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1. Introduction

The purpose of the present paper is to study the interface regularity of three di-
mensional Maxwell and Stokes systems. To our knowledge, notso much regards have
been taken in this topic, but actually the solenoidal condition provides the regularity
across interface to a specified component of the unknown vector field.

Let ⊂ R3 be a bounded domain with Lipschitz boundary∂ , andM ⊂ R3 be
a 2 hypersurface cutting transversally. Then, it holds that

M∩ 6= ∅
= + ∪ ( ∩M) ∪ − (disjoint union)(1)

with the open subsets ± of . First, we take the Maxwell system in magnetostatics,

(2)
∇× =
∇ · = 0

}
in ±

where = ( 1( ) 2( ) 3( )) and = ( 1( ) 2( ) 3( )) stand for the three di-
mensional vector fields, indicating the magnetic field and the total current density, re-
spectively. Here and henceforth,∇ = (∂1 ∂2 ∂3) denotes the gradient operator and×
and · are the outer and the inner products inR3, so that∇× and∇· are the operations
of the rotation and the divergence, respectively.

In the context of magnetoencephalography, Suzuki, Watanabe, and Shimogawara
[2] studied the case when the interface is given by the boundary ∂ of a smooth
bounded domain ⊂ R3. Namely, from the properties of the layer potential, it
showed that if is piecewise continuous onR3 \ ∂ and system (2) has a solution

∈ (R3)3 ∩ 1(R3 \ ∂ )3 for − = and + = R3 \ , then

[∇( · )]+
− = 0 on ∂

follows, regardless with the continuity of across∂ . Here, denotes the outer unit
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normal vector to∂ , [ ]+
− = + − −, and

+(ξ) = lim
→ξ ∈R3\

( ) −(ξ) = lim
→ξ ∈

( )

for ξ ∈ ∂ . In this paper we study its local version, that is, the case where the
bounded domain is given with the interfaceM∩ as in (1).

To state the result, we take preliminaries on function spaces from Girault and
Raviart [1]. Namely, let ⊂ R3 be a bounded domain with Lipschitz boundary∂
and be the unit normal vector to∂ . For ∈ [1 ∞], ( ) denotes the standard

space on provided with the norm‖ · ‖ ( ), and the Sobolev space ( ) is
defined by

( ) =
{

∈ 2( ) | ∂α ∈ 2( ) for |α| ≤
}

for a positive integer , where∂α = ∂α1
1
∂α2

2
∂α3

3
for the multi-indexα = (α1 α2 α3).

Given σ ∈ (0 1), we say that ∈ +σ( ) if ∈ ( ) and

∫ ∫ |∂α ( ) − ∂α ( )|2

| − | +2σ < +∞

for any α in |α| = and = 3. The space ( ) is defined similarly with = 2
through the local chart of , where∈ [0 1] and ⊂ ∂ is a relatively open con-
nected set. Then, we set− ( ) = 0 ( )′, where 0 ( ) denotes the closure in ( )
of the space composed of Lipschitz continuous functions on with compact supports.
Thus, we have 0 ( ) = ( ) if ⊂ ∂ is a closed surface, and in particular, it

holds that 1/2(∂ ) = 1/2
0 (∂ ). We also put

(div ) =
{

∈ 2( )3 | ∇ · ∈ 2( )
}

and

(rot ) =
{

∈ 2( )3 | ∇ × ∈ 2( )3
}

Then, any ∈ (div ) admits the trace · |∂ ∈ −1/2(∂ ), and Green’s
formula

(
( ∇ϕ)

)
+ (∇ · ϕ) = 〈 · ϕ〉∂

holds for ϕ ∈ 1( ). Here and henceforth, (· ·) and ((· ·)) denote 2( )
and 2( )3 inner products, respectively, and〈· ·〉∂ the duality pairing between

−1/2(∂ ) and 1/2(∂ ) = 1/2
0 (∂ ). Let us note here that the standard trace the-

orem guaranteesϕ|∂ ∈ 1/2(∂ ) for ϕ ∈ 1( ). Similarly, any ∈ 1(rot )
admits the trace × |∂ ∈ −1/2(∂ )3, and the Stokes formula

(
(∇× )

)
−
(
( ∇× )

)
= 〈〈 × 〉〉∂
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holds for ∈ 1( )3, where 〈〈· ·〉〉∂ denotes the duality pairing between
−1/2(∂ )3 and 1/2(∂ )3.

Now, to discuss the interface regularity of the solution to the Maxwell sys-
tem (2), we take that

± = ∂ ± ∩

with ∂ ± being the boundary of ±. This means that + and − coincide as sets, but
they are regarded as the parts of the boundaries of+ and −, respectively. Hence-
forth, denotes the outer unit normal vector to− so that− is the outer unit normal
vector to +. Henceforth, 2 extension of the vector field defined on =M∩ is
always taken to . Furthermore, given a function ( ) on±, we set

[ ]+
− = + − − on

where ±(ξ) = lim →ξ ∈ ±
( ) for ξ ∈ are usually taken in the sense of traces

to ±.
Suppose that and are in2( ±)3 and satisfy (2). This means that those re-

lations hold piecewisely in ± in the sense of distributionsD′( ±), that is,

∫

±

· ∇ × =
∫

±

· and
∫

±

· ∇ϕ = 0

for any ∈ ∞
0 ( ±)3 andϕ ∈ ∞

0 ( ±). Unless otherwise stated, those vector fields
∈ 2( ±) and ∈ 2( ±)3 are identified with the elements in2( )3.

Relation (2) for ∈ 2( ±)3 and ∈ 2( ±)3 implies that ∈ (rot ±) ∩
(div ±), which assures the well-definedness of

× |
±
∈ −1/2( ±)3 and · |

±
∈ −1/2( ±)

and hence |
±
∈ −1/2( ±)3 follows. Furthermore,

(3) [ × ]+
− = 0 and [ · ]+

− = 0

if and only if

(4) ∇× = ∈ 2( )3 and ∇ · = 0 ∈ 2( )

as distributions in , respectively. If both relations of (3)are satisfied, then ∈
1
loc( )3 follows, because ∈ 1

loc( )3 is equivalent to [ ]+− = 0 on for ∈
1( ±)3. This fact is also obtained by Corollary I.2.10 of [1],

(5) (rot )∩ (div ) ⊂ 1
loc( )3
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as (4) for ∈ 2( )3 implies ∈ 1
loc( )3.

Our first result is stated as follows. Let us note again that defined on M is
extended to a 2 vector field in , and · ∈ 1

loc( ) follows from ∈ 1( )3.

Theorem 1. If ∈ 1( )3 and ∈ (rot ±) satisfy (2), then it holds that
· ∈ 2

loc( ).

In the above theorem, solves (2) in as a distribution, because it is assumed
to be in 1( )3. That is,

∫
· ∇ × =

∫
· and

∫
· ∇ϕ = 0

hold for any ∈ ∞
0 ( )3 and ϕ ∈ ∞

0 ( ). On the other hand, ∈ (rot ±) be-
longs to ∈ (rot ) if and only if [ × ]+

− = 0 on . If this condition is satisfied
furthermore, then it holds that

− = ∇× ∈ 2( )3

(as distributions in ), because∇ × = ∈ (rot ) and∇ · = 0 ∈ 2( )3 are
valid similarly in . Then, ∈ 2

loc( )3 is obtained from the elliptic regularity. Thus,
Theorem 1 says, in contrast, that even if× has an interface on =M ∩ , the
normal component · of gains the regularity in one rank. It is not difficult to
suspect that the solenoidal condition∇ · = 0 in plays an essential role in such a
regularity.

In this connection, it may be worth noting that the assumption of Theorem 1 does
not permit the interface to · . In fact, equation (2) holds in as we have seen, and
therefore,

∇ · = ∇ · (∇× ) = 0

follows there. This implies ∈ (div ), and hence we have [· ]+
− = 0 on in

particular.
Theorem 1 can be applicable to the stationary Stokes system;

(6)
− + ∇ =

∇ · = 0

}
in ±

and the stationary Navier-Stokes system;

(7)
− + ( · ∇) + ∇ =

∇ · = 0

}
in ±

where = ( 1( ) 2( ) 3( )) denotes the velocity of fluid, = ( ) the pressure, and
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( ) = ( 1( ) 2( ) 3( )) the external force. We have the following theorem, where
ω = ∇× indicates the vorticity of fluid.

Theorem 2. If ∈ 2( ±)3, ∈ 1( ±), and ∈ (rot ±) satisfy (6)
or (7) and if ω = ∇× is in 1( )3, then it holds that · ω ∈ 2

loc( ).

We note that ∈ 2( ±)3 implies ω = ∇× ∈ 1( ±)3, and hence the assump-
tion ω ∈ 1( )3 means [ω]+

− = 0 on . It is equivalent to saying thatω = ∇ × ∈
1( )3 as a distribution in , with regarded as an element in2( )3.

In the above theorem, system of equations is supposed to holdpiecewisely in ±,
and ,∇ , , and may have interfaces on =M∩ . Neverthless, it says that the
normal component · ω of vorticity ω gains the regularity in one rank if [ω]+

− = 0
holds on = ∩M for ω = ∇× ∈ 1( ±)3.

On the other hand, all components ofω gain the interface regularity, if , ,
are free from the interface, so that if ∈ 2( )3, ∈ 1( ), and ∈ (rot )
hold in (6), thenω ∈ 2

loc( )3 follows. In fact, in this case system (6) holds in ,
and hence

∇×∇ = 0 ∈ 2( ) and − ω = ∇× ∈ 2( )

follow in turn as distributions in . Then, the elliptic regularity guarantees forω ∈
1( )3 to be inω ∈ 2

loc( ) from the last inclusion.
The interface regularity of , the pressure of fluid, follows similarly from the

standard regularity. Namely, if ∈ 2( )3, ∈ 1( ), and ∈ (div ) satisfy (6),
then it follows that ∈ 2

loc( ). In fact, then we have

∇ = + and ∇ · = 0

in (as distributions again), and hence

= ∇ · ∈ 2( )

follows similarly. Thus, we obtain ∈ 2
loc( ) from the elliptic regularity.

Those standard regularities are valid even to (7), because∈ 2( )3 implies ∈
∞( )3 and ∂ /∂ ∈ 4( )3 for = 1, 2, 3 by Sobolev’s imbedding theorem, and

therefore, ( · ∇) ∈ 1( )3 follows from

∂

∂
( · ∇ ) =

∂

∂
· ∇ + · ∇ ∂

∂
∈ 2( )

In other words, even in (7), ∈ 2( ), ∈ 1( ), and ∈ (rot ) imply ∈
3
loc( )3 and ∈ 2( ), ∈ 1( ), and ∈ (div ) imply ∈ 2

loc( ).
We confirm again that, in contrast with those standard results, Theorem 2 assures

the interface regularity gain in one rank for· ω, only from the piecewise regularity
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of the data. This is actually the case even for the velocity itself as the following theo-
rem shows, where 3 extension of is taken to . See the remark after the following
theorem concerning the non-standard interface regularityfor .

Theorem 3. If M ⊂ R3 is 3 and ∈ 2( )3, ∈ 2( ±), and ∈
1( ±)3 satisfy (6) or (7), then it holds that · ∈ 3

loc( ).

The corresponding standard regularity to the above theoremis obvious, so that ∈
2( )3, ∈ 2( ), and ∈ 1( )3 imply ∈ 3

loc( ) in (6) or (7).
In this theorem, similarly to the previous one, (6) or (7) does not hold in as a

system, because ∈ 1( ) is not required in spite of ∈ 2( )3. However, if we
add ∈ (div ) in (6) to the assumptions of Theorem 3, then

(8)

[
∂

∂

]+

−
= 0 on

follows from

∇ = + in ±

becuase ∈ 2( )3 and · ∈ 3
loc( ) imply · ∈ 1

loc( ). The same fact holds
similarly to (7), as ( · ∇) ∈ 1( )3 holds by ∈ 2( )3. Later, we shall show
that (8) is valid under the assumptions of Theorem 2 and∈ (div ).

Relation (8) implies∇·(∇ ) ∈ 2( ) if ∇ ∈ 1( ±)3 is regarded as an element
in 2( )3. However, in constrast with the standard case described before Theorem 3,
this does not mean ∈ 2( ) because ∈ 2( ±) itself may have the interface,
and ∇ ∈ 2( )3 does not hold in when the distributional derivative is takento
∈ 2( ) in .

This paper is composed of three sections. In Section 2, a key lemma is provided.
Then, Theorems 1, 2, 3 are proven in Section 3. Those theoremshave component-wise
versions and Sections 4 are devoted to that topic. The final section is the concluding
remark.

2. Key lemma

In this section, we are concentrated on the Maxwell system (2) and show the fol-
lowing lemma. It is a fundamental tool for the proof of theorems.

Lemma 2.1. If ∈ 2( ±)3 and ∈ (rot ±) satisfy (2), then

∇( · )|± ∈ −1/2( ±)3
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is well-defined and it holds that

〈〈∇( · ) 〉〉+
− − 〈〈(∇ · ) 〉〉+

−

= 〈〈 ( · ∇) 〉〉+
− − 〈〈 × ∇× 〉〉+

− − 〈 · ∇ · 〉+
−(9)

for any ∈ ∞
0 ( )3, where 〈〈 〉〉+

− = 〈〈 〉〉
+
− 〈〈 〉〉

−
.

Proof. As is described in introduction, it follows from (2) and , ∈ 2( ±)3

that ∈ (rot ±), × |
±

∈ −1/2( ±)3, ∈ (div ±), and · |
±

∈
−1/2( ±). It also holds by (5) that ∈ 1

loc( ±)3.
Now, in use of ∈ (rot ±), we have

× |
±

= × (∇× )|
±
∈ −1/2( ±)3

Furthermore,∇ · = 0 in ± implies − = ∇× ∈ 2( ±)3, and hence

∂

∂
= ( · ∇) |

±
∈ −1/2( ±)3

is well-defined for ∈ 1
loc( ±)3 by Corollary I.2.6 of [1]. Thus, through the (distri-

butional) identity

(10) ( · ∇) + × (∇× ) = ∇( · ) − (∇ · )

valid for ∈ 1( ) and ∈ 2( )3, it follows that

∇( · )|
±
∈ −1/2( ±)3

Henceforth, we set

∇ ⊗∇ =
3∑

=1

∂

∂

∂

∂

for = ( 1 2 3) and = ( 1 2 3) ∈ ∞
0 ( )3. Then, it holds that

(11)
∫

∇ ⊗∇ = −〈〈( · ∇) 〉〉+
− − (( ))

In fact, because∓ is the outer unit normal vector to±, Green’s formula, described
in the previous section, guarantees that

(∇ ∇ )
±

= −
〈
∂

∂

〉

±

− ( )
±



932 T. KOBAYASHI, T. SUZUKI AND K. WATANABE

for = 1, 2, 3. This implies (11).
Here, equality (10) is applied to the first term of the right-hand side of (11). We

have

−〈〈( · ∇) 〉〉+
− = 〈〈 × (∇× ) 〉〉+

− − 〈〈∇( · ) 〉〉+
−

+ 〈〈(∇ · ) 〉〉+
−

Since−∇× (∇× ) = holds in ±, the Stokes formula now gives that

〈〈 × (∇× ) )〉〉+
−

= −
(
(∇× (∇× ) )

)
+
(
(∇× ∇× )

)

=
(
( )

)
+
(
(∇× ∇× )

)

Those relations are summarized as

〈〈(∇ · ) 〉〉+
− − 〈〈∇( · ) 〉〉+

−

=
∫

∇ ⊗∇ −
(
(∇× ∇× )

)
(12)

On the other hand, we have
∫

∇ ⊗∇ = −〈〈 ( · ∇) 〉〉+
− −

(
( )

)

similarly to (11). Combining this with (12), we obtain

〈〈∇( · ) 〉〉+
− − 〈〈(∇ · ) 〉〉+

−
= 〈〈 ( · ∇) 〉〉+

− +
(
( )

)
+
(
(∇× ∇× )

)
(13)

Now, we take the Helmholtz decomposition of . We put

(14) = 0 + ∇

where is a scalar field defined in satisfying

− = ∇ · in
∂

∂
= · (= 0) on ∂

First, we have ∈ ∞( ) and∇× 0 = ∇× ∈ ∞
0 ( )3. This implies that

(
(∇× ∇× )

)
=
(
(∇× ∇× 0)

)

On the other hand, we have =−∇ · ∈ ∞
0 ( ) and hence

(
( )

)
=
(
( 0 + ∇( ))

)
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=
(
( 0)

)
− (∇ · ) + 〈 · 〉+

−
=
(
( 0)

)
− 〈 · ∇ · 〉+

−

Finally, we have for =∇ × 0 ∈ ∞
0 ( )3 that 0 = −∇ × by ∇ · 0 = 0 in

and hence

(
( 0)

)
= −

(
( ∇× )

)

= −
(
(∇× )

)
− 〈〈 × 〉〉+

−
= −

(
(∇× ∇× 0)

)
− 〈〈 × ∇× 0〉〉+

−

Those relations are summarized as

(
( )

)
+
(
(∇× ∇× )

)

=
(
( 0)

)
+
(
(∇× ∇× 0)

)
− 〈 · ∇ · 〉+

−
= −〈〈 × ∇× 0〉〉+

− − 〈 · ∇ · 〉+
−

= −〈〈 × ∇× 〉〉+
− − 〈 · ∇ · 〉+

−

Therefore, (9) follows from (13). The proof is complete.

3. Proof of Theorems

First, we give the following.

Proof of Theorem 1. Since [ ]+
− = 0 on , we have by making use of (9) that

〈〈∇( · ) 〉〉+
− = 0

for any ∈ { ∞
0 ( )}3 by (9). This implies that

(15) [∇( · )]+
− = 0 on

On the other hand, we have ∈ 1
loc( )3 and − = ∇ × ∈ 2( ±). Hence

( · ) ∈ 2( ±) follows in ± as distributions. Combining this with (15), we get
( · ) ∈ 2( ) with · ∈ 1( ), and the elliptic regularity guarantees that· ∈
2
loc( ).

More precisely, because∇( · )|
±
∈ −1/2( ±)3 satisfies (15), Green’s formula

now gives that
∫

( · )ψ =
∫

( · ) ψ

for any ψ ∈ ∞
0 ( ). This means that for ∈ 2( ) defined by

=

{
( · )|

+
in +

( · )|
−

in −
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it follows that ( · ) = ∈ 2( ) in (as distributions). The proof is complete.

Now, we study the Stokes system (6);

− + ∇ =
∇ · = 0

}
in ±

We give the following.

Proof of Theorem 2 to (6). Recall that∈ 2( ±)3, ∇ ∈ 2( ±)3, and ∈
(rot ±) satisfy (6), and thatω = ∇× is in 1( )3. Then, we have

(16)
∇× ω =
∇ · ω = 0

}
in ±

for

= −∇ ∈ 2( ±)3

Here, we have∇× = ∇× ∈ 2( ±)3, and hence ∈ (rot ±) follows. Then,
Theorem 2 for (6) is a direct consequence of Theorem 1.

Under the assumption of Theorem 2, relation (16) holds withω ∈ 1( )3 and
= − ∇ ∈ (rot ±). As is noticed in introduction, this implies [· ]+

− = 0
on as a compatibility condition. Therefore,

[
∂ /∂

]+
− = 0 on is obtained if

∈ (div ) is imposed furthermore. Namely, relation (8) holds with the well-
definedness of∂ /∂ ∈ −1/2( ±) under the assumptions of Theorem 2 and∈

(div ). The same fact is true for (7), from the proof of this theorem to that case.

Proof of Theorem 3 to (6). Recall that∈ 2( )3, ∇ ∈ 1( ±)3, and ∈
1( ±)3 satisfy (6). Then, we have

(17)

∇×
(
∂

∂

)
=
∂ω

∂

∇ ·
(
∂

∂

)
= 0





in ±

for = 1, 2, 3, whereω = ∇× .
Now, we shall show that

(18)
∂ω

∂
∈ (rot ±)
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In fact, if this is the case, then Theorem 1 applied to (17) guarantees that ·
(∂ /∂ ) ∈ 2

loc( ), and then, the desired conclusion,· ∈ 3
loc( ) follows.

For this purpose, first, we note thatω = ∇ × ∈ 1( )3 holds by ∈ 2( )3,
which implies that∂ω/∂ ∈ 2( )3. On the other hand, from (6) we have

∇×
(
∂ω

∂

)
=

∂

∂
(∇× ω)

= − ∂

∂
=

∂

∂
( −∇ ) in ±

and hence∇ ×
(
∂ω/∂

)
∈ 2( ±)3 holds by ∈ 1( ±)3 and ∈ 2( ±). This

means (18), and thus the proof is complete.

As is noticed in the above proof, relation (17) holds for∈ 2( ) and ω =
∇ × ∈ 1( ). Then, we have∂ω/∂ ∈ (div ) similarly to ∈ (rot )
for (2), and

[
· ∂ω/∂

]+
− = 0 follows on together with the well-definedness of

· ∂ω/∂ ∈ −1/2( ±)3. Thus, if M is 1, ∈ 2( )3, and ω = ∇ × , then it
holds that [∇( · ω)]+

− = 0 on with ∇( · ω) ∈ −1/2( ±)3.
This section is concluded by the study of the Navier-Stokes system (7);

− + ( · ∇) + ∇ =
∇ · = 0

}
in ±

Proof of Theorem 2 to (7). System (7) is identified with (6) if is replaced by
− ( · ∇) . Therefore, we have only to show that the condition

(19) ≡ − ( · ∇) ∈ (rot ±)

follows from the assumption for this theorem to prove.
In fact, we have ∈ 2( ±)3 ⊂ ∞( ±)3 and hence ( · ∇) ∈ 2( ±)3 holds.

Furthermore,∂ /∂ ∈ 1( ±)3 ⊂ 4( ±)3 implies that

∂

∂

(
( · ∇)

)
=
∂

∂
· ∇ + · ∇ ∂

∂
∈ 2( ±)3

Those relations guarantee that (·∇) ∈ 1( ±)3, and (19) follows from the assump-
tion to .

Proof of Theorem 3 to (7). Similarly, we have only to show that

∂

∂

(
( · ∇)

)
∈ 2( ±)3

holds for = 1, 2, 3. However, this follows actually from the proof of the previous
theorem, and the proof is complete.
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4. Component-wise Regularity

In this section, we suppose thatM is flat.
First, we take the Maxwell system (2). As we have seen in Lemma2.1, in this

case ∈ 1( ±)3 and ∈ (rot ±) imply ∇( · ) ∈ −1/2( ±)3. Then, Theo-
rem 1 splits into component-wise versions described in the following theorem. In this
connection, we confirm that the traces to± of the first derivatives of any component
of are also well-defined in this system with∈ 1( ±)3 and ∈ (rot ±). In
fact, ( · ∇) |

±
∈ −1/2( ±)3 is well-defined by− = ∇ × ∈ 2( ±)3 and

∈ 1( ±)3 as is indicated in the proof of Lemma 2.1. Next,∈ 1( ±)3 im-
plies |

±
∈ 1/2( ±)3 and hence (×∇) |

±
∈ −1/2( ±)3 is also well-defined

through the local chart. Those traces are compatible to the ones taken in the proof of
Lemma 2.1 and that of the next theorem.

Theorem 4. Suppose that the interfaceM is flat, and that ∈ 1( ±)3

and ∈ (rot ±) satisfy (2). Then, if [ · ]+
− = 0 on it holds that

[( ×∇)( · )]+
− = 0 on . Similarly, if [ × ]+

− = 0 on we have
[( · ∇)( · )]+

− = 0 on .

Proof. In this case is a constant vector and we have

· ( · ∇) − × · ∇ × = · ∇ ( · )

for ∈ ∞
0 ( )3. Therefore, equality (9) is reduced to

(20) 〈〈∇ ( · ) 〉〉+
− = 〈〈 ∇ ( · )〉〉+

− − 〈 · ∇ · 〉+
−

Without loss of generality, we assumeM = {( 1 2 3) | 3 = 0} and =
(0 0 1). Then, if [ · ]+

− = 0 on we have

〈〈 ∇( · )〉〉+
− =

〈
1 ∂ 3

∂ 1

〉+

−
+

〈
2 ∂ 3

∂ 2

〉+

−

= −
〈
∂ 1

∂ 1
+
∂ 2

∂ 2

3

〉+

−
=

〈
∂ 3

∂ 3

3

〉+

−

Therefore, it follows from (20) that

〈
∂ 3

∂ 1

1

〉+

−
+

〈
∂ 3

∂ 2

2

〉+

−
= 0

for any 1 2 ∈ ∞
0 ( ). This implies

[
∂ 3/∂ 1

]+
− =

[
∂ 3/∂ 2

]+
− = 0, or equiva-

lently, [( ×∇)( · )]+
− = 0 on .
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If [ × ]+
− = 0 on , equality (20) is reduced to

〈〈∇( · ) 〉〉+
− = 〈〈 ( · ∇) 〉〉+

− − 〈 · ∇ · 〉+
−

=

〈
3 ∂ 3

∂ 3

〉+

−
−
〈

3 ∇ ·
〉+

−

= −
〈

3 ∂ 1

∂ 1
+
∂ 2

∂ 2

〉+

−

=

〈
∂ 3

∂ 1

1

〉+

−
+

〈
∂ 3

∂ 1

2

〉+

−

This implies
[
∂ 3/∂ 3

]+
− = 0, or equivalently, [( · ∇)( · )]+

− = 0 on . The proof
is complete.

Now, we proceed to the Stokes system (6). We continue to suppose thatM is
flat and take = (0 0 1) without loss of generality. The following propositions are
obtained by applying Theorem 4 to systems (17) with = 3 and (16), respectively, and
the traces to ± in their conclusions are well-defined in−1/2( ±)3 or −1/2( ±).

Proposition 4.1. Assume thatM is flat and system(6) holds with ( · ∇) ∈
1( ±)3, ( · ∇)ω ∈ 2( ±)3, ( · ∇) ∈ 1( ±), and ( · ∇) ∈ 2( ±)3 for

ω = ∇× . Then, the conditions

[( · ∇)( · )]+
− = 0 and [( · ∇)( × )]+

− = 0

imply

[( ×∇)( · ∇)( · )]+
− = 0 and

[
( · ∇)2( · )

]+
− = 0

respectively, on .

Proof. In fact, we have (6) and (17) as distributions in±. In the latter relation
with = 3, we have =∂ /∂ 3 ∈ 1( ±)3 and =∂ω/∂ 3 ∈ (rot ±) because

∇×
(
∂ω

∂ 3

)
=

∂

∂ 3
(− ) =

∂

∂ 3
( −∇ )

holds by the former. Then the assertion is obtained from the previous theorem.

Proposition 4.2. Assume thatM is flat and system(6) holds withω = ∇× ∈
1( ±)3 and ∈ (rot ±). Then, the conditions

[ · (∇× )]+
− = 0 and [ × (∇× )]+

− = 0
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imply

[( ×∇) ( · (∇× ))]+
− = 0 and [( · ∇) ( · (∇× ))]+

− = 0

respectively, on .

Proof. We have (16) with = − ∇ , and the assertion is obtained by Theo-
rem 4 and∇× = ∇× in ±.

Those propositions assure the extra reguality on the interface to the tangential
components of the solution, and in particular, the following theorems hold.

Theorem 5. Let M be flat, and assume that ∈ 2( ±)3, ∈ 1( ±), and
∈ 2( ±)3 satisfy the Stokes system(6). Assume, furthermore, that ( · ∇) ∈

1( ±), ∈ (rot ±), and ( · ∇) ∈ 2( ±) hold true. Then, if the conditions

[ × ]+
− = 0 and [( · ∇)( · )]+

− = [ · (∇× )]+
− = 0

are satisfied on , it holds that × | ∈ 5/2
loc ( )3.

Proof. In fact, all requirements of piecewise regularity inPropositions 4.1
and 4.2 are satisfied, and therefore, from the assumption across the interface regularity
we have

[( ×∇)( · ∇)( · )]+
− = [( ×∇) ( · (∇× ))]+

− = 0

on . Without loss of generality, we continue to take

M = {( 1 2 3) | 3 = 0} and = (0 0 1)

Let

=
∂ 1

∂ 1
+
∂ 2

∂ 2
and =

∂ 2

∂ 1
− ∂ 1

∂ 2

Then, we have =−∂ 3/∂ 3 = −( · ∇)( · ) and hence

∂

∂ 1

∂

∂ 2
∈ 1

loc( )

follows from [( ×∇)( · ∇)( · )]+
− = 0. On the other hand, we have =· (∇× )

and hence

∂

∂ 1

∂

∂ 2
∈ 1

loc( )
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follows from [( ×∇) ( · (∇× ))]+
− = 0. Those relations imply

∂

∂ 1
− ∂

∂ 2
=

(
∂2

∂ 1
2 +

∂2

∂ 2
2

)
1 ∈ 1

loc( )

and

∂

∂ 2
+
∂

∂ 1
=

(
∂2

∂ 1
2 +

∂2

∂ 2
2

)
2 ∈ 1

loc( )

Therefore,
(

∂2

∂ 1
2 +

∂2

∂ 2
2

)
( × )

∣∣∣∣ ∈ 1/2
loc ( )3

holds.
On the other hand, we have× | ∈ 1/2

loc ( )3 from the assumption, and hence

× | ∈ 5/2
loc ( )3 is obtained by the elliptic regularity. The proof is complete.

Theorem 6. Suppose, similarly, that M is flat, that ∈ 2( ±)3, ∈ 1( ±),
and ∈ 2( ±)3 satisfy the Stokes system(6), and that ( · ∇) ∈ 1( ±), ∈

(rot ±), and ( · ∇) ∈ 2( ±) hold true. Then, if the conditions

[( · ∇)( × )]+
− = [ × (∇× )]+

− = 0

are satisfied on , it holds that ( · ∇)( × )| ∈ 3/2
loc ( )3.

Proof. Under the same notations as in the proof of the previous theorem, we
have∂ /∂ 3, ∂ /∂ 3 ∈ 1

loc( ) in this case by Proposition 4.2 and Theorem 5. This
implies

∂

∂ 3

∣∣∣∣
∂

∂ 3

∣∣∣∣ ∈ 1/2
loc ( )

and hence
(

∂2

∂ 1∂ 3
− ∂2

∂ 2∂ 3

)∣∣∣∣ =

(
∂2

∂ 1
2 +

∂2

∂ 2
2

)
∂ 1

∂ 3

∣∣∣∣ ∈ −1/2
loc ( )

and
(

∂2

∂ 2∂ 3
− ∂2

∂ 1∂ 3

)∣∣∣∣ =

(
∂2

∂ 1
2 +

∂2

∂ 2
2

)
∂ 2

∂ 3

∣∣∣∣ ∈ −1/2
loc ( )

follows. On the other hand, we have

∂ 1

∂ 3

∣∣∣∣
∂ 2

∂ 3

∣∣∣∣ ∈ 1/2
loc ( )
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by [( · ∇)( × )]+
− = 0 on , and hence (· ∇)( × )| ∈ 3/2

loc ( )3 follows from
the elliptic regularity. The proof is complete.

The Navier-Stokes system (7) is treated similarly. Actually, this system is reduced
to (6) with replaced by − ( ·∇) . Then, the nonlinear term (·∇) is in 1( ±)
in the case of ∈ 2( ±)3. Thus, we get the following theorem.

Theorem 7. Theorems 5and 6 hold similarly even to system(7).

Now, we shall examine the assumptions and conclusions of Theorems 5 and 6.
First, assumptions on the piecewise regularity of those theorems are summarized as

∈ 1( ±) ( · ∇) ∈ 1( ±)(21)

∈ (rot ±) ( · ∇) ∈ 2( ±)3

and

(22) ∈ 2( ±)3

On the other hand, the assumptions across interface of Theorems 5 and 6 are

(23)
[

1
]+
− =

[
2
]+
− = 0

[
∂ 3

∂ 3

]+

−
= 0

[
∂ 2

∂ 1
− ∂ 1

∂ 2

]+

−
= 0

and
[
∂ 1

∂ 3

]+

−
=

[
∂ 2

∂ 3

]+

−
= 0

[
∂ 3

∂ 2
− ∂ 2

∂ 3

]+

−
=

[
∂ 1

∂ 3
− ∂ 3

∂ 1

]+

−
= 0

respectively. The latter means that

(24)

[
∂ 2

∂ 3

]+

−
=

[
∂ 1

∂ 3

]+

−
= 0

[
∂ 3

∂ 2

]+

−
=

[
∂ 3

∂ 1

]+

−
= 0

The second relations of (23) and (24) are summarized as· ∈ 2( ). Then, the first
relation of (23) means ∈ 1( )3, and the rest are equivalent toω = ∇× ∈ 1( )3

and ( · ∇) ∈ 1( )3. Namely, we have

(25) ∈ 1( )3 ω = ∇× ∈ 1( )3

and

(26) · ∈ 2( ) ( · ∇) ∈ 1( )3
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as the regularity assumption across the interface. However, (25) implies ∈ 2
loc( ),

because∇ · = 0 and− = ∇ × ω ∈ 2( )3 holds in . Thus, we replace those
assumptions on the interface regularity, (25) and (26), simply by ∈ 2( )3.

On the other hand, the conclusions of Theorems 5, 6 assure forψ = 1, 2 that

∂2ψ

∂ 2
1

∂2ψ

∂ 1∂ 2

∂2ψ

∂ 2
2

∂2ψ

∂ 3∂ 1

∂2ψ

∂ 3∂ 2
∈ 1

loc( )

Thus, we obtain the following.

Theorem 8. Let the interfaceM be flat and ∈ 2( )3, ∈ 1( ±),
( · ∇) ∈ 1( ±), ∈ (rot ±), and ( · ∇) ∈ 2( ±)3 hold in the Stokes or
the Navier-Stokes system(6), (7), and let ψ be any tangential component of . Then,(
∂ψ/∂

)2
∣∣∣

±

∈ −1/2( ±) is well-defined, and ψ belongs to 3
loc( ) if and only if

(27)

[(
∂

∂

)2

ψ

]+

−
= 0

holds on .

Proof. We shall describe only on the Stokes system (6), because the Navier-
Stokes system (7) is treated similarly. In fact, we have (17)with = 3,

∇×
(
∂

∂ 3

)
=
∂ω

∂ 3
and ∇ ·

(
∂

∂ 3

)
= 0 in

with ∂ /∂ 3 ∈ 1( )3, ∂ω/∂ 3 ∈ 2( )3, and

(28) ∇×
(
∂ω

∂ 3

)
= −

(
∂

∂ 3

)
=

∂

∂ 3
( −∇ ) ∈ 2( ±)3

(as distributions) in ±. This implies ∂ω/∂ 3 ∈ 2(rot ±) and therefore,
∇(∂ /∂ 3) ∈ −1/2( ±)3 is well-defined for = 1, 2, 3, as is noticed at the be-
gining of §4.

Then, the assumption (27) implies− (∂ψ/∂ 3) ∈ 2( ) as distributions in
with ∂ψ/∂ 3 ∈ 1( )3, because− (∂ψ/∂ 3) ∈ 2( ±) holds in ± by (28). There-
fore, ψ ∈ 3

loc( ) follows from the elliptic regularity. The only if part is obvious, and
the proof is complete.

Theorem 3 guarantees the interface regularity of the normalcomponent of . Be-
cause all assumptions of Theorems 3 and 8 are satisfied if∈ 2( )3, ∈ 2( ±),
and ∈ 1( ±)3, we get the following.
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Theorem 9. If the interfaceM is flat and ∈ 2( )3, ∈ 2( ±), ∈
1( ±)3 satisfy the Stokes or the Navier-Stokes system(6), (7), then 3( ) interface

of can occur only in the normal direction of tangential components. Namely, any
second derivative of any component of is well-defined as an element in −1/2( ±),
and

(29)

[(
∂

∂

)2

( × )

]+

−
= 0 on

implies ∈ 3
loc( )3.

The assumptions of Theorem 9 holds if∈ 2( )3∩ 3( ±)3 and ∈ 2( ±).
Actually, if ∈ 2( )3 ∩ 3( ±)3 satisfies∇ · = 0 in , then the Stokes sys-
tem (6) arises for = 0 and =− . Then, we can apply Theorem 9 and obtain the
following.

Theorem 10. If M is flat and ∈ 2( )3 ∩ 3( ±)3 satisfies∇ · = 0 in ,
then the condition(29) implies ∈ 3( ).

In this connection, it should be noted that the assumptions of Theorems 8 or 9
without (27) or (29) does not induce even the piecewise regularity indicated as ∈

3( ±)3. In fact, they assure only ∈ 2( )3 and − ∈ 1( ±)3, which guar-
antees only ∈ 3

loc( ±)3. Thus, the 3 regularity up to ± of is missed with-
out (29).

5. Concluding Remarks

Generizations of Theorems 8, 9, and 10 to the case of the non-flat interface are
quite inetersting. Actually, they will be regarded as a counter part or the natural ex-
tension of Theorem 3 and will be studied in the forthcoming paper.
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