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0. Introduction

A priori estimates for solutions of linear equations generally play an im-
portant part in the study of non-linear equations. It is important that the
estimates do not depend at all on the smoothness of coefficients. For uniformly
parabolic equations of the form
(0.1) W 250t 0),
the pioneering result of this kind is the Holder continuity estimate due to Nash
[14]. Generalizations of Nash’s theorem were obtained by various methods in
a number of works (see, for example, [8], [12]).

In the appendix to [14], Nash stated without detailed proof a Harnack type
inequality for solutions of (0.1), while Moser [13] gave a proof of the Harnack
type inequality different from that by Nash, and obtained the Hoélder continuity
estimate using the Harnack type inequality. For equation (0.1) with discon-
tinuous coefficients, Aronson [1] proved the uniqueness of weak solutions of the
Cauchy problem making use of Moser’s result. The Harnack type inequality
for solutions of quasi-linear parabolic equations was discussed in Aronson-
Serrin [4] following the outline of Moser’s proof. Applying theorems in [4],
Aronson [2] showed that the fundamental solution of equation (0.1) is bounded
below and above by functions of the form

Ct~*exp[—B|x|*/t],

where d is the dimension of the space, C and @ denote positive constants. (cf.
Ladyzhenskaja-Solonnikov-Uraltseva [11], Aronson [3]).

Parabolic equations of second order are closely related to Markov processes,
so that Nash’s methods have some probabilistic flavour. Above mentioned works
were applied to various problems in stochastic analysis, especially to stochastic
optimal control (cf. Bensoussan-Lions [5]) and homogenization (cf. Fukushima
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[6]). Recently Osada [15] obtained a generalization of Aronson’s results to
discuss the propagation of chaos for Burger’s equation. Equation (0.1) is as-
sociated with the Dirichlet form

(02) EAf, 8) = Zuy | auit, 90:f(90,5(x)d

and a diffusion process. In the theory of Dirichlet space, Dirichlet forms (1.1)
of jump type are considered as well as Dirichlet forms (0.2) of diffusion type
(cf. Fukushima [7]). Therefore it seems to be natural and important to con-
sider a priori estimates similar to those due to Nash, Moser and Aronson for
parabolic equations associated with jump type Dirichlet forms.

Markov processes whose generator are pseudo-differential operators are in-
vestigated in Komatsu [9] and [10], where the theory of singular integrals plays
an essential part. Under a certain regularity condition, Markov processes as-
sociated with jump type Dirichlet forms are special ones of processes treated
in [10]. Theorems in [10], however, can give little information to our problem
which requires global theory. As we see later on, the situation is not the same
as the case where Dirichlet forms are of type (0.2). It would be the main step
to prove the Harnack type inequality, but this problem is still open. In the
present paper, we shall obtain a priori estimates of modulus of continuity for
fundamental solutions. These are weaker than the a priori Holder continuity
estimates, but they can give a certain compactness to the class of possible solu-
tions of parabolic equations. The outline of the proof is similar to that by
Nash, for the idea comes from the probability theory.

1. Main results

Let k(t, x, y) be a positive function on R, X R? X R* which is symmetric in
¥ and y and K(¢, dx, dy)=(1/2)k(¢, x, y)|x—y| " *dxdy, where 0<a<2. We
shall consider the Dirichlet form

(1.1) et 8) = Ss (f(®)—=f (M)(&x)—g(¥)K(, dx, dy)

of jump type defined for functions on R?. We assume that there are positive
constants ¢; and ¢, such that

(1.2) a<k(t, x, ¥)<c,.

A function u,(x)=u(t, x) is said to be a (weak) solution of the parabolic equation
associated with the Dirichlet form &£,(+,-) if
t

Sgl'rl‘gt(uﬂ u‘r)Lz + S 81‘(“7’ u’r) d7< b
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and
(13) (0 )i =Gt 2+ Exltn )dr = 0

for any 0<<s<<t and any test function f(x) on R’ where (-,+),2 denotes the usual
inner product of the Hilbert space LA R?, dx).
Let A, be the operator defined by the relation

(1.4) Ef, 8) = —(Aif, 812 -

Then equation (1.3) is equivalent to the parabolic equation 9u/ot=A,u. If
(8/0y;)k(t, x, y), 1<j <d, are bounded continuous in (¢, x, ), then

A,f(x) = | (faet2)—f(2)—O(=)-0f sk (2, %, %) 3] ~42d
+S (f(x+z)—f(x))(k(t’ X, x+z)—k(t, X, x)) | 2] -d-a Jo

for smooth bounded functions f(x), where @(2)== if |z|<<1 and ©(2)=0 if
|z|>1 and 8 f(x)=(df/0x,, --+, 0f/0x,).

It can be proved that, if (0/8x)"(8/0y) k(¢, x, y) are bounded and continuous
for all p, veZ4 and if

(15) lrlm s‘up Ik(t) X, y)“k(S, X, y)l =0 5

then there exists a fundamental solution S(s, x; ¢, y) of the parabolic equation
such that (8/0x)*(8/8y)"S(s, x; t, ¥) are continuously differentiable on {(s, x, ¢, ¥);
s<tand x, yER?} for all 4, v&Z4$. (This fact will be shown in another paper
by the author.) The purpose of this paper is to prove continuity estimates of the
special solution S(0, 0; ¢, x)=1T(t, x)=T(x) depending only on «, d, ¢, and ¢,.
After the continuity estimates are obtained, a passage to the limit can remove
the restrictions on the function k(¢, x, ) except (1.2) and (1.5) (see Section 5).

In Section 2, 3 and 4, we assume that (3/9x)"(0/8y)"k(¢, x, y) are bounded
and continuous for all u,v€ZZ. Then we see that, for each ve=Z¢,
(8/8x)*T (¢, x) is continuous on (0, o)X R? and

(1.6) S [T(t, %P+ |0T(t, #)|dx <oo  (£0),

moreover the equation (8/0t)7(t, x)=A,T(t, x) is satisfied in the strong sense.
From the arguement for stochastic differential equations, it is easy to see that

(1.7) sup S (14 | 2] PT(t, %)dx <oo
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for any B<a and .

We shall use the convention of letting ¢’s stand for positive constants de-
pending only on @, 4, ¢, and ¢,, Each ¢ may denote a constant different from
other ¢’s. The next moment bound is essential in the proof of continuity esti-
mates.

Theorem 1. (i) T(z, x)<ct %,
(il) Let r(c)=0"*(1+c(log )?) 2. Then

(1.8) S r(t| x| )T(t, x)dx<c .

We do not know whether the function 7(¢’) can be replaced by the simple
function ¢*? in moment bound (1.8) or not. This is the reason why we were
unable to obtain the Holder estimate so far. Define

exnf — 1081e) T (gcocer
(19) (o) = [ log log (1/0)] (0<o<e™)
¢ (€*<0a).

The ®(o) is increasing and ®(4-0)=0. We see that ¢°<c ®(o) for any €>0
and 0<<o <1, so that the following continuity estimates are weaker than the
Holder estimate.

Theorem 2. (i) For any t>s>0 and x, x' € R?,
| T, 2)—T(t, %')| <cs~HoD((t—s)~ "> | x—a'| ).
(ii) For any t'>t>5s>0 and xE R,
| T(t, %)—T(t', %)| <cs~ad((t—s)"(t'—1))" .

From this theorem, fundamental solutions S(s, x; ¢, ) of the parabolic
equations associated with the Dirichlet forms satisfying condition (1.2) are
equicontinuous on any compact domain in {(s, x, ¢, ¥); 0<s<t and », y& R%.

ReMaRK. Here we shall state the canonical change of scales. Let
&M\ f, g) be the Dirichlet form associated with the function (A", Ax, Ay) in
place of the function k(t, x, y), where A\ is a positive constant. Then the
function

S(Alls, x5 2, ¥) = AMS(A"s, Ax; A%, Ay)
is the fundamental solution of the parabolic equation
(0/otyu = A,(\)u

associated with the Dirichlet form &,(\||+, <). Let
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(1.10) Ut, %) = T@E")|1, x) = 198 T(z, ax) .
Then Theorem 1 is equivalent to say that U(¢, x)<c¢ and

Sr(lxI)U(t, x)dx<c .

2. The moment bound

Let & denote the Fourier transform and & ! the inverse Fourier transform
for functions on R?:

Ff(§) = [ fi)ds, Fo@) = @m)* e p(E)at .

For any test function f(x),
flat2)—flx) = T~ 1) F fE)|(x) -
From the elemental equality
S (et —1)(e~"*—1)| 2| ~4-2dz
= 2z a(lE1%+|7]"—E—21%),

where a is a constant, we have

(|1 /@2t 2121 edna

= @y {[ 4 {f e —peme—)
X e fE)F fin)dE dn} | 2| =~ dxdz
= @aya | 1[f Q&1+ nl"—1E—21)
X &= F f(&)F f(m) dE d} dx
= a ([ (&1"+ In"— 16— 8E—nF(OF T dn

— 2a {Ig1°IF f(g) 12k .
From (1.6) we see that
[ie1mig e e <[ 14181 F 1@ g <o

therefore a passage to the limit gives
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@) [JIT@-T =yl +edrdy = 2 1119 T,(8) 1%t .

Let p(x) be a smooth function such that 0<p(x) <1, p(x)=1 for |x| <1 and

p(x)=0 for |x| >2, and set p,(x)=p(x/n). Define E(z) by

2.2) E@) = S T(x)dx .

For 0<s<t, we have

t
S T? p,dx—§ T?p,dx = 2 S S T,((8/87)T,)pydr dx
t t
= 2{ (AT, T.p)pdr = —2[ €T, Tpir,

whence

E(t)—E(s) = —2 5' ET., T.)dr,

or (d|d)E(t)=—2E(T,, T,).

Lemma 2.1. There exists a positive constant ¢ depending only on a, d,
and c, such that T(t, x)<ct™%/,

Proof. From (2.1) and
ENTy T2(e/?) ([ (1)~ T ()P 15—y | -odxdy,
we have
—(@anE@=c 16119 T,) 1 d¢ .

On the other hand, for any >0,
E() = (2 {1978 1%at

<csup|FTyE) 1P|, _de+e|  1FT(@)1de

1E1<r £l

<critere |1e11FT 0 Pk
Choosing the best constant 7, we obtain
(11712 7@ 2dE = cBy o

From these inequalities,
—(d[dt)E(t)=cE(t)'*** or (d/dt)(E(t)"**)>c.
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Since E(+0)=o0, we have E(f)"**>ct. From this estimate and the semigroup
property,
T(2t, x) = S T(t, )S(t, y; 2t, x)dy

<{E() S S(t, y; 2t, xfdy} e
< A(ct7 42 (et~} 2 = cgdls
hence T(t, x) <ct™%. q.e.d.

Fix a positive constant v satisfying 2/ v <1—|a—1|=a A(2—«), and let
7(0)=0 and

23) o) = o**(1-+(log o)) (¢>0).
Set s=logo. Since

2r'[r = e~ {a—2ys/(1+vs*)} = *{a— 7} =0,
7(o) is an increasing function on R,. Moreover

4" [r = 2r'[ry?*+2(2r"|r)’
— {e~*(a—2s/(1-+ )} 2+ 2e~(d|ds) {e~*(a—2vs/(1+7s)}
= e #{—14+(a—1—2q9s/(1+27s)))*—4y(1—vs*)/(1+vs) %}
< e (—14(a—1P—2(a—1)T+-2T?),

where I'=2¢s/(14+vs%). Since |[T'|<+ v and
—1+(a—1P+2]|a—1|V v +2v<0,

we have 7/(¢) <0, hence (o) is a concave function.

Let
(24) M@) = | (12T, %),

which takes finite values by (1.7), and let O(f) be an entropy
(2.5) 0t) = —S Tyx)log Ty(x)dx  (:>0).

Since —log T,>1—T;,, we see that Q(f)>1—E(f)>—occ. The following lemma
shows that Q(f)<<co.

Lemma 2.2. Let 0<f<a/2<B'<1l. Then
(2.6) M(t)=c exp [(B[d)Q()] Aexp [(8°[d)Q(2)] -
Proof. Observe that 7log r+Ar>—e ! for 7, A>0. Let 7=T(¢, x),
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A=ar(|x|)+b, where a>0 and b are constants, and integrate over R?, obtaining
—Q+taM+b— S T(log T+ar(|x|)--b)dx
> ——S e 17barish gy — —ce™b SN e gt ldg
0

>—ce? 5: (e""’p—l—e‘“p,) o do
>—ce ¥a Pfa Py,
Suppose M >1, and set a=M ~! and =M %P, Then
—Q+14(d|B) log M > —cM ~“B(M“*4+ M*) > —c,

or M>cexp[(d/B)Q]. Next suppose M<1, and set a=M ! and et=M*¥
Then we have M >cexp [(d/B')Q]. Combining these estimates, we see that

M >cexp [(d]B)Q) Aexp [(d/8")0] - qed.

Formally differentiating (2.5), we have
(2/dt)Q(t) = —((8/0t)T,, log T}),2 = E(Ty, log Ty) .

This can be justified in the case 0<a<<1 but not in the case 1<a<2. For-
tunately it is sufficient for our purpose to show the inequality

@.7) Q(t)—Q(s)ZS: EAT., log T)dr  (0<s<t).
Let p,(x)=p(x/n) be the same function as before. For >0, we have
—S p. T, log (T,+a)dx+S pa T, log (T,+8)dx
— — 4] PO T 108(T,4-8)+ T./(T,+ B))ds} dr
= [[46pu og (T48), T)+E.(puTLH(T:3), Tbdr.
Since p,—>1 as n—>c0, we have
—S T, Iog(T,—|—8)dx+S T, log (T,+8)dx
— (46,08 (T.+8), T)+ELTT.+8), T)}dr

> [ &.(0g(T,+8), T.)ax .



Jump TypPe DIriCHLET FORMS 705

Since 0<L&,(log(T,+398), T,) t E.(log T,, T,) as & | 0, we obtain inequality (2.7).
q.e.d.

Lemma 2.3. M(?) is absolutely continuous and
(2.8) (dldt)M(t)<cN/E,(log T,, Ty)<o° (t>0).
Proof. Observe that
sup 7(1%1)* | (pu(w-+2)—p, ()| ] 4-*ds
<sup|x|* [ (pulat9)—p (=)l x| - dz
—sup||* | (p(a-t-2)—p ()| 2| 4-2de < oo
Since () <0, we have
sup | (r(1a-+31)—r(Ix])F1 5] ~*-=ds
= [rz1p12174mdz = [ (14 og 1317151 ds
¢ Si:(1+7s2)"ds<<>o .
Let R,(x)=7(|%|)pa(x). Then
(Ru(x-+2)—Ry(x) <20r(| w2 )= (|2 )24-2r( | 2 (pul-+-2) — pul))
so that
| Rut2)— Ry )71 51 -40dz<c.
For 0<<s<t, we have
M(t)— M) = lim { | R(0)T(t, 3)dx— R(&)T(s, w)d}
— —lim S' ER,, T)dr .
Let [A4]; denote the positive part of 4. Then
|ER T
<2 {[|R(®—R() 1T, 9—T(t 9)1KC, d, dy)

<2{ [[ Ruw R 1, K, dv, )y

x4 || =16 91, 9TE DK, ds, dy)pe
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< cfoup | (Ru(w+2)—Ru()] 3]+ dap

x4 [ 108 (706, 9170, VT, 2)— T YLK, d, d)p”
<c&,(log T,, T,)**,

where we used the symmetry k(t, x, y)=k(t, y, x) and the inequality 1—7<
log(1/7). Therefore

| M) —M(s)| <[ ce.(log T,, T.y"ar,

and we obtain (2.8). . qed.

Now we shall prove Theorem 1. From Lemma 2.1, there is a constant b
such that T'(¢, x)<e?t~%/%. Since

()= 7(t, %) log (e'r-*m)dx = (d]er) log b,

the function g(t)= Q(f)—(d/a)log t+b is non-negative. Define, for t>0, a
function A(t) by

h(t) = S: E.(log T, T.)dr—(d|er) log ¢ .

By (2.7) we have g(t)—g(s)=h(t)—A(s) for any 0<s<<¢. From (2.8), we have

(d]dt) M) < c(d[oct+h' (£))
= ct7 Y21+ (aut|d)h'(£)) 2 < ct~(1+- (et [2d)R(£)) -

Using integration by parts, for 0<€<1,
M)—M@E)<c | VT +VTHE)
<c2+IV T HOL-| o2y T d
=2+ E WD) R+ (O)—HO)2V/ T dty
<cl2+VE () 2@+ (s)—g0)/2v/ T dt}
<cl2+vELW+] g2V Td} = c(2+g1).

Since M(+0)=0, we have M(1)<c¢(1+g(1)). On the other hand, from in-
equality (2.6),
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M(1)=zcexp[(B/d)Q ()] Aexp [(B'/d)Q(1)]
=cexp[(B/d)g(1)] Aexp [(8’|d)g(1)] = c exp [(B/d)g(1)]
for any 0<B<a/2<B'<1. Hence we have
cexp [(Bld)g(D]<M(1)<c(1+g(1)) .
This implies that g(1)<c¢ and M(1)<c¢. From Remark in Section 1,

[T, Rar<e
for any A>0. Hence we conclude that

S r(t™Ve|x|) T(t, x)dx = S r(|x)T(#||1, x)dx<c .

3. The overlap estimate

In this section, we shall show that there is some overlap
S S(0, 2,3 ¢, £) AS(O0, x,; 2, x)d

of functions S(0, x;; t, x) with nearby source points x, and x,. The idea of the
proof is the same as that in Nash [14], but the proof requires some new lemmas.
Let U(t, x)=Uy(x) be the function defined by (1.10). Let &(+, +) and 4,

denote
Ey@e||+, +) and A (*)
respectively which are associated with the function k(z, /%%, t/*y). Then

(3.1) 1(0/02)Uy() = (8/8(log 1)Us(x)
= ()8 (U,@)+AUs(x),

where 0=(8/0x)=((8/0x,), **+, (0/0x,)). Now define a probability density func-
tion P(x) by

P(x) = C(1+4 | x|2)-@tatdr
and set
(3.2) Gy(t) = ——S P(x) log (U(x)+8)dx

for 0<8<1. Although the definition of P(x) is technical, the function P(x)
is the simplest one among probability density functions having required proper-
ties.
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From (3.1),
#(d|dt)Gy(2) = —S P (U+8)"{(1/a)0+ (xU,)+ AU,y dx
= —(d/a) gp (U,—l—S)“’U,dx——(l/a)S P x-8(log (U, +8))dx

+E(P(UA8), Uy)
< (1/ex) j (8-xP(x)) log (Uy+8)dx+E(P(U,+8)™, Uy)

= —(d/a)Gs(t)+ (1]a) S (0P(x)+x) log (U,+-8)dx
+E(PUA8)™, U)).
Since 8P(x)+x<0 and log (U,+8)>log 8, we have
(3.3) 1(d]dt)Gy < —(d]et)Gy—c log 8+E(P(UA+-8)™", Uy).

To estimate the last term of the above inequality, we need following two lemmas
which are elemental but play essential roles in this section.

Lemma 3.1. For any real values 0 and o,
(3.4) sh(—w) sh w<((sh 6)/0)( —w)o .
Proof. Observe that
sh (0—o)sh »
= lim {]T ch((8—a)/2") ch (w/2)}4" sh ((8—w)/2¥) sh (w]2")

— {ﬁ ch ((0—w)/2" ch (0/2")} (0— o)

= {II 2"(ch (6/2")+ch ((6—2a)/2")}H(f—w)o
and "
shé :gﬂ {”lii1 ch(0/2")}2% sh(6/2") = (f;[1 ch(0/2")) 6 .
In case (f—w)w>0, it suffices to prove that ch((—2w)/2")<ch(8/2") or
ch(0—2w)<<ch @. This inequality holds good, for (§ —w)w>0 implies
10—20| = | (0—0)—al <|(@—o)+o|=10].

Similarly, in case ( —w)w<<0, we have ch(0—2w)/2")>ch(6/2"). Hence inequa-
lity (3.4) is valid in both cases. q.e.d.

Lemma 3.2. (i) Let 20(x, y)=log (P(x)/P(y)). Then |0(x,y)|<c|x—y|
and
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(3.5) ” P(x)8(x, y)|x—y|~4-*dxdy < oo.
(ii) For any function f(x) satisfying S P(x)f(x)dx<<oo,

36 [P ie)—| 1Py

<c | P (Frta)— P+ 1219721 21 4= dap e

Proof. (i) From the mean value theorem, we have
410(x, y)| <(d+a+1)|x—yl,
so that
10(x, y) | <clx—y| A(log(1+|x])+log(1+]y])) .
Therefore

ﬁ P(%)60(, x-+2)2| 2| ~4-*dxds
<c Sf. P ednds

te § g...NP (x)(log (1+ | ]))?| 2| ~4~*dxdz

+e $S|'|>1P(x)(log(1+ |x42]))?| 2] 4 *dxdz < oo .

(i) Using the Schwarz inequality,
[ Pe) 16— FIPOIDYax
= [ P [ (F@ NP dyy2ax
< [ Pe) | (F—1)7P(y) i} ax
=2({ _ P@@—f)PP(G)dxdy.

If || <|y], then |x—y| <2] y], so that

P(y)<c(1+[y)|y| =%
<c(l4|x—y|?) 2 |a—y| "=

Therefore we have (3.6).

709
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Now fix £>0 and 0<< 8 <1, and let

20(x, y) = log P(x)—log P(y),
20(x, ) = log (Uy(x)+38)—log (Uy(y)+9),
k(x, y) = k(t, t/2x, t/2y) .

Then we observe that

{P(*)(Ux(%)+8) "' —P(y)(Uy(y)+8)"HUi(x)— Uy(y))
= V4P (x) P(y) sh (0(x, y)—a(x, y)) sh(a(x, y)) .

Applying inequality (3.4), we have
E(PUA+9)"", U)
<[ 2vP@PGI(h 0)/6)0—w)aklx—y| -4-=dxdy
= | e@+PoN@h 0)O)O—a)obl—yI-2axay
= ([ 2pw) e 0)10) O )k 5 —y1-4-*dxay
<2, H P(x)((th 8)/6)?| x—y| 4-*dxdy
+24 || P )0 csl v~y 42 dwayy
<A {{ P@)(eh 6)j6) ey 5~y #-eazayp 2.
Therefore, from (3.5),
E(PUA8), U)
<2 gf P(x)o?((th 8)/8) | x—y | ~4~*dxdy
t+e{ || Peat(h 6)/6) 15 —y1 == dxayy =
<6 || P)a(eh 0)/6) 1x—y| ~+-dxay,
where we used that —2s+cv/ s <&2—s (s>0). Since
(the (x, 3))/B(x, ) =c (1+6(x, YY) 2> (1+ |x—y|97,

applying inequality (3.6) for the function
f(x) = log (Uy(x)+9),

we obtain the estimate
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(7 EAPUAY), U)<c—e | Plx)(og(Ui(x)+8)+Gy(t)d .
Lemma 3.3. For all sufficiently large G, say for G >c,,
(3.8) S P(x)(log (U(%)+8)+G)dx= (c+cG): .

Proof. Let h(u)=u"'(log(u+8)+G)?, where G is a constant satisfying
e 6—8=u,>0. If u>u,=¢e" ¢ then u,>u, and

2u/(u+98)—log(u+8)—G<2—logu,—G =0,
so that
h'(u) = u?(log (u+8)+G) (2u/(u+8)—log (u+8)—G)<O0.

Therefore A(u) is strictly decreasing on [#;, o). By Theorem 1 (i), there is a
constant u, depending only on «, d, ¢, and ¢, such that Uy(x)<u,. Hence

S P(x)(log (U, 8)+G)dx
zg P(x) min {h(u); 4, <<,V it} U, Ly < d
= (V) S PU, Iy cvpdi .
Let V(%)= Uy(x) if u,< Uy(x), V(x)=0 if u,> Uy(x) and
B =(12) | Vs,

which depend on t and G. By Theorem 1 (ii), there is a constant 4 depending
only on a, d, ¢, and ¢, such that

S r(1%])Uy(x)dz<b .
Since

V(x)dx — 23—S V(x)dx

Sr(lxl)Sb/B r(1z1)>5/B

>268—(8J0) [ (1) (x)x228—8 = 8,
we have the inequality
[ Py g min {P(x); (151)<blBY} -

The function V(x)=Uy(x)— V(x) satisfies
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Vi(x)<w, and Sr(]xl)Vl(x)deb.

From the Neymann-Pearson Lemma in statistics, if Vi(x)=u, for |x| <R, V(x)
=0 for |x|>R and

[risviar=u( _ r(1xi)ax =5,

1zI<R
then

” gmﬂ dx — S Vo(x)dxzs V(x)dx — 1—28.

Observe that the constant R depends on #, or G and R=R(G) 1 oo as G 1 oo.
Since

(a—28)p<({ _ai({ _r(lx))a) |0

lzI<R

as R1 oo or G 1 oo, the constant B is bounded below, say 8>1/2 as long as
G >c,. We may suppose 2—c,<<logu,. Then, for G >c,,

S P(x)(log (U, +8)+G)dx

> h(u, V u,)@ min {P(x); r(|x|)<b/B}

= ch(u, V1) = ch(u,)

>(c+cG). q.e.d.

Note that Theorem 1 is essential in the proof of the above lemma. Return-

ing to inequalities (3.3) and (3.7) and using inequality (3.8), we see that there
are positive constants ¢; and ¢, depending only on «, d, ¢, and ¢, such that, as
long as Gy(t) > ¢y,
(3.9) HdJdt)Gy(t) <<, log (1/8)—c,(Gy(D)Y

Suppose Gy(to)=> ¢, and ¢; log (1/8)—c,Gs(t,)’ < —E<0 are satisfied. Then we
have from (3.9) that Gy(t,) < Gy(t)—& log (%,/t) for 0<t<t,, which implies that
Gy(t)—>o0 as t—0. But this is a conrtadiction, for Gs(t)<log(1/8). Therefore
it must be satisfied that

Gy(t)<c V |(csfe,) log (1/8) |2,
or, for all sufficiently small §,
(3.10) Gs(t)<cV1og (1/5) -

Theorem 3. There is a strictly positive function ¢(a) on [0, o) which is
decreasing and depends only on a, d, c, and c, such that
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(3.11) g S(0, x,; 2, ¥)AS(O, x; £, X)dx> d(t~Y*|2,—1, ) -

Proof. Let
U(i)(t’ x) —1 S(O’ tl/ax‘_; t tl/ﬂx)

fori=1or 2 and x;&R?. Then (3.11) is equivalent to
(3.12) S UD(t, ) AU, x)dx= (| 6—%,]) -
We apply (3.10) for U(t, x)=U (¢, x+x;), obtaining
—S P(x—2x;) log (U(t, x)+8)dx
— —S P(x) log (U(t, x-+x,)+-8)dx<c\Iog (13) .
Since the inequality

ab,+ab, < (a, A\ ay) (b, A by)+-(a, V a,) (b, V by)

holds good for any a; and b;, we have

—{ 4min P(x—x)- min log (U®+5)
~+max P(x—x;)-max log (U®+-8)}dx

<5 S P(x—x;) log (UD+8)dx< c;V/Iog (1/9).
We observe that
S max P(v—3;)- max log (U ©-+8)d
< S (max P(v—x))(U O+ U®)dx
< X (UO+U®)dx = 26,
g min P(x—x)-min log (U®-+8)ds
gg (min P(—x)){log 8-+log (U AU®)/5+1)} d
<log & S min P(—x,)dx+(/8) S UDAUA .

Therefore we have

713
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—(cf3) S UPAU®dx

<¢;Viog (1/8)42¢5+log & S m,in P(x—x;)dx

for all sufficiently small &, say §<e™™. Let
w = w(|x,—x,|) = S m’_in P(x—x;)dx .
Then we obtain the estimate
AR U® ds>max e (o | 1,—,]) B—csV/ B —26) -

Since the function w(c) is positive and decreasing, the function
(3.13) #(o) = (1/a) max e {a(e) B—c/ B — 26
is also positive and decreasing, and

SU“)/\ U®dx> ¢ (|x,—x,) ge.d.

4. The continuity estimate

In this section we shall prove Theorem 2 by iterative use of (3.11).
Although the proof is rather complicated, its outline is similar to [14] except for
the use of Lemma 4.3. Theorem 2 is nothing but a consequence of Theorem 1
and Theorem 3, and the difficulty arises from the form of the function 7(o).

Fix two points x5 x,, and set

S.(t, x) = [S(0, xy; 2, x)—S(0, x,; 2, x)] VO,
S_(t, x) = [S(0, 23 2, x)—S(0, x5 £, x)]VO.

Since S, -+ S-=[S(0, x,; ¢, x)—S(0, x,; £, x)| and S,—S_=S5(0, »;; ¢, x)

—S8(0, x,; ¢, x), we have

(4.1) Ft) = S S, (t, x)dx = S S_(t, x)dx
- (1/2)515(0, %33 1, §)—S(0, x,; 2, %) |d
- 1—5 S(0, x5 2, ¥)AS(0, x; 2, x)dx ,

defining F(t). From Theorem 3, the function Yr(o)=1—¢ (o) is strictly less
than 1 and increasing, and satisfies

(4.2) Ft)<p(t7/ | % —2,]) .
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Let W(s, y, 2)=S.(s, )S_(s, 2)/F(s). Then, for s<t,
S(0, x,; 2, X)—S(0, xy; ¢, %)
= [ (50, %5 5, 5)-5(0, %3 5, S5, 33 1, W)y
= [ (84 5)=S S, 33 1, W)y
= [ 865, 986 35 1, )dy—{ 565, 2)S(s, 53 1, x)ds
= ([ w5, 3, 2S5 35 1, 20— S, 55 1, W)y
Hence from (3.11) or (4.2),
4.3) F(t)s(l/Z)SSS Wis, y, 2)| (s, 93 8, )—S(s, #; ¢, %)|dydzdx
<({ w0, 5, 2pete—sy e y—21)dyaz
Since
§ W, 5, spwayas< ([, 3, myayas = Fo),

we have F(t)<F(s). Inequality (4.3) is the key to the iterative argument.
Let A=(3+4(2))/4<1 and t, be the least time such that F(¢,)=\", if ¢,
exists. Set x,=(x,+,)/2, and define

M. @) = | (1 y—x)S. )y,
M_(t) = S r(|2—2,)S_(t, 2)dz,
M, = My(t,)VM_(t,).
Lemma 4.1. Let r~X(+) denote the inverse function of 7(+). Then
(44) fu— < (r (N M)

Proof. Define S;(¢, ¥)=S.(t, y) if 7(| y—ux,|)<2A"" M, otherwise S/(¢,y)
=0. Then

[ (Suttn =S40 0y
<2 MG [ y—s0)Sa(t 2)dy N2,

so that
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[ st nay=Fe) -2 =12,

Define S’(t, z) similarly and let
Wa(y, 2) = N""S(ts, ¥)S(ty; 2) .

Using (4.3) with s=t,, we have

FO <[4t 3, ) Wiy, )+ Wiy, =)
XY((t—t,) o] y—z )y da
s“ (W(t,, 9, 5)— Wiy, 2))dydz
-t o ) (| Wiy, Bayas,

for the reason that if W;(y, 2)>0, then |y—ux, | <r '(2A""M,) and |2—x,| <
r~(2An""M,), so that | y—z| <2r"Y(2x""M,). Hence

F(t)gg S Wit,, v, 2)dydz—(1—) S Wiy, 2)dydz

A (1A S St y)dys S(t,, 2)dz

SN —(1—)A""(\"[2)

=(\"/4) 3+ (2t —t,) Ve r T (2n" M)}
Let t=t,+(r"2A""M,))*. Then

Ft) S (W' [4)(344(2)) = A+t
Therefore t,,,<t=t,-(r"}(2n""M,))*. q.e.d.
Now we shall define

(4.5) J(@) = o(2+(log o))*2,  J(o) = o(1+(log o)?) 72,
which are strictly increasing on (0, o). It is easy to show that

Jea\<cJ(@)] (@), Jlea)<c]J(a)](c"),
JU@)=ca or JHo)<J(o).
Since cr(e) < J(a?) <cr(a), we have
ar @) <(J @) < er (o)

so that

(rX@)*<e(J(@))*-
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Observe that J(o)>=0%(2+(log o)?) is a convex function.
Lemma 4.2. We have the inqeuality
(46) Ma+1_MnScj( v tn+1——tn)7\'” .
Proof. Let#>s. Since
Su(t, )= 1 (S4(5, 9)=S-(6, S, 33 1, My} VO
SS Si(s, )S(s, y; ¢, x)dy
and 7(o) is concave, we have
M+(t)gsg r(|x—x0|)S4(s, ¥)S(s, y; t, x)dxdy
<{f ety —mD+r(1x—y kS0 9SG, 35 1, 2)dwdy
=M (+] 866, )4 | 15 —31)S (s, 35 1, w)daay
<M.()+ {snip S r(|x—y|[)S(s, y; t, x)dx} F(s) .
From (1.8),
[ J/ =T IE=9)SGs, 33 1, s)desc,
so that
S r(|x—y|)S(s, y; t, x)dx

_gcgj(\/t—s V0|x—y|%[(t—$))S(s, y; t, x)dx

<o (V=) | IV o3 TTE=) S(s, 95 1, )
<cJ(Vt—s).
Hence we have M, (t)<M,(s)+¢J(Vt—s)F(s). Let s=t, and t=t,,,. Then
My (tya) SMi(tn)+¢] (Vi — A" .

Similarly we have

M—(tn+1) < M—(tn) + c]( \/tnﬂ_‘ tn) A’ ’
so that we obtain (4.6). q.e.d.

Inequality (4.4) will bound the sequence {#,} after we obtain a bound on
the sequence {M,}. From (4.4),
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Vi — 4, <c(r (W ML) <cJ (VM) -
Since J(J(a)) <c¢o(1+(log o)?),
J (V10— 1) <c(v"M,) {14-(log (A" M,,))} .

Combining this and (4.6), we have

M, <M, {c+c(log (" M)
Now let £,=(1/2) log (A""M,). Then we have the inequality

(exp Eps)*<(exp E)*(c+c(&n)) »
or the difference inequality

(4.7) Epp—En<log(c+cl&,l).
Lemma 4.3. Ifp>1,¢>1/2 and
§n+1£5n+log(1+p'5n l )+q
for all n>0, then
(4.8) Es<Eotn{log(14p|&|)+2(log (np)+q)} .

Proof. We shall verify (4.8) by induction. Set g,=2(log (np)-+q).

pose that (4.8) is valid for n=m>1. Then

{E+(m—+1)(log (14 & | )+ gms1)} —Emur

>E+(m+1) log (14 & | )+ (m+1)gms
—En—log(1+p|Enl)—9q

>(m+-1) log (1+p[&|)+(m+1)gmss
—m(log (1+p|&|)—mg,
—log{14-p|&+mlog (1+p|&|)+mg.|} —g

=(m—+1) g4y —mg,—q+log (1+p&])
—log {1+4-p| & | +mp(p|Eo] +qm)}

= (Mm+1)(gmr1—9m)F(gn—9)
—log {14-mp(g,+p|&|)/(1+p1& )}

2 M(G+1—Gm)+(gm—q)—log (1+mpg,,) ,

for g,,>2(log p+g)>1. Since
(mp)- e’ —e™? = 2mp sh(log(mp)+q)
= 2mp(log(mp)-+q) = mpqy, ,

we have

Sup-
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gn—q = log ((mp)’e’)>log (mpqy,) .
Hence
M(Gm+1—m) +(qn—9) —log (1-+mpg,,)
> Mg 11— qm)110g (Mmpg,)—log (1+mpg,,)
=2m log (1+4-1/m)—log (1+4-1/mpq,,)
>1—1/mpg,=>0.

Therefore (4.8) is valid for n=m+-1.

719

q.e.d.

Applying the absolute inequality: XY <(e¥*—1)4(1—Y+ Y log Y) for X=

log (14-p|&,|) and Y=2np, we have

nlog (1+p1& ) <(1/2p){p | &o| +(1—2np+2np log (2np))}
=&l /2+n log ntn(log (2p)—1)+1/2p .

Hence (4.8) can be replaced by

4.9) En<&t &l [2+n(3 lognt+-C)+1/2p ,

where C=log (2p%)+2¢g—1. From (4.7) and (4.9), we have
AT"M, = exp (2£,) <c(en”)" exp (2E0+&ol) -

Since F(+0)=1=2°, we see that #{,=0 and

exp (260) = Mo = | (1 =2 )3(y—) dy
= r(|x,—x,| [2)<c|x,—2x, | ** .
If |x,—x,| <2, then £,<0, so that
(4.10) AP M, <c(en®)" |, —ax, | 214 .

Theorem 4. Let O(c) be defined by (1.9). Then
(4.11) SIS(O, x5 1, ) —S(0, 2,5 1, x) |de<c D(|x,—x,])° .

Proof. Combining (4.4) and (4.10), we obtain

Vi —t, S (r (20" M) < cJ(M"M,)
<cJ((an)" | x,—x, ldM) ’

where a is a positive constant depending only on «, d, ¢, and ¢,
function J(o)? is convex,

Since the
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b = 20050 (tasr—ta)
Sc Z:t_—ol J((anﬁ)” l Xy —2%, I ¢/4)2
<¢J ((am®)" |2, — 2, | 1) 33355 (an®)" | (am®)”
<[BJ((am®)" | %, —2x, | *)P,
where b is also a constant depending only on a, d, ¢, and ¢,. Therefore if
(am®)" |2, —2x, | “#< JY(1]0)

then #,,<1, so that F(1)<F(¢t,)=A".
Let m=m(c) be the integer such that

m<(a/24)(log o~ /log log e~ ) <m--1 .

It is a routine work to show that (am(c)®)™ g tends to 0 as o | 0, so that there
is a constant 8, 0<<d<e™*, satisfying

(am(a))" e < J7Y(1/b)  forall 0<o<$.
If |x,—x,| <8, then

F(I)Sh’” — k—l(e—m—l)log(l/)\)
< 7\‘—1@( le_xz | )(w/24)loz [¢72V] ,

where m=m(|x,—x,|). 'This implies (4.11). q.e.d.

Now we shall prove Theorem 2 (i). From Theorem 4 and Remark in
Section 1, we have for 0<<r,

SIS(O, x; 7, %) —S(0, x; 7, 1,)|dx
— SlS(O, x; 7, §)—S(0, 4,3 7, %) | dx
= JISE10, 774%; 1, )= (10, 775 1, 3) | dy
L cD(r7V | x,—m,])°,
so that for 0<<s<{,
SlS(s, %3 8, %) —S(s, x; 2, %)) | du
< D((t—s) e m—a, | )
Hence from Theorem 1 (i), we have
| T2, %) —T(2, x,)|
SS T(s, x)| S (s, x; t, x,)—S(s, x3 ¢, x,) |d
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.<_cs“’/'”S|S(s, x; t, %)—S(s, x; t, %) |dx
s~ D((t—s) V| x,— x| )°

which completes the proof.
Next we shall prove Theorem 2 (ii). Let t'>¢>s>0. For any positive

constant ¢, we have
| T(t, )—T(t', )|
— |S (T, )—T(t, 2)S(t, 2; ', x)dz|

<176 )~ 10, x+9)1S(t, % ', w-+y)dy
<sup {|T(t, x)—T(t, x+y)|; | y| <o(t—s)"*}
—}—ct“’/"s S(t, x; t', x+y)dy

19> o(t-5)1/ @
<5 o@(o )+t~ | Jlom R (t—s) 2| y| *P)S(t, %5 ', 5-+3)dy
<™ D (o) +J (V' —1)[(t—5)a™*?)
<[ 2@ =21 51°m8 @, x5 ¢, wt)an)
< (@ (o) + (VD5 *R)} ,
where we used Theorem 1 and Theorem 2 (i). Here, let
7= —log (t' ~H(t—s)) >e,
alogo = —n+g/logn.
Then we have

J(VE—D]([t—s)o=7) = J(e~/@1os) < g=e10108" |
P(o) = D(exp [(n/log n—n)/a]) L e "loe"
Hence
| T(t, x)—T(t', x)|
< o5 ingmerowr _ -dla (oY

=cs~ 9 D((t —1)/(t—s))°,

which completes the proof.

5. The estimates for weak solutions

In the preceding sections, the function k(¢, x, y) is assumed to be smooth
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in x and y. The purpose of this section is to remove the smoothness condition
on the function k(¢, %, y), and only condition (1.2) and (1.5) are assumed in what
follows. The parabolic equation 0u%/dt=A,u must be considered in the weak
sense. The existence of fundamental solution of the weak solution will also be
proved in this section.

A function u,(x)=u(¢, x) is said to be a weak solution of the Cauchy problem

(8/0tyuy=Arvsws, o= if
utELZ(Rd’ dx) , lim ||ut—-¢’”L2 =0,
1340
and u, is a weak solution of the parabolic equation associated with the Dirichlet
form E¢y(+, *) (see Section 1).

Lemma 5.1. For any (R, and ¢=L*(R’, dx), there exists at most a
weak solution of the Cauchy problem (8/0t)u,= A¢ s, tgr=.

Proof. Let p(x) be a smooth function such that 0< p(x)=p(—x)<1,
p(x)=1 for |x| <1 and p(x)=0 for |x]|>2, and set p,(x)=p(x/n), p,=SF *p,.
To simplify the proof, we shall suppose {=0. Let #,(x) be a weak solution of
the Cauchy problem (0/8t)u,=A,u,, t4,=0. Define

uf?(x) = T [Fu(E)pa(E))(%) = (upa)() -

Then sup,||d*u{”|2<co for any v&Z$. By the approximation procedure
U p,—> Ul and p(x— +)pu—>Pu(x—+) as m—>oo, we have

(8/07)(try u)12 = —Ex(ur, u)
(0/0r)u(x) = (8/07)(try Pu(%—*))22 = —Exlthry Pu(x—")).

Let {5,,(2)} be a sequence of non-negative test functions on R! such that §,(¢)—
8(t) as m—>oo. Then we have

(0/07)[(try £3) 128 (7 —0) ]+ E(thry 1) 3 (7—0)
= (t4, u")2(0/07)8(7—0) .

Integrating by o and letting m—> oo, we see that
(1tgy U)o — (11, 1) 2 —}—S:é’,(u,, w)dr
— [\, @0r) 27
— —[ [ u@eun pue—aras

— _S’e,(u,, w)dr
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for any 0<s<<z. Since

t
sup la,— 52+ €, —?, u—ai)dr
s<T<LE s
t
<esup lI(1—pFunliizte || (181901 pu | FurPdrd >0
s<T< s
as m—> oo,
we have
t
iz Ihall3e+2 | €.fur, u)dr = 0.
Therefore ||u,]] ;2 <|lu,]| ;2<|[ttp]| 2=0. q.e.d.

Let {3,(x)} be a sequence of non-negative test functions on R? such that
the support of §,,(x) decreases to {0} as m—>co and S Su(x)dx=1. Let &,(+, )

denote the Dirichlet form associated with the function

5. Fulty 3 9) = ([ Kt & )8.(r—B)3u(y—m)dEdn .

Then each &, satisfies condition (1.2) and (1.5), and (8/8x)"(8/8y)"k,, are bounded
and continuous for all u, v&€Z4. Let S, (s, x; ¢, y) be the fundamental solution
of the parabolic equation 0u/dt=A,, ,u associated with the Dirichlet form
Emi(*, *). Since S,(s, x; ¢, ) is the transition function of the Markov process
with pre-generator (4,,,, C7(R?)), we see that S,(s, x; t, ¥) = Su(s, ¥; £, x)=>0

and S Su(s, x; ¢, y)dy=1. Applying Theorem 1 (i) and Theorem 2 for the set
of functions
{Sm(gy 2’, §+t’ z+x); m, {, 2’} U '{Sm(c__t) Z—X, g» 2‘), m, Cr 2’} ’

we see that the functions {S,(s, ; ¢, y)} are uniformly bounded and equiconti-
nuous on any compact subset of {(s, x, ¢, y); s<t and x, y=R?. From the
Ascoli-Arzera theorem, choosing a subsequence {m(n)} C {m} if necessary, we
may suppose that {S,(s, x; #, y)} converges to a certain function S(s, x; ¢, y) as
n—>co locally uniformly on the set {(s, x;#,y); s<t and x, yeR%. Obviously
S(s, x5 ¢, ¥)=S(s, y; t, x)=0.

Now fix a point (¢, 2)ER,.X R’ and let T{(x)=S,(¢, z; £+t, 2+x),
T¢)x)=S(¢, 2; £+t, 2+x). From Theorem 1 (ii), we see that

5 T¢(x)dx = lim (nmj T(x)dx)
N> lzI<N

)

— lim (1—lim S| TP dx)
zI>N

N> n-»00

>lim(1—cr(NtV9 ) =1,
N>
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and for any £>0,
$|z|>e T‘,”)(x)dxs},i_{g Slxl>e T ()
_<_£Lm“ cr& V)0 as ¢}0.
This implies that S T¢(x)dx=1 and T¢(x)—>58(x) as t | 0. Therefore

(5.2) SS(s, xit,9)dy =1, S(s, x;1,y)— S(y—x) as tls.

Let £&(-, +) (resp. E(+, +)) denote the Dirichlet form associated with the
function k™2, x, y)=k,(§ +t, 2+x, 2+y) (resp. K¢, x, y)=k({ +1, 2+x, 2+)).
Then

E fz++), g(z++)) = Ecailf, 8) -
Lemma 5.2. For any 1<n<oo,

(5.3) S " & (T, T®)dr < es™a .

Proof. First we shall show the estimate for n<<oo. Set U{(x)=
P TM(t2x) (see (1.10)). From inequality (2.7),

[l e, 10g T¢)ar

<—[ 7 10g TP )+ | T9(x) log T(x)ax

_d
T a

log %;S U log U‘,"’dx—l—S U™ log Udx .
By Theorem 1 and Lemma 2.2,

s U® log U‘,")dxsg U log cdx<c,

—S U log UPdx<c log S (%) U (x)dx-+c<c.
Therefore, for any 0<<s<t,

S:&”)(T‘,"’, log T¢)dr <4 log L 4.
Set K™(t, dx, dy)=(1/2)k™(t, x, y)|x—y| ¢ *dxdy. Then
gsﬂ)(T(t"), Tsn))
= 2| TOETP@ - TE)I- TR T
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<2 {{ 76T — 1) tog [T T (KW
Zct™ = EM(TE log TM) .
Combining these inequalities and integrating by parts,
[y, T)ar<c [ rimew e, og T®)ir
t
gct“’/"(c—i—g— log %)—{—c Ss Tl (c —l—% log %)-r"d-r
- - d - d - ]
dfa dfo a daf 1. @ 1
<cs [I}plgalx w (c—f— o log -w)—{—Sl w (c—l— o 108 w)w dw
=5,
Therefore (5.3) is proved for n<<co. From the Fatou lemma,
|" e, renar<iim | (e, Tar

<clim S“ EO(T®, T®)drLes™lo .
s

n-r»oo

Namely (5.3) is valid also for n=rco. q.e.d.

Lemma 5.3. For any test function f(x) and 0<s<t,
(5:4) (T, Na— (T, P+ | €T, flan = 0.

Proof. By condition (1.5)
lim sup |R,(7, ®, ¥)—k,(a, x, ¥)[|= 0.

T>0 n,x,¥

Since k,(7, x, y)—k(7, x, y) as n—>oco for a.a. (x, y) and each =, we have

i (n) k) 2 —
lim sup Sgumyls” (R™(r, %, ¥)—k™) 7, %, ¥))’dxdy = 0

nroo STt

for any N. Then there exists a number m=m(€) for each £>0 such that

sup {{ (F0) 1), 5, 3)— k" (, 2, )| x—y| ~-2drdy<e

st
is satisfied as long as m<n<oo. Therefore, for any 1<j < oo,
t . ;
[ 182, n—ee, las

<( e, Toprar
s
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t . . .
<est—sy( | €Ty, )iy
s
< cE(t—s) 257U = (s, 1)E,

where Lemma 5.2 is used. Then
[[1eore, p-eoae, plar
<[ 1ew, p—er e, plas
+ 18T -1, 1)) dr
+{ 1emae, p-ee e, plas

<2(s, t)e+$t (T —=T¢,A0f), 2| dr

<2(s, £)&+-sup | A™f(x)] - S S | T9(x)— T(x) | dr dx .

,
Let n—>co first and € | 0 next. Then we have
lim [ |E0(TE, )~ €T, Hldr = 0.
Since, for any n<<oo,
(T, N—(T, P+ | €T, Har =0,

we see that equality (5.4) is satisfied.

q.e.d.

We shall say that a function S(s,x;t,y) is the fundamental solution of the
parabolic equation associated with the Dirichlet form &,(-, *) if, for any ¢(x)&

L'N L? and any £ >0, the function

uy(x) = S $(@)S(E, 2; E+1, x)dz

is a solution of the Cauchy problem (9/8t)u,=A¢4s4;, thoe=¢. From Lemma

5.1, the fundamental solution is uniquely determined.

Theorem 5. Under condition (1.2) and (1.5), there exists the fundamental

solution of the parabolic equation associated with the Dirichlet from E,(-, +).

Proof. From Lemma 5.3, for any test function f(x) and 0<<s<t,

(5'5) (S(C’ %5 {—}—t, ')’ f)Lz_(S(g’ 25 C—f—s, '):f)Lz
+S' EeadSE, 23 841, ), fdr = 0.
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Let ¢(x) be a function in L'N L? and define
(%) =$ B(2)S(E, 2; £+, x)dz — 5 S(E, x; £+, 2)p(2)dz .
Then we have ||u||2<||¢|l;2 and ||lu,— ¢||;2—0 as ¢ | 0 from (5.2). And
[\ 2velt urar

SNl | Ecrd S, 55 -, ), SE 25 ttr, Yde
<cllglltisre< oo

from Lemma 5.2. Therefore we have
[ o)1 [ EruSE 55 4, ), Narldz = [ Eertan, frar
This equality and (5.5) imply that
(0 £ty a2+ Exralits, i = 0.

Hence the function S(s, x; ¢, ) is the fundamental solution. q.e.d.

Let S(s, x; ¢, y) be the fundamental solution of the parabolic equation
associated with the Dirichlet form &,(-, +). From the manner of construction of
the function S(s, x; ¢, ¥) in this section, it is immediate to see that each function

T(t, x) = S, =; £+, 2+x)

satisfies the estimates in Theorem 1 and Theorem 2. Namely the assumption
that (8/0x)“(0/0y)" k(t, x, y) are bounded and continuous for all u, vEZ¢ can be

taken off.
Let P, , be the operator defined by

P, fx) = | S, %5 1, 5)f () .

Then {P,,} satisfies the semi-group property: P, ,P, =P, , for any 0<s<<t<<u.
It is clear from Theorem 1 that

max| P, .f@)—f()] -0  as (t—s) 0

for any f(x)eCy(R%. Since P,,1=1 and P,,f>0 if >0, {P,,} is a Feller
semi-group. For any bounded measurable function f(x) on R? the function
P, ,f(x) is continuous on {(s, ¢, x); s<<t and x&R‘}. Therefore each Dirichlet
form &,(+, *) satisfying (1.2) and (1.5) determines a strong Feller semi-group

{Ps,t} .
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