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Abstract

      A relativistic membrane is quantized according to the 

Batalin-Fradkin-Vilkovisky method, and BRST invariant path 

integral formulas for the membrane are given both in a covariant 

gauge and in a time-like gauge. The Regge trajectory (spin-mass 

relation) for quantum states of the membrane is studied in a 

semiclassical approximation by using the path integral formula. 

It is confirmed that spins of massless states are exactly 

calculable in a semiclassical approximation, and then 

investigated whether massless states are able to be generated in 

the membrane model. The analysis shows that no massless state is 

generated.-° in the spectrum if the space-time dimensions are 

integer. The result implies that, unlike the string, the 

membrane model cannot be a unification theory of all 

interactions.
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§1 Introduction 

      The string theory has a lot of interesting features when 

observed from a theoretical point of view. Various particle 

states including gauge bosons and a graviton are created 

dynamically [1]. Renormalizability of the string theory implies 

the possibility of constructing a renormalizable quantum 

gravitation theory, which no local theory ever has achieved [2]. 

      Consistency conditions of the string theory impose many 

restrictions an models. The space-time dimension is allowed to be 

26 for the bosonic string [3] and 10 for the supersymmetric one 

[4]. They are called the critical dimensions. The anomalyless 

condition is also crucial. The possible gauge symmetries without 

anomalies of superstring theories are SO(32) and EsxE8 [5]. When 

we study string theories, however, we cannot heip but thinking 

that some miracles piay the role in the anomaly canceilations and 

the finiteness of theory in the critical dimensions [6]. 

      Among many of possible extended objects, the string is 

merely an example. It is then natural for us to ask whether 

other extended object models such as a membrane, an elastic ball, 

etc. might share the miraculous properties with the string and 

could be a candidate for the unifying theory of all interactions. 

This is our motivation of studying the quantum theory of a 

membrane. 

     Historically although quite a many of papers an relativistic 

quantum theories of extended objects have been published, only 

few properties are known. This is because of high nonlinearity 

and complicated gauge symmetries of the theories. 

     The objects of this work are first to give a well defined 
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foundation to the quantization of a nonlinear membrane theory and 

then to study whether a membrane theory can provide massless 

particles at any critical dimensions. _ 

      The latter problem is studied by inspecting the spin-mass 

relation (the Regge trajectory) of quantum states of extended 

objects. The relation determines the spin of massless particles 

if they exist. The massless particles play the main role in 

phenomenology of unification theory of interactions. The massive 

particles make less effect to the low energy phenomenology, since 

they are as heavy as the Planck mass in the unification theory . 

Thus the relation is crucial to examine whether it is possible to 

build a unification theory based an these models. 

      There are various ways to determine the critical dimension 

in the string theory. One of them is as follows. When we use 

the quantization procedure in which the Lorentz symmetry is not 

manifest, the critical dimension is determined by the restoration 

condition of this symmetry [7]. The necessary condition to 

restore the Lorentz symmetry is satisfied when the angular 

momentum quantum number of particle states reproduces the 

spectrum of an irreducible representation of the Lorentz group. 

Hence the spin-mass relation provides a necessary condition for 

the critical dimension. 

      In extended object models, a simple dimensional analysis 

provides a form of the spin-mass relation. The form of relation 

tells us that the spin of massless particle states can be 

obtained exactly by a semiclassical approximation as will be 

discussed in our text. This calculation can be performed by using
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the technique explored by Dashen, Hasslacher and Neveu [8]: The 

effects of quantum fluctuations are estimated by the path 

integration over the quantum fluctuations around classical 

solutions. 

      In order to get the spin-mass relation of the extended 

object, we must quantize a nonlinear model which has 

reparametrization invariance of the world manifold swept out by 

the object. The gauge symmetry of the reparametrization 

invariance is manifested as the algebra of the first class 

constraints associated with the invariance in canonical 

formalism. If the algebra is not closed, the ordinary covariant 

approach in Lagrange formalism fails in the quantum theory [9]. 

The extended object models have non-ciosure algebra when the 

freedom of the objects is strictly larger than one [10], e.g., 

the membrane etc.. Thus we will use the Batalin-Fradkin-

Vilkovisky (BFV) method [11] to quantize the extended object 

model since this method overcomes the difficulty. It is 

applicable to Lagrangians which are not quadratic in the 

velocity. It also applies to general gauge fixing terms. 

      We quantize a simple membrane model according to the BFV 

method, justify a: path integral measure in a semiclassical 

method, and demonstrate that the membrane cannot generate 

massless particles if space-time dimensions are restricted within 

integers [12]. Although the result is negative, it should be 

stressed that (i) this is a new result, and so far only a 

concrete property deduced from a quantum theory of membrane, (ii) 

our method is applicable to any other extended object, and (iii) 

the conclusion is useful for the study of massive states if the 
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model is applied to other than unification theory. The 

justification of path integral measure we use is also a new 

development of this work. 

      In §2, general aspects of the spin-mass relation of the 

extended object will be studied. In §3, we briefly summarize the 

BFV quantization method, and the gauge fixed effective actions 

of the membrane are obtained both in a covariant gauge and in a 

time-like gauge. In §4, the intercept of the Regge trajectory of 

the membrane is calculated, and we obtain the relation between 

the spin of massless states and the space-time dimension. 

Conclusions and discussions are presented in §5. The appendix A 

is provided for the definition of the higher-order structure 

function of the non-closed algebra. In the appendix B," we will 

r calculate the energy spectra of the membrane in the time-like 

gauge. The appendix C is devoted to the analytic continuation of 

generalized zeta furictions which appear in the calculation of 

zero point energy of the membrane.
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§2 The spin-mass relation of extended objects 

      The n-dimensional extended object is described by the 

following Nambu-Goto type action 

     Sn = - 2nt Jddr n6[ det aaT"aß X] , (2.1) 
or by the action corresponding to the Polyakov action [13] of a 

string 

     Sn= - 4 n Idnc dT [ 1-n + gaßaaX'"aß X~ ] . (2.2) 
where KFZ is a tension parameter of the extended object. One can 

find the equivalence between Sn and Sn by substituting gaß for a 

solution ga/3 which is obtained from the equation of motion of 

aSn/C7gaß = 0. Eq. (2.1) shows that the classical motion of the 

extended object is realized to minimize the volume of the world 

manifold. This is a natural extension from that of a particle 

action which is proportional to the length of the world line. 

      Three dimensionful parameters appear in this system. One of 

these is the tension parameter Kn which has dimension [ML1-nT 1] 

where P1, L and T represent mass, length and time, respectively. 

And the others are light velocity and the Planck constant fi. 

      In such a system, one can find easily the following relation 

between the angular momentum J and the mass M by the dimensional 

analysis, 

                    _1 n+l 

     J = A(K
n) n (CM) n + Bb , (2.3) 

where A and B are dimensionless numbers. In the classical theory 

only first term of the r.h.s. of Eq. (2.3) survives. The second 

                                               - 5 -



term appears in the quantum theory. When M is set to be zero , 

this second term is identified with the spin of massless particle 

states. It should be noticed here that the second term B is 

independent of the tension parameter K
y, if no extra dimensionful 

parameter is introduced to the System. In this case, the 

dimensionless number B can be calculated in K
n -3 co limit without 

loss of generality, so that the calculation in the semiclassical 

approximation where Kll/ii -3 co becomes exact. So we can obtain the 

precise value of the spin as far as massless particle states are 

concerned. This observation is a crucial point in the present 

approach. 

      The relation of Eq. (2.3) is obtained by studying the 

resonance poles which appear in matrix elements of the propagator 

with angular momentum j. This calculation for the membrane will 

be provided in §4.3. 

      The above method to get the spin-mass relation relies an the 

assumption that the S matrix elements are well defined in the 

quantum system defined by Eq. (2.1) or Eq. (2.2). However, the 

action Sn or Sn is in general unrenormalizable as n+1 dimensional 

field theory for nZ2. If we regard the action of Eq. (2.1) as 

the effective one, there should be a physical cut-off parameter A 

and the ultraviolet divergence should be regularized by A. Then, 

the quantum calculation becomes well defined. In §4, it will be 

found that the calculation of B in Eq. (2.3) is equivalent to the 

calculation of the Casimir energy of vibration modes. The Casimir 

energy is shown to be independent of the cut-off A in the case of 

the string in Ref. [14]. So we assume that this is true in the
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case nZ2 also. As will be shown in 

membrane theory, there exists 

regularization.

the Appendix C, 

  a Cut-Off

even in the 

independent
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 §3 Quantization of a membrane 

 §3.1 Methods of quantization for gauge theories 

      The action of Eq. (2.1) or Eq. (2.2) possesses the repara -

metrization invariance of the coordinate an the world manifold . 

When quantizing such a gauge theory , we usually use the method 

based an the Hamilton formalism or the "covariant approach" in 

the Lagrange formalism: The procedure of the former is 

straightforward if the gauge fixing is restricted to the 

canonical one. "Canonical" gauge means that the gauge fixing 

function does not involve any time derivatives of the canonical 

variables, while the latter method is convenient to take 

covariant gauge fixing. 

      Both methods are equivalent as far as the gauge algebra is 

closed. The Lagrangian method, however, fails if the algebra is 

not closed [9]. If one uses the covariant approach , auxiliary 

fields must be introduced to close the algebra [15] . However, 

there is no systematic way to find these auxiliary fields . Hence 

the covariant approach is not general. 

      The covariant quantization of the string has been 

successfully performed by using the covariant approach in 

Ref. [12] since the algebra of the reparametrization is closed 

only when zz=1. For n>_2, the algebra is no longer closed . 

      In this paper to quantize the membrane we adopt a new method 

explored by Batalin, Fradkin and Vilkovisky [11]. This method 

realizes the BRST transformation in the framework of the Hamilton 

formälism and provides the BRST invariant partition function 

independent of the gauge fixing. The following subsection is 

devoted to reviewing the BFV method. 
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§3.2 The Batalin-Fradkin-Vilkovisky method 

      Let us briefly review the Dirac canonical formalism [17]. We 

define the Hamiltonian from the Lagrangian L(q1, ... ' qN; q1' ... ' gN) 

as 

      H(g1,...,gN;p1,...,pN) pig2 - L , (3.2.1) 

where 

         8L 
      pi = aL (gl,...)gN;ql,...,qN)) for i=1,' ',N (3.2.2) 

         6q 

Eq. (3.2.2) gives the transformation from (g1~~gN'g1~~gN) 

to the phase space (q1 ' " . g qN; Pl 9 ... I PN) • The inverse 

transformation does not always exist. If the transformation of 

Eq. (3.2.2) is degenerate, i.e., 

2 
      det 8 L = 0 , (3.2.3)            ägZäq~l 

one says that L(q;q) is the singular Lagrangian. 

      In the case of the singular Lagrangian, the trajectory of 

the motion is embedded into a subspace of the phase space. If 

the dimension of the subspace is 2N-k, there are independent 

constraints 

      95A(q,P)=0. (A=1,...,k) (3.2.4) 

The constraints are divided into two classes. To define the 

classes we introduce the following kxk matrix 

     GAB = {96A,95B1 (3.2.5) 

where { , } denotes the Poisson bracket. If the rank of GAB is 
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 r, there are r constraints { 
a} (a=1,...,r) of {95A} (A=1,...,k) 

corresponding to r nonzero eigenvalue of G4B. These s are 

called the second class constraints. The others {
a} of {OA} are 

called the first class constraints. 

      One can solve the second constraints for any observables 

F(q,p) by using the Lagrange multiplier method . Let us define the 

new observable F* as 

      F* = F + Lia -95a + xaja ,                                                                      (3.2.6) 

wherea refers a constraint that is associated with zero 

eigenvalue of Gaß. From the consistency condition, 

      {F*,95A} = 0, (A=1,...,k) (3.2.7) 

an the constraint hypersurfaces we see that 

      ,ua = G 1aß {F,-                          ß}, (a,ß=1,...,r) (3.2.8) 

where Gaß is a rxr nondegenerate submatrix of GAB. However , Aa's 

are arbitrary. This arbitrariness of . 's comes from the gauge 

symmetry of the action. From now an we assume that all the 

constraints are the first class, i.e., r=0, since the second 

class constraints can be always eliminated by determining ,u's as 

(3.2.8). 

      The Poisson bracket between the first class constraints 

becomes a linear combination of the first dass constraints, 

i.e., 

                               (a,ß,Y=1,...,k) (3.2.9) 

where Caß/ is the structure function. The infinitesimal 
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transformation generated by Vi
a, 

     BEF = Ea{F,ja}, (3.2.10) 

is strongly open when Caß7 involves the canonical variables while 

it is weakly closed. Indeed we see that 

     6E6 F - 61766F = {F, Eß17a { ja, ß} 1          77 
(3.2.11) 

                      Eßr7aCaßy{F,ja} + Eßr7a{F,Caßy}y 

where the second term of the r.h.s. breaks the strong closure of 

the algebra. Such open algebra generally generates a quasigroup 

[18]. If Caßy's are constants, the algebra is strongly closed 

and a certain Lie group is generated as in the case of the Yang-

Mills gauge theories. 

      For the developments which follow, let us extend the phase 

space (g1,pi). The Hamiltonian H*, defined by Eq. (3.2.6) where 

H is substituted for F, includes arbitrary variables Aa. We 

regard this Lagrange multiplier 2a as the canonical variables, 

and define 7ra as the canonical conjugate momentum of ),a. The 

arbitrariness of ,1,a implies the gauge transformation ,1a Aa + 

Ea. This gauge transformation is generated by the new first 

class constraints 

      7ra = 0, ( a=1,...,k) (3.2.12) 

The first class constraints {¢a} and {?ra} will collectively be 

denoted by Ga (a=1,...,2k). 

      The extension of the phase space is completed by introducing 

the ghost variables 17a and its canonical conjugate momenta 9a, 
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(a=1.... 2k), where 17a and ga are Grassmann numbers. Thus the 

fully extended phase space is spanned by { qi , pi ; ,la, 7ta;17a,.ga} . 

      Let us return to the problem of how to treat the open 

algebra of the first class constraints Ga. To understand the 

non-closure property of the algebra, we introduce series of 

structure functions ( U) b1- ' ' bn                                a
l.. 'an+1 (n=0,1,2,"') associated 

with the original structure functions CabC. While the definition 
n 

of U b1. 'bn is presented in the Appendix A, here we         a
1 ... an+l (

n) 
briefly mention the relation between U Q1 " ''ßn's and the 

                                                              a1...an+1 

non-singular transformation Mab of the constraints Ga onto new 

constraints Fa such that 

      Fa = Nab Gb' (3.2.13) 

      {Fa,Fb} = 0, (3.2.14) 

where we note that the hypersurfaces determined by F
a=O are 

isomorphic to those determined by Ga =O, and the algebra 

generated by Fa's is abelian, therefore, strongly closed. 

      The existence of such a transformation Mab is due to the 

Darboux's theorem to the System of total differential equations, 

      dGa = 0. (a=1, "'2k) (3.2.15) 

The theorem tells us that there exists a local coordinate { za } 

where Eq. (3.2.15) is equivalent to 

      dza = 0. (a=1, "'2k) (3.2.16) 

The Integration of Eq. (3.2.16) provides the new constraints,
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       Fa = za - ga(za') = 0 , (3.2.17) 

                            (a=1, "'2k; a'=2k+1, ''2N) 

 where ga is an arbitrary function of za'. Eq. (3.2.17) determines 

 the hypersurfaces isomorphic to those determined by G
a=O. 

       The Poisson brackets among Fa's should be proportional to 

 Fa's, since Fa's are first class constraints. On the other hand, 

 Fa's are in za (a=1," '2k), so that the brackets cannot involve 

za. Therefore they must vanish identically. 

      The transformation Mab of Eq. (3.2.13) is determined by 

differential equations which is obtained by substituting MabGb 

for Fa in Eq. (3.2.14). The existence theorem of Fa teils us 

that these differential equations are integrable. This-

integrability is proved by using the Jacobi identity of the 

Poisson brackets among Ga's and its associated identities, which 

appear in the Appendix A as the definitions of 

(
U) a

1 " ' an+1 b1"'bn's ( Eq. (A.8), (A.11), (A.12) and (A.14) ). 

n Accordingly the existence of U a
1 ... an+1 b1" 'bn is closely 

related to the existence of transformation of the constraints Ga 

onto Fa. 

       If all the structure functions of order strictly greater 

                    ) b1 *** bn = 0 for n> s
, one says that a set  than s, i.e., ( U a1 ... a

n+1 

of constraints and of the associated structure functions is of 

rank s. The rank of a set of constraints can be changed since we 

can substitute constraints Ka(Ga) such as Ka(0)=0 for Ga. Indeed 

we have seen above that Ga's can always be transformed to Fa's 

such that {Fa,Fb}=0 and the rank of Fa's is zero. 

       The reason why there are classes of abelian, (closed) non-
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abelian and open gauge algebra in field theories is that natural 

basis of the fields are determined by the propositions of 

locality, manifest covariance, etc., to the theories. Generally 

the transformation of Eq. (3.2.14) becomes nonlocal. 

      We are in a position to introduce the BRST operator based an 

the Hamilton formalism. When the set of constraints is of rank 

s, we define the BRST operator SZ such that 

~           Z a1 ... ran+1 (n) b       S2 U an+1 a1 1••.bn gb ...gb (3.2.18)          n=0 n 1

(n) where U is the nth-order structure function defined in the 

Appendix A. This expression has been decided by the following 

two conditions. First, S2 should generate the transformation 

which is the gauge transformation with the odd Grassmann parity 

parameter 17a instead of the even parity gauge parameter Ea, in 

the zeroth order approximation of 9a, i.e., 

      Q 19 
a =0 = 1IaGa• (3.2.19) 

Secondly, Q should be nilpotent, i.e., 

      {~,~} = 0. (3.2.20) 

      The BRST symmetry was first discovered in the gauge fixed 

action of the quantum Yang-Mills field theory [19]. This 

symmetry plays the main role when one deals the theory in the 

covariant manner. The construction of the covariant string field 

theory relies strictly upon the BRST symmetry [20]. We will find 

that the BFV method also relies upon the BRS symmetry generated 

by Q. 
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     The BRST invariant Hamiltonian H(i
nv) is decided in the 

extended phase space by imposing 

     i) H(inv) Iy
a=p = H, (3.2.21) 

     ii) {H(inv)'Q} = 0, (3.2.22) 

where H is the naive Hamiltonian defined by Eq. (3.2.1). 

      Now we present the quantization method provided by Batalin, 

Fradkin and Vilkovisky. They proved the following theorem'[11]: 

Theorem (3.2.1): If one defines that 

     Z = 10cpr@A n@egexp(iSeff) (3.2.23) 

     Seff = Jdt [4-P + £.7r - r -9 - Heff ] 1 (3.2.24 ) 

     Heff = H(inv) - {x,Q}, (3.2.25) 

then the partition function Z of Eq. (3.2.23) is invariant under 

the BRST transformations and independent of the gauge fixing 

function 'Y'. The proof of this theorem is rather easy. First, 

one Sees that the functional measure of Eq. (3.2.23) and the Seff 

except the term involving Ir are BRST invariant because the BRST 

transformation is realized as a canonical transformation 

generated by Q in the extended phase space. The nilpotency of Q 

keeps the IY part of the Seff invariant for the BRST 

transformation. For the transformation ,y' -3 'i y' +, the change of 

Heff is absorbed by the transformation of the integration 

variables such that 

     aZA = i{~,zA} (3.2.26) 
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where zA stands for the canonical variables which appear in the 

path integral of Eq. (3.2.23). 

      Finally one can quantize the theories with the gauge freedom 

by using the partition function Z defined by Eq . (3.2.23). In the 

following subsection, we will use this BFV method to quantize the 

membrane. Seff of Eq. (3.2.24) will be obtained for the membrane 

in a, covariant gauge and in a time-like gauge. The W.K.B. 

approximation will be also discussed in the Gase of time-like 

gauge.

§3.3 Quantization of a membrane 

      We apply the canonical formalism mentioned in the above 

subsection to a relativistic membrane. The action of a membrane 

is described by Eq. (2.1) or (2.2) where n=2. The canonical 

conjugate momentum to X'-£ is as follows; 

    ü 22 (g00 ü + g0iai ü) , (3.3.1) 

where 

     Saß = aax' aßx~ , (3.3.2 ) 

     g = det gaß (3.3.3) 

and gaß is the inverse matrix of gaß. (Here we use the indices 

(a,ß) for (0,1,2) and (i,j) for (1,2).) One finds that there are 

following three constraints, 

    je0 = K7r Pep/ + 27, 9 = 0, (3.3.4) 
                   2 2
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       i = P,19 X~ = 0, ( i=1,2) (3.3.5) 

where gij corresponds to the space part submatrix of g
«ß, and g 

is the determinant of gib. The classical Hamiltonian H defined 

by Eq. (3.2.1) is zero and has thus strongly vanishing brackets 

with the constraints. 

      9, and Xi (i=1,2) constitute the first class constraints. 

The algebra of the constraints is given by 

                                                                  (3.3.6) 
                           + 9(6')g2J(6')~Ci] 8 a(6,6'). 

     {~Co(6),i(6')} _ X0(6) + ~(6')~ aia(6,6') (3.3.7) 

     {Ci(6), ~(6')} _ ~(6)aia(6,6') + ~Ci(6)858(ß,cs'), (3.3.8) 

where ai represents the partial differentiation with respect to 

6Z. This algebra reflects the gauge group, namely, the 

diffeomorphism group of the world manifold swept out by the 

membrane. The Same group appears in quantum gravity theory, 

where K. and Xi's are called "super Hamiltonian" and "super 

momentum", respectively. 

      From Eq. (3.3.6), (3.3.7) and (3.3.8), the structure 

functions are given by 

     CO„0, L = 9(6)9ZJ(6) C?~C7(6,6')C7(6,6") 
                                                                  (3.3.9) 

      Co„ i,0 = aic7(6,6')Ü(6,6")                                                                   (3.3.10) 

      Ci„j, = t7k aic7(6,6')c7(6,~") - 6 kc7(6,6')a~c7(6,6") , (3.3. 11) 
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and the others vanish. Here a, a' and a" denote the indices (0
,1 

and 2) of vectors fixed to the position of 6 , a' and e°°P, 

respectively. From Eq. (3.3.9), we see that this algebra is not 

closed. Explicit calculation shows that the second order 

structure functions are as follows; 

    (2) ,      u 0,027 = - K2 n 9(6)9~k(6)9~~(6) (3.3.12) 
                           x 5Gy,6') 16(6,6)a

,0(6,1,)öß6(ör1Z") 1A , 

and the other components are equal to zero . All structure 

functions of order greater than two vanish . Hence the set of 

constraints is of rank two and the gauge algebra is open in the 

membrane theory, while the string theory has a set of constraints 

of rank one and closed gauge algebra that is similar similar to 

Eq. (3.3.6), (3.3.7) and (3.3.8) where structure functions C
af7 s 

according to Eq. (3.3.9), (3.3.10) and (3 .3.11) are independent 

of the canonical variables. 

      Our next task is to determine the fermionic generator S2 of 

the BRST transformation. In the present case, the extended phase 

space is spanned by {XU,P
IU ;;La,7ra;r7a,gal as is defined in §3.2. 

Here we split the ghosts as follows; 

      17a = (-iga, Ca), (3 .3.12) 

     ga = (iCa, -Pa)• (3 .3.13) 

The variables Ca, Ca are real and are conjugate to P
a, ga. 

According to the general expansion of Q provided by Eq . (3.2.18), 

we obtain
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     Q = Jc2o [ -i 7ra + caxa + ssk£COCO,2Pb + CiCk, jpk 
                                                                (3.3.14) 

                + COCt, i-~50 - C9, iCt350 + K?r 9'9ikg1kCO,QCO,k~j~i ] . 

2 The quantization of the membrane is performed by using the 

partition function defined by Eq. (3.2.23), (3.2.24) and 

(3.2.25). In the following we study details of two cases; one a 

"covariant gauge" and the other a "ti
me-like gauge". 

      First we choose the form of IP as 

      T = i Caxa + -7~axa . (3.3.15 ) 

Let us take x as 

      xO = 1(`.0 - 1) , (3.3.16) 

      xt = (3.3.17) 

Taking Eq. (3.3.14) into account, one then computes {q',Q} 

and obtains 

                   7raxa - `laa - Aaa -Ca ya 
                                                                  (3.3.18) 

               + Bit j i - i a -.i0, iCiCO - ~tCD, iCD , 

where 

     AO = ai(,.OCZ) , (3.3.19) 

     Ah = ai(AiCk) - 99kQa~(2.OCO) ' (3.3.20) 

     Bji = 67rggikgj9, (ÄOCO,9,CO,k + 2A0, [JO,k]Co) . (3.3.21) 
            K2 

If one makes the change of variables 
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      7ra, = ß7ra , Ca, _ 

whose super-Jacobian 

finds

ßCa' 

is one and takes the limit ß-30 ,

(3.3.22) 

then one

     Seff = fdTd26 1,4p 14 - Xa7ra - ga,1a + CkCpBk~ - i Ca (Aa - Ca) 
                                                                (3.3.23) 

                   - ip090 + -i5kP9Bk91 + Q~k B 1 h 

The integral over 7r
a gives S(Xa), which fixes the value of ._ja. 

The Integrals over P
P, -Oa anda are Gaussian and are easily 

performed. We obtain

     Z = IOXK3cao-üa exp ( ise f f ) , (3.3.24 ) 

    Seff = f dzd26 [ - 2 XM + 47r g (3.3.25 ) 
                 + 1-ü0 (CO - ci, i ) +i;k(Ck - ggkfLC.O,,) 

                   4~ 99 i k g 7 9,-ü «ü C" Z CO k] 

The firnt four terms have the saure form of the covariant gauge 

action of a string provided in Ref. [16]. The last term is 

characteristic to the non-closed constraints algebra . This four 

ghosts interaction term does not fall within the scope of the 

Faddeev-Popov method. 

      For the practical purpose of calculation of Z, the "time-

like gauge" will also be investigated. Instead of Eq . (3.3.16) 

and (3.3.17), let us adopt
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      x0 = - (X° - r) , (3.3.26) 

      xz = - (X - xz) , (i=1,2) (3.3.27) 

where xZ is a function of (r,6). The computation of S
eff defined 

in Eq. (3.2.24) is similar to the Gase of covariant gauge . We make 

the variables change of Eq. (3.3.22) and take the limit ß-30 . The 

integrals over Pu, c'a, Ca, $' xi become Gaussian and are 

performed easily. The integration over 7ra gives 6(xa). Then we 

obtain 

                           _D 1 
    Z = J~IBAO II8(xa) (A.0)29 2 

                   a (3.3.28) 

          x exp[ - JdTd2c [' 
                                   4 7c x.09 + 42 (~1.0)-199-1) ]. 

If we evaluate the r.h.s. of Eq. (3.3.28) in the W.K.B . 

approximation provided K2 is large, the integration over 2-1 can be 

performed by stationary phase and we get 

    Z cc J'xHa(xa) 'exp [ i2~ fdd2 r 6 7 . (3.3.29 ) 
       WKB

As a result we have proven that, in the large stress constant 

limit (K2 -3 Co)' the usual Lagrangian form of the simple path 

integral measure as shown in (3.3.29) works for the membrane 

model in the time-like gauge. As we have argued in §2, the 

intercept of the Regge trajectory B is independent of K2, hence 

the value obtained in the W.K.B. method should give an exact 

value for B. In the next section we will exploit (3.3.29) to 

calculate the spin-mass relation for the membrane. 
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 §4 Calculation of spin-mass relation 

 §4.1 Spin-mass relation of a membrane 

       We will read the spin-mass relation from resonance poles in 

the following propagator, 

     <jlElHlj> = Tr[ 6(j-J) E.1H 1 

             ~d2~6 exp(i08j) DE(A6) 

     DE(06) =JdT exp(iET) D( T,06) , (4.1.2) 
0 and 

     D(T,A6) = Tr [ exp(i.6J - iHT) 

where H, J -.and lj> represent the Operator Hamiltonian of a 

membrane, a certain angular momentum opera,tor (defined later) 

generating the rotation in a certain plane and the eigenstates of 

J with eigenvalue j, respectively. We evaluate D(T ,p6) of 

Eq. (4.1.2) by the path integral [8,21]. In the previous section , 

we have seen that the path integral quantization of a membrane in 

the time-like gauge can be performed by using Eq . (3.3.29) 

provided that the W.K.B. approximation is valid. Therefore 

D(T,08) may be written as 

                 (' ('X( T)=ea08J,X(0)      D(T,LB) = JdX(0)I X IIö(x)exp(iS2(X)) , (4.1.4) 
                    X(0) 

where S2(X) is given by Eq. (2.1). We evaluate the r.h.s. of 

Eq. (4.1.4) by the path integration over the fluctuations around 

the classical solutions, i.e., 
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     D(T,iO) = JdXci(O) Z exp(iS2[Xc1]) 
                       Xc l 

                                                                  (4.1.5)                 x ~1Ji7exp(iS(Q) [Xc1;i7] ) 
                       yclic 

where Xcl represents.a classical solution of the equation of 

motion, 

      a" ( g "lßaßX/-,) = o ' (4.1.6 ) 

     g"ß = 0aXmaßX, (4.1.7 ) 

and S(Q) denotes the action which governs the quantum fluctuation 

17 around Xcl. The explicit form of S(Q) is shown in the Appendix 

B. 

      We try to obtain the leading trajectory, i.e., the one an 

which the spin takes maximum for a given amount of energy. Rigid 

rotator solutions are expected to provide the leading trajectory 

because no energy is given to vibrational modes which do not 

generate angular momentum [22]. 

      In a synchronous gauge where X°=T and XaiX==O (i=1,2), a 

rigid rotator solution corresponding to the rotation in X'-XI 

plane as well as in X3-X4 planet), is given by 

             f(6y,62) Cosw,T ,   cl 

      X
cl = f(6„ d'2) sinc,.,T ,

t) In the four dimensional space-time (D=4) rigid rotator 

solutions are not allowed because of the transversal condition 

XaiX=O. Following arguments are valid for D>_5. 
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        ci = g(6y,62) Cosw2T , 

                            sinw2T             = g(67,62) ,     ca l 

      Xc1 = 0 , for 5 < i < D-1 (4.1.8) 

where 

      1 - w2f2 - w2g2 = 0 (4.1.9) 

should be satisfied at the boundary. If one evaluates the 

integral over XXL(0) in Eq. (4.1.2) by stationary phase 

approximation, the stationary point is determined by 

     8S2 [Xcl] aS2 [Xcl1 8Xcl (T) 

     aXcl(0) + aXcl(T) axcl(0) = 0 , (4.1.10) 

From Eq. (4.1.10) and (4.1.4), one finds that 

     Pcl (T) = ei09J Pcl (O) , (4 .1.11 ) 

and 

     Xcl(T) = eiA9J Xci(O). (4 .1.12) 

These equations require periodicity of X
c1(T), i.e., 

      w, = pw, W2 = qw, (4.1.13) 

where (p,q) are relatively prime integers and 

     w = (2nQ + 09)/T, (2=0,±1,±2,...) 

            27r 
To (4.1.14) 

In this case, the angular momentum operator J is expressed as 
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       J = pJ,2 + gJ34 . (4.1.15) 

In a period r0, the membrane revolves p and q times in X'-X2 and 

X3-X4 plane, respectively. 

      Note that the path integral in the r.h.s. of Eq. (4.1.5) 

includes a zero mode integration corresponding to the mode of the 

zero stability angle, namely, 

      rf cc Xcl(7-,a) . (4.1.16) 

The zero mode arises from the time translational invariance of 

the equation of motion of Eq. (4.1.6). So we perform the 

integration with respect to this mode by fixing 17(0)=17(T)=0. The 

remaining path integral part of Eq. (4.1.5) can be rewritten as a 

new form by using the operator Hamiltonian H(Q) associated with 

S(Q). Eventually D(T,p9) is able to be expressed as 

                        0o 

    D(T,p9) _ exp(iS[X(Z) ] ) 
                 fb=-oo (4.1.17) 

                     r2~ a2Sc1 ~                x Jd9(0) a9(0)a9(T) Tr' (Q) [ exp(-iTH(Q) ) ] 

0 where Tr'(Q) denotes the trace over quantum excitations without 

the zero mode. In the evaluation of Eq. (4.1.3), we have used 

the classical period 7, as an integration parameter instead of T 

which is related by Eq. (4.1.14), and then performed the 

integration by stationary phase method to get 

                .(Q~ 2~da(E), exp(i09a(E)) ] (4.1.18)      DE(L19) - Tr dE 1 -exp(27ria(E) )

- 25 -



where 

                     3 1 

     a(E) = 2 2pq (EZ - 3 H(Q)E2 ) . (4.1.19)               3 K
2 2 

Hence 

        1 (Q da(E) 8(i-a(E) )       <2 E-Hl2 - Tr 27r dE 1-exp(27tia(E)) (4.1.20) 

      The mass spectrum of the membrane is given by inspecting 

resonance poles of the propagator, i.e., 

      i = a(E). (4.1.21) 

An average angular momentum (pJ, 2+gJ34) /(p+q) = a/(p+q) takes 

maximum for p=q, since a is proportional to pq. The minimum 

value of H(Q) is equal to the ground state expectation value 

<0IH(Q)I0> which is nothing but the zero point energy. Hence we 

obtain 

                         3 1 

   max~pJp,~] = 3 [E2 - 2 E2 <0IH(Q)(W 2E) l0>]. (4.1.22) 
Noting that H(Q) is proportional to coiii in our approximation, one 

finds that Eq. (4.1.22) has the same form of Eq. (2.3). In the 

following subsection, we will calculate the the zero point energy 

<0IH(Q)10> by using the e-function regularization and obtain the 

spin-mass relation.

§4.2 Spin of massless particle states created-from a string 

      It is instructive to review the calculation of the zero 

point energy of a string before calculating that of a membrane. 
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The zero point energy Ezero of a bosonic string is given by 

               Co 
      Ezero = deff ' r Z ~ Wn ' (4.2.1 ) 

                         n=l 

where deff represent the number of phonon polarization, i.e., 

      deff = (D-2), (4.2.2) 

with the integer r which takes 

             1 (for open string)      r = f , (4.2.3) 
             2 (for closed string) 

and 

      wn - 2E n ' (4.2.4) 

where E denotes the total energy of the string. Ezero is 

divergent in the expression of Eq. (4.2.1). We have to use a 

certain regularization to get finite physical quantity. Brink 

and Nielsen [14] regularized the infinite sum in the r.h.s. of 

Eq. (4.2.1) by using a regulator function, and extracted the 

regulator independent part as follows; 

               deff K, 
      Ezero = 24 2E ( 4.2.5 ) 

      The result of Eq. (4.2.5) can also be obtained by using the 

e-function regularization. In this regularization, the infinite 

sum of Eq. (4.2.1) is defined, by using the Riemann g-function, 

as follows;
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     00 

       Z n (4.2.6) 
        n=1 

  where 

             co 

        eR(v) _ T n-v (4.2.7) 
                    n=1 

  In the expression of Eq. (4 .2.7), gR(y) is well defined in 

  Re v>1. The value of the function at Re y51 is defined b
y 

  analytic continuation from Re v>1 . The value of eR(-1) is known 

  to be -1/12. Hence this e-function regularization provides the 

  same result of Eq. (4.2.5). 

        By using Eq. (4.2.5), one obtains the following spin -mass 

  relation of the string 

        J = r1 M2 - 2MEzero 

               1 M2 - D-2 4 .2.8)             r 24 r { 

  where D is the dimension of space-time . The second term 

  corresponds to the spin of a massless ( M2 = 0) particle . 

        The particle states generated by a quantum string should 

  obey the representation of the Lorentz group , i.e., J should be 

  an integer, since the action of the string is Lorentz invariant . 

  From this consistency condition to the massless particle states , 

  one gets 

        D = 24n + 2 , (4 .2.9) 

  where n is an integer. Eq. (4.2.9) provides a necessary' 

  condition to the critical dimension. Indeed the quantized 

 bosonic string theory is consistent if and only if D=26 . 
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     In the following subsection, we will apply the e-function 

regularization for the calculation of the zero point energy of 

the membrane, and consider the critical dimension in the Same 

way as above.

§4.3 Spin of massless particle states created from a membrane 

     The Hamiltonian H(Q) for the quantum fluctuation of a 

membrane has the following form, 

     H(Q) _ w .1(n,Z) lL ( Nn, lL ] + 1 ) , (4.3.1) 

2 

              i n,91 

where (n,9,), i, Nn'Q and w represent the quantum numbers of 
excitation, polarization of the phonon, the number operator of 

the modes and the angular frequency defined in Eq. (4.1.22), 

respectively. The polarization consists of transverse modes 

(i=5, " ',D-1) and longitudinal modes (i=1,3) where "transverse" 

and "longitudinal" refer to the direction of the motion of the 

classical solution. The spectra Ä(                                             ') 's are as follows;                                             n
' 9, 

     2.n2) = 2 (n+ +3/4)(n+3/4)+7/16 , (4.3.2) 

    X(4) _ An' Q = 2 (n+ Q +1/4) (n+1/4)-1/16 , (4.3.3) 
                                                    for i = 5, " ' ,D-1 

Detail calculation is provided in the Appendix B. 

      Using Eq. (4.1.22), we obtain the sein of massless particle 

states an the leading trajectory as foliows;
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      j = lim E~ Ezero(~''= 2E) 
            E->0 2 

         - 2 l( (4.3.4) 
                i k,n Z, n 

Here, we set p=q=1 in Eq. (4.1.22). The infinite sum in the 

r.h.s is divergent. Therefore we have to regularize it and 

extract a finite part by using the e-function regularization. 

      The infinite sum of Eq. (4.3.4) will be given by an analytic 

continuation of the following form; 

                     Co w v 
     Z(v; b, c) _ Z Z [ (n+ I g I +c) (n+c) + b] 2 

                      n= 0 11 -oo 

                         Co Co v 

                 Z ' [ (n+c) (m+c) + b] 2 (4.3.5 ) 
                    n=0 m=0 

As will be shown in the Appendix C, we have succeeded in getting 

an integral representation of the r.h.s. of Eq. (4.3.5). Then we 

have morde an analytic continuation of Z in y from y>2 to v=-1 to 

get the values of the r.h.s. of Eq. (4.3.4). We have obtained 

the values of Z corresponding to the sum of Eq. (4.3.4) by 

numerical calculation, namely, 

r 

     Z(-1 ; 4 ,16 ) = 0.02882848- ' (4.3.6 ) 

      Z(-1;4' 16) = -0.1392569 '' (4.3.7) 

Hence the spin of massless particle states an leading trajectory 

is given by
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     j = - Z(-14'16) - (D-4) Z(-1;4,-16) (4.3.8) 

      It is very difficult to prove in general that Eq. (4.3.8) 

can be or cannot be an integer for some integer D. For practical 

purpose, however, massless particles have to have either j=1 or 

2. To get the spin 2 massless particle (the graviton), we find 

from Eq. (4.3.8) 

      D = 18.568962" ' (4.3.9) 

and to get the spin 1 (the gauge boson), 

      D = 11.387989- ' (4.3.10) 

In either Gase the dimensions of space-time have to be far from 

an integer. We are confident in these numbers at least down to 

six places of decimals. Hence the membrane does not provide 

massless particles in any integer dimensions.
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§5 Conclusions and discussion 

      We have discussed a possibility that a higher dimensionally 

extended object model can generate the massless particle states 

which play an important role in building a unification theory . 

It has been shown that the calculation in semiclassical 

approximation is enough to obtain a criterion whether massless 

particle states are generated by an extended object model. 

      The Nambu-Goto type action of a membrane is not quadratic in 

the velocity. Accordingly, the usual Lagrangian form of the path 

integral is not applicable. Furthermore, it is required to treat 

carefully the gauge freedom since the gauge algebra is open . 

Hence we have used the BFV method to quantize the membrane , and 

it has been shown that the usual Lagrangian form can be used as 

far as we take the "time-like" gauge in the semiclassical 

approximation. 

      We have calculated the spin of massless particle states an 

the leading trajectory of a membrane. And it has been shown 

that, for the membrane model, massless particles cannot be 

generated in integer space-time dimensions. It may be impossible 

to generate massless particles also in other higher dimensionally 

extended object models since it is expected that the behavior of 

generalized ~-function in other models is similar to that of the 

membrane rather than to that of the string; there is a distinct 

geometrical difference between the string model and the other 

extended models. The string model has conformal invariance as 

well'as reparametrization invariance of the world manifold, while 

the other models possess only the latter invariance. 

     Additional symmetry imposed an the extended object models 
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might make it possible to create massless particle states . 

Particularly we suspect the supersymmetry as a candidate for the 

following reason. The spin of massless states is generally 

related to the vacuum energy, as has been shown in Eq . (4.3.4). 

Since the space-time dimension D appears in the vacuum energy as 

the number of freedom of vibrational modes, the spin of 

massless states becomes a function of the space-time dimension . 

This relation has led to the inconsistency for the membrane model 

as shown in §4.3. However, this mechanism does not work in the 

case of the vanishing vacuum energy, which is achieved by the 

supersymmetry. Thus massless states might exist in these models . 

This problem is, however, unable to be covered in this paper . 

      We think that our study oh a quantum membrane is applicable 

to other various problems; the bag model of hadron with the 

quarks confined, the domain wall in grand unification models with 

membrane-like excitation, the induced gravity theory in three 

dimensional space-time, etc.. The bag model and the domain wall 

have a structure of closed membrane (boundaryless) , though the 

effects with no boundary are not studied in this paper . Three 

dimensional induced gravity theory is also interesting since this 

theory has the same gauge symmetry as the membrane model has, and 

it is reported that quantum gravity in three dimensions is 

soluble [23].
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Appendix A. Definition of structure functions 

      Let us define the operator 62 which maps antisymmetric 

tensor F i...aq of order qZl an the antisymmetric tensor of order 

q-1, such that 

       (6'2F)ai...aq-1 = F l...aq (A.1) 
                                    aq' 

where ja
q is the first class constraints. One easily finds that 

this operator 62 has the properties such that 

      622F = 0. (A.2) 

We can prove the following theoremt); 

Theorem (A.1): 

      62E = 0 --> 3 K; E = 82K. 

where E and K are an antisymmetric tensor of order q and of order 

q+1, respectively. 

      Let us define 

    ( U
a/ = - Caßy (A.3) 

which is called the "first-order structure function" associated 

with the 95
..                      The first order structure function cannot be 

arbitrary by virtue of the Jacobi identity, 

                  jA = 0, (A.4) 
where ()A denotes antisymmetrization for the indices a,ß and y.

1) The proof of this theorem is provided in Ref. [10]. 
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By using Eq. (3.2.9), one can rewrite Eq. (A.4) as 

     ((1) 

     l Daß76 }A9 = 0, (A.5) 
and with use of the operator 6, defined by Eq. (A.1), 

      (1)        6
2 D = 0, (A.6) 

where 

     ( 
Daßys { ( Uaß~ oy } + ( Uaß'2 ( 17

9 a . (A.7) 

From the theorem (A.1), there exists the antisymmetric tensor 

( Uaßya~ such that 
     (~) ~ = (Ü) Ss        aßY ,A 2 aßY jE' (A.8) 

This antisymmetric tensor is called the "second-order structure 

function". 

       The third-order structure function is defined as follows. 

Taking the Poisson bracket of Eq. (A.8) with one obtains, by 

using Eq. (3.2.9) and (A.7), that 

     (2) 
        Daßy6sK jK 

)A = 0, (A.9) 

                   (2) (n) 
where the function Daßy6EK contains U (n<_2) and its Poisson 

bracket. Eq. (A.9) says that 

      (2) 
      62 D = 0. (A.10) 

From the theorem (A.1), one obtains the "third-order structure 
         (3) 

function" Uaßyj8Kp such that 

      (2) FK l - 3(3 ßy6EKp ¢p. (A.11) 
        aßy6 1 AA 
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      The definition of the higher order structure function is 

similar to that of the third-order structure function. Provided 

that all the structure functions of order less than n are well 

known, then the following equation is well defined, 

                                                                         A.12 

    (nD2a1...anßl...Rn-2 = (n-1) Ü a1)..anßl...ßn-1 jßn-1' ) 

Taking the Poisson bracket of Eq. (A.12) with ~a, one obtains the 

identity such that 

    (n-1 
      D a

1...an+1ißn-1 - 0. (A.13) 

From the theorem (A.1), one gets the nth-order structure function 

defined as 

   (n-1) (Ü) ß1...ßta 
         a1 ... an+1 n a1 .. ' an+1 ßn (A.14) 

Appendix B. Energy spectra of a membrane 

      We define the quantum fluctuation Zu around the classical 

solution (3.1) as follows, 

     x", X
cl + R12(t),z')R34(w2r)Z" (B.1) 

where Rij(6) is a rotation operator in i-j plane by 6. To the 

second order of Z'u, the action (2.10) for n=2 becomes 

     S[x] Scl[X~l] + S(Q) [Z";Xcl] ' (B.2) 

     S(Q) = S(Q) + S(Q) , (B.3) 
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     S(Q) _ - x2 JdTdfdg~ 2w,w2fg(z2 + w, Z' ) (Z4 + w2 Z3)     // r [ A2 
               1-w2 92(Z2 + w,Z, )2 - 1-wf(Z4 + w2Z3)2 

                A A2 

2             + '4 (Z' - w, Z2) (Co, fäf.Z2 + w2 gä Z4 }                                                 J

2              + -Ä (Z3 - w2 Z4) { w, fägZ2 + w2 gägZ4 } 
                                                             (B.4) 

2                 (Z2 + w, Zi) {w,föfZ, + w, fägZ3} 

              El gZ3} 
             - 2 (Z4 + w2Z3) {w2g~fZ' + w2g~ 

               1-w 292 (aZ2 2 8Z2 2 1-ü)2,9 2 9Z4 2 aZ4 2         + A2 { tcif , + (a9 , } + A{ lef , + tag , } 

        + 2w,AA2f 9 { [ f faf4j + [ag2i fag4~ } 

      + 2{ {Z1 azi 1 lag 31 - lag 1 1 rJ j' 
                              D- Z     S(Q) K2 Id'rdfd9\[Ä l{-ÄIZ~/2+ lafZ'2+ ~a92,2} ,(B.5) 

                               i=5 

     A = 1 - w2f2 - w292 . (B.6) 

where the integral variables f and g are what appear in the 

classical solution (4.1.8), and they are in the range, 

     0 _< 1 - w2f2 - w292 < 1 . (B.7) 

The variables (J1,62) an a membrane have been taken to (f,g) 

themselves as new variables. In the following, we consider only 
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when w,=w2=w, since this case provides the leading trajectory. 

       The equations of motion for the transverse components ZZ 

(5_<_i<_D-1) are 

2 

     l a 2 - D ) Zi = 0 (B.8)       aT 

where 

              2 2 2 2     D (1-wf-w2 g2)̀afz + ag21 w2[faf + gag, e (B.9) 
and 

   ~/ 1-w2f2-w2g2 [ff7 + gäg1 Zi = 0 (B.10) 
an the boundary. Using polar variables (8,r) in (f,g) plane, and 

using Zi defined as 

     Zi= eiEZTeiQBRi(r) , (B.11) 

we obtain the following ordinary differential equation for R(r), 

     (1-(0 2r2) td22 + (1-c'2r2)rdr 912,RZ(r) _ -(EZ)2 Ri(r) .(B.12) 
               dr r 

To satisfy the boundary condition (B.10), Ri(r) has to be finite 

at r=0 and r=1/w. Using power series expansion in r and the 

boundary condition, we obtain the energy spectra, 

     E1 = 2w (n+ Q +1/4) (n+1/4)-1/16 . (B.13) 

        n = 0, 1, 2,... 

      Q = 0,±1,±2,... 
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      Next, we consider the longitudinal components Z',Z2 ,Z3 and 

Z4. The variation of S(Q) by Z' provides, 

    A(g-f)af3 = 0 , (B.14) 

and 

         {f(Z22+ wZ'2) + g(Z42+ wZ32)} = 0 , (B.15) 

an the boundary. Similarly the variation by Z3 provides the Same 

equations but in which Z' is replaced by Z3, Z2 by Z4, and f by 

g. Z'- and Z3 have no dynamical mode due to reparametrization 

invariance of f and g. 

      On the other hand, the equation of motion for Z2 and Z4 are 

as follows, 

                            a a 
    ( 2 l 1 0 f~f g~f Z2 

     { a 2+w2-DJ - 2w2 = 0 (B. 16 ) 
     l 0 1 a a Z4         er 

                              fag g-ä-9 

with the boundary condition, 

     1 { wf2(Z'-wZ2) + wfg(Z3-wZ4) (B.17) 

        + (1-w2g2)(faf + gag)Z2 + w2fg(fäf + g~g)Z4 J = 0 9 

and the similar equation with Z' replaced by Z3, Z2 by Z4, and f 

by g. Combining (B.15) and (B.17), we find that Z2 and Z4 have to 

be regular an the boundary. Let Z2 and Z4 be as follows,
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      Z2 (r)X(±) (8) + B (r)X(±) (8) 
             = eiE~~T m,k 2m,k m,k 2m-1,k 

      Z4 +A (r)X(±) (7t/2-8) + B (r)X(±) (7t/2-@) 
                                m,k 2m,k - m,k 2m-1,k 

                                                           (B.18) 
                         m = 0, 1, 2,... 

                    k = 0, 1, 2, 3 

    xn±k(e) = cos((2n+k)8 + 37rk + 4 ) . (B.19) 

Then we obtain the following coupled ordinary differential 

equations, 

                        2 
_2     [(1-w 2 r2) { dr2 + rdr - r2 (4m+k) } + 4 - w2 (4m+k+ 1) ] Am k (r) 

            + w2(rdr - 4m - k - 2)Bn„k(r) = 0 (B.20) 

2 

     [ (1-c''2 r2) { dr2 + rdr - 2 (4m+k-2) J + E2 + c,~2 (4m+k-3) ] B„k(r) 

           + w2(rdr + 4m + k)Am k(r) = 0 (B.21) 

Imposing Amk(r) and Bm
,k(r) to be regular at r=0 and r=1/ü), we 

look for eigenvalues by well known power expansion method and 

find the two sets of eigenvalues, 

     E~~ = 2 c (n+ Q. + 3 /4) (n+ 3 /4) + 7/16 (B.22) 

and 

     E~~ = 2cv (n+ Q +1/4) (n+1/4) - 1/16 (B.23) 

where n = 0, 1, 2,... and 2 = 0,±1,±2,... . 
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Appendix C. Analytic continuation of Z(v;b,c) 

      We perform the analytic continuation of Z(v;b,c) defined by 

(3.15) with respect to v. Note first the Summand is expressed as 

v 

     { (n+c) (m+c) + b}_2 
                                                                (C.1) 

                                     v _1 _ bt _v                     1 J dtt2 e-t(m+c) e n+c(n+c) 2 
          r(2) 

Performing the sum with respect to n, then we obtain 

           _ bt v v        00 Co Co 

        e n+c(n+c) 2 = k1(-bt)k (n+c)-2-k 
     n=0 k=0 n=0 

                             -v+1 (~ v-1 -sc 
               _ (tb) 4 2 Jdss4 2 e J (2V). (C.2) 

                                   0 -e -s 2-1 

Here we has used the following parameter integral formula, 

       Co Co 

      T. ( n+c)-a = 1 dssa-1 e-s(n+c) 
    n=0 n=0r(a) . 

0 

                           1 d
ssa-1 e-sc                   r( (C.3) 

                              a) 
0 1-e-' 

    J (z) _ (zl v (-1)'(--/2 )2k .       v l2J kL=O k! r(k+v+l) (C.4) 

where JJ(z) is the v-th Bessel function. Using (C.1) and (C.2), 

we obtain
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Z(v; b, c) o!
 -v 1 

b 4+2

P(2)

v 
4 2 e

1

1 

 dt ds(ts)
-tc  -sc 

e

fyyV_3f(y)          y
0

+ 

2 b 42

r(2)

1-e-t 1-e-s y ( 2v) 
2-1       (C

.5)

(C.6)

where

J dz(1-z) 

0

fv(y)

9v(z,y)

,  (Z, y)

1

2
v 
2

z

1 
2

(C.7)

(C.8)

               -2+1 
J 2 bzyz zy2 e2 (1-c)y        ( ~y ) ( )                      v

-1 (ey(1+ 1-z)-1)(ey(1-2 

Eq. (C.6) is well defined at v > 2. Performing the analytic 

continuation with respect to v down to around v = -1, we obtain 

                                    1v 1 

    fv(y) _ ((v1 2)v+1) Jdzz2(1-z) 29v(z,y) 

0

4(v+1) 
(v-2 )v

    v 1 

Jdzz2(1-z)2 

0

9v(z,y)dz

             v 3 2 

+ 4 d   (v-2)v Jdzz2(1_z)2 2 
           o dz

9v(z,Y) , (C.9)
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                                 Jdyy1f(y) Z(v'b'c) (v-2)(v-1)v(v+1) v+dd 4 4 v. (C.10) 

Let v=-1+E, then 

                 b3 /4 A       Z( -1+,-;b,c) = 
6 [ + A, + O(6) ] , (C.11)                           7r 6 

3     Ao -[ d 3 f-1(y) ] ' (C.12) 
               dy y=0 

         (°° 4 3     A, = Jay log(y) dv4 f_1(y) - L a 3 w f,Y(y) ]y=0 (C.13)                 o _ öy                                                                         v= -1 

Using (C.8) and (C.9), we have found that Ao vanishes and there-

fore Z(-1;b,c) is finite. In evaluation of A, in eq. (C.13), the 

second term is analytically calculable, but the first term is 

not. So we have computed the first term numerically. The 

following is the result. When c=5/4 and b=-1/16, 

     A, _ -0.3647609 + 2~ = 5.838828 (C.14) 

When c=3/4 and b=7/16, 

     A, = -3.754627 + 2 747 = 0.5699207 (C.15)
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