

Title	On smooth $Sp(p, q)$ -actions on $S^*(4p+4q-1)$
Author(s)	Uchida, Fuichi
Citation	Osaka Journal of Mathematics. 2002, 39(2), p. 293-314
Version Type	VoR
URL	https://doi.org/10.18910/3884
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

ON SMOOTH $\mathbf{Sp}(p, q)$ -ACTIONS ON $S^{4p+4q-1}$

Dedicated to the memory of Professor Katsuo Kawakubo

FUICHI UCHIDA*

(Received July 14, 2000)

0. Introduction

Consider the standard $\mathbf{Sp}(p) \times \mathbf{Sp}(q)$ action on the $(4p + 4q - 1)$ -sphere $S^{4p+4q-1}$. This action has codimension-one principal orbits with $\mathbf{Sp}(p-1) \times \mathbf{Sp}(q-1)$ as the principal isotropy subgroup. Furthermore, the fixed point set of the restricted $\mathbf{Sp}(p-1) \times \mathbf{Sp}(q-1)$ action is diffeomorphic to the seven-sphere S^7 .

In the previous papers [4, 5], we have studied smooth $\mathbf{SO}_0(p, q)$ -actions on S^{p+q-1} , each of which is an extension of the standard $\mathbf{SO}(p) \times \mathbf{SO}(q)$ action on S^{p+q-1} . In this paper, we shall study smooth $\mathbf{Sp}(p, q)$ -actions on $S^{4p+4q-1}$, each of which is an extension of the standard $\mathbf{Sp}(p) \times \mathbf{Sp}(q)$ action on $S^{4p+4q-1}$, and we shall show such an action is characterized by a pair (ϕ, f) satisfying certain conditions, where ϕ is a smooth $\mathbf{Sp}(1, 1)$ -action on S^7 , and $f: S^7 \rightarrow \mathbf{P}_1(\mathbf{H})$ is a smooth mapping.

The pair (ϕ, f) was introduced by Asoh [1] to consider smooth $\mathbf{SL}(2, \mathbf{C})$ -actions on the 3-sphere, and was improved by our previous papers [4, 5]. The pair was used also by Mukōyama [2] to consider smooth $\mathbf{Sp}(2, \mathbf{R})$ -actions on the 4-sphere. He studies also smooth $\mathbf{SU}(p, q)$ -actions on $S^{2p+2q-1}$ [3]. Here, we notice that the Lie groups $\mathbf{SL}(2, \mathbf{C})$ and $\mathbf{Sp}(2, \mathbf{R})$ are locally isomorphic to $\mathbf{SO}_0(3, 1)$ and $\mathbf{SO}_0(3, 2)$, respectively.

The author wishes to express gratitude to the referees and the editors for their invaluable advice.

1. Standard representation of $\mathbf{Sp}(p, q)$

Let $\mathbf{Sp}(p, q)$ denote the group of complex matrices of degree $2p + 2q$ defined by the equations

$${}^t A J_{p+q} A = J_{p+q}, \quad {}^t A K_{p,q} \bar{A} = K_{p,q}.$$

2000 Mathematics Subject Classification : Primary 57S20.

*Partly supported by the Grants-in-Aid for Scientific Research, The Ministry of Education, Science and Culture, Japan No. 10640058

Here,

$$J_n = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix}, \quad K_{p,q} = \begin{bmatrix} -I_p & 0 & 0 & 0 \\ 0 & I_q & 0 & 0 \\ 0 & 0 & -I_p & 0 \\ 0 & 0 & 0 & I_q \end{bmatrix}.$$

Consider the linear mapping $\mathbf{J} = cKJ: \mathbf{C}^{2p+2q} \rightarrow \mathbf{C}^{2p+2q}$. Here, $K = K_{p,q}$, $J = J_{p+q}$ and c is the complex conjugation. Since $K^2 = I$, $J^2 = -I$ and $KJ = JK$, we obtain $\mathbf{J}^2 = -I$. Furthermore, we see $\mathbf{J}(zX) = \bar{z}\mathbf{J}(X)$ for each $X \in \mathbf{C}^{2p+2q}$ and $z \in \mathbf{C}$. Hence, the linear mapping \mathbf{J} defines a quaternion structure on \mathbf{C}^{2p+2q} . We see $\mathbf{J}(AX) = AJ(X)$ for each $A \in \mathbf{Sp}(p, q)$ and $X \in \mathbf{C}^{2p+2q}$, by the definition of $\mathbf{Sp}(p, q)$. Therefore, the quaternion structure \mathbf{J} is $\mathbf{Sp}(p, q)$ -equivariant.

Now we decompose an element X of \mathbf{C}^{2p+2q} into $X = {}^t[U_1, V_1, U_2, V_2]$, where $U_1, U_2 \in \mathbf{C}^p$ and $V_1, V_2 \in \mathbf{C}^q$. Then we see

$$\mathbf{J}^t[U_1, V_1, U_2, V_2] = {}^t[-\bar{U}_2, \bar{V}_2, \bar{U}_1, -\bar{V}_1].$$

Hence we obtain the following equation for each $\alpha, \beta \in \mathbf{C}$:

$$(\alpha I + \beta \mathbf{J}) \begin{bmatrix} U_1 \\ V_1 \\ U_2 \\ V_2 \end{bmatrix} = \begin{bmatrix} \alpha U_1 - \beta \bar{U}_2 \\ \alpha V_1 + \beta \bar{V}_2 \\ \alpha U_2 + \beta \bar{U}_1 \\ \alpha V_2 - \beta \bar{V}_1 \end{bmatrix}.$$

Therefore, we can identify naturally \mathbf{C}^{2p+2q} having the quaternion structure \mathbf{J} with the quaternion vector space \mathbf{H}^{p+q} having the right scalar multiplication by the following correspondence:

$${}^t[U_1, V_1, U_2, V_2] \rightarrow {}^t[U_1 + jU_2, V_1 - jV_2].$$

Denote by $\mathbf{I}(a, b, c, d)$ the isotropy group at

$$a\mathbf{e}_1 + b\mathbf{e}_{p+1} + c\mathbf{e}_{p+q+1} + d\mathbf{e}_{2p+q+1}$$

with respect to the standard representation of $\mathbf{Sp}(p, q)$ on \mathbf{C}^{2p+2q} , where $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_{2p+2q}$ are the standard basis of \mathbf{C}^{2p+2q} and a, b, c, d are complex numbers with $(a, b, c, d) \neq (0, 0, 0, 0)$. Then, we see the followings:

$$\dim \frac{\mathbf{Sp}(p, q)}{\mathbf{I}(a, b, c, d)} = 4p + 4q - 1,$$

$$\mathbf{I}(1, 0, 0, 0) = \mathbf{I}(0, 0, 1, 0) = \mathbf{Sp}(p - 1, q),$$

$$\mathbf{I}(0, 1, 0, 0) = \mathbf{I}(0, 0, 0, 1) = \mathbf{Sp}(p, q - 1),$$

$$\bigcap_{(a,b,c,d) \neq (0,0,0,0)} \mathbf{I}(a, b, c, d) = \mathbf{Sp}(p-1, q-1).$$

For $(a, b, c, d) \neq (0, 0, 0, 0)$ and $(a', b', c', d') \neq (0, 0, 0, 0)$, we define an equivalence relation:

$$(a + jc, b - jd) \sim (a' + jc', b' - jd') \iff \begin{cases} a' + jc' = (a + jc)(\alpha + j\beta), \\ b' - jd' = (b - jd)(\alpha + j\beta) \end{cases}$$

for some quaternion $\alpha + j\beta \neq 0$. The set of equivalence classes is naturally identified with the 1-dimensional quaternion projective space $\mathbf{P}_1(\mathbf{H})$. Then, we see the following:

$$(a + jc, b - jd) \sim (a' + jc', b' - jd') \iff \mathbf{I}(a, b, c, d) = \mathbf{I}(a', b', c', d').$$

2. Certain closed subgroups of $\mathbf{Sp}(p, q)$

Put

$$\begin{aligned} \mathbf{Sp}(p) \times \mathbf{Sp}(q) &= \mathbf{Sp}(p, q) \cap \mathbf{U}(2p+2q), \\ \mathbf{Sp}(p-1) \times \mathbf{Sp}(q-1) &= \mathbf{I}(1, 0, 0, 0) \cap \mathbf{I}(0, 1, 0, 0) \cap \mathbf{U}(2p+2q). \end{aligned}$$

Then, $\mathbf{Sp}(p) \times \mathbf{Sp}(q)$ is the maximal compact subgroup of $\mathbf{Sp}(p, q)$, and $\mathbf{Sp}(p-1) \times \mathbf{Sp}(q-1)$ is the principal isotropy subgroup of the standard $\mathbf{Sp}(p) \times \mathbf{Sp}(q)$ action on \mathbf{C}^{2p+2q} which is the restriction of the standard representation of $\mathbf{Sp}(p, q)$.

Now we shall search all subalgebras \mathcal{G} of $\text{Lie } \mathbf{Sp}(p, q)$ satisfying the following conditions:

$$\begin{aligned} \mathcal{G} &\supset \text{Lie}(\mathbf{Sp}(p-1) \times \mathbf{Sp}(q-1)), \quad \mathcal{G} \neq \text{Lie } \mathbf{Sp}(p, q), \\ \dim \text{Lie } \mathbf{Sp}(p, q) - \dim \mathcal{G} &\leq 4p + 4q - 1. \end{aligned}$$

Here, $\text{Lie } \mathbf{Sp}(p, q)$ denotes the Lie algebra of $\mathbf{Sp}(p, q)$ which is a Lie subalgebra of $M_{2p+2q}(\mathbf{C})$ with the bracket operation $[A, B] = AB - BA$, and so on.

Let $\text{Ad}: \mathbf{Sp}(p, q) \rightarrow \text{Aut}(\text{Lie } \mathbf{Sp}(p, q))$ be the adjoint representation defined by $AMA^{-1}; A \in \mathbf{Sp}(p, q), M \in \text{Lie } \mathbf{Sp}(p, q)$. Then we can decompose $\text{Lie } \mathbf{Sp}(p, q)$ into

$$\text{Lie } \mathbf{Sp}(p, q) = \mathcal{K} \oplus \mathcal{S} \oplus \mathcal{U} \oplus \mathcal{V} \oplus \mathcal{T}$$

as a direct sum of $\text{Ad}|_{(\mathbf{Sp}(p-1) \times \mathbf{Sp}(q-1))}$ -invariant vector spaces. Here,

$$\begin{aligned} \mathcal{K} &= \text{Lie}(\mathbf{Sp}(p-1) \times \mathbf{Sp}(q-1)), \\ \mathcal{S} &= \nu_{p-1} \otimes \nu_{q-1}^*, \\ \mathcal{U} &= \nu_{p-1} \oplus \nu_{p-1}, \\ \mathcal{V} &= \nu_{q-1} \oplus \nu_{q-1}, \end{aligned}$$

$$\mathcal{T} = \mathbf{R}^{10}.$$

Then the desired algebra \mathcal{G} can be decomposed into

$$\mathcal{G} = \mathcal{K} \oplus (\mathcal{G} \cap \mathcal{S}) \oplus (\mathcal{G} \cap \mathcal{U}) \oplus (\mathcal{G} \cap \mathcal{V}) \oplus (\mathcal{G} \cap \mathcal{T}).$$

Under the bracket operation, we obtain the following data.

$$\begin{aligned} [\mathcal{K}, \mathcal{S}] &= \mathcal{S}, & [\mathcal{K}, \mathcal{U}] &= \mathcal{U}, & [\mathcal{K}, \mathcal{V}] &= \mathcal{V}, & [\mathcal{K}, \mathcal{T}] &= \mathbf{0}, \\ [\mathcal{T}, \mathcal{S}] &= \mathbf{0}, & [\mathcal{T}, \mathcal{U}] &= \mathcal{U}, & [\mathcal{T}, \mathcal{V}] &= \mathcal{V}, & [\mathcal{T}, \mathcal{T}] &= \mathcal{T}, \\ [\mathcal{S}, \mathcal{U}] &= \mathcal{V}, & [\mathcal{S}, \mathcal{V}] &= \mathcal{U}, & [\mathcal{U}, \mathcal{V}] &= \mathcal{S}, \\ [\mathcal{U}, \mathcal{U}] &\subset \mathcal{K} \oplus \mathcal{T}, & [\mathcal{V}, \mathcal{V}] &\subset \mathcal{K} \oplus \mathcal{T}. \end{aligned}$$

Moreover we obtain the following.

$$\begin{aligned} \dim \mathcal{S} &= 4(p-1)(q-1), & \dim \mathcal{U} &= 8p-8, \\ \dim \mathcal{V} &= 8q-8, & \dim \mathcal{T} &= 10. \end{aligned}$$

By a routine work, we obtain the following result.

Lemma 2.1. *Suppose $p \geq 2$ and $q \geq 2$. Let \mathcal{G} be a proper Lie subalgebra of Lie $\mathbf{Sp}(p, q)$ satisfying the following conditions:*

$$\begin{aligned} \mathcal{G} &\supset \text{Lie}(\mathbf{Sp}(p-1) \times \mathbf{Sp}(q-1)), & \mathcal{G} &\neq \text{Lie } \mathbf{Sp}(p, q), \\ \dim \text{Lie } \mathbf{Sp}(p, q) - \dim \mathcal{G} &\leq 4p + 4q - 1. \end{aligned}$$

Then, \mathcal{G} is one of the following:

- (1) $\mathcal{G} \supset \text{Lie } \mathbf{I}(a, b, c, d)$ for some $(a, b, c, d) \neq (0, 0, 0, 0)$ such that $\mathcal{G} \cap (\mathcal{U} \oplus \mathcal{V}) = (\text{Lie } \mathbf{I}(a, b, c, d)) \cap (\mathcal{U} \oplus \mathcal{V})$.
- (2) $\mathcal{G} = \text{Lie}(\mathbf{Sp}(p, 1) \times \mathbf{Sp}(q-1))$ for $q = 2$.
- (3) $\mathcal{G} = \text{Lie}(\mathbf{Sp}(p-1) \times \mathbf{Sp}(1, q))$ for $p = 2$.
- (4) $p = q = 2$, $\dim \mathcal{G} = 21$ and \mathcal{G} satisfies the following condition: $\mathcal{G} \cap \text{Lie}(\mathbf{Sp}(2) \times \mathbf{Sp}(2)) = A^{-1} \text{Lie}(\Delta \mathbf{Sp}(1) \times (\mathbf{Sp}(1) \times \mathbf{Sp}(1)))A$, for some $A \in \mathbf{Sp}(2) \times \mathbf{Sp}(2)$.

3. Smooth $\mathbf{Sp}(p, q)$ actions on $S^{4p+4q-1}$

Consider the standard action of $\mathbf{Sp}(p) \times \mathbf{Sp}(q)$ on $S^{4p+4q-1}$ defined by

$$\begin{aligned} \psi: (\mathbf{Sp}(p) \times \mathbf{Sp}(q)) \times S^{4p+4q-1} &\longrightarrow S^{4p+4q-1}, \\ \psi(A, X) &= AX; \quad A \in \mathbf{Sp}(p) \times \mathbf{Sp}(q), \quad X \in S^{4p+4q-1}. \end{aligned}$$

The action ψ has $\mathbf{Sp}(p-1) \times \mathbf{Sp}(q-1)$ as the principal isotropy type and $\mathbf{Sp}(p) \times \mathbf{Sp}(q-1)$ and $\mathbf{Sp}(p-1) \times \mathbf{Sp}(q)$ as singular isotropy types. Moreover the codimension of principal orbits is one.

Put $G = \mathbf{Sp}(p, q)$, $K = \mathbf{Sp}(p) \times \mathbf{Sp}(q)$ and $H = \mathbf{Sp}(p-1) \times \mathbf{Sp}(q-1)$.

Here, we consider $S^{4p+4q-1}$ as the unit sphere of C^{2p+2q} . Then the fixed point set $F(H)$ of restricted H -action is the 7-sphere as follows:

$$F(H) = \{a\mathbf{e}_1 + b\mathbf{e}_{p+1} + c\mathbf{e}_{p+q+1} + d\mathbf{e}_{2p+q+1}\},$$

where a, b, c, d are complex numbers satisfying $|a|^2 + |b|^2 + |c|^2 + |d|^2 = 1$.

Let us consider a smooth G -action Φ on $S^{4p+4q-1}$ such that the restricted K -action of Φ coincides with the standard action ψ .

Then we obtain a mapping $f: F(H) \rightarrow \mathbf{P}_1(\mathbf{H})$ defined by the condition

$$f(Y) = (a + jc : b - jd) \iff G_Y \supset \mathbf{I}(a, b, c, d).$$

Since the isotropy subgroup G_Y at $Y \in F(H)$ contains H , G_Y contains a unique subgroup of the form $\mathbf{I}(a, b, c, d)$ by Lemma 2.1.

Lemma 3.1. *For any smooth G -action Φ on $S^{4p+4q-1}$ such that the restricted K -action of Φ coincides with the standard action ψ , the relations $G_{\mathbf{e}_1} = \mathbf{Sp}(p-1, q)$ and $G_{\mathbf{e}_{p+1}} = \mathbf{Sp}(p, q-1)$ are hold. In particular, the orbits through \mathbf{e}_1 and \mathbf{e}_{p+1} are open in $S^{4p+4q-1}$.*

Proof. First we obtain $G_{\mathbf{e}_1} \supset \mathbf{Sp}(p-1, q)$ and $G_{\mathbf{e}_{p+1}} \supset \mathbf{Sp}(p, q-1)$ by the following facts:

$$\begin{aligned} \mathbf{Sp}(p-1) \times \mathbf{Sp}(q) &\subset \mathbf{I}(a, b, c, d) \iff b = d = 0, \\ \mathbf{Sp}(p) \times \mathbf{Sp}(q-1) &\subset \mathbf{I}(a, b, c, d) \iff a = c = 0, \\ \mathbf{I}(1, 0, 0, 0) &= \mathbf{Sp}(p-1, q), \quad \mathbf{I}(0, 1, 0, 0) = \mathbf{Sp}(p, q-1). \end{aligned}$$

On the other hand, by Lemma 2.1 we obtain $G_{\mathbf{e}_1} \subset \mathbf{Sp}(1) \times \mathbf{Sp}(p-1, q)$ and $G_{\mathbf{e}_{p+1}} \subset \mathbf{Sp}(p, q-1) \times \mathbf{Sp}(1)$. By considering the restricted K -action ψ , we obtain $G_{\mathbf{e}_1} = \mathbf{Sp}(p-1, q)$ and $G_{\mathbf{e}_{p+1}} = \mathbf{Sp}(p, q-1)$. In particular, since $\dim G / \mathbf{Sp}(p-1, q) = \dim G / \mathbf{Sp}(p, q-1) = 4p+4q-1$, the orbits through \mathbf{e}_1 and \mathbf{e}_{p+1} are open in $S^{4p+4q-1}$. \square

Lemma 3.2. *For any smooth G -action Φ on $S^{4p+4q-1}$ such that the restricted K -action of Φ coincides with the standard action ψ , the mapping $f: F(H) \rightarrow \mathbf{P}_1(\mathbf{H})$ defined by the condition*

$$f(Y) = (a + jc : b - jd) \iff G_Y \supset \mathbf{I}(a, b, c, d)$$

is smooth.

Proof. First we define 10 elements of $\text{Lie } G$ as follows:

$$\begin{aligned}
A_1 &= E_{1,p} - E_{p,1} + E_{p+q+1,2p+q} - E_{2p+q,p+q+1}, \\
A_2 &= -i(E_{1,p} + E_{p,1} - E_{p+q+1,2p+q} - E_{2p+q,p+q+1}), \\
A_3 &= E_{2p+q,1} - E_{1,2p+q} + E_{p+q+1,p} - E_{p,p+q+1}, \\
A_4 &= i(E_{2p+q,1} + E_{1,2p+q} + E_{p+q+1,p} + E_{p,p+q+1}), \\
C &= E_{p,p+1} + E_{p+1,p} - E_{2p+q,2p+q+1} - E_{2p+q+1,2p+q}, \\
B_1 &= E_{p+1,p+q} - E_{p+q,p+1} + E_{2p+q+1,2p+2q} - E_{2p+2q,2p+q+1}, \\
B_2 &= -i(E_{p+1,p+q} + E_{p+q,p+1} - E_{2p+q+1,2p+2q} - E_{2p+2q,2p+q+1}), \\
B_3 &= E_{2p+2q,p+1} - E_{p+1,2p+2q} + E_{2p+q+1,p+q} - E_{p+q,2p+q+1}, \\
B_4 &= i(E_{2p+2q,p+1} + E_{p+1,2p+2q} + E_{2p+q+1,p+q} + E_{p+q,2p+q+1}), \\
D &= E_{p+q,1} + E_{1,p+q} - E_{2p+2q,p+q+1} - E_{p+q+1,2p+2q}.
\end{aligned}$$

Then we see the following relations:

$$\begin{aligned}
b_1 A_1 + b_2 A_2 + d_1 A_3 + d_2 A_4 + C &\in \text{Lie I}(1, b, 0, d), \\
a_1 B_1 + a_2 B_2 + c_1 B_3 + c_2 B_4 + D &\in \text{Lie I}(a, 1, c, 0),
\end{aligned}$$

where each coefficients are real numbers defined by $a = a_1 + ia_2$, $b = b_1 + ib_2$, $c = c_1 + ic_2$ and $d = d_1 + id_2$. Moreover, we see that each of A_1 , A_2 , A_3 , A_4 , B_1 , B_2 , B_3 and B_4 is an element of $\text{Lie } K$.

Now we define a Lie algebra homomorphism $\Phi^+ : \text{Lie } G \longrightarrow \Gamma(S^{4p+4q-1})$ by

$$\Phi^+(M)_Y(h) = \lim_{t \rightarrow 0} \frac{h(\Phi(\exp(-tM), Y)) - h(Y)}{t},$$

where $\Gamma(-)$ denotes the Lie algebra consisting of smooth vector fields on a given manifold, $M \in \text{Lie } G$ and h is a smooth function defined on an open neighborhood of Y . For $M \in \text{Lie } G$, we see $M \in \text{Lie } G_Y \iff \Phi^+(M)_Y = 0$.

Now we see that the tangent vector fields $\Phi^+(A_1)$, $\Phi^+(A_2)$, $\Phi^+(A_3)$, $\Phi^+(A_4)$, $\Phi^+(B_1)$, $\Phi^+(B_2)$, $\Phi^+(B_3)$ and $\Phi^+(B_4)$ are linearly independent at each point Y of $F(H)$. Because, if they are linearly dependent at $Y \in F(H)$, a non-trivial linear combination of A_1 , A_2 , A_3 , A_4 , B_1 , B_2 , B_3 and B_4 is contained in $\text{Lie } G_Y$ and it is a contradiction to the isotropy types of the standard K -action ψ .

Let us denote by $(M, M')_Y$ the inner product of two tangent vector fields $\Phi^+(M)$, $\Phi^+(M')$ at Y with respect to the standard Riemannian metric on $S^{4p+4q-1}$. Denote by $A[Y]$, $B[Y]$ the Gram matrices as follows:

$$(A_s, A_t)_Y : (s, t)\text{-component of } A[Y],$$

$$(B_s, B_t)_Y : (s, t)\text{-component of } B[Y].$$

Then $A[Y]$, $B[Y]$ are non-singular at each point $Y \in F(H)$. Moreover, we see the following:

$$f(Y) = (1 : b - jd) \implies A[Y] \begin{bmatrix} b_1 \\ b_2 \\ d_1 \\ d_2 \end{bmatrix} = - \begin{bmatrix} (A_1, C)_Y \\ (A_2, C)_Y \\ (A_3, C)_Y \\ (A_4, C)_Y \end{bmatrix},$$

$$f(Y) = (a + jc : 1) \implies B[Y] \begin{bmatrix} a_1 \\ a_2 \\ c_1 \\ c_2 \end{bmatrix} = - \begin{bmatrix} (B_1, D)_Y \\ (B_2, D)_Y \\ (B_3, D)_Y \\ (B_4, D)_Y \end{bmatrix}.$$

Hence we see that each of $a_1, a_2, b_1, b_2, c_1, c_2, d_1$ and d_2 is a smooth function of Y on an open set of $F(H)$. In fact, b_i, d_j are smooth on the open set of $F(H)$ defined by $(a, c) \neq (0, 0)$ and a_i, c_j are smooth on the open set of $F(H)$ defined by $(b, d) \neq (0, 0)$.

Therefore, the mapping $f: F(H) \rightarrow \mathbf{P}_1(\mathbf{H})$ is smooth. \square

Denote by $N(p, q)$ the centralizer of $\mathbf{Sp}(p-1, q-1)$ in $\mathbf{Sp}(p, q)$. Then the group $N(p, q)$ acts naturally on

$$\mathbf{C}^4 = \{a\mathbf{e}_1 + b\mathbf{e}_{p+1} + c\mathbf{e}_{p+q+1} + d\mathbf{e}_{2p+q+1}\}$$

as the restriction of the standard action of $\mathbf{Sp}(p, q)$ on \mathbf{C}^{2p+2q} . By the correspondence

$$\mathbf{C}^4 \ni a\mathbf{e}_1 + b\mathbf{e}_{p+1} + c\mathbf{e}_{p+q+1} + d\mathbf{e}_{2p+q+1} \longleftrightarrow \begin{bmatrix} a + jc \\ b - jd \end{bmatrix} \in \mathbf{H}^2,$$

the group $N(p, q)$ acts naturally on $\mathbf{P}_1(\mathbf{H})$. In fact, for $n \in N(p, q)$

$$n(a + jc : b - jd) = (a' + jc' : b' - jd')$$

if and only if

$$\begin{aligned} & n(a\mathbf{e}_1 + b\mathbf{e}_{p+1} + c\mathbf{e}_{p+q+1} + d\mathbf{e}_{2p+q+1}) \\ &= a'\mathbf{e}_1 + b'\mathbf{e}_{p+1} + c'\mathbf{e}_{p+q+1} + d'\mathbf{e}_{2p+q+1}. \end{aligned}$$

Notice that $N(p, q)$ is naturally isomorphic to $\mathbf{Sp}(1, 1)$. On the other hand, the group $N(p, q)$ acts naturally on $F(H)$ as the restriction of the given action Φ .

Lemma 3.3. *For any smooth G -action Φ on $S^{4p+4q-1}$ such that the restricted K -action of Φ coincides with the standard action ψ , the mapping $f: F(H) \rightarrow \mathbf{P}_1(\mathbf{H})$*

defined in Lemma 3.2 is $N(p, q)$ -equivariant. In particular,

$$f(Y) = (a + jc : b - jd) \implies N(p, q)_Y \supset N(p, q) \cap \mathbf{I}(a, b, c, d).$$

Proof. Suppose $f(Y) = (a + jc : b - jd)$ for $Y \in F(H)$. Then G_Y contains $\mathbf{I}(a, b, c, d)$. Let $n \in N(p, q)$. Then $G_{\Phi(n, Y)} = nG_Yn^{-1}$ contains $n\mathbf{I}(a, b, c, d)n^{-1}$. On the other hand, we see that $n(a + jc : b - jd) = (a' + jc' : b' - jd')$ if and only if $n\mathbf{I}(a, b, c, d)n^{-1} = \mathbf{I}(a', b', c', d')$. By these fact, we obtain $f(\Phi(n, Y)) = nf(Y)$. Hence the mapping $f: F(H) \rightarrow \mathbf{P}_1(\mathbf{H})$ is $N(p, q)$ -equivariant. Moreover, $G_Y \supset \mathbf{I}(a, b, c, d)$ implies

$$N(p, q)_Y \supset N(p, q) \cap \mathbf{I}(a, b, c, d).$$

□

4. Construction of $\mathbf{Sp}(p, q)$ -actions

Under the natural isomorphism of $N(p, q)$ to $\mathbf{Sp}(1, 1)$, we define $M(\theta) \in N(p, q)$ as the matrix corresponding to the following

$$\begin{bmatrix} \cosh \theta & \sinh \theta \\ \sinh \theta & \cosh \theta \end{bmatrix} \begin{array}{c} \\ \hline \\ \end{array} \begin{bmatrix} \cosh \theta & -\sinh \theta \\ -\sinh \theta & \cosh \theta \end{bmatrix}.$$

Now we prepare the following result.

Lemma 4.1. *The equation*

$$\mathbf{Sp}(p, q) = (\mathbf{Sp}(p) \times \mathbf{Sp}(q))N(p, q)\mathbf{I}(a, b, c, d)$$

holds for each $(a, b, c, d) \neq (0, 0, 0, 0)$.

Proof. Consider the standard action of $\mathbf{Sp}(p, q)$ on \mathbf{C}^{2p+2q} . Put

$$Y = a\mathbf{e}_1 + b\mathbf{e}_{p+1} + c\mathbf{e}_{p+q+1} + d\mathbf{e}_{2p+q+1}.$$

For any $g \in \mathbf{Sp}(p, q)$, we decompose $gY = {}^t[U_1, V_1, U_2, V_2]$, where $U_1, U_2 \in \mathbf{C}^p$ and $V_1, V_2 \in \mathbf{C}^q$. Then we see

$$-\|U_1\|^2 + \|V_1\|^2 - \|U_2\|^2 + \|V_2\|^2 = -|a|^2 + |b|^2 - |c|^2 + |d|^2.$$

Hence, we can choose $k \in K = \mathbf{Sp}(p) \times \mathbf{Sp}(q)$ as follows:

$$k^{-1}gY = s\mathbf{e}_1 + t\mathbf{e}_{p+1} \quad : \quad s = \sqrt{\|U_1\|^2 + \|U_2\|^2}, \quad t = \sqrt{\|V_1\|^2 + \|V_2\|^2}.$$

Next, we can choose $M(\theta) \in N(p, q)$ as follows:

$$M(-\theta)k^{-1}gY = \sqrt{|a|^2 + |c|^2}\mathbf{e}_1 + \sqrt{|b|^2 + |d|^2}\mathbf{e}_{p+1}.$$

Finally, we can choose $n \in N(p, q) \cap K$ such that $n^{-1}M(-\theta)k^{-1}gY = Y$. In particular, we obtain $n^{-1}M(-\theta)k^{-1}g \in \mathbf{I}(a, b, c, d)$. \square

As in the previous section, we use the notations $G = \mathbf{Sp}(p, q)$, $K = \mathbf{Sp}(p) \times \mathbf{Sp}(q)$ and $H = \mathbf{Sp}(p-1) \times \mathbf{Sp}(q-1)$.

Moreover, we use the notations $\mathbf{I}(a, b, c, d)$, $F(H)$ and $N(p, q)$.

In this section, we suppose the following situation:

1. a smooth action $\phi: N(p, q) \times F(H) \longrightarrow F(H)$ is given.
2. an $N(p, q)$ -equivariant smooth mapping $f: F(H) \longrightarrow \mathbf{P}_1(\mathbf{H})$ is given.
3. the following conditions are satisfied:
 - (a) $n \in N(p, q) \cap K$, $Y \in F(H) \implies \phi(n, Y) = \psi(n, Y)$.
 - (b) $f(Y) = (a + jc : b - jd) \implies N(p, q)_Y \supset N(p, q) \cap \mathbf{I}(a, b, c, d)$.

Notice that such a situation is realized if there is a smooth G -action on $S^{4p+4q-1}$ which is an extension of the standard K -action ψ on $S^{4p+4q-1}$. These facts are proved in lemmas 3.2, 3.3.

We shall show how to construct a smooth $G = \mathbf{Sp}(p, q)$ -action on $S^{4p+4q-1}$ from the pair (ϕ, f) . First, we prepare several lemmas.

Lemma 4.2. *The following relations hold.*

$$\begin{aligned} f(Y) = (1 : 0) &\iff K_Y = \mathbf{Sp}(p-1) \times \mathbf{Sp}(q), \\ f(Y) = (0 : 1) &\iff K_Y = \mathbf{Sp}(p) \times \mathbf{Sp}(q-1). \end{aligned}$$

Proof. Notice that the isotropy subgroup K_Y for $Y \in F(H)$ is one of the following:

$$\mathbf{Sp}(p-1) \times \mathbf{Sp}(q-1), \quad \mathbf{Sp}(p-1) \times \mathbf{Sp}(q), \quad \mathbf{Sp}(p) \times \mathbf{Sp}(q-1).$$

Under the natural isomorphism of $N(p, q)$ to $\mathbf{Sp}(1, 1)$, the group $K \cap N(p, q)$ can be identified with $\mathbf{Sp}(1) \times \mathbf{Sp}(1)$. Here we denote

$$K \cap N(p, q) = \mathbf{Sp}(1) \times \mathbf{Sp}(1).$$

Under this identification, we see $(\mathbf{Sp}(1) \times \mathbf{Sp}(1))_{(\alpha:\beta)} = 1 \times 1$ for each $(\alpha : \beta) \in \mathbf{P}_1(\mathbf{H})$ satisfying $\alpha\beta \neq 0$. Hence we see that $K_Y = \mathbf{Sp}(p-1) \times \mathbf{Sp}(q-1)$, if $f(Y) = (\alpha : \beta)$ satisfying $\alpha\beta \neq 0$. On the other hand, if $f(Y) = (a + jc : b - jd)$, then we see

$$K_Y \supset K \cap N(p, q)_Y \supset (\mathbf{Sp}(1) \times \mathbf{Sp}(1)) \cap \mathbf{I}(a, b, c, d).$$

In particular, we see

$$\begin{aligned} (\mathbf{Sp}(1) \times \mathbf{Sp}(1)) \cap \mathbf{I}(1, 0, 0, 0) &= 1 \times \mathbf{Sp}(1), \\ (\mathbf{Sp}(1) \times \mathbf{Sp}(1)) \cap \mathbf{I}(0, 1, 0, 0) &= \mathbf{Sp}(1) \times 1. \end{aligned}$$

By these facts, we obtain the desired result. \square

Lemma 4.3. $Y \in F(H)$, $f(Y) = (a + jc : b - jd)$ be given. Then

$$g = k_1 n_1 h_1 = k_2 n_2 h_2 \implies \psi(k_1, \phi(n_1, Y)) = \psi(k_2, \phi(n_2, Y))$$

for any $k_1, k_2 \in K$; $n_1, n_2 \in N(p, q)$; $h_1, h_2 \in \mathbf{I}(a, b, c, d)$.

Proof. Put

$$X = X(a, b, c, d) = a\mathbf{e}_1 + b\mathbf{e}_{p+1} + c\mathbf{e}_{p+q+1} + d\mathbf{e}_{2p+q+1}.$$

First, we consider the standard representation of $G = \mathbf{Sp}(p, q)$ on \mathbf{C}^{2p+2q} . We can describe by the above notation

$$n_t X(a, b, c, d) = X_t = X(a_t, b_t, c_t, d_t), \quad (t = 1, 2).$$

By the assumption $g = k_1 n_1 h_1 = k_2 n_2 h_2$, we obtain

$$g X(a, b, c, d) = k_1 X(a_1, b_1, c_1, d_1) = k_2 X(a_2, b_2, c_2, d_2).$$

Hence we obtain $g X = k_1 X_1 = k_2 X_2$. Put $k = k_1^{-1} k_2$. Then we obtain $K_{X_1} = K_{kX_2} = k K_{X_2} k^{-1}$. By the form of isotropy subgroups, we obtain

$$(a) \quad K_{X_1} = K_{X_2}, \quad k \in N(K_{X_t}) \quad (t = 1, 2)$$

By Lemma 4.2, we obtain the following:

$$\begin{aligned} (b) \quad (a_t, c_t) \neq (0, 0) \neq (b_t, d_t) &\iff K_{X_t} = \mathbf{Sp}(p-1) \times \mathbf{Sp}(q-1) \\ (a_t, c_t) \neq (0, 0) = (b_t, d_t) &\iff K_{X_t} = \mathbf{Sp}(p-1) \times \mathbf{Sp}(q) \\ (a_t, c_t) = (0, 0) \neq (b_t, d_t) &\iff K_{X_t} = \mathbf{Sp}(p) \times \mathbf{Sp}(q-1) \end{aligned}$$

Moreover, we obtain

$$(c) \quad k_1^{-1} k_2 n_2 n_1^{-1} \in \mathbf{I}(a_1, b_1, c_1, d_1)$$

because the element $k_1^{-1} k_2 n_2 n_1^{-1}$ leaves the point X_1 fixed.

Now we consider case by case.

[1] The case $(b_1, d_1) = (0, 0)$. By (a), (b), we see $(b_2, d_2) = (0, 0)$. By $n_1 X = X_1$,

$$f(\phi(n_1, Y)) = n_1 f(Y) = (a_1 + jc_1 : 0) = (1 : 0).$$

Then, by (b), we see $K_{\phi(n_1, Y)} = \mathbf{Sp}(p-1) \times \mathbf{Sp}(q)$. On the other hand,

$$k_1^{-1} k_2 n_2 n_1^{-1} \in \mathbf{I}(a_1, 0, c_1, 0) = \mathbf{I}(1, 0, 0, 0) = \mathbf{Sp}(p-1, q)$$

by (c). By the second half of (a), we obtain $k_1^{-1} k_2 \in (\mathbf{Sp}(1) \times \mathbf{Sp}(p-1)) \times \mathbf{Sp}(q)$ and hence we can decompose

$$k_1^{-1} k_2 = k' k'': \quad k' \in \mathbf{Sp}(p-1) \times \mathbf{Sp}(q), \quad k'' \in \mathbf{Sp}(1) \times 1.$$

Then $k'' n_2 n_1^{-1} \in N(p, q) \cap \mathbf{Sp}(p-1, q) = 1 \times \mathbf{Sp}(1)$ and hence we obtain

$$k_1^{-1} k_2 n_2 n_1^{-1} \in K \cap \mathbf{Sp}(p-1, q) = \mathbf{Sp}(p-1) \times \mathbf{Sp}(q).$$

Under these preparation, we obtain

$$\begin{aligned} \psi(k_2, \phi(n_2, Y)) &= \psi(k_2, \phi(n_2 n_1^{-1} n_1, Y)) \\ &= \psi(k_2, \phi(n_2 n_1^{-1}, \phi(n_1, Y))) \\ &= \psi(k_2, \psi(n_2 n_1^{-1}, \phi(n_1, Y))) \\ &= \psi(k_2 n_2 n_1^{-1}, \phi(n_1, Y)) \\ &= \psi(k_1, \psi(k_1^{-1} k_2 n_2 n_1^{-1}, \phi(n_1, Y))) \\ &= \psi(k_1, \phi(n_1, Y)). \end{aligned}$$

[2] The case $(a_1, c_1) = (0, 0)$ is similarly proved.

[3] The case $(a_1, c_1) \neq (0, 0) \neq (b_1, d_1)$. In this case, we see $(a_2, c_2) \neq (0, 0) \neq (b_2, d_2)$ by (a), (b). Now we can decompose

$$k_1^{-1} k_2 = k' k'': \quad k' \in \mathbf{Sp}(p-1) \times \mathbf{Sp}(q-1), \quad k'' \in \mathbf{Sp}(1) \times \mathbf{Sp}(1)$$

by the second half of (a). Then, $k'' n_2 n_1^{-1} \in \mathbf{I}(a_1, b_1, c_1, d_1)$ by (c). Since $\mathbf{I}(a_1, b_1, c_1, d_1) = n_1 \mathbf{I}(a, b, c, d) n_1^{-1}$, we obtain $k'' n_2 = n_1 h$; $h \in \mathbf{I}(a, b, c, d)$, where $h \in N(p, q) \cap \mathbf{I}(a, b, c, d) \subset N(p, q)_Y$. Under these preparation, we obtain

$$\begin{aligned} \psi(k_2, \phi(n_2, Y)) &= \psi(k_1 k' k'', \phi(n_2, Y)) \\ &= \psi(k_1 k'', \phi(n_2, Y)) \\ &= \psi(k_1, \phi(k'', \phi(n_2, Y))) \\ &= \psi(k_1, \phi(k'' n_2, Y)) \\ &= \psi(k_1, \phi(n_1 h, Y)) \end{aligned}$$

$$\begin{aligned}
&= \psi(k_1, \phi(n_1, \phi(h, Y))) \\
&= \psi(k_1, \phi(n_1, Y)).
\end{aligned}$$

This completes the proof. \square

Now we define $\Phi(g, Y) \in S^{4p+4q-1}$ for each $g \in G, Y \in F(H)$ by

$$\Phi(g, Y) = \psi(k, \phi(n, Y)).$$

Here we decompose $g = knh : k \in K, n \in N(p, q)$ and $h \in \mathbf{I}(a, b, c, d)$, for $f(Y) = (a + jc : b - jd)$. Lemma 4.3 assures the well-definedness of $\Phi(g, Y)$.

Lemma 4.4. *Suppose*

$$\psi(k_1, Y_1) = \psi(k_2, Y_2) ; Y_1, Y_2 \in F(H), k_1, k_2 \in K.$$

Then the relation $\Phi(gk_1, Y_1) = \Phi(gk_2, Y_2)$ holds for any $g \in G = \mathbf{Sp}(p, q)$.

Proof. By the assumption, $K_{Y_1} = K_{Y_2}$ and there is a decomposition

$$k_1^{-1}k_2 = k''k' : k' \in K_{Y_2}, k'' \in \mathbf{Sp}(1) \times \mathbf{Sp}(1).$$

Now we give a decomposition

$$gk_1 = knh : k \in K, n \in N(p, q), h \in \mathbf{I}(a_1, b_1, c_1, d_1).$$

Here we assume $f(Y_t) = (a_t + jc_t : b_t - jd_t)$, ($t = 1, 2$). Then

$$gk_2 = gk_1k''k' = knhk''k'.$$

On the other hand, we obtain

$$\mathbf{I}(a_1, b_1, c_1, d_1) = k''\mathbf{I}(a_2, b_2, c_2, d_2)(k'')^{-1}$$

from $Y_1 = \psi(k'', Y_2) = \phi(k'', Y_2)$. Hence we see

$$h \in \mathbf{I}(a_1, b_1, c_1, d_1) \implies h' = (k'')^{-1}hk'' \in \mathbf{I}(a_2, b_2, c_2, d_2).$$

Put $n' = nk''$. Then, $n' \in N(p, q)$ and $gk_2 = kn'h'k'$. In this decomposition, we can show $k' \in \mathbf{I}(a_2, b_2, c_2, d_2)$ by considering the isotropy subgroup at Y_2 case by case. Hence we see

$$\Phi(gk_2, Y_2) = \psi(k, \phi(n', Y_2))$$

$$\begin{aligned}
&= \psi(k, \phi(n, \psi(k'', Y_2))) \\
&= \psi(k, \phi(n, Y_1)) \\
&= \Phi(gk_1, Y_1).
\end{aligned}$$

□

By this lemma, we may define a mapping $\Phi: G \times S^{4p+4q-1} \longrightarrow S^{4p+4q-1}$ by $\Phi(g, \psi(k, Y)) = \Phi(gk, Y) : g \in G, k \in K, Y \in F(H)$. The right-hand side is already defined.

It is easy to see that the mapping Φ is an abstract action of G on $S^{4p+4q-1}$ which is an extension of the standard K -action ψ and an extension of the given $N(p, q)$ -action ϕ . It remains to show Φ is smooth.

First we state the following result which is an accurate form of Lemma 4.1. The proof is quite similar, so we omit it.

Lemma 4.5. *There is a decomposition*

$$g = kM(\theta)h : k \in K, \theta \in \mathbf{R}, h \in \mathbf{I}(1, \beta, 0, 0)$$

for any $\beta > 0$ and any $g \in G$.

Put

$$\mathbf{P}_1(\mathbf{R}) = \{(a : b) \in \mathbf{P}_1(\mathbf{H}) \mid a, b \in \mathbf{R}\}.$$

Then, $\mathbf{P}_1(\mathbf{R})$ is a 1-dimensional submanifold of $\mathbf{P}_1(\mathbf{H})$. Define

$$S = f^{-1}(\mathbf{P}_1(\mathbf{R})).$$

Because the isotropy subgroups at two points $(1 : 0), (0 : 1)$ are both $\mathbf{Sp}(1) \times \mathbf{Sp}(1)$ with respect to the standard $N(p, q)$ -action on $\mathbf{P}_1(\mathbf{H})$, we see that the orbits through these points are open and hence the given $N(p, q)$ -equivariant smooth mapping $f: F(H) \rightarrow \mathbf{P}_1(\mathbf{H})$ is transversal on $\mathbf{P}_1(\mathbf{R})$. Hence S is a 4-dimensional submanifold of $F(H)$. Put

$$S_+ = \{Y \in S \mid f(Y) = (1 : \beta), \beta > 0\}.$$

Then S_+ is an open submanifold of S .

Hereafter, we denote $\beta = \beta(Y)$ for $Y \in S_+$ such that $f(Y) = (1 : \beta)$.

Now we see the following:

$$f(\phi(M(\theta), Y)) = (\cosh \theta + \beta \sinh \theta : \sinh \theta + \beta \cosh \theta)$$

for $Y \in S_+$ and θ , where $\beta = \beta(Y)$. Hence $\phi(M(\theta), Y) \in S$ in general. Therefore,

$\phi(M(\theta), Y) \in S_+$ if and only if

$$(\cosh \theta + \beta \sinh \theta)(\sinh \theta + \beta \cosh \theta) > 0.$$

In this case, we obtain the following:

$$\beta(\phi(M(\theta), Y)) = \beta + \frac{(1 - \beta^2) \tanh \theta}{1 + \beta \tanh \theta}.$$

Here we define a matrix $P(Y)$ of degree $2p + 2q$ as follows:

$$P(Y) = \frac{1}{1 + \beta^2} (E_{1,1} + \beta E_{1,p+1} + \beta E_{p+1,1} + \beta^2 E_{p+1,p+1}).$$

We see $\text{trace } P(Y) = 1$. Notice that

$$\text{trace}(g P(Y) g^*) = \cosh 2\theta + \frac{2\beta}{1 + \beta^2} \sinh 2\theta$$

for the decomposition $g = kM(\theta)h : k \in K, h \in \mathbf{I}(1, \beta, 0, 0)$, where $Y \in S_+$, $\beta = \beta(Y)$.

Now we define

$$\begin{aligned} \mathbf{D}_+ &= \{(\theta, Y) \in \mathbf{R} \times S_+ \mid \phi(M(\theta), Y) \in S_+\}, \\ W_+ &= \left\{ (g, Y) \in G \times S_+ \mid \pm \text{trace}(g P(Y) g^*) \neq \frac{1 - \beta^2}{1 + \beta^2}, \beta = \beta(Y) \right\}. \end{aligned}$$

Clearly \mathbf{D}_+ is an open set of $\mathbf{R} \times S_+$ and W_+ is an open set of $G \times S_+$.

Now we have the following results, whose proof is quite similar to that of [4, Lemma 4.7]. So we omit the proof.

Lemma 4.6. *For $(g, Y) \in G \times S_+$, $(g, Y) \in W_+$ if and only if there is a decomposition*

$$g = kM(\theta)h : k \in K, h \in \mathbf{I}(1, \beta, 0, 0), \phi(M(\theta), Y) \in S_+$$

where $\beta = \beta(Y)$.

Lemma 4.7. *There is a smooth mapping $\Delta: W_+ \rightarrow K/H \times \mathbf{D}_+$ defined by $\Delta(g, Y) = (kH, (\theta, Y))$, where $g = kM(\theta)h$; $k \in K, \theta \in \mathbf{R}$, and $h \in \mathbf{I}(1, \beta, 0, 0)$ for $\beta = \beta(Y)$.*

Put $W(\Phi) = (1 \times \psi)(\mu \times 1)^{-1}(W_+)$, where ψ is the K -action and μ is the multiplication on G . Then $W(\Phi)$ is an open set of $G \times S^{4p+4q-1}$ and we obtain the following

commutative diagram:

$$\begin{array}{ccc}
 G \times K \times S_+ & \xrightarrow{1 \times \psi} & G \times S^{4p+4q-1} \\
 \downarrow \mu \times 1 & & \uparrow \cup \\
 G \times S_+ \supset W_+ & \longrightarrow & W(\Phi) \\
 \downarrow \Delta & & \downarrow \Phi \\
 K/H \times \mathbf{D}_+ & \xrightarrow{\phi'} & S^{4p+4q-1},
 \end{array}$$

where $\phi'(kH, (\theta, Y)) = \psi(k, \phi(M(\theta), Y))$. Since $1 \times \psi$ is a smooth submersion, we see that the restriction $\Phi|_{W(\Phi)}$ is a smooth mapping.

Define $S_1(\Phi) = \{\Phi(g, \mathbf{e}_1) \mid g \in G\}$ and $S_2(\Phi) = \{\Phi(g, \mathbf{e}_{p+1}) \mid g \in G\}$.

We shall show that these two sets are open in $S^{4p+4q-1}$ and the G -action Φ is smooth on these sets.

Here we define the standard G -action Ψ_0 on $S^{4p+4q-1}$ by

$$\Psi_0(g, X) = \|gX\|^{-1}gX; \quad g \in G, \quad X \in S^{4p+4q-1}.$$

Define $S_1(\Psi_0) = \{\Psi_0(g, \mathbf{e}_1) \mid g \in G\}$, and $S_2(\Psi_0) = \{\Psi_0(g, \mathbf{e}_{p+1}) \mid g \in G\}$. By the natural correspondence

$$\Phi(g, \mathbf{e}_1) \mapsto \Psi_0(g, \mathbf{e}_1), \quad \Phi(g, \mathbf{e}_{p+1}) \mapsto \Psi_0(g, \mathbf{e}_{p+1}),$$

we obtain G -equivariant mappings $F_\varepsilon: S_\varepsilon(\Phi) \rightarrow S_\varepsilon(\Psi_0)$ for $\varepsilon = 1, 2$.

We can denote $\Phi(M(\theta), \mathbf{e}_1) = \phi(M(\theta), \mathbf{e}_1) = X(a(\theta), b(\theta), c(\theta), d(\theta))$. Since $f(X(*, 0, *, 0)) = (1 : 0)$ and $f(X(0, *, 0, *)) = (0 : 1)$, we see

$$\begin{aligned}
 (a) \quad & (b(\theta), d(\theta)) \neq (0, 0) \quad (\forall \theta \neq 0), \\
 & (a(\theta), c(\theta)) \neq (0, 0) \quad (\forall \theta).
 \end{aligned}$$

Next, using

$$-K_{p,q} \in K \cap \mathbf{I}(1, 0, 0, 0), \quad (-K_{p,q})M(\theta) = M(-\theta)(-K_{p,q}),$$

we obtain

$$\begin{aligned}
 \Phi((-K_{p,q})M(\theta), \mathbf{e}_1) &= \psi(-K_{p,q}, X(a(\theta), b(\theta), c(\theta), d(\theta))) \\
 &= X(a(\theta), -b(\theta), c(\theta), -d(\theta)), \\
 \Phi(M(-\theta)(-K_{p,q}), \mathbf{e}_1) &= X(a(-\theta), b(-\theta), c(-\theta), d(-\theta)).
 \end{aligned}$$

Hence we see that $a(\theta)$ and $c(\theta)$ are even functions, and $b(\theta)$ and $d(\theta)$ are odd functions. In particular, there exist smooth even functions $b_0(\theta)$, $d_0(\theta)$ such that $b(\theta) = b_0(\theta)\theta$ and $d(\theta) = d_0(\theta)\theta$.

Now we define $\Delta \mathbf{Sp}(1)$ as the subgroup of $K \cap N(p, q) = \mathbf{Sp}(1) \times \mathbf{Sp}(1)$ consisting of matrices in the form

$$\left[\begin{array}{c|c|c} a & -\bar{c} & \\ \hline & a & \bar{c} \\ \hline c & \bar{a} & \\ \hline -c & & \bar{a} \end{array} \right].$$

By direct calculation, we see

$$(b) \quad M(\theta) \text{ is commutative with each element of } \Delta \mathbf{Sp}(1).$$

Moreover, we obtain

$$\left[\begin{array}{c|c|c} a & -\bar{c} & \\ \hline & a & \bar{c} \\ \hline c & \bar{a} & \\ \hline -c & & \bar{a} \end{array} \right] X(x, y, x', y') \longleftrightarrow (a + jc) \begin{bmatrix} x + jx' \\ y - jy' \end{bmatrix}$$

under the natural correspondence

$$X(x, y, x', y') \longleftrightarrow \begin{bmatrix} x + jx' \\ y - jy' \end{bmatrix}.$$

This means the action of $\Delta \mathbf{Sp}(1)$ on $F(H)$ corresponds to the left scalar multiplication. In particular, we obtain

$$(c) \quad \text{The } \Delta \mathbf{Sp}(1)\text{-action on } F(H) \text{ is free.}$$

Moreover, we see the set $S = f^{-1}(\mathbf{P}_1(\mathbf{R}))$ is $\Delta \mathbf{Sp}(1)$ -invariant.

Since $f(\phi(M(\theta), \mathbf{e}_1)) = (1 : \tanh \theta)$, we see the curve $\phi(M(\theta), \mathbf{e}_1)$ is transverse to each orbit of the $\Delta \mathbf{Sp}(1)$ -action, by the facts (b), (c). Hence we obtain

$$(d) \quad \frac{d}{d\theta}(|b(\theta)|^2 + |d(\theta)|^2) \neq 0 \quad (\forall \theta \neq 0)$$

Here we obtain $(a'(\theta), b'(\theta), c'(\theta), d'(\theta)) \neq (0, 0, 0, 0)$ ($\forall \theta$) by making use of the equation $f(\phi(M(\theta), \mathbf{e}_1)) = (1 : \tanh \theta)$. Since $a(\theta), c(\theta)$ are even functions, we see $a'(0) = c'(0) = 0$, and hence $(b_0(0), d_0(0)) = (b'(0), d'(0)) \neq (0, 0)$. Combining this result with (a), we obtain

$$(e) \quad (a(\theta), c(\theta)) \neq (0, 0) \neq (b_0(\theta), d_0(\theta)) \quad (\forall \theta)$$

Here we define new smooth functions by

$$\sigma(\theta) = \sqrt{|a(\theta)|^2 + |c(\theta)|^2}, \quad \tau_0(\theta) = \sqrt{|b_0(\theta)|^2 + |d_0(\theta)|^2}$$

$$\alpha(\theta) = \frac{\overline{a(\theta) + jc(\theta)}}{\sigma(\theta)}, \quad \beta(\theta) = \frac{\overline{b_0(\theta) - jd_0(\theta)}}{\tau_0(\theta)}$$

Moreover we define $\tau(\theta) = \tau_0(\theta)\theta$. Then, $\tau(\theta)$ is an odd function and $\alpha(\theta)$, $\beta(\theta)$ are even function with values in quaternions of modulus one. Moreover,

$$\begin{bmatrix} (a(\theta) + jc(\theta))\alpha(\theta) \\ (b(\theta) - jd(\theta))\beta(\theta) \end{bmatrix} = \begin{bmatrix} \sigma(\theta) \\ \tau(\theta) \end{bmatrix}.$$

By (d), we obtain

$$\frac{d}{d\theta}\tau(\theta) = \frac{(d/d\theta)(|b(\theta)|^2 + |d(\theta)|^2)}{2\sqrt{|b(\theta)|^2 + |d(\theta)|^2}} \neq 0 \quad (\forall\theta \neq 0).$$

Then $\tau'(0) = \tau_0(0) > 0$ by (e). Hence we see $\tau'(\theta) > 0$ ($\forall\theta$). Therefore, $\tau: \mathbf{R} \longrightarrow (-r, r)$ ($0 < r \leq 1$) is a smooth diffeomorphism. The existence of such r is assured by the equation $|a(\theta)|^2 + |b(\theta)|^2 + |c(\theta)|^2 + |d(\theta)|^2 = 1$ ($\forall\theta$).

Here we use the following identification again

$$\mathbf{C}^{2p+2q} \ni U_1 \oplus V_1 \oplus U_2 \oplus V_2 \longleftrightarrow (U_1 + jU_2) \oplus (V_1 - jV_2) \in \mathbf{H}^{p+q}.$$

By the diffeomorphism $\tau: \mathbf{R} \longrightarrow (-r, r)$, we can describe

$$S_1(\Phi) = \{U \oplus V \in \mathbf{H}^{p+q} \mid \|V\| < r, \|U\|^2 + \|V\|^2 = 1\}.$$

First we define $h_1: S_1(\Phi) \longrightarrow S_1(\Phi)$ by

$$h_1(U \oplus V) = U\alpha(\tau^{-1}(\|V\|)) \oplus V\beta(\tau^{-1}(\|V\|)).$$

Then h_1 is a K -equivariant diffeomorphism by definition. Moreover, we obtain the following:

$$(f) \quad h_1(\Phi(M(\theta), \mathbf{e}_1)) = \sigma(\theta)\mathbf{e}_1 \oplus \tau(\theta)\mathbf{e}_{p+1} \quad (\forall\theta)$$

Since the function $\tanh\theta/\sqrt{1 + (\tanh\theta)^2}$ is a diffeomorphism and odd function from \mathbf{R} onto the open interval $(-1/\sqrt{2}, 1/\sqrt{2})$, we can define $\gamma: (-r, r) \longrightarrow (-1/\sqrt{2}, 1/\sqrt{2})$ by the equation

$$\gamma(\tau(\theta)) = \frac{\tanh\theta}{\sqrt{1 + (\tanh\theta)^2}} \quad (\forall\theta).$$

Then the mapping γ is a diffeomorphism and odd function. So we define an even function $\gamma_0: (-r, r) \rightarrow \mathbf{R}$ by $\gamma_0(\theta) = \gamma(\theta)\theta$ ($\forall\theta$).

Next we define $h_2: S_1(\Phi) \rightarrow S_1(\Psi_0)$ by $U \oplus V \mapsto U\gamma_1 \oplus V\gamma_0(\|V\|)$, where $\gamma_1 = \|U\|^{-1}\sqrt{1 - \gamma(\|V\|)^2}$. Then h_2 is also a K -equivariant diffeomorphism by definition. Moreover, we obtain the following:

$$(g) \quad h_2(\sigma(\theta)\mathbf{e}_1 \oplus \tau(\theta)\mathbf{e}_{p+1}) = \Psi_0(M(\theta), \mathbf{e}_1)$$

The composition $h_2 \circ h_1$ is also a K -equivariant diffeomorphism and

$$(h_2 \circ h_1)(\Phi(M(\theta), \mathbf{e}_1)) = \Psi_0(M(\theta), \mathbf{e}_1)$$

by (f), (g). By making use of Lemma 4.5, we see $(h_2 \circ h_1)(\Phi(g, \mathbf{e}_1)) = \Psi_0(g, \mathbf{e}_1)$ for each $g \in G$.

Consequently, we see $F_1 = h_2 \circ h_1$ and hence $F_1: S_1(\Phi) \rightarrow S_1(\Psi_0)$ is a smooth diffeomorphism. By the quite similar argument, we see that the G -equivariant mapping $F_2: S_2(\Phi) \rightarrow S_2(\Psi_0)$ is also a smooth diffeomorphism.

Since the family of three open sets $W(\Phi)$, $G \times S_1(\Phi)$ and $G \times S_2(\Phi)$ is an open covering of $G \times S^{4p+4q-1}$ and the restriction of $\Phi: G \times S^{4p+4q-1} \rightarrow S^{4p+4q-1}$ is smooth on these three open sets, we see that the action Φ of G on $S^{4p+4q-1}$ is smooth.

Consequently, we obtain the following result.

Theorem 4.8. *Let a smooth action $\phi: N(p, q) \times F(H) \rightarrow F(H)$ and an $N(p, q)$ -equivariant smooth mapping $f: F(H) \rightarrow \mathbf{P}_1(\mathbf{H})$ be given. Suppose that the following conditions are satisfied:*

1. $n \in N(p, q) \cap K$, $Y \in F(H) \implies \phi(n, Y) = \psi(n, Y)$.
2. $f(Y) = (a + jc : b - jd) \implies N(p, q)_Y \supset N(p, q) \cap \mathbf{I}(a, b, c, d)$.

Then there exists a smooth G -action Φ on $S^{4p+4q-1}$ uniquely, which is an extension of the standard K -action ψ and an extension of the given $N(p, q)$ -action ϕ . Moreover, the isotropy subgroup at $Y \in F(H)$ contains $\mathbf{I}(a, b, c, d)$, if $f(Y) = (a + jc : b - jd)$.

5. Construction of (ϕ, f)

In the previous section, we show how to construct a smooth action of $\mathbf{Sp}(p, q)$ on $S^{4p+4q-1}$ from a pair (ϕ, f) , where ϕ is a smooth $N(p, q)$ -action on $S^7 = F(H)$ whose restriction on $K \cap N(p, q)$ coincides with the restriction of the standard action of $K = \mathbf{Sp}(p) \times \mathbf{Sp}(q)$ and $f: F(H) \rightarrow \mathbf{P}_1(\mathbf{H})$ is a smooth $N(p, q)$ -equivariant mapping satisfying the conditions in Theorem 4.8.

Now we consider how to construct such a pair (ϕ, f) . Define the circle S_0 in $S^{4p+4q-1}$ and involutions J_{\pm} on S_0 by

$$S_0 = \{s\mathbf{e}_1 + t\mathbf{e}_{p+1} \mid s^2 + t^2 = 1; s, t \in \mathbf{R}\},$$

$$J_\varepsilon(s\mathbf{e}_1 + t\mathbf{e}_{p+1}) = \begin{cases} -s\mathbf{e}_1 + t\mathbf{e}_{p+1} & (\varepsilon = +), \\ s\mathbf{e}_1 - t\mathbf{e}_{p+1} & (\varepsilon = -). \end{cases}$$

Now we give a pair (ϕ_0, f_0) of a smooth one-parameter group $\phi_0: \mathbf{R} \times S_0 \rightarrow S_0$ and a smooth function $f_0: S_0 \rightarrow \mathbf{P}_1(\mathbf{R})$ satisfying the conditions

- (a) $J_\varepsilon \phi_0(\theta, Y) = \phi_0(-\theta, J_\varepsilon(Y)) \quad (\varepsilon = \pm)$
- (b) $f_0(Y) = (a : b) \implies f_0(J_\varepsilon(Y)) = (-a : b) \quad (\varepsilon = \pm)$
 $f_0(Y) = (a : b) \implies$
- (c) $f_0(\phi_0(\theta, Y)) = (a \cosh \theta + b \sinh \theta : a \sinh \theta + b \cosh \theta)$
- (d) $f_0(Y) = (1 : 0) \iff Y = \pm \mathbf{e}_1$
- (e) $f_0(Y) = (0 : 1) \iff Y = \pm \mathbf{e}_{p+1}$

From the pair (ϕ_0, f_0) , we can construct a desired pair (ϕ, f) . The method is quite similar as one in the previous section and as one in [5, §5], so we omit the description. Notice that each open orbit of $N(p, q)$ -action ϕ corresponds to an equivalence class of open orbits of the one-parameter group ϕ_0 , where two open orbits of the one-parameter group ϕ_0 are equivalent if the one is mapped onto the other by the involutions J_\pm .

The next problem is how to construct a pair (ϕ_0, f_0) satisfying the conditions (a)–(e). First we prepare the following lemma [1, Lemma 10.1].

Lemma 5.1. *There exist smooth functions A, B defined on \mathbf{R} satisfying the conditions*

- (1) $A(x)$: odd function, $B(x)$: even function,
- (2) $|A(x)| < 1$ ($|x| < 1$), $A(x) = 1$ ($x \geq 1$), $A(x) = -1$ ($x \leq -1$),
- (3) $B(x) = 0$ ($|x| \geq 1$),
- (4) $A'(x) > 0$ ($|x| < 1$),
- (5) $B(x)A'(x) = A(x)^2 - 1$ ($\forall x$).

For each positive integer m , define new smooth functions A_m, B_m, C_m by

$$\begin{aligned} A_m(\tau) &= A(\omega_0)^{-1} A(\omega_{2m-1}) A(\omega_{4m-2})^{-1} \quad (0 < \tau < \pi), \\ B_m(\tau) &= s \sum_{j=0}^{4m-2} (-1)^j B(\omega_j) \quad (0 \leq \tau \leq \pi), \\ C_m(\tau) &= -A_m \left(\tau + \frac{\pi}{2} \right) \quad \left(-\frac{\pi}{2} < \tau < \frac{\pi}{2} \right). \end{aligned}$$

Here $s = \pi/(8m - 4)$ and $\omega_j = (\tau - 2js)/s$. Then the following conditions are satisfied by (1)–(5):

$$(6) \quad B_m(\tau)A'_m(\tau) = A_m(\tau)^2 - 1,$$

$$(7) \quad A_m(\pi - \tau) = -A_m(\tau), \quad B_m(\pi - \tau) = B_m(\tau),$$

$$(8) \quad A_m(\tau)C_m(\tau) = 1 \quad (0 < \tau < \pi/2).$$

Put

$$L_Y = -t \left(\frac{\partial}{\partial s} \right)_Y + s \left(\frac{\partial}{\partial t} \right)_Y, \quad Y = s\mathbf{e}_1 + t\mathbf{e}_{p+1},$$

which is the unit tangent vector field on S_0 . We see $L(\xi J_{\pm}) = -L(\xi) \circ J_{\pm}$ for any smooth function ξ on S_0 . Denote by $Y = Y(\tau) \in S_0$ as follows:

$$Y(\tau) = (\cos \tau)\mathbf{e}_1 + (\sin \tau)\mathbf{e}_{p+1}.$$

Now we define smooth functions on an open set of S_0 by

$$\begin{aligned} g(Y) &= \begin{cases} B_m(\tau) & 0 \leq \tau \leq \pi, \\ B_m(-\tau) & -\pi \leq \tau \leq 0, \end{cases} \\ h(Y) &= \begin{cases} -A_m(\tau) & 0 < \tau < \pi, \\ A_m(-\tau) & -\pi < \tau < 0, \end{cases} \\ k(Y) &= \begin{cases} -C_m(\tau) & -\frac{\pi}{2} < \tau < \frac{\pi}{2}, \\ C_m(\pi - \tau) & \frac{\pi}{2} < \tau < \frac{3\pi}{2}. \end{cases} \end{aligned}$$

Moreover we define

$$f_0(Y) = \begin{cases} (h(Y) : 1) & Y \neq \pm\mathbf{e}_1, \\ (1 : k(Y)) & Y \neq \pm\mathbf{e}_{p+1}. \end{cases}$$

Then we obtain a smooth function $f_0: S_0 \rightarrow \mathbf{P}_1(\mathbf{R})$ by (7), (8).

Since $J_+Y(\tau) = Y(\pi - \tau)$ and $J_-Y(\tau) = Y(-\tau)$, we obtain

$$\begin{aligned} g(J_{\pm}(Y)) &= g(Y), \\ f_0(Y) = (a : b) &\implies f_0(J_{\pm}(Y)) = (-a : b). \end{aligned}$$

Then we see that the function f_0 satisfies the conditions (b), (d), (e).

Now we define a one-parameter group ϕ_0 on S_0 as the one corresponding to the tangent vector field $g\mathbf{L}$, that is, ϕ_0 is defined by the following:

$$g(Y)L_Y(\xi) = \lim_{\theta \rightarrow 0} \frac{\xi(\phi_0(\theta, Y)) - \xi(Y)}{\theta}$$

for $Y \in S_0$ and any smooth function ξ on S_0 . On the other hand, we see

$$g(Y)L_Y(h) = 1 - h(Y)^2 \quad \text{for} \quad Y \neq \pm\mathbf{e}_1,$$

$$g(Y)L_Y(k) = 1 - k(Y)^2 \quad \text{for} \quad Y \neq \pm\mathbf{e}_{p+1}$$

by (6)–(8). Hence we obtain $(d\xi/d\theta)(\phi_0(\theta, Y)) = 1 - \xi(\phi_0(\theta, Y))^2$ for $\xi = h, k$. Therefore we obtain $\xi(\phi_0(\theta, Y)) = (\xi(Y) + \tanh \theta)/(1 + \xi(Y) \tanh \theta)$ for $\xi = h, k$. Then we see the pair (ϕ_0, f_0) satisfies the condition (c). Moreover, we obtain $J_{\pm}\phi_0(\theta, J_{\pm}Y) = \phi_0(-\theta, Y)$. So the condition (a) holds for ϕ_0 .

Consequently, the pair (ϕ_0, f_0) satisfies all conditions (a)–(e). Put Φ_m the corresponding smooth action of $\mathbf{Sp}(p, q)$ on $S^{4p+4q-1}$. Then we see the action Φ_m has just $2m$ open orbits on $S^{4p+4q-1}$.

Now we can state the following result.

Theorem 5.2. *For any positive integer m , there exists a smooth action of $\mathbf{Sp}(p, q)$ on $S^{4p+4q-1}$, which has just $2m$ open orbits.*

6. Concluding remark

For any real number c , a smooth action Ψ_c of $\mathbf{Sp}(p, q)$ on $S^{4p+4q-1}$ is defined by $\Psi_c(A, X) = AX\|AX\|^{-1} \exp(ic \log \|AX\|)$, where $i = \sqrt{-1}$. We call Ψ_c the twisted linear action [6]. For $c = 0$, the action Ψ_0 is described by $\Psi_0(A, X) = AX\|AX\|^{-1}$. This is the standard action considered in the second half of the section 4.

The restricted $\mathbf{Sp}(p) \times \mathbf{Sp}(q)$ -action of the twisted linear action Ψ_c is the standard action and we see that the twisted linear action Ψ_c has just three orbits and two of them are open orbits and one of them is compact orbit of codimension 1. Moreover we see that a matrix M is contained in the isotropy algebra at a point X of the compact orbit, if and only if $MX = (1 - ic)mX$ for some real number m .

By a routine work, we obtain the following result.

Theorem 6.1. *Between two twisted linear actions Ψ_c and $\Psi_{c'}$, there exists an equivariant homeomorphism if and only if $|c| = |c'|$.*

References

- [1] T. Asoh: *On smooth $\mathbf{SL}(2, \mathbf{C})$ actions on 3-manifolds*, Osaka J. Math. **24** (1987), 271–298.
- [2] K. Mukōyama: *Smooth $\mathbf{Sp}(2, \mathbf{R})$ -actions on the 4-sphere*, Tôhoku Math. J. **48** (1996), 543–560.
- [3] K. Mukōyama: *Smooth $\mathbf{SU}(p, q)$ -actions on the $(2p + 2q - 1)$ -sphere and on the complex projective $(p + q - 1)$ -space*, Kyushu J. Math. **55** (2001), 213–236.
- [4] F. Uchida: *On smooth $\mathbf{SO}_0(p, q)$ -actions on S^{p+q-1}* , Osaka J. Math. **26** (1989), 775–787.
- [5] F. Uchida: *On smooth $\mathbf{SO}_0(p, q)$ -actions on S^{p+q-1} , II*, Tôhoku Math. J. **49** (1997), 185–202.
- [6] F. Uchida: *On a method to construct analytic actions of non-compact Lie groups on a sphere*, Tôhoku Math. J. **39** (1987), 61–69.

Department of Mathematical Sciences
Faculty of Science
Yamagata University
Koshirakawa, Yamagata 990-8560
Japan
e-mail: fuchida@sci.kj.yamagata-u.ac.jp