<table>
<thead>
<tr>
<th>Title</th>
<th>Electrical Conductivity of Titanium Oxide (Rutile) Plasma Sprayed Coatings (Physics, Process, Instrument & Measurement)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ohmori, Akira; Park, Kyeung-Chae; Inuzuka, Masayuki; Arata, Yoshiaki</td>
</tr>
<tr>
<td>Citation</td>
<td>Transactions of JWRI. 18(2) P.223-P.227</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1989-12</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/11094/3895</td>
</tr>
<tr>
<td>DOI</td>
<td></td>
</tr>
<tr>
<td>rights</td>
<td>本文データはCiNiiから複製したものである</td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA
https://ir.library.osaka-u.ac.jp/repo/ouka/all/
Electrical Conductivity of Titanium Oxide (Rutile) Plasma Sprayed Coatings†

Akira OHMORI *, Kyeung-Chae PARK **, Masayuki INUZUKA *** and Yoshiaki ARATA ****

Abstract

Plasma spraying has been used to prepare n-type polycrystalline TiO₂ coatings on substrates. The influence of plasma spray process on the mixture of phases of coatings (corundum type Ti₃O₈, monoclinic Ti₄O₉, triclinic magneli phases, and tetragonal rutile) and the relation between deoxidation and the electrical conductivity of plasma sprayed coatings have been studied.

The amount of oxygen loss in the plasma sprayed TiO₂ coatings is influenced greatly by auxiliary hydrogen gas. Accordingly, the electrical conductivity of plasma sprayed TiO₂ coatings increases with the increase of oxygen loss. The reduction amount of plasma sprayed TiO₂ coatings increases with a drop of atmosphere pressure and an increase in quantity of hydrogen. The formation amounts of Ti₁O₇ and Ti₃O₉ phases increase with the deoxidation of plasma sprayed TiO₂ coatings.

KEY WORDS: (Plasma Spraying) (Electrical Conductivity) (Magneli Phase) (Auxiliary Gas) (Oxygen Loss) (TiO₂-x) (LPC) (Ti₃O₇ Phase) (Ti₃O₉ Phase)

1. Introduction

Plasma spraying is a well known technique in aeronautic and elsewhere to obtain the reliable coatings of metals, alloys and ceramics.

If the good quality polycrystalline TiO₂ coatings are obtained easily by an economical process, the TiO₂ coatings will play on important part on the electronic and electrical industries.

When the titanium dioxide is treated so as to cause easily a loss of oxygen in the lattice either by heating in a low oxygen pressure or in hydrogen, the material becomes a n-type semiconductor whose property depends on the extent of oxygen loss. Therefore, rutile-TiO₂ is turned into non-stoichiometric TiO₂−x, Ti₈O₂₀−n−1 magneli series of homologous compounds, Ti₃O₇, and Ti₃O₉ by reduction, and its physical properties is changed.

Non-stoichiometric TiO₂−x has a complex defect structure. The reduced oxide TiO₂−x contains extended defects known as crystallographic shear planes whose formation can be described in terms of elimination of planes of oxygen¹).

The compound Ti₈O₂₀−₁ have raised considerable interest, because of their unusual electric properties²).

The oxides Ti₈O₂₀−₁ with n = 4 ~ 9 form a magneli series of homologous compounds built of TiO₆ octahedra which share corners and edges to form rutile slabs³,4). They are bounded by monoclinic Ti₃O₇ on the one side and by reduced rutile (TiO₂−x) on the other.

In this study, an industrial coating technique, plasma spraying, has also been used to produce TiO₂ polycrystalline coatings from TiO₂ powders on SUS304 steel. The physical and chemical properties of TiO₂ plasma sprayed coatings depend greatly on plasma spray condition, and so, the electrical resistivity, oxygen concentration, and crystal structure of the plasma sprayed TiO₂ coatings have been investigated.

This work was done to know the relation between phases, oxygen concentration and electric conductivity of the plasma sprayed TiO₂ coatings by changing the plasma spray atmosphere and the amount of auxiliary gas, H₂.

2. Materials and Experimental procedure

Materials used in this investigations was commercially available TiO₂ powders (K-30M) (99% pure and particle size, 10 ~ 44 µm) and showed the rutile and a little magneli structure by X-ray diffraction as shown in Fig. 1.

Plasma spraying was performed with a plasma spray system (METCO 7M). As plasma spray conditions, spraying atmosphere were air and 100 Torr Ar, and plasma gas were Ar(7kg/min) and H₂ (0~11.8 l/min).

† Received on November 6, 1989
* Associate Professor
** Graduate Student
*** Graduate Student (Present address: Kawasaki Heavy Industries, Ltd., Japan)
**** Emeritus Professor

Transaction of JWRI is published by Welding Research Institute of Osaka University, Ibaraki, Osaka 567, Japan
Plasma powers were 30 – 49 kW, spraying distances were 100mm in the conventional plasma spraying and 200mm in the LPC plasma spraying. SUS304 steel plate (60mm × 50mm × 6mm) was used as substrate.

The van der Pauw technique\(^5\) was followed to perform the conductivity measurements of TiO\(_2\) coatings sprayed on alumina coatings that were projected on SUS304 steel as shown in Fig. 2.

The change in the deoxidized concentration of TiO\(_2\) coatings after plasma spraying was determined by the change of weight of the coatings before and after annealing of 1000 °C - 5 hour in air.

The crystal structures of the plasma sprayed TiO\(_2\) coatings (magneli, Ti\(_2\)O\(_3\), Ti\(_3\)O\(_5\), rutile, and anatase) depending on the spray conditions and auxiliary gas (H\(_2\)) were determined by X-ray diffractions.

3. Results and Discussion

3.1 Effect of plasma spray condition on crystal structure of plasma sprayed TiO\(_2\) coatings.

Figure 3 is XRD results of conventional plasma sprayed TiO\(_2\) coatings showing the mixtures of phases depending on plasma H\(_2\) gas flow rates in air. X-ray diffraction showed that the conventional plasma sprayed TiO\(_2\) coatings had the structure of rutile containing of anatase and magneli phase depending on the flow rate of auxiliary:

![Fig. 3 XRD results of plasma sprayed TiO\(_2\) coatings sprayed in air at various H\(_2\) gas flow rates. (plasma power: 42kW, spraying distance: 100mm)\(\)](image)

Fig. 1 XRD result of TiO\(_2\) powder before spraying.

Fig. 2 Method for measuring electrical conductivity.
Plasma Sprayed Coatings

With increase of H₂ gas flow rate, anatase decreased and magneli increased. Amounts of magneli of sprayed coatings is smaller than that of TiO₂ spray powder, because it is oxidized by plasma spraying, and amounts of magneli decreased. The ratio of rutile to anatase increased with increasing oxidation atmosphere and the decrease of H₂ in plasma gas.

Figure 4 shows a relation between oxygen loss of coatings and H₂ gas flow rates in conventional plasma spraying (air). The oxygen loss were increased with increase of H₂ gas flow rate, because TiO₂ powder reacted with hydrogen of plasma gas during plasma spraying. The smaller H₂ gas flow rate became the more plasma spraying particles were reoxidized easily by air.

Figure 5 is XRD results of LPC plasma sprayed coatings showing the mixture of phases depended on plasma H₂ gas flow rates at the Ar atmosphere of 100 Torr. X-ray diffraction showed that LPC plasma sprayed TiO₂ coatings had the structure of rutile containing of various phases (magneli, Ti₃O₅ and Ti₂O₃) depending on the flow rate of auxiliary gas, H₂. With the increase of H₂ gas flow rate, amounts of rutile decreased greatly and magneli, Ti₃O₅ and Ti₂O₃ phases increased. As it is reduced more easily by plasma spray gas in low pressure Ar atmosphere, amounts of low oxygen oxide increased in TiO₂ coatings. And, amounts of anatase of the sprayed coatings decreased in reduction atmosphere.

Figure 6 is a relation between oxygen loss of TiO₂ coatings and H₂ gas flow rates in LPC spraying atmosphere (100 Torr Ar). The oxygen loss increased with the increase of H₂ gas flow rate and the oxygen loss of these coatings is higher than that of conventional plasma sprayed coatings shown in Fig. 4, because TiO₂...
powder reduced highly by hydrogen at low pressure during plasma spraying. Accordingly, amounts of TiO$_2$ and Ti$_2$O$_3$ increased.

3.2 Electrical conductivity of plasma sprayed TiO$_2$ coatings.

It was reckoned that the structure of plasma sprayed TiO$_2$ coatings was influenced greatly by the plasma spray conditions, such as the spray condition and the quality of plasma gas (H$_2$). In this section, the effect of plasma spraying conditions on electrical conductivity of TiO$_2$ coatings was examined.

Figure 7 shows the change in the electrical conductivity of conventional plasma sprayed TiO$_2$ coatings with the plasma H$_2$ gas flow rates during the spraying in air. **Figure 8** is the change in electrical conductivity of LPC plasma sprayed TiO$_2$ coatings with the plasma H$_2$ gas flow rates in Ar atmosphere of 100 Torr.

The electrical conductivity with the increase of the plasma H$_2$ gas flow rate increased in both atmospheres.

The electrical conductivity of low pressure plasma TiO$_2$ sprayed coatings becomes higher than that of conventional plasma TiO$_2$ sprayed coatings from these figures.

3.3 Relationship between the electrical conductivity and the structure of TiO$_2$ coatings.

The electrical conductivity of plasma sprayed TiO$_2$ coatings increased with the increase of plasma H$_2$ gas amount for both plasma spraying in air and in LPC. The conductivity of LPC plasma sprayed TiO$_2$ coatings showed larger value than that of air plasma sprayed TiO$_2$ coatings. **Figure 9** shows the relation between oxygen loss and the electrical conductivity of plasma sprayed TiO$_2$ coatings. From the figure, it is reckoned that the electrical conductivity increases with the increase of oxygen loss of TiO$_2$ coatings. The electrical conductivity is controlled by the concentration of oxygen loss in the plasma sprayed coatings.
For nonstoichiometric oxides, a total electrical conductivity (TC) is given by following equation\(^6\).

\[
TC = 2e \cdot V_o \cdot U_o + e \cdot n \cdot U_n
\]
(1)

Where \(e\) is the electronic charge, \(V_o\) is the vacancy concentration of oxygen atom, \(U_o\) is the mobility of oxygen vacancy, \(U_n\) is the electron mobility, and \(n\) is the number of electrons.

Two free electrons are created by one oxide vacancy, based on the theory of electrical neutrality, and following equation is given.

\[
n = 2 \cdot V_o
\]
(2)

The values of electron mobility is much larger than that of oxygen vacancy mobility. Accordingly, TC can be given by the following equation\(^7\).

\[
TC = 2e \cdot V_o \cdot U_n
\]
(3)

Then total electric conductivity (TC) is in proportion to the vacancy concentration of a oxygen atom (\(V_o\)) and the electron mobility (\(U_n\)). From Fig. 9, TC increases linearly with the increase of oxygen loss amount of TiO\(_2\) coatings produced plasma spraying in air. As shown in Fig. 3 and Fig. 4, magneli and the oxygen loss of TiO\(_2\) coatings increases with the plasma H\(_2\) gas amount.

The increase of TC may be dependant on magneli amount of TiO\(_2\) coatings. From Fig. 3, TiO\(_2\) coatings produced by plasma spraying in air, are composed mainly of rutile, anatase and magneli.

For TiO\(_2\) coatings produced by LPC plasma spraying, TC increases greatly with the increase the oxygen loss. As shown in Fig. 5, the TiO\(_2\) coatings are composed of rutile, magneli, Ti\(_3\)O\(_5\) and Ti\(_2\)O\(_3\). The increase of oxygen loss of the TiO\(_2\) coatings, is due to the decrease of rutile, and the increase of Ti\(_3\)O\(_5\) and Ti\(_2\)O\(_3\).

The electron mobility (\(U_n\)) of Ti\(_3\)O\(_5\) (2.5 cm\(^2\)/v.s)\(^9\) in equation 3 is larger than those of Ti\(_2\)O\(_3\) (0.21 cm\(^2\)/v.s, 450K)\(^9\) and magneli (0.6 ~ 0.9 cm\(^2\)/v.s)\(^9\) at room temperature. So, the electrical conductivity increased depending on the increase of Ti\(_3\)O\(_3\) in TiO\(_2\) plasma coatings.

4. Conclusion

The electrical conductivity for TiO\(_2\) coatings produced by plasma spraying in air and LPC plasma spraying was studied.

The oxygen loss of TiO\(_2\) coatings increases with the increase of plasma H\(_2\) gas quantity. The oxygen loss of conventional plasma sprayed TiO\(_2\) coatings becomes smaller than that of LPC plasma sprayed TiO\(_2\) coatings.

TiO\(_2\) coatings produced by plasma spraying in air, are composed of rutile, anatase and magneli, and LPC plasma sprayed TiO\(_2\) coatings are composed mainly of magneli, Ti\(_3\)O\(_5\) and Ti\(_2\)O\(_3\).

The electrical conductivity increases with the oxygen loss of TiO\(_2\) coatings. For conventional plasma sprayed TiO\(_2\) coatings, the electrical conductivity increases with the increase of the magneli amount in TiO\(_2\) coatings. For LPC plasma sprayed TiO\(_2\) coatings increases with the increase of Ti\(_3\)O\(_3\) amount in TiO\(_2\) coatings.

References