

Title	On the small hulls of a commutative ring
Author(s)	Harada, Manabu
Citation	Osaka Journal of Mathematics. 1978, 15(3), p. 679-682
Version Type	VoR
URL	https://doi.org/10.18910/3900
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Harada, M.
Osaka J. Math.
15 (1978), 679-682

ON THE SMALL HULLS OF A COMMUTATIVE RING

MANABU HARADA

(Received June 7, 1977)

This short note is a continuous one of [1]. We always assume that every ring R is a commutative ring with identity 1 and every ring homomorphism f is unitary, i.e. $f(1)$ is the identity. Let R and R' be rings and $f: R \rightarrow R'$ a ring homomorphism. Then every R' -module may be regarded as an R -module through f . If $f(R)$ is a small submodule of R' as an R -module, we say f being *small* or R being *small in R'* [1]. In this note, we shall find the smallest small homomorphism of R .

We shall make use of the same notations as in [1]. We define the smallest small homomorphism as follows:

DEFINITION. Let R and \tilde{R} be rings and $f: R \rightarrow \tilde{R}$ a ring homomorphism. We say \tilde{R} being a *small hull* of R if the following conditions are satisfied.

- 1) f is small.
- 2) For any small (ring) homomorphism $g: R \rightarrow R'$, there exists a unique (ring) homomorphism $h: \tilde{R} \rightarrow R'$ such that $g = hf$.

We say \tilde{R} being a *local small hull* of R if the following conditions are satisfied.

\tilde{R} is a local ring and the properties 1), 2) above are satisfied whenever R' is a local ring (R is not necessarily local).

It is clear that (local) small hulls of R are unique up to isomorphism if they exist.

Proposition 1. We assume R has a (local) small hull $f: R \rightarrow \tilde{R}$. Then for any (local) ring R' and a ring homomorphism $g: R \rightarrow R'$ g is small if and only if there exists a homomorphism $h: \tilde{R} \rightarrow R'$ such that $g = hf$.

Proof. It is clear from the definition and [1], Remark 3.

Proposition 2. Let R be a ring. Then the trivial ring 0 is a small hull of R if and only if $\text{K. dim } R = 0$.

Proof. We assume $\text{K. dim } R = 0$ and $f: R \rightarrow R'$ a ring homomorphism. Let M' be a maximal ideal in R' . If $f \neq 0$, $M' \cap R$ is maximal. Hence f is not small

by [1], Theorem 1. The converse is clear from Proposition 1 and [1], Proposition 9.

From the definition of the small hull, we have

Proposition 3. *If R has a small hull, every small ring extension of R contains the unique minimal small extension of R .*

From now on, we assume that a (local) small hull means a non-trivial one unless otherwise stated.

Theorem 4. *Let R be a commutative ring. Then R has a local small hull if and only if there exists a unique maximal one \mathfrak{P} among non-maximal prime ideals in R . In this case, $\mu_{\mathfrak{P}}: R \rightarrow R_{\mathfrak{P}}$ is a local small hull and a small hull, too.*

Proof. “If” part. $\mu_{\mathfrak{P}}: R \rightarrow R_{\mathfrak{P}}$ is small by [1], Theorem 1. Let R' be a local ring with maximal ideal M' and $g: R \rightarrow R'$ a small homomorphism. Since $p = R \cap M'$ is not maximal by [1], Theorem 1, $p \subseteq \mathfrak{P}$. Therefore, there exists a unique homomorphism $h: R_{\mathfrak{P}} \rightarrow R'$ such that $h\mu_{\mathfrak{P}} = g$, since $R' = R'_{M'}$. Hence, $R_{\mathfrak{P}}$ is a local small hull of R .

“Only if” part. We assume $f: R \rightarrow \tilde{R}$ is a local small hull. Let p be a non-maximal prime ideal in R . Then $\mu_p: R \rightarrow R_p$ is small. Hence, there exists a unique homomorphism $h: \tilde{R} \rightarrow R_p$ such that $\mu_p = hf$. Put $R_0 = h(\tilde{R})$ and $M_0 = h(\tilde{M})$, where \tilde{M} is the maximal ideal of \tilde{R} . Since f is small, $\mathfrak{P} = f^{-1}(\tilde{M})$ is not maximal by [1], Theorem 1. Furthermore, $p = \mu_p^{-1}(pR_p) = (hf)^{-1}(pR_p) = (hf)^{-1}(pR_p \cap R_0) \subseteq (hf)^{-1}(M_0) = f^{-1}(\tilde{M}) = \mathfrak{P}$. We shall show that $R_{\mathfrak{P}}$ is also a small hull of R . Let $g: R \rightarrow R'$ be a small homomorphism and $s \in R - \mathfrak{P}$. If $g(s)R' \neq R'$, we can take a maximal ideal M' in R' containing $g(s)R'$. Then $s \in R \cap M'$. Since g is small, $R \cap M' \subseteq \mathfrak{P}$, which is a contradiction. Hence, $g(s)R' = R'$ i.e. $g(s)$ is unit in R' . Therefore, we obtain a unique homomorphism $h: R_{\mathfrak{P}} \rightarrow R'$ such that $h\mu_{\mathfrak{P}} = g$.

The following theorem shows that the existence of a small hull does not guarantee the existence of a local small hull.

Theorem 5. *Let R be a commutative noetherian ring. Then R has a small hull if and only if $\text{K.dim } R = 1$. In this case, R_s is a small hull of R , where $S = R - \bigcup_{i=1}^r p_i$ and $\{p_i\}_{i=1}^r$ is the set of minimal but not maximal prime ideals.*

Proof. We assume that R had a small hull and $\text{K.dim } R \geq 2$. Let M be a maximal ideal and $M \supseteq P' \supseteq P$ a chain of prime ideals in R . Then $R_1 = R/P$ is a noetherian domain of $\text{K.dim } \geq 2$. Let R_1^* be the integral closure of R_1 . Then we can take a maximal ideal M_1^* in R_1^* such that $M_1^* \cap R_1 = M/P$ and height $M_1^* \geq 2$ ([2], p. 30). Since $R_1^*_{M_1^*}$ is a Krull ring by [2], Theorem 33.10,

$R_{1^*}^{*_{M_1^*}} = \bigcap_{p^*} R_{1^*}^{*_{p^*}}$, where the p^* ranges over all prime ideals in M_1^* of height 1 and so the p^* is not maximal. Hence, R_{1^*} is small in $R_{1^*}^{*_{p^*}}$. Therefore, R is small in $R_{1^*}^{*_{p^*}}$ by [2], p. 30 and [1], Proposition 4. Accordingly, R is small in $R_{1^*}^{*_{M_1^*}}$ by Proposition 3. On the other hand, $M_1^* R_{1^*}^{*_{M_1^*}} \cap R = M_1^* \cap R_1 \cap R = M/P \cap R = M$. Therefore, R is not small in $R_{1^*}^{*_{M_1^*}}$ by [1], Theorem 1. Thus, we have proved $\text{K.dim } R \leq 1$. Therefore, $\text{K.dim } R = 1$ by Proposition 2. Conversely, we assume $\text{K.dim } R = 1$. Let $g: R \rightarrow R'$ be a small homomorphism and M' a maximal ideal in R' . Since $\text{K.dim } R = 1$ and $M' \cap R$ is not maximal by [1], Theorem 1, $R - (M' \cap R) \subset S$. Therefore, there exists a unique homomorphism $h: R_S \rightarrow R'$ such that $h\mu_S = g$ as in the proof of Theorem 4. Accordingly, R_S is a small hull of R , since R is small in R_S by [1], Theorem 1.

REMARK. If R is a valuation ring of $\text{K.dim } R \geq 2$, then $R_{\mathfrak{P}}$ is a small hull of R for a prime ideal \mathfrak{P} of depth 1. Hence, Theorem 5 is not true if R is not noetherian.

Proposition 6. *Let R be a domain. Then the quotient field Q of R is a (local) small hull of R if and only if $\text{K.dim } R = 1$.*

Proof. It is clear from Theorem 4 and [1], Proposition 11.

Proposition 7. *Let R be a local ring with principal maximal ideal (m) . Then if m is nilpotent, the trivial ring is a small hull of R and if m is not nilpotent, $R_{(m^i)}$ is a small hull of R .*

Proof. The first part is clear from Proposition 2. If $g: R \rightarrow R'$ is small, $g(m)R' = R'$ by [1], Theorem 1. Hence, $R_{(m^i)}$ is a small hull of R .

Proposition 8. *Let R be a domain. We assume that every non-zero prime ideal contains a prime element (e.g. U.F.D., see [2], p. 42). Then R has a small hull if and only if $\text{K.dim } R = 1$. In this case, R is noetherian.*

Proof. If $\text{K.dim } R = 1$, Q is a small hull of R by Proposition 6. Conversely, we assume that R has a small hull. Let M be a maximal ideal and $R_M = R_{M_1}$. Then R_M satisfies the same condition as in the proposition. Let m be a prime element in $M_1 = MR_1$. Let n be any non-zero element in M_1 . We assume $nR_1 \not\subseteq mR_1$. Let x be in $R_{1(m^t)} \cap R_{1(n^s)}$. Then $x = a/m^t = b/n^s$; $a, b \in R_1$. Since mR_1 is prime, $a \in mR_1$. Therefore, $R_1 = R_{1(m^t)} \cap R_{1(n^s)}$. Since R_1 is small in $R_{1(m^t)}$ and $R_{1(n^s)}$, R is small in R_1 by Proposition 3 and [1], Proposition 4. On the other hand, R is not small in R_1 by [1], Theorem 1. Therefore, $M_1 = (m)$. Since every non-zero prime ideal contains a prime element, M_1 is a unique non-zero prime ideal. Therefore, $\text{K.dim } R = 1$ and R is noetherian by [2], Theorem 3.4.

A Krull ring R satisfies

(*) *any principal ideal $aR(\neq 0)$ of R is the intersection of a finite number of primary ideals of height 1.*

Proposition 9. *Let R be a domain satisfying (*). Then R has a small hull if and only if $\text{K.dim } R=1$.*

Proof. If $\text{K.dim } R=1$, R is a small hull of R from Proposition 6. We assume R has a small hull and $\text{K.dim } R \geq 2$. If we use the same argument as in the proof of Theorem 5, we may assume R is local. Then $R = \bigcap_p R_p$ by [2], p. 115, where the p ranges over all prime ideals of height 1. Since $\text{K.dim } R \geq 2$, R is small in R_p , which is a contradiction from Proposition 3.

OSAKA CITY UNIVERSITY

References

- [1] M. Harada: *On small ring homomorphisms*, Osaka J. Math. **15** (1978), 365–370.
- [2] M. Nagata: *Local rings*, Intersci. Tracts in Pure And Applied Math. 13 (1962).