)..0(n-2, n+k-4) 0(n-3, n+k-4)..0(n-k+1, n)
= cve =040, 9..0p 3,10(n, n+k-2) ..06(n-k+1, n-1).

By substituting (1.2.8) and (1.2.9) to (1.2.7), we obtain

(b on(r), n+k)

2

(b(I(n—k+1,n—l)"k 0(n,n+k-2) 0(n-1, n+k-2)..0{n-k+1, n), n+k-1)

(bo(n-k+1, n-1)"1o(n-k+2,n-1)7¥*1 0n—k+1_1 0n—k+2—1 on_l"'1L

0510520k 4 10(n, n+k-2)..0(n-k+2,n-1)0(n-k+1,n-2), n+k-1)

(b0 (n-k+1, n-1)"1 o(n-k+2,n-1)"¥*!
0(n,n+k-2) ... 0(n-k+2,n-1)0(n-k+1,n-1), n+k-1)

(bo(n-k+1, n—l)—l-on(k_l) o({n-k+1,n-1), n+k-1}.

i

Moreover, Lemma 1.2.3(a) and the induction hypothesis imply that
 (bo(n-k+1,n-1)"1 0¥V g(n-k+1,n-1), n+k-1) ~ (b, n).

Hence (1.2.5) is proved. An analogous'argument yields (1.2.6). 0o

(2



Definition 1.2.10 (r-parallel version). Let K be a link and

(b, n) €B the braid whose closure is equivalent to K. The link

(r)

(¢n (b), n)® 1is called the r-—parallel version of K and denoted by

)

X The r-parallel version fﬁﬂ of a function f on B is defined

by £)(b, n) = f((bn(r)(b), rn).

The r-parallel version of a link is well-defined by Theorem 1.2.2.

(x)

Hence the parallel version X of a link invariant X is again a

link invariant.



1.3. Wreath products. We review representation theory of wreath
products. The references are [19] and [6]. Throughout this paper, a
semigroup means that with a unit, a semigroup homomorphism means that
vwhich preserves the unit and a linear representation of a grocup or a
semigroup means that which sends the unit to the identity
transformation. Let Q0={1,2,..,n}, H a semigroup with a semigroup
homomorphism ©:H->S,, where S, denote the symmetric group of
degree n acting on Q naturally. For h€H, 1let <B(h)> denots
the subgroup of Sn generated by 6(h). Fix a group G and an

element h0 of H.
(1.3.1)  H(h))={h€H |for every <@(h )>-orbit O of 0, 8(h):0=0},

which is a subsemigroup of H. The semigroup H(ho) acts on Gfl by
the following. For hEH(hO) and g=(gl, Gos v gn) eGh, hg=

(90 )

(1)~ 2(1y" " Jo(n)Hn)

Definition 1.3.2. The set GnXH(hO) together with the composition

lav (g,h)(g,h') = (g(hg'),hh') is a semigroup called the wreath product
G'X H(hy) of G with H(h,).

For a group G let- G"- -denote the set of equivalence classes of
finite dimensional C-linear irreducible group representations of G,
and for VEG", (py,Vy) denotes the corresponding representation. For

V= (\11, v V) (\}j E€G"), let pv=pvl®...®pvn, which is an element of
(Gn)". In the following, we assume that \li=\lj if <8(h0)>-i=
<B(hy)>j. We define an action of the semigroup G ¥ H(hy) on Vy by

the following: For (g, h) €G"» H(h,) and (V1 s V) EVy, @ .. 8 Vy,

(g' h)(v1> S vn) =pv(g) (ve(h)—l(l)) e ve(h)—l(n))'

|-



We denote by pv" the representation of the semigroup Gn>4 H{hg)

given by the above action on Vy. If p (g)=(p_ (g,) ..P, (g.) .)
A vy Tl agBy vV, “hiaBy

(1¢ Otl,ﬁl <dim Vv, vy 1€ o, ﬁnﬁ dimvVy ) is the matrix representing g=
N .

(gl,...,gn) EGn, then we get for he€H(hy):

(1.3.3) p, {g.h)= (p\ll(gl)alﬁ ';'pvn(gn)unﬁ ).

8(hy (1) 8(n) i(n)

Let m be a representation of the semigroup H(hg,). By composing
the canonical projection G" ¥ H{hg,) —>H(hy), m 1is naturally extended
to a representation of the semigroup G™ H(hgy), which will also be

denoted by =.

Proposition 1.3.4 Let (p,V) be a finite dimensional linear

representation of the semigroup G X H(h,) such that the restriction

PlGn is a completely reducgible group representation. We assume that

the irreducible components of pIG" are all equivalent to p,. Then
there is a representation = of the semigroup H(h,) such that p is

eguivalent to pv' ®xn.

This is a version of a standard result found, e.g., in [6], Theorem
51.7. Although G" may not be a finite group or H(h,) may not be a
group, an argument analogous to the proof of [loc.cit.] works because of
our assumptions, i.e. the finite dimensionality of V and the complete

reducibility of pIGn.

15



1.4. The characters associated with the parallel version. Fix a
C-valued function f on B of trace type and r a positive integer.
The r-parallel version £} of £ is also of trace type since we

have the following from (1.1.5).

(140 BBy = 3 a6 g0 Om).
hea_ (f)
)

We decompose the characters xp0¢n(r peA (£)7) dinto sums of

characters of B, of smaller degrees. We need some preparations. Let

lj ‘CB.—> CB., (1<{j<n) be the homomorphism defined by

(1.4.2) (1€igr-1)

t5(93) =04, rj-r

and t: CBr®n——> CB,,, the homomorphism defined by l(bl® ®bn) =

ty(by) wty(by) for b ECB, where B, ®® denotes the n-fold tensor

product CBr®...®CBr of CB.. We regard CBr®n as a subalgebra of
CB,, by the inclusion . Let 8 be the group homomorphism from B,
to the symmetric group Sn of degree n defined by G(Oi) =({ii+l) (the
transposition of i and i+l). We define an action of B, on Q=

{1, ..., n} by b(i)=0(b)(i) for i€Q. Then we have the following.
Lemma 1.4.3. For beB, and b €B,

. ()

6 (o) (b') = tb(k)(b')(bn(r)(b) (1gk<n).

Froof. The following formulas imply the statement of the lemma.



(1.4.4.2) (bn(r)(oi)tk(oj)'=tk(0j)¢n(r)(oi) (1sisn-1,1sjsr-1,k=1,i+1),

(1.4.4.b) ¢n(r)(0i)ti+l(0j)=ti(0j)¢n(r)(oi) (1<i<n-1, 1<jer-1),

(1.4.4.0) (I)n(r)(oi)li(oj)=ti+1(0j)¢n(r)(oi) (1gisn-1, 1gj<r-1).
The formula (1.4.4.2) is a consequence of (1.2.1) and the relations
0104 =040; (li-5122). We prove (1.44b). Let 0'(4,3)=040;_1.-05
(i>]). Then

¢n(r)

(0;) =(7(ri—r+1,ri—l)__r 0 (ri,ri~-r+1)0' (ri+l,ri-r+2)...0'(ri+r-1, ri).

Since the relations of the braid group imply 0'(i,j)0k=0k_l 0'(1,7)
(1>k>3), we have

0 tosny,09)

=0(ri-r+l1,ri-1)"Y o' (ri, ri-r+1) o' (ri+l,ri-r+2).0"' (ri+r-1,ri) Ori+j

=0(ri-r+1,vi-1)"F0.; 1, 50" (ri, ri-r+1)0° (ri¢l, ri-r+2).0" (risr-1,ri).

We also know ([1], p.28, Corollary 1.8.4) that the element

(I(ri—r-lrl,ri—l)—r is contained in the center of the subgroup

<Opji_r+1s Opi-rs2s - Opj—1> of Bpy. Hence we have

¢n(r) r) (

(05) 43,1(95) =0ri 145 ¢n( 03) =1;(05) ¢n(r)(01)-

This proves (1.4.4Db). The formula (1.44.C) is proved analogously by
using

¢n(r)

(Oi) =0(ri-r+1,ri-1)"T o(ri, ri+r-1) 0(ri-1,ri+r-2) ... O(ri-r+1,ri)



and the relations G(i,3) 0, =0,,, 6(i,7) (ik<j). D

Lemma 1.4.3 implies that the subgroup L(Brn)(bn(r)(Bn) of B is

isomorphic to the wreath product Brn>d Bn vith respect to GIBn—> Sn‘

Definition 1.45 (isotypic subspace). Let A be a semisimple
algebra over C, U an A-module and p an irreducible representation

of A. An  A-submodule W of U 1is called the p-isotvpic subspace

if and only if W dis the maximal subspace on which the action of A

is isomorphic to p®..®p (n-times) for some n=0,1,2, ...

For v(1),..,V(n)€A(£f)" and p € A (£f)", let Vp_ V(1),..,v(n) be

the pv(1)®...®pv(n)—isotypic subspace of Vp as a B -module and

Y=VV(1)®---®VV(n)- Then V ZYD..OY=

p,V(1),..,9(n) = 4
Y ® Cd(p,v(l),...,v(n))’ where d(p,v(1),..,V(n)}) denote the multiplicity

. .- . : ¢ ' n
of pv(l) ® “’®pV(n) in pplB o For beB,, (by,.., bn) €EB.” and
r

' d(p,v({1)}),...,v
V1®.. 8V By € Vy1)®..0Vy ) ®C (kV(1) (n”=Vp,v(1),...,v(n)' we

have

(1.4.6) l(b ®..®b )¢ (b))(vl® L ®v, ®w)

(x)

= PO T (R)UBY ) @ BB 1))V ® .. @V, )

b(1) ° % b(n

= p ((b (b)) pv(l)(bb(l))vl® ®pV(n)(b (n))vv®w),

from (1.43). The above formula implies the following:



Lemma 1.47. For beB, the subspace 0, (0 ()Y, y(1).  yn)

is equal to the pv(b_l(l))®...®pv(b_1(n))—1sotvplc subspace

Vi v(b (1)), (b (n)) <& V-

In particular, va y 1s invariant relative to the action of
Ve

() . )¢()

t(B )¢) Let pp'v be the representation of ({

obtained by restricting p on V y , and J% its character.
P | ST

AT
Then we have the following.

Proposition 1.4.8. For b'e€B. and bEB, such that b" is a

knot, we have

o (@ g (8
L (B)0 (b)) = 2 g, (h(B)Q V(b))
heA, (£)

FProof. PRecall that f is of trace type. The condition (ii) of

Definition 1.1.7 implies that there are algebra homomorphisms ti”
Ar(f) —> Arn(f) (1 < i< n) such that Li”opr=prnoli . Hence the
. n . R O n .
action of Br on Vp is factored by P 'Br > Ar(f) . Since
Ar(f) is the associated algebra of f£, Ar is compgetely reducible and

s0 we h V =6 1 . Lemma 1.47 implies that
TR Theqa ()™ (), s Vi) P

Pt (b>¢ <b>>Vu v(1),...,v(n) = Pp 1 BV v(1-2(1)),... v(p4(n)) =
VeV (1)), v(p i) Hence if Vi u(1),. v(n) = Vpv(p-(1)),..,W(p"Hn)), then

the diagonal part of the matrix tl(b')(bn(r)(b) corresponding to the

' : a4 (1) .
subspace V, v(1),.. v(n) is equal to 0. Thus Xp.(ll(b)(bn (b)) is equal



. . ’ . r .
to the sum of the diagonal elements of pp(&l(b)(br( b)) corresponding
1

to the subspaces Vyy(1),.v(n) ¥ith Vpy(1),.v(n)=
VpN(b”(l))va(bA(n))' Since the closure of b 1is a knot, 6(b) is an
n-cycle. Thus V(i)=V(b—l(i)) (l<ig<n) dmply V(1)=..=v{(n). But

the sum of diagonals of pp(tl(b' )(bn(r)(b)) on V,y.v is equal to

Xy V(ll(b')(bn(r)(b)). This proves the proposition. O

(x

Since t(Brn)({)n )(Bn) is isomorphic to Brn>d B, vwe see, from

Proposition 1.3.4, that there is a representation = of B, such

v
that
- ®n. .
(1.4.9) p}L,V"(pV ) ®n”)v,
¥n,. . . n . (z) .
vhere (pv ) is the representation of L(Br )¢n (Bn) coming from

the representation pv@)n of Brn as in*Proposition 1.3.4 Let yxy~,

®n

CTRY be the characters of (pv )y, on respectively. Now we can

TRY

state our main theorem.

Theorem 1.4.10. Let b _be an n-braid vhose closure is a knot.

Then we have the following.

- ) vy o
M 2,00 (b”_veAZ(f)ﬂx"(l)w“"’(b)'

() £(E)(p,ny= ):,A.( > 2 () 2y (1) @ (b))
pea (£) VEA(S)
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Froof, Proposition 1.4.8 and (1.4.9) yield that

@y .S @y g ©®
X (O ) = 2 g 0N = 2 10, (e))e ().

VEA (£) VEA (£)

Hence the first formula is an immediate consequence of the following

lemma with b=1. The second one is obtained from (i) and (1.4.1). O

Lemma 1.4.11. For b €B

r and b € Bn such that b™ is a knot,

we have
20, 0, e =2, (0.

Froof. By using 1.3.3, we have

ot b ®
Xy (1 (5710 (1))

= 9 b’ 1 wPy(1
. EQB oy, (Pyap ,  PvWap ,  Pylblap | )

S0y B-da B, (Py(P )alﬁbii(naa-?ﬁb‘i(z{“8““Bb’1("1) |

Since b~ is a knot and so 0(b) is an n-cycle, each term of the

above summention is O except when 0!1=Bb_1(1) =0!b_1(1) ="'=ab'“"1(1) =

[31, i.e. IR Py B, are all equal. Hence we have

A (P Y =7 (b
Xy (L (51)0) (b))~§p\,(b)%m1 A, (0) .

1

This completes the proof. DO
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e r) . . .
1.5. A decomposition of X( ) into invariants. For a C-valued

function f on B of trace type, let

eV gy 3 2, (£) @, y(b).
KeA_ (£)
(r)

The r-parallel version X of a link invariant X of trace type is a

ZEV)

sum of invariants parametrized by A.(X)":

Theorem 1.5.1. For a C-valued function f on B of trace type

and b € B,, we have the following.

M =V

is a link invariant if £ 4is a link invariant.

i Puy- I xv(l)f(r’v)(K) for a knot K.
VEA (£)”

Froof, (ii) is an immediate consequence of the definition of
£(rV)  and Theorem 1.4.10 (ii). To show (i), we check the invariance of

£(rV)  relative to the relations (i), (ii) of Definition 1.1.2. Let b

and b' be elements of B, . Since "Jp,v(bb')”‘)u,v(b'b)' we have

f(.r'v)(bb',n) =f(r’v)(b'b, n). It remains to show that

(1.5.2) £V, ny = £V (b o 21, ne1).

Let f,ICB,—>C be a C-linear function defined by £, (b)=£(b, n) for
beB,. For VEA(f)", let Ny be an elgment of CB, such t'hat
pv(nv)=id ~and Py (Ny) = 0 for V=V EA(f)". Then pr(nv) is

. . 2 _
contained in the center of Ar(f)’ pr(nv) _pr(nv)’ and

Pllly)Py () =0 if V#V'. Since Py (13(0)ip(0y)-15(0,)) is a
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projection from ¥, to the pv®n—isotypic subspace Vu,v,...,v of Vi,

we have p»(tl(nv)tz(T]_v)...Ln(nv)(bn(r)(b)) =pp_‘v(¢n(r)(b)). Hence by (1.4.9)

and Lemma 1.411, we get
(1.5.3) = -1 : (r),
.. @y v(P) =2y (1) 72X, (1 (M) (M) tn () 8, (D))
for peA(f)" and VEA.(f)".

This formula implies that

£V(h o %1, et
= Xv(l)_l frn+r(‘1(nv)--"n(nv)tn+l(nv)¢n+l(r)(b onil) ) -

But we know, from Lemma 1.43, that ln+1(ﬂv) ¢n(r)(b onil) =

1
(l‘?n+1(r)(bcni )t (1,) and so we have
£ po *1 na1)

= 2D £ (1 ()t ()81 F b 0, £y ()

= (1 (L ()t (1) g ()01 (B 0,4

2 -
= (1)L £ (1 ()t () () 200, Db 0,2y

-1
= %g(1) ™ e (8 (M)t 1 () ()01 Db 0 21))
In the last step of the above calculation, we use pr(nv)2=pr('r]v).
(), %1

Since ¢ (r)(onil)=(0 "7, Lemma 1.2.4 implies that the last term of

the above is equal to XV(l)—lfrntr(“l(nV) -1 (y)t, (nv)(})n(r)(b

vhich is equal to g(mY )(b,n) by (1.5.3). Hence we have (1.52). 0O
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1.6. Invariants of cable links. Let . :B.— By (1€i<n) be the

group homomorphism defined in Section 1.4,

Proposition 1.6.1. Let b'EBr and ~ denote the Markov
equivalence relation (Definition 1.1.2). Then we have the following:

(a) For bl' bz € B, such that the closure of biby is a knot,

(1105 )0, (byby), tn) = (11(57) 0, (byby), £m),
(b) For bEB,, (Ll(b')(l)n(r)(b), rn)~(ll(b')¢n+1(r)(b0n*1), rn+r).

Proof. Lemma 1.2.4 shows the part (D). By using Definition 1.1.2 (ii)

and Lemma 1.4.3, we have .
(11 (510, 5 (b1by), rn) ~ (0,5 (byby)ty (b)), )

_ 260 b bt rn) ~
= (1) )0 (Brb2f, n)

~ (1 . (b')(bn(r)(blbz), rn)  (k=1,2,..)
(b1b2 )" (1)

v (@
~ (t (b)(b (bosby), rn).
by(biby)K(1) B 2t

Since the closure of- biby is a knot, we have {(blbz)k(l) |k=0, 1, ..,
k -1
n-1} ={1, .., n} and so there is k3 with (bjby) 0(l)=b2 (1). Hence

we have (1 (b')(bn(r)(bzbl),rn)=(ll(b')(bn(r)(b2bl),rn). This

k
by (byby) "0(1)
proves the part (a). o

The above proposition and Theorem 1.1.3 yield the following.
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Corollary 1.6.2. Let b'EBr and (bg,ny), (bp,ny) be two braids

such that the closures of bl and bz are knots. Then the closures

of (ll(b')(bnl(r)(bl),rnl) and (tl(b')(bnz(r)(bz),rnz) are_egquivalent if

(by,n1)” and (by, ny)” are equivalent.

Definition 1.6.3 (cable links). For a braid (b, n) and b €B,,

we call (tl(b')(bn(r)(b), rn)” the (r-strand) cable link of (b, n)"

associated with b'. For a function f on B, let fb-(r)(b, n) =
1 r 1]
{4y (b )d)n( )(b), rn). For b ECB_, let fb-(r)(b,n) =
y 1 r
£(11 (510, (b), rm).

The r-strand cable link is well-defined by Corollary 1.6.2, and so

Xb'(r) is an invariant of link isotopy types for a link invariant X

and b €CB_.
r

Theorem 1.6.4. Let b'ECBr. For a braid b€B, whose closure is

a_knot and 2 C-valued function f on B of trace type, fb-(r)
satisfies
. v
£, Omm = T e
vea (f)
Proof.  Since fb.(r)(b, n) = 3 xu(ll(b')cbn(r)(b)), we get the
peA (£)” '

statement of the theorem by (1.49) and Lemma 1.4.11. O



2. The parallel version of link invariants, Il (the case of general
1inks). In this section, we give a generalization of Theorems 1.4.10

and 1.6.4 for braids whose closures are links.

2.1. The characters associated with the parallel version. Fix a
C-valued function f on B of trace type and fix an element b0 € By.
Let Bn(b0)={bEBn | every <8(b0)>—orbit of Q is contained in a
single <8(b)>-orbit of Q}‘, vhere Q = {1,..,n}. We use the

notations in Sections 1.3 and 1.4, Lemma 1.4.3 implies that the
n , (r) . . )

subgroup LB, )(I)n (Bn(bo)) of By 1s isomorphic to the wreath

n . . .
product Bp A Bn(bo) with respect to 8:B;—>S,. For v= (Vl, . vn)
(viEAr(f)"), let pV:pV1®m®an be the representation of Brn.
For pEArn(f)A, let Vp,v be the pv—lsotyplc subspace '_pf Vp. as a
CB_ -module. Let &(j)=min <B(by)>:j for jeO. If Vj=vf3(j) for
1£3j<n, then by Lemma 1.43, V, y is invariant relative to the action
of Brn>\1 Bn(bo)' In this case, let pP-,V denote the representation of

e (@) . I

1B, ) 6, (Bp(by)) obtained by restricting p, on Vp,v -and X}L,V

its character. Then we have the following.

Proposition 2.1.1. Let k be the number of <6(b0)>-—orbits of 0

and {8(j)1jeq} ={m;, .., m}. Then we have

ach(cbn(r)(bo))_= 2 .2 K Vg, oV ><¢>n(r)(bo>)-
v EA(f) Vv €A (f) (1" om)
moT L

(r) (

Froof. The proof of Proposition 1.4.8 shows that XM% by)) is

equal to the sum of the diagonal elements of pp,((bn(r)(bo))
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corresponding to the subspaces VLL.(Vl,‘-.,Vn) such that VLL,(Vl.-.-.Vn)=

V(v

. If Y =V | , he
8(be) ()" 8(by) @) Bl T el sy Vot

we have V.=V,
j 8(5)
correspending to the subspace VLL,(Vl.---,Vn) is equal to

),

and the sum of diagonal elements of pp,(q)n(r)(bfl))

Ay v v (0 Hence we get the statement of the

proposition. 0O

Let V= (Vy, ., V ) E (A(£)")" with Vi=Vg(4y Since

1B, )(b (r) (B (b )) is isomorphic to Brn)d Bn(bo), ve see, from

Proposition 1.3.4, that there is a representation ™y of B such
that

(2.1.2) p)wlsp\’~ ®nP-V

(r)

n
where * is the representation of ((B. )0 B (b coming from
Py P r /¥n n'”o

n o ~
the representation p, of B, as'in Proposition 1.3.4 Let x,", B v
be the characters of Py . nP'V respectively. Now we can state a

gﬂnerallz‘-d version of Theorem 1.4.10.

Theorem 2.1.3. () For pe€A_ (£f)",

p(¢ (b))~ > LY (ﬂxv (1))(0”(

v_eA () v_ehA(f) I* sy
m, m,

(bg)
6(n)) 0

‘)
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’ (r)
(i f (bo)

(b.).
8(1)""’V6<n)) 0

k
- s > .3 au(ijEleva_(l))%,(v

ReA, ()" v ea ()" v eA(f)”
ml X mk o

Froor. Proposition 2.1.1 and (2.1.2) yield that
RURLERIEID M ) (by)
FL n 0 - cer ) 0

vV _EA(f)" v _eA(f)
m1 r mk X

X
k(1) 5o

iy @
= T . Ty e

€A (f)” v _eA(f)
) L(£) I, ()

(b ).
5(1)" sy °

v
m

Hence the first formula is an immediate consequence of following Lemma

2.1.4. The second one is obtained from (i) and (1.4.1). 0O

Lemma 2.1.4. We have

k
2y~ (by) = jlel mej(l)'

Proof. By using (1.3.3), we have

@
R CARTNY

Py (1), ).

= > 8888 (P (1) p. (1) .
aiB_[ “an Vl Otlﬁ v nge(bo)-l(z) vn I e(bo)—'l(n)

8(ba) 11y 2
cxl,Bl,..,(xn,ﬁn (bg) (1)

2%



Let |S| denote the cardinarity of a set S. Each term of the above
summention is zero unless

am=

B ==t TRETE S B = 1454k},
1 Be(bo)‘i(mj) e(bo)-l(mj) e(bo)_“, 1(31 1(mj) ij ( J }

But the above equalities implies that «4= ﬁl—rz =B5 for i and j

such that <9(b0)>'i = <8(bo)>-j. Hence we have

k
~(b)—H(Zp do o )= 11 2, ().

, . Ve
o1 Vi GOy g5 Ty
mj .
This proves Lemma 2.1.4. O

2.2. Further generalizations. 1In this section, we state a
generalized version of Theorem 1.6.4 for cable links of multi-component
links. We omit pfoofs of the results in this section, which are
anologous to those of cor;:esponding facts in Section 1.

Let K be a k-component link. A bijection ¥ <from the set of
connected components of K to {1,2,..,k} 1is called a marking of K
and the pair (K,¥) dis called a (k-component) marked link. The
connected component C of K with Y¥(C)=i is called the i-th
component of K. Let R=(rl, Loy eeny rk) e Nk, Let (K,‘P)(R) denote the
link diagram obtained by replacing each crossing point of a link |
diagram of K as in Figure 6. The link type of (K,‘P)'(RJ is not
depend on the choice of link diagrams of K. We call (K,‘P)(R) the
R-parallel version of (K,Y¥Y). " For a link invariant X, let
X(R)(K,‘P)=X((K,‘F)(R)). Then X(R) is an invariant of k-component
marked links and is called the R-parallel version of X. We can show



R)'

a generalized version of Theorem 2.1.3 (ii) for x! We omit the

details.
Figure 6.

Let (K,¥) be a k-component marked link, R= (rl, Tos s rk) ENk
and b=(bl, b'2’ ver) bk) EBrlx"'XBrk' Let (K,‘P)b denote the link
obtained by inserting the braid bi (L<{1i<k) to the bunch of the
components of (K,‘P)(R) corresponding to the component of K sent to
i by ¥ as in Figure 7. We call (K,‘I’):D the gable link of (K,¥)
associated with b. For a link invariant X, let Xb(K,‘P) =

X((K,‘P)b). Then X, is an invariant of k-component marked links.

b

Figure 7.
Then we have:

Theorem 2.2.1. Let X be a link invariant of trace tvpe, R=

(3,2, ...,rk)ENk and b= (by, by, ., by ) EB. X..XB_ . Then there are
. 1 k

invariants X(R’V) of k-component marked links parametrized by V=

(Vyu Vs, v, VY EA  (X)7X...XA_ (X)~ which satisfy the following. For a
172 k ry Ty

. k'—’cgfnponent marked link (K,Y¥Y).
' £ R,V
X, (K, ¥) = )} (T 2y 00y x5V (g w).
" e '=l
(vl,...,vk)EArl(X) x...XArk(X) j

This theorem is a generalization of Theorems 1.5.1 and 1.6.4.
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3. The r-parallel version of the two-variable Jones polynomial.
In this section we review representation theory of Iwahori algebras and
the two-variable Jones polynomial. At the end of this section, we
shall construct representations of B3 assoclated with the |
tvo-parallel version of the two-variable Jones polynomial. Fix
non-zero complex numbers & and s such that s is not equal to any

roots of unity. Let qkl2 = sk for an integer k.

Definition 3.1 ([3], p.55, ex.23; [18]). Let H (q) be a C-algebra

with a unit defined by the following relations:

2 .
(3.2) H_(q) =<Ty, T Tny | Ti"* (17@) T4~q=0 (1€ign-1),
TiT341T3=T541T3T441 (1 €31 £<n-2),

TiTy=T4T; (1£1<j-1<n-2) >.

Ve call Hn(q)

simplicity, we denote Hn(q) by Hn if there 1is no fear of confusion,

It is known that Hn is semisimple {see, e.g. [1]]) and isomorphic

to the group algebra CSn of the symmetric group Sn of degree n.

‘Definition 3.3. Let A(n) be the set of partitions of n, i.e.

An)={{A, A2, .. ) | };xi=n, A ENU{O}, Aj2di,; (i€EN)).
a

*

For A=(Aq1,As, ...)EA(n), 1let li*=max{j|lj2i} if i<A, and }'i

1
=0 if i>11. We call 1*=(Al*,12*, ..) the dual partition of A.

As is well-known, the irreducible representations of S, are

parametrized by A(n). Hence A(n) parametrizes the irreducible

3



representations of Hn' too. Let (px,‘,’}')_ be the representation of
Hn parametrized by a partition A€ A(n) and x}. its character. For
each A€ A(n), we know [12] the representation matrices of Py (T5)
(1<i<n-1) with respect to a basis paramstrized by the standard

tableaus corresponding to the partition A&.

Remark 3.4. Fix A€ A(n), and let f&z be the set of standard

tableaus corresponding to the partition A. For S€M., 5" dencte
the transpose of 5, vwhich is a standard tableau corresponding to }.x.
Let {eg | S€dy) and fegr | SEAy} be the basis of Vy and Vy»
given in’[iZ] respectively. Let T1:Vy—>Vyx be the linear isomorphism
defined by ‘q(eS) = &g (S E,&l); Then there is a diagonal matrix D

with respect to the basis {eg| S€ /51} such that
. =p i1 . . -1 D
P, (Ti)(a) =D "n (-qpl*(Tl)(q )} nb.
By the defining relations of B, and Hp, there is an algebra

homomorphism pn(a) : CBp—>H, defined by pn(a)(oi) =QT;.

Theorem 3.5 ([7)). Let o=(-q) %0, m=(-1)12 (g 1/2_41/2,

and
¥e

P(-)(8,m) be the tyo-variable Jones polynomial. Then, for bE€B,,
h

ave

PO = T 2y (®) 20, M),
AEA(n)

where the coefficients a;(P)€C (A€ A(n)) are given in [10] or [15].

' The coefficients 2 (P) (A€ A(n)) satisfies
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(3.6) 2y (P)(@,q) =a;+(P)(-0iq, q71).

Let K be a link. For a positive inﬁeger r and VEA(r), let

P(r’v) be the invariant parametrized by . (r,py) as in Section 1.5.

Then Remark 3.4 and (3.6) implies the following.
37 PR (0, q) =PV )(x) (g, q71)

Let I be a subset of {1,..n-1}, H, the subalgebra of Hj

I
generated by ({T; lie I}, and SI the subgroup of S, generated by

{(1 i+1)]i€1}. Let p‘k be the representation of S, parametrized

by A€A(n). Let {7‘.1,2.1+12,...,ll+lz+...+lp}={1,2,...,n}\I and ,AI

=A(11)XA(7&2)X...XA(XP). Then the irreducible representations of Hy

and SI are parametrized by AI. The restriction p}.lHI and p'xlS'I

are sums of irreducible representations of HI and SI respectively,

LS

e.g. Pl = @rﬂk’ppp and p'llH = @m'l,p_p'p_, where p, and p'y

Hr pen I peA

are representation of H, and S; parametrized by pEA..
I I R |

Proposition 3.8. such that the corresponding

o €4y

representation p'}L of SI is trivial. Then the above multiplicities
0

et
0

ml,}"o and ml,l»‘vo are equal.

FProof. The construction of each irreducible representations of Hn

and H; in [12] satisfies the following: The entries of the matrices
of the generators Ti are all rational functions of the parameter g
with poles at roots of unity. On the other hand, the above proposition

is proved for i'nfinitely many integer values of g by using [5]
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Theorem /.2. But we know that CS; and H, are semisimple if q is

I I
not equal to any roots of unity. Hence ™ e and m'A w, are equal if

q 1is not equal to any roots of unity. O

Remark 3.9. Because of the above proposition, we can calculate

W by the Littlewood-Richardson rule ([13], 2.8.13).
s Hao

Let pk be the representation of H;,n parametrized by A€ A{rn)
and pv that of H. parametrized by VEA(r). Let v be the
representation of By, parametrized by pA and pv as in Section
1.4. In Table 2, the representation matrices of T,y are given in

the case of n=3, r=2 and V=(2). By using Theorems 1.4.10, 1.5.1,

RCXCRCEED RN C)

3.5 and (3.7), we may calculate for knots
equivalent to the closures of 3-braids. To obtain these matrices, we
use the representation matrices of the generators of HG given by
W-graphs introduced in [18]. The W-graphs corresponding to the
irreducible representations of H6 are actually constructed by Naruse

and Gyoja (Figure 8).
Figure 8.

Table 2.
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4. The r-parallel version of the one-variable Jones polynomial.

In this section we discuss the r-parallel version V(r) of the
one-variable Jones polynomial V in detail. We give a formula for the

one-variable Jones polynomials of satellite links (Theorem 4.3.2). Let

V(r’v) denote the invariant asscciated with VEA.(V)". The

r

[47]

presentation matrices of “p,VEB;;A (LEA3(V)", VEAL(V)")
associated with V(&Y are given explicitly (Theorem 44.1). By using

these matrices we can easily compute V(r)(b") for a knot Db~ which is
the closure of a 3-braid b. The cases r=2 and r=3 are discussed

closely in (443)-(4.4.10).

'4.]. The Jones a]gebra. In this section we review the definition
of the Jones algebra J,, which is the associated algebra An(V)
(Definition 1.1.6) of the one-variable Jones polynomial V. We also
review the construction of the irreducible representations of J, [I5]
in terms of rectangular diagrams for our later convenience. Fix a non-

zero complex number s vwhich is not equal to a root of unity. Let

1:1":{4=sk for an integer k.

Definition 4.1.1. The Jones algebra Jnv=Jn(t) is a C-algebra with
1 defined by the following.

et L2
1

Jn(t)=<el, €ns s €4 leie + t.— )ei (1<i<n-1)},

e. , (1<i<n-2),

.e. .=8. e. ,e.e. ,=¢g.
elel+lel i’ 1+1717i+1 i+1

= . i ¢ -1 <n-1)>.
eiej ejel (lﬁl‘]l n-1)>

For simplicity, we denote J (t) by J, if there is no fear of

confusion.
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1/2i_t—1(2 -1

Since -(t ) e (1€i<n-1) is an idempotent of J ve

have

Proposition 4.1.2. For x€J , e;x=cx (CEC\({0}) Aiff x€e.J .

i
In this case, ¢ is _always equal to —(tllz-rt—lfz).

Definition 4.1.3. Let s be a positive real number and R=

[0,s]x[0,1]. Let n be a positive integer, P{3ai==(0,i/(n+l)),ﬁi==
(s, 1/(n+1)) (1<ifn) and Yl’"”yn curves contained in R. Then

(R’{YP'"’Yn}) is called an (unoriented) rectangular diagram of degree

n 1if it satisfies the following.

()  Any of the points al,.",a B ,.n,Bn is one of the end points

n’ "1

of the curves Yl"“’yn'

(i)  There is no triple crossing point of the curves.

(iif) Every curve has a marking at the each crossing point
indicating whether the curve under consideration is the over

path or the under path at the crossing.

(iv) The intersection of the curves Yoo oo ¥y and the boundary of

R is equal to {al"”’an’ﬁl""’pn}'

<]

A diagram (R,{Yl,.u,yn}) is called a rectangular diagram without

crossing points of degree n if the curves Yl"“’yn do not intersect

themselves. If orientations are given to .all the curves in R, then

R is called an oriented rectangular diagram of degree m.
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1 5 JE
vie call C{l, e G.’n

(respectively bottom) of R. Two rectangular diagrams ([O,S]X[O,l],

(respaotively Bl’ ) Bn) the points at the top

{(Yp - ¥,}) and (lo, s'Ixlo, 1], {yl’, ey Yn'}) of degree n are called
equivalent if there is a homeomorphism £ lo, slx[o,1]— [O,S']X[O, 1}

such that £((0,t))=(0,t), £((s,t))=(s,t) (te€lo,1]) and f(yi)=yi'

(1<¢i<n).

We define algebras Dn (n€N) over C. Let En' denote the set of
the equivalence classes of rectangular diagrams without crdssing points
of degree n. With the convention #E0'=l, the number #En' qf
elements of En' (neN) satisfy the recursive relations #En'=

n-1

2 #E ' $E

N k n-k-1 Hence #En‘ .is equal to the Catalan number

(znn)/(n+1) ([20],§2.3.44). As a C-vector space, we put D_=

F Ce; in partieular,
e€E ’
n

(4.1.4) dimep_= (2 *)1ne1).

To define the multiplication in Dn’ it is enough to define the
product ab for two equivalence classes a and b of rectangular
diagrams ([0,s]x[0,1],{y1,.“,yn}) and ([o,s‘]x[o,l],{yl;.”,yh‘}). This

is done simiiarly as with the case of braids by the following rule.

(a) Let R=[0,s+s']x[0,1]. Let g:[0,s]x[0,1]-—>R and q':[0,s']x
{0,1]1-> R be the mappings defined by g((x,y))=(x.y) and

g ((x,y))=(x+s,y) respectively.

377



m n n
(b)  Let (W 51.) U\ ¥,") be the decomposition of (\J g(y;))v
i=1 i=1 i=1

n
(W g'(yi')) into connected components, where 51. (1<41i<m)
i=1

are closed curves and Yi" (L£i<n) are curves with end

points.

() Let d be the equivalence class of the rectangular diagram

(R, {¥;", ~,¥,"}). Then ab=(-t1/2_¢H2ymy

Let ei' (1si<n-1) denote the rectangular diagrams given in Figure 9,

Then we have

Figure 9
e, f= (2 %o agicnn,
(4.1.5) :
ei'ei+1'ei'=ei', e. , e e. '=ei+1' (1<i<n-2).

. e.
i+l 7i Ti+l

Hence there is a homomorphism 1 from Jn to Dn sending e, to

e;'. But, by [15] and (4.1.4), we have

. 2 n .
dlmC Jn=( n .)/(n+1) =dlmC D,

Hence 1 is an isomorphism. Let Enzn—l(Enl)' Then En is a basis
of Jn. The definition of the multiplication in Dn implies that, for
ei' and xEEn', ei' X -is a non-zero scalar multiple of an element

of En'. Hence eiJn is spanned by a subset of En. Combining this

observation with Proposition 4.1.2, we get the following.

3%



Proposition 4.1.6. The subspace eiJn '_ci Jn is spanned by

N
E®=(n""(x) | x€E_', the i-th and (i+1)-th points at the top of

X are connected by a curve of x}.

For vy EEn', let TD(y) denote the number of strings of vy

connecting two points at the top of y. For example,

(4.1.7) TpN(ejeqeys 1)) =7

_ -1 . . » 3 A 4 )
Iet En,i—{n (v) ] yEEn , TD(y) 21} and Jn,i the two-sided ideal

of Jn generated by the elements of En i Since TD(yy' )2

maX(TD(y),TD(y')) “for vy, Y'EEn' Jn,i is equal to the C-linear |

span of E_ ., din J_ . For x€J_, we have
n, i n n

(4.1.8) e. €. ,m1..8.,. XEJ

i(1)%i(2)%i(x) n,k' (i(j) ¢i(j+1)-1 for 1<£3j<k).

Let J_ .=J_ . 13

. . i is known to be semisimple, the
n,i n,i n, i+l Since Jn i ple,

canonical projection .Jp j ->Jp,j splits. Hence Jp i can be

regarded as a two-sided ideal of Jp.

Proposition 4.1.9. The two-sided ideals Jp i (0<i<[n/2l) of Jy

[n{2]

n/
are’ simple algebras and Jp= @  Jp, 5.
: =0
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proof. Let e(l,2i-1)= ;g (0¢i¢nal). sinoe e(1,2i-1)

€658
€Jn,i and e(1,2i-1)€Jy 4,1 . Jn,i = {0} for 0<ig[n/2). We
also know (115],§11) that J;, is a direct sum of n/2l+1 two-sided
ideals which are simple algebras. Hence, by using Jordan-Hélder's

Theorem, we conclude that the two-sided ideals Jj i (0 <ig[nr2]y are

non-trivial simple algebras. 0O

Since Jp is a semisimple algebra over C, the two-sided ideals
Jn i of Jp (0 <i<[n/2]) are isomorphic to the full matrix algebras

over C. Let p# i:Jn'*’Jn,i denote the associated irreducible

representations of J,, and xn i their characters.
4

Let i pn':CBnFo»JDOJ be the algebra homomorphisms defined by

Oi—o--tllz—-tei and 04 —> t—ll4+t1/4ei

respectively. Then the
Jones polynomial V and the bracket polynomial <.> for the closure
of an n-braid ‘b are written as linear combinations of these

characters, i.e,.

[x/2]
V(b) = }?0 ay (N2, (e (2)),
s ,
(4.1.10)
[r/2]
<borb= }ZO a, 5 (V)X 5 (P, (B)),
, i= !

The coefficients a

n,i(v) are given by

)/ (t-tTh,

n+l tn/2+l/2-—i__t--n/2—l/2+i

(4.1.11) a, (V) =(-1) {

(see [10],[15],[16]).
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Note that none of the coefficients ay i(V) are equal to zero because
’

t 1is not a root of unity.

Remark 4.1.12. Let (pn:Hn(t) ~> Jp(t) be the algebra homomorphism

defined by (pn(Ti) =-1- tll2 e..

;- The compositions pn,i ° (pn for 0<i

<[n/2} give ii‘reducible representations of H (t) parametrized by the
partitions (22..211..1).

i-times (n-2i)-times

Definition 4.1.13. Let G, denote the free semigroup generated by

1, £, o, oi“l (1{i< n-1), G={{g, n) lgeGy] and for (g, n)€EG,
let d{(g, n) denote the rectangular diagram (Definition 4.1.3) of

(g.n) defined as in Figure 10.
Figure 10.

By the analogy with braids we use the term ¢losure of a rectangular
diagram d(g,n), written (g,n)”, to mean the link formed by joining
the n points at the top of d{g,n) to those at the bottom without

further crossings. Let lyn 1 CG—>J, denote the algebra homomorphism

defined by

/4 1/4 4

_ _.-1 —1y -1 174
’l‘n(fi)—ei, Wn(oi)—t tt €5 Wn(oi )=t €

+¢ ..
1

By using the original definition of <-> in [16], we can show that

[£/2]
(4.1.14) <{g,n)">= go an'i(V) xn,i(\]!n(g)),
where the coefficients a_ .(V) are given by (4.1.11).

a B
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4.2. Relations among the invariants associated with the

(r)

decomposition (1.5.1)of V Let p_ be the homomorphism from CB_

to J_  defined just before (41.10). Let V1) denote the invariant

associated with the irreducible representation pr i op, of By (sze
' b4

Sections 1.4 and 41). In this section, we give relations among

V(r'l). In the following we use the conventions that V(O)(K) =V(-Q’O)(K)

=<|Kl>(0)=<|Kl>(0’0)(K) = (- t:—ll2 - tllz)-‘ for any link diagram K.

Theorem 4.2.1. Let K be a knot. Then we have

v gy =y (r-2k34-K) gy gor r20, 0<iclri2l, 0¢k<.

Remark 4.2.2. The same is also true in the case when X is a
general link. We restrict our attention to the present case for

simplicity.

Corollary 4.2.3. Let X be a knot. Then we have

(/2]

M W= 3 1, i(l)V(r_Zi’o)(K) for r20,
i=o

r

(i) V(r’o)(K) is a linear combination of V(s)(K) {s=xr,r-2, ..,

-~ - r-2[r/2]) with integer ccefficients.

(i (t112+ t_llz)V(r’j)(K) is a Laurent polynomial in the
t1/2

pbarameter

Froof. The formula (i) is an immediate consequence of Theorems

1.4.10 and 42.1. Solving the formula (i) with respect to V(S’O)(K),

we get



' s ¢ €C).

vie gy 3 csrv(r)(x) (o

Since xr 0(l)=l, the coefficients O (r=s, 5-2,..) are all
I

integers and so we get (ii). By (4.1.11), the coefficients

1/2+t-—112 1/2

(t )arn i(V) are Laurent polynomials in t We also know

[12] that the characters xrn)i(prn(b)) (neN, 0<i<[rn/2], beByy)

1/2

are Laurent polynomials in t Hence (ii) follows from (iif). D

To prove Theorem 4.2.], we need the bracket polynomial <.> defined
on G (see the last paragraph of Section 4.1). By (4.1.10), the
bracket polynomial is of trace type. Applying Theorem 1.6.4 to <.>,

ve get the following.

Proposition 4.2.4. For b' €CB, and a braid (b,n) we have

(/2] |
W O 2 1 e 1) <™ gor 20,

Let £, €CBp, such that prn'(fi') =e;, (1¢i<rn-1). Then we have

the following:

Proposition 4.2.5. For beB,, we have

(r) - (_t3/4 -23w(b") | 1/2 _ ¢ 102)3 (r-23)

<{b,n)> ) (-t <({b,n)>

fl f3 ---fzj_l

&3



Froof. For geG, ., we put <g>=<d(g,n)"> EC. By Definition
1.1.10 of the bracket polynomial, the mapping <.>:Gpp—>C is factored

by the projection Wrn:Grn —> Jrn (see the last paragraph of Section

41). Since P (fl'fa'.,.fzj_l')=wrn(flf3...f2j_l), we have

(r) . o (r
<{bh,n)"> ' =<(flf3...f2j_l (bn(l)(b), rn)>

Tyfg.0059
. r
=<(flf3rzj_l¢n( )(b), rn)).

The following lemma shows that the link diagram

(f1f3...f2j_1¢n(r)(b),rn)" is regular isotopic to

(6,3 (1), (z-29)n)~ U (U (£,6,727F,2)) (disgoint union).
i=1

.For a link diagram K which is a disjoint union of two link diagrams

K; and Ky, it is known that <K»=(-t1/2-t 12y kis<kps. It is

also known ([16], Proposition 2.5) that <(f101_2?(bh),2)>=

—1:3/4)—2‘”’(b ). Hence we have

(

(x) (b)

<(flf3fzj_ 1¢n R rn)'\ >

—2W(b"‘)’ 2)7)>

CRRNONES S I RVI VIR LA

= (1374 23%(") (ftlIZ_t—llz)j<(¢n(r—j)(b)' (r-25)n)>.

as required. O

Lemma 4.2.6. For bEBn, the link diagram

6



£ ('b) ~
(f1;3...f2j_ 1¢n (b}, rn)

the link diagrams (d)n(r_J)(b),(r—Zj)n)" and j copies of

(flcl’z“’(bA),z)“.
Froof, Let PB= si(l)(g(l)) si(z)(e(z)) si(k)(g(k)) where 3<i(j)<sr-1, -
0 1 -1
1€e(3) €1 (1 €5 <k), Si(j)( )=fi(j)’ si(j)( )=°i(j) and Si(j)( -
-1 * (e(1) (e@2) (e(k)) .
%) Let B =55(1)-2 55(2)-2 85 (k)2 . Then Figure |1

demonstrates that the link diagram (flﬁ(bn(r)(b),rn)“ is regular

isotopic to the disjoint union of the link diagrams

r._z _ ’”
(B*q;n( )(b),(r—Z)n)" and (f,0, 2¥(b") 2)~. Hence an induction on j
proves the statement of the lemma. o
Figure 11.

Lemma 4.2.7. Let e(j)=eej.e,. ;EJr (1<j¢<x/2]). Let ¥

J
be the character of the representation pr i of Jp, defined in

2

r,i

Section 4.1. we have

() 7, ;(e(3))=0 | if 145,

(&) %, jeGN =ty ) i 0gga,

¥here we used the convention that XO o(l) =1,

Proof. Since TD(e(j))=j by (4.1.7), pr’i(e(j))=0 if j>i and
so we get the first formula of the above lemma. We regard Jr—l as a
subalgebra of Jr by the inclu'sion homomorphism sending eiEJr-l to
e €EJr (141 r-2). For an element x €J,. contained in the subalgebra

Jr-1., we know [15] that

)



Xr'o(x) =Xr_1'0(x)l

(4.2.8) X (x)=% (x) ¥ A,y 44 (x) if 0<i<cri2,

r-1,1
7c21:, r(x) = XZr—l, r——l(x) )

Using (4.2.8) and Lemma 4.2.9 below, we get the part (D) by induction on

r. The details are omitted.

Lemma 42.9.  x, (e(r))=(-tHZ- LET,

Proof. By Lemma 4.2.7 (3) and (4.2.8), it is enough to show:
(4.2.10) - xzr’r(e(r))=(—tl,2-t—llz)-xzr_l'r_l(e(r—l)).

Let e(i)’ be an element of CBy, with’ er(e(i)')=e(i) (1<i€r).
By Lemma 4.2.7 (@), x2r,i(f(r))=° if i<r and xzr._l’i(e(r—l))=0 if

i <r-1. Hence we have

Vzl_(e(r)')= (V)_XZr,r(e(r))

a2r,r

and
Vzrfl(E(r—l) ) =a2r_1’r_1(V) le__l’r_l(e(r—l) ).
-Since -V ..is a link invariant, we have

Vor(Pap(Op,_jle(r-1)") = VZr(er(OZ‘r-—l-’l)e(r_l).) =V, _;le(x-1)")
(Definition 1.1.2 (ii)).

Hence, by using

-1 -1/2

1/2
e.=t er(Ol)—t (

172 -112
5 (et ¢

12 -12,-1 1

) ) T Ppp(0. 7).
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we have

2gr, (V) Ay (e(x)) =V(e(x)" 2r)

1/2 1/2 -1/72,-1 -1/- /2 -1/2 -1
= V(- M -t (e

e (Opr 1) )" Ppy(0, 1)) e(x-1)", 2r)

=V(e(x-1)",2r-1)=ay 4 (V) %y, qle(z-1)).
This and (4.1.11) imply (42.10). O

Froof of Theorem 42 /. From Proposition 42.4 and Lemma 4.2.7 we have

<(bn)>g et

_ [z/2]
=(_t1/2 _ t-—llz)j ( Z x
i=j

r-25, i-j0 < o) (0 ¢r,0 <5 ¢ler2l).

By interchanging r with r+2j and i with i+ 3j, we get ~

-
<pg g, O
(x/2) ‘ .
=2V Y T (1)<(b,n)>(r+23’1+3)) (0<r,0<5¢rr2l).
i=0 ©

Hence Proposition 4.2.5 implies that

[r/2] a2 es
<(b,n)>( )—( t3/4)23‘7(b ) ( ZO 1e, 1(1) <(b, n) j,l+j)-
i=

By using (1.1.12), we get V( £) (b,n) =(- t3l4)rw(bA)<(b,n)>(r) and

V(r l)(b =(-t 3/4)rw(b") <(b, n)>(r l) Therefore we have

[réz] . (r+25,1+23)

( ) (1)V (b,n).
i=0

(b,n) =



But the left hand side of the above formula does not depend on 7j, and

so we obtain inductively that

V() b0y =900 0 ny oy (2 ) g g o oy (2 ) gy
v 5, 0) =¥ O (p,n) =v(3 ) g ny = =y (292130 gy o
[£/2] _
Y by - 2 1 (1) vED(b, )
i=1 Tt

=vE 0 g ny = v 2 D 0y = =y (FF23 ) 0y <

These are the equalities we wanted to show. O
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4.3. The Jones polynomial of satellite links. We give a satellite

link version of Theorem 1.6.4 for the one-variable Jones polynomial V.

Definition 4.3.1. Let K and L be diagrams of links in the
3-sphere and the solid torus respectively. Let N(K) the tubular
neighborhood of K. Then there is a bijection £, called the faithful
embedding, from the solid torus to N(K). This mapping is determined

canonically up to ambient isotopy. Let K;=£(L). Then K; is a link

in the 3—sphére and is called the satellite link of K with respect to
L. For a link invariant X, put X;(K)=X(K;). Then Xj is a link

invariant.

For a link diagram L, 1let lLl denote the unoriented link diagram

obtained by forgetting the orientation of L. For (g,n}€G

(Definition 4.1.13), 1let (g,n)” be the unoriented link diagram in the

annulus obtained by joining the points at the top of d{(g,n) and those .. .

at the bottom without further crossings as in Figure 12. Conversely,
for any link diagram L in the annulus, there is an element (g,n)€G
such that |L| is reqular isotopic to ({g,n)” in the annulus. Let

Y.:G.—>J_ be the projection defined in Section 4.1.
Figure 12.

Theorem 4.3.2. Let K be a knot, L an oriented link diagram in

the annulus, w(L) the writhe of L, and (g,r) an element of G

whose ¢losure is recqular isotopic to |L| in the anmulus. Then we have

(/2]

O R PR AT VB ),
1= 3
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Proof. Let (b,n)EB be a braid whose closure is equivalent to

K. Then XK; is equivalent to (g(bn(r)(b),rn)". We regard G. as a
subsemigroup of Grn by the inclusion homomorphism sending gEGr to

the isotopy class of ¢ in G, as in Figure 13.

Figure 13.
By applying the results of Section 1.3 to the wreath product Grn>d Gn'
we get

fr/2] .
(o0, P mp= 2 1, v (a) <onpY

i=0
The proof of this formula is analogous to that of Theorem 1.6.4. We

w(b") (r,1)

_3/4 <(b,n)> and w((g({)n(r)(b),rn)")

know that V(r’i)(b,n) = ( )

=v((g,r)") * rw(b”). By using these formulas, the above statement can

be proved. . O
Theorem 4.3.2 can be extended for marked links as Theorem 2.5.4.

Example 4.3.3. (doubled knot [33]). Let Ly be the link diagram in
the annulus as in Figure 14.
Figure 14,

. . . - 2
Then LO is regular isotopic to (g0,4) , Where g0=flf2f302. For

a knot K, we have VLO(K)=t”3’2((1-t) V@0 gy - (714 1) VOO gy,

since X, ((Ws(99)) =0, 1, 1 (¥,(gp))=1-t and 7, ,(¥,(gp))=-(t s
t). But we know that V@O (k)y=v@ k) .+ (12, 121 fron
~312 2

Corollary 4.2.3 and so we have VLO(K) =t (1-1t) V(z)(K) +t 7.
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4.4. Representations associated with vir) ret P, x denote the
irreducible representation of Jm defined in (4.1.9)-(4.1.10). 1In this

section, Mo 5 (0<ix< [3r/2]) denote the representations of B3r
parametrized by two irreducible representations p3r 5 of J3r and

Pr o ©f Jr defined as in Seotion 1.4, Let @3 4 .denote the

character of =n Let K be a knot equivalent to the closure of a

3r,i’

3-braid bEB Then, by using the following theorem, (4.1.11) and

3
Theorem 1.4.10 (ii), we can caloulate V(r’o)(K) explicitly. Moreover, by

using Corollary 4.2.3 (i), we may calculate V(r)(K) explicitly.

Theorem 4.4.1. A set of representation matrices of LI i(oj)

»

(0<i<[3rr2), §=1,2) is given by the following.

"ar, 100 = 5 (Mo ¢4,k caqr, i)

"3r, 1092 (%5 g 1)-4, de, 1)k 0 € 5, & < d(r, iy

where d(r,i)=deg(n3r i)'l=i (if 0<€i<r) or 3r-2i (if r<ig(

[3z/2]) and

k L1k, 3
@, | k(t):(-l)(r+ Py LRIk k) (k<3j, 0<i<r),

= i < <1
ai,j,k(t) 0 (7 <k, 0<i<r),

(r+k) ty(r,Zr—i,k,j)

o L (8 =(-1) g(i-k,j-k,t) (k<j,r<igl3csal),

= i<k, r<i¢ 2]y,
o S (8)=0 (5 <k,r<i¢[3cr2])

vhere Y(r,p,k,j)=(r*+tk+ 2rk~kZ2+ (r-p*3j-k)(j-k))/2 and

g(p,q,t) is th at



q tp+i—l
g(p.q.t)=I1 —
i=1 ¢ -1

The polynomial ¢g{p,q,t) satisfy the following recursive relations:

Il

g(pioit) 1l g(p)P't) = l)

(4.4.2)

glp.at) = PN g(p1,q-1,¢) + g(p-1,q,t).
Before proving the above theorem, we give examples and applications.

Example 4.4.3. The representation matrices of 07 €B3 for the
case r=2 and r=3 are given in Table 3. The matrices of 0, are

obtained as follows.

4

n3r,i(02) =Kn (01)-K, vhere K =

3r,i

Table 3.
Let C'={ceClec=0, ™21 for any meN}.

Proposition 4.4.4. Let (b,b') be oa pair of 3-braids such that

w(b™)=w(b") and V(b*)(s)=V(b'*)(s) for all seC'. Then, for tE€

c*, V(z’o)(b'\)(t)=V(2’O)(bIA)(t) iff ﬁ)ﬁ'z(b)(t)=ﬁ)6’2(b|)(t).

Froof. Recall that a_ . (V)(t)=0 for 0<i¢[nr2] by (41.11).

From (4.1.10) and Theorem 1.4.10, it is enough to show that
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(4.4.5) W c(b)(t)=w, i(b‘)(t) for i=0, 1, 3.

Ve have mé,i(b)(t)'—_wé,i(b)(t) for 1=1,3 and x3’0(b)(t)=

7.3 0(b')(t) since they are linear characters of B3 and w(b™)=w(b").
The assumptions w(b"~)=w(b'") and V(b*)(s)=V(b")(s) for all secC*
rields = ’ i N Y(s) = ; y . +
yields 2y ,(0)(s)=X, ;()(s) sinoe V(-)(s)=ay o(V)(s)Zy o(-)(5)
a:,),l(‘f’)(s);(3 l(-)(s) for 3-braids. But we know that co6 1(b){t)=
_y¥{p7) 2y A - - once
(-1) ;{3,1(b)(t ), - and so we have wé,l(b)(t) mﬁ,l(b)(t)' Hence

(4.45) is proved. O

From the above Propesition and Corollary 4.2.3, we have the

following.

Corollary 4.4.6. let (b,b’) be a pair of 3-braids such that
¥(b*}=w(b'") and

V(b*)(s)=V(b")(s) for all se&C". Then for te€
e, VB () =V b ry(e) L 6 L) () =0 LB (8). -

Let P=P(-)(,q) denote the two-variable Jones polynomial with

non-zere complex parameters «® and g where g 1is not equal to any

roots of unity. Then we have the following.

Corollary 4.4.7. Let (b,b') be a pair of 3-braids such that w(b")
2)

=w(b*), V(b){(s)=Y(b'")(s) and V) (b~)(s)=v?(b'")(s) forall s

£C". Then we have
@ {3 (pry(a,q)=p2 (2D (p~)(a,q),
®  p3 1) prya, q) =3 (1) (pry (@, q),

© P pry(aq) =P (") (a.q).
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Froor. The representations ™y (AEA(6), v=(2) EA(2)) of B,

associated with P(z) are given in Table 3. With these representation
matrices, an analogous argument of the proof of Proposition 4.4.4 shows
the part (3). the part (a) and (3.6) implies the part (b). The part (C)
follows from the parts (@), (D) and Theorem 1.5.1. D

Proposition 4.48. Let (b, b') be a pair of 3-braids whose

closures are knot with w(b")=w(b'") and F(b*)({a,x)=F(b'"){a,x) for

all a, xECX, wvhere F denotes the Kauffman polynomial. Then, for

vect, VOO o) =vl D waye) iff oy b)(t) =0y L(B)(L).

FProof. ’ Because a9’3(V)(t) =0, it is enough to show that
0y ;(B)(£)=0y (B)(t) for i=0,1,2,4. We have V(b")(s)=V(b")(s)
(s€C") from F(b*)=F(b'*) [22]. Thus, as the proof of Proposition
444, we have w9,i(b)(t)=®9,i(b‘)(t) for 1=0,1,4. Let X be the

character of the representation p of B3 defined by the following.

a 0 x 0o -1 0
p(o1) = [0 o -1} p(oz) = |1 x 0
0 1 X 0 a_lx a

From Theorem 12.2 of [26] we have 3 (b)(a,x)=7%(b){a,x) if the values

of a and x are generic. This yields %(b)(a,x)=%(b')(a,x) for all

a, xect since X (P)(a,x) are Laurent polynomials of the parameters

a and x for all BEB3. Let ' Dbe the charaoter obtained from Y

=112

by substituting x=-t=32+t3/2 apnd a=t . Then ® (t)=t3

()
9,2
X'{(-)(t) and so we have Wy ,(b)(t) =0y 2(}o')(t). This proves the

prbpos ition. O
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From the above proposition and Corollary 4.2.3, we have the

following.

Corollary 4.4.9. Let (b,b') be a pair of 3-braids whose closyres
are knot with w(b")=w(b'") and F(b"){a,x)=F(b'")(a,x) for all

a, xECX,. where F. denotes the Kauffman polynomial. Then, for
vec, VO pry(e)=vBlprye) iff e ) (t)=0y L7)(E).

Proposition 4.4.10. The invariant v(3) g independent from V,

V(z),‘and the Kauffman polvnomial F.

Froof. Ve give a pair of braids (b,b’) such that V(b")=V(b'"),
o
V(2 (pry=v@) (pr), Py =F'~) but Yy = v (pry. Let

' .2 -2 2 -2 _m_2_-2_-1_2_-2 _n
b(m,n)-—Ul 02 0102 01 02 01 02 01 02 01 02 .

for odd integers m, n. Then T.Kanenobu noted that the knots b{m,n)”
and b{n,m)” have the same Kauffman polynomial. Therefore they have
‘the same Jones polynomial [22] and the same 2-parallel version of the
‘Jones polynomial [35]. But T.Kanenobu conjectured that b{(m,n)" and
b(n,m)" are not equivalent except a finite number of pairs {m,n}.
From a calculation with a computer ﬁe have w913(b(3,1))¢ w9,3(b(1’3))
by substituting 4 to the parameter t. Thus we have i(jj(b(l,S)“)z

v(3)(b(3,1)*) from Corollary 449. O

From now on, we prepare some notations which is needed in the proof
of Theorem 4.1.1. We use the notations in Section 4.1. Fix an integer

i with 0¢<i<[3r/2]. Let

Var 1=93r, i%1837%2i-1 1 Uap, 18183825213, 541 )
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From Proposition 4.1.9, V. ; 3s an irreducible left J, -module and

the left action of J3r on V are equivalent to P By

3r,i r,i’

Proposition 4.1.6, there is a subset G3r,i of E; such that

{(xmodJ.. . .° lxeG .} is a basis of V More precisely,

3r,i+ 3r,i

3, 1" I, “Ja €183-€05-1"

3r, 1’

G Let

G3p,i,1=[xEG3r,i | there is j=0 (MOd r) such that the j-th
point at the top of 1(x) 1is connected to the

(j+1)-th point at the top of T1(x)},

and V . the subspace of V3r i spanned by the image of G3

3r,i,1 r,i, 1’
For Oﬁjl, 32,33$[r/2], let V3r,i,j o] be the ,pr,j ®pr,j ®
1-2°73 1 2
p_ . —isotypic subspace with respect to Jr®3 naturally embedded in

I, ],
J5,. (see Section 1.4y, Let I={k]1<k<3r-1, k=0modr} and Jg

the subalgebra of J:,'r generated by e (keI). Let }'O denote the

one-dimensional representation of JI defined by XO‘(ek) =0 (kel).

For a JI—module U, let U = z ekU. Then .U+ is a JI—submodule of
- kel

U. Let U0 denote the 10~isotypic subspace of U. Since

~(t24 %) e (xeI) is a projection and U=

2 -1/2,-1

M (1 (t ) k)U, we have the following.

kel

Proposition 4.4.11. The composition of natural homomorphisms

U, ->U—> U/U+ is a JI—module isomorphism.

0
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From Proposition 4.1.8, we have Var i'l=](zI e, Vi, ;- Since J; is
4=

isomorphic to Jr®3’ we get the following.
Corollary 4.4.12 The J ®3-—submodule \' f Vv is
e § = 73,1,0,0,0 — 'r,i ==&
. . ®3
isomorphic to V3r,i/v3r,i,l as a Jr -module.
Let V3r,i,O=V3r,ilV3r,i,1' Then the above corollary implies that
the representation n, . of By in Theorem 44,1 is equivalent to the

action of B3 on V3 L 0 induced by restricting the representation

Par io¢3(r). We give a basis of V3 and representation matrices

r,i,0
of i with respect to the above basis. For 0<k, m<j, let
e(j-k,j+k) e(j-k-1,j+k+1) . e(j-m,j+m) 1if m2k,

eD(5-k, 5+k, 5-m, §+m) =
o ' e(j-k,j+k) e(j-k+1,J+k-1) . e{J-m, j+m) 1if m<k,

and
e®(5-x, em, j-m, j+k) = ¢ (5-k, j+m) e (§-k-1, j+m-1) ... e (§-m, j+k).

Let Hy j={h

£,1,3 |0$j$i'if i{r and i-r<{j<2r-1 if r<i},
where the elements hr i3 are given as follows. In the case of 0¢i
{r, let

h _(1) - e(d)(r,r,r—j+1,r+j—l),
h _(2)= e(d)(Zr,Zr,zr—i'Fj*‘l, 2r+i_j—l)'

h (3) - e(h) (2r-i+7j, 2r+i-j-2,r+j+1, r-j+2i-1),
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hooo.o=h . Dy @y @ @
r,i,j r,i,j ‘'r,i,j ‘“r,i,j Tr,i,3

’

for 0<j<i. In the case of r<i<[3r/2], 1let
no. LD o o@D b rget, re-1),
h . (2) = e(d)(2r,2r,r+j+1,3r—j-—1),
h . j(3) = el (r g, 305, 20-15+1, 204+i--1),

ho, @ o oM ar 35, 200i-9-2,1,2i-1),

r,1,]
- (1) (@) 3 (4)
b, 4,5 PriiLg BriLg Peig
for i-r{j<2r-i. The rectangular diagféms of n(hr i j) ED3r are

given as in Figure 15.
Figure 15.

Let W3r,i denote the inverse image of V3r,i,l with respect to the

canonical projection

T3r®193-%25-1 7> Jar®1838251 1 Ugp, 141 0 I32®185805 )

Proposition 4.4.13. The set H_ ;" ={h mod ¥ lhen. ;} isa

dr, i

ba§is Qf V3r’ i’o.

., held

Froof, For heH ., we know that hEE
r,i 3r, i

3r®1%3%2i-1
he E3r, e and h#g E3r, i1 Hence Hr, ; 1s linearly independent

since w3r,i is a subspace of Jr i. spanned by (E

s

r, i+ln

J Since the dimension of the representation

3r®1%3%24-1) VEL 5 -
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pr 0®3 of Jr®3 is equal to one, the dimension of the
®3_isotypic sub £ Vi, ; with respect to J. 2% j 1t
pr,O isotypic subspace o 3r,i With respec r is equal to
e ®3 | _ R
the multiplicity of pr,O in p3r,i ; 23" From Remarks 4.1.12 and
r

3.8, we may use the Littlewood-Richardson rule (Remark 3.8) for

computing dim The result is

¢ V3r, 1,0

dimcv3rio=i+1 if 0<ifr and 2r-i+l if r <i<[3r/2],

vhich are equal to #Hy . This shows that Hyo i. is a basis of
Var,i,00 O

Let p3r:B ->J be the algebra homomerphism introduced in

3r 3r
Section 4.1. We use the following formulas in the proof of Theorem

441, which can be proved immediately from the definitions of Jap Pap

and '&‘:'3]:’3._. For veJ ejes.ey, ; and 1£k<3r-] _with k=0 (mod r),
ve have '
(4.4.14) J (o')v=—t1/2v (mod W )
o Parl 3r,i’’

For 1<k {3r-1, we have

: 312
(4.4.15) Py (0 ) e, =e.p,y (0,)=t7 “e,.

For 1<k {3r-2, we have
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3/2

3/2 -1 _ _
p3r(01+1) €y p3r(01+1) I P Yy i+t

psr(ci) €.,,8 " t

-1 _ 32 -1 .-
(01) € ei—t p3r(01+1) €y p3r(01+1) €% t p3r(01)81+1'

P i+

3r

(4.4.16)
p3r(01) ei+1 p3r(G.t)_1 . p3r(01+1)—1 ei p3r(01+1) !
-1

_1 _
psr(oi) e1+1p3r(0i) - p3r(01+1) € psr(01+1)

We also need following formulas, which can be proved by using above

formulas. For p,q€N with p<q, let

- -1, -1 _ -1
O0(p.q)=0_0 .0, O ,q)=0 o .0 ’
(P.q) =00, 10y (P.q) =0, "0 .4

c (q'P)=0qu_l...0p and 0'"(q,p)=0_ © 0

For 0<k<m<7j, let

O0(jk, j+m, j-m, j¥k) =0(jzk, j+m) 0(jtk-1, j+m-1) .. 0(j-m, j¥k).

and
0 (jzk,j+m, j-m, jFk) =0 (jk,j+m) 0 {jzk-1,j+m-1)..0 (j-m, j¥k).
For j,k,m,neEN with 7 >m-k+n, we have

(4.4.17)  o(j-k+m, j+m+n-1, j-k+1, j+n) 6(j-k, j-k-n+1, j-1, j-n)
{4 (5,9, 9-n+1, j4n-1)

= 0 (j-k,Jj-k+1,j-k+m-1, j-k-n+m) O(j-k+m, j+m-1, j-k-n+1, j-n)
(h)

e(d) (j+m, j+m, j+m-n+1, j+m+n-1) e (J+m-n, j+m+n-2, j-n+1, j+n-1)

For j,keEN, we have
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(4.4.18) oiil e(i+2,i+2k) e(i+1,i+2k-1) e(1, 1+2k-2)

+1

= e(i+2,i+2k) e(i+1,1+2k-1) e(1,1+2k-2) 0, o

Formula (4.4.17) with m=1, (4.4.15), (44.16)and (44.18) implies that

(4.4.19)  o(5,5+k-1) 6" (5-1, 5-k+1) {4 (5,5, §-k+1, jok-1)

= 32300 G- (501, Goke1) 0 (5-1, 5-ke 1) L el D) (5, 5, 5k 1, fek-1).

An induction on m and (44.19) shows that

(4.4.20)  0(5,5-m+1, jom-1,5) {4 (5,5, §-m+1, jem-1)

32md L P N
= {t ) 6'7(j-1,j-m+1) 0" (j-1,j-m+1l) “0'7(j-2,j-m+1) 0" (j-2,J-m+l)

G (5-m, §-m) 6" (5-m, 5-m) " * () (5,5, jome1, Gem-1) .

6
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Froof of Theorem 44 /. We caloculate the representation matrices of

nar'i(oj) (§=1,2) with respect to the basis H3 This can be

done by writing down p3r(¢3(r)(oj))hr ik mod W, 4 (3=1,2) as

C-linear combinations of elements of H3r i.' Steps 1-7 can be proved

by using formulas (4.4.14)-(4.4.20).
Step 1. p,_(8,"7(0.))n
: 3r**3 j r,i,k

172 -1
= (-—t )r(r )0(r,2r—1,1:r)hr'i,k (mOd W3r,i)‘

Step 2. 0.(r,2r-—1,1,r) hr,i,k
312,k '
= (t Y o(r,2r-1,k+1,r+k)o(k,r-1,1,1-k)
6" (£-1,r-k+1) 0" (r-1,0-k+1) L0~ (£-2,0-k+2) 0' (r-2,7-k+2) T

.. 0"~ (r-k+1,r-k+1) ¢’ (r—k+l,r—k+1)—lhr i (mod ¥, ).

Step 3. o(r,2r-1,k+1,r+k)o(k,r-1,1,1-k)

o'~ (r-1,r-k+1) ¢’ (r-1,7-k+1)" Yo'~ (r-2,r-k+2) o' (r-2,r-k+2)" "

6" (-kal,z-k+1) 0" (r=k+1,7-k+1) TR . |

~1/2 k(k-1) ' _ _
(-t7'%) O(r,2r-1, ks, r4k) 0(k, o-1, L, z-k) by y o (MOQ Wy 4).

Step 4. o(r,2r-1,k+1,r+k) o(k,x-1,1,r-k) h_ , k(z)

_ 3Kk 2 6=y 191, r2k) o(x, 2r-k-1, r-k+1, 20-2k) O(x-k, 2r-2k-1, 1, r-k)
el 20k 2rk,20-2k+1, 20-1) o P (2r-2k, 20-2, r-ke 1, rek-1).
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Step 5. o7(k.r-1,1,r-k)O(r, Zr-k-1, 1, r-k) e(d)LZr—k, 2r-k, 2r-2k+1, 2r-1)
e® 202k, 20-2, r-k+1, r4k-1) D (2r, 21, 2r-i4ks 1, 204 1%-1)

ean(Zr—i+k,2r+i—k—2,r+k+l,r—k+2i—l)ean(r—k,r—k+21—2,l,2i—l)

= (-t REK) 6 aroak-1, 1, 0%) ol D) (20K, 20k, 20-i-ke 1, 2r4i-k-1)

e(h)(Zr—i4k, 2r+i-k-2,1,2i-1) (mod M3r,1)-

Step 6. o(r-k,2r-2k-1,1,r-k) e (2r-k, 2r-k, 20-1-k+1, 2r+i-k-1)

M (20 ik, 2r4i-k-2,1,2i-1)

t3i(r‘k)’2(—tllz)(r'i)(r‘k)"k(r”k)o"(zr,r+k+1,2r+i—k~1,r+i)

el (r,r,ri41,r0i-1) P (r-i, r4i-2,1,2i-1)  (mod Wy J).

Step 7. For non-negative integers i, X and m such that k<i

and m<i-k, ¥e have

e(d) (2r,2r, 2r+m-2, 2r-m+2) e(h)( 2r-m+1,2r+m-1,r+k+1, r+k+2m-1)
0—(2r+m,'r+k+2m+ 1,2r+i-k-1, r+i+m) e(d)(r, r,r-k+1,r+k-1)

e(d)(r—k, r+k+2m, r-i+m+l, r+i+m-1) e(h)(r—i+m, r+i+m-2,1,2i-1)

]

(_t—llz)(r—Zk—2m+i—-l) e(d)(Zr, 2r,2r+m-2, 2r-m+2)
e(h)(Zr—m+ 1, 2:+m~,1, r+k+2, r+k+2m) G { 21_:+m, r+k+2m+2, 2r+i-k-2, r+i+m)
e(d)(r, r,r-k,r+k) e(d)(r—kjl, r+k+2m+l, r-i+m+l, r+i+m-1)

e(h)(r—i+m, r+i+m-2,1,2i-1)
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+ (-—t_l)

e(h)(i).r—m, 2r+m, r+k+1, r+k+2m+1) o (2r+m+1, r+k+2m+3, 2r+i-k-1, r+i+m+1)

(r-2k-2m+i-1) e(d)(Zr, 2r,2r+m-1, 2r-m+1)

e(d)(r, r,r-k+1,r+k-1) e(d)(r—k, r+k+2m+2, r-i+m+2, r+i+m)

e®roiemel, reism-1,1,2i-1)  (Mod¥, ).

3r,1i
Step 7 implies the following.
Step 8. e(d) (2r,2r,2r+m-2,2r-m+2) e(h)(Zr—m+1, 2r+m-1,r+k+1, r+k+2m-1)

o (2r+m, r+k+2m+1, 2r+i—k——i, r+i+m) e(d)(r, r,r-k+1,r+k-1)

e(d)(r—k, r+k+2m, r—i+m+1, r+i+m-1) e(h)(r—i+m, r+i+m-2,1,2i-1)

ZB

ykm,jrlj

vhere P _{0¢m¢i-k) satisfy the following relations.
= k<i), . =0 (0<3j¢1, j=k),
B sop =1 (08K By ik, (0<j<i, j=k)
(4.4.21)
_ 1z (r-2k-2m+i-1) _tt (r-2k-2m+i-1)
Bk,m,j ( ¢ ) Bk+1,m,j+( ) k,m+1,3j
(0<m<ik).

Step 9. For 0<k<j and 0<{mfi-j, w¥e have

Bk,m,j

_ (_1)(r—i+l) (i-k-m) (t—1/2)(r—i+j—k) (j-k)+2(r+j-2k-m) (i-j-m) 9y ym j wSt)'

Especially, we have

By o.4= (1) (E-i1) (i-K) (t—i/z)(r—i+j—k)(j—k)+2(r+j—2k)(i—j) 5y 4t
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FLQOF, pince

(-1) (r-i+1)(i-k-m) (t—1/2) (r-i+j-k)}(j-k)+2(r+j-2k-m)(i-j-m) gi-k_m'j-ét)

satisfy the relation (4.4.21), these are identical to By o 5

Step 10. Combining the results of Steps 1-9, we get the statement
of Theorem 44,1 for the case 0<i<r. An analogous argument proves

"the statement of the thecorem for the case r <i¥ [31:12].

by



5. The parallel version of the Kauffman polynomial. The
associated algebras Cl’ Cz, ... of the Kauffman polynomial F
(Definition 1.1.10) are obtained in [2] and [26]. The invariant F is
known to be of trace type if the values of the parameters a and X
are generic., Therefore we can apply our theory in Section 1 to F
vith generic parameters. We give a formula for the Kauffman

polynomials of satellite links (Theorem 5.3.1).

5.1. The associated algebra C_. Let a, BeC\{0} such that B

is not equal to any roots of unity. Let x=P-1/p. The associated
algebra Cn of the Kauffman polynomial is defined as a C-algebra with
1 by the following.

(5.1.1) C_ =
n

<y, 17 g (1¢i<n-1) | T T =T T

8841558 585500750

' ii1€i+1€i = Ti+1;1£i’ Ii+1i1£i£i+l =Tin£i+1'

€i£i+lTii1=giTi+1:Fl' £i+1€iTi+1il=£i+1Ti;1 (1<i<n-2),

Y=Y, ET=TE, e =68 (1<ix1lsn2),

T, ~Ti—1=x (1-¢,), Tisi=£i‘ci=a’l €. Ti‘[i-1=‘ti—1‘[i= 1 (1<ign-1)>.

This definition is equivalent to that in [2]. Let Cn =

i
Ce,e,..e,. .C. Then C . is a two sided ideal and satisfies C =
n 173 2i-1"n n,i n

Cn,ODCn,lD"‘DCn,[nlz]' Let Dn,i=cn,i/cn,i+l (0<if€ [n/2]-1) and

Dn’ [n12] = Cn' [n/2] Note that
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(5.1.2) D, OEHn((—l)““zB) (the Iwahori's Hecke algebra of type A ).

Z N7 \
. in}n-2 -21 .
Let Cn,i=(\lej.n.\n2 ,) nz l)/ (i!'). For p€A(n), let d(p) denqte the

“~

”

degree of the character 7(,’L of H_ parametrized by the partition .

n
Then we have ([2], Theorem 3.7)

(5.1.3) Dp,iZ &) M
PEA(n-21)

d(p')cn,i(C) (0<i< [n/2]).

Hence the irreducible representations of Dn ; are parametrized by

’

A(n-2i) and so
(5.1.4) c o =111 | 0<i<nr2), pei(n-2i)}.

Let p denote the corresponding irreducible representation of

i,p
(i,p) and xi,p. its character. Let p, CGI_1 —> Cn be the
¢ . . ] ] . —l —1 . ]
homomorphism defined by Py (Oi) =T, Py ((‘J‘i )=:ti . Py (fi) =g, and
pn:CBn —> C;l the homomorphism defined by pn(oi) =at, and pn(oi—l) =
-1 - L
a "Ii 1 for 1<i<n-1. Then the main result of [2] can be

reformulated as follows.

Theorem 5.1.5. For an n-braid b, there are a; l~L(F) EC (0<if

[n/2], peA(n-2i)) such that

F((b,m)")= 2 a; (F)1; ,(p (b)),
(1,p)EC,

The coefficients ag p’(}:") . are given explicitly in [28].

oy



5.2. Relations among the invariants associated with the
decomposition of F(r). Let F(T (1)) genote the invariant
associated with the decbmposition of the r-parallel version F(r) of
the Kauffman polynomial F "parametrized by (i,p) ECn" (5.1.4) as in
Section 1.3. In this sectién we show that one of the above invariants

are the same one. In the following we use the conventions that

FlO k) =p(® (00 gy C 14 (aratyix)™! for any link diagram K.

Theorem 5.2.1. Let K be a knot. Then we have

(T (5 1)) gy op(T=2R G- B)) gy for 0, 0¢iler2l 0<k<q,

Corollary 5.2.2. Let K be a knot. Then we have

{r/2] Y
F(r)(K)= Z z xi,g,(l) F(r 21, (O,P—))(K).

1=0 peA(r-2i)

The above results may be generalized to the case of marked links.

We may prove Theorem 5.2.1 by an anologous argument used in the 'proof
of Theorem 42.1. We use the D-polynomial instead of the bracket
polynomial. In this case, the following lemma takes the role of Lemma

42.7 in the proof of Theorem 4.2.1.

Lemma 5.2.3. Let e(j)=ejegueyi 1 €Cp (1¢7 <[r/2]). For the

character X. of the representation p. of C_, ¥e have
i,p i p r ,

@  x;  le(d))=0 if i<3,

i,p

() 25 (e =(1-(a-aHymda (1) if 1€5¢,

where X ~ and we use the convention that Xo ¢(l) =1.

i-j.p & Cr-2j
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To prove this lemma, we use the following formula in [2]. For p=
(Ky) By, o ) EA(n) and p'= (p.'l, Ro, . ) EA(n-1), we denote p' <p iff

p.i'Sp,i for all i€eN. For yECr__l, 0<i<[rr2] and pEA(r-21i),

we have
(524) 7, (=( 2 i (D 2 Xi1, (V).
‘ p'€A(r-2i-1), pUEA(r-2i+1), ’

B pp’
The details of proofs of Theorem 3.2.1 and Lemma 5.2.3 are omitted.

5.3. The Kauffman polynomial of satellite 1inks. In the case of
the Kauffman polynomial, we have a formula for satellite links as in

the case of the one-variable Jones polynomial (discussed in Section

43).

Theorem 5.3.1. Let X be a knmot, L a link diagram in the

annulus, and (g,r) an element of G yhose closure is regular

isotopic_to |L]. Let FL(K) =F(KL), vhere KL is the sétellite

link of K with respect to L. _Then we have

rE=a" 0 2 e e EE M ).

(1,p)eC,

The proof is similar to that of Theorem 4.3.2 and we omit it. This

theorem may be generalized to the case of marked links.

£



Example 5.3.2 (doubled knot [33]). Let L, be the link diagram in
the annulus as in Figure 14. Then as in Example 4.3.3, l.LOl is

2

reqgular isotopic to (go,4)“, where go=flf2f302 . For a knot K,

we have F| (K)=-a 2x (p71+a 1) F(B(02) k) + 0725 g - a7
L '
plZ0 I gy + 272 (3 (a-a1-x)"1+ 22+ 1) by caloulating

X3, ,(90) for (ip)e€C,”.
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6. Mutation and the r-parallel version of a link invariant. Let X

and K' be two distinct mutant links (Definition 6.2.3). We are

interested in comparing the r-parallel versions X(r)(K) and X(r)(KW
of a link invariant X. In the case of the (two-variable) Jones

polynomial V, P and the Kauffman polynomial F, it is already known

[23], [25]‘that none of V(r), P(2)

, and F(z) can distinguish two
mutant knots. But it is announced [25] that the Kinoshita-Terasaka knot
and the Conway's ll-crossing knot, which are mutant, have distinct

P(3). We can show that there are four mutant knots having distinct
p(3),

6.1. Tangles.

Definition 6.1.1. Let n be a positive integer. An oriented
rectangular diagram T which consists of oriented curves'is called a
n-tangle iff T contains some or no closed curves, and n non-closed
curves starting at the top of the rectangle and terminating at the
bottom of it (Figure 16). Two n-tangles T and S are called
isotopic if there is a sequence of Reidemeister moves from T to S.
We denote Rn the set of isotopy classes of n-tangles. A closure of
an n-tangle T, written T”, is the link diagram formed by joining
the n points at the top of T to those at the bottom without further
crossings. For an mbraid b (m2n), the n-cglosure of b is the
n-tangle formed by joining the i-th point (n*tl1<i<{m) at the top of b

to that at the bottom without further crossings (Figure 16).
Figure 16.

As in Theorem 1.1.1, we have the following.

gl



Theorem 6.1.2. Everv n-tangle is isotopic to the n-closure of a

braid.

For two n-tangles T and S, we define the composite tangle . TS
by connecting the points at the bottom of T to those at the top of §

as in Figure 17. The set R~ together with the above composition law

is a semigroup called the n-tangle semigroup. An n-braid is an

n-tangle and we regard Bn as a subsemigroup of Rn. Let CRn denote

the semigroup algebra of Rn called the n-tangle algebra.
Figure 17.

Definition 6.1.3. For a positive integer r, the r-parallel
(r)

version T'Y’ of an n-tangle T is obtained by replacing each

crossings of T as in Figure 1.

Proposition 6.1.4. Let T and S be n-tanagles. Their
(r) (r)

and S

r-parallel vergions T are isotopic if T and S are

O

isotopi

This proposition is proved by an argument analogous to the proof of
Theorem 1.2.2. We use the Reidemeister moves instead of the relations

in Definition 1.1.2.

Let ¢n(r):CRn—o-Can be the algebra homomorphism defined by

(r), . _olx) - . .
(T)=T"". Let b .Br—->vCBrn be the composition of b defined

d)n
by (1.42) and the natural inclusion B.,—>CR_. Let BIRn—o»Sn be
the mapping such that, for TEERn, the i-th point at the top of T
is joined to the O(T)(i)-th point at the bottom by a curve of T.

Then 8 is a semigroup homomorphism.
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Lemma 6.1.5. For TER and bEeEB.,

B T r

¢n(r)(T)tk”(b') tg(y(x) (P) 0, (r) (1<k<n).

Preocof. Let (b,m)€B such that the n~closure of b 1is isotopic
(r) (r)

(T) is 1sotop1f' to the rn-closures of ¢ (b).

Hence the statement of the lemma follows from Lemma 1.4.3 and the faot

that the rn-closures of ((b (r) b)t ( }) and (t (c)¢ (r) are

isotopic for cEBr if ntlék {m ]

In the following of this section let X be the one-variable Jones
polynomial (respectively two-variable Jones polynomial, respectively
the Kauffman polynomial). We fix the complex parameters of the
invariant X so that X is of trace type and the corresponding

coefficients a (V) in (4.1.9) (respectively 2y (P) in Theorem 3.4,

’

respectively a. H(F) in Theorem 3.1.3) are all non-zero. Let X be
the linear function on the associated algebra An(X) defined by
Z((b,n)}") =Xn(pn(b)) for bEBn. Then from the defining relation of

these invariants, we have the following.

Proposition 6.1.6. There is an algebra homomorphism E.‘nZCRn N

A (%) such that X(T°)=X (E(T)) for TER .

Froof, We prove this in the case when X is the Kauffman
polynomial F(-){a,x).- The proofs for one and two-variable Jones
polynomials are similar. Let Cm (meN) be the associated algebras of
the Kauffman polynomial (Section 3.1). Let F :C,—>C be the mapping
defined by Fm(pm(b))=F(b") for bEBm. We first define a linear
mapping <1>m:Cm - Cm—l‘
Cm defined by using Fm:Cm-—>C as follows:

Let (-, )m be the symmetric bilinear form on

3



(6.1.7) (Y. Y9), =F (v1¥,) for y,, y,€C.

Since (-+,+) 1is non-degenerate by the assumption of the parameters
(a,x) of F, we can uniquely define ~¢’m so that q)m satisfies
(yl,®m(y2))m_l= (yl,yz)m .for all Ylecm—l and Vo €C,. By putting
yl=1, we have Fm(yz) =Fm_l(<1)m(y2)). By using the defining relations
(5.1.1) of C_, any element y€C_ can be written as y=z,;+z,6 ,z,+
24V, %5 for some z,,..,2z;€C ;. By using Definition 1.1.10, we know
= -1y, - ‘C -
that @ (y)=(1-(a-a ")/x)y,+Yy%,+2aY3Z,. Let Xr :C,—>C,,, and
A B, —>B_ _ be the algebra homomorphisms defined by lr(si)=€i+r,

r
+1 41

+1, _ . 1, _ :
A (g )=T4, . and A _'(0,77)=0, respectively. Then

(6.1.8) @ (A (¥))=A_(P_(v)) for yeC,
and
(6.1.9) P, (A (B))=A_(p (b)) for bEB .
Hence we have
(6.1.10) @ _(v,v,)=@_(y,)y, for y,€C_ and y,€C 4,

vhere p ICB ~->C_ is the projection defined in Section 5.1, Let T
be an n-tangle. Then there is (b,m) €B whose n-closure is isotopic

to T. Let

(6.1.11) EAT) =@ (P 1 (P (p (P))))-),

%



From now on we prove that E_(TS)=E (T)En(S) for two n-tangles T

n( n
and S. Let (b,m), (b',m')€B whose n-closures are isotopic to T
and S respectively. Then the product tangle TS 1is isotopic to the

n-closure of (5~12.m._n(b)8b',m+m'—n)A vhere O8=0(m'-n,1,m-1,n) (see

(44.17)).. By using (6.1.8)-(6.1.11), for yEC, ., we have
F (vyE_(TS))

= F_ (v, (A® (o . (5N (5)8D')))).))

n

F(y® (A0 (5710 ((®  (p (A (5)))).)8p_ (b))

m'+1 m+@m'-n " m4m'-n° m'-n

Fo(y @, (00 (T (@ (@, (5,(0)))-)) Bp. (B7)))-0))

il

Fo (7 D, ({2, (D, ({9, (P, {0)))-) B, (b))

FL @, (2 (D (D (D, (0)))-) @ (@, (B, (b))

F (yE (T)E_(5)).

Hence we get .-_-,n(TS) =.::,n(T) :,n(S). .D
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For pEArn(K)"’ (respectively ‘v’EAr(X)"), let (pp,‘v’#
(respectively (pv,Vv)) be the corresponding representation of Arn(X)
(respectively Ar(X)) and xp (respectively ’,{V) its character. Ve
regard Brn as a subgroup of B as in Section 1.4, Then VM can

1

a Farde ~ Il_ ~ 4 P =
be regarded as a Br module. For VEAr(X) . let "p,\’,...,v be the

(pvo pr)®n—isotypic subspace of V}L' Then Vp.v v is invariant
(r)

relative to the action of (i)n (Rn). Let denote the

(pp,, v’ V;L,V..,.,v)

representation pp°grn°¢n(r)]V , of R . From Proposition 1.3.4, we
. ",

know that there is a representation = of Rn such that p}L =

p.V
(p ®n)- On .where (p ®n)- is the representation of B nxl R
v B,V v : T n

coming from pv®n as in Proposition 1.3.4. Let O v be the
character of LR Then the argument proving Theorem 1.4.10 implies

the next one.

Theorem 6.1.12. lLet T be an n-tangle whose closure is a knot.

Then we have the following.

(i) x“(srn(qarfr)(T)))= 2 x(he, (1),
VEA (X)

(ii) X(r)(T")= 2 (2 Aa”(X)xv(l)mp’v(T)).

BEA_(X)  VEA_(X)

I



6.2. Mutation.

In this section, let X be the one-variable Jones polynomial V
(respectively the two-variable Jones polynomial P, respectively the

Kauffman polynomial F).

Definition 6.2.1. For T in the n-tangle algebra R . we define
three non-trivial involutions Y,, Y, and. Y, (see Figure 18). Let
Yl be the involution defined by Y£F=ng~l where g=

6(1,n)0(1,n-2)..06(1,1) and 0{i,j)=0.0

i i+l"'0j (i<3j). Let DT be a

rectangular diagram of T and H the half-turmn of DT about the
center of DT. Put T'= H(DT)’ Let YZT be the element of Rn vhich
is the isotopy class of the tangle obtained by inverting the

orientations of all the strings of T'. Let Y5 denote the composition

of Yy and Y-
Figure 18.

The involution Y, induces an automorphism of the 2-tangle algebra

'CRZ' and Y, and Y, induce anti-automorphisms of CRZ' Hence they

(r)

induce (anti-)automorphisms of the subalgebra Ern(¢n (CRn)) of

Arn(X), where Ern:Can—c»Arn(X) is the algebra homomorphism

‘introduced in Proposition 6.1.6.

Proposition 6.2.2. Let peA_(X)" and VEA (X)". If the degree

{(i.e. the dimension of the representation space) of the representation

np v {introduced at the end of the last section) is equal to zero or

one, then we have

np'v(T)znp,v("{iT) or TERn, 1<¢1i<3.

gl



Froof. Lemma 6.2.9, which will be given at the end of this section,
shows that the actions of yi (1<£1x<3) induce C-algebra
{anti-)automorphisms of ﬂp’v(CRz). But np,V(CRZ) is isomorphic to C
or {0} by the assumption. Hence their actions must be trivial ones.

0

Definition 6.2.3 (see, e.g. [8]). Two links X and K' are called

mutant if there are two Z2-tangles T, S and an involution ¥, (i=1,
i
2o0or 3) of S such that K and K' are equivalent to T5™ and

(T YiS)“ respectively.
The following theorem is the main result of this section.

Theorem 6.2.4. Let K and K be mutant knots. Then, for a

positive integer r and VEAr(X)", X(r‘V)(K)=X(r’V)

degrees of the representations npv (p'EAZr(X)) are all equal to zero
3

(K') if the

or one.

Proof, Let T and S be the tangles and ¥ an involution of S
such that K and K' are equivalent to TS” and (TYS)"

respectively. Theorem 6.1.9 implies that

X(r;Y)(K) =2,(1) > &, (%) trace (ﬂpﬂv(T) LAVIC) ),
pea, (X)

xEV )y =1 2 a (X) trace(m ()7, (065) )

pea, (X)

Hence the statement of the theorem follows from Proposition 6.2.2. O

g



Corollary 6.2.5. Let K and K' be mutant knots. Then we have

(i v(EV) gy =v(EY) (xy,
(i) (1231, (23] V(r)(K)=V(r)(K'),
(iii) P(r’p)(K)=P(r’p')(K') if the partition p of r is

equal to (r) or (1r),

(iv) ({23} P(Z)(K) =P(2)(K'),

v (23] F k) =52 iy,

Froor. Recall that the degree of nu\f is equal to the multiplici-
ties of pv®2 in p, for pE€A, ()" and VEA(X). By Remark 38,

the above multiplicities may be calculated by the Littlewood-Richardson
rule in the case that X dis the Jones polynomial V or the two-
variable Jones polynomial P. This rule shows that the degree of the

representations L for the case (i)-(IV) are all equal to 1 or 0.

To prove (V), we show that the degree of = is equal’'to 1 or 0

K.Y
for ].LEA4(F)A and VEAZ(F)". This can be checked by using the

realizations of irreducible representations of A4(F) given in [(2]. o

Theorem 6.2.6. Let K and K' be mutant knots, i.e. there are

tangles T and S and an involution Yy of S such that K and K

are equivalent to TS” and (TY¥S)”. Put l0=(321)EA(6) and V=

(21) €A(3). Then. with the notations in Theorem 6.1.12 we have

PV P ) it ay ()20 and g (TS))=0y  (TH))).

1



Proof. From Theorem 1.5.1 and Corollary 6.2.5 we have P(3)(K)¢

P(3) (3.v)

) (3,v .
(K) 4iff P 2 (Ky=P (K'). But from Littlewood-Richardson

rule (Remark 3.8), the degree of =; |  is equal to 2 and those of
. o Vo
™y are equal to 1 or 0 if A=A,. Hence Proposition 6.2.2
A

implies the statement of the theorem. 0

Example 6.2.7. We give four mutant knots K K,, K, and K

(3)

1’ 2’ 3 4

for which the invariants P (Ki) (1<£1i<4) are all distinot. Let

S s ¢ and 0~ be the tangles as in Figure 19, 55=5,05,, 5=

1’ 2
SIS

07
o and K. =(8,Y.(5,))" (1<ix<4, Figure 19y.

Figure 19.

Let q be an indeterminate and Hé' the Z[q“z,q—llz]—algebra with unit
defined by the relations (3.2). Let @m:Hmi;-o Hm—1. be the mapping. -

defined as in the proof of Proposition 6.1.6. Then, from the definition

of the two-variable Jones polynomial, we know that the image ‘Dm(Hm )

172 -1 -1/72,-1%
q )1

. . . . -1 —
is contained in Hm—l ®ZZ[O£,0£ ,(Qg -a Hence :.n(Rn) (n=

3,6) are contained in Hn' ®, Z[Ot,oz-lv, (g %o g3 by (6.1.11). on
the other hand, Narusé and Gyoja constructed W-graphs [18] of all the
irreducible representations of H6 (Figure 8). This means that, for
each irreducible representation, they give a basis of the

representation space and representation matrices of generators of H5

with respect to the basis. The entries of the above representation
matrices of the generators Ti EHG' (1£1i<5) are all contained in

Z[q“z,q-“q. This implies the following two facts. Let W=

1/2

Y2 43¢ %Y. The first fact is that the

- -1
zlg"% g% 0,0, (ag' %0y

composition of ’:36 and the above representations of H6 define

%0



irreducible representations of R6 defined over ®,. The second fact

is that the V. ,-isotypic subspace Vk v, of the representation space
070

0

VK of Pa is defined over W,. Hence we can define the reduction
0 .

modulo p of the representation oy of RZ' This is defined over

- -1 -1 - -
F [t1/2 1/2,0!’0! , (aq1/2—(x iq 1/2) 1]:

vhere Fp is the finite field of
prime order p. In the following, we put p=23, o= and g=2.

With these parameters, we know that O!qllz—a—lq—llzz 0 and a3 (P)=0
0

(mod 23) from the explicit formula for a; (P) given in [10] or [15].
0

Therefore we may use Theorem 6.2.7. We calculate the elements

5500 51, 5500, 5,0, 210,

(Hg' ®_F

(0)) and (0, (o)) ot

23)Ot=1 q=2 with the aid of computers (Turbo PASCAL on MS-DOS

for PC-9801 (NEC) and AOS/VS PASCAL‘on Eclipse MV-2000DC (DG)). Their

images undexr Ty with respect to the explicit basis mentioned above

are
w02 (5 ))E_j 115 om0 ))—2 1: .
M v, (0 10)) = Log ﬂ L (0 o)) = [0 21} (mod 23)
Hence we have
“xo,v0<¢z(3)(53))=“;{o,vo(¢z(3)(31°?z))5 ii 210 ,

9|



(3) (3) |3 15

nAO,VO(‘bz (54)) = T‘—XO‘VO((DZ (Sl Sz) ) =[10 6 ,
6 10

nlo,vq(¢2(3)(vls4))= “lu,vo(‘bzm(oslszo'))ELS ' 3} ,
ﬂAO’VO((bz (st4))= nl'oxvg((bz (SZ Sl)) =[12 ll} ,

5 11 12
T vyl (1550) = “2.0,v0(¢2(3)(032510-))EL?’ ZJ (mod 23).

Thus (3) 5 - (3)e v e 1y o
s we have wlo'vo((bz (555,)) =20, mlo.Vo((bZ (55¥454)) =5,

(3) (3)

(5,¥,5,))=7 and “‘10,\10”’2 (S3Y55,)) =18 (Mod 23). Hence

IRAL
the invariants P(3)(Ki) (1£i<4) are all distinct by Theorem 6.2.6

and so any two of the knots Kl’ K2' K3 and K4 are not equivalent.
In the rest of this paper, we shall prove the remaining part of the

proof of Proposition 0.2.2.

Lemma 6.2.8. Let (p,U) be an irreducible representation of

A _(X). Then Y, (i=1,2 or 3) induces an automorphism (respectively
1

anti-automorphism) of End(U) defined by Yi(p(y))=p(yiy) (yEArn(X)).

%2



Proof, 1°) The case 1i=1. For yEArn(X), we have V¥ =

P‘rn(@n(r)(g))‘lprn((bn(r)(g))—l where g¢=0(1,n)0(1,n-2)..0(1,1), O(i,7)

v=0i0i+l'“0j (ij) and p be the projection ’CBrn—> A (X). Hence

Y, acts on End(U) by ‘p(y))=p(e. (8, " aNpty) pie, (0. @)L

2°) The case Y='\{2. In this case, the statement of the lemma

rn

follows from 1°) and 3°) since Yo =Y;0Y5

3°) The case Y=Y,. We know realizations of every irreducible
representations of Arn(X) such that prn(oi) (lgi<rn-1) are
represented by symmetric matrices. When X=V (respectively P,
respectively F), such constructions are given in [31] (respectively
[31], respectively [28]). For a matrix M, let "M denote the
transposed matrix of M. We may assume that tp(prn(ﬁi)) =p(prn(oi)).

Since ‘Y3 satisfies Y3(prn(ci))=p (Oi) (l<i<rn-1) and Y3(hh')=

: rn

Ya(h')Y3(h) for h, h'EArn, we have Y3p(h)=tp(h) (heA (X)). Henoe

Y, acts on End(U) by the matrix transposition. O

Lemma 6.2.9. Let (nP-V'W}L.V) (LEA, (X)", VEA (X)") he the

representation of CR, given at the end of Section 6.1. Then y; (i=

1,2, 3) induces an {aiti-)automorphism of an(CRZ) defined by

Y . .

Proof. 1°) The case Y=Y;- The statement of the lemma follows

Y -
from MMy (7)) =T, ()T (9)T (9) " where g=

dg(1,n)o(1,n-2)..0(1,1) and 0(i,j)=0ioi+1...
2°) The case Y=Y, In this case, the statement of the lemma

o (i<3).

follows from 1°) and 3°) since Yo =Y1°¥s-
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3°) The case Y=Y5. Let (pP'VH) be the irreducible
representation of Arn(X) parametrized by p. We shall show that

ﬂp,v(YBY)zt(ﬁp,v(Y” with respect to a basis of ¥ In this proof,

I}L,\"

we use the following fact.

Lemma 6.2.10. Let s be an indeterminate. Let y,(s), y,(s)€

Mm(K) with tyl(s)=y2(s) wvhere X is the algebraic closure of

C(s_). Let U{s) be a subspace of ‘K,m such that yl(s)U(s)gU(s)

and tyl(s)U(s)gU(s). We assume that there is a open set U of R

(the set of real numbers) and a basis {ul(s), s um(s)} of % such

that {ul(s), s uk(s)} is a basis of U(s) which satisfy the

following conditions.

() TIhe coordinates of wu,(s) (1<ism) have no branch point in U

and thev are contained in R for se€fl.

(il The vectors ui(s) (1<i<m) are linearly independent for s€

U.

(iii) The elements of the matrix of y;(s) ®ith respect to the above

basis have no branch point in U.

Then there is z basis of U(s) such that the transpose of the matrix

of yl(s) with respect to this basis is equal to the matrix of
U(s)

vp(e)|

3 U(s)

B



Froof. At first, fix s€U. By aplying the Schmidt's method to
{ul(s), . um(s)}, we get an orthonormal basis {vl(s), vy vm(s)} of RD
with respect to the standard bilinear form such that {vl(s), ey Vk(s)}
is an orthonormal basis of U(s). With respect to the basis {vl(s), o)
Vk(S)}, the transpose of the matrix of yl(s) is equal to yz(s).

Now we ciiscuss for general s. From the above argument, we know that
(Yl(s))i (yz(s)) (1<1, jsm) for s€U. But the assumption of
the lemma implies that the elements of the matrix of yl(s) with
respect to the basis {vl(s), .y Vk(S)} are algebra_ic functions in s.
Hence the equalities (yl(s))ij = (YZ(S))ji (1<i,j<m) also hold when

ve regard s as an indeterminate. O

Now, we return to the proof of Lemma 6.2.9. Let

((pv n)~'VV®n) be the representations of Brn><iRn given at the end

and

(pl_L'v’ VIJ.,V)

of Section ©6.1. From the definition of d)n(r), we have

0, 1,0,) = (0 RUCH

ri—r+lcri—r+2"‘cri—l) (ori+10ri+2"'0ri'+r—l) Y3 n

A (x) - ey . ; ,
¥We also have (bn (y3y)—-cy'y3¢n (y) vhere CY is a product of some

(Ori+10ri+2"‘0ri-;—r—l) (l<i<n-1). Note that the exponent sum of Cy

is equal to zero. The elements —r) (L£i<n-1)

p}l( (Ori+1%i+2%risr-1 )
-r

act on V[.L,v by the same scalar pv((o 0,...0 l) ) since

(0102 Gr ‘1’):— are contained in the center of the subgroup Br' Since
the exponent sum of cy is equal to zero, we have ppv(cy)=l. Recall
that va is the pv®n-—isotypip subspace of VP~ as a CBrn—module

and the representation ppv of Rn is given by restricting

o= °¢ (r) to V... The constructions of the irreducible

Pp’=r IR,



[N N R . .y

representations of A (X} (k€H) refered in the proof of Lemma £6.2.8

I
(@]

imply that Vp,' V}L,V and pp..V(Y) (yERn) satisfy the assumption of

Lemma 6.2.10 for S=q1/2. Therefore we have pp,v(y3Y)=-t(pp,v(Y))

(l1<i<n-1}) with respect to some basis of ¥ Let ©: Rn~> Sn be

v’

the mapping defined just before Lemma §.1.5. The representation

(pv®n)~(y) (yERn) gives a parmutation of a basis of Vv®n. Hence

(pv ) containes the trivial representation of Rn with positive-

miltiplicities. This implies that p}LV containes the representation

. L as e . ®n,~
ﬁp’v with positive multiplicities since p‘l’v=(pv ) ®np,\l‘ Let

qu be a Rn-invariant subspace of V"L where the representation
L]

np,\/ of Rn on U!'L-V is equivalent to n],L,V'

(np.,v.’U}l,V) and (np V'W}L;’V)' As in the case of pP..V' we can show

We identify

1RY

that there is a basis of W such that np.V(Y3Y)=t(n}L,V(Y)) for vy

ECRn, This is what we wanted to show. O
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Table 1

The maximal degree of characters needed to get the r-parallel

version of the Jones polynomial of the closures of n-braids.

braid -
direct| .| o1 4g| 297| 2002] 13260| 90440 653752 4601610
3 method
our
eihoal 21 31 4 5 6 7 8 9 10
direct — eorren |- -
3128|29713640|48450[653752]7020405]124062000[1739969550
4 method ;
our - ’
nethoal 3| 8] 10| 14 18 22 27 . 32 38
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(411)
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(222)
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Table 2

= (2)
7T (g,) = 1
X,V 1 X,v,
-1 0
2
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q q
1/q 0 0
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1 a/a g
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X041 x,v,
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